
ETH Library

Can the Earth's harmonic
spectrum be derived directly from
the stochastic inversion of global
travel-time data?

Journal Article

Author(s):
Della Mora, Steve; Boschi, Lapo

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-b-000100133

Rights / license:
Creative Commons Attribution 3.0 Unported

Originally published in:
Annals of Geophysics 57(6), https://doi.org/10.4401/ag-6600

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000100133
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.4401/ag-6600
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


ANNALS OF GEOPHYSICS, 57, 6, 2014, S0655; doi:10.4401/ag-6600

S0655

Can the Earth’s harmonic spectrum be derived directly from the
stochastic inversion of global travel-time data?

Steve Della Mora1,2, Lapo Boschi3,4,*

1 Institute of  Geophysics, Department of  Earth Sciences, ETH Zürich, Switzerland
2 Zürich Insurance, Whiteley, UK
3 Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), Paris, France
4 CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), Paris, France

ABSTRACT

A set of  seismic observations which all sample the same structure in the
same way should have zero variance. This is naturally the case if  all
sources are in the same place, and the data are recorded by the same sta-
tion. If  sources and/or receivers are not in the same place, but close to
one another, variance will generally be nonzero, but small. Variance might
become large if  the sampled region of  the Earth contains heterogeneities
whose spatial wavelength is comparable to the distances between sources
and between receivers (and thus between the corresponding ray paths).
The travel-time variance of  a “bundle” of  seismic rays thus reflects the de-
gree of  complexity of  the sampled region of  the medium. We apply this
simple principle to real seismic databases, attempting to constrain the
spherical harmonic spectrum of  Earth’s structure without having to de-
rive a tomographic model. This results in a reduction of  the dimension-
ality of  the solution space, and hence of  computational costs. This
approach allows to constrain the statistical properties, rather than exact
geographic locations of  structural features; knowing the statistics of
Earth’s structure is most valuable for many fundamental geodynamic
questions. We follow an earlier study by Gudmundsson et al. [1990] to
find an approximate analytical relationship between averaged variance
and harmonic spectrum; this allows us to determine the latter from a
measurement of  the former via a linear least squares inversion. Our
analysis shows that the variance of  ray bundles associated with large ge-
ographic extent of  source/receiver bins is sensitive to low-degree spectral
power, and vice-versa for small bins/high harmonic degrees. The method
is accordingly ineffective at very low harmonic degrees, associated with an
inherently limited number of  source-receiver bins. We conduct a suite of
inversions of  both real and synthetic seismic data sets to evaluate the re-
solving power of  our algorithm, and attempt to identify a range of  har-
monic degrees where the method is robust. Our results indicate that the
resolution of  the Earth’s spectrum afforded by the method presented here
is inferior to that of  classical tomography.

1. Introduction
After two decades of  efforts to map the geographic

distribution of  mantle structure, the convergence be-
tween tomography and geodynamic models is only
partial and limited to the larger scale lengths, while the
small-scale components of  Earth’s structure are not
well constrained [e.g., Becker and Boschi 2002, Bull et
al. 2010]. Whereas tomography remains the most
widely employed tool to evaluate mantle structure,
some authors have also implemented alternative meth-
ods, focusing on the statistical properties of  mantle het-
erogeneity [e.g., Doornbos and Vlaar 1973, Haddon
and Cleary 1974, Cormier 1999, Margerin and Nolet
2003, Garcia et al. 2009].

With this study we explore a “stochastic” approach
alternative to tomography, introduced by Gudmunds-
son et al. [1990] (hereafter GDC90) and Davies et al.
[1992] to constrain the overall strength of  mantle het-
erogeneity as a function of  depth, and estimate the vari-
ance of  errors in teleseismic travel-time observations.
The procedure of  GDC90 allows to invert seismic ob-
servations to determine the depth-dependent spherical-
harmonic spectrum of  planetary structure, ignoring
the geographic distribution of  heterogeneity. This strat-
egy is in principle useful because: (i) it involves a re-
duction of  the dimensionality of  the solution space: if,
e.g., harmonic degrees up to 40 are considered, invert-
ing for the harmonic spectrum rather than the 3-D
structure of  the Earth amounts to a two-order-of-
magnitude reduction of  the number of  dimensions in
the solution space: this limits the non-uniqueness of  the
inverse problem, so that, particularly at high spherical
harmonic degrees, the spectrum could in principle be
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constrained more robustly than it is now. (ii) The sta-
tistical properties, rather than exact geographic loca-
tions of  structural features, are the piece of  information
that is most valuable for many fundamental geody-
namic questions: general geodynamic models can re-
produce only statistically the character of  Earth
structure. In this sense, the comparison of  harmonic
spectra obtained through modeling with those ob-
served by seismology should provide valuable infor-
mation on dynamic processes in the Earths interior
[e.g. Bunge et al. 1996, Mégnin et al. 1997, Van Heck
and Tackley 2008, Yoshida 2008, Foley and Becker 2009,
Dziewonski et al. 2010, Nakagawa et al. 2010, Davies et
al. 2012].

Importantly, our (and GDC90’s) formulation re-
quires that the stochastic process describing variations
in seismic velocities in the Earth be Gaussian (i.e., ve-
locity anomalies are normally distributed), isotropic
(the correlation between two points depends only on
the distance between them) over the entire mantle, and
stationary at any given depth (the variance is the same
for each point at that depth) (Section 3.1).

We apply our algorithm to two different global
Earth-mapping problems: that of  constraining global
lateral variations in surface-wave phase velocity from
teleseismic dispersion observations, and that of  finding
3-D variations in P-wave velocity from a large travel-
time database. Besides inverting real data, we evaluate
the method’s resolution with a suite of  synthetic tests,
aimed at identifying the range of  harmonic degrees af-
fected by the approximations required by the algorithm.

2. Stochastic formulation
A theory of  wave propagation gives a mathemati-

cal relationship between relative anomalies in the prop-
erties of  the Earth (e.g., the slowness p of  a seismic
phase) dp(r, i, {) (with r, i, { radius, colatitude and lon-
gitude, respectively) and anomalies dt in seismic travel-
time. Neglecting non-linear effects, this relationship has
the general form

where V denotes the volume of  the Earth, and the func-
tion K, dubbed sensitivity kernel (or partial derivative,
Fréchet derivative), depends on the source-station
geometry associated with the datum dt. Given phase
and frequency, there exists one kernel per source-sta-
tion couple. If  a 1-D Earth is used as reference, the form
of  K depends only on epicentral distance. When ray
theory is used to describe wave propagation, K is non-
zero on the ray path (traced in the reference model),
and zero everywhere else. If  some form of  finite-fre-

quency theory is used, K becomes more complicated
[e.g., Peter et al. 2007, 2009]. When the assumption of
linearity is dropped, e.g. if  we care about multiple-scat-
tering, then no function K can be defined, and equation
(1) ceases to be valid. Typically, equation (1) is used to
set up an inverse problem with dp(r, i, {) as the un-
known, and a set of  observations of  dt as data.

