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ABSTRACT 

Pre-posterior analysis can be used to assess the potential of an experiment to 
enhance decision making by providing information on parameters characterized by 
uncertainty. The present paper describes a framework for pre-posterior analysis for 
support of decisions related to maintenance of structural systems. In this context, 
experiments may refer to inspections or techniques of structural health monitoring. 
The Value of Information concept provides a powerful tool for determining whether 
the experimental cost is justified by the expected benefit and for identifying the 
optimal among different possible experimental schemes. This concept is elaborated 
through principal examples for structural components and system models. Sensitivity 
analyses are performed to investigate how the decision problem is influenced by the 
level of uncertainty that characterizes the structural properties, the amount and quality 
of information and the probabilistic dependencies between components of a system. 

INTRODUCTION 

The societal importance of safe and well-functioning structures in conjunction with 
the large amount of resources allocated to the construction of new facilities and 
maintenance of deteriorating ones indicate the criticality of decisions related to 
management of structural systems. A proper decision-analysis framework must 
incorporate the epistemic and aleatory uncertainties that characterize the physical 
properties, loading and functionality of a structural system, accounting for their 
evolution in time.  

Traditional inspection methods as well as a growing number of structural health 
monitoring techniques can be used to reduce the uncertainty in system properties and 
thus, enhance decisions on maintenance actions.  However, the benefit gained from 
reduction of uncertainty must be weighed against the associated cost; according to 
Howard (1966): “Placing a value on the reduction of uncertainty is the first step in 
experimental design, for only when we know what is worth to reduce uncertainty do 
we have a basis for allocating our resources in experimentation designed to reduce 
uncertainty.” Pre-posterior decision analysis provides the formal framework for 
assessing potential benefits from different inspection and monitoring schemes. 



A powerful notion in pre-posterior analysis is the Value of Information (VoI), 
which represents the difference between expected benefits evaluated with and without 
a certain piece of information. The VoI concept was introduced by Raiffa and 
Schlaifer (1961) and has been employed in several decision-analysis studies in the 
field of Informatics (e.g., Dearden et al. 1998), Economics (e.g., Howard 1966), 
Health Care (e.g., Claxton et al. 2001) and Environmental Risk Management (e.g., 
Yokota and Thompson 2004).  Applications in the field of Structural Safety remain 
limited (e.g., Pozzi and Der Kiureghian 2011, Thöns and Faber 2013, Straub 2013).  
The present paper describes a general framework for application of VoI analysis in 
Structural Safety and presents example applications for structural components and 
system models. Sensitivity analyses demonstrate the dependence of VoI on the degree 
of uncertainty in structural properties, the amount and quality of information and the 
probabilistic dependencies between components of a system.  

VALUE OF INFORMATION 

We consider a structural system defined through a set of parameters that describe the 
physical properties, loading and functionality of the system, accounting for their 
evolution in time. We use Θ  to denote a vector of random variables that represent 
parameters characterized by uncertainty, and   to denote a set of possible 
maintenance strategies over the life cycle of the system. In an expected benefit 
maximization framework, the benefit, B , gained over the life cycle of the system is 
determined as 

  
α A

max (α, )B E b


 Θ θ , (1) 

where (α, )b θ  denotes the benefit corresponding to maintenance strategy α  and a 
realization θ  of the random vector Θ . 

In prior decision analysis, the optimal maintenance strategy is identified on the 
basis of our prior probabilistic model for Θ , which may combine knowledge from 
code specifications, expert judgment, laboratory tests and computer simulations, 
consistent with the selected configuration, materials, location and intended function 
of the structural system. Hereafter, we use B  to denote the life-cycle benefit 
evaluated on the basis of prior probabilistic knowledge. Consistently with Equation 1: 

  
α A

max (α, )B b f d




  
Θ

Θθ θ θ , (2) 

where Θ  and  f Θ θ  respectively denote the outcome space and prior joint 
Probability Distribution Function (PDF) of Θ . 

In posterior decision analysis, the optimal maintenance strategy is identified on 
the basis of the posterior probabilistic model for Θ , obtained by updating our prior 
model after new information has become available. Hereafter, we use  B x  to 
denote the updated life-cycle benefit in light of information x . Consistently with 
Equation 1: 



    |
α A

max (α, ) |B b f d




  
Θ

Θ xx θ θ x θ ,  (3) 

where  | |f Θ x θ x denotes the posterior PDF of Θ  given x . The Conditional Value of 
Information,  CVI x , is determined by the difference between the life-cycle benefits 
with and without information x , i.e.    CVI B B  x x . 

Pre-posterior analysis is used to assess the value of information that an 
experiment can provide before the experimental outcome becomes available. Herein, 
an experiment denotes an inspection method or structural health monitoring scheme. 
In pre-posterior analysis, x  represents a possible realization of the random vector X . 
The value of experiment e  is assessed by the Expected Value of Information, 

 EVI e , determined as    E CVI E B B        X Xx x , or analytically: 

       |
α A α A

max α, max α,EVI e E E b E b
 

       X Θ X Θθ θ .  (4) 

It can be seen that for any experiment,   0EVI e  , since  

        | |
α A α A α A

max α, max α, max α,E E b E E b E b
  

           X Θ X X Θ X Θθ θ θ .  (5) 

A rational decision maker will undertake an experiment with cost  C e  as long as 
   EVI e C e . Among a set of experiments that satisfy this condition, the optimal 

experiment is determined as the one yielding the maximum value of    EVI e C e . 
The main computational effort in the evaluation of EVI  lies in the evaluation of 

 E B  X x . In a general case, an experiment provides information on a sub-vector 

1Θ  of Θ , in the form  1h X Θ ε , where the function h  relates the measured 
quantities with the uncertain parameters 1Θ  and ε  denotes the measurement error. 
We characterize this type of information partial imperfect information. In this case: 

      |
α A

max (α, ) |E B b f d f d


 

 
     

  
 

X Θ

X Θ X Xx θ θ x θ x x ,  (6) 

where X  and  fX x  respectively denote the outcome space and joint PDF of X . 
The PDF of X  can be obtained in terms of the prior distribution of Θ  and the 
likelihood of the experiment,    || |L f XΘθ x x θ , according to equation 

      |f L f d


 
Θ

X Θx θ x θ θ . (7) 

A special case is an error-free experiment, which reveals the true values of 1Θ , 
i.e. 1X Θ . This is the case of partial perfect information.  Let 2Θ  denote the sub-
vector of Θ  including the elements not belonging in 1Θ , i.e.  2 :i i    Θ Θ X . 
Then: 

      
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Finally, the experiment X Θ , leading to complete elimination of uncertainty, 
represents the case of complete perfect information. In this case:  

    
α A

max (α, )E B b f d




      
Θ

X Θx θ θ θ .  (9) 

We note that EVI  for complete perfect information is different from the sum of EVI  
for partial perfect information for all elements of Θ . EVI  for complete perfect 
information provides an upper bound of EVI  for partial perfect information. 

CASE STUDIES FOR SRUCTURAL COMPONENTS 

We consider a structural component with a service life of lT yrs . The component 
capacity is described by a linearly decreasing function of time,  1tR R k t  , where 
R  is the initial capacity at 0 0t   and k  is the degradation rate. The demand, S , on 
the component is assumed independent of time. R  and S  are modeled as random 
variables, whereas k  is considered deterministic.  The component is in a safe state 
when tR S .  

We assume that in year dT , 0 d lT T  , an agent needs to decide on the optimal 
maintenance strategy between 0α , representing no action and 1α , representing 
maintenance. In this example application, maintenance involves replacement with a 
new component of similar type to the original one. (Note that in a more general case, 
possible maintenance strategies may involve sequences of actions; for a simple yet 
instructive illustration of VoI analysis, case studies herein are confined to 
maintenance strategies that involve single actions.)  Let  f iC T  and  r iC T  
respectively denote the costs of failure and replacement in year iT . Considering an 
annual interest rate r , the expected costs    α α ,i ic E b    Θ θ  associated with 
actions 0α  and 1α  are given by 
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where  o
T if T  denotes the probability that the original component fails in year iT  and 

 n
T if T  denotes the probability that a new component fails in year iT .  

In the following numerical investigations, we assume the service life is 
30lT yrs  and the degradation rate is 0.01k  . The failure and replacement costs 

are given in monetary units as   1000f dC T   and   10r dC T  , respectively. The 
annual interest rate is assumed 0.02 /r yr . Under prior information, R  is modeled 
as a lognormal variable with mean and standard deviation μ 2.5R   and σ 0.25R  , 
respectively, and S  is modeled as a lognormal variable with mean and standard 
deviation μ 1S   and σ 0.3S  , respectively. For the above distributions, the 
probability of failure at 0 0t   is   3

0 10fP t  .  



