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One of the central objectives in the field of phylodynamics is the quantifi-

cation of population dynamic processes using genetic sequence data or in

some cases phenotypic data. Phylodynamics has been successfully applied

to many different processes, such as the spread of infectious diseases,

within-host evolution of a pathogen, macroevolution and even language

evolution. Phylodynamic analysis requires a probability distribution on phy-

logenetic trees spanned by the genetic data. Because such a probability

distribution is not available for many common stochastic population

dynamic processes, coalescent-based approximations assuming determinis-

tic population size changes are widely employed. Key to many population

dynamic models, in particular epidemiological models, is a period of expo-

nential population growth during the initial phase. Here, we show that the

coalescent does not well approximate stochastic exponential population

growth, which is typically modelled by a birth–death process. We demon-

strate that introducing demographic stochasticity into the population size

function of the coalescent improves the approximation for values of R0

close to 1, but substantial differences remain for large R0. In addition, the

computational advantage of using an approximation over exact models

vanishes when introducing such demographic stochasticity. These results

highlight that we need to increase efforts to develop phylodynamic tools

that correctly account for the stochasticity of population dynamic models

for inference.
1. Introduction
The composition of individuals that make up a population often changes

through time. In many cases, mathematical models can be formulated that

describe the qualitative dynamics of the population. However, in order to

obtain a more quantitative description, statistical methods are required that

can estimate model parameters from population data. Genetic sequence data,

in particular, have been invaluable at informing the dynamical processes that

shape populations. Such processes include for example environmental fluctu-

ations [1], speciation events (see for example recent reviews by Pyron &
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Burbrink [2] and Stadler [3]) and in particular the infection of

new hosts in the case of infectious diseases (reviewed by

Kühnert et al. [4]).

At the core, such methods use the fact that genetic

sequences obtained from individuals within the population

differ enough to reconstruct their genealogy. In a genealogy,

a coalescent event represents the most recent ancestor of two

(or more) lineages. Now, typically the genealogy is assumed

to be equal to the phylogeny of the population history. In a

phylogeny, a branching event represents a birth event in

the population. By equalling the genealogy to the phylogeny,

we assume that a coalescent event in the genealogy

corresponds to a birth event in the population. The recon-

structed phylogeny (genealogy) now is used to quantify the

parameters of the population dynamic process (birth and

death of individuals in the population). Surprisingly, genetic

information from only few individuals can lead to deep

insights into the population dynamics as a whole (for an

overview, see [4]).

The time resolution of this phylogeny depends on the

time scale at which genetic mutations occur versus the

time scale at which the population composition changes.

When both these changes co-occur (i.e. when the evol-

utionary time scale is comparable to the time scale of

the population dynamics), then there is a close correspon-

dence between the population genetic and population

dynamic history [5]. In the case of an infectious pathogen,

the reconstructed phylogeny can be interpreted as a proxy

for an incomplete transmission tree. In such an incomplete

transmission tree, branches that link two individuals rep-

resent chains of transmission from one individual to

another, which may or may not have involved unobserved

intermediate individuals. The incomplete transmission tree

can then be used to inform models of the population

dynamics [6–12].

Phylogenetic reconstruction methods originally made

simplifying assumptions that are common in the field of

population genetics. The Wright–Fisher and Moran models,

for example, assume that the number of individuals remains

fixed through time. Using the coalescent framework, it is then

possible to derive the likelihood for any specific phylogenetic

tree that can be used in likelihood-based inference methods

[13]. It is important to note that while the coalescent is

typically used to model genealogies, here the coalescent is a

model for the phylogenetic tree (i.e. the population

dynamics). The accuracy of a reconstructed phylogeny

obtained using this framework (and by proxy a—typically

incomplete—transmission tree in the case of infectious dis-

ease outbreaks), however, will strongly depend on the

validity of the assumptions underlying the coalescent

approximation. A major advance in coalescent theory was

introduced by Griffiths & Tavaré [14], who generalized the

coalescent to population sizes that can be described by an

integrable function through time. Central to the derivation

of both the original constant population size formulation of

Kingman [13] and the parametric coalescent of Griffiths &

Tavaré [14] is the assumption that the number of sampled

individuals remains fixed and the population size is large

compared with the sample size, irrespective of whether the

discrete generation Wright–Fisher or Moran model is used

[15]. Fu [16] showed that even though the Kingman coalesc-

ent derivation is obtained for small sample sizes, the

Kingman coalescent is also a good approximation to the
population dynamics for bigger sample sizes. Boskova et al.
[17] hypothesize that the key assumption of the coalescent

often being violated is stochastically changing population

size through time.

