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December 17, 2013

Abstract

This paper presents the application of operational space control based on hierarchical task optimization for quadrupedal
locomotion. We show how the behavior of a complex robotic machine can be described by a simple set of least squares
problems with different priorities for motion, torque, and force optimization. Using projected dynamics of floating base
systems with multiple contact points, the optimization dimensionality can be reduced or decoupled such that the formula-
tion is purely based on the inversion of kinematic system properties. The present controller is extensively tested in various
experiments using the fully torque controllable quadrupedal robot StarlETH. The load distribution is optimized for static
walking gaits to improve contact stability and/or actuator efficiency under various terrain conditions. This is augmented
with simultaneous joint position and torque limitations as well as with an interpolation method to ensure smooth contact
transitions. The same control structure is further used to stabilize dynamic trotting gaits under significant external distur-
bances such as uneven ground or pushes. To the best of our knowledge, this work is the first documentation of static and
dynamic locomotion with pure task-space inverse dynamics (no joint position feedback) control.

1 Introduction
Research in the field of legged robotic systems has recently made significant progress both in the field of hardware design
as well as in control development. Traditional (industrial) robotic devices with precise, high-gain position control get
more and more replaced by torque controllable robots that can softly (and hence safely) interact with their environment
(e.g. Hirzinger et al., 2001). This fundamental change opens wide opportunities to bring novel control concepts from
simulations into real world applications. Instead of slow, static walking based on kinematic motion planning and execution
(Gonzales de Santos et al., 2006), these new principles have the potential to enable agile, highly dynamic, and versatile
maneuvers. Torque controllability allows to create sophisticated behaviors by simultaneously emulating and optimizing
desired task-space dynamics, joint torques, or contact forces.

A particularly interesting and widely used approach is inverse dynamics. Given a desired motion, the multi-body
system dynamics of the robot is inverted to generate required joint torques. While this works straight forward for fixed
base manipulators, it is only recently applied to floating base systems such as legged robots, i.e. to systems that are not
rigidly tied to the environment and that are hence underactuated. Most floating base inverse dynamics methods rely on
pseudo-inversion. First, the system dynamics are mapped onto a support-consistent manifold using methods such as the
dynamically consistent support null-space (Sentis, 2007), linear projection (Aghili, 2005), orthogonal projection (Mistry
et al., 2010), or others. Subsequently, this reduced dimensional description is inverted. As it was shown by Righetti et al.
(2010, 2011b, 2013), the underlying pseudo-inversion can be weighted to additionally minimize a linear combination of
quadratic costs in contact forces and joint torques.

To establish the desired motion respectively behavior of complex systems with a large number of degrees of freedom
in an intuitive way, the desired dynamics can be prescribed only at particularly interesting points instead for the complete
system (Samson et al., 1991). To give some examples, this can be controlling the center of gravity (CoG) to ensure
stability, performing stepping or grasping tasks with hands or feet, keeping a certain optimal posture, or applying a desired
contact force. This is called task- or operational space control (OSC). Using different control gains and priorities, it can be
ensured that important or high-precision tasks are accurately executed while other, less important tasks are only fulfilled
as well as possible without impairing the ones with higher priority. Such a differentiation is not a purely robotic construct:
Various behavioral and neuro-scientific studies (e.g. Saltzman and Kelso, 1987; Schaal and Schweighofer, 2005; Scholz
and Schoner, 1999) have indicated that humans show a very similar task decomposition with high-gain control for e.g., a
reaching task with the hand and compliant null space posture control. In robotics, such prioritized control formulations
were first proposed by Hanafusa et al. (1981) and Nakamura et al. (1987) in the context of inverse kinematics control and
later picked up by Siciliano and Slotine (1991) who generalized it for an arbitrary number of tasks. Along the lines of the
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Figure 1: StarlETH is a medium dog-sized quadrupedal robot driven by precisely torque controllable series elastic actua-
tors (Hutter et al., 2012a).

seminal work on Operational Space Control (OSC) by Khatib (1987), his group extended the task prioritization ideas to
hierarchical OSC for floating-base systems. They set up a software framework to solve task-space inverse dynamics with
various priorities for both motion as well as force/torque tasks (Sentis and Khatib, 2010). Philippsen et al. (2011) recently
released this powerful software package for public. Similar methods for motion tasks were also published by de Lasa
and Hertzmann (2009) based on the formulation of a minimization problem. All these hierarchical control frameworks
guarantee by iterative null-space projection that a task never impairs a higher prioritized task. Other methodologies
(e.g. Escande et al., 2010) solve the hierarchy of tasks with numerical solvers (Björck, 1996) for constrained quadratic
programs (QP) to fast and robustly handle the redundancy as it can occur in complex robotic systems. Similar to the
iterative null-space projection, dedicated QP formulations (Mansard, 2012) are applied for inverse dynamics methods
(e.g. Ramos et al., 2012; Saab et al., 2011a,b, 2013; ?). Moreover, inequality tasks (Mansard et al., 2009) as required to
describe position, torque, or obstacle limitations, can be very naturally integrated using slack variables. This was shown
by Kanoun et al. (2011) for kinematic problems and Saab et al. (2013) later suggested to augment this method for inverse
dynamics control.

All existing whole-body control techniques share the problem that, due to the lack of appropriate robotic devices,
they are largely limited to run in simulations, on very limited torque controlled wheeled platforms (?), or require the
co-generated generalized joint accelerations as actuator commands (Saab et al., 2013). Moreover, existing experimental
studies that investigated inverse dynamics methods in real hardware experiments reveal some difficulties. This is for
example documented by Nakanishi et al. (2008), who compared different (task-space) control techniques in a thorough
experimental study on a single fixed base hydraulic Sarcos Master Arm robot. One of the findings was that OSC exhibits
a significant dependence on a highly accurate model identification of the robot. Methods as (Khatib, 1987) work perfectly
in simulations but largely suffer from modeling errors in hardware experiments. The inversion of the rigid body dynamics
inertia matrix is identified as one of the critical components responsible for this degradation since it creates many sources
of errors in the motor commands due to its appearance in the pseudo-inverse. Although the achieved performance certainly
depends on the implementation, the demonstration of the capability of such methods in complex legged systems is still
missing.