In prior analysis, we evaluate the expected costs  αic  using the prior 
probabilistic models for R  and S  in computing  T if T . These costs are shown in the 
left graph of Figure 1, as a function of dT . According to this graph, a rational agent 
will choose to replace the component if the decision is made between the 8th and 
24th year of its service life. For newer components, the cost of replacement is not 
justified by the relatively small reduction in the annual failure probability; for older 
components, the cost of replacement is not justified by the relatively short remaining 
service life. The right graph of Figure 1 shows the corresponding life-cycle cost, 

 0 1min (α ), (α )C B c c    , i.e. the expected cost for selection of optimal strategy. 

Figure 1. Expected costs in prior analysis. 

Partial perfect information.  Let us now consider the possibility of undertaking an 
experiment to aid our selection of maintenance strategy. The experiment considered 
herein is an inspection that reveals the actual value of the capacity, i.e.  RX . Note 
that in this particular case of partial perfect information,  1 RΘ  is independent of 

 2 SΘ . In posterior analysis, we evaluate the expected costs  αic  in terms of the 
probability  T if T  conditioned on the known value of R . The value of the 
experiment is equal to the reduction of the life-cycle cost achieved by updating our 
choice of action after revelation of the value of R . Thus, the experiment has a non-
zero value only if the optimal decision when the value of R  is known is different 
from the optimal decision indicated by prior analysis. 

Before conducting the inspection, pre-posterior analysis can be used to determine 
whether the cost of inspection is justified by its potential to enhance our decision on 
maintenance. Because at this stage the inspection outcome is unknown, the value of 
the experiment is assessed by considering the entire outcome space of R . In the 
present example where the outcome space is continuous, we employ a Monte Carlo 
(MC) approach to evaluate EVI : values of R  are sampled from the prior distribution 
and for each sample, posterior analysis is performed to identify CVI ; EVI  is 
approximated by the average CVI  for all sampled values of R .  

After preliminary investigations, a number of 10,000 simulations is selected for 
the MC evaluations. The left graph of Figure 2 compares the prior life-cycle cost,  
C B   , with the expected posterior life-cycle cost,    E C E B   . The 
difference between C  and  E C  is equal to EVI , which is shown in the right graph 
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of the same figure. Although the behavior of EVI  versus dT  is not monotonic, values 
of EVI  tend to be lower for older components.  

Figure 2. Life-cycle costs in prior and pre-posterior analysis (left) and EVI (right) for 
perfect measurement of capacity. 

In order to examine how the degree of uncertainty in our prior knowledge 
influences EVI , we perform sensitivity analysis by varying the coefficient of 
variation of R , denoted R . We vary μR  and σR  simultaneously, so that the 
probability of failure at 0 0t   remains constant, i.e.   3

0 10fP t  . The left graph of 
Figure 3 shows  EVI  versus R  for 20dT yrs ; the right graph of the same figure 
shows EVI  normalized with C . We note that although EVI  does not exhibit 
monotonic behavior with increasing R , the normalized EVI  almost monotonically 
increases at a decaying rate with increasing R . 

Figure 3. EVI (left) and normalized EVI (right) versus the coefficient of variation of 
capacity. 

Partial imperfect information. Let us now consider an experiment where the log-
capacity is measured with a random error ε , i.e.  log εR X . Assuming the 
experiment provides unbiased information, the measurement error is modeled by a 
zero-mean normal variable with standard deviation εσ . The error standard deviation 
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defines the quality of information. For an experiment comprising n  measurements of 
the log-capacity, we have log R X ε , with 

T

1 nX X   X   and 
T

1ε εn   ε  . Assuming the errors are random and uncorrelated, the elements of 
ε  are modeled as independent zero-mean normal variables with standard deviation 

εσ . In this case, the assumption of a log-normal prior distribution for R , leads to a 
log-normal posterior distribution for R  given x . The parameters of the posterior 
distribution are obtained in closed form in terms of εσ , n  and the parameters of the 
prior distribution.  

In the following, we investigate the dependence of EVI  on εσ  for cases with 
1n   and 2n   measurements. Realizations of X  are obtained by first, sampling 

from the prior distribution of R  and subsequently, sampling from 
   |log | logRf R fX εX ε . In the following, a MC approach with 10,000 simulations 

is employed, where a single realization of X  is obtained for each R  sample. 
Numerical results for the case 20dT yrs  are shown in Figure 4, in which EVI  is 
plotted versus ε logσ / σ R , i.e. the error standard deviation normalized with the standard 
deviation of the log-capacity. As ε logσ / σ R  tends to zero, EVI  for imperfect 
information approaches the respective EVI  for perfect information (see Figure 2).  
As ε logσ / σ R  attains large values, EVI  tends to zero. For intermediate values of 

ε logσ / σ R , EVI  depends on the precision and number of measurements. As expected, 
for certain n , experiments with higher precision, i.e. smaller values of εσ , are 
characterized by larger EVI ; however, experiments with higher precision are 
typically more expensive. Identification of the optimal experiment must account for 
the dependence of the experimental cost, eC , on both the amount and precision of 
information.  Thus, the optimal experiment is the one yielding the maximum value of 

   ε εσ , σ ,eEVI n C n . 

 
Figure 4. Dependence of EVI on precision and number of measurements. 

Evaluation of EVI  for the case of imperfect information requires a higher 
computational effort than for the case of perfect information. Since computational 
efficiency can be a critical aspect in VoI analysis, the value of EVI  for perfect 
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information can be used as an upper bound for the value of EVI  for imperfect 
information. 

For cases when the degradation rate is modeled as a random variable, its 
probability distribution can be updated by use of measurements obtained at different 
points in time. In this case, VoI analysis can be used to identify the optimal 
combination of precision and the time interval between measurements. Dependence 
of EVI  versus measurement precision in long-term monitoring was investigated by 
Pozzi and Der Kiureghian (2011) by use of Bayesian regression analysis. 

CASE STUDIES FOR SYSTEM MODELS 

We consider a structural system, with a service life of 30lT yrs , consisting of N  
components. All components are of similar type to the component examined in the 
previous section. The correlation coefficient between the log-capacities of different 
components is denoted logρ R . The total load on the system, N S , is assumed equally 
distributed between the N  components. The demand variable, S , is modeled as in 
the previous section. 

We assume that in year dT  of the service life of the system, an agent must select 
the optimal maintenance strategy between 0α  representing no action, and 1α , 
representing maintenance.  In this case, maintenance involves replacement of all 
components with new ones of similar type. The failure and maintenance costs at the 
beginning of year dT  are respectively given by  1000 f dC T  and  r dN C T , 
where  f dC T  and  r dC T  are the failure and replacement costs for a single 
component and are assumed equal to the respective costs in the previous section. 
Note that the maintenance cost for the system is equal to the sum of replacement 
costs for all components; however, the failure cost of the system is significantly 
higher than the sum of failure costs for all the components due to additional indirect 
consequences induced by loss of the system functionality (Baker et al. 2006). 

In the following, we investigate EVI  for perfect inspections that reveal the 
capacity of one or more of the components. Due to probabilistic interdependencies, 
this case of partial perfect information is distinctly different from that in the example 
for a single component. A given experimental outcome allows updating not only the 
failure probabilities of the inspected components, but also the failure probabilities of 
the non-inspected components due to the assumed correlation between the capacities. 

Figures 5 and 6 show EVI  versus logρ R  for 20dT yrs  and  1, 2k   inspected 
components for a parallel and a series system, respectively, both consisting of 3N   
components. Numerical evaluations have been performed with a MC approach with 
10,000 simulations. The right graphs of the same figures show the difference between 
EVI  and the inspection cost,  eC k , in monetary units, assuming that the inspection 
costs for one and two components are  1 1eC   and  2 2eC  , respectively. Figures 
5 and 6 indicate strong dependence of EVI  on the type of system and the degree of 
correlation between the component capacities. In the present example, EVI  
outweighs the inspection cost only for cases with high correlation; in these cases, 
inspection of one component is optimal for the parallel system, whereas inspection of 
two components is optimal for the series system.  



CONCLUSION AND PERSPECTIVES 

Value of Information (VoI) analysis provides a formal framework for assessing the 
benefit from inspections or monitoring of structural systems. VoI analysis can be used 
to identify optimal methods of inspection and/or monitoring including the option of 
undertaking none. In the present paper, a framework for VoI analysis was presented 
and elaborated through example applications on structural components and system 
models. Effects on the Expected Value of Information of the level of uncertainty in 
prior knowledge, the amount and quality of information, and the probabilistic 
dependencies between components of a system were investigated. The main 
limitation of VoI analysis is identified in the computational demand, which can be 
particularly high for large structural systems with interdependencies and cases with 
sequential decision making. 

Figure 5. Parallel system: EVI for perfect inspection of one or two components. 

Figure 6. Series system: EVI for perfect inspection of one or two components. 
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