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Abstract

The ability to sense and predict occupancy – i.e. to establish when the residents are and
will be in a building – represents a basic requirement for the energy-efficient operation of
many building automation systems. In residential households, in particular, the absence of
all residents allows a heating controller to automatically lower the temperature of the home,
thereby saving energy that would have been otherwise wasted on heating an empty building.
However, if the home has been thus allowed to cool, a boiler and heat distribution system
need a non-negligible time to reheat the home to a comfortable temperature. Therefore,
to avoid a loss of comfort, a heating control system also requires a sufficiently accurate
prediction of when the occupants are going to return in order to trigger the heating at the
right time. Since space heating accounts for a large fraction of residential energy use (e.g.
68% in the European Union member states), heating control systems based on occupancy
sensing and prediction – often referred to as smart thermostats – play an important role
in reducing energy consumption and carbon dioxide emissions, while at the same time
ensuring occupant comfort.

The objective of this thesis is thus to investigate how the two main computational com-
ponents of a smart thermostat – occupancy sensing, based on sensors that typically exist
in a residential environment, as well as occupancy prediction from historical occupancy
patterns – can be used to automatically reduce the energy consumption of a heating system
while trying to maximise thermal comfort.

Current smart thermostats require the installation of dedicated hardware to sense whether
the occupants are at home or away. This increases installation and maintenance costs
and thus prevents widespread adoption of such potentially energy-saving solutions. To
overcome this hurdle, we investigate the suitability of opportunistically using devices
already existing in households to sense occupancy. This opportunistic sensing approach
seeks to utilise available devices to replace or augment dedicated infrastructures. An ex-
ample are smart electricity meters, which are mandated to be installed in many households
worldwide. We hypothesise that the information contained in the electrical load of the
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household, as measured by the smart electricity meter, can be used to infer its occupancy.
To verify this hypothesis, we have performed an extensive data collection campaign over
seven months in six Swiss households to collect occupancy ground truth data as well as
the aggregated and device-level electrical consumption of the households. Using this data,
we employ supervised machine learning algorithms to infer occupancy solely from the
households’ aggregated electricity consumption. We show that such an approach yields a
classification accuracy of up to 94%.

As soon as the occupancy sensing infrastructure detects that residents left the house,
the temperature can be allowed to drop resulting in energy savings during this setback
period. However, a reactive strategy cannot be employed upon the arrival of the occupants
as it may take a considerable amount of time to bring the house back to a comfortable
temperature. To avoid loss of comfort, occupancy prediction algorithms are used to predict
the time of arrival of the occupants to determine the right time to start pre-heating the house.
To analyse the performance of such prediction approaches we have derived occupancy
schedules from a large, publicly available mobile phone location dataset. Using the
schedules from 45 participants we show that current state-of-the art occupancy prediction
algorithms achieve an accuracy around 85%, which is close to the theoretical optimum
given by the predictability of the schedules (which in practice always feature some level
of irregular behaviour).

The accuracy of the occupancy prediction alone does not necessarily reflect the energy
savings and comfort loss that can be achieved or caused by a smart thermostat. The actual
savings depend upon the occupancy schedule of the household, the prediction accuracy,
the weather conditions and the physical properties of the building. The final part of
this thesis thus deals with the simulation of various heating scenarios to investigate the
effect of a smart thermostat on the overall energy savings under different environmental
conditions. To this end, we assess the overall energy expenditure in several building
scenarios. Furthermore, we develop a new methodology to accurately assess the impact of
the weather conditions on the energy savings. We show that building parameters result in
a range of savings from 6% to 17%, while the savings in the 25% of households with the
lowest occupancy are 4-5 times higher than in the quarter with the highest occupancy.

The unifying theme of this thesis is to show how current technology, which already
exists in many homes, can help to save energy without sacrificing comfort. For this
purpose, we draw upon recent work in the distributed systems domain to access smart
electricity meters and machine learning algorithms to derive occupancy data. We show
how predictable occupancy schedules are and, by providing a simulation framework to
evaluate different occupancy prediction algorithms, we seek to answer the question how
much energy a smart thermostat can save.
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Kurzfassung

Grundvoraussetzung für eine energieeffiziente Steuerung von Gebäudeprozessen sind
Erkennung und Vorhersage der Anwesenheit von Bewohnern in den Gebäuden. In privaten
Haushalten erlaubt die Abwesenheit der Bewohner einem intelligenten Heizungsrege-
lungssystem beispielsweise, die Temperatur zu senken und somit Energie einzusparen, die
ansonsten für das Heizen des unbewohnten Wohnraums verschwendet werden würde. Al-
lerdings benötigt ein ausgekühltes Haus wieder ausreichend Zeit, um auf eine angenehme
Temperatur aufgeheizt zu werden. Um Komforteinschränkungen zu vermeiden, ist für das
Heizungsregelungssystem daher eine möglichst genaue Vorhersage über die zukünftige
Anwesenheit der Bewohner erforderlich. Die Raumheizung stellt einen signifikanten Teil
des Gesamtenergieverbrauchs privater Haushalte dar, in der Europäischen Union liegt er
derzeit bei 68%. Daher können Heizungsregelungssysteme, welche auf Anwesenheitser-
kennung und -vorhersage der Bewohner beruhen, eine wichtige Rolle bei der Reduktion
von Energieverbrauch und CO2-Emission spielen, ohne dass sich Komforteinschränkungen
für die Bewohner ergeben.

Das Ziel dieser Arbeit ist die Untersuchung, ob Anwesenheitserkennung – basierend
auf Sensoren, die typischerweise in Haushalten bereits vorhanden sind – sowie Anwe-
senheitsvorhersage anhand historischer Anwesenheitsmuster dazu beitragen können, den
Energieverbrauch eines Heizungssystems ohne Komforteinbussen zu senken.

Aktuelle intelligente Heizungsregelungssysteme setzen die Installation von dedizierter
Hardware für die Anwesenheitserkennung voraus. Die sich daraus ergebenden Zusatzkos-
ten für deren Einbau und Wartung sorgen dafür, dass solche Lösungen eher Nischenpro-
dukten vorbehalten bleiben. Dieses Problem könnte sich durch eine ”Zweckentfremdung“
bereits existierender Haushaltsgeräte für die Anwesenheitserkennung mildern lassen.
Ein Beispiel eines solchen Ansatzes sind intelligente Stromzähler, die in vielen Haus-
halten durch Änderungen in der Gesetzgebung bereits zur Pflicht geworden sind. Wir
stellen hierbei die These auf, dass die elektrische Lastkurve eines Haushalts genügend

v



Informationen beinhaltet, um daraus mit hoher Wahrscheinlichkeit die An- und Abwe-
senheit seiner Bewohner abzuleiten. Um diese These zu untersuchen, haben wir in sechs
Schweizer Haushalten Messtechnik installiert, die den Gesamtstromverbrauch sowie den
Verbrauch einzelner Geräte misst. Zusätzlich haben wir die ”Ground Truth“ bezüglich der
tatsächlichen Anwesenheit in diesen Haushalten aufgenommen. Wir zeigen, dass mit Hilfe
von überwachtem maschinellem Lernen, basierend auf den Stromverbrauchsdaten, eine
Genauigkeit von bis 94% bei der Erkennung von An- und Abwesenheit möglich ist.

Eine automatisierte Anwesenheitserkennung ermöglicht somit einen Effizienzgewinn
beim Heizen. Haben die Bewohner das Haus verlassen, ist eine weitere Beheizung des
Wohnraums nicht notwendig, das Heizungsregelungssystem kann die Innentemperatur
auf einen tieferen Wert absinken lassen. Allerdings kann solch eine rein reaktive Steue-
rung nicht verwendet werden, um das Haus erst bei der Ankunft der Anwohner wieder
aufzuheizen, da die Aufheizphase eine signifikante Zeit erfordert.

Um den richtigen Zeitpunkt für das Wiederaufheizen des Hauses zu bestimmen, können
Algorithmen zur Anwesenheitsvorhersage genutzt werden. Damit kann die Aufheizphase
bereits vor Rückkehr der Bewohner gestartet werden, und Komforteinbussen werden
vermieden. Um solche Anwesenheitsvorhersagealgorithmen zu analysieren, haben wir
Anwesenheitsdaten aus einem öffentlich verfügbaren Datensatz extrahiert und analysiert.
Mit Hilfe der Daten von 45 Teilnehmern zeigen wir, dass aktuelle Algorithmen Genau-
igkeiten aufweisen, welche nur durch die prinzipielle Vorhersagbarkeit der nicht ganz
regelmässigen täglichen Routine begrenzt werden.

Natürlich kann die Genauigkeit der Vorhersagealgorithmen nicht direkt den Effizienzge-
winn und die Komforteinbussen eines intelligenten Heizungsregelungssystems abbilden.
Die tatsächliche Energieersparnis hängt von einigen weiteren Faktoren wie den klimati-
schen Gegebenheiten der Region sowie den physikalischen Eigenschaften des Gebäudes
ab. Daher untersuchen wir im letzten Teil dieser Arbeit den Effekt einer intelligenten
Heizungssteuerung auf den Heizenergieverbrauch unter verschiedenen Kontextbedingun-
gen. Für die Analyse entwickeln wir mehrere Gebäudeszenarien sowie eine Methode,
um die Effekte von unterschiedlichen Wetterbedingungen auf die Gesamtheizenergie zu
untersuchen.

Das Leitmotiv dieser Arbeit besteht darin, beim Heizen unter Ausnutzung von Tech-
nologien, die in vielen Haushalten bereits zum Alltag gehören, einen Effizienzgewinn zu
erzielen. Um dieses Ziel zu erreichen, nutzen wir technologische und erkenntnisbezogene
Fortschritte in den Bereichen verteilter Systeme und maschinellem Lernen, um Anwesen-
heitsinformationen aus elektrischen Lastkurven zu extrahieren. Ergänzend analysieren
wir die prinzipielle Vorhersagbarkeit von Anwesenheit aus historischen Daten und zeigen
welche Energieersparnis intelligente Heizungsregelungssystems ermöglichen können.
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I also want to thank my friends and colleagues at the Institute for Pervasive Computing:
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Chapter 1
Introduction and motivation

At the 1933–1934 Chicago World’s Fair, the public caught a first glimpse of what future
homes would look like. The “House of Tomorrow” anticipated many modern conveniences
now taken for granted1, including a dishwasher, an electric garage opener and central air
conditioning [126]. In terms of home automation, the House of Tomorrow was a sign of
things to come.

By that time, heating control had been around for a while. The invention of the first
thermostat is commonly credited to Cornelis Drebbel (1572–1633), a dutchman who
worked at the courts of King James I and King Charles I. A prolific inventor, Drebbel built
an air-conditioning system as well as an incubator for chicken eggs that was able to keep a
constant temperature throughout the year [174]. However, it took over 200 years before
the concept was commercialised. The first pneumatic thermostat was patented by Warren
S. Johnson, in 1883. Two years later, in 1885, the Swiss born inventor Albert M. Butz
registered a patent for the first primitive electric thermostat, the damper flapper [212].
The two companies that eventually emerged from these days – Johnson Controls and
Honeywell – still operate today. In the same year, Hermann Immanuel Rietschel, a
German scientist, took “the world’s first chair in ventilation and heating systems at the TH
Berlin” [106].

It should take another 60 years to develop what we today generally consider to be a
smart home. We define smartness in the context of home automation as the ability to
learn the requirements of the inhabitants in order to actuate the home while increasing
comfort and making efficient use of available resources. One of the first attempts to
build such a smart home is the Neural Network House introduced by Mozer et al. in
1995 [139]. Mozer et al. retro-fitted an old schoolhouse with 75 sensors and actuators to
control lighting, ventilation and heating. The control strategy is based on artificial neural
networks and designed to adapt to the inhabitants’ personal desires. However, containing
“nearly five miles of conductor” [2] and requiring a training period of eight months, the

1It also included a personal aircraft hangar, a prediction that sadly has not come true.
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Figure 1.1: House of tomorrow at Chicago World’s Fair. Image scanned from original
prospectus by Dr. Monica Brooks [201].

technology used in the Neural Network House was still too complex to be applied in the
homes of ordinary people.