Equation (1) can be re-written for each observed
value of  dt, all of  them with their corresponding kernel
function K. dp is then expressed as a sum of  unknown
coefficients multiplied by some known “basis func-
tions”, e.g.

with Ylm denoting the real scalar spherical harmonic of
degree l and order m [e.g., Dahlen and Tromp 1998] and
Rn(r) some vertical basis function. The largest angular
degree L and the total number of  vertical functions N
are selected depending on the resolution that one ex-
pects to achieve. Replacing (2) into (1) once per obser-
vation, we end up with a mixed-determined inverse
problem with unknown coefficients Almn, while all
other quantities in (1) can be calculated.

The main idea of  GDC90 and Davies et al. [1992]
is to set up an inverse problem whose unknowns are not
the coefficients Almn, but the spectral power per unit area

This is achieved by first defining an approximately
equal-area grid spanning the Earth’s surface. All dt ob-
servations associated with sources/receivers lying in
the same pair of  grid cells (“bins”) are grouped in a
“summary ray” [e.g., Morelli and Dziewonski 1987] or
“ray bundle”. To avoid possible biases related to grid
geometry, this exercise is repeated four times, after as
many rotations of  the grid around the Earth’s axis. The
rotation angle coincides with the longitudinal extent of
one of  the equatorial equal-area grid cells, divided by
five, so that after four rotations the entire longitudinal
width of  the grid cells is sampled. For each combination
of  horizontal grid size H, range of  epicentral distance
(distance “bin”, identified by its mean value D) and
range of  source depth (depth bin, identified by its mean
value Z), a value of  the variance of  dt is calculated,
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(GDC90) where k is the ray bundle index, from a total
of  nS ray bundles (taking into account also the bundles
obtained after rotating the grid), nk is the number of  ac-
tual rays collected in the k-th ray bundle, and meank(dt)
is the mean of  all measurements of  dt within that bun-
dle. The factor nk in (4) is introduced so that v2 is more
strongly affected by summary rays formed by larger
numbers of  dt observations. For a given binning scheme
(i.e., given values of  H and Z), v2 is a function of  the
epicentral distance D. Through (4), the numerical val-
ues of  v2 can be determined directly from the obser-
vations dt. For surface waves, we limit the summation
over ray bundles only to those that include more than 10
rays, i.e. nk > 10. In addition, we consider only bins of
(H, D, Z) with nS > 10. For body waves, we only take into
account rays with travel-time |dt| < 4s and D < 100°,
bundles with nk > 4 and bins with nS > 4, in analogy
with GDC90.

v2 as defined by equation (4) can be thought of  as
the average, calculated over all ray bundles in the same (H,
D, Z) bin, of  the variance of  dt calculated within each
ray bundle. In practice, after introducing the operator

(sum extended over all rays within a bundle) and the
expected value operator

(sum over all bundles in the 126 same (H, D, Z) bin),
equation (4) takes the more compact form

GDC90’s theoretical treatment (pages 28 through
34) consists of  showing that expression (5) can also be
written as an integral function of  the harmonic spec-
trum (3) of  dp as a function of  depth. That way, a linear
inverse problem can be set up, whose unknowns are the
coefficients Qln themselves. In the following, we shall
first rewrite all the theory for body waves in a more ex-
tensive way than GDC90 did (Section 3) and then re-
formulate it for surface waves (Section 4).

3. Formulation of the inverse problem for a 3-D Earth
Following GDC90, we take a stochastic approach,

i.e. think of  each ray bundle (for given (H, D, Z)) as a
different realization of  the same experiment.

After some algebra, equation (5) can be written

The second term of  the latter expression can be
rewritten

where A is the area of  the grid cell of  radius H and dt(x)
is defined by equation (1). Inverting the order of  the op-
erators E and EC, and applying Fubini’s theorem [e.g.,
Thomas and Finney 1996], we find

Let us now consider the other term in equation (6),

Since 

and again based on Fubini’s theorem,

If  we define t = |x2 − x1|, then dt(x1) = lim
t→0

dt(x2),
and

Substituting (8) and (12) into (6), we find

In Section 3.1 we shall show that, in the assump-
tion of  Gaussian, stationary and isotropic slowness
perturbations dp, the expression E{dt(x1)dt(x2)}, which
appears in both terms at the right-hand side of  (13),
can be written in a relatively simple form, function
only of  the distance t = |x1 − x2|, and not of  x1 and
x2 themselves. In Section 3.2 we shall apply the ray-
theory approximation to further simplify the result-
ing expression.

In Sections 3.3 and 3.4 we use these results to
(partly) solve analytically the double integral ∫A∫A in
equation (13), leading to a relatively simple expression
for v2 in terms of  the harmonic spectrum of  the
Earth,
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Such equation constitutes the basis of  GDC90’s
and our formulation of  the inverse problem.

3.1. Relation between delay-time variance within ray
bundles, and the harmonic spectrum of  Earth’s structure

We next show how E{dt(x1)dt(x2)} can be written
in terms of  the Earth’s spectral coefficients Ql(r). Based
on equation (1),

with ri = (ri, ii, {i) (i = 1,2) a position 3-vector defined
within the Earth’s volume V, and dri the corresponding
infinitesimal volume element. The kernel function Ki
is the one associated with the position 2-vector xi (i =
1,2) defined over the surface A, or the portion of  Earth’s
surface swept by the ray bundle.

Equation (14) can be rewritten

Let us focus on the term E{dp(r1)dp(r2)} at the
right-hand side of  this expression. Using equation (2),
and denoting for simplicity 

We make at this point the important assumption,
consistent with GDC90, that the fluctuations of  dp are
described, at any radius r within the mantle, by a Gauss-
ian stochastic process, or in other words that, if  we
apply a shift Dr to the slowness perturbation map dp(r),
the correlation between dp(r) and dp(r + Dr) quickly
drops to zero with growing Dr. This property of  dp(r)
implies that E{dp(r1)dp(r2)} depends on the distance be-
tween r1 and r2, and possibly their average radius r (the
mantle’s vertical coherence might vary with r), and a
function f can be introduced such that

with t the angular horizontal distance between r1 and r2:

We next write f (r,|r1 − r2|,t) as a sum of  Legendre
polynomials Pl(cos t) [e.g., Dahlen and Tromp 1998]

with coefficients (2l + 1) cl (r, |r2 − r1|)/4r, and

The factor (2l + 1)/4r allows to simplify equation
(19) after application of  the addition theorem

[e.g., Dahlen and Tromp 1998, eq. B.74], resulting in the
expression

Let us equate the alternative expressions for
E{dp(r1)dp(r2)} found at the right-hand side of  equa-
tions (16) and (21):

It follows from (22) and the orthogonality of  Ylm that

and from (23) and, again, the orthogonality of  Ylm that

Following GDC90, we assume “some coherency
in the harmonic pattern with depth”, i.e. we assume
that a function c exists such that Alm(r1)Alm(r2) = A2

lm(r)
c(|r2 − r1|)/(2l + 1), and equation (24) takes the form

Note that we think of  Ql as the unknown of  an in-
verse problem, and make no distinction between Ql and
its expected value E{Ql}.

We next substitute the expression (25) for cl into
equation (19), and the resulting expression into (15), to
find

(26)
a direct, linear relation between variance of  dt within a
ray bundle, and the Earth’s harmonic spectrum Ql.
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3.2. Simplification by application of  ray theory, and the
assumption that ray paths forming a ray bundle are parallel

As noted at the beginning of  Section 2, in the ray-
theory approximation the velocity-kernel K(r) = 1 if  r
belongs to the ray path, and K(r) = 0 otherwise. De-
noting ray1 and ray2 the ray paths corresponding re-
spectively to the locations x1 and x2 within A, equation
(26) can be rewritten

Neglecting, at first, the effects of  spherical geom-
etry, GDC90 show in detail how the double integral
∫ray1

∫ray2
can be reduced to a single integral along one

reference ray. Their procedure requires the assump-
tion that “all the rays have the same ray parameter and
randomly distributed endpoints in the two grid cells
defining the summary ray. This implies that the rays
are approximately parallel and simply shifted hori-
zontally with respect to each other” [GDC90, p. 32].
Consider now a point r1 on ray1. Let us call P its pro-
jection on ray2, and d the distance between r1 and P
(i.e., by the definition, the minimum distance between
ray1 and ray2). Given a point r2 on ray2, said s2 the dis-
tance between P and r2 along ray2, the distance x be-
tween r1 and r2 equals

(see Figure 1). Then, for a function g(r1, r2) that depends
only on the distance x between r1 and r2,

The integral over x in equation (29) is particularly
easy if  g(x) = g0 exp(−x2/a2) for some a, implying

Said x1/2 the value of  d such that g(x1/2) = g0 exp
(x2

1/2/a2) = 1/2 g0 (i.e., x1/2 is the “half-width” of  the
Gaussian g), it can be shown that x1/2 = , and

This result can be applied to the double integral at
the right hand side of  equation (27), assuming that its
argument, a function of  the distance t between points
on ray1 and ray2, be close to Gaussian. Then

(32)
Notice how the function c (|r1 − r2|) disappears

between equation (26) and equation (32), once the as-
sumption on the correlation between dp on the whole
planet is assumed to be Gaussian. As already mentioned
by GDC90, equation (32) holds approximately for many
choices of  an autocorrelation function, provided it does
not have strong side lobes, i.e. the structure of  the
medium must not have a strong periodic component”.
Finally, in the assumption of  parallel rays, the horizon-
tal distance t has been systematically approximated with
the generic distance d between ray paths, assumed con-
stant along the ray paths themselves.

3.3. Writing the double surface integral as a single inte-
gral over distance

Recall the form of  both the double surface inte-
grals at the right-hand side of  equation (13), i.e.

In Sections 3.1 and 3.2 we have rewritten the inte-
grand E{dt(x1)dt(x2)}, expressing it in terms of  the
Earth’s harmonic spectrum Ql(r) and reducing it to the
simple form (32), function only of  the constant distance
between approximately parallel ray paths. Before using
this result to set up an inverse problem, with Ql(r) as
unknown and v2 as datum, we reduce analytically the
double surface integral∫A∫A in (13) to a single, one-di-
mensional integral.

3.3.1. Cartesian case
Consider the integral
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Figure 1. Sketch of  variables s2, x and d in equation (28). t is the
horizontal distance between (i1, z1) and (i2, z2) introduced in equa-
tion (26).
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with A a circular surface of  radius H, x1 and x2 Carte-
sian 2-vectors spanning A, and dx1, dx2 the correspon-
ding infinitesimal surface elements. Now, let the function
f (x1, x2) depend only on the distance t between the
points x1 and x2. We shall later make use of  this prop-
erty of  f to simplify the double surface integral in equa-
tion (33). First, replace ∫Adx1 with an integral over the
polar coordinates s (length) and | (angle), defined with
respect to the centre of  A. It follows that

For each location (s, |), we must integrate again
over all points x2 within A. Let us replace the Cartesian
coordinates x2 with polar coordinates t (length) and ]
(angle), defined with respect to the location x1, or (s, |).
By definition, t then coincides with the distance be-
tween x1 and x2. As we accordingly rewrite the integral
∫Adx2 in (34), we must specify the limits of  integration
in t and ]. t ranges between 0 and s + H. For each t,
the interval of  values of  ] for which (t, ]) falls within
A must be determined (and integrated over). If  s + t < H,
that is t < H − s, such interval is (0, 2r). If  t > H − s, the
length z of  the arc of  ] to be integrated upon can be
determined using the cosine rule,

(see Figure 2 for a visual explanation of  s, t and H).
Equation (34) now becomes

where we have made use of  the fact that f depends only
on t, so the actual values taken by ] do not matter:
only the length of  the arc it spans does. For the same
reason we can write f (s, |, t, ]) = f (t), and

To further simplify the expression for I, it is con-
venient to change the order of  integration over s and
t. The first term at the right hand side of  (37)

We express the second term at the right hand side
of  (37) as the sum of  two terms: one denoted I2, con-
taining an integral over t between H − s and H, the
other denoted I3, containing an integral over t between
H and H + s. Changing the order of  integration, we find

(39)

(40)

If  one now combines I = I1 + I2 + I3, equation (5)
of  GDC90 is reproduced. GDC90 further simplify the
form of  I, carrying out analytically the integrations over
s. This is straightforward for the s-integral in I1, but
more complicated for I2 and I3. Those are solved via the
formula

with z = x4 − b2x2 + 2ax2 + a2, valid for x > 0 and b > 0,
leading to the final result of  GDC90,
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Figure 2. Sketch of  variables s, t and H in equation (35). A is the
surface where the integrals in equation (33) are done, C is the cen-
tre of  A and H and s are the same as in equation (35).
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3.3.2. Spherical case
To derive equation (42) we have treated the sur-

face of  the Earth, and of  the area A spanned by a ray
bundle, as flat. When their curvature is taken into ac-
count, equation (42) is replaced by equation (27) of
GDC90

where

and a, b1, b2 are defined

and

3.4. Relation between variance v2, and the harmonic
spectrum of  Earth’s structure

We have shown in Section 3.1 that E{dt(x1)dt(x2)}
is a function of  the distance t = |x2 − x1| between
the two rays, assuming a parallel-ray approximation
(i.e. the horizontal distance between two rays of  the
same ray bundle is approximately the same as the
generic distance between the rays along their path).
equations (33)-(47) show that, since E[dt(x1)dt(x2)] =
f (t), the double integral over surface is reduced to
only one integral over distance by means of  a weight
function w(H, t), for both the cases of  flat and spheri-
cal Earth. Replacing f (t) with E[dt(x1)dt(x2)] in equa-
tion (43),

After substituting the term E[dt(x1)dt(x2)] with its
explicit expression in (32), equation (48) becomes

Let us now consider the first term at the right-hand
side of  equation (13). Using equation (32) with t = 0,
we find

where we have used the fact that Pl(1) = 1, independent
of  l. Substituting (49) and (50) into (13),

(51)

where v2(H, D, Z) can be evaluated from the data, and
at the right-hand side everything but Ql(r) is known.
equation (51) constitutes the basis of  the inverse prob-
lem solved by GDC90.

4. Formulation of the inverse problem in a 2-D de-
scription of surface-wave propagation

4.1. Projection to two dimensions
In a JWKB ray-theory description of  surface-wave

propagation [e.g., Ekström et al. 1997],

where dv (i, {, ~) denotes lateral heterogeneities in sur-
face-wave phase velocity v at angular frequency ~, and
K is the corresponding sensitivity kernel. dv (i, {, ~) can
naturally be rewritten as a linear combination of  real
spherical harmonics

with constant Alm (no r-dependence). Here and in the
following we shall neglect the dependence of  dv, v, K
and dt on ~; in practice, we shall always consider dif-
ferent frequencies separately.

We assume, as in the 3-D case, that the variations
of  dv (i, z) be Gaussian, stationary and isotropic. Equa-
tions (3)-(13) remain then valid in the same form as
above, provided that the radial basis-function index n,
and the bin vertical extent Z, which are now meaning-
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less, be removed. In a spherical reference frame, equa-
tion (15) can be rewritten

In analogy with Section 4.2, we rewrite E{dv(i1,{1)
dv(i2,{2)} by either replacing dv1,2 with their harmonic
expansions,

(which is the 2-D counterpart of  equation (16)), or by
invoking the statistical properties of  dv (Gaussian, sta-
tionary, isotropic), which allow us to repeat steps (17)
through (21) (after dropping the r-dependence of  f ), re-
sulting in

with cl constant (no r-dependence).
After equating expressions (55) and (56) and re-

peating steps (23) through (25), we find the 2-D version
of  equation (26),

with t denoting the angular distance between x1 and x2.
In the ray-theory approximation,

If, in analogy with Section 3.2, rays are treated as
parallel, then a distance d between the two rays can be
defined, and

(see Figure 3 for a visual explanation of  t, s2 and d);
equation (58) then becomes

The t-integral in equation (60) is evaluated be-
tween d and r, because we shall only consider first-orbit
surface-wave observations, hence t < r. Since Ql does
not depend on t, equation (60) is rewritten

(61)
The t-dependent portion of  equation (61) forms a

convergent integral that can be solved analytically (Ap-
pendix A). We can swap summation and integration in
(61), and define

We show in Appendix A how to calculate cl(d).
Substituting equation (62) into (61) and keeping in
mind that, in the parallel-ray approximation, t = d, we
are left with the compact expression

4.2. Relation between variance v2 (H, D) and the har-
monic spectrum of  surface-wave phase velocity heterogeneity

As noted in Section 4.1, equation (13) is valid, in
the same form, in both the body-wave and surface-
wave cases. Making use of  equations (61)-(62), the sec-
ond term at the right-hand side of  (13) can be
rewritten

(64)

According to equation (12), the first term at the
right-hand side of  (13) coincides with the limit of  the
second as t → 0. Let us focus first on the integrand at
the right-hand side of  (13):

E dy x1Q Vdy x2Q VE H = cl
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Figure 3. Sketch of  variables s2, t and d in equation (59).
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Details about the calculation of  lim
t→0

cl (t) are
shown in Appendix A. Substituting (107) into (65), and
the resulting expression, together with (64), into (13),
we are left with

The results of  Section 3.3 apply, and the double in-
tegral over A can be rewritten as a single integral over
distance, by means of  a weight function w(H, t), so that
equation (66) becomes

(67)
Since cl (t) does not depend on s,

(68)

which constitutes the basis of  the surface-wave inverse
problem that we shall solve in the following.

5. Solution of the inverse problem
We first address the 2-D inverse problem of  Sec-

tion 4, which is easier to implement, and later extend
our formulation to the more complex 3-D problem of
Section 3.

5.1. The 2-D problem: surface-wave dispersion and
phase-velocity spectrum

5.1.1. Discretization
We approximate the integral in equation (68) with

a discrete summation, to find

with

We next discretize values of  cell size H and angu-
lar distance D, and equation (69) takes the form

(71)

While the discretization of  D is straightforward
(we simply subdivide the domain D = 0° < D < 180°
into 2° intervals), that of  H is more problematic: we
want each of  the four sectors of  the Earth’s surface de-
fined by the equator and the Greenwich meridian to
contain an integer number of  grid squares. This results
in the constraint

(72)

where mod[a,b] is the remainder of  the division of  a by
b, with a ∈ N and b ∈ N, and int(x), with x ∈ N, is the
largest integer not greater than x. In practice, we em-
ploy 39 indexed values of  H in the range 3° ≤ H ≤ 45°,
ordered by increasing value. Values are closely spaced
(≤ 1°) up to H = 15°, after which only H = 22.5°, 30°,
45° is possible. Values of  D are regularly discretized
from D = 1° to D = 179° with a sampling of  2°.

A one-to-one correspondence is established between
couples (i, j) and the values of  a single index n, and

(73)

which, after denoting

(74)

takes the simpler form

or, in a tensorial notation,

D = F · Q (76)

where D and F are the tensors defined by equations (74),
(75), while Q is defined in Section 3.1. From equations
(105) and (107), we notice that Fn0 = 0 for all n. We then
have no resolution at the harmonic degree l = 0, which
will not be considered in all the following inversions.

It is common practice in the solution of  linear prob-
lems to weight the input data vector D with a covari-
ance data matrix C [e.g., Snedecor and Cochran 1980].
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Assuming the values Dn to be uncorrelated, the covari-
ance matrix is diagonal, with diagonal entries coinciding
with the weighted variance of  the values of  as de-
fined in (4), that is [e.g., Bevington and Robinson 1992]

Equation (76) then becomes

(78)

which can be solved in least-squares sense to find the
spectrum Ql. The tensor C

1–2 is defined so that C
1–2 · C

1–2 =
C. Since C is diagonal, so are C

1–2 and C−1–2, with diagonal
entries C

1–2nn and C−1–2   nn , respectively.

5.1.2. Least-squares solution and norm damping
We systematically discretize (H, D) so that N > L,

where N is the largest possible value of  n. Equation (78)
is then an overdetermined problem which admits the
least-squares solution

[e.g., Trefethen and Bau 1997], where the superscript T
denotes a transpose matrix, and we have made use of
the fact that C−1–2 is diagonal and so C−1 = C−1–2 · C−1–2.

Because seismic data are always polluted by meas-
urement errors and their coverage is not uniform, the
problem is ill-conditioned, i.e. the solution is not reli-
able unless equation (79) is regularized [e.g., Menke
1989]. As a regularization constraint, we impose that
the norm of  the solution be minimum. The least-
squares formula (79) becomes

(80)

with m a regularization or “damping” parameter to be
selected.

We solve equation (80) by means of  Cholesky fac-
torization of  FT · C−1 · F [e.g., Press et al. 2001] (from now
on LS) and of  the non-negative least-squares algorithm
(from now on NNLS) of  Lawson and Hanson [1974].
The solution Q, a spherical harmonic spectrum, is by
definition positive, and NNLS guarantees that this con-
straint is satisfied. Cholesky factorization, on the other
hand, has the advantage of  being an exact method.

We apply the L-curve criterion [Hansen 1992] to
select an adequate value of  m: after defining the solu-

tion norm

(where the superscript m identifies the solution found
with the corresponding value of  the damping parame-
ter), we divide it by the norm of  the undamped solu-
tion o(0), thus defining the normalized norm

(82)

For each m, we also define the solution misfit

and we can build the L-curve plotting the couples (o~(m),
g(m)). Our preferred value of  m is the one correspon-
ding to maximum curvature of  the L-curve [Hansen
and O’Leary 1993].

5.2. The 3-D problem: body-wave travel times and the
depth-dependent spectrum of  the mantle

We next discretize equation (51) to solve the orig-
inal 3-D problem of  GDC90. We first transform the ray
integral over s to one over radius and find

(84)

with Rbot the radius at the bottoming point of  the ray
and R⊕ the Earth’s radius. Then, if  we choose a 1-D ref-
erence model and only consider a set of  discrete values
of  (D, Z) (index i) and H (index j), it follows from equa-
tion (84) that

where Ki is the number of  layers crossed by the ray as-
sociated to the ith bin and

the length crossed by the ray through the kth layer. We
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establish a one-to-one correspondence between couples
(i, j) and (k, l) and the values of  two single indexes p and
q respectively, so that in tensor notation equation (85)
reads

D = M · X,                               (86)
with

Since P0(x) = 1 for any value of  x, it follows that
Mpq = 0 for l = 0, and, again, we cannot resolve and do
not invert for the degree l = 0 spectral coefficient.

In analogy with Section 5.1.2, we solve equation
(86) in a norm-damped least-squares sense, i.e.

(88)

which we implement via NNLS, choosing m according
to the L-curve criterion. As opposed to the treatment
of  Section 5.1.2 above, and for consistency with GDC90,
we do not weight the data through the covariance ma-
trix in this case.

6. Application to global seismic databases
After calculating v2 based on a set of  surface-wave

phase delays or body-wave travel-times, equations (80)
and (88), respectively, provide the corresponding least-
squares solution for the surface-wave phase velocity or
body-wave velocity spectrum. We implement (80) and
(88) for two real global databases and compare the re-
sulting harmonic spectra with those inferred, from the
same data, based on tomography. Body- and surface-
wave tomography maps are derived with the algorithm
of  Boschi and Dziewonski [1999]. In this ray-theory/in-
finite-frequency approach, resolution is limited by the
wavelength of  inverted seismic and waves; the degree-
40 spherical harmonic parameterization we utilize is
within such limit, so that resolution is entirely deter-
mined by data “coverage” i.e. how well each H-D-Z bin
is sampled by the data.

6.1. Surface-wave phase-velocity spectrum inversions
We apply our spectral inversion method to the fun-

damental-mode surface-wave dispersion database of  Ek-
ström et al. [1997], focusing for brevity on phase delays
of  Rayleigh waves at a period of  50 s (~65,000 observa-
tions) and of  100 s Love waves (~37,000 observations).

Figures 4a and 5a show the tomographic phase-ve-

locity maps which we obtained from the same data,
using a least-squares, ray-theory algorithm [e.g., Boschi
and Dziewonski 1999], a spherical-harmonic parame-
terization up to degree 40, and the L-curve criterion to
select regularization weight (roughness damping only).
The wavelength of  the degree-40 zonal harmonic is
~1000 km, well above that of  the longest-period waves
considered here (100 s surface waves traveling at ~4
km/s, hence wavelength ~400 km) and thus the physi-
cal resolution limit of  imaging. Figures 4a and 5a are in
very good agreement with earlier results obtained from
the same database, and so are the corresponding power
spectra shown in Figures 4b and 5b; see in particular
the maxima at degrees 2 and 5, corresponding to the
ocean-continent signature, which, in this period range,
e.g. Carannante and Boschi [2005] have found to be a
robust feature, independent of  the technique used to
measure surface-wave phase dispersion.

In Figures 4b and 5b we compare the spectra found
from tomography to those derived through our tech-
nique. The latter show a single maximum at degree 3,
and generally more power than tomography at all har-
monic degrees up to at least 10. The noise at high (>30)
harmonic degrees is an effect of  random noise in the
data, as we have verified in synthetic tests on noisy data
not shown here for brevity. The seemingly robust dom-
inance of  degrees 2 and 5 inferred from tomography is
not found by the spectral inversion. The misfit is, nev-
ertheless, low: 0.151 for the Rayleigh-, and 0.109 for the
Love-wave inversion. The inversions of  Figures 4b and
5b are regularized according to the L-curve criterion,
but we have verified that changes in the weight of  reg-
ularization do not particularly improve similarity to to-
mography results.

6.2. Compressional-velocity spectrum inversions
We implement equation (88) to determine the

depth-dependent spectrum of  mantle P-wave velocity
from the data set of  direct P-wave travel times of  Anto-
lik et al. [2001] and Antolik et al. [2003]; these are essen-
tially International Seismological Centre P travel-time
picks first selected by Engdahl et al. [1998] and then cor-
rected by Antolik et al. [2003] for crustal heterogeneity
(using the reference crustal model CRUST5.1 of
Mooney et al. [1998]) after source relocation. As we are
still focusing on the long-wavelength component of
Earth’s structure, data are collected in ~626,000 sum-
mary ray paths (2° bins) as described by Boschi and
Dziewonski [1999]. The “datum” v2, derived from P
travel-times, is discretized as in the surface-wave case,
and additionally binned according to source-depth; we
select the following Z-bins: 0-30 km, 30-60 km, 60-100
km, 100-200 km, 200-450 km and 450-600 km, which
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coincide with those of  GDC90. Values Dp of  v2 are
weighted according to the corresponding value of  Hp,
so that the inversion is biased towards the low-degree
spectrum, more difficult to constrain (repeating the in-
version without this weighting results in a more un-
stable solution). Since Antolik et al. [2003] provides
summary rays with 2° bins, no smaller value of  Hp are
used in the calculation of  v2. This does not pose a prob-
lem since a lateral resolution of  ~2° roughly corresponds
to harmonic degree l = 100, and we are concerned
throughout this study with degrees l ≤ 40.

In analogy with Section 6.1, we invert the exact
same database with the voxel-based mantle tomography
algorithm of  Boschi and Dziewonski [1999]; at each
depth, we conduct a least-squares fit to find the degree-
40 spherical-harmonic expansion that best approximates
our voxel model. In Figure 6 we compare the tomogra-
phy-based harmonic spectrum as a function of  depth to
that obtained from our spectral inversions. Differences
between the two spectra are qualitatively similar to those
between the surface-wave phase-velocity spectra of  Sec-

tion 6.1: at all mantle depths except for a few hundred
kilometers below the transition zone, the tomography
spectrum has a clear, well known [e.g., Becker and
Boschi 2002, Dziewonski et al. 2010] maximum at degree
2; the “stochastic” spectrum is much broader, especially
at shallower depths, with the maximum centred at de-
gree 3. The very broad spectrum at shallow depths was
also observed by GDC90 (their Figure 17). Both tomo-
graphic and stochastic spectra show a change of  charac-
ter in the shallowest portion of  the lower mantle, with
the tomography maximum shifting from degree 2 to 1,
and the stochastic one shifting from 2 to 5-6. Degrees 2
and 3 are again dominant at the bottom of  the lower
mantle. Again, the misfit is very low, g = 0.141.

7. Resolution analysis
Our method’s failure to reproduce well established

results of  tomography is disappointing, but, as tomog-
raphy is not error-free, it is not per se a proof  of  the
method’s ineffectiveness. We next evaluate directly the
sensitivity and resolving power of  the spectral method.

DELLA MORA AND BOSCHI
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Figure 4. (a) Tomography map of  50 s fundamental-mode Rayleigh-wave phase-velocity, with superimposed sources (red squares) and sta-
tions (green circles) of  the inverted database. (b) Result of  spectral inversion (blue curve), compared with the spectrum inferred from the
tomography map (black).

Figure 5. Same as Figure 4, but for the 100 s fundamental-mode Love-wave data set.
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7.1. Surface-wave phase velocity spectrum resolution

7.1.1. Sensitivity of  v2 to Ql
Equation (74) describes the relationship between

the unknown spectral coefficients Ql, and the value of
v2 associated with a (H, D) bin. On the basis of  (74), let
us introduce a sensitivity function

(89)

so that the actual kernel relating v2 at Hn with the spec-
tral coefficient Ql coincides with the product DnKnl.

We show in Figure 7 sensitivity Knl as a function of
the size Hn of  geographic bins, and the harmonic de-
gree l of  the unknown spectral coefficients to be in-
verted for. Because in equation (74) the epicentral
distance Dn acts as a simple scaling factor, Knl alone fully
describes the sensitivity of  v2 to Ql. As a general rule,
we see from Figure 7 that different harmonic degrees
are constrained by values of  v2 associated to systemat-
ically different geographic binning, i.e. large Hn are
needed to constrain the low-degree spectrum, while
smaller Hn serves to determine the higher-degree por-
tion of  the spectrum. It is immediately evident from
Figure 7 that the averaged variance v2 has little (but
non-zero) sensitivity to harmonic degrees 1 and 2: it ap-
pears that the largest bin sizes employed here, 30° and
45°, are insufficient to provide sensitivity at degrees 1
and 2 comparable to the sensitivity of  v2 at degrees 3
and higher. At relatively high harmonic degrees, values
of  v2 associated to a broad range of  Hn values are sen-

sitive to the same spectral coefficient, so that fictitious
coupling and trade-off  between different harmonic de-
grees can be expected.

7.1.2. Resolution matrix
The resolution matrix associated with the inverse

problem defined by equation (80) is

(90)

[e.g., Menke 1989]. R is a measure of  how well each
model parameter (i.e. harmonic degree) is resolved in
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Figure 6. Spherical-harmonic spectrum as a function of  depth (a) from global tomography applied to a large P-wave database, and (b) from
the stochastic inversion of  the exact same data. Both spectra are independently normalized by the maximum power at each depth.

Figure 7. Sensitivity Knl defined by equation (89), as a function of
harmonic degree l and bin size H.



our inversions: the closer R is to the identity matrix, the
higher theresolution. Off-diagonal entries indicate
“smearing” between the corresponding spectral coeffi-
cients. Diagonal values smaller than unit indicate that
the spectral power associated with the corresponding
harmonic degree might be underestimated [e.g., Boschi
2003]. R depends on data coverage, but not on the data
themselves. The value of  the damping parameter m, on
the other hand, has to be selected through the L-curve
criterion as described in Section 5.1.2, and consequently
depends on (the signal-to-noise ratio of ) the actual data
that are inverted.

In Figure 8 we show R associated with the
source/station list for the 50 s fundamental mode
Rayleigh-wave data set of  Ekström et al. [1997], in-
verted in Section 6.1. We implement equation (90) via
Cholesky factorization of  FT · C−1 · F, using the value
of  m selected according to the L-curve criterion when
applied to the inversion of  real, 50 s Rayleigh-wave data
(Section 6.1). R is far from the identity matrix, with val-
ues on the diagonal smaller than unit, suggesting a pos-
sible loss of  amplitude. Figure 8 suggests that resolution
at degree 3, where the diagonal entry of  R is maximal,
is higher than at degrees 1 and 2, confirming the poor
sensitivity to low degrees seen in Section 7.1.1. Rela-
tively large non-diagonal values, which we find in par-
ticular at high degree, indicate that neighbouring
spectral coefficients will fictitiously map onto one an-
other (“smearing”), again as anticipated in Section 7.1.1.

7.1.3. Spectral reconstruction of  a random mono-
chromatic model

In this and the next sections, we shall describe a
suite of  synthetic tests aimed at further quantifying the
resolving power (or lack thereof ) of  our algorithm. After

defining a theoretical, “input” seismic velocity model, we
calculate surface-wave travel-time delays dt in the ray
theory approximation, i.e., we implement equation (52)
integrating along the shortest great circle connecting
source and receiver (no ray tracing). We then substitute
the resulting synthetics into equation (4) to find the syn-
thetic v2(H, D), and solve, again, the inverse problem
(80). After the inversion, we compare the spectrum of
the “input” model used to generate the synthetics with
the one reconstructed by the inversion: their similarity
is a measure of  our algorithm’s resolving power.

It should be noted that a synthetic v2(H, D) could
alternatively be calculated by substituting the input
spectrum Ql directly into (4): we verified that the two
procedure yield consistent results (correlation r = 0.727
between the two resulting synthetic v2(H, D)).

Our first input model is constrained to have a sim-
ple monochromatic spectrum Ql = dl,9: l,m coefficients
are all 0 if  l ≠ 9, while at l = 9 they are generated ran-
domly. Based on the resulting model (Figure 9a), we cal-
culate ~65,000 synthetic data (data set A), from the
source/receiver distribution of  50 s Rayleigh-wave
phase delays collected by Ekström et al. [1997] (Figure
9a). We do not add any noise to the data. We next com-
pute the corresponding averaged v2, NNLS-invert it
with our “spectral” algorithm and compare input and
output spectra in Figure 9b. The maximum at degree 9
is roughly reconstructed, but smeared over a broad range
of  degrees, and with a drastic (order-of-magnitude) loss
of  amplitude. The performance of  NNLS being so poor,
we also look at LS-inversion (Section 5.1.2) results: loss-
of-amplitude is then not so severe, but strong aliasing
occurs approximately between the dominant degree of
the input model (l ~ 9) and its integer multiples.

We also apply the surface-wave tomography algo-
rithm of  Boschi and Dziewonski [1999], using a degree-
40 spherical-harmonic parameterization as in Section
6.1, to invert data set A, and show in Figure 9b the re-
sulting harmonic spectrum. We find that tomography
also significantly underestimates spectral power, but
perfectly reconstructs the monochromatic nature of
the input model. The values of  misfit g(m) associated
with the spectral inversions in Figure 9b are g(m) =
0.458 (LS) and g(m) = 0.902 (NNLS); the misfit is large:
compare, e.g., with the value of  0:072 found from the
tomographic inversion of  the same data with degree-
40 harmonic parameterization.

7.1.4. Data coverage and spectral resolution
To evaluate whether the lack of  resolution antici-

pated in Sections 7.1.1 and 7.1.2, and confirmed by the
synthetic test of  Section 7.1.3, can be explained as an
effect of  inadequate (poor/nonuniform) data coverage,

DELLA MORA AND BOSCHI

14

Figure 8. Resolution matrix from equation (90) for the LS solution
for a dataset of  Rayleigh waves at 50 s from Ekström et al. [1997].
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we generate 3,000,000 travel-time delays (data set B) as-
sociated with uniformly distributed sources and sta-
tions: this is a tremendous improvement in data
coverage with respect to the 65,000, non-uniformly dis-
tributed observations of  Section 7.1.3. In Figure 9b we
compare the results of  the subsequent inversions with
the results of  inverting the smaller data set A. We find
the larger and more uniform coverage of  data set B re-
sults in a better reconstruction of  the maximum of  the
input spectrum, at l roughly between 8 and 10; in com-
parison with the results of  tomography, however, reso-
lution remains extremely poor.

We conclude that inadequacy of  data coverage
alone cannot explain the poor performance of  the spec-
tral inversion approach.

7.1.5. Realistic phase-velocity spectrum
We first derive a tomographic map of  150 s fun-

damental-mode Love-wave phase velocity (Figure 10a),

this time inverting ~16,000 dispersion observations
from the database of  Trampert andWoodhouse [1996].
The tomography algorithm is the same as in Section
6.1, with sphericalharmonic parameterization up to de-
gree 40, regularized through simple norm-damping and
according to the L-curve criterion.

From the phase-velocity map of  Figure 10a we cal-
culate a set of  synthetic phase delays, associated with
the same source/receiver distribution of  the original,
real data set. We then compute the corresponding
v2(H,D) and invert it with our algorithm. We compare
in Figure 10b the resulting output spectrum with that
of  the input (tomography) model. The two peaks at l =
2 and l = 5 are merged into a single maximum of  the
output spectrum at l = 3: this reminds one of  the dis-
crepancy between stochastic and tomography spectra
obtained from real data in Sections 6.1 and 6.2. As in
Section 7.1.3 the misfit is high (g(m) = 0.540 against
~0.05 achieved by tomography).

EARTH’S SPECTRUM BY STOCHASTIC INVERSION

Figure 9. (a) Monochromatic random input model with Ql = dl,9. Red squares represent sources and green circles represent stations. (b)
Spectra of  the input (black curve) model of  panel ‘a’, and of  the output models resulting from LS (red) and NNLS (blue) inversions of  syn-
thetic data sets A (solid) and B (dotted) generated from the model of  panel ‘a’. Note the different scales for input and output models.

Figure 10. (a) Tomography model of  150 s fundamental-mode Love-wave phase velocity, with superimposed source (red squares) and sta-
tion (green circles) locations. (b) input (from the model of  panel ‘a’) and output harmonic spectra, associated with the synthetic test de-
scribed in Section 7.1.5.



In summary, application of  our algorithm to a re-
alistic, though noise-free, data set confirms the nega-
tive results of  Sections 7.1.3 and 7.1.3.

7.2. Body-wave velocity spectrum resolution

7.2.1. Sensitivity of  v2 to Ql
Equation (29) of  GDC90 describes the sensitivity

K3D
nl of  v2, for a given grid-size H, to the spectral coeffi-

cient Ql of  mantle heterogeneity, i.e.

(91)

The kernel K3D
nl is the 3-D counterpart of  Knl as de-

fined by equation (89) above. Discretizing as explained
in Section 5.1.1,

(92)

We plot K3D
nl in Figure 11 as a function of  bin size

Hn and harmonic degree l. Figure 11 indicates that the
P-wave database is, like the surface-wave one, only mar-
ginally sensitive to degree-1 and -2 structure, inde-
pendent of  depth in the mantle. Compared to the
surface-wave case (Figure 7), values of  v2 associated
with large Hn are sensitive to structure at relatively large
harmonic degrees (e.g. for Hn = 30°, K3D

nl at l = 5 is
about as large as K3D

nl at l = 40. Because sensitivity of
v2 is high over a large range of  harmonic degree,
alias/smearing can be expected in spectral inversions.
Note that Figure 11, including the high sensitivity of  v2

at large H to high degree Ql, is in good qualitative agree-
ment with Figure 10b of  GDC90.

7.2.2. Resolution matrix
The resolution matrix associated with equation

(88) is

(93)

Again, R does not depend directly on the data
(though it does depend on their geographical coverage).
It depends on the data indirectly through m, which is se-
lected according to the L-curve criterion (Section 5.1.2),
and is affected by the signal-to-noise ratio of  the actual
observations (larger noise requires stronger damping).
We parameterize the statistics of  mantle structure in
terms of  10 harmonic spectra, 1 ≤ l ≤ 40, each associ-
ated to one of  10 equal-thickness layers. The matrix is
numbered so that the first 40 indexes are associated to
the 40 values of  Ql (l = 1, ..., 40) at the top layer the fol-
lowing 40 to the second shallowest layer and so on down
to the bottom of  the mantle. This results in R being ap-
proximately block-diagonal, with as many blocks as
there are layers in our vertical parameterization. Each
block on the diagonal corresponds to resolution of  an
individual layer, and smearing within the layer. Off-di-
agonal blocks correspond to smearing between the
same or different harmonic degrees in different layers.

We show in Figure 12a R calculated from the
~626,000 source-station couples of  Antolik et al. [2003]
(Section 6.2). Entries within the diagonal blocks are
systematically much larger than throughout the rest of
the matrix. This indicates that the coupling between
spectral coefficients at different degrees and depths is
limited, and “vertical” resolution acceptable. If  lateral
resolution were high, i.e. the coupling between differ-
ent harmonic were low, diagonal blocks would be
closer to diagonal, in analogy with Figure 8. This is not
the case: many off-diagonal entries within each diago-
nal block are comparable to diagonal ones, indicating
that Ql is poorly resolved: smearing/fictitious coupling
between harmonic coefficients within a layer occurs
(Figure 12b). Resolution is poor independent of  l, i.e.
unlike tomography, the spectral method does not a bet-
ter job of  resolving low harmonic degrees than it does
with high degrees. As anticipated, it is inherently diffi-
cult to project information on very-low-degree mantle
structure into the function v2.

7.2.3. Spectral reconstruction of  a random mono-
chromatic model

We employ a vertically homogeneous input model,
with a pattern of  P-velocity variations coincident, at all
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Figure 11. Same as Figure 7, but with the 3-D sensitivity function of
equation (92).
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depths, with the model of  Section 7.1.3. We generate
~626,000 synthetic P travel-time delays making use,
again, of  the source-station couples of  Antolik et al.
[2003] and adopting a linear relation between model
anomalies and data [e.g., Boschi and Dziewonski 1999].
We calculate v2(H, D, Z) via equation (4), with M now
defined by equation (87). Consistently with Section
7.1.3, we verify that this is approximately equivalent to
substituting Q in equation (86) with the input-model
spectrum.

The results of  least-squares solving the inverse
problem (88) are shown in Figure 13, and are charac-
terized by the same resolution problems encountered
in the 2-D case. The impulsive nature of  the spectrum
is not reproduced at any depth. The smearing around
the main peak is comparable with that of  Figure 9, con-
firming that the spectral method cannot effectively dis-
criminate between individual harmonic degrees. The
achieved misfit g(m) = 0.267 is good, which, together
with the strong discrepancy between input and output
spectra, indicates that the sensitivity of  v2(H, D, Z) to
the Earth’s spectrum is severely limited.

8. Discussion and conclusions
With this study we attempted to devise an algo-

rithm to estimate the complexity of  planetary struc-
ture, defined in a spherical harmonic parameterization,
directly from a global set of  seismic observations. Our
procedure relies on the assumption that Earth hetero-
geneity be adequately described as a Gaussian, station-
ary and isotropic stochastic process. It is based on the

idea that, if  one subdivides the Earth’s volume into a
set of  regions of  a given size (each interpreted as an in-
dependent realization of  the same experiment), the
mean variance of  dp within regions is related to the
spectral power of  spherical harmonics of  wavelength
comparable to the size of  the region. The number of
possible independent subvolumes into which the Earth
can be subdivided decreases with the harmonic degree,

EARTH’S SPECTRUM BY STOCHASTIC INVERSION

Figure 12. (a) 3-D, P-wave resolution matrix defined in Section 7.2.2, computed based on the database of  Antolik et al. [2003]. (b) The block
framed in black in panel ‘a’, corresponding to the third layer from the top.

Figure 13. Depth-dependent spectrum resulting from the spectral
inversion of  our synthetic P arrival-time data set. The data set in-
cludes ~626,000 synthetic observations based on a vertically ho-
mogeneous input model, with the pattern of  P-velocity variations
coincident with the random degree-9 model of  Section 7.1.3. In case
of  perfect resolution, Ql should be zero at all harmonic degrees ex-
cept for l = 9, at all depths.



so that the low-degree spectrum is inherently under-
sampled and presumably poorly resolved. This problem
has an analogous in the estimation of  cosmic proper-
ties at scales close to that of  the observable universe: in
cosmology, there is a large uncertainty on these quan-
tities, based on the idea that it is possible to have many
independent observations (and therefore perform a sta-
tistical analysis on them) only for small-scale properties
of  the observable universe, whereas this does not hold
for structures that are comparable with its size [e.g.,
Somerville et al. 2004]. There is nevertheless no a-priori
reason to exclude that the intermediate- and higher-de-
gree spectrum of  the mantle can be constrained by
very large, recent seismic databases.

While no measure and/or inversion method can
provide a ground-truth observation of  the Earth’s spec-
trum, some of  its properties are by now clearly well
constrained and generally accepted. In the uppermost
mantle, the robustness of  the Earth’s spectrum up to
degree ~12 is argued for by, e.g., Carannante and
Boschi [2005], who found highly correlated results from
completely independent databases; for relatively short-
period (~30 s) surface waves, for example, spectral
peaks at degrees 2 and 5 are found independent of  the
observation and inversion techniques. The lower-man-
tle spectrum has been analysed by Becker and Boschi
[2002], who find common spectral features from a wide
variety of  P- and S-velocity tomography models. Par-
ticularly robust is the dominance of  degree 2 at most
mantle depths. The conclusions of  Becker and Boschi
[2002] on at least the long-wavelength portion of  the
Earth’s spectrum have been confirmed by more recent
global-tomography studies. None of  those features is
reproduced by the surface- and body-wave spectral in-
versions illustrated here, which systematically result in
smoother spectra without sharp maxima at any, low or
high harmonic degree. While the results of  tomogra-
phy cannot be taken as ground truth, even at the
longest wavelengths, the disagreement with such well
established features suggests that the spectral approach
might simply lack the resolution needed to properly ex-
tract the Earth’s spectrum from seismic data.

The ineffectiveness of  the spectral method is con-
firmed by the resolution analysis of  Section 7. We have
designed ad hoc synthetic experiments to try and de-
termine which particular simplification in GDC90’s and
our formulation could limit resolution so severely. One
important assumption is that source/receiver coverage
be sufficiently uniform to sample Earth’s structure at
all scales. This is probably not the case in the real world,
since sources are essentially limited to plate boundaries,
and receivers to continents and ocean islands. In Sec-
tion 7.1.4 we illustrate the results of  a synthetic test in-

volving millions of  data from an uniform source-sta-
tion distribution. Even in such an idealized scenario, the
a-priori spectrum is far from being recovered (Figure
9b).

We explored several other possible reasons for the
failure, or lack of  resolution of  our inversions. The reg-
ularized linear inversion procedure per se can generate
artifacts, described by the resolution matrices shown in
Figures 8 and 12: this can in principle be avoided
through a nonlinear inversion procedure, but we have
verified that nonlinear inversion (genetic algorithm)
practically does not improve the resolution of  our
method, as documented in detail by Della Mora [2012];
the nonlinear approach also allowed Della Mora [2012]
to drop some of  the approximations required here;
yet, resolution remained equally poor [Della Mora 2012,
§ 2.8]. The very low sensitivity of  v2 to the low-degree
spectrum, inherent to our problem as mentioned
above, is confirmed quantitavely by Figures 7 and 11.
At intermediate degree, higher resolution could in prin-
ciple be possible, but aliasing of  unresolved, lower-de-
gree signal is presumably an issue, resulting in poor
resolution at all harmonic degrees. We speculate that
aliasing could be limited, and intermediate-wavelength
complexity more robustly constrained, with a choice
of  basis functions different from spherical harmonics,
but this question is better left to future research.
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Appendix A: Analytical expression of cl(d) and nu-
merical validation

A1. Analytical integration of  cl(d)
We have seen in Section 4.1 that an important part

of  the algorithm is the calculation of  cl(d). If  l = 0 then
equation (62) becomes

(94)

If  l ≠ 0, after integration by parts of  equation (62),

(95)

The integral in (95) can be calculated with the ap-
proximated formula

where

Equation (96) is a good approximation of  (95) if  W
is large enough. The oscillations of

increase with l, so W must also increase with l if  we
want equation (96) to be a good approximation of  (95).

From Whittaker and Watson [1927],

(98)

Using the formula

[Arfken 1985], we find

c0 dQ V= r2 -d2 .

c l dQ V= -1Q Vl
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where C(z) denotes the Euler’s gamma function [Whit-
taker and Watson 1927]

(101)

Replacing (100) into (98), the latter equation re-
duces to

(102)

After deriving equation (102) with respect to t and
substituting the result into (95)

(103)

In the following, we shall compact the notation by
defining

(104)

Combining equations (94) and (103) we find the
following expression for the integral (62):

Finally, equation (66) requires the calculation of
lim
t→0

cl(t). From the definition of  cl(t),

(106)

Using the expression (102) for Pl (cos t), this re-
duces to

(107)
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Figure 14. Validation of  our analytical expression (112) for cl; (left panel), values of  cl from equation (112); right panel, the difference between
cl from the analytical evaluation of  equation (112) and the numerical one of  equation (108).

(105)



A2. Numerical implementation - Validation of  our an-
alytical expression for cl

Before the inverse problem (80) is solved, we must
calculate the numerical values of  the matrix entries Fnl.
This involves the calculation of  the function cl accord-
ing to its analytically derived expression (105).

We validate our analytical integration of  equa-
tion (62), carried out in Section A, by comparing its
result (103) with the values of  cl found from equation
(94) (l = 0) and by direct numerical integration of
equation (95). We do not integrate equation (62) nu-
merically because it is singular at t = d. Substituting
equation (96) in (95),

(108)

In our approach, we substitute in equation (105)
the definition of  hl−2k(d) of  equation 104, obtaining

Finally we calculate numerically hl−2k(d) with the
approximated formula

where

so that the resulting expression of  cl(d) is

The advantage of  our approach in equation (112)
with respect to the integration of  equation (108) is that
the term

oscillates much more intensively then sin [(l − 2k) t]
and, because of  this, it gives less numerical problems
to integrate the latter function rather than the former.

The result of  this comparison is summarized in
Figure 14: it can be seen that the error has the maxi-
mum values in the same points of  the analytical ex-
pression of  equations (94)-(95), and looking at the
colour scales of  the two plots it is evident that the error
is approximately six orders of  magnitude smaller than
the exact value.
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