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Gene expression is regulated by specific transcriptional circuits but also by the global expression
machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an
additional—but often neglected—layer of complexity in gene expression. Here, we develop an
experimental-computational approach to dissect specific and global regulation in the bacterium
Escherichia coli. By using fluorescent promoter reporters, we show that global regulation is growth
rate dependent not only during steady state but also during dynamic changes in growth rate and can
be quantified through two promoter-specific parameters. By applying our approach to arginine
biosynthesis,we obtain a quantitative understanding of both specific and global regulation that allows
accurate prediction of the temporal response to simultaneous perturbations in arginine availability
and growth rate. We thereby uncover two principles of joint regulation: (i) specific regulation by
repression dominates the transcriptional response during metabolic steady states, largely repressing
the biosynthesis genes even when biosynthesis is required and (ii) global regulation sets the
maximum promoter activity that is exploited during the transition between steady states.
Molecular Systems Biology 9: 658; published online 16 April 2013; doi:10.1038/msb.2013.14
Subject Categories: metabolic and regulatory networks; chromatin & transcription
Keywords: expression machinery; modelling; synthetic biology; transcriptional circuit; transcriptional
regulation

Introduction

Specific transcription factors (TFs) regulate fundamental
biological functions including metabolism, development and
differentiation (Kalir et al, 2001; Zaslaver et al, 2004; Egli et al,
2008; Segal et al, 2008). Departing fromdiscovery and intuitive
reasoning, the current focus is on understanding the quanti-
tative and dynamic responses of transcriptional circuits to
perturbations, for example to uncover DNA repair dynamics
(Ronen et al, 2002) or to design de novo synthetic circuits
(Cox et al, 2007). A hallmark of such studies is the use of
mathematical models to place experimental measurements on
firm theoretical footing (Kim et al, 2009). Typically, the
dialogue between theory and experiment considers only
interactions strictly within the transcriptional circuit, such as
gene–TF or ligand-TF interactions. Transcriptional circuits are
thus implicitly considered to function independently of their
host organism status, an assumption that is both simplistic and
incomplete. In fact, early (Bremer and Dennis, 1996;
Schaechter et al, 1958; Maaløe, 1979) and recent works
(Scott et al, 2010; Scott and Hwa, 2011) demonstrated that the
overall process of gene expression in bacteria is tightly coupled
to the physiological growth status of the cell. Specifically,

growth-dependent parameters related to cellular physiology
and the global expression machinery, such as transcription
rate and gene copy number increase due tomultiple replication
forks, strongly link gene expression to the growth rate
(Klumpp et al, 2009). Because environmental perturbations
typically trigger both a change in growth rate and a specific
transcriptional response, simultaneous regulation of gene
expression by transcriptional circuits and the global expres-
sion machinery constitutes an unavoidable—but often
neglected—layer of complexity in gene expression. To fully
understand the principles by which bacterial gene expression
is a function of the specific (‘by the transcriptional circuit’)
and the global (‘by the expression machinery’) regulation,
the contribution of expression machinery must therefore be
quantified and included into analysis of gene expression
regulation.
The expression machinery is a complex molecular network

that performs the necessary steps of gene expression from
transcription to translation, a process that involves hundreds
of components and interactions (Thiele et al, 2009; Lerman
et al, 2012). As a consequence, quantification of expression
machinery activity cannot be obtained by simply measuring
component abundances, such as RNA polymerases (RNAP) or

Molecular Systems Biology 9; Article number 658; doi:10.1038/msb.2013.14
Citation: Molecular Systems Biology 9:658
www.molecularsystemsbiology.com

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 1



ribosomes, but must be achieved by model-based interpreta-
tion of expression data. The natural starting point to under-
stand expressionmachinery regulation is studying constitutive
(‘not specifically regulated’) gene expression. Foundational
results from Escherichia coli and Salmonella demonstrated
expression of constitutive genes to be a function of the
specific growth rate as the only parameter of gene expression,
established at the level of transcription that increases with
growth rate (Schaechter et al, 1958; Maaløe, 1979; Neidhardt
et al, 1990; Scott and Hwa, 2011). Consequently, proposed
models of constitutive gene expression focus at the promoter
level and postulate mechanisms of growth rate-dependent
increase in transcription, for example, by an increase
in the pool of RNAPs70 holoenzyme that is available to initiate
transcription (Liang et al, 1999; Klumpp and Hwa, 2008).
So far, two major limitations hampered the inclusion of
global regulation into the analysis of transcriptional circuits.
First, growth rate dependency of gene expression has so far
only been shown for steady-state growth, hence it remains
unclear whether this relationship is applicable to the
general case of dynamic changes in growth rate. Second,
determining the impact of expression machinery regulation
on individual genes requires promoter-specific parameters
that are difficult to estimate. Extending our quantitative
understanding of global expression machinery regulation to
dynamic changes in growth rate and obtaining the relevant
governing parameters are necessary to unravel the interplay
between transcriptional circuits and the global expression
machinery in regulating dynamic cellular processes.
Here, we develop an approach to quantify global expression

machinery regulation in the bacterium E. coli. We employ
fluorescent reporters to quantify promoter activity (Zaslaver
et al, 2006) as a measure of gene expression for a set of
constitutive and specific regulated promoters. Using a
Michaelis–Menten type rate law to capture the promoter-
specific growth rate dependency, we can quantitatively
describe and predict constitutive promoter activity not only
during steady state but also during dynamic changes in growth
rate. We then unravel the joint regulation by a transcriptional
circuit and the global expression machinery for the specific
case of arginine biosynthesis (Lim et al, 1987; Charlier et al,
1992). Accurate model-based predictions of the complex
temporal responses to simultaneous perturbations in arginine
availability and growth rate indicate that we achieved a
quantitative understanding of both specific and global
transcriptional regulation processes. We conclude that our
approach allows including the unavoidable and ubiquitous
global regulation in the analysis and simulation of bacterial
gene expression.

Results

A model for specific and global regulation of
bacterial gene expression

Here, we present a model of bacterial gene expression to
interpret promoter activity data obtained from plasmid-borne
fluorescence promoter reporters in the bacterium E. coli
(Zaslaver et al, 2006). Promoter activity (pa) is routinely
determined as the production rate of a stable green fluorescent

protein (GFP) expressed as a promoter fusion from a reporter
plasmid, normalized by the optical density of the cell
population (OD) (Zaslaver et al, 2006), and thus constitutes
the aggregated output of all steps in the gene expression
cascade. To relate this phenomenological measurement to
specific and global regulatory mechanisms in the gene
expression cascade, we used a standard model of bacterial
gene expression (Klumpp et al, 2009) in which GFP
concentration is determined by transcription rate (am),
translation rate (ap), gene copy number (g), cell volume (v),
dilution by growth rate (m), mRNA (bm) and protein (bp)
degradation.
All above parameters could influence the measured promo-

ter activity and thereby, in principle, must be accounted for in
the mechanistic interpretation of experimental results. During
exponential growth, however, mRNAdegradation bm (Klumpp
et al, 2009) and translation rate ap (Liang et al, 1998, 2000;
Klumpp et al, 2009) were previously shown to be constant and
GFP degradation bp to be negligible compared with GFP
dilution due to cell growth (bpoom) (Zaslaver et al, 2006).
Although gene copy number (g) and cell volume (v) are
functions of the growth rate (Klumpp et al, 2009; Bremer and
Dennis, 1996), analysis of their reported dependency on the
growth rate, complemented with plasmid copy numbers
measured by us and others (Bollenbach et al, 2009), revealed
a constant plasmid concentration for the plasmids used in this
study (see Supplementary information Text 2; Supplementary
Figure S6). Thus, the only growth-dependent parameter of the
expression machinery that affects promoter activity is the
transcription rate am.
Superimposed to global transcriptional regulation that

effects essentially all genes is specific regulation of
genes through TFs that can regulate the recruitment of RNAP
(Bintu et al, 2005) as well as other steps in transcription
(Garcia et al, 2012). Promoter activity under joint global and
specific transcriptional regulation can thus be expressed as
function of the growth rate (m) and of the activity of the specific
TFs (TFA), with a proportionality term to transcription rate
that is given by the constant plasmid concentration (g/v),
translation rate (ap), and mRNA degradation (bm):

pa¼ dGFP

dt�OD
¼ am m;TFAð Þ� g�ap

v�bm

For practical purposes, the above relationship implies that to
dissect specific and global regulation an explicit formulation of
the transcription rate am is necessary. As a first step toward
dissecting the two regulatory sources, we develop a transcrip-
tion rate function am for promoters that are solely under global
regulation.
In exponential growth, global regulation has been shown to

increase transcription rate as a function of the growth rate by a
trend well represented by a Michaelis–Menten rate law (Liang
et al, 1999; Klumpp and Hwa, 2008). Mechanistic interpreta-
tions of this observed relationship suggested a growth rate-
dependent increase in the availability of the RNAPs70

holoenzyme that is free to initiate transcription (Liang et al,
1999; Klumpp and Hwa, 2008), from now on referred to as free
RNAP. For a constitutive promoter, we thus expect promoter
activity to be described by aMichaelis–Menten type rate law as
a function of the growth rate (m) and two promoter-specific
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parameters Vmax and Km:

pa¼Vmax � m=Km

1þ m=Km
/ am m; �ð Þ ð2Þ

In the above relationship, Vmax quantifies the maximal
promoter activity sustained by the promoter and Km the
growth rate at which promoter activity is half-maximal.
Similar to standard representations of specific transcriptional
regulation (Liao et al, 2003; Nachman et al, 2004), the global
regulation is therefore described by the set of promoter-
specific parameters Vmax and Km, as well as by a variable
signal, the expression machinery activity, captured here in the
form of growth rate (m). To dissect the contribution of global
regulation to promoter activity, Equation (2) should be
validated against systematic experimental data and the
corresponding Vmax and Km parameters should be quantified.
In the next section, we test Equation (2) and estimate Vmax and
Km parameters from quantitative promoter activity and growth
rate data for 12 novel constitutive promoters.