The trend towards smart homes picked up in earnest with the arrival of the Internet of
Things (IoT). The IoT refers to the integration of physical objects from the real world into
the virtual world of computers [130]. Thus, while the sales of traditional desktop computers
are declining, our environment is becoming more computerised than ever. Advances in
microelectronics and wireless communications such as low-power implementations of the
IPv6 stack showed that support for the Internet Protocol (IP) could be embedded in small,
resource-constrained sensors and actuators [45, 171]. These implementations, low-power
Wi-Fi modules and new application layer protocols like the Constrained Application
Protocol (CoAP) make connecting physical objects to the Internet feasible at a large
scale [78, 111, 153, 170]. Today, an increasing number of appliances such as coffee
machines, refrigerators and electricity meters contain microchips and are connected to
computer networks [70, 130].

Meanwhile, the abundance of sensors has been identified as a powerful means to
reduce the demand for energy [131]. In the home, this has led to smart thermostats
which automatically control the indoor temperatures based on the actual occupancy of the
household. Recently, commercial smart thermostats such as the Nest learning thermostat

2



1.1 Motivation

Space heating

35%

Hot water

6%
Lighting

3%

Process heat 12%

Ventilation & automation
3%

Mobility (domestic)

29%
IT, entertainment

1% Automation, processes
9%

Others2%

Figure 1.2: Estimated Swiss energy consumption by end use (2013) [93].
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Figure 1.3: Estimated Swiss energy consumption by end use (2000-2013) [20, 93].

and tado◦ have started to appear [196, 198]. These technologies promise to automatically
infer the household’s occupancy schedule and enable the occupants to use their mobile
phone to track and control the temperature of their home from anywhere in the world.

1.1 Motivation

In Switzerland, central heating in residential buildings is one of the largest contributors to
CO2 emissions and energy bills. According to a study commissioned by the Swiss Federal
Office of Energy, 35% of the total domestic energy consumption can be attributed to
heating alone [93]. Figure 1.2 shows that heating was the largest single factor influencing
the total energy consumption in 2013. Space heating is responsible for five percent more
energy consumption than mobility. Furthermore, fluctuations in the energy consumed
by heating are much higher than those of the other end uses. Figure 1.3 shows the total
domestic energy consumption by end use in Switzerland from 2000 to 2013. Over these 14
years, fluctuations in the energy consumed by space heating (which mainly depends on the
outside air temperature in winter) have determined whether the total energy consumption
in a given year was higher or lower than previous years.
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Table 1.1: Energy consumption in the residential sector by end use. Due to rounding errors,
figures may not add up to 100%. Sources: RECS 2009 [222], DECC 2013 [205],
BfWE 2012 [202], BFE 2013 [93], EEA 2009 [209], EMSD 2012 [208].

End use U.S. U.K. Germany Switzerland EU-27 Hong Kong
Space conditioning 48% 66% 69% 71% 68% 23%
Water heating 18% 17% 15% 13% 12% 19%
Lighting and appliances 35% 18% 16% 16% 19% 58%

Table 1.1 shows that the share of heating of the total energy consumption increases
when only residential households are considered. In Switzerland, about 71% of the
residential energy consumption can be attributed to space conditioning (i.e. heating,
ventilation and air-conditioning) [93]. Germany (69%) and the United Kingdom (66%)
have similar figures [202, 205]. In these countries, space conditioning mainly requires
heating. Across the European Union (EU)2, 68% of the residential energy consumption
is spent on heating [209]. In the United States, where, due to the different climate zones,
space conditioning includes heating, ventilation and air conditioning, the share of the
total residential consumption drops to 48% [222]. In Hong Kong, space conditioning
accounts only for 23% of the total energy expenditure in households as heating is rarely
necessary [208]. The figures show that for moderate climates such as northern Europe, the
energy spent on heating is an important factor if the overall energy consumption is to be
optimised.

This potential for energy savings in buildings has caused widespread change in leg-
islation regarding building insulation and heating efficiency. In 2010, the EU adopted
the 2010/31/EU directive on the Energy Performance of Buildings (EPBD) [156]. The
directive requires all member states to establish and enforce “minimum energy perfor-
mance requirements for new and existing buildings”. Certification of buildings’ energy
performance is now mandatory for all new buildings. The certification process consists
of measuring or estimating the energy expenditure of a building to be able to draw com-
parisons to other buildings. In the longer term, the directive requires all new buildings to
be “nearly zero-energy buildings”. Similar certification is part of the International Energy
Conservation Code (IECC) [213] adopted by many states in the United States.

Energy savings cannot be achieved by focussing on new buildings and renovations
alone. In the United States, 60% of homes were built before 1980 [222]. For these
homes, programmable thermostats are a reasonable alternative to costly retrofit insulation.
Studies have shown that 5% to 15% percent of the energy spent on heating in the United
States could be saved by using programmable thermostats [10, 167]. Figures 1.4 and 1.5
show the Honeywell Round manual thermostat, which has been produced since the early
1950s, and a modern, programmable thermostat. In contrast to the manual thermostat,

2As of the time of writing, the European Union was made up of 28 member states. Croatia joined in 2013
and was thus not included in the statistics.

4



1.1 Motivation

Figure 1.4: Honeywell Round ther-
mostat [204].

Figure 1.5: Honeywell FocusPRO 6000
programmable thermo-
stat [211].

Table 1.2: Programmable thermostats in the U.S. (N/A: “No Thermostat or Do Not Have
or Use Heating Equipment”).

Yes No N/A
Have a programmable thermostat 37% 48% 16%
If yes, reduce temperature during daytime 53% 47% /
If yes, reduce temperature during nighttime 62% 38% /

the programmable thermostat allows the occupants to set specific heating schedules.
A nighttime setback schedule could for example lower the temperature automatically
from 10 p.m. to 6 a.m. by 3 ◦C in order to save energy. It has been shown that such a
nighttime setback saves approximately 1% of heating energy for each degree Fahrenheit
forgone [141].

However, a recent survey has shown that only 37% of households in the United States
own a programmable thermostat (cf. Table 1.2). Moreover, of those who do own such
a thermostat, only 53% and 62% use it to reduce the temperature during daytime and
nighttime. One reason for this is that programmable thermostats are often too difficult to
use. Also, it is often unclear to occupants how much energy could be saved. The potential
savings are therefore only realised if the occupants are motivated to save energy in the first
place [143, 158]. Thus, when households reduce the temperature, they may not exploit the
full savings potential. Only 24% of U.S. households use a setpoint temperature at or below
17 ◦C during the day when the home is unoccupied [222]. 34% of thermostat owners set
the temperature to 21 ◦C or higher during unoccupied periods. Similarly, only 35% of
households have a setpoint below 19 ◦C during nighttime. Whether the lack of adoption
of programmable thermostats is the result of poor interface design [157], the widespread
misconception that constant heating is more efficient than a setback schedule [146] or
simply the feeling that the potential savings are not worth the extra effort [143], the current
state of affairs offers potential for optimisation.

Smart thermostats aim to overcome the drawbacks of manual and programmable ther-
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Figure 1.6: Typical setpoint temperatures in U.S. households (N/A: “No Thermostat or
Do Not Have or Use Heating Equipment”).

mostats by controlling setpoint temperatures automatically. Instead of requiring the
occupants to manually configure a setback schedule, a smart thermostat automatically
deduces whether heating is required by sensing the occupancy of the household. It reduces
the indoor temperature to save energy when nobody is at home and, using occupancy
prediction algorithms, reheats the house in time for the occupants’ return. This idea
to automatically and “intelligently” control heating systems has been investigated for
several years. Well-known examples of such smart heating approaches include the Neu-
rothermostat [140], the GPS Thermostat [67], the Smart Thermostat [124] and several
others [6, 46, 48, 57, 149, 169].

However, the adoption of smart thermostats is impaired by their cost and imprecise
savings figures advertised by industry. Existing smart thermostats require additional
hardware for sensing the occupancy of the household and controlling the heating and are
thus cumbersome and expensive to install. Furthermore, as the actual savings depend on
a number of household parameters such as the insulation of the building and its actual
occupancy, the projected performance of a smart thermostat may lie well below the figures
advertised by vendors. Thus, while it is not clear to the potential buyer how much energy
these devices actually save, the cost of additional hardware and uncertainty regarding their
amortisation may cause smart thermostats to stay niche products for enthusiasts.

1.2 Research goals and contributions

The goal of this thesis is to provide the technical foundations for the design and evaluation
of future smart heating systems. To this end, we investigate the use of opportunistic sensors
for detecting occupancy and analyse the energy-savings potential of controlling a heating
system using occupancy detection and prediction. We thereby address the following three
research questions:
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Can existing technology be used opportunistically to sense occupancy? Fol-
lowing recent legislation, smart electricity meters are becoming ubiquitous in many house-
holds. Current smart electricity meters report the electricity consumption of a household
to a utility company every 15 minutes and often offer the former access to the measured
data at 1 Hz for visualisation purposes. This data contains information about the current
activity level of the household and could thus be used to detect occupancy. Likewise,
many occupants carry mobile phones with Wi-Fi and Global Positioning System (GPS)
localisation capabilities from which the occupancy of the household could be derived
without requiring to install additional sensors in the household.

How accurately can occupancy be predicted? Accurate occupancy predictions are
vital in order to ensure that the home is heated to a comfortable temperature upon the
occupants’ arrival. Thus, a large number of different approaches for predicting occupancy
has recently been proposed in the literature. However, a thorough quantitative analysis of
different occupancy prediction algorithms has been missing so far. Furthermore, a lack
of analysis of the fundamental limitations of occupancy prediction with respect to the
inherent irregularity of human behaviour means that new approaches may only achieve
limited improvements over the current state-of-the-art.

How much energy may be saved by a smart heating system using occupancy

detection and prediction? Besides the accuracy of the occupancy detection and pre-
diction infrastructure, the energy required for heating a building depends on a number of
other factors including the weather, the insulation of the building and the behaviour of
the occupants. While previous work has shown the feasibility of using occupancy data,
a thorough analysis of the influence of occupancy detection and prediction on the en-
ergy savings obtainable under different environmental conditions has thus far been lacking.

Our contributions to the state-of-the-art of automatic heating control systems can be
thus summarised as follows:

1.2.1 Opportunistic occupancy sensing

We show how data from smart electricity meters and mobile phones can be used op-
portunistically to build occupancy schedules. Using concepts from supervised machine
learning we first design algorithms to infer occupancy from electric load curves. To
this end we collected a dataset in six Swiss households over a period of seven months
containing the aggregated electricity consumption, the consumption of selected appliances
and ground truth occupancy data [21]. This dataset has been made publicly available [214].
In addition to deriving occupancy from electrical consumption data, we also estimate

7
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long-term occupancy schedules from a large publicly available mobile phone location
dataset.

1.2.2 Classification and analysis of occupancy prediction

algorithms

Using these schedules, we investigate the performance of occupancy prediction algorithms.
For this purpose, we first perform a classification of state-of-the-art occupancy prediction
algorithms into schedule-based, context-aware and hybrid approaches. We thereby outline
different techniques used in the literature and categorise existing approaches. Using
the occupancy schedules of 45 individuals collected over several months, we perform a
quantitative comparison of schedule-based occupancy prediction approaches. We show
that current schedule-based prediction algorithms can achieve an accuracy around 85%,
while further improvements are unlikely due to randomness in human behaviour.

1.2.3 Analysis of the energy-savings potential of smart heating

To investigate the impact of different environmental conditions on the potential savings
achievable by occupancy detection and prediction, we derive four different building models
based on the ISO 13790 standard and simulate the heating costs for a number of different
weather scenarios. We thus show that the energy that a smart thermostat may actually save
depends to a large extent on external factors.

1.3 Outline of the thesis

We first give a short introduction to the concepts and paradigms underlying heating control
systems in Chapter 2. This chapter serves as an introduction to the terminology used in
this thesis and explores the tradeoff between energy savings and thermal comfort.

In the next three chapters, we will deal with the problem of occupancy detection from
opportunistic sensors. In Chapter 3 we introduce the infrastructure used to collect the
Electricity Consumption and Occupancy (ECO) dataset [21]. Following a description of
the dataset, we show how occupancy may be derived from the electrical load curve in
Chapter 4. In Chapter 5 we present how we derived long-term occupancy schedules from
an unlabelled mobile phone location dataset.