The joint inference of the phylogeny as well as the model

for the population dynamics is called ‘phylodynamic infer-

ence’ and has become popular in a variety of fields,

including the study of infectious disease outbreaks [7,8,18–

20]. Phylodynamic inferences mostly rely on the coalescent

to approximate the underlying population dynamics. In par-

ticular, implementations assuming both parametric

[7,8,18,21] and non-parametric [22,23] population size

changes are commonly used for statistical inference under

the coalescent, and the inferred population size changes

shed light on the population dynamic process. However,

the justification of the coalescent assumptions is often ques-

tionable in the case of epidemic outbreaks. Specifically,

epidemic outbreaks commonly originate from a single indi-

vidual. Thus, in the early stages of the outbreak, the

number of infected individuals (i.e. the population size in

the coalescent) is small, and therefore cannot be much

larger than the number of sampled individuals.

Key to most epidemiological models of infectious

dynamics (e.g. SIS, SIR, SEIR) is a phase of (exponential)

population growth from the initial infected individual.

These compartmental models can be written as forward-

in-time birth–death (BD) models, with the initial exponential

growth phase being a constant-rate BD model. Thus, determi-

nistic exponential-growth coalescent models [24] appear as

an appropriate description of early outbreaks. The determi-

nistic exponential-growth coalescent has been used to

estimate the initial growth rate, and from that the basic

reproductive number R0 of the pathogen [7].

Recent work has proposed a direct modelling of stochas-

tic epidemiological dynamics (e.g. SIS or SIR dynamics) for

phylogenetic inference that avoids any approximations

made in the coalescent framework [4,9,11,12]. These models

are forward-in-time stochastic BD models explicitly model-

ling transmission, recovery and sampling. These approaches

build upon the BD framework that is commonly used to

reconstruct evolutionary relationships between species

[25–29]. The advantage of these methods is that they do

not implicitly require the assumptions of the coalescent to

be justified, but assume stochastic epidemiological models

such as SIS or SIR; however, they are often computationally

much more expensive than many of the coalescent-based

approximations.

Our aim here is to investigate the applicability of the

coalescent approximation when performing phylodynamic

inference. We assume that epidemic outbreaks are described

by a constant-rate BD model, which is a good approximation

to the early phases of most well-established epidemiological

models [30,31]. We show that the coalescent approximation

assuming an exponentially varying population size fails to

accurately retrieve the true distribution of coalescent times

of two randomly chosen individuals. We also show that

replacing the deterministic exponential growth function

with an ensemble of trajectories that are sampled from the

full stochastic BD model in the coalescent approximation

yields a good approximation to the true distribution. The

added computational cost of such a stochastic extension of

the coalescent, however, sacrifices its primary advantage

compared with birth–death approaches. In fact, direct
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application of BD models is much more computationally effi-

cient than the coalescent approximation for simple stochastic

exponential growth.

While written in epidemiological terms, our results hold

for any population dynamics, which is assumed to grow

exponentially under a constant-rate BD model (e.g. species

radiation or a rapid spread of languages).
1
0

po
p

(b)

(c)

Figure 1. (a) Birth – death population size trajectory (black line) and corre-
sponding deterministic exponential growth (blue line) curve obtained with
growth rate r ¼ l 2 m. (b) Full corresponding birth – death tree (black)
and a subtree (red) spanning two sampled lineages. (c) A representative
and deterministic growth coalescent tree. Note that while coalescence time
in the sampled birth – death tree corresponds precisely with a birth event
in the population size trajectory, the same is not true for the deterministic
coalescent tree.

blishing.org
Proc.R.Soc.B

282:20150420
2. Models
Our reference model of population growth is the constant-

rate BD model [32]. For disease outbreaks, the BD model is

the simplest stochastic model of infectious disease

dynamics in large susceptible populations with an infec-

tious force proportional to the number of infected

individuals. We highlight here that deterministic models

for epidemic spread cannot be employed as they assume

continuous population sizes, while we have discrete

changes in number of infected individuals at branching/

removal events. Our model, the constant-rate BD model,

assumes that infected individuals have a constant rate of

transmitting to susceptibles, l, and a constant rate of

becoming uninfected, m. The expected population size or

number of infected individuals in this model grows expo-

nentially, which is characteristic of the early phases of

most epidemic outbreaks.