The contribution of this paper is twofold. First, based on different existing whole-body respectively inverse dynamics
control techniques, we outline a clean and simple framework for hierarchical OSC. All tasks for motion, torque, and force
optimization are expressed as least squares problems and can hence be solved by iterative null-space projection or standard
numerical QP solvers. We illustrate how the optimization dimensionality can be reduced by tricks of projected equations
of motion, how these formulations relate to classic kinematic task prioritization paired with inverse dynamics control, and
give an overview how they are employed and how they compare. Second, we apply and extensively test the proposed
control structure on a fully torque controllable quadrupedal robot StarlETH that we developed for dynamic all-terrain
locomotion (Hutter et al., 2012a, Figure 1). This machine is driven by compliant and precisely torque controllable series
elastic actuators (SEA) in all twelve joints, which makes it perfectly suited for the presented control techniques. We can
particularly exploit the multi-contact situation respectively internal contact directions, e.g. to increase energetic efficiency,
to lower the risk of slippage, to ensure smooth contact transitions, or to walk on uneven terrain. We employ static and
dynamic gaits and show that the proposed control method can robustly stabilize the machine under significant external
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(a) truly-underactuated (b) truly-underactuated and overconstrained (c) overconstrained

Figure 2: A quadruped robot with point feet is truly-underactuated ((a); nc = 0, nu = 3) in single leg support, truly-
underactuated and overconstrained ((b); nc = 1, nu = 1) in double support, and overconstrained ((c); nc = 3, nu = 0)
during static walking with three simultaneous points of contact.

disturbances. In all experiments, we rely on pure task-space control (no joint position stabilization) and on full onboard
sensing respectively state estimation – a result that constitutes that (largely investigated) whole-body control approaches
are feasible to regulate future robots. For illustration, all experiments are documented in Extension 1.

2 Inverse Dynamics of Floating Base Systems
The system dynamics in terms of equations of motion (EoM) of a floating-base system are described in the form

Mq̈ + h + JTs Fs = ST τ , (1)

with the mass matrix M (q), the force vector h (q, q̇) as the sum of Coriolis, centrifugal, and gravitational forces, the
ground contact forces Fs, the corresponding Jacobian Js (q), and the actuator torque τ . Everything is expressed as a
function of the n generalized coordinates q =

(
qTb qTr

)T
, whereby the selection matrix S =

[
0nr×nb

Inr

]
separates

the nr = n − nb actuated joint coordinates qr from the nb = 6 unactuated floating-base coordinates qb. Using a linear
operator PF (q) with the properties

PFJTs = 0, rank (PF ) = dim (ker (Js)) =: nm, (2)

the contact forces Fs can be eliminated such that the reduced dynamics is written as

PF (Mq̈ + h) = PFST τ . (3)

A possible and frequently used choice for the linear operator PF defined in (2) is an orthogonal projection into the null-
space of Js (see for example Aghili, 2005). For this reason, and similar to most literature in the field, we generally refer to
it as projection matrix. As it was shown by Righetti et al. (2011a), different methods like OSC (Sentis and Khatib, 2005),
QR decomposition (Mistry et al., 2010), or direct null-space calculation (Aghili, 2005) can be brought into this form. In
fact, the choice of projector does not change the resulting control command τ nor the cost function that is optimized for.

Given desired generalized accelerations q̈ (motion planning), the joint torque is calculated by pseudo-inversion

τ =
(
PFST

)+
PF (Mq̈ + h) + NPSτ 0, (4)

with the null-space projector NPS = N
(
PFST

)
and the arbitrary internal torque vector τ 0. Analyzing the matrix PFST

respectively the support Jacobian Js =
[
Jsb Jsr

]
implies two important differentiations:

Definition 1 (truly-underactuated). A system is called truly-underactuated if there are not enough ground contact con-
straints to independently control the nb unactuated base coordinates qb. nu := nm−rank

(
PFST

)
= nb−rank (Jsb) >

0 coordinates remain uncontrollable.

This entails that the pseudo-inversion may not fulfill the desired dynamics but only minimizes ‖PF (Mq̈ + h) −
PFST τ‖22. In this case, special attention has to be paid when choosing the desired accelerations q̈ such that they are
dynamically consistent.

Definition 2 (overconstrained). A system is called overconstrained if there exist nc := nr−rank
(
PFST

)
= rank (Js)−

rank (Jsb) > 0 internal force directions respectively a null-space projector with rank (NPS) = nc > 0.

This means that the torque vector τ can be changed by an arbitrary internal torque vector τ 0 without impairing the
desired acceleration q̈. Instead, these internal torques τ 0 can be used to optimize the load distribution.
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A quadrupedal robot is the appropriate platform to highlight these different contact properties. In contrast to most
bipedal systems that have extended foot elements which constrain position and orientation of the foot segment, we employ
on StarlETH only point feet. Each contact point implies three independent contact constraints that allow controlling some
of the six unactuated base coordinates.

The most simple case with a single leg in contact that constrains only three degrees of freedom corresponds to a truly-
underactuated system with nu = 3 uncontrollable directions (Figure 2(a)). As the robot cannot apply torque around the
point contact, the three rotational directions remain uncontrolled. This formulation captures also singular cases such as
three contact points in a line, which result in a rank deficiency of Jsb .

An overconstrained situation can be realized with three (or more) contact points that are not aligned in a singular
configuration (e.g. on a single line). As depicted in Figure 2(c), the nc = 3 internal directions result from 9 independent
contact constraints with only 6 unactuated base coordinates. Thereby, the robot can produce internal forces between the
contact points which has no influence on the robot acceleration.

A quadrupedal robot can also be truly-underactuated and overconstrained at the same time (Figure 2(b)): Two simul-
taneous contact points allow to generate a single internal force between them. At the same time, the system is not able to
apply a momentum around the line of support.

3 Hierarchical Least Squares Optimization
To prepare for prioritized OSC, we outline in this section the concept of hierarchical least squares optimization of a set of
nT systems of linear equations

Aix = bi, (5)

with the optimization variable x. Problems of the same priority i ≥ 1, with i = 1 being the highest priority, are stacked
in matrix Ai and vector bi. As it will be shown later, the EoM as well as motion, joint torque, and contact force tasks can
be brought into this linear form, whereby the optimization variable is a stacked vector of generalized acceleration, joint
torques, and contact forces. In the proposed hierarchical framework, the goal is to solve each task as good as possible in
a least squares sense

min
x

‖Aix− bi‖22 , (6)

without influencing tasks of higher priority, which can be written as

min
x

‖Aix− bi‖22

s.t.

 A1

...
Ai−1


︸ ︷︷ ︸

Âi−1

x−

 b1

...
bi−1


︸ ︷︷ ︸

b̂i−1

= c. (7)

Note: As long as Âi−1 has full column rank, the cost c is 0.
This sequence of least squares problems can be solved using a standard quadratic program (QP) solver (Björck, 1996), or
analytically and in a very compact way by iterative null-space projection as outlined in the following section.

3.1 Iterative Null-Space Projection
As already similarly illustrated by Siciliano and Slotine (1991), the requirement that a task is not allowed to influence any
task with higher priority can be formulated by defining x as a sum of task specific xi pre-multiplied with the null-space
projection matrix Ni of higher prioritized tasks:

x =

nT∑
k=1

Nkxk. (8)

The null-space projector Ni is defined as Ni = N
([

AT
1 . . . AT

i−1
]T)

with N1 = I and the sufficient property

AiNj = 0 ∀i < j. (9)

It can be computed using the pseudo-inverse as outlined in (e.g. Sentis, 2007; Siciliano and Slotine, 1991), which is the
analytically correct way of writing an orthogonal null-space projector, or a singular value decomposition (SVD) (Hutter,
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2013, App. A.4), which shows better numerical stability if Ai is close to singular. Using property (9), the prioritized
minimization problem (6) can be solved for each task individually by inserting (8) and solving for xi:

Aix− bi = Ai

nT∑
k=1

Nkxk − bi (10)

xi = (AiNi)
+

(
bi −Ai

i−1∑
k=1

Nkxk

)
. (11)

It can be analytically proofed that (i) tasks with higher priority are not influenced by tasks with lower priority and (ii)
that the solution is globally optimal (Hutter, 2013, App. A.1). Furthermore, as long as the rows of AiNi are linearly
independent, the task is exactly fulfilled (Aix = bi). To ensure numerical robustness also in case the AiNi being rank
deficient, we use the pseudo-inversion using SVD as described in (?).

3.2 Inequality Constraints
To describe the behavior of complex legged robots, it is often required to integrate inequality constraints

Aix ≤ bi (12)

in the proposed control framework, e.g. to handle joint angle limitation or motor torque saturation on task level (Mansard
et al., 2009; ?). As outlined by Kanoun et al. (2011), such inequality tasks can be naturally integrated with numerical QP
solvers using slack variables. An alternative based on the analytical solution is to activate the corresponding inequality
task as equality tasks as soon as the inequality constraint is violated. By assigning a higher priority than to all other
tasks, we can ensure that (in case there is a feasible solution to the problem) the actual solution fulfills the inequality
constraint. While this compact iterative analytical approach works well for our application with a low number of in-
equality constraints, it is inappropriate to handle multiple independent inequality tasks. The iteration through all possible
combinations of active and inactive constraints quickly becomes computationally intensive.

4 Behavior as Least Squares Problems and Inequality Constraints
The behavior of a robotic system and in particular legged robots can be described as simultaneous execution of multiple
tasks that can be classified in three categories. First, motion tasks (e.g. balancing the CoG, emulating certain end-effector
impedance or template dynamics, etc.) can be written as

min
x

‖r̈i − r̈i,des‖22 , (13)

with r̈i,des being the desired task-space acceleration at position ri. Second, joint torque tasks (e.g. achieving specific
torque, optimizing for efficiency, etc.) are expressed as

min
x

‖Wττ − bτ‖22 , (14)

with the weighting matrix Wτ and vector bτ . And third, contact force tasks (e.g. applying a desired force at a specific
location, optimizing the force distribution to minimize the risk of slippage, etc.) are represented as

min
x

‖WFFs − bF ‖22 , (15)

with WF being the force weighting matrix. All these tasks are tightly connected by the EoM (1) which is in fact an
equality task

Mq̈ + h + JTs Fs = ST τ (16)

linearly depending on generalized accelerations q̈, contact forces Fs, and joint torques τ . To complete the behavior
description, the robot has to additionally deal with position limitations ri < ri,lim, torque limitations τ i < τ i,lim, or
contact force limitations Fs,i < Fs,i,lim. Position limitations can be written as r̈i < r̈i,lim, where r̈i,lim = f (ri, ṙi) is
computed from the distance of ri to the limit ri,lim at each instant of time.

In eqs. (13) to (16) the optimization vector x corresponds to a combination of the generalized acceleration q̈, the joint
torques τ , and the contact forces Fs. In the following we outline and compare different types of whole body control
methodologies that are used to calculate the desired actuator input command τ as the optimal solution of a set of such
minimization problems with different priorities.
Note: To ensure dynamic and kinematic consistency, it is important to choose the EoM and contact constraints as tasks
with highest priority.
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4.1 Full Optimization Vector
The natural approach introduced by de Lasa and Hertzmann (2009) is to choose

xf =

 q̈
τ
Fs

 (17)

as the full stacked vector of all optimization parameters, which yields the following optimization matrices and vectors:

Table 1: Least squares optimization matrices for the full optimization vector xf (17).
EoM (16) motion task (13) torque task (14) force task (15)

A =
[
M,−ST ,JTs

]
(18)

b = −h (19)
A =

[
Ji,0,0

]
(20)

b = r̈i,des − J̇iq̇ (21)

A =
[
0,Wτ ,0

]
(22)

b = bτ (23)
A =

[
0,0,WF

]
(24)

b = bF (25)

4.2 Reduced Optimization Vector
The EoM (16) represents a linear dependency of generalized accelerations q̈, joint torques τ , and contact forces Fs. Since
this task has always highest priority, it is guaranteed that the constraining equality is fulfilled. Hence, the optimization
dimensionality can be reduced.

4.2.1 Acceleration and Torque Optimization

A well known method from inverse dynamics control with floating base systems (e.g. Mistry et al., 2010) is to use
projected system dynamics as illustrated in (3)

PF (Mq̈ + h) = PFST τ , (26)

such that the dimensionality of the optimization vector can be reduced to

xrF =

(
q̈
τ

)
. (27)

While there exist different choices for PF (Righetti et al., 2011a), we apply in the experimental section of this paper the
well established QR decomposition of JTs = Q

[
RT 0

]T
with the orthogonal matrix QT = Q−1 and the upper right

triangular matrix R. Through the decomposition of Q =
[
Qc Qu

]
into constrained and unconstrained components, the

linear mapping is written as PF = QT
u ∈ Rnm×n. The QR decomposition gives additionally direct access to the contact

force
Fs = R−1QT

c

(
ST τ − (Mq̈ + h)

)
. (28)

Using this methodology, the optimization procedure results to

Table 2: Least squares optimization matrices for the reduced optimization vector xrF (27).
EoM (26) motion task (13) torque task (14) force task (15), (28)

A = PF

[
M,−ST

]
(29)

b = −PFh (30)
A =

[
Ji,0

]
(31)

b = r̈i,des − J̇iq̇ (32)

A =
[
0,Wτ

]
(33)

b = bτ (34)
A = WFR−1QT

c

[
−M,ST

]
(35)

b = bF + WFR−1QT
c h (36)

4.2.2 Acceleration and Force Optimization

An alternative method, which is similar to the ideas presented in (Herzog et al.), is to eliminate the joint torques as
constraint variables. To this end, we use a linear mapping1 PS into the null-space of the actuation matrix S, which yields
the Newton-Euler equations of the whole system

PS

(
Mq̈ + h + JTs Fs

)
= 0 (37)

and the corresponding reduced optimization vector

xrS =

(
q̈
Fs

)
. (38)

1In analogy to the discussion for PF , we refer to this as projection
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In fact, since S =
[
0(nr×nb) I(nr×nr)

]
, the simplest possible choice is PS =

[
I(nb×nb) 0(nb×nr)

]
. Given he opti-

mization parameters q̈ and Fs, the joint torques are generated as

τ = S
(
Mq̈ + h + JTs Fs

)
, (39)

which yields the following optimization tasks:

Table 3: Least squares optimization matrices for the reduced optimization vector xrS (38).
EoM (37) motion task (13) torque task (14), (39) force task (15)

A = PS

[
M,JTs

]
(40)

b = −PSh (41)
A =

[
Ji,0

]
(42)

b = r̈i,des − J̇iq̇ (43)

A = S
[
M,JTs

]
(44)

b = bτ − Sh (45)
A =

[
0,WF

]
(46)

b = bF (47)

4.3 Sequential Optimization
In many application of whole body control techniques, the primary goal is to achieve a desired motion while the optimiza-
tion in joint torques or contact forces is only considered as a byproduct that allows to lower the energy consumption or to
increase stability without changing the motion (e.g. Righetti et al., 2013). This corresponds to splitting the optimization
in two subsequent steps with higher priority assigned to the motion tasks.

4.3.1 Step 1: Kinematic Motion Optimization

The desired generalized accelerations can be generated using

xq = q̈, Aq
i = Ji, bqi = r̈i,des − J̇iq̇, (48)

which corresponds to pure kinematic prioritization as already done by Siciliano and Slotine (1991) and many others. By
considering the contact constraint r̈s = Jsq̈ + J̇sq̇ = 0 with highest priority, kinematic consistency is ensured.

4.3.2 Step 2: Inverse Dynamics and Null-Space Opimization

In the second step, the desired actuator torque can be calculated by inverting the projected equations according to (4),
which corresponds to using

xτ = τ , Aτ
1 = PFST , bτ1 = PF (Mq̈ + h) (49)

as task with highest priority for torque optimization. If there are linearly depending contact conditions respectively internal
force directions, Aτ

1 has an associated null-space projector NPS which allows for additional torque

min
τ

‖Wττ − bτ‖22 , (50)

or force optimization, which can be transformed using (28) into a least squares problem that is linear in joint torques τ :

min
Fs

‖WFFs − bF ‖22
(28)
= min

τ

∥∥WFR−1QT
c ST τ −

(
bF + WFR−1QT

c (Mq̈ + h)
)∥∥2

2
. (51)

In summary, this results in the following least squares problems that are solved in two steps:

Table 4: Least squares optimization matrices for sequential optimization of the desired motion xq and torque xτ .
EoM (49) motion task (48) torque task (50) force task (51)

xτ = τ

Aτ = PFST (52)
bτ = PF (Mq̈ + h) (53)

xq = q̈

Aq = Ji (54)

bq = r̈i,des − J̇iq̇ (55)

xτ = τ

Aτ = Wτ (56)
bτ = bτ (57)

xτ = τ

Aτ = WFR−1QT
c ST (58)

bτ = bF + WFR−1QT
c (Mq̈ + h) (59)

In (Hutter, 2013, chp. 5.4.3) we show how this method is a general formulation of the weighted pseudo-inversion
presented in (Righetti et al., 2013) to minimize a quadratic cost in joint torques and contact forces. As an advantage,
the method here allows to include multiple tasks in the support null-space as e.g., required to additionally limit the joint
torques (see Section 5.1.3).
Note: This second step can be equally stated by using the projected EoM (37) with xF = Fs as optimization variable. To
keep the paper compact, this method is omitted.
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4.4 Summary
The full (Section 4.1) and reduced (Section 4.2) optimization have the advantage to guarantee kinematic and dynamic
consistency as A1 described in (18), (29) and (40) has no rank deficiency due to the positive definite property of M.
Moreover, the reduced methodology offers the same functionality with a lower dimension of the optimization. As a
drawback, both methods include the mass matrix M in the optimization matrix A which has to be inverted to solve the
prioritized least-square problem (see (11)). Depending on the system properties, this can lead to numerical problems as
M can be badly conditioned (very low inertia at end-effectors but high mass at the base (see also Featherstone, 2004)).
However, this was never a problem for the simulations and experiments presented in Section 5.

The sequential approach has the advantage of being a pure kinematic construct (cf. Righetti et al., 2011a). As a
shortcoming, dynamic consistency cannot be guaranteed since Ai defined in (52) is rank deficient if the system is truly-
underactuated. This implies that the robot has partially uncontrollable dynamics. To give an example, a quadrupedal robot
with two feet in ground contact leaves the dynamics uncontrollable in one dimension as the angular momentum around
the line of support cannot be changed although the desired accelerations as calculated by the kinematic prioritization in
step 1 may require so. Hence, this method is only applicable for static maneuvers.

5 Results
The presented approaches were tested in a realtime C/C++ simulation and control environment (Hutter et al., 2012a;
Schaal, 2009) and experimentally validated on StarlETH (Hutter et al., 2012a) autonomously operated with onboard state
estimation (Bloesch et al., 2012). The inverse dynamics control framework was designed using analytical expressions for
the system kinematics and dynamics (Hutter et al., 2011a) based on a detailed CAD design. All our experiments use pure
task-space inverse dynamics control without any (low-gain) joint position regulation (cf. Buchli et al., 2009). Due to its
compact formulation, the analytical iterative null-space projection (Section 3.1) is applied to resolve the least squares task
hierarchy.

We conducted two sets of experiments with a different focus. In Section 5.1, static walking is used as a showcase to
investigate joint torque and contact force optimization. Multi contact situations (3 or 4 feet are always in ground contact)
make the system overconstrained and open different possibilities to optimize the load distribution. In Section 5.2, the
experiments are extended to dynamic trotting gaits whereby the system is truly-underactuated. In this part we focus on
the motion control side and implement an intuitive strategy with the desired task-space dynamics represented in different
coordinate systems. Given the properties of the full (Section 4.1), reduced (Section 4.2), and sequential approach (Sec-
tion 4.3), we apply the sequential method (summarized in Table 4) for static locomotion (Sim/Exp 1-9) and the reduced
method (summarized in Table 2) for dynamic experiments (Sim/Exp 10-12). All results are illustrated in Extension 1.

5.1 Static walking
The application of a static crawling gait ensures that the overall CoG is kept over the support polygon at any point of
time. To this end we use a basic trajectory planner. In fact, way points for the moving foot and the base location of
two successive steps are planned ahead to minimize the body motion while guaranteeing a certain safety margin defined
as distance between base and support polygon. Thereby, the robot continuously executes a stereotypic footfall pattern
(McGhee et al., 1968) left-hind (LH), left-front (LF), right-hind (RH), right-front (RF).

We conduct a set of simulations (Sim) and real hardware experiments (Exp) that are based on the same task-space
motion optimization. For step 1, the motion optimization (Section 4.3.1), the support-constraint with Aq

1 = Js and
bq1 = −J̇sq̇ has the highest priority P q1 . The base position and orientation is combined in a single task of lower priority
P q2 with Aq

2 =
[
JTB JTR

]T
and r̈2,des = kp (r2,des − r2)+kd (ṙ2,des − ṙ2) ∈ Rnb . Thereby, JB = ∂rbase

∂q represents the
translational base Jacobian, JR = ∂Ω

∂q̇ the rotational Jacobian, and Ω the main body rotation speed. The base orientation
and rotation speed are always controlled to zero.

During the shifting as well as the stepping sequence, at least ncp ≥ 3 points are in contact with the ground in a
non-singular configuration. Using Definition 2, the system is nc = 3ncp − nb times overconstrained. Taking for step 2
(Section 4.3.2) the constrained dynamics task (49) as highest priority P τ1 there remains nc internal directions for contact
force respectively joint torque optimization strategies with lower priority (P τ1 > P τ2 > . . .) without impairing the motion.
The different sets of optimization objectives summarized in Table 5 are compared with respect to energy efficiency and
robustness. As a measure for efficiency of electrically driven robots, the most commonly used objective function is the
integral of the square of actuator torques (Remy et al., 2012)

Eτ =

∫
τT τdt. (60)

To quantify the risk of slippage, we calculate the mean of the relation between tangential and normal contact force

µ̄ = mean
(
Ftangential(t)
Fnormal(t)

)
. (61)
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Table 5: Static walking experiments with different optimization objectives
P τ1 P τ2 P τ3 Eτ µ̄ τmax

KFE ∆rsim−exp ∆rsim ∆rexp
units [N2m2s] [-] [Nm] [mm] [mm] [mm]
Sim1 inv dyn∗ τ min‡ - 3985 0.27 12.2 1.4
Exp1 inv dyn∗ τ min‡ - 4701 0.20 12.4 11.1 4.2
Sim2 inv dyn∗ Fs min§ - 5730 0.04 16.0 0.7
Exp2 inv dyn∗ Fs min§ - 5544 0.04 13.7 6.6 3.2
Sim3 inv dyn∗ τ lim† τ min‡ 4034 0.29 10.0 0.7
Exp3 inv dyn∗ τ lim† τ min‡ 4557 0.24 10.4 11.3 3.7
Sim4 inv dyn∗ τ lim† Fs min‡ 5502 0.10 10.0 1.1
Exp4 inv dyn∗ τ lim† Fs min§ 5485 0.07 10.6 7.0 4.5
∗inv dyn: Aτ

i = QT
uST , bτi = QT

u (Mq̈ + h)
†τ lim (τKFELF

< 10 Nm): Aτ
i =

[
0 0 1 0 . . . 0

]
, bτi = 10

‡τ min (Wτ = I, bτ = 0): Aτ
i = Wτ , bτi = 0

§Fs min (WF = I, bF = 0): Aτ
i = R−1QT

c ST , bτi = R−1QT
c (Mq̈ + h)

The smaller this fraction, the lower the risk of slippage at the evaluated contact point. Since there are no precise contact
force sensors incorporated, these forces are estimated in the experiments by (28) based on joint torque, encoder, and IMU
signals. Due to an accurate model and precise torque measurements, this approximation yields quite precise results as
validated by Fankhauser et al. (2012).

Simulation and experimental measurements agree well in the actual base position and orientation. For illustration, we
evaluated the average absolute distance between the simulation and the experiment as ∆rsimi−expi = mean |rsimi

(t)− rexpi(t)|.
The maximal offset of 11 mm over the full recording time of 15 s mainly origins from the time shift that is accumulated,
since the gait cycle is not time but phase synchronized. Considering only a single step, the error remains below 5 mm.
Second, we investigated the influence of the different optimization strategies on position tracking, which ideally should
also be zero. To this end, the average absolute distance error ∆ri = mean |ri(t)− r(t)| of each (ne = 4) simulation and
experiment ri(t) to the mean r(t) = 1

ne

∑ne

i=1 ri(t) is computed for simulations and experiments independently. With
absolute values of less than 1.4 mm and 4.5 mm respectively, the robot motion barely differs. Keep in mind that the real
world experiments are subject to different model inaccuracies and external disturbances. The results are summarized in
Table 5 and discussed in detail subsequently.

5.1.1 Actuator Efficiency Optimization (Exp1, Sim1)

The energy consumption is optimized by applying the least squares problem (50) with Aτ
2 = Wτ = I and bτ2 = bτ = 0

with priority P τ2 . With this method, a walking sequence of 3 full cycles (3 steps with each leg) corresponds to a cost of
Esimτ = 3985 N2m2s in simulations and Eexpτ = 4701 N2m2s in experiments. The comparably large difference of the
energy consumption can be explained by modeling inaccuracies (simulation and controller are only based on CAD data)
and imperfect torque control performance of the SEA (actuator is not modeled in the simulation). Analyzing the contact
forces shows that the mean required friction coefficients are µsim = 0.27 and µexp = 0.20 correspondingly.

5.1.2 Contact Force Optimization (Exp2, Sim2)

Minimizing the total force is equivalent to removing all internal forces that do actually not contribute the net force acting
on the ground. This is similar to work that was done based on static virtual model control (Zhou et al., 2000) where the
pseudo-inversion distributes the virtual forces onto support forces such that they are least square minimal. In the presented
framework, force minimization (51) is achieved by selecting WF = I and bF = 0, respectively Aτ

2 = R−1QT
c ST and

bτ2 = R−1QT
c (Mq̈ + h) (see Table 4). While the tangential contact forces are significantly reduced (µsim = 0.04,

µexp = 0.04), the actuation cost (60) of Esimτ = 5730 N2m2s and Eexpτ = 5544 N2m2s are increased.

5.1.3 Joint Torque Limitation (Exp3/4, Sim3/4/5)

A simple method to account for actuator torque limitations |τi| < τsat is to tackle these inequality constraints as outlined
in Section 3.2. Limitations are generally disabled, but as soon as torque limitations are violated, a high priority task with a
unit entry at the corresponding location Aτ

2 = Wτ =
[

0 0 1 0 . . . 0
]

and bτ2 = bτ = ±τsat is introduced and
all other tasks are shifted to lower priorities. If multiple joints reach torque limitations simultaneously, the corresponding
tasks get stacked at the same priority. The procedure ensures that the generated torque profiles meet all actuator limitations
and that non-saturated actuators take more load to still achieve the desired acceleration. StarlETH can perform the same
walking maneuvers as in the previous experiments but with (arbitrarily) limited knee flexion/extension (KFE) joint torque
to 10 Nm. As summarized in Table 5, the energetic consumption remains more or less equal if the maximal knee torque is
limited. However, the limitation slightly increases the risk of slipping since the contact force cannot be aligned as well as
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Figure 3: A comparison of experimental results with (blue dashed, Exp3) and without (red solid, Exp1) joint torque
limitations show very good matching in terms of motion (a,c). During the phase where τKFE is saturated (d), HFE (and
others) takes over part of the load (b).
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Figure 4: (Sim5): As long as only τKFE is saturated, the desired motion of a vertical step input on the main body position
is perfectly executed since the hip (mainly HFE) is taking over part of the load (blue dashed). If the τHFE saturates as
well, the desired motion cannot be followed anymore (black dotted).

without torque saturation. As depicted in Figures 3(a) and 3(c), the motion is almost equal for Exp1 and Exp3 independent
of the joint torque distribution. At the same time, the knee torque (Figure 3(d)) can be limited to 10 Nm: in this region,
mainly hip flexion/extension (HFE) of the same leg but also other joints take part of the load (Figure 3(b)). Similar results
but only in simulations have been presented by ? using a numerical QP solver. Violations of the 10 Nm boundary (gray
circle, Figure 3(d)) result from torque tracking errors at the SEA, which has non-zero output impedance if the joint is
moving (Hutter et al., 2011b).

In case too many joints saturate at the same moment such that there is no feasible solution τ to achieve the desired
dynamics without violating the constraining task (i.e., the equality task P τ2 cannot be fulfilled), the torques τ satisfy the
saturation limitations only as good as possible. However, by applying the reduced approach (Section 4.2), we can assign
higher priority to torque limitations than to motion execution. To this end, the EoM is selected as first priority, the contact
constraint as second priority, the torque saturation task as third priority, the main body motion as fourth priority, and the
torque minimization as fifth priority. This is illustrated in Figure 4 by a vertical position step command signal applied to
the body height (Sim5): As long as only KFE is saturated, the desired motion is perfectly executed since the hip (mainly
HFE) is taking part of the load (blue dashed). If the HFE torque is limited as well, the desired motion cannot be followed
anymore (black dotted) and the task with fourth priority is violated.

5.1.4 Joint Position Limitation (Exp6, Exp7)

In addition to torque saturation, most robots suffer from a limited joint or task-space range of operation. This is usually
handled by soft limitations when planning the desired motion. However, joint range limitations should also be ensured
if the actual motion is significantly offset form the desired motion, e.g. by external disturbances. This happens in par-
ticular when regulating the robot with low feedback gains to emulate a compliant behavior. As a solution, we propose
to include the position limitation as inequality constraints in the motion controller (Section 3.2). As a showcase sce-

Table 6: Motion task priorities for horizontal main body shifting (Exp 6). In Exp7, the priorities of task 4 and 5 are
switched

Priority Dimension reference signal Aq
i (54) bqi (55)

P q1 changing support-constraint IJs −I J̇sq̇
P q2 changing joint angle limitation Slim Slim

(
klimp (qlim − q)− klimd q̇

)
P q3 2 body pos Irxy Sxy kxyp (Irdes − Ir) + kxyd (I ṙdes − I ṙ)
P q4 1 body height Iz SzIJ kzp (Izdes − Iz) + kzd (I żdes − I ż)
P q5 3 body orientationBϕ IJR kϕp (Iϕdes − Iϕ) + kϕd (Iϕ̇des − Iϕ̇)
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Figure 5: The presented framework compensates for joint angle limitations (e.g. ϕHFE) while shifting the main body
forward. Its motion is distorted either by lifting the main body upward (Exp6, low priority in z posture, (c)) or by tilting
the main body forward (Exp7, low priority for body pitch angle, (d)).

nario, a simple base shift is commanded in forward direction. At the same time, the maximal HFE angle is restricted
to 0.9 rad from the main body x-axis as indicated in Figure 5. This limitation is arbitrarily chosen to demonstrate the
working principle when separating main body position and orientation tasks into different priorities (Table 6). In Exp6,
the motion optimization (Section 4.3.1, step 1 of sequential approach) is performed like in the previous examples with
the support constraint at highest priority P q1 . The third priority task P q3 attributes to regulate the body position in xy-
plane (stability) with Sxy representing the corresponding selection matrix. As P q4 , the body orientation is aligned with
the environment while P q5 keeps the ground clearance constant. In Exp7, the order of P q4 and P q5 is changed such that
ground clearance becomes more important than the body orientation. Body shifting in forward direction, while keeping
body height and orientation constant, is first conducted without considering the limits (Figure 5(b)). Thereby, the hip
joint angle limitation is violated (Figure 5(f), black dotted). This can be avoided by activating the limitation tasks as done
in Exp6 (Figure 5(c)) and Exp7 (Figure 5(d)). As soon as the limitation in HFE is reached, a task with P q2 is activated
that ensures that the angle is not growing anymore in this direction, respectively that the corresponding joint acceleration
Slimq̈ = Slim

(
klimp (qlim − q)− klimd q̇

)
is pushing away from the soft joint angle limitation. The parameters klimp and

klimd represent the virtual constraint stiffness and damping, Slim is the selection matrix of the joint that violate a position
constraint. It can be observed that HFE does not exceed the limitation (Figure 5(f)) but that the body motion is distorted
by violating the lowest priority task. The robot starts to increase the body clearance (Exp6, Figures 5(c) and 5(g)) or
pitching angle (Exp7, Figures 5(d) and 5(h)) such that the joint limitation can be avoided.

5.1.5 Terrain Dependent Optimization (Exp8)

When it comes to walking in non-flat terrain, stability at the contact points can only be guaranteed if the contact forces are
within the local friction cone at all time. To keep the tangential forces as small as possible, the contact forces are aligned
with the local surface normal directions (Hutter et al., 2012b) by a force optimization task. To this end, the force weighting
matrix (15) is selected as WF = blockdiagonal

(
αit

T
i

)
with ti ∈ R3×2 being the local tangential plane at each contact

point. We tested this in static, in-place walking on a half-cylindrical shaped surface with known geometry (Figure 6(a)).
To quantify slippage, we measured the feet positions by post-processing the recorded movie using a color blob-tracker
for the ball feet. As indicated in Figure 6(b), foot point slippage can be reduced by this contact force alignment. The
method works robust and requires only binary contact switch detection without precise force measurement. As long as
the estimated ground surface normal directions are not completely wrong (i.e., better than the global vertical direction),
tangential contact forces and hence the risk of slippage are lowered. Hutter et al. (2012b) compares this approach including
local surface tangential planes with a sequential QP solver that directly minimizes the local friction coefficient. For a static
walking gait, the nonlinear optimization results were only slightly better as the proposed least squares solution but in return
required significantly more computational power.

5.1.6 Smooth Contact Force Distribution (Sim9)

A change in the contact situation entails a discrete change in the support Jacobian Js. As a consequence, applying inverse
dynamics leads to undesired discontinuities in the actuator torques τ and contact forces Fs. To make these changes
smooth, we propose an interpolation method between two subsequent contact situations.
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Figure 6: Static walking experiment with StarlETH on a half-cylinder surface (a). Aligning the contact forces with the
local surface normal direction by applying internal forces allows slippage free walking (blue solid). Considering the
surface as flat ground leads to failure after the first step (black dashed).
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Figure 7: Contact force interpolation leads to smooth switches of the contact configurations. The resulting torque trajec-
tories can be followed even by rather low bandwidth actuators as employed in StarlETH.

In case of static walking, transitions occur always between three and four contact point situations in both directions.
First, the original contact force problem is solved to generate the optimal load distribution Fopt for four contact points.
Subsequently, the desired contact force at the changing contact is (linearly) scaled to Fj = wFoptj as a function of the
interpolation parameter w ∈

[
0 1

]
which is determined by the gait phase or time. Increasing w from 0 to 1 corresponds

to loading a leg, decreasing to unloading. Second, the optimization problem is solved again with an additional high
priority task (Aτ

2 ,b
τ
2) with WF = Sj and bF = Fj , whereby Sj corresponds to the selection matrix of the interpolated

contact force Fj . As a result, the load distribution is smoothly transitioned between loading four (Fj = Foptj ) or only
three (Fj = 0) legs. This method differs from approaches used by Dietrich et al. (2012) in a way that the interpolation
directly shapes the contact forces and not the corresponding null-space projectors Ni. As indicated in Figure 7(a), the
forces and hence also the joint torque transitions are smooth between the different support configurations. Again, the body
motion is not affected by this change in load distribution (Figure 7(b)).
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t=0.267st=0.233st=0.200s

t=0.133st=0.100st=0.000s
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t=0.167s14cm

Figure 8: Trot series with a forward speed of approximately 0.7 m/s respectively 1.5 bodylength/s
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Table 7: Motion task priorities for dynamic locomotion with StarlETH.
Priority Dimension reference signal Ac

i (31) bi (32)
P q1 changing support constraint

[
IJs 0

]
−I J̇sq̇

P q2 1 body height Iz
[
SzIJ 0

]
kzp (Izdes − Iz) + kzd (I żdes − I ż)

P q3 2 body roll, pitch Bϕ
[
SϕBJR 0

]
kϕp (Bϕdes − Bϕ) + kϕd (Bϕ̇des − Bϕ̇)− SϕBJ̇Rq̇

P q4 1 body turning rate I ψ̇
[
SψIJR 0

]
kψd

(
I ψ̇des − I ψ̇

)
− SψI J̇Rq̇

P q5 2 body velocity Bv
[
SxyBJ 0

]
kxyd (Bvdes − Bv)− SxyBJ̇q̇
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Figure 9: Reactive foot placement (a) in combination with the whole body controller allows to stabilize walking (b) and
running (c) trot. c) shows a short flight phase, a higher stride frequency, and larger oscillations in the body height.

5.2 Dynamic Running
This section outlines the application of the reduced control approach summarized in Table 2 to enable dynamic locomo-
tion.

5.2.1 Motion Generation

Motion generation respectively foothold planning for dynamic gaits is based on (Coros et al., 2011). Starting from a gait
graph that describes the timing for the footfalls (e.g. Figure 9(b)), we use a time-normalized phase ω ∈ [0, 1] to define the
swing leg position and body posture. The desired foothold locations are calculated in a similar process as introduced by
Raibert (1986) and illustrated in Figure 9(a):

rF = kFBp (ṙHC,des − ṙHC)
√

hHC

g + kFFp
(
1
2 ṙHC,des∆tstance

)
, (62)

with the feedback gain kFBp > 0, the desired velocity ṙHC,des, the reference velocity at the front respectively rear hip
location ṙHC , as well as the feedforward gain kFBp < 0 and the corresponding stance duration ∆tstance. While walking,
the main body orientation is kept constant and the base position is continuously moved forward with a superimposed
vertical oscillation z (ω) to achieve a natural looking motion. For more details, the reader is referred to work done by
Gehring et al. (2013).

5.2.2 Running and Walking Trot (Exp10, Exp11)

As an intuitive set of user or high level control input, the desired robot speed in sagittal Bẋ (Bex forwards direction in
main body frame) and coronal direction B ẏ (Bey sidewards direction in main body frame), as well as the turning rate
I ψ̇ about a inertial frame fixed vertical direction Iez are selected. According to these set values summarized in Table 7,
the hierarchical task-space problem is described in different reference frames using the translation Jacobian IJ = ∂Ir

∂q

and rotation Jacobian IJR = ∂IΩ
∂q̇ expressed in the inertial frame I and the transformation matrix CBI from the inertial

frame I to the body fixed frame B such that BJ = CBIIJ. Si express selection matrices with unit entries for the selected
directions.

The application of this method in simulations as well in real world experiments required only minimal and intuitive
gain tuning. The system was successfully tested in a walking trot (Exp10, Figure 9(b)) with a short contact transition
phase as well as in a running trot (Exp11, Figure 9(c)) that includes a full flight phase. With only the diagonal pairs of
legs in simultaneous ground contact, StarlETH experiences truly-underactuated phases (nu = 1) whereby the angular
momentum around the line of support cannot be regulated. Hence, we choose the main body velocity as task with lowest
priority. This means that the desired velocity is only tracked as well as possible (in a least square sense). However, as
the robot can additionally compensate for velocity errors by the foot placement controller (62), the entire motion is still
robustly stabilized.
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Figure 10: Force and torque distribution with different optimization goals with Wτ = I (blue dotted line) or WF = I
(red solid) as P τ2 . When optimizing for motor efficiency (blue dotted), the load of the knee is lowered and part is taken by
the hip motor. In return the contact force increases in horizontal direction and hence also the risk of slippage.
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Figure 11: Exp12: StarlETH compensates for external disturbances such as a kick while trotting by stepping sideward
and generating a net counterforce.

5.2.3 Force and Torque Optimization (Sim11)

Having only two feet in contact with the ground, the space for optimizing the contact forces or joint torques reduces to a
single dimension. We tested both, minimizing joint torques (Wτ = I) as well as contact forces (WF = I). As indicated
in Figure 10, the different optimization strategies slightly change the load distribution while showing the same motion.
When minimizing the joint torque (Wτ = I , blue dashed), the mean friction coefficient for in-place trotting is µ̄ = 0.14,
minimizing the contact force (WF = I, red solid) lowers this to µ̄ = 0.05 but in return increases the actuator cost (60)
about 20%.

5.2.4 Stability and Robustness (Exp12)

Stability and robustness usually determine how well a system can compensate for disturbances such as external pushes or
unknown obstacles. In contrast to linear control theory that has well elaborated tools to measure this property, robustness
is hard to quantify for legged systems. Maximal disturbances before tipping over can be analytically determined for static
walking as the center of pressure is not allowed to coincide with the boundary of the support triangle. This changes when
analyzing dynamic gaits, in our example trotting gaits with just the diagonal pair of legs in contact. There are so many
parameters of influence that a robustness analysis in most cases boils down to a qualitative experimental evaluation to
identify the stability limitations.

In general, a dynamically balancing legged robot has two means to reject disturbances. First, all legs in contact can
produce reaction forces to counteract the perturbations as well as possible. Second, to compensate for disturbances in the
underactuated subspace, the contact point locations are adapted accordingly. As an example depicted in Figure 11, we
kicked the robot from the side. This causes a velocity error at the corresponding hip center in coronal direction and hence,
due to (62), StarlETH steps sidewards to compensate. Thereby, it produces a counterforce and, within two steps, finds
back to the nominal trotting gait.

6 Conclusion
This paper outlines a generalized framework for hierarchical task-space inverse dynamics control based on least squares
optimization. Taking inspiration from existing work on task prioritization and inverse dynamics control, the behavior
of a complex (legged) robot is described by a set of motion, torque, or contact force objectives with different priorities.
This control problem can be solved by iterative null-space projection or numerical QP solvers. Moreover, projecting
the system dynamics into the support or actuator null-space allows to reduce the optimization dimensionality. Instead
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of combined optimization of the linearly dependent generalized accelerations, actuator torques, and contact forces, the
least squares problems can also be solved as a sequence of kinematic motion optimization and inverse dynamics with
additional (prioritized) tasks to optimize the internal contact forces. This latter method has the advantage that it requires
only inversion of kinematic system properties.

The main contribution of the present work is the experimental validation of the outlined whole-body controller. Given
the precisely torque controllable quadrupedal robot StarlETH, this represents, to the best of our knowledge, the first
hardware experiment of locomotion with pure OSC (i.e., no local joint position regulation). In an extensive study, we
presented how contact point redundancy in static walking can be exploited to minimize energy consumption or to reduce
the risk of slippage while walking in uneven terrain. We outlined an interpolation method that guarantees smooth contact
transitions and include inequality tasks for joint angle and actuator torque limitations. The experimental section is further
extended to dynamic trotting gaits, showing that the method works also for truly-underactuated systems. Hereby, a clear
hierarchy in the motion part ensures that important directions like body orientation or vertical motion are executed by all
means while translational motion remains less important and is regulated on a step-to-step basis by appropriate foothold
placement. It is hence only tracked as good as possible in a least squares sense. The proposed control structure ensures
stable running even under significant external disturbances by uneven ground or artificial pushes.

The presented results with pure task-space control and onboard state estimation constitute a strong argument that
whole-body, respectively full inverse dynamics techniques, are very useful to enable sophisticated behaviors of a new
generation of torque controlled (legged) robots.

A Index to Multimedia Extensions
The multimedia extensions to this article are at: http://www.ijrr.org.

Extension Type Description
1 Video Different experiments from Section 5 with the quadrupedal robot StarlETH.
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