In the following chapters, we use these long-term schedules to analyse the performance
of state-of-the-art occupancy prediction approaches. Our classification and quantitative
analysis of the prediction accuracy of current occupancy prediction algorithms is doc-
umented in Chapter 6. In Chapter 7 we introduce the simulation model to analyse the
savings potential of occupancy prediction algorithms under different environmental condi-
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tions. Using this simulation model, we investigate the achievable savings and the resulting
comfort loss of automatically controlling the heating using occupancy prediction.

We conclude this thesis in Chapter 9 with a summary of our work and a discussion of
open challenges in occupancy sensing and prediction.
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Chapter 2
Smart heating

Heating control systems such as programmable thermostats must address the trade-off
between ensuring occupant comfort on the one hand and reducing the energy consumption
on the other. Mozer et al. succinctly summarise this problem by suggesting:

“If one is merely interested in lowering energy costs, then simply
shut off the furnace.” [140]

If the sole goal was to lower the energy consumption, the simplest (albeit not very
smart) solution would be to turn heating off at all times. Alas, while forgoing heating
altogether clearly minimises the energy consumption, such an approach is obviously
infeasible when outside temperatures drop. The main goal of a heating system remains
to ensure a comfortable indoor temperature. For many occupants, ensuring this comfort
at all times has a higher priority than energy savings [143]. Thus, the thermostat is often
constantly left on a comfortable (high) setting regardless of the presence or absence of
occupants.

While previous work acknowledges the fact that some energy savings may be gained
from persuasive approaches (such as promoting the use of programmable thermostats
and/or generally reducing the indoor temperature) [143, 158], recent publications focus on
smart heating control systems to achieve savings [48, 55, 67, 124, 128, 150, 169, 181]. The
smartness of the system typically lies in its ability to adapt to current weather conditions,
the building characteristics and the behaviour of the occupants. The difference between a
conventional automatic heating system and a “smart” one is that while the former operates
according to a pre-defined and typically deterministic (e.g. timer-based) schedule, the
latter typically adapts its control strategy to the user context. In both cases, though, the
heating is controlled automatically, i.e. with the aid of a thermostat that does not require
explicit human intervention.

11
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In fact, the energy consumption can be minimised by heating when necessary (i.e.
ensuring the temperature is always at a comfortable level when the home is occupied)
and allowing the temperature to drop otherwise. To this end, a smart heating system uses
occupancy detection and prediction strategies to find the correct times for changing the
temperature of the home.

This chapter introduces the concepts and terminology behind smart heating based on
occupancy sensing and prediction. We will thus first discuss the general operation of
an automatic heating control system in Section 2.1. After that, Section 2.2 explores the
concept of thermal comfort, before Section 2.3.1 concludes with some general observations
on the constraints of a smart heating system posed by the physical characteristics of the
building that is to be kept comfortable.

2.1 Automatic heating control

An automatic heating control system can be seen as a regulator that ensures that the
(average) air temperature measured within a home is sufficiently close to a given target
value. To this end, the system controls the activation and deactivation of the heaters
available in the home (e.g. radiators and/or electrical heaters). Typically, at least two
different target temperatures are defined: the setback temperature and the comfort (or
setpoint) temperature, indicated as Θsetb and Θcomf respectively. Θcomf is typically set by
household occupants depending on their personal preferences and indicates the temperature
at which they feel comfortable.

The value of Θcomf will typically be around 21 ◦C [71]. The setback temperature Θsetb

in contrast is defined as the lowest (average) value at which the air temperature of the
household is permitted to fall when the occupants are out (or asleep). There are several
issues that need to be considered when setting suitable values for the setback temperature.
In particular, Θsetb must be sufficiently low to allow for significant energy savings (as the
heaters can be – at least temporarily – be deactivated) but still high enough that the time
needed to bring the household back up to Θcomf does not exceed a reasonable value.

2.1.1 Occupancy sensing and prediction

Smart heating systems must use adequate procedures to both sensing and predicting the
household occupancy state. We define occupancy as follows.

A room or building is said to be occupied at a time instant t if at least one of its residents
is at home; otherwise, it is said to be unoccupied. The occupancy state of a house can thus
be represented as a binary value (1 for occupied and 0 for unoccupied).

It is usually convenient to represent the historical occupancy states by dividing the hours
of the day in Ns equally spaced intervals – called slots. An occupancy vector Γ is then a
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a) Reactive control (sensing only)
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Figure 2.1: Automatic heating control systems based on occupancy sensing and prediction.
Figure uses clipart from openclipart.org [206, 207].

1×Ns vector of binary values in which the ith element indicates whether the home was
occupied or unoccupied during slot i. More specifically, we use Γ1..96 to denote a 24-hour
ground truth occupancy vector and γ1..96 to refer to a 24 hour predicted occupancy vector
based on 15-minute timeslots. Accordingly, an occupancy schedule is a Nd×Ns matrix
containing occupancy data for Nd consecutive days. To accommodate slots for which no
data is available, occupancy states can also be represented using three – rather than two –
symbols, where one symbol is reserved to represent an unknown occupancy state.

An occupancy-based automatic heating control system

Figure 2.1 shows the operation of an occupancy-based automatic heating control system1,
both for reactive control (Figure 2.1a) and predictive control (Figure 2.1b). In the reactive
control system, which is purely based on sensing the current occupancy, the heating
schedule (i.e. the activation states of the heating system) is equivalent to the sensed

1In this scenario “Heating is on” is equivalent to setting the thermostat to the comfort temperature, while
“Heating is off” corresponds to a setting of the setback temperature. How the heating control system
interprets these settings is determined by the available infrastructure and environmental conditions.
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Figure 2.2: Heating automation.

occupancy. As the system only knows the current and past occupancy states, it can only
react to a change in occupancy. Thus, as the occupants leave the building at 9 a.m., the
heating is duly switched off and the house allowed to cool. However, when the occupants
return at 5 p.m., they return to a cool building resulting in a loss of comfort.

This problem is alleviated by occupancy prediction algorithms. Figure 2.1b shows the
same scenario with occupancy prediction. Here, the heating is also allowed to switch
off at 9 a.m. but it is reactivated prior to the arrival of the occupants at 2 p.m. to reheat
the building in time for the occupants’ arrival at 5 p.m. Figure 2.1 thus shows that
only a predictive heating system can ensure occupant comfort while reducing the energy
consumption during the absence of occupants.

2.1.2 Optimal control

To achieve energy savings, an optimal heating system should thus be able to maintain
the temperature of a home at Θsetb for as long as possible, so as to reduce the amount of
energy spent on heating. At the same time, the system must ensure that the temperature is
close to Θcomf whenever at least one occupant is at home (and awake) – so as to avoid any
loss of comfort. However, the time needed to bring the home from Θsetb to Θcomf (and vice
versa) is typically non-negligible (e.g. > 1 hour). An optimal heating system therefore
needs to be able to both immediately detect when the home becomes unoccupied – so as
to turn off the heating – and also reliably predict when it will be occupied again – in order
to restore the temperature to Θcomf by the time the occupants return.

Figure 2.2 shows the operation of such an automatic control system. The figure shows
the indoor air temperature for an automatic heating control system based on the same fixed
schedule as in the previous section. The house is assumed to be occupied from 12 p.m. to
9 a.m. and from 5 p.m. to 12 p.m. During the day, from 9 a.m. to 5 p.m., the temperature
is allowed to drop no further than a setback temperature Θsetb of 14 ◦C. Following the
departure of the occupants at 9 a.m. the temperature quickly drops until the setback is
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Figure 2.3: Comfort loss.

reached around 11.30 a.m. From this point onwards, the system keeps the temperature
equal to Θsetb until approximately 3.15 p.m. At this point, the system has determined that
in order to reach Θcomf upon the arrival of the occupants it needs to start heating now.

The shaded areas show the energy required for these two phases. During both the
cooldown period and the following setback period, the energy consumption of the heating
system is lower than that of a system that keeps Θcomf throughout the day. During the
re-heating phase, the energy consumption is naturally higher as heat has to be added to
the system. From a visual inspection of the shaded areas one can see that the energy
saved by using the setback schedule is clearly larger then the energy required for reheating
the building. We will use such optimal control system in our evaluation of occupancy
prediction algorithms in Chapter 8.

2.1.3 Reactive control

In contrast to the optimal control system, a purely reactive system shows what may
happen if the system incorrectly predicted the occupants. Upon their arrival, the occupants
experience comfort loss as the current indoor temperature is still at Θsetb. Figure 2.3 shows
the temperature for both an optimal predictive controller and a reactive controller. As in
the previous examples, the building is unoccupied from 9 a.m. to 5 p.m. The failure to
heat prior to the arrival of the occupants at 5 p.m. results in lost comfort for the residents.
The heating system requires about one hour to reheat the building to Θcomf. During this
time, the temperature is below Θcomf. This comfort loss can be quantified by the shaded
area. Right after the arrival of the occupants, the temperature is furthest away from Θcomf.
As the heating system starts to reheat the building, this difference becomes smaller. The
area between the two curves is often referred to as heating degree hours. We will revisit
this concept in Chapter 8 when we analyse the performance of smart heating systems

15



Chapter 2 Smart heating

Table 2.1: Fanger’s thermal sensation
scale.

Scale Thermal sensation
+3 hot
+2 warm
+1 slightly warm
0 neutral
−1 slightly cool
−2 cool
−3 cold
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Figure 2.4: Relationship between Fanger’s
PPD and PMV.

based on occupancy detection and prediction. However, comfort cannot be captured by
the difference between the current and setpoint temperatures, alone.

2.2 Thermal comfort

The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
describes thermal comfort as “that condition of mind that expresses satisfaction with the
thermal environment” [13]. As such, it is not solely dependent upon the current air or
radiant temperature but determined by a combination of these with other factors such
as health, psychology, clothing and activity of the occupants. These relationships were
first examined by Ole Fanger’s doctoral thesis on thermal comfort in 1970 [53]. Today,
Fanger’s static comfort model is one of the foundations of various building standards
such as the ASHRAE Standard 55 on the “Thermal Environmental Conditions for Human
Occupancy” [13] and the ISO 7730 standard on the “Ergonomics of the Thermal Environ-
ment” [83]. In a shared space such as a building, achieving global thermal satisfaction
of all occupants is impossible. Fanger’s static model, however, helps to characterise the
level of comfort achieved by a particular thermal environment and the number of people
dissatisfied with it.

2.2.1 Static comfort models: Fanger’s PMV and PPD

ASHRAE 55 identifies six primary factors influencing thermal comfort (cf. Table 2.2).
Relating to the occupants it includes their metabolic rate and clothing level. The metabolic
rate of the occupants is determined by their physique and activity. The clothing level
depends upon the material and number of layers of clothing worn by the occupants.
With respect to the building, ASHRAE 55 identifies the air and radiant temperatures as
well as the air speed and humidity as relevant factors. A large difference between the
air temperature and the mean radiant temperature2 is a cause for discomfort. Likewise,

2The mean radiant or masonry temperature is the average temperature of all building parts.
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2.2 Thermal comfort

Table 2.2: Sample calculation of Fanger’s PPD and PMV (PMV = -0.42, PPD = 9%).
Factor Typical value
Air temperature 21 ◦C
Mean radiant temperature 18 ◦C
Air speed 0.1 m s−1

Humidity 50%
Metabolic rate 1.2 met (standing, relaxed)
Clothing level 1 clo (typical winter indoor)

draught3 and high or low humidity values cause discomfort to the occupants. These factors
where studied in detail by Ole Fanger in 1970 [53]. Fanger came up with a model to use
these factors to calculate the thermal sensation felt by the occupants on a seven-point
scale (cf. Table 2.1). The resulting Predicted Mean Vote (PMV) and Predicted Percentage
Dissatisfied (PPD) metrics are discussed below.