Quantification of global expression machinery
regulation

To quantify the global expression machinery regulation using
the developed model of constitutive promoter activity in
Equation (2), we constructed 12 constitutive promoter-GFP
reporter strains that are not regulated by specific TFs anymore.
Specifically, we choose three promoters in central carbon
metabolism (pykF, kbl and epd) and eight promoters in

arginine biosynthesis for which well-characterized specific
TFs and RNAP binding sites were known (Rex et al, 1991;
Ramseier et al, 1995; Bledig et al, 1996; Charpentier et al,
1998). Three constitutive promoter reporters were constructed
for the pykF, kbl and epd promoters by replacing their specific
TF binding sites that did not overlap with the RNAP binding
site with a non-functional sequence. A fourth constitutive
promoter was obtained by replacing the RNAP binding site of
the epd promoter with the RNAP binding site of the icd
promoter to generate the constitutive hybrid epd-icd promoter.
Additionally, we made all eight promoters of the arginine
biosynthesis pathway constitutive by transforming their pro-
moter reporter plasmids (Zaslaver et al, 2006) into a strain with
a deletion of their only regulator, the repressor ArgR (termed as
DArgR) (Baba et al, 2006). Expression from these 12 constitutive
promoter-GFP constructs is thus exclusively subject to global
regulation (Supplementary Table S1). We determined constitu-
tive promoter activity and growth rate in the 12 strains during
exponential growth under 18 nutritional conditionswith growth
rates between 0.2 and 1.5 h� 1; that is, minimal medium
with acetate, pyruvate, galactose, fructose, glucose, gluconate,
glycerol, mannose or succinate, either with or without
supplemented amino acids (Supplementary Table S2).
The activity of these 12 constitutive promoters varied up to

four-fold across conditions and showed a positive correlation
with the growth rate, a trend that was well recapitulated by the
least square fit to Equation (2) with a mean percentile error of
16% (Figure 1; Supplementary Figure S7). The estimated
promoter-specific constitutive parameters varied between 373

Figure 1 Global expression machinery regulation of promoter activity during exponential growth. Promoter activity of constitutive (blue dots) and native, specific
regulated (green dots) promoters as a function of the steady-state growth rate under 18 nutritional conditions. Red lines show optimal least-square fitting of a Michaelis–
Menten rate law. Grey shaded areas illustrate the margins of fits within 20% of the optimal sum squared error. Constitutive promoter activity was measured in wild type,
except for promoters in the arginine pathway which were measured in the DArgR background strain. In the case of the epd-icd promoter, promoter activity was also
measured in a DArgR strain (white dots) to evaluate DArgR knockout effects on promoter activity and growth rate.
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and 8217 GFPOD� 1 h� 1 for the Vmax values and between 0.20
and 1.90 h� 1 for the Km values (see Table I). The two
parameters Vmax and Km were independent of each other
(Pearson correlation � 0.2, P-value 0.45), and their estimation
was robust to point elimination (up to 3 points removed,
Supplementary Figure S8) and measurement noise (up to 20%
additional noise, Supplementary Figure S9).
We evaluated the parameter space of Vmax and Km pairs that

fit data within 5, 10 and 20% of the optimal sum square error
and found that promoters have distinct parameter spaces and
thus are arguably promoter specific even under parameter
estimation uncertainty (Supplementary Figure S10). The
different Km parameters suggest a promoter-specific compo-
nent (Liang et al, 1999), rather than solely an unspecific one
(Klumpp and Hwa, 2008), in the non-linear relationship
between promoter activity and growth rate. Following
previously proposed mechanistic interpretations, this finding
suggests a saturation trend of promoters by the free RNAP
concentration at higher growth rates (Liang et al, 1999).
To confirm that this Michaelis–Menten type relationship is

specific to constitutive promoters, we constructed or retrieved
(Zaslaver et al, 2006) the existing transcriptionally regulated
GFP reporters of the constitutive promoters (see
Supplementary Table S1), and measured their activity during
steady-state exponential growth under the 18 previously
employed conditions (Figure 1). Visual inspection and Pearson
correlation on the linearized Lineweaver-Burk double recipro-
cal revealed that the Michaelis–Menten type relationship
between growth rate and promoter activity was statistically
significant (P-valueo0.01) for all constitutive and only for
two, presumably weakly or growth-dependent specifically
regulated promoters (Supplementary Figure S11).
Consistent with existing data (Liang et al, 1999; Klumpp

et al, 2009; Scott and Hwa, 2011), the growth rate-dependent
expression machinery regulation recapitulates the activity of
constitutive promoters in steady state. This relationship,
however, has not yet been tested during dynamic changes in
growth rate, where an array of regulatorymechanisms, such as
the alarmone ppGpp or alternative sigma factors, could
possibly affect the activity of the expression machinery
(Chang et al, 2002; Traxler et al, 2006). According to our
model of global regulation, activation of alternative regulatory
mechanisms would be observable as a disruption of the
growth rate dependency of constitutive promoter activity. To
identify the possible occurrence of such regulatory mechan-
isms,wemonitored promoter activity and growth rate of the 12
constitutive promoters throughout the entire batch growth
cycle under the 18 previously described conditions, from
inoculation to stationary phase. In addition, we imposed a shift
in growth rate by a diauxic nutritional downshift from glucose
to succinate. We simulated constitutive promoter activities
using time-course measured growth rates and the earlier
determined promoter-specific Vmax and Km parameters within
Equation (2); (Figure 2; Supplementary Figure S12). Through-
out the whole time course of the investigated conditions,
measured and simulated promoter activities exhibited a

Figure 2 Global expression machinery regulation of promoter activity during dynamic changes in growth rate. Measured (blue) and simulated (red) constitutive
promoter activities for three representative promoters and nine growth conditions in rows and columns, respectively. Simulations are based on time-course measured
growth rate and the constitutive, promoter-specific Vmax and Km parameters inferred in steady state. The Pearson correlation (c) and the coefficient of determination (r)
between measured and simulated promoter activities are given in each box. The epd-icd and kbl promoters were measured in the wild-type background and the argI
promoter was measured in the ArgR knockout background. Except for the diauxic shift, growth conditions are ordered by increasing maximum growth rate.

Table I Promoter-specific constitutive parameters and ArgR repressor dissocia-
tion constants

Promoter Vmax (GFPOD
� 1 h� 1) Km (h� 1) Kr (� )

argA 2660 0.42 1
argCBH 1886 0.45 1.52
argD 1296 1.15 5.25
argE 1414 0.72 1.75
argF 1558 1.90 1.43
argG 373 1.77 2.85
argI 8217 1.02 0.60
argR 1146 0.20 25.70
pykF 683 1.72 —
kbl 877 1.63 —
epd 1185 0.39 —
epd-icd 5104 0.53 —
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surprising agreement not only in their trend of higher activity
at higher growth rate (Pearson correlation¼ 0.87 and
P-valueo10� 9, see Supplementary Table S4), but also in their
quantitative levels (R2¼ 0.75, see Supplementary Table S5).
This consistency indicates that our constitutive promoters are
predominantly regulated by the global expression machinery
in a strictly growth rate-dependent relationship.
Thus, we confirmed and extended previous results based on

fewer promoters and conditions that global regulation of
promoter activity in steady state is relevant and can be
quantitatively described by a Michaelis–Menten type rate law
as a function of growth rate and two promoter-specific
parameters Vmax and Km (Liang et al, 1999). Our observation
of different Km values is consistent with the notion that the
increase in promoter activity is the result of a promoter-
specific response to growth rate increases (Liang et al, 1999).
Further, we demonstrated that this quantitative relationship
holds more generally also during dynamic changes in growth
rate. For practical purposes, our findings indicate that growth
rate, an easily accessible experimental parameter, can be
employed as an approximation to quantitatively predict
the global regulation of constitutive promoters given the
parameters Vmax and Km.

Quantifying specific transcriptional regulation of
the arginine repressor circuit

Equipped with our approach to quantify global regulation, we
next aimed at understanding the interplay of specific and
global transcriptional regulation in controlling biological
function. As a test case, we focused on the single input
repressor circuit that controls arginine biosynthesis through a
feedback loop from the pathway product to the repressor ArgR
in E. coli (Figure 3A; Lim et al, 1987; Charlier et al, 1992). We
developed a promoter activity equation using the thermo-
dynamic framework (Buchler et al, 2003; Bintu et al, 2005) that
includes regulation by the ArgR repressor along with the
constitutive characterization by Vmax and Km parameters (see
Table I). To link the global regulation with the repression
mechanisms known to operate on the arginine promoters
(Charlier et al, 1992), we interpreted growth rate as a proxy to
the free RNAP concentration (free RNAPpm), (Klumpp et al,

2009; Liang et al, 1999). Under this assumption and given that
ArgR and RNAP binding is mutually exclusive due to steric
hindrance by overlapping ArgR and RNAP binding sites
(Charlier et al, 1992), transcriptional regulation by arg
promoters can be written as a function of the condition- and
time-dependent arginine repressor activity ArgR* and its
promoter-specific binding dissociation constant, Kr:

paargx ¼Vx
max�

m=Kx
m

1þ m=Kx
m þArgR�=Kx

r

/ am m;ArgR�ð Þ ð3Þ

where Vmax
x and Km

x are the constitutive parameters and Kr
x the

repressor binding affinity for the arginine promoter argx with
xA{A, CBH, D, E, F, G, I, R}. Under the above mechanistic
interpretation, the parameter Km becomes a measure of the
affinity between free RNAP and the promoter. As becomes
apparent from Equation (3), the expression machinery activity
given by the growth rate sets the maximum promoter activity
that is achievable at a given point, in the following referred to
as promoter capacity. The repressor activity ArgR* modulates
promoter activity between promoter capacity and full
repression.
We inferred the promoter-specific repressor affinities Kr and

the condition-dependent repressor activity ArgR* from activ-
ities of the 8 regulated promoters under the 18 steady-state
growth conditions by least square fitting minimizing the
overall percentage error (see Supplementary information,
Text 5). Specifically, we used the previously estimated Vmax

and Km parameters (see Table I) and the measured growth rate
in Equation (3). Since ArgR* activity and the Kr parameters can
be scaled, we set the repressor affinity for the argA promoter to
unity. As expected, substantially lower ArgR* activity was
found in conditions with biosynthetic production of arginine
compared to those with externally supplemented arginine
(Supplementary Figure S13c). Repressor affinity varied atmost
three-fold among the seven enzymatic promoters, but was
ten-fold weaker for its own argR promoter (see Table I;
Supplementary Figure S13a). Consistent with an optimally
efficient response to arginine depletion (Zaslaver et al, 2004),
such lower affinity for the argR promoter ensures basal
repressor expression even under full repression. A striking
quantitative aspect was much lower promoter activity than
promoter capacity (Figure 1; Supplementary Figure S14),
showing that these promoters are strongly repressed, even

Figure 3 Model of specific and global regulation of the arginine biosynthesis pathway in E. coli. (A) Schematic representation of specific transcription (red lines) and
global expression machinery (green lines) regulation of gene expression in the arginine biosynthesis pathway (blue lines). The pathway synthesizes arginine through
linear reactions catalyzed by enzymes transcribed from seven s70 promoters. The transcriptional circuit is coupled to arginine metabolism through activation of the ArgR
repressor by arginine (blue line). Global expression machinery regulation regulates constitutive promoter activity as a function of growth rate. Parameters that govern the
interaction strength between molecular components as defined in our model are shown. (B) Ordinary differential equation model for the arginine biosynthesis pathway
including metabolic biosynthesis and feedback, transcriptional regulation and expression machinery regulation.
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when cells actually need to synthetize arginine. Calculations
assuming mutual exclusion of ArgR and RNAP, as described
above, showed the ArgR repressor to be bound to enzymatic
promoters 480% of the time during arginine biosynthesis
(Supplementary Figure S13b).
Why have the arginine promoters evolved promoter

capacities that are much larger than the promoter activity
required in either the repressed or the unrepressed steady-state
regime? To test whether this apparent excess of promoter
capacity is exploited during dynamic metabolic adaptations,
we determined activities of the eight regulated arginine
promoters upon arginine depletion during exponential growth
of E. coli batch cultures growing at 0.2 h� 1 (galactose),
0.65 h� 1 (glucose) and 1.5 h� 1 (glucose supplemented with
amino acids) (Figure 4A; Supplementary Table S6).We thereby
triggered a dynamic response of pathway-specific transcrip-
tional regulation by adding a small amount of arginine that
runs out during growth, while maintaining the expression
machinery regulation at three different activity levels. During
the transition from external supplementation to intracellular
biosynthesis of arginine, the activity of the arginine promoters
transiently peaks far above the steady-state levels (Figure 4A;
Supplementary Figures S15 and S16). The only exception was
the argR promoter with a higher baseline level and a lower
peak, presumably due to its lower repressor affinity. Calculat-
ing promoter capacity of the eight arginine promoters from

growth rate and the constitutive parametersVmax and Km using
Equation (2) revealed that the regulated promoter activity
approaches the promoter capacity during the transient
adaptation (Figure 4A; Supplementary Figures S15 and S16).
Notably, the promoter activity bursts at fast growth could not
be achieved by the promoter capacity set by the expression
machinery regulation at slow growth. Thus, the promoter
capacity is only transiently exploited during adaptation and
the growth rate-dependent expression machinery regulation
ensures increasing promoter capacity for rapid enzyme
synthesis at higher growth rates.
These dynamic patterns of promoter activity bursts achieve

a smooth increase and constant steady-state concentration of
the biosynthesis enzymes at all growth rates (Figure 4B),
indicating that increasing promoter capacity counter balances
the faster dilution of enyzmes in more rapidly dividing cells.
Consistent with the postulated just-in-time regulatory program
(Zaslaver et al, 2004), we observed an ordering of enzyme
concentration that follows the pathway order with
argA4argCBH4argD4argE4argF4argG and the isoenzyme
argI as the only exception (Figure 4B). However, we did not
find evidence for the proposed ordering of response times
(Zaslaver et al, 2004); that is, all enzymes reached half-
maximum concentration roughly at the same time for a given
growth rate (Figure 4B). Overall, our results highlight two
distinct principles of arginine pathway regulation. First, the

Figure 4 Specific and global regulation of the arginine pathway upon dynamic arginine depletion during exponential growth. The three growth phases during the switch
from external uptake to biosynthesis of arginine are separated by vertical dotted lines: growth on externally supplemented (E), transition from uptake to biosynthesis (T)
and steady biosynthesis (B) of arginine. (A) Activities of the eight arginine promoters in response to depletion of externally supplemented arginine during exponential
batch growth. The red continuous line represents the measured regulated promoter activity and the red dotted line represents the simulated growth rate-dependent
promoter capacity for argA. (B) The fluorescence expression profile, a proxy to enzyme concentration, of the eight arginine biosynthesis enzymes as measured during
the shifts. (C) Activity of the arginine repressor ArgR (blue continuous line) as inferred from measured promoter activity of the eight arginine promoters and as fit by the
ODE model (purple dashed line).
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specific repressor circuit determines the fraction of promoter
capacity that is exploited. Full derepression is confined to short
transient phases whereas in steady state the biosynthesis
promoters are largely repressed, even when required. Second,
the global regulation by the expression machinery sets a
growth-dependent promoter capacity that allows higher
bursting of promoter activity during fast growth, to rapidly
produce enzymes and counter balance the increased growth
dilution.

Predicting the response to simultaneous dynamic-
specific and global perturbations

With a quantification of the specific and global regulation
interplay at the promoter level in hand, we finally attempted to
obtain a comprehensive, pathway-level understanding of
regulation in the arginine pathway (Figure 3A) by investigat-
ing the response to simultaneous and orthogonal dynamic
perturbations in the specific and global regulation. For this
purpose, we developed an ordinary differential equation (ODE)
model that includes arginine production, consumption and
feedback to the repressor ArgR (Figure 3B). Since we focus on
gene expression regulation rather than detailed pathway
biochemistry, the ArgA-catalyzed first of the linear reactions
converting glutamate to argininewasmodelled as rate-limiting,
assuming the other reactions to operate instantaneously. The
regulatory andmetabolic pathway structurewas converted into
a set of ODEs that describe concentrations of enzymes and
repressor as dictated by their promoter activity, arginine
concentration and repressor activity. The model has 30
parameters, 24 of which were previously inferred as the 8
promoter-specific Vmax and Km parameters and ArgR dissocia-
tion constantsKr (see Table I, Supplementary Table S7). To infer
the six missing parameters, we fitted the ODE model to
reproduce the ArgR activity underlying the three arginine shifts
by least-square criteria (Figure 4C). ArgR activity was obtained
from themeasured promoter activity using Equation (3) and, as
expected, showed an initially high activity and a transient
minimum that increases to reach a second slightly lower
steady-state level. As the combined output of arginine
production, consumption and repressor activation, ArgR
activity represents an ideal readout to infer the relevant
metabolic-feedback parameters in the model. We fitted the
ODE model to the dynamic ArgR activity from the onset of
promoter upregulation, thus discarding the initial fully
repressed state that is not informative, and identified a
parameter set that optimally reproduces the dynamic ArgR
activity (parameter values kcat¼ 0.32, kdeg¼ 0.64, karg¼ 1.3,
rb¼ 68, n¼ 2.6 and Kp¼ 148, initial conditions ArgR¼ 800,
ArgA¼ 0, arg¼ 71).
To challenge our parameterized ODEmodel, we investigated

the pathway response to a novel scenario on which the model
has not been trained: simultaneous and orthogonal dynamic
perturbations in both specific and global regulation. In a set of
experiments, E. coli cultures experienced arginine depletion at
different phases of growth during a diauxic shift from the
preferred carbon source glucose to succinate, whose consump-
tion is repressed in the presence of glucose. The obtained
promoter activities of arginine promoters for the entire 7 h of
growth are consistent with the above principles (Figure 5A);

that is, a transient burst in arginine promoter activity that
increases with the growth rate, and a growth rate-dependent
promoter capacity set by the expression machinery that is
essential for reaching the observed burst levels. To test whether
the quantitative knowledge acquired by our approach can
capture such a complex transcriptional response, we predicted
in silico the regulatory response of arginine promoters to both
simultaneous perturbations using the ODE model without any
refitting of model parameters. The inputs given were the
measured growth rate during diauxic growth and the 12 onset
times at which arginine runs out, as identified from the
experimental data (see Supplementary information, Text 7 for
simulation details). The simulated promoter activities accu-
rately reproduced the measured data (Figure 5A and B;
Supplementary Figures S17–S19). Since our mathematical
model of arginine pathway regulation is precise in recapitulat-
ing the dynamic responses, we conclude that our approach is
able to achieve a satisfactory quantitative understanding of
joint specific and global regulation.

Discussion

Cellular functions arise from the coordinated interplay
between molecular networks. While reconstruction of topol-
ogies is thriving, the challenge shifts to identify the principles
of network coordination (Gerosa and Sauer, 2011; Kotte et al,
2010). Here, we unravelled two principles of coordination
between a repressor circuit with a single input and the global
expression machinery for the conjoint control of arginine
biosynthesis. First, substantially reduced ArgR repressor
activity occurs only transiently during a switch from external
uptake to arginine biosynthesis. Together with a strong affinity
of the repressor for enzymatic promoters, this leads to strongly
repressed arginine promoters, even when cells need to
produce arginine, intervened by only short bursts of near
maximum expression at the onset of the transition. Second, the
global expression machinery sets a growth rate-dependent
maximum expression level that we interpreted as promoter
capacity, such that transient promoter activity can peak higher
when derepressed at fast growth. Thus, specific regulation by
repression is dominant during metabolic steady states, and
global regulation becomes relevant during transitions between
metabolic steady states. Together, these two coordination
principles between the metabolic-repressor circuit and the
global expression machinery enable rapid pathway induction
at any growth regime. Strong deficiencies in the growth rate of
the ArgR knockout strain during biosynthetic conditions
(Supplementary Figure S1) might thus be explained by an
abnormal upregulation of enzyme levels, since derepressed
biosynthesis genes are quantitatively tuned to foster enzyme
bursts and not to maintain steady-state levels.
The uncovered coordination principles are likely to be

general for the large class of biosynthetic pathways that are
controlled by single input repressor circuits, because metabolic
pathways are unavoidably challenged with the growth dilution
of enzymes during transient upregulation (Chubukov et al,
2012). Quantitative functioning of the abundant single input
repressor circuit motif (Alon, 2007) was previously assessed
through parameterizing interactions (Ronen et al, 2002;
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Chubukov et al, 2012) or quantifying regulator abundances
(Garcia and Phillips, 2011). Here, we added a layer of complexity
that was previously neglected by explicitly including the global
expression machinery regulation. Our results demonstrate that
single input repressor circuit performance is not simply dictated
by its own input–output relation (Garcia and Phillips, 2011), but
also by the activity of the global expression machinery that sets
the promoter capacity. Thus, understanding the quantitative
role of network motifs in gene regulation (Alon, 2007) might
require to characterize their relationship with global regulation
by the expressionmachinery. As an example for themuch larger
class of biosynthetic genes, we found specific regulation to
dominate arginine biosynthesis through a single-input repres-
sor. By focusing on one enzyme-encoding and two TF genes, a
recent paper postulates predominance of global regulation in
central metabolism with only a minor, fine-tuning contribution
from the pleiotropic TFs Crp and Fis (Berthoumieux et al, 2013).
The here proposed approach can now be used to evaluate how
common such specific and global transcriptional paradigms of
regulation are across cellular functions and transcriptional
circuit configurations.
Akin to activity inference of metabolic (Sauer, 2006) and

transcription (Liao et al, 2003; Buescher et al, 2012) networks,
the activity of the global expression machinery was accessible
only by model-based interpretation of a measurable proxy, in
our case through GFP-promoter fusions of synthetic constitu-
tive promoters (Zaslaver et al, 2006). For data interpretation,
we used a model based on foundational work showing (i) that
steady-state expression of constitutive genes is strictly growth
rate dependent (Schaechter et al, 1958; Maaløe, 1979;
Neidhardt et al, 1990; Scott and Hwa, 2011) and (ii) that a
Michaelis–Menten type rate law describes steady-state con-
stitutive promoter activity dependency on growth rate (Liang
et al, 1999; Klumpp andHwa, 2008).We extended this work by
demonstrating that the governing Vmax and Km parameters are
promoter specific and that the phenomenological growth rate
dependency largely applies also to dynamic changes in
growth. Specifically, we found that Vmax and Km estimates
obtained from steady-state data can be used to predict
constitutive promoter activity from experimentally accessible
growth rates. Akin to enzymes, promoter regions could thus be

routinely characterized by their Vmax and Km values and made
available in databases of standardized biological parts (Canton
et al, 2008). Such promoter parameters could also potentially
be determined in vitro (Maslak and Martin, 1994) or inferred
computationally from in vivo expression and sequence
information (Nachman et al, 2004; Pan et al, 2007; Hardiman
et al, 2010; Brewster et al, 2012).
To include global regulation within transcriptional circuits, we

leveraged a previously proposed mechanistic interpretation in
terms of free RNAP availability and promoter saturation (Liang
et al, 1999; Klumpp and Hwa, 2008) which is consistent with the
physiological and gene expression parameters of E. coli reported
in the literature (Klumpp et al, 2009). This view is also consistent
with the reported growth dependency of parameters in the gene
expression cascade (Klumpp et al, 2009), which highlights
transcription rate as the main driver of growth dependency in
gene expression. An implication is that the translation rate is
growth independent, even though the ribosome content is
known to increase with faster growth (Bremer and Dennis,
1996). Several authors proposed a constant-free ribosome
concentration as a likely explanation (Liang et al, 1998; Liang
et al, 2000; Klumpp et al, 2009). However, it can be argued that
the translation rate has not been characterized with the
systematic rigor of the other parameters (Liang et al, 1998,
2000) and a growth rate-dependent translation rate might
eventually be included within formulations of constitutive gene
expression. Our approach and the relative conclusions on the
mainly repressed biosynthesis promoters with only transient
expression bursts are independent of this putative influence of
the translation rate, as is the phenomenological shown predictive
power for constitutive and regulated promoter activity. Solely the
mechanistic interpretation of increased constitutive gene expres-
sion in terms of increased promoter capacity might have to be
amended by a growth-dependent translation rate. This amend-
ment would require to additionally dissect the individual
contributions of the possibly tightly and complexly coupled
processes of transcription and translation in global regulation
(Proshkin et al, 2010).
Overall, we developed an experimentally validated

approach to include global expression machinery regulation
in the analysis and simulation of bacterial gene expression.

Figure 5 Measured and simulated argA promoter activity under simultaneous dynamic perturbations in specific and global regulation. In 12 independent
experiments, a different arginine concentration (see legend) was supplemented and cells depleted it at different time points during the course of growth in a diauxic shifts
from glucose to succinate. (A) Promoter activity of the argA promoter as measured in the 12 experiments. (B) Promoter activity of the argA promoter as simulated by the
ODE model starting simulation at each of 12 different upregulation onset times (see legend). The simulated constitutive promoter activity for argA promoter is shown
(dotted black line).
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This is particularly relevant for promoter activity data that is
increasingly employed to quantify transcriptional regulation
(Kalir et al, 2001; Setty et al, 2003; Bollenbach et al, 2009;
Zaslaver et al, 2009), but less so for the growth-independent
mRNA abundance (Klumpp et al, 2009) as a measure of gene
expression. Unless global regulation is properly considered,
inferring specific transcriptional regulation from promoter
activities obtained at different growth rates will be misleading.
While some authors have used constitutive reporters to
normalize promoter activity data (Davidson et al, 2010;
Sasson et al, 2012), we developed a superior approach based
on first principles to explicitly include the promoter-specific
growth dependency into models, under the constraint that
parameters in the gene expression system can be expressed as
a function of the growth rate. Our approach not only allows to
pin-point the regulatory role of global expression machinery
instead of concealing it under a heuristic normalization, but
additionally allows precise simulation of a pathway under
joint specific and global regulation. We envisage that the here
described principles will help including the ubiquitous and
unavoidable role of global regulation in studies aiming for
holistic understanding of interacting cellular networks
(Buescher et al, 2012; Karr et al, 2012; Lerman et al, 2012).

Materials and methods

Strains, plasmids and media

The E. coli K-12 strain BW25113 was used throughout. The argR
deletion mutant was obtained from a knockout library (Baba et al,
2006) and deprived of its kanamycin resistance as previously described
(Datsenko and Wanner, 2000). GFP-based promoter reporter plasmids
were obtained from a library (Zaslaver et al, 2006) or constructed by
PCR following the procedures of the original study (Zaslaver et al,
2006) (see Supplementary Table S1). Growth experiments were
performed in M9 minimal medium to which carbon sources were
added from sterilized stock solutions (adjusted to pH 7) to a final
concentration 5 g l� 1 (see Supplementary information, Text 1). For
amino-acid addition, a stock solution containing all 20 amino acids
(adjusted to pH 7) was added to yield final concentrations as described
elsewhere (Zaslaver et al, 2004), unless stated otherwise (see
Supplementary Table S2). All chemicals were purchased from Sigma-
Aldrich unless stated otherwise.

Cultivation

M9medium batch cultures in 96 deep-well format plates (Kuehner AG,
Birsfeld, Switzerland) were inoculated 1:50 from LB precultures and
incubated overnight at 371C under shaking. Subsequently, 96-well flat
transparent plates (Nunc, Roskilde, Denmark) containing M9 medium
(fill volume 200 ml) were inoculated 1:200 with overnight cultures and
sealed with parafilm to reduce evaporation. On-line measurements of
optical density at 600nm (OD600) and fluorescence (excitation
wavelength: 500nm, emission wavelength: 530nm) were performed
at 371Cwith shaking using a plate reader (TECAN infiniteM200, Tecan
Group Ltd, Männedorf, Switzerland) at 10min intervals.

Data processing and modelling

Fluorescence (GFP) and OD600 measurements were analyzed using
custom MATLAB software. Both signals were processed in a well-
specific manner to obtain promoter activity (dGPF/(dt �OD)), growth
rate (dln(OD)/dt) and expression profile (GFP/OD) time-course data.
We note that GFP values represent raw reading values from the
measuring device and are thus in arbitrary units, not in protein counts.
OD and GFP signals were normalized to blanks by subtracting values

before inoculation of cells and smoothed using a moving average
windowwith size 3. GFPand ln(OD) derivativeswere obtained by two-
point finite difference numerical approximation. Promoter activity and
expression profile signals were corrected for fluorescence background
by subtracting the corresponding signal of the promoter-less plasmid
reporter strain p139 (Zaslaver et al, 2006). Promoter activity and
growth rate values for steady-state growth were calculated as the
average value in the time range visually identified as exponential
phase. In arginine depletion experiments, signals from different
promoters were aligned by the growth rate to correct for differences
in inoculation OD. Estimation of parameters was performed using the
fmincon MATLAB function.

Data availability and supplementary information

Experimental measurement data sets, the ODE model (in MATLAB
script format) and Supplementary information are available at the
Molecular Systems Biology website (www.nature.com/msb).
Supplementary data set 1 contains steady-state measurements for
constitutive and regulated promoters (Figure 1; Supplementary
Figures S1 and S14; Supplementary Table S4; Supplementary Table
S5), Supplementary data set 2 contains time-course measurements for
constitutive promoters (Figure 2; Supplementary Figures S2, S3 and
S12), Supplementary data set 3 contains measurements of arginine
shifts during exponential growth for the arginine promoters (Figure 4;
Supplementary Figures S15 and S16) and Supplementary data set 4
containsmeasurements of the double perturbation experiments for the
arginine promoters (Figure 5; Supplementary Figure S17).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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