We compare the BD model with the coalescent model. In

what follows, we refer to a ‘coalescent model’ when talking

about the stochastic process giving rise to trees with a

coalescent probability distribution (while typically the

coalescent is termed a statistical framework rather than a

model). It is important to distinguish two views of time

here. Time runs in the usual (forward) sense when we con-

sider population growth models, such that the value of a

time tfuture in the future is larger than the value of time t0

at the present, tfuture . t0. When we consider ancestral pro-

cesses that reconstruct the phylogeny of the population,

time runs in the opposite (backward) direction, such that a

value of tpast in the past is larger than a value of t0 at the

present, tpast . t0 (in order to avoid confusion, we denote for-

ward time by the variable t and backward time by the

variable t).

We compare the ‘time of coalescence’ of two present-time

lineages under the BD model with two coalescent-type

models with exponentially growing populations. Note that

the time of coalescence of two lineages is the most recent

time in the past at which these two lineages shared a

common ancestor. The lineages may have evolved under

any model, not only a coalescent model (despite the name

‘time of coalescent’).

For the first coalescent model, we consider a standard

coalescent model with deterministic exponential population

growth [14,24,33]. For the second coalescent model, we

define a coalescent model with stochastic population

growth [10], where the population trajectories are realizations

of a stochastic BD process. Figure 1 shows a realization of a

BD population size trajectory compared with the correspond-

ing deterministic exponential population size curve, with

exemplary two-leaf subtrees.

Here, we define the BD and the two coalescent models

formally, and derive characteristics of the models that

facilitate their comparison.
(a) The BD model
We consider a constant-rate BD model with constant infec-

tious force (birth rate), l, and constant removal (death) rate,

m (0 � m , l). The process starts with one initially infected

individual and stops after time T since the start of the epi-

demic (T is also called time since origin). This is a simple

continuous-time epidemiological model that preserves expo-

nential growth of the number of infected individuals while

properly accounting for discrete population sizes and allow-

ing for the possibility of early termination of the epidemic.

The early phases of SIS- and SIR-type epidemic outbreaks

are typically modelled by such a process. Key epidemiologi-

cal parameters can be derived from the BD model

parameters, such as the basic reproductive number [30],

R0 ¼ l/m, and the net growth rate r ¼ l 2 m.

In order to determine the expected population growth

and the coalescent time distribution under the BD process,

we define p0(t) as the probability that a single individual

has no extant offspring after time t, and p1(t) as the prob-

ability that a single individual has exactly one extant

offspring after time t. Following Kendall [34],

p0(t) ¼ m
1� e�(l�m)t

l� me�(l�m)t , p1(t) ¼ (l� m)2e�(l�m)t

(l� me�(l�m)t)
2
:

(i) Expected population size under the BD model
The expected population size under the BD model grows

exponentially,

N(t) ¼ e(l�m)t: (2:1)
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The BD process is an individual-based model, with each indi-

vidual having some rate of dying. Thus, it can happen that all

individuals die, and the trajectory of the BD process does not

‘survive’ until time T. When analysing a phylogeny of age T,

we know that the process survived until time T. We thus only

consider population size trajectories that survive until time T
(i.e. that have a non-zero population size until time T). The

expected population size for 0 � t � T is given by

NBD(t) ¼ e(l�m)t

P(T)
� P(t)� P(T)

P(t)P(T � t)
, (2:2)

with P(t) ¼ 1� p0(t) ¼ (l� m)=(l� me�(l�m)t) [35]. The con-

ditioning on survival results in an early rapid increase in

the expected number of individuals, called ‘push of the

past’, after which the population size grows exponentially

with rate r ¼ l 2 m [35]. The time T such that the expected

number of individuals is equal to N is

TBD(N) ¼ ln ((N(l� m)þ m)=l)

l� m
: (2:3)
0

(ii) Distribution of coalescent times under the BD model
In the electronic supplementary material, we show that the

distribution of time to coalescence (where time is measured

backward from the present) of two randomly chosen individ-

uals at time t given parameters l, m and time since origin

T under the BD model, denoted by fBD(t), is

fBD(t) ¼ 2f(tjT) p1(T)

(1� p0(T)� p1(T))(1� F(tjT))3

� F(tjT)2 � 1þ 2F(tjT)� m

l

F(tjT)þ 1

p0(T)

� �
ln

m� l p0(T)

m� l p0(t)

� �� �
,

(2:4)

with f (tjT ) ¼ mp1(t)/p0(T ) and F(tjT) ¼ p0(t)/p0(T ). Note

that fBD(t) � 0 for t [ [0, T ], and fBD(t) ¼ 0 for t . T since

the process started at time T in the past.
(b) The coalescent model with deterministic
exponential population growth (CD model)

In the coalescent approximation, two lineages coalesce with

rate 1/(N(t)r), with N(t) being the population size and r

being the generation time. Thus, the coalescent is defined

by parameters N(t) and r, compared with l, m, T in the BD

process. The coalescent with a deterministic exponentially

growing population size (referred to hereafter as the CD

model) is therefore defined by the following two

parameters: (i) the population growth rate r and (ii) a

factor Q ¼ N0r, where N0 is the present-day population

size N0, and r the generation time [14,24]. This yields

N(t) ¼ N0e2rt.
(i) Expected population size growth under the CD model
Because population growth under the CD model is a determi-

nistic process, the (expected) population size at time t is just

NCD(t) ¼ ert: (2:5)

Note that compared with the BD model, there is no extinction

of a population.
(ii) Distribution of coalescent times under the CD model
The time of coalescence of two lineages picked from a

population of size N has the probability density [14,24,36]

fCD(t) ¼ 1

N0r
erte(1�ert)=(N0rr): (2:6)

Thus, the probability that the two lineages coalesce between

the present and time t in the past is

FCD(t) ¼
ðt

0

fCD(t0)dt0 ¼ 1� e(1�ert)=(N0rr): (2:7)

Note that the deterministic coalescent is naturally defi-

ned for times t [ (0, 1) before the present, in particular

for t . T (i.e. prior to the start of the corresponding BD

model).
(c) Link between the BD and CD models
Both the BD and the CD models describe populations that

(in expectation) grow exponentially in time. In fact, by com-

paring equations (2.1) and (2.5), it is natural to set the

growth rate in the CD model to r ¼ l 2 m. The expected

population size in the BD model at time t (unconditioned

on survival of the process) is equal to the population size

in the CD model at time t. Furthermore, N0 is the present-

day population size and relates to the BD parameters via

N0 ¼ e(l2m)T.

When the coalescent approximates a BD process, the

generation time r must be related to the per capita birth

rate l. Volz et al. [8] showed that r ¼ 1/(2l). We explain

the derivation of this result in the electronic supplementary

material.
(i) Breakdown of the CD model
The length of the process T required to reach N0 individ-

uals is then given by T ¼ lnN0/r. From the point of view

of the ancestral process, at time T in the past, the popu-

lation size was 1. Thus, T is the maximum time at which

all lineages should have coalesced to one lineage. How-

ever, we show in the following that under the CD

model, the probability of observing a coalescent event

prior to the origin of the process at time T in the past is

strictly greater than zero.

The rate of coalescence for a changing population size is

1/(N(t)r). The probability that two lineages coalesce to one

lineage within time interval [0, T ] is (equation (2.7))

FCD(T) ¼ 1� e(1�N0)=(N0rr) ¼ 1� e(1=N0�1)=(rr): (2:8)

From this expression, we directly observe

FCD,N0!1(T) ¼ 1� e�1=rr: (2:9)

As in our setting r ¼ 1/2l, we have rr ¼ (l 2 m)/2l and,

FCD,N0!1(T) ¼ 1� e�2=(1�1=R0):

Note that for m ¼ 0 the probability of a coalescent event being

ancestral to time T is e22 ¼ 0.135, and with increasing m this

probability decreases. For m! l, all coalescent events occur

between the present and time T in the past with probability

1. The case m! l (i.e. r! 0) corresponds to constant popu-

lation size though, so the population size decreases to 1

with probability 0.



rspb.royalsocietypubl

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 J

ul
y 

20
23

 

(d) Deterministic coalescent with modified N(t) (CDN
model)

We further investigated the performance of a deterministic

coalescent using population size NBD(t) from equation (2.2)

instead of NCT(t) from equation (2.5), to make expected popu-

lation sizes under the BD and coalescent model equivalent. In

the electronic supplementary material, we show that the
coalescent time probability density under the coalescent

with population size function NBD(t) from equation (2.2) is

fCDN(t) ¼ 2l

NBD(t)
e�g(t), (2:10)

with,
 ishi
ng.org
Proc.R.Soc.B

282:20150420
g(t) ¼

2lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 � 4c2c0

q ln
(2c2ert þ c1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 � 4c2c0

q
)(2c2 þ c1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 � 4c2c0

q
)

(2c2ert þ c1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 � 4c2c0

q
)(2c2 þ c1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 � 4c2c0

q
)

�������

�������
if 4c2c0 � c2

1 , 0,

4l

2c2 þ c1
� 4l

2c2ert þ c1
if 4c2c0 � c2

1 ¼ 0,

4lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2c0 � c2

1

q ( arctan
2c2ert þ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4c2c0 � c2
1

q � arctan
2c2 þ c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2c0 � c2

1

q ) if 4c2c0 � c2
1 . 0,

8>>>>>>>>>>><
>>>>>>>>>>>:
and

c0 ¼ (l� me�rT � m2

l� me�rT e�2rT)erT

c1 ¼
m(lþ m)

l� me�rT e�rT

c2 ¼ � lm

l� me�rT e�rT :

We highlight that not all lineages coalesce by time T. As

population size is not defined for t . T, there is a non-zero

probability for no coalescence at all.
(e) The coalescent with stochastic population growth
via birth – death trajectories (CS model)

As pointed out above, the coalescent with a deterministically

changing population size does not take into account stochas-

tic fluctuations, which in particular may lead to population

extinctions. In order to employ a coalescent with such sto-

chastic population size changes, we define a coalescent

process where population size is a population trajectory of

the BD model, and the rates of coalescence within this popu-

lation are 1=( ~N(t)r) [20], where ~N(t) is the population size at

time t in the trajectory. We refer to this model as a stochastic

coalescent (hereafter CS).

As before, the generation time is r ¼ 1/(2l). Because the

population size is undefined ancestral to time T, we assign

0 probability to coalescent times older than T. In fact,

although T is not a parameter in the deterministic coalescent

(as lineages simply coalesce backwards in time until the most

recent common ancestor of the sample is found), it is a natu-

ral parameter for the stochastic coalescent, as BD trajectories

are simulated for time T. However, note that under the sto-

chastic coalescent model, lineages may not all coalesce

when tracing them back in time for a given population size

trajectory.
(i) Expected population size growth
The expected population size growth follows equation (2.2).
(ii) Distribution of coalescent times
While analytical derivation of the distribution of the time to

coalescent exists when the population size varies according

to a stationary Markov process [37], no such result is avail-

able for non-stationary stochastic processes, which is the

case here. We therefore obtained the probability density of

coalescent times fCS(t) under the stochastic coalescent via

simulations. We first simulated BD population size trajec-

tories forward in time for a duration of time T. Then, we

sampled the coalescent time of two lineages extant at the

present backward in time.
3. Results
Without loss of generality, we set l ¼ 0.5 (defining our time

unit) and thus r ¼ 1/(2l) ¼ 1, meaning only parameters m

and T are free to vary. We compare the probability distri-

butions corresponding to the probability densities of the

different models, fBD(t), fCD(t), fCDN(t), fCS(t), for R0 ¼ 1.05,

1.3, 1.6, 2, 4, 10, 20. Furthermore, we plot in dashed lines

the coalescent probability densities when using the coalescent

rate proportional to N 2 1 rather than to N (see §2g above).

We choose T ¼ TBD(N0) such that the expected population

size at the end of the process is N0 ¼ 10, 100, 1000, 10 000

(equation (2.3)). The results are summarized in figure 2 for

R0 ¼ 1.05 and figure 3 for R0 ¼ 20. The plots for the remain-

ing R0 values are displayed in the electronic supplementary

material, figures S1–S5.

In the following, we discuss under which circumstances

coalescent time distributions under the coalescent models

and the BD models are similar. Under these circumstances,

the coalescent is a good approximation to the BD model.

(a) Deterministic coalescent
Based on plotting coalescent time distributions, we observe

that for small values of R0 (roughly R0 , 2), coalescent

events under the deterministic coalescent (CD; blue line)

are younger (occur earlier going backward in time) than

under the birth–death (BD; black line) and stochastic coalesc-

ent (CS; red line) models (figures 2 and 3). For large values of

R0 (roughly R0 . 2), the CD model predicts older coalescent
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Figure 2. Cumulative probability distribution function of time to coalescence of two lineages in our models, fBD(t), fCD(t), fCDN(t) and fCS(t), for low R0 ¼ 1.05 and
N ¼ 10, 100, 1000 and 10 000. Black displays the distribution of coalescent times under the birth – death (BD) model, blue under the deterministic coalescent
(CD; dotted line corresponds to coalescent rate proportional to 1/(N(t) 2 1)), and red under the stochastic coalescent (CS; dotted line corresponds to coalescent
rate proportional to 1/(N(t) 2 1)). Light blue corresponds to the deterministic coalescent with population size being the expected BD population size (CDN).
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events (occurring later going backward in time) than under

the BD and CS models.

For large values of R0, the CD model has a bias towards

older coalescent events. This is most likely to be due to the

fact that the CD model allows for two lineages to coalesce

at a time t . T before the start of the process. We can quantify

the proportion of coalescent events ancestral to T under the

deterministic coalescent. The probability that two lineages

coalesce before the start of the process (t . T ) is always

larger than zero (equation (2.8)), even when N0!1, under

which assumption the coalescent approximation was derived

(equation (2.9)). When R0! 1, the probability that two

lineages coalesce before the start of the process tends to

e22 � 0.135. This probability decreases with R0, and tends

to zero for R0! 1, meaning that all coalescent events

happen in [0, T ] (though in this case T ¼1).

Coalescent times are younger for small R0 under the deter-

ministic model compared with the stochastic models owing to

the differences in population growth. The expected population

size at time t under the stochastic population size model

(equation (2.2)) is larger than under the deterministic model

(equation (2.5); see also figure 4). These differences in expected

population size are largest for small values of R0, and tend to

zero as R0 increases to infinity. The rate of coalescence of two

lineages is proportional to 1/N(t), and hence increases with

decreasing population size. Therefore, coalescent events in

the deterministic model happen faster (smaller t) than in the

stochastic models. Changing the coalescent rate to be pro-

portional to 1/(N(t) 2 1) instead of 1/N(t) does not change

the probability density (blue dotted line).

We performed additional numerical experiments to

investigate whether using the expected population size

conditioned on survival, NBD(t) (equation (2.2)), instead of

the usual expression in equation (2.5) improves the approxi-

mation of the CD to the BD model (light blue line; figures 2

and 3; electronic supplementary material, figures S1–S5). As

NBD(t) is not defined for t . T, we plot only the distribution

function in [0, T ], with the value at T denoting the percentage

of pairs having coalesced within [0, T ]. As expected, for all
considered parameter combinations, the modification of popu-

lation size makes coalescent times older than under the CD

model. However, for all considered parameter combinations,

coalescent times are also older than under the BD model, so

this new setting over-corrects the deterministic coalescent

even for small R0 (when we expect barely any events at t .

T ). Thus, it appears that ignoring full stochasticity in the

coalescent population size introduces biases.

(b) Stochastic coalescent
The cumulative probability distribution of the CS model is

plotted as a red line. Again, the value at T denotes the percen-

tage of pairs having coalesced within [0, T ]. For small values of

R0, the CS model is a good approximation to the BD model. As

R0 increases, the CS line flattens out compared with the BD line

close to time T. The amplified effect of flattening out for high R0

is explained by more coalescent events happening ancestral to

T for increasing R0; this higher proportion for increasing R0 is

quantified in the deterministic case above. Using a coalescent

rate proportional to 1/(N(t) 2 1) rather than to 1/N(t) results

in more recent coalescent events. In particular, each pair has

coalesced by time T with probability 1. However, for small

N, coalescent events now happen more recently than under

the BD model.

We point out that when doing phylogenetic inference of

population dynamic parameters, we propose a time of

origin T and a set of coalescent times, which are on interval

[0, T ]. Thus, the prior distributions on coalescent times are

the coalescent time distributions plotted in figures 2 and 3

and electronic supplementary material, figures S1–S5, but

normalized to be 1 at time T.
4. Discussion
We show here that deterministic coalescent approaches both

under- and overestimate the coalescent times of two randomly

sampled lineages depending on R0, with a stochastic BD

model being used as a model of reference. Parameter estimates
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obtained using the coalescent approximation must therefore be

treated with caution, because it is not immediately clear how

strong the under- or overestimation is. The reason for the

bias for small R0 is the stochastic change in population size,

which is ignored by the deterministic coalescent. A stochastic

version of the coalescent can correct the bias for small values

of R0 and large enough population sizes (N . 100 for R0 ¼

1.05 and N . 1000 for R0 ¼ 1.3 and R0 ¼ 1.6). The reason for

the remaining bias for larger R0 is that the coalescent approxi-

mation allows for the two lineages to coalesce after a time that

is longer than the duration of the population growth process

(i.e. the time at which the population size was 1).

More generally, any coalescent approximation (either

parametric or non-parametric) that uses a population size

function that decreases to a small number at any given time

at which two or more lineages have not yet coalesced should

be avoided. This has already been highlighted by Griffiths &

Tavaré [14, p. 404]: ‘there are cases in which variable popu-

lation size processes are better studied in their original,

discrete timescale, particularly those which have very small

population sizes for many generations. Although we do not

explicitly examine such cases in this paper, the methods devel-

oped here can be exploited in that setting too.’ Griffiths &

Tavaré nevertheless fitted the coalescent with a deterministic

exponentially growing population to a dataset (which is fine

in case the number of generations where the population size

is ‘very small’ is considered to be not ‘many’) [14]. With the

release of BEAST [38] assuming a coalescent-based prior on

trees, the coalescent became the model of choice to use in

phylodynamics, without validating its assumptions. We now

show here that the exponential growth deterministic coalesc-

ent, however, may lead to biased growth rate estimates

when studying exponentially growing populations in the pres-

ence of demographic stochasticity, questioning the accuracy

of such growth rate estimates.

The appealing feature of the deterministic coalescent is that

the likelihood of the population size N(t) and generation time

r(t) (here constant, but see Volz et al. [8] for time-varying gener-

ation time) for a given tree is easily calculated by tracing all

lineages backwards in time, with the lineages coalescing at rate

1/(N(t)r(t)). The computational gain, however, comes at the

cost of incorrect estimates if the true population growth

dynamics are stochastic in nature, which is the case for most
biologically relevant applications. A stochastic coalescent can

partly correct these errors, but because the population size
~N(t) is an ensemble of realizations of a stochastic process, the

likelihood must be computed by averaging across the whole

ensemble. Thus, the likelihood computation must be repeated

a large number of times, which negates any computational

advantage of the coalescent approximation.

In fact, when the population size is specified by a single

trajectory ~N(t), the computational cost of calculating the like-

lihood for a fixed tree under the BD model is of the same

order as under the coalescent approximation. While the

coalescent likelihood is calculated from the rate of coalesc-

ence 1=(r ~N(t)), the BD likelihood is calculated in the

following way: each birth and removal event in the tree

must coincide with a birth and removal event in the trajec-

tory, otherwise the likelihood is zero. An example for a tree

with non-zero likelihood is the tree in figure 1b, given the tra-

jectory ~N(t) in figure 1a. If all birth events coincide, the

probability of a tree given the trajectories is a product of

simple combinatorial factors, one for each transmission and

removal event in the trajectory. For a given event, the factor

is either (i) the probability of the event occurring between

individuals represented as lineages in the tree (if the event

actually occurred on the tree) or (ii) the probability of the

event occurring between other individuals outside of the

tree (if the event actually occurred outside the tree).

In the particular case studied here—the constant-rate BD

model—we can analytically integrate over all trajectories by

using the closed-form solution for the coalescent time

of two lineages provided in equation (2.4). This provides

a computationally efficient way to infer population par-

ameters using the fully stochastic model and avoiding any

approximations.

The advantage of the deterministic coalescent is that the

rates of coalescence of the sampled lineages backwards in

time are easily derived from the population size function. As

we described, this backward-in-time interpretation is equival-

ent when the exact population trajectory ~N(t) is known in the

BD model and the CS model. It is unclear if such a simple

backward-in-time (vertical) interpretation exists when aver-

aging over trajectories. The BD model, however, has an

alternative ‘horizontal’ interpretation of how sampled lineages

coalesce when integrated over all trajectories, called the point
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process representation [27,39,40]. The point process allows us to

sample the n 2 1 coalescent times in a tree of n extant lineages

from the same point process distribution independently. For

tips labelled 1, 2, . . . , n, the ith draw from the point process

distribution is the coalescent time of the tips i and i þ 1. This

horizontal interpretation allows one to quickly simulate a

tree on n tips (namely by drawing n 2 1 random variables,

each from the same point process distribution). In inference,

the likelihood of a tree on n tips is simply a product over the

point process densities of each of the n 2 1 coalescent times.

Interestingly, the deterministic coalescent model does not

have a horizontal point process representation [40]. It remains

to be investigated if the stochastic coalescent has a horizontal

point process representation.

We showed that coalescent models give rise to different

coalescent time distributions for two lineages compared with

BD models. This has important consequences both when simu-

lating trees and when estimating population dynamic

parameters from trees (such as the basic reproductive number

R0 or the net growth of an epidemic r ¼ l 2 m). Trees are simu-

lated under the coalescent by starting at the present and fixing

the present-day population size N0. Because the process time

TCD for the deterministic coalescent model is longer than the

time TBD for the BD model for small R0 (owing to the push of

the past effect), the simulated trees will be older under the CD

model than under the BD model with the same N0. As a conse-

quence, when doing inference, if the true trees are realizations

from a stochastic BD model with small R0, then growth rates esti-

mated using the CD model will be overestimated, as the CD

model expects older trees for the true growth rate. This is in

agreement with previous results that, based on fixed trees, the

deterministic coalescent overestimates growth rates and induces

more ancestral coalescent events [9,17]. Furthermore, when

doing inference, it has been observed that the deterministic

coalescent is too confident in parameter estimates and under-

estimates the width of the highest posterior density (HPD)

intervals [9,17]. As a consequence, the HPD intervals may not
contain the true parameter with high probability when using

the deterministic coalescent. This underestimate of parameter

uncertainty is a drawback of the coalescent that is not apparent

when considering the maximum-likelihood point estimates

over a range of trees [41]. For more realistic epidemiological

SIS- or SIR-type models, the pattern becomes more complex.

Biases will again depend not onlyon R0, but also on the sampling

scheme (i.e. sampled during exponential or post-exponential

phase) and the overall population size [42].

Decisions have to be made about the sampling scheme in

the BD model, and typically we assume that a fraction of indi-

viduals is sampled rather than two individuals from an

arbitrary-sized population. Here, we conditioned on

sampling two lineages from a population of N0 lineages,

where N0 is a random variable and corresponds to the

number of lineages in the population after time T. Different

sampling schemes could be employed. A widely used

sampling scheme is that each lineage in the present-day

population is sampled with some probability p. The prob-

ability of sampling two individuals from a population of N0

at the present then is p2(1� p)N0�2, which favours trajectories

with few surviving lineages. The coalescent time distribution

under the BD model will be affected by the specific choice of

sampling. The distributions for the BD and CD models have

been shown to be different in a number of cases [43].

The stochastic BD model considered here is only a crude

approximation of real stochastic epidemic models. We showed

that, even for this simple model, using a deterministic coalesc-

ent approximation to infer epidemiological parameters can

lead to strong biases. We showed that a stochastic coalescent

approximation yields correct parameter estimates for values of

R0 close to 1. We do not expect the bias for large values of R0

to disappear when N! 1, because lineages coalesce with

non-zero probability at times larger than the duration of the pro-

cess. Thus, parameter estimates obtained using coalescent

approximations should be treated with caution. Whenever

possible, inference methods that assume a stochastic underlying

population model should be used. Computationally tractable

implementations of such models have only recently started to

become available, such as for the SIS model [11], for skyline-

type models [44] and for structured population models with

stochastic exponential growth [45]. For more realistic epidemio-

logical models, we must for now rely on coalescent-type

approximations [8,10,19,21], or BD-based approximations,

such as the BDSIR model [12]. This current dependence

on approximations reveals the need for a stronger focus on

developing exact methods, as well as thorough validation of

approximate methods for epidemiological models.
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