Predicted Mean Vote (PMV)

Table 2.1 shows the Fanger’s thermal sensation scale4 of an individual ranging from +3
(hot) to −3 (cold). The ideal value on the thermal sensation scale is zero, indicating
thermal neutrality. Fanger’s scale is based on the heat balance of the human body. If the
metabolic rate is equal to the heat loss to the environment, thermal balance is obtained. If
the heat loss to the environment is greater than the metabolic rate, the person is feeling
cold. If the metabolic rate is greater than the heat dissipated to the environment, the
person is feeling hot. The human body will try to restore thermal balance by shivering and
sweating, respectively. Fanger defined the thermal sensation as “the difference between the
internal heat production and the heat loss to the actual environment for a man kept at the
comfort values for skin temperature and sweat production at the actual activity level” [53].

To find the relationship between the environmental factors and comfort, Fanger con-
ducted experiments in a climate chamber. He subjected probands to different environ-
mental conditions and recorded their comfort vote. The result are a set of equations
leading to an prediction of the participants thermal sensation in a particular environment.
Fanger’s Predicted Mean Vote (PMV) gives an indication of the mean thermal sensation
of a large group of people on the thermal sensation scale. The comfort zone is defined for
any combinations of the six primary factors such that −0.5 < PMV <+0.5. By varying
the parameters, it can be checked which environmental conditions ensure a thermally
comfortable environment. ASHRAE 55 and ISO 7730 include a method for calculating
the PMV programmatically from the six primary factors highlighted above [83]. Table 2.2
shows an example of an ASHRAE 55 compliant thermal environment. In this example,
we assume an indoor air temperature of 21 ◦C and a mean radiant temperature of 18 ◦C.

3Currents of cold air through cracks or other openings in the building envelope.
4Fanger’s thermal sensation scale is also used in ASHRAE 55 and ISO 7730.
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Chapter 2 Smart heating

The occupants wear typical winter clothing and have a slightly elevated activity level
(standing, relaxed). Air speed and humidity are at 0.1 m s−1 and 50%. In this environment,
the PMV following ASHRAE 55 and ISO 7730 is calculated as −0.43, which lies within
the comfort zone.

Predicted Percentage Dissatisfied (PPD)

The downside of the PMV metric is that it does not reflect the thermal comfort of individual
occupants. In order to maximise overall comfort, Fanger’s PPD attempts minimise the
number of occupants feeling discomfort in the current thermal environment. Equation 2.1
defines the PPD in terms of the PMV. The formula was derived empirically by Fanger
from climate chamber experiments.

PPD = 100−95× e−0.03353×PMV4−0.2179×PMV2
(2.1)

Figure 2.4 shows the relationship between the PMV and PPD [13]. In the comfort zone
(i.e. −0.5 < PMV <+0.5, as above), 10% of occupants are dissatisfied with the thermal
environment. As the comfort zone is left, the number of dissatisfied occupants increases.

Alternatively to the calculation of the PMV-PPD, in an existing building, a heating,
ventilation and cooling (HVAC) engineer5 may ask occupants to fill in questionnaire
asking for their thermal sensation [13]. The replies can then be used to assess the overall
suitability of the current environment to achieve thermal comfort. ASHRAE 55 includes a
template for such a questionnaire [13]. A survey on the thermal satisfaction may identify
design flaws related to the unintended use of the system. Furthermore, the underlying
“occupant psychosocial conditions can impose a strong influence on subjective assessment
of the environment” [13]. By conducting such a survey, design protocols can be improved
and mitigation strategies for improving comfort can be found.

Limitations

The PMV model deals only with steady-state conditions. It thus for example ignores
that occupants may experience different thermal sensations when moving from a cold
to a warm place. Furthermore, the static model does not include a variable environment
temperature. It implies that the comfortable indoor temperature is not affected by the
current season and thus maintains the same indoor temperature year-round. This constant
temperature regime is usually not feasible in practise as occupants adapt their clothing to
the different seasons. Furthermore, such a static temperature setting usually increases the

5Heating, ventilation and cooling (HVAC) is an umbrella term for technology used to ensure indoor thermal
comfort and air quality. Heating refers to appliances generating heat in a building. This can either be
done locally (e.g. by electric room heaters) or centrally (e.g. by hydronic heating with a gas-powered
boilers). Ventilation is the process of regularly replacing air to ensure air quality (e.g. removing carbon
dioxide, moisture, odours and smoke). Air-conditioning refers to cooling and humidity control.
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2.2 Thermal comfort

difference between the environment and indoor temperature leading to discomfort when
moving from the indoors to the outdoors and vice versa.

The calculation of the PPD is based on the simplifying assumption that it is symmetric
around a neutral PMV. It does not add any information. As such, the real percentage of
dissatisfied occupants may vary considerably from the one predicted by the PPD.

The PMV model is based on mean observations from a climate chamber. As measuring
(or even mandating) the metabolic rate of real occupants is infeasible, it is impossible to
ensure that all different physiologies are dealt with in the static PMV model. ASHRAE
55 notes this by limiting the scope of the standard: “it is not possible to prescribe the
metabolic rate of occupants, and because variations in occupant clothing levels, operating
setpoints for buildings cannot practically be mandated by this standard” [13]. Essentially,
the PMV can only be used as general guidance for adapting the thermal environment.

The difficulty to measure or estimate the six parameters has led to simplifications.
Values corresponding to activity and clothing levels are often obtained by assuming office
work and correlating clothing level with outside temperature. As draught is generally
accepted as uncomfortable, air speed is also reduced to a minimum.

2.2.2 Adaptive comfort model

While the static comfort model assumes steady-state conditions and thus maintains a
constant thermal environment year-round, the adaptive comfort model tries to incorporate
outdoor climate influences. Previous work has shown that thermal satisfaction is influenced
by the context of the occupants [37]. The ability to control the thermal environment as
well as past thermal history influence thermal satisfaction especially in naturally ventilated
buildings. Compared to sealed and air-conditioned buildings, occupants in naturally
ventilated buildings have been found to accept a larger range of comfort temperatures [37].
For buildings where the occupants are free to chose their clothing level, the adaptive
comfort model defines the range of acceptable operative temperatures as a function of the
mean monthly outdoor air temperature [13].

2.2.3 Local comfort models

Both Fanger’s PMV and the adaptive comfort model do not track individual occupants’
thermal comfort levels. To overcome this and in order to assess thermal satisfaction per
person, Gao et al. introduce the so-called “Predicted Personal Vote” [61], an adaptation of
Fanger’s PMV for individual occupants. The authors observe that different micro climates
might exist in an office building and therefore suggest that heating and cooling “within the
personal work space would be for the benefit of a single worker” [61]. They advocate the
use of radiant heaters and fans to “maintain the comfort level of individual workers” [61].
The authors use Microsoft kinect cameras to monitor the position of occupants and to
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Table 2.3: Thermal properties used to describe the energy performance of building materi-
als and components.

Property Description
Specific Heat J/(kg K) Heat per unit mass to raise the temperature of a material by one

degree Kelvin (e.g. Brick = 0.840 J/(kg K), Wood = 1.7 J/(kg K)).
Heat Capacity (Capacitance) J/K Thermal mass of a body (i.e. Specific Heat x Mass). A high

thermal mass can help to flatten out changes in the outside tempe-
rature.

Thermal Conductivity W/(m K) Measure of a material’s ability to conduct heat (e.g. Concrete =
1.7 W/(m K), Wood = 0.04-0.4W/(m K), Air = 0.025 W/(m K)).

Thermal Resistivity m K/W Measure of a material’s ability to resist a flow of heat.
Absolute Thermal Resistance K/W The thermal resistance of a body (e.g. a heat sink).
Density kg/m3 Mass per unit volume.
Thermal Absorbance Fraction of absorbed long wavelength radiation.
Solar Absorbance Fraction of absorbed solar radiation.
Visible Absorbance Fraction of absorbed visible wavelength radiation.

let them use gestures to adjust their thermal preferences. An infrared thermometer is
used to measure the clothing surface temperature. The clothing level is estimated using
a linear regression model. The PPV is used to reactively control a heater in the office.
In a follow-up work [60], the same authors use their system to predictively control the
temperature in an office environment.

In contrast to Gao’s work, the “Thermovote” approach by Erickson et al. [49] is allowing
occupants to vote on the current temperature. The voting is facilitated by an iPhone
application and uses the ASHRAE thermal satisfaction scale. The approach is simplifying
the survey approach of ASHRAE 55 but also requires continuous user interaction.

Lam et al. propose a participatory approach based upon a combination of Gao’s and
Erickson’s work [115]. Their system includes a mobile application to vote on the current
thermal conditions and a custom comfort model based on the metabolic rate of occupants.
The authors thus claim to solve the problems of continuous user interaction and missing
model parameters. Unfortunately, the authors made a mistake quoting the comfort zone
from ASHRAE 55 to be from -1 to 1 (it is -0.5 to 0.5 as discussed above) [13]. This
invalidates the authors’ claim that 89% of the votes were within the comfort zone.

2.3 Building constraints

The energy savings obtainable and the potential comfort loss of a smart heating system
depend to a great extent on the building itself. Zero energy buildings, which are inde-
pendent from the energy supply, might not need predictive heating control – although
they must be carefully ventilated. For most existing buildings, however, efficient heating
control algorithms based on actual occupancy could potentially save a substantial amount
of energy as their insulation is insufficient.
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2.3.1 Thermal properties

The thermal properties of the building and its environment determine the efficiency of the
heating infrastructure. Table 2.3 shows various thermal properties of building materials
and components which are currently used to assess the energy performance of buildings.

Storing energy

The specific heat is the amount of heat needed to raise the temperature of a material of a
certain mass by 1 K. It is therefore a measure of how much energy can be stored inside
the material. A body with a high volume and a high specific heat – a high thermal mass –
can store more energy and is more immune to variations in the surrounding temperature.
While this prevents uncomfortable fluctuations in the indoor temperature, it also poses a
challenge for a reactive heating control systems as seen in Section 2.1.3. If the house has
been left to cool over an extended period of time, comfort is lost due to the slow ramp up
time upon the arrival of the occupants.

A lower thermal mass, on the other hand, shortens the ramp up time. As shown in
Table 2.3, wood has a high specific heat of around 1.7 J/(kg K). However, allowing for
the low density (i.e. beech has about 800 kg/m3), the volumetric heat capacity of wood
(1360 kJ/(m3 K)) is lower than the one of brick (1610 kJ/(m3 K)). Brick can therefore store
more energy and stabilise indoor temperatures when night and day temperatures vary. This
effect is stronger the more temperatures vary.

Retaining energy

The thermal conductivity or its reciprocal thermal resistivity measure a material’s ability
to conduct or resist a flow of heat. A low thermal conductivity means that the material is a
good insulator. As brick has a higher thermal conductivity, additional insulation is needed
to prevent the home from loosing heat through the brickwork. Wood on the other hand is a
better insulator, which does not require additional insulation.

Heating efficiency depends on building properties

This discussion of the thermal properties of buildings goes to show that the efficiency of a
heating control system relies to a large extent on how the building is designed and operated.
This makes it difficult to analyse the savings of a smart heating system based on occupancy
detection and prediction solely from a few specific examples. Moreover, as discussed in
the previous section, the indoor air temperature is not the sole factor determining thermal
comfort. As homes get better insulated, it becomes increasingly important to regulate the
airflow in order to avoid mould or an increase in CO2 levels.
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Chapter 3
Towards opportunistic occupancy sensing:

The ECO dataset

Occupancy detection is an important component of commercial and residential building
automation systems. Systems that typically regulate HVAC are usually based on dedicated
sensors to provide occupancy information [124, 169]. Similarly many lighting systems
rely on the detection of the presence (or absence) of people to automatically switch lights
on (or off) [65]. Occupancy detection is also applied outside the domain of building
automation. For example, Dickerson et al. showed that sensing a change in occupancy
patterns can help to reveal clinical diseases such as depression [40].

In commercial building automation systems, occupancy detection is typically provided
by dedicated infrastructure such as passive infrared (PIR) sensors, magnetic reed switches
and cameras [48, 124]. Despite the large number of application scenarios, such an
occupancy detection infrastructure is cumbersome and expensive to install [144]. It
necessitates the purchase, installation and calibration of multiple sensors. First commercial
products targeting heating in a residential environment [192, 196, 198] are still expensive
and non-trivial to install and operate. They thus only cater for a small segment of
technologically savvy enthusiasts. In contrast to traditional building management systems
(BMSs), which are often used in commercial buildings, in a residential environment it
is often also only possible to install a few cheap and possibly imprecise sensors as the
overall costs of the infrastructure must be kept low.

Besides the initial cost for the installation of the infrastructure, a building automation
system requires continuous maintenance. This poses critical constraints for the adoption
of such a system. In a residential scenario, the significant installation and maintenance
overhead is typically shouldered by a layman “building administrator” – an (often more or
less technically inexperienced) resident of the household. Faulty installations and a lack
of maintenance are a frequent consequence.

Taken together, these constraints can cause inconvenience to the users and restrict the
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Chapter 3 The ECO dataset

Table 3.1: Overview of dataset.
Sensor / (#) Description # Records
Landis+Gyr E750 (6) Smart Electricity Meters 125,987,285
Plugwise Sting (45) Smart Power Outlets 686,655,790
Fluksometer (6) Network monitor (ICMP Echo) 1,585,595
Roving RN-134 (6) Low-Power Wi-Fi (PIR Sensor) 563,758
Samsung Galaxy Tab P7510 (6) Occupancy level ground truth data 6,396

acceptance of the system. We will thus investigate if technology that currently already
exists in many households can be used to sense occupancy. To this end, we advocate the
opportunistic use of existing infrastructure such as smart electricity meters to reduce costs
and to increase the reliability of occupancy sensing.

To evaluate the feasibility of smart electricity meters as occupancy sensors, we recorded
and published the Electricity Consumption and Occupancy (ECO) dataset [21]. The ECO
dataset contains sensor data from a large set of heterogeneous sensors (smart electricity
meters, passive infra-red sensors, smart power outlets and connected network devices)
from six Swiss households over a period of seven months. Table 3.1 shows an overview of
the data collected.

Our analysis of occupancy sensing using smart electricity meters is split into two
separate chapters. In this first chapter, we highlight related datasets and occupancy sensing
infrastructure in Section 3.1, before we elaborate on the design and operation of our own
data collection infrastructure (cf. Sections 3.2 and 3.3). Before we conclude this chapter in
Section 3.5, we furthermore describe in detail the ECO dataset in Section 3.4. In the next
chapter (Chapter 4) we will then analyse how occupancy information can be derived from
the electrical load curve using machine learning algorithms. This chapter is based on the
contributions made in [21, 102].

3.1 Related research work and datasets

To evaluate smart electricity meters as occupancy sensors, we first look at related work
in occupancy sensing. We then cover the more general topic of significant place sensing,
before we cover other datasets containing occupancy, location and electricity consumption
data.

3.1.1 Occupancy sensing

Many authors have focused on occupancy detection in residential households. In 1995,
Mozer et al. introduced the Neural Network House project [139]. The authors retro-
fitted an old school house with “nearly five miles of conductor” to sense occupancy
and other environmental variables [140]. In a follow-up work, Mozer et al. use the
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Figure 3.1: Dedicated sensor panel
from the Neural network
house [139]. Left shows loud-
speaker for communication
with occupants. On the right
are sensors for temperature,
ambient light and sound [217].
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Figure 3.2: Occupancy sensing infrastruc-
ture used by Agarwal et al. [6].
Occupancy node (containing
PIR sensor) is built from an Air
Wick air refresher [190].

Neural Network House to investigate how a smart thermostat could be realised in such an
environment [140]. Figure 3.1 shows one of the sensor panels used in the Neural Network
House. It incorporates a number of sensor and a loudspeaker for communication with the
occupants. In their Smart Thermostat paper, Lu et al. propose a simpler approach [124]. It
relies on cheap off-the-shelf wireless PIR sensors and magnetic reed switches. By using
X10 technology the authors aim to keep the cost at around $25 per household. Other
authors rely on recognising occupants using electronic tags. Thus, besides employing
traditional PIR sensors to register per-room occupancy, Scott et al. use an RFID-based
system that requires occupants to deposit their house keys near a receiver at the entrance
of the property [169].

Office buildings are also targeted for occupancy detection. Dodier et al. use Bayesian
network model to fuse data from multi-modal binary sensors to detect occupancy in an
office environment [43]. To overcome the inaccuracy of the PIR technology1, the authors
have built a sensor to determine if a telephone conversation is in progress (i.e. if the
telephone is off-hook). The OBSERVE system by Erickson et al. instead relies on a
homogeneous wireless camera system to continuously estimate the number of people
occupying rooms in public buildings (e.g. meeting rooms) [48]. In contrast to other
systems, the work by Erickson et al. highlights the need to sense the “level” of occupancy
in order to adjust ventilation for increased air quality. Beltran et al. follow the same
objective but address privacy concerns by avoiding the use of cameras. Instead they use an

1PIR sensors can produce false negatives if occupants do not move around.
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array of thermal sensors in conjunction with a PIR sensor to detect occupancy levels in a
room [24]. Similarly, Milenkovic et al. equipped three offices with PIR sensors and plug-in
power meters, which measured the energy consumption of the computer screens [134].
The authors estimated the number of persons in the office as well as their current activity
(e.g. desk work). Khan et al. discuss an occupancy monitoring system based on light,
humidity, noise and passive infrared sensors. Like the approach by Erickson et al. Khan
derive occupancy at various levels of granularity ranging from binary occupancy to the
level of occupancy [94]. Agarwal et al. presented an infrastructure based on PIR sensors
and reed switches for office buildings [6]. Figure 3.2 shows the infrastructure used by
Agarwal. A dedicated occupancy node records data from a built-in PIR sensor while an
adjacent reed switch monitors the state of the door.

Another strategy for detecting occupancy consists of interrogating sensors carried
by the residents, such as dedicated wireless transmitters or GPS modules embedded in
mobile phones [67, 113]. Thereby, a mobile phone might share its location with the smart
thermostat to determine the optimal time to start re-heating the home. We will discuss
mobile phone based occupancy detection in Chapter 5.

Occupancy sensing has a long tradition in building automation. In the context of auto-
matic lighting control, Guo et al. provide an overview of occupancy sensing hardware [65].

3.1.2 Datasets containing electricity consumption data

To aid the development of so-called non-intrusive load monitoring (NILM) algorithms that
take the aggregated consumption of the household and produce device-level consumption
statistics, several authors have collected datasets containing device-level consumption data.
The Reference Energy Disaggregation Dataset (REDD) collected by Kolter et al. contains
the aggregate electricity consumption of five homes in the United States along with
measurements for individual circuits and appliances over several weeks [110]. Recently,
Barker et al. published the UMASS Smart* Home dataset [16] containing detailed submeter
measurements from 21-26 circuit meters in three homes over three months. However, in
contrast to our dataset, the three homes in the Smart* dataset are not instrumented to the
same level. Only one of the households contains data from PIR sensors. Further NILM-
centric datasets include the GREEND [137], BLUED [11], AMPds [125], UK-Dale [92],
iAWE [18] and the Pecan Street [75] dataset.

In contrast to the ECO dataset, none of these datasets contains ground truth information
on the occupancy patterns of the inhabitants2. Furthermore, in addition to including
occupancy information, our ECO dataset extends existing datasets in three aspects. First,
it covers a long timespan – seven months. From the datasets mentioned above, only
the AMPds and the UK-Dale datasets cover a similar timespan. Secondly, the aggregate

2The Smart* dataset contains data from PIR sensors but no user-annotated ground truth.

26



3.2 Experimental setup of our occupancy sensing infrastructure

consumption data contained in the ECO dataset is very detailed and contains measurements
of both the real and reactive power for all three phases. This level of detail is only matched
by the AMPds, the iAWE and the BLUED datasets. Thirdly, the ECO dataset contains plug-
level data at 1 Hz frequency which is only matched by the Smart*, iAWE and GREEND
datasets.

3.2 Experimental setup of our occupancy sensing

infrastructure

To estimate the occupancy state of a household based on an opportunistic sensing infras-
tructure, we performed an extensive data collection in collaboration with a utility company
in Switzerland. We collected a multi-modal dataset in six households over the course
of seven months. In addition to the electricity consumption of a household the dataset
contains sensor information collected from PIR sensors and smart power outlets. The
households also recorded ground truth occupancy data through a tablet computer. This
section describes the selection of households and our measurement infrastructure.

3.2.1 Selection of households

For the data collection we chose the participating households among employees of a utility
company in Switzerland. Prospective participants were required to fill in a questionnaire.3

The questionnaire contained 12 questions targeting the number, age and occupation of the
occupants, type of property, number of entry doors, typical occupancy, type of heating,
pet ownership as well as the level of affinity for technology of the respondent. The affinity
for technology was requested through a 7-point Likert scale (1: low, 4: medium, 7: very
high) [119]. The purpose of the questionnaire was to ensure households have a reasonable
size (i.e. 1-4 occupants) and participants are well-disposed to technical equipment. Also,
we avoided to include households in which occupants used more than one entrance, because
we wanted each participant to log occupancy through a tablet computer located near the
main entrance. To each participant we handed a privacy statement that described the data
gathered and the household’s ability to opt out at any time during the data collection.

Table 3.2 shows an overview of the households ultimately selected to participate in
the data collection4. Three of the households consist of two occupants, while two of the
households are occupied by four persons. Four out of the five respondents live in detached

3Note that we only selected households 1-5 based on the questionnaires. Household 6 did not fill out a
questionnaire. It participated in the collection of sensor data, however the participants did not specify
their occupancy through the tablet computer. For these reasons, household 6 is omitted from the analysis.

4The full table containing all data obtained from the questionnaires can be found in Appendix A.
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Table 3.2: Overview of the participants.
Household No. of occupants Type of property Tech. affinity
r1 2 adults, 2 children House 7/7
r2 2 adults Flat 7/7
r3 2 adults House 7/7
r4 2 adults, 2 children House 4/7
r5 2 adults House 6/7
r6 2 adults House -

houses, only the occupants of household r2 live in a flat. All respondents except for one
classified themselves as having a high affinity for technology.

3.2.2 Overview of the architecture

Figure 3.3 shows a schematic view of our opportunistic occupancy sensing architecture
for one household. As outlined in by Hnat et al. in [74], each type of sensor has its
own advantages and drawbacks and can only guarantee limited confidence in estimating
the actual occupancy state. For this reason, we have fitted all households with multiple
heterogeneous sensors.

The aggregate electricity consumption of the household is measured by a smart electric-
ity meter. It records data such as the real and reactive power at a frequency of 1 Hz. The
consumption of selected individual appliances is measured using smart power outlets. In
addition to the electricity consumption, our architecture also persists movements recorded
by a PIR sensor installed near the entrance of the building. The PIR sensor doubles as a
trigger to toggle the display of an Android tablet computer also installed near the entrance.
The tablet computer visualises the current electricity consumption and provides buttons for
the collection of occupancy ground truth. In some households the system also periodically
recorded the media access control (MAC) addresses of devices reachable on the local
network.

The data from the system was transmitted to a Web server at ETH Zurich for analysis.
In the following sections we will describe the individual parts of the system.

3.2.3 Data collection infrastructure

All the data collected in this deployment is transferred over HTTP to a RESTful Web
server at our institution. The server is built around a Java Servlet, which stores the raw
values into a database for further processing. Figure 3.6 shows all Web-enabled devices
that sent messages (e.g. HTTP POST requests) to the Web server. The Web server provides
a user interface based on the dojo JavaScript toolkit [191], which allows to assess the
current status of the overall system and to add or remove sensors and residences. It also
offers a simple visualisation of the data from the smart electricity meters and the smart
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Smart Electricity 
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PIR 

Sensor

Android

Tablet

Smart 

Power 
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Figure 3.3: Schematic overview of the sensor deployment in one household.

Figure 3.4: Landis+Gyr E750
ZMK400 smart electric-
ity meter.

Figure 3.5: Fluksometer v.2.

plugs. Any unresponsive sensors (e.g. sensors which have not communicated new values
over a minute) are highlighted to allow for a quicker recovery from failures. The WebUI
was not available to the participants during the data collection.

3.2.4 Aggregate electricity consumption

Previous work has shown that electricity meters could provide clues regarding human
activity – and thus the presence of residents – within a home [33, 102]. To evaluate the
suitability of the electricitiy consumption as an indicator for occupancy, all six households
were fitted with Landis+Gyr E750 smart electricity meters (cf. Figure 3.4) [116]. The
smart meters were connected in series behind the original meter and not used for billing
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Table 3.3: Excerpt of data provided by the Landis+Gyr E750 through the SML interface.
Description OBIS code Unit
Sum of effective power over all phases 01 00 0F 07 00 FF Watt
Effective power phase 1 01 00 23 07 00 FF Watt
Effective power phase 2 01 00 37 07 00 FF Watt
Effective power phase 3 01 00 4B 07 00 FF Watt
Effective current neutral 01 00 5B 07 00 FF Ampere
Effective current phase 1 01 00 1F 07 00 FF Ampere
Effective current phase 2 01 00 33 07 00 FF Ampere
Effective current phase 3 01 00 47 07 00 FF Ampere
Effective voltage phase 1 01 00 20 07 00 FF Volt
Effective voltage phase 2 01 00 34 07 00 FF Volt
Effective voltage phase 3 01 00 48 07 00 FF Volt
Shift between voltage phases 1/2 01 00 51 07 01 FF Degree
Shift between voltage phases 1/3 01 00 51 07 02 FF Degree
Shift between current/voltage phase 1 01 00 51 07 04 FF Degree
Shift between current/voltage phase 2 01 00 51 07 0F FF Degree
Shift between current/voltage phase 3 01 00 51 07 1A FF Degree

purposes. The installation was carried out by an employee of our industrial partner.
The E750 provides averaged active and reactive power measurements at a frequency
of 1 Hz [116]. Table 3.3 shows the variables obtained from the smart meter during the
deployment.

Smart Message Language (SML)

For the purpose of remote metering, the E750 implements the Smart Message Language
(SML) protocol [183]. SML is a request-response protocol and allows a client to send a
request specifying the variables to be read. Once the request is received by the smart meter,
a reply is formulated containing the variables requested. Variables such as power, voltage
and current used in the request and response are identified using the Object Identification
System (OBIS), which is standardised in IEC 62056-61 [79]. However, manufacturers
may specify additional codes to communicate vendor-specific variables. Table 3.3 shows
the OBIS codes of all the variables used in this deployment.

The E750 uses a monotonic non-decreasing clock (i.e. a counter that measures the num-
ber of discrete seconds since the meter was taken into operation). Therefore, timestamps
have to be dealt with on the client side. In our case, the E750 was read out using a Flukso
(cf. Section 3.2.4) via its Ethernet interface. The Flukso is associating a timestamp with
every measurement after receiving the measurement. The Flukso itself synchronises its
clock using the Network Time Protocol (NTP) [135].
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Figure 3.6: Schematic overview of whole deployment.

Communication module

As shown in Figure 3.6 we used a Fluksometer (Flukso) to communicate the data from
the smart meter to the Web server at ETH Zurich. The Flukso is a community metering
device, which allows enthusiasts to measure their electricity consumption online [193].
The Flukso has a built-in sensor board to which up to three current clamps to measure
the electricity consumption may be connected. Essentially built on router components,
the Flukso consists of an Atheros AR5007AP-G (AR2317) Wireless System-on-a-Chip
(WiSoC) with 8 megabyte flash memory and 16 megabyte RAM and runs OpenWrt [52].
The interface to the sensors is realised using an ATmega168 microcontroller. The Atheros
offers an Ethernet port and a built-in Wi-Fi module. The system is designed to work
with current clamps and to communicate measured values via Ethernet or Wi-Fi to the
flukso.net platform. However, as the device runs on a version of OpenWrt its software
can be easily extended through additional packages [52]. We have chosen the Flukso over
a standard router to allow for the integration of households with no smart meter (through
the use of current clamps) into our system. However, since OpenWrt is supported by a
wide range of devices [194], a different device may have been chosen.

We have extended the Fluksometer to support the SML protocol by porting the current
version of libSML, an Open-Source SML library developed by the DAI-Labor at TU-
Berlin, to OpenWrt [210]. The libSML library allows us to communicate with the E750.
Our client software (pylon), which is built on top of libSML, is available on GitHub [218]
Pylon reads the variables from the smart meter every second and communicates them
to the Web server using parallel HTTP POST requests from the curl library. We have
parallelised the requests to make sure that the network latency does not impair our ability
to record new data. In addition, the Flukso automatically caches data that could not be
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Figure 3.7: Smart plug from Plug-
wise that measures the
electricity consumption
of a attached appliances.

Figure 3.8: Sheeva plug computer.

send due to network problems. It automatically resends these data when the connection
becomes available again. Furthermore, a watchdog process monitors the operation of the
Flukso to restart it if needed. A periodic heartbeat is used to further monitor the Flukso.

3.2.5 Device-level electricity consumption

Not all appliances are equally good indicators of occupancy. For instance, the washing
machine may or may not indicate occupancy depending on the household. In some
households, the residents might program it using a timer ensure the completion of the
washing cycle when they return. Others may only do the laundry when they are present.
Likewise, electric boilers or heat pumps might be operational during times when the
occupants are either away or asleep. The activation state of a television set or electrical
stove, on the other hand, usually correlates very well with occupancy. Thus the device-
level electricity consumption of the household is a better indicator of occupancy than the
aggregated load curve.

Smart plugs

To assess the information gained by measuring individual appliances instead of the aggre-
gated load curve, we have instrumented selected appliances with smart power outlets (cf.
Figure 3.7). According to [99], the smart plugs from Plugwise [195] are currently some of
the most accurate and easy to deploy smart power outlets. These smart plugs are connected
between the measured appliance and the mains. When supplied with power, the smart
plugs automatically create a mesh network with their neighbours and communicate their
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Table 3.4: Appliances household r1.
Plug # Appliance
1 Refrigerator
2 Tumble dryer
3 Router / coffee machine
4 Kettle
5 Washing machine
6 Freezer

Table 3.5: Appliances household r2.
Plug # Appliance
1 Android tablet
2 Dishwasher
3 Stove exhaust fan
4 Refrigerator
5 Entertainment
6 Freezer
7 Kettle
8 Light
9 Laptops

Table 3.6: Appliances household r3.
Plug # Appliance
1 Android tablet
2 Freezer
3 Coffee machine
4 PC
5 Refrigerator
6 Kettle
7 Entertainment

Table 3.7: Appliances household r4.
Plug # Appliance
1 Refrigerator
2 Kitchen appliances
3 Light
4 Stereo and laptop
5 Freezer
6 Android tablet
7 Entertainment
8 Microwave

Table 3.8: Appliances household r5.
Plug # Appliance
1 Android tablet and telephone
2 Coffee machine
3 Small water fountain
4 Microwave
5 Refrigerator
6 Entertainment
7 PC, router, Sheeva plug, printer

Table 3.9: Appliances household r6.
Plug # Appliance
1 Lamp
2 Printer and laptop
3 2 Routers and Sheeva Plug
4 Coffee machine
5 Entertainment
6 Refrigerator
7 Freezer
8 Kettle

measurements via Zigbee (802.15.4) to a computer. Tables 3.4 to 3.9 show the appliances
instrumented and measured in each household.

Originally, each smart plug stores the total consumption of an appliance and makes it
accessible through proprietary software from Plugwise. To access the real-time consump-
tion data at an interval of 1 Hz, we use the open source python-plugwise library [199]. The
library is running on a Sheeva plug mini computer [200] (cf. Figure 3.8) which serves as
a sink for the Zigbee network. A python script on the Sheeva queries the data from all
connected plugs once a second. The data is then transferred to the Web server at ETH
Zurich for analysis.
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3.2.6 Passive infrared occupancy sensors

To aid the collection of ground truth data, we deployed six Roving RN-134 low-power
Wi-Fi modules with passive infrared sensors attached [153]. The sensors implement a
coarse occupancy sensing algorithm and transmit binary occupancy values to the Web
server via the Sheeva Plug. The RN-134 modules consume very little power when asleep
and can sense while the radio is switched off. When a request is to be transmitted, the radio
is switched on for a brief period of time. As soon as the request has been completed, the
module goes back to sleep. By sending the data to the Sheeva Plug on the same network
(which then forwards the data to the Web server) we significantly reduce the time spent
in the awake state and thus minimise the module’s energy consumption. This allows the
module to run for approximately three months on two AA batteries.

3.2.7 Occupancy ground truth

To obtain ground truth data to develop and evaluate our occupancy detection algorithms,
we gave each household a Samsung Galaxy Tab P7510 tablet computer. On the tablet we
installed an application that visualised the current electricity consumption, 7-day historical
consumption, aggregate consumption and a historical chart with smooth zooming [95].
The application offers an interface for users to record the occupancy status of the residence.
For each occupant there is a toggle button that may be pressed to change the status from
present to absent and vice versa. The tablet computer was installed near the main entrance
to the property and the occupants were instructed not to move it during the course of
the data collection campaign. In order to increase the visibility of the application and
to remind the participants to record their occupancy, we automatically switched on the
tablet’s display whenever the passive infrared sensor sensed a movement.

3.3 Data collection

The collection of sensor data was split into two phases. In the first phase we deployed the
system in two households (households r1 and r2), to test the sensors. We then deployed
the system in the remaining households. During the initial testing phase we discovered
a number of issues that led to several changes in the way we collected the data. We
discovered that the Landis+Gyr E750 smart meters had not been calibrated to provide
accurate power consumption values. The consumption was rounded to the nearest 10 watts
which was not precise enough for our experiment. We therefore replaced the smart meters
with re-calibrated ones. In addition, we decided to deploy our own routers whenever
possible to minimise the installation time.
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3.3.1 Data formatting

The smart electricity meters produce 86,400 measurements per day. In order to be able to
directly compare the electricity consumption to the other sensor data, we converted all
other data to 86,400 element vectors as well. The smart plugs from Plugwise must be
read sequentially [177]. Queries have a round trip time of 80 ms to 120 ms for each plug,
depending on the network infrastructure. As there are 6-9 plugs per household it takes
about one second to obtain the consumption data of each plug. However, problems that
occur for one of the plugs (e.g. a slow reply or a timeout due to network interference) can
lead to short time periods of 5-10 seconds during which no data from any of the plugs can
be obtained. Ultimately, the consumption measurements for each plug are re-sampled to
86,400 measurements a day (i.e. 1 Hz).

For each day d, the occupancy states of a household h are captured by Oh,d . Oh,d is a
86,400×Nh,p matrix containing the occupancy state for each member p of the household
at every second of the day. Nh,p denotes the number of occupants in household h. The
element (i,j) of this matrix is set to 1 if – according to the data entered using the tablet –
the jth resident is at home at second i. The element is set to 0 otherwise.

Following this notation, we compute the binary occupancy schedule as Bh,d , a 86,400×
1 vector by computing the bitwise OR among the rows of the matrix. The resulting vector
contains 1s to indicate occupancy and 0s to indicate that none of the occupants are present.
For the PIR sensors, the matrix contains a sequence of 1s for the next 30 seconds after a
sensor event has been triggered.

3.3.2 Missing data

In case of the electricity consumption data from the smart meters, we distinguish between
two types of data loss. First, if measurements are missing for up to 10 seconds, the
corresponding positions in the vector are filled with the last existing measurement (typically
only few seconds are lost each day). Second, in case more than 10 consecutive seconds of
data are lost – for example in (rare) cases where the Flukso crashed or was switched off –
the values are set to −1. For the smart plugs, data loss is dealt with similarly. In this case,
we chose 100 seconds instead of 10 seconds as a threshold. This is due to the fact that a
data loss of 10 seconds is more common for the reasons described above.

3.4 Description of the dataset

In this section we will describe the features of the data collected in the six instrumented
households over the 7-month period from June 2012 to January 2013. As we are interested
in opportunistic approaches for occupancy detection, we will mainly focus on the data
obtained from the smart electricity meter and relate it to the ground truth occupancy
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data gathered through the tablet application. In the next chapter, we will then develop
algorithms to infer occupancy directly from the electrical load curve.

3.4.1 A typical day

Figure 3.9 shows a representative day of data collected for household r2. Figure 3.9a shows
the total electricity consumption of the household augmented with the binary occupancy
state as indicated by the occupants on the tablet interface. The electrical load curve shows
a small increase in the electricity consumption when the occupants wake up and prepare
breakfast. As the occupants leave the household, the PIR near the doorway fires (see
Figure 3.9c). As the occupants return again, the PIR sensor fires again and the home
entertainment is switched on (see Figure 3.9b). From the total electricity consumption
and the consumption of the stove exhaust fan, it can be seen that shortly after 6 p.m.
the occupants prepare dinner. Before midnight, the electricity consumption falls to the
nighttime mean and the home entertainment system is switched off.

3.4.2 Aggregate electricity consumption

The electricity consumption depends on the current time of day. During the night when
occupants are asleep, it is usually at its lowest. During the day, activities like cooking
and consuming entertainment are visible. This means that the probability of observing a
particular power consumption varies over the course of the day.

Figure 3.10 shows how this probability distribution varies over for all six instrumented
households. The x-axis shows the time of the day in 15-minute intervals while the y-axis
shows the distribution of the power consumption during this time. To build the histograms
we included all measurements taken in a particular 15-minute interval (e.g. measurements
taken from 9 a.m. to 9.15 a.m. on any day) and computed the frequency counts for 50
logarithmic bins from 10 watts to 6000 watts. The figure gives an overview of how the
electrical load varies during the day. A high probability for a certain power consumption
is indicated by a hot colour while a low probability is indicated by a cold colour.

Household r1 exhibits distinct periods of activity in the morning and in the evening.
Figure 3.10a shows a higher activity from 6 a.m. to 9 a.m. and from 6 p.m. to 12 p.m. Both
activities can be explained by cooking, while the prolonged activity during the evening
indicates the use of entertainment devices. During the night from midnight to 6 a.m., the
electricity consumption stays within a narrow range around 100 watts.

Household r2 In household r2 (cf. Figure 3.10b), the electricity consumption during the
night is even more stable. There is a faint increase in the probability of a higher electricity
consumption from 6 a.m. onwards which may correspond with the occupants getting up
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Figure 3.9: Sensor measurements for a representative day (15.08.2012) in household r2.
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(a) Household r1.
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(b) Household r2.
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(c) Household r3.
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(d) Household r4.
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(e) Household r5.
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(f) Household r6.

Figure 3.10: Probabilistic electricity consumption over 15-minute intervals.

and starting to use appliances. The increase throughout the morning and early afternoon
can be attributed to both an overlapping schedule of the occupants working in shifts and
the influence of weekend consumption on the overall probability distribution. After 6 p.m.
the probability of a higher consumption noticeably increases. As indicated by Figure 3.9b,
this may be explained by the use of the home entertainment system.

Households r3 and r4 Figures 3.10c and 3.10d (households r3 and r4) are more
difficult to analyse due to the dominance of the electric boiler during the evening and
early morning, respectively. Nevertheless, for both households there is a slightly higher
probability for higher electricity consumption during the lunch and dinner hours. In
addition, we see the probability of higher consumption figures increasing in the evening.
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Household r5 Household r5 shows an interesting behaviour as the electricity consump-
tion is clearly elevated during daytime from 8 a.m. to 8 p.m. As we have learned from the
occupants this is due to various timer clocks, one of which is used to operate a pump in
the garden during the summer. Again, there is an observable peak in consumption during
lunchtime indicating a cooking activity. The plot also shows a high probability for an
electricity consumption of 1000 watts around 7 a.m. which might correspond to a coffee
machine or another high power kitchen appliance.

Household r6 Figure 3.10f highlights how the variability in consumption may be
used to predict occupancy. During the night from midnight to 6 a.m., the electricity
consumption is around 100 Watts with a high probability. Around 7 a.m. there is a
change with probabilities for higher consumption figures increasing temporarily. During
the afternoon, the probability distribution indicates that there is little variance in the
consumption. Only after 6 p.m. does the probability for a consumption higher than 100
watts increase again. From this we could infer that the occupants get up at 7 a.m., leave
the household and usually do not come back before 6 p.m.

3.4.3 Occupancy ground truth

Due to the importance – and difficulty – to record reliable ground truth occupancy data,
we instructed households to particularly pay attention to specify their occupancy during
two phases in summer (July to September) and winter (November to January). During
these two collection phases every participant was instructed to click on a button bearing
his or her name to indicate presence and absence.

Figure 3.11 shows the occupancy information collected with the tablet computer over
the course of the whole deployment in five of the six households. We did not have enough
data available to plot the ground truth occupancy for household r6. It is therefore left
out from the evaluation. For the plotting we have rounded occupancy figures to binary
occupancy values. This means that if one or more persons was present during any one
time, the occupancy is assumed to be 1, otherwise the occupancy is set to 0.

Figure 3.11 thus shows a matrix where rows represent days and columns represent
15-minute time slots. White slots indicate that the household was unoccupied (i.e. the
occupants were away), black periods indicate that the household was occupied (i.e the
occupants were home).

Household r1 Figure 3.11a shows how household r1 participated in the summer and
winter occupancy collection campaigns. After the summer collection campaign, the
occupants went on a holiday and only resumed the ground truth collection around the end
of November for the Winter campaign. This means there is no ground truth information
in October and November. The data shows that the home is usually occupied over the
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Time of day

D
at

e

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

2012−08−01

2012−09−01

2012−10−01

2012−11−01

2012−12−01

2013−01−01

(e) Household r5.

Figure 3.11: Binary occupancy averaged at 15-minute intervals over the whole observation
period.

evenings and nights from 6 p.m. to 9 a.m. and that the participants were at home longer
and more often during the colder months than during the summer. Overall, the house is
occupied more often than not during the daytime which reduces the savings that could be
achieved using a smart thermostat.

Household r2 Figure 3.11b shows the ground truth occupancy information for r2.
Household r2 is occupied by a couple of young professionals. The occupants exhibit a
great regularity, leaving the house around 7 a.m. every weekday. The arrival times in the
evening are more distributed due to the different schedules of the inhabitants. However, the
occupants are usually at home after 10 p.m. Household r2’s holiday absence is also clearly
observable from the ground truth occupancy data. The occupancy data for household r2 is
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the most complete of the dataset (the occupants collected 7 complete months of ground
truth occupancy information). Household r2 also has the lowest day-time occupancy of
our participants. This makes it very amenable to the installation of a smart thermostat.

Household r3 The ground truth occupancy for the household r3 is shown in Fig-
ure 3.11c. Household r3 also participated over the course of the whole collection campaign.
Compared to household r2, household r3 has a much higher occupancy during the day.
The building is only left unoccupied for a few hours each day. This means that less of the
energy consumed during the day may be saved as occupants are away.

Household r4 Household r4 (Figure 3.11d) has the highest occupancy in the dataset.
From 6 a.m. to 10 p.m. the house is occupied over 80% of the time. This is due to the
fact that this is a family household with a number of overlapping occupancy routines (i.e.
people returning before others are coming back, resulting in always at least one person at
the property).

Household r5 Figure 3.11e shows the occupancy for another 2-person household of
two retirees. Like for household r4, the occupancy in r5 is generally exceeding 80% during
daytime.

Quality of the ground truth data

In general, the quality of the ground truth data is quite high. Three of the six households
(r2, r3 and r4) participated over the course of the whole experiment. Households r4 and
r5, however, exhibit very high occupancy figures and unpredictable schedules. These
households may not be suitable for the deployment of a smart thermostat. Furthermore,
the high occupancy poses constraints for training the occupancy classifiers in the next
chapter. To alleviate some of this problems and to ensure that no erroneous ground truth is
used to train the classifiers, we will discuss how we cleaned the dataset in the next section.

3.4.4 Device-level electricity consumption

Besides the aggregated electricity consumption data as measured by the smart meters, we
deployed between six and ten smart plugs in each household to measure the consumption
of individual appliances. Like the aggregated load curve, this data is available at a
frequency of 1 Hz. Figure 3.12 shows the coverage achieved by the smart plugs in all six
households. Overall household r2 has the highest coverage with 79% of the total electricity
consumption attributable to individual appliances due smart plugs.

In general, apart from household r2, the majority of the electricity consumption is
caused by uninstrumented appliances (e.g. small electric stoves, boilers and heat-pumps).
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Figure 3.12: Coverage of total energy consumption by smart plugs for all six households.
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Table 3.10: Number of days for each household used in the evaluation after data cleaning.
Number of days

Household Summer Winter
r1 39 46
r2 83 45
r3 57 21
r4 38 48
r5 43 31
r6 no ground truth available

Due to the limited number of smart plugs, as well as the topology and size of households
r1, r3, r4 and r5, it was not possible to fully instrument all appliances in these cases.
Household r2, on the other hand, is a small flat (less than 100 m2) that allowed for a
comprehensive deployment of smart plugs.

Household r3 has the lowest coverage. Only 10% of the total consumption can be
attributed to the instrumented appliances. Household r3 contained a boiler which heated
water during the night. More important though, a concrete ceiling in the basement disturbed
the radio connection between the gateway and the plugs and thus resulted in measurement
outages that incorrectly understate the total consumption of the instrumented appliances.
Similarly to the boiler in household r3, household r5 operates a time-triggered pool pump
during the summer months which was not measured by a smart plug. This pump consumes
around 6 kWh per day, explaining some of the non-attributable consumption.

3.4.5 Data cleaning

In Section 3.3.1 we highlighted how the data was formatted for evaluation. However,
days with missing or inconsistent data cannot be used for occupancy classification. Even
though the participants noted their occupancy diligently, some mistakes could not be
prevented. Occasionally, one or more occupants forgot to record their absence or presence.
We have therefore manually removed days where no occupancy information was collected
or occupants were supposed to be away but we detected (a) movement: a firing of the PIR
sensor indicated movement in the household or (b) appliance usage: a switch operated
device (e.g. kettle, TV or oven) was used.

Table 3.10 shows the data gathered by the participants and used in the evaluation. The
table shows, for each household, the number of days in both summer and winter phases
after erroneous days have been removed from the dataset. This results in an average of 52
days for the summer period and 38 days for the winter period.
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Chapter 3 The ECO dataset

3.5 Conclusions

In this chapter we presented an occupancy detection infrastructure and data collection
campaign centred around smart electricity meters. To this end, we developed and deployed
an infrastructure capable of sampling an off-the-shelf smart electricity meter at 1 Hz gran-
ularity in six Swiss households over a period of seven months. We further deployed smart
plugs and auxiliary sensors to measure the device-level consumption as well as ground
truth indicators. In order to facilitate the development and testing of supervised machine
learning algorithms, we further collected ground truth occupancy information using a
custom tablet application. The result of our data collection campaign is a comprehensive
first-of-its-kind dataset combining detailed electricity consumption with ground truth
occupancy data [21].
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Building occupancy monitoring using

electricity meters

Smart electricity meters are becoming increasingly ubiquitous. In Switzerland, a recent
study commissioned by the Swiss Federal Office for Energy (BfE) came to the conclusion
that a roll-out of smart meters would be economical and beneficial to consumers [15]. The
EU requires1 Member States to deploy “intelligent metering systems” as part of the Third
Energy Package of Directive 2009/72/EC [155]. The directive targets a roll-out of smart
electricity meters of 80% by 2020. Today, a total of approximately 45 million smart meters
are installed in Finland, Italy and Sweden alone. In Germany, the installation of smart
meters was mandated for all new and renovated buildings [1]. According to estimates of
the European Commission, commitments of the Member States amount to a roll-out of
“close to 200 million smart meters” by 2020 [50].

The trend towards installing smart meters opens new possibilities for opportunistic
sensing in buildings. Current building automation systems use a dedicated sensing devices
such as PIR sensors and reed switches to provide occupancy monitoring capabilities [7,
124]. Recent experimental systems also show the feasibility of opportunistically using
network logins and GPS trackers to monitor occupancy [67, 101, 113, 144]. In such
systems, sensors are often combined to increase the overall occupancy detection accuracy.
For instance, the system presented in [7] combines door-mounted magnetic reed switches
and PIR sensors to compensate for the poor accuracy obtained when only PIR sensors are
used. However, for reasons of cost and ease of deployment, current commercial smart
thermostats for the residential environment often only include a single PIR sensor [198].
This restricts their ability to accurately monitor the occupancy throughout the building
and results in erroneous control decisions. As a result, users of such occupancy-controlled
smart thermostats often turn off automatic control in an attempt to regain control of the
system [186].

1The adoption according to 2009/72/EC is subject to a cost-benefit analysis.
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In this chapter, we discuss and quantitatively evaluate the suitability of smart electricity
meters to be used for occupancy monitoring in residential households. Being already
present – or about to be installed – in millions of households worldwide, the installation,
use and maintenance of smart electricity meters does not impose additional costs on
the residents. The opportunistic use of such existing sensors increases the occupancy
monitoring capabilities and thereby the acceptance of building automation systems.

To this end we show that occupancy classification from aggregated electricity consump-
tion of the household using supervised machine learning is feasible. In particular, we show
that a detection accuracy of up to 94% can be obtained. For our analysis we utilise the
ECO dataset introduced in the previous chapter. The ECO dataset contains the aggregated
consumption of six households at a frequency of 1 Hz as well as ground truth annotations
and device-level consumption data for selected appliances.

We begin this chapter in Section 4.1 by highlighting related work in the analysis
of electricity consumption data2. We then go on to describe our proposed system in
Section 4.2 and discuss the metrics used for evaluation in Section 4.3. After we present the
results of detecting household occupancy from the aggregated electricity consumption in
Section 4.4, we discuss how the performance of the system would change if device-level
consumption data was available in Section 4.5. Finally, before we conclude in Section 4.7,
we present results for a simple, unsupervised classification strategy that works on 15-
minute data as recorded by many utility companies today. This chapter is partially based
on the contributions made in [102].

4.1 Related work

In building automation, the occupancy of a room or building at any given time is commonly
determined by interrogating sensors. Firings from a passive infrared sensor or reed switch
can indeed give an accurate assessment of the current occupancy. However, when non-
binary sensors such as smart electricity meters are considered, algorithms must be designed
to translate raw measurements into real information about the occupancy state of the
household. We see our work at the intersection of two main areas: (1) the analysis of
coarse-grained electricity consumption data to observe and influence users’ electricity
consumption behaviour; (2) non-intrusive load monitoring (NILM) to sense the activation
state of appliances in the household. In this section, we first cover basic concepts of
time series analysis. We then discuss how to infer household characteristics from electric
consumption data in Section 4.1.2 and NILM in Section 4.1.3. We conclude by highlighting
first work in inferring occupancy from the electric load curve in Section 4.1.4.

2For related work on occupancy sensing, in general, the reader is referred to Section 3.1.
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4.1.1 Time series analysis

Electricity consumption data typically consists of successive temporal measurements –
so called time series data. The time interval between these data can vary from a few
milliseconds to a number of days. Conventional smart electricity meters transmit the
aggregated electricity consumption to the utility company at a period of 15 to 30 minutes.
However, while, in general, special hardware is necessary to measure the electricity
consumption at multiple kilohertz [68], some current smart meters are able to sample the
electricity consumption at 1 Hz or more [116].

Various representations for such time series data exist. Lin et al. provide a good overview
in [122]. In their paper, the authors differentiate between data adaptive and non data
adaptive representations. The former includes techniques like symbolic representations
and singular value decomposition (SVD)3. The latter include discrete Fourier transforms
(DFTs) and discrete wavelet transforms (DWTs) which transform data into a different
domain (e.g. from the time to the frequency domain).

Lin et al. contribute to the space of adaptive techniques by proposing Symbolic Aggre-
gate ApproXimation (SAX), a method to reduce time series data to a lower-dimensional
space by normalising the input data and dividing the resulting data into a number of equal
sized frames [121, 122]. Using symbols to denote the frame in which a data point falls,
the time series is effectively transformed into a string representation. This representation
enables the identification of characteristic patterns (so-called motifs). When applied to
electricity consumption data, such motifs could thus be the cooling cycle of a refrigerator
or the heating and spinning phases of a washing machine. However, as the z-normalisation
step removes all amplitude information from the signal, SAX has difficulties to distinguish
characteristic power levels. To address this problem, Reinhardt et al. introduce Power-
SAX [162] – a method which forgoes normalisation and infers the power levels using
clustering on the individual appliance data.

In signal processing, time series data is often transformed from the time to the frequency
domain. This transformation enables the identification of specific frequencies in the
original data. A Fourier transform could thus identify periodic cooling intervals of fridges
and freezers – if the underlying process was behaving linearly. However, from manual
inspection of the electric load curves in the ECO dataset, we learned that cooling devices do
not always operate in linear fashion. In fact, the length of the interval between successive
cooling cycles varies considerably. It is thus not possible to predict the exact time of the
next cooling cycle. We assume this is due to environmental changes such as the current
load of the refrigerator, the indoor temperature and the opening and closing of the door.

3Also known under the term principal component analysis (PCA).
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4.1.2 Inferring household characteristics from the electric load

curve

The planned installation of smart electricity meters in millions of households worldwide
has sparked interest in the analysis of home electricity consumption data over the last years.
Several researchers have investigated how this data can be leveraged to infer knowledge
about the behaviour of households’ occupants.

Previous work has shown that the use of coarse-grained electricity consumption data (i.e.
one sample every 30 minutes) is sufficient to infer information about households and their
occupants. Energy providers can identify usage patterns in the electricity consumption
data to predict future electricity consumption [39] and model daily routines to improve a
providers’s supply management [5].

Other researchers proposed approaches that can cluster hundreds of households into
groups of consumers according to their load profile [166, 180]. Beckel et al. show that
it is possible to infer socio-economic characteristics of a household from its electricity
consumption [22]. To this end, they rely on a dataset of electricity consumption data
from more than 4,000 households. Similarly, Albert et al. propose a method to infer
information on the demographic and appliance stock characteristics of homes [9]. By
means of a Hidden Markov Model, the authors first infer the occupancy states of the
household from electricity consumption data. In contrast to our work, the authors need
to use maximum-likelihood estimations of the emission and transition probabilities as no
ground truth occupancy data was available.4 They then characterise each household using
the magnitude, duration and variability of its occupancy states. Using these techniques,
energy providers can for instance identify which households are typically unoccupied
during the day. These households represent ideal targets to be offered special tariffs or to
be encouraged to adopt a smart heating system [9, 22].

4.1.3 Non-intrusive load monitoring

By analysing the fine-grained5 electricity consumption of a household, many researchers
have tackled the problem of inferring which appliances are running when. The problem
of detecting the activation state of individual appliances and their consumption is usually
referred to as non-intrusive load monitoring (NILM). Zoha et al. [189] and Zeifman et
al. [188] provide two good reviews of related work in NILM algorithms. NILM approaches
are related to occupancy detection because the activation state of certain home appliances
can be used as an indicator of occupancy.

4For this reason, this work also does not constitute an evaluation of occupancy detection using electricity
consumption data. We will evaluate Hidden Markov Models in Section 4.4.

5By fine-grained we mean sampling rates of 1 Hz or more.

48



4.1 Related work

One of the first NILM approaches has been proposed by George Hart in 1992 [69].
Hart’s method identifies characteristic step changes in the electricity consumption. By
comparing these step changes monitored in the electricity consumption with a previously
recorded signature database, Hart claims to detect when appliances are being switched on
or off. More recent approaches, such as the one from Kim et al. [96], pursue unsupervised
disaggregation. These unsupervised approaches do not require a training phase, but require
only an explicit labelling of those appliances detected in the load curve.

As some devices are (typically) only used when the occupants are at home, NILM would
implicitly provide occupancy detection as required by many energy efficiency applications.
However, if the electricity consumption is measured at a granularity of at most 1 Hz, only
a few appliances (e.g. the refrigerator, or the washing machine) can be detected reliably
from the data [31]. Also, the activation state of an appliances might or might not correlate
well with occupancy. For instance, a refrigerator is typically active irrespective of the
presence or absence of the occupants at home. In addition, several home appliances (e.g.
the dishwasher or the washing machine) can be programmed to start their operation when
the occupants are away.

Increasing the accuracy of detecting individual appliances in the electricity consumption
data requires a more characteristic signature of each appliance, which can be achieved by
increasing the measurement granularity. As Gupta et al. show, this approach can identify
and classify most consumer electronic and fluorescent lighting devices correctly with a
mean accuracy of more than 93% [68]. However, while it requires special hardware to
measure the electricity consumption at multiple kilohertz, our approach relies only on
1 Hz consumption data, which can be obtained from an off-the-shelf electricity meter.

4.1.4 Occupancy and the electrical load curve

In [136], Molina-Markham et al. suggest that household activities can be inferred from
aggregated electricity consumption data. They collect data at one-second granularity from
three homes over two months and let household occupants annotate which appliances they
have used when. The annotation of the data is performed over “at least three days” [136].
The authors also observe that there are differences in the consumption data depending on
whether the occupants are present or absent from home. However, their observation is
based on visual inspection of the electricity consumption curves. No quantitative analysis
of the possibility to use aggregated electricity consumption data to detect occupancy is
provided. Boait et al. suggest to derive timer settings for a smart thermostat from electricity
consumption and hot water use [28]. The authors use a Bayesian model to relate sensor
measurements to occupancy. As the model is focussed on heating only, feedback on the
current temperature is used to refine the current timer settings and the occupancy detection.

Chen et al. have discussed the potential of smart electricity meters to be used for
performing non-intrusive occupancy monitoring [33]. In particular, they presented a
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threshold-based method to detect occupancy from aggregated electricity consumption data.
The authors evaluated their method using data collected in two homes over a summer
week. We build upon this work by considering a large set of features including those used
by Chen et al. and basing our analysis on a dataset collected in five homes and over a
period of more than six months.

Other work explores occupancy monitoring using detailed device-level information.
Ming et al. for example present PresenceSense, a zero-training algorithm based on rough
estimates of the participants’ working schedules [87]. It uses the average power, standard
deviation and absolute maximum power change of individual plug-level loads measured by
ACme nodes [86] to estimate occupancy in an office environment. In contrast to Ming et
al., however, our work focusses on residential environments and depends only on the
installation of a single smart electricity meter instead of multiple smart plugs.

Orthogonal to our work, Yang et al. investigate the information leaked when an infras-
tructure consisting of passive infrared sensors or smart electricity meters is controlled by a
third-party. To this end, the authors assess how well the occupancy levels of a university
lab can be inferred from its electric consumption data alone [185].

4.2 System design

In residential households, a significant share of the electricity consumption is caused by
human interaction with electrical appliances. Therefore, a household’s electricity con-
sumption may give an indication of its current occupancy state. As electrical appliances are
often used to replace manual labour and to increase comfort, a higher level of consumption
often correlates with occupancy6. Figure 4.1 revisits the example day from household
r2 introduced in the previous chapter. Occupied periods are indicated in red, while blue
periods indicate an unoccupied household. The bottom part of the figure shows a very
simple occupancy detection strategy. Whenever the current total power is higher than the
24-hour mean of the total power, the house is classified as occupied. The figure shows that
even such a rudimentary approach can detect occupancy. In this section we will build upon
the correlation between electricity consumption and occupancy and further investigate
how one can use features of the electrical load curve to build an occupancy classification
engine using machine learning algorithms.

Figure 4.2 shows an overview of our occupancy classification setup. The first step
consists of dividing the raw consumption data into 15-minute slots and extracting relevant
features from the consumption data. Each of these examples is assigned a label (i.e. 1 or 0,
referring to an occupied or unoccupied household, respectively) based on the ground truth

6A washing machine may for example be used when occupants are present or be programmed to finish
upon the arrival of the occupants. If sufficient training data is available, its activation state can be used to
infer occupancy in both cases.
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Figure 4.1: Simple occupancy detection algorithm based on thresholding.
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Figure 4.2: Overview of our occupancy classification system.

data gathered by our participants using the tablet application. The examples are divided
into training and test sets using cross validation before being assigned to a classifier for
training. During training, feature selection selects the most descriptive features, while
principal component analysis finds a transformation of the input data and selects the
components containing most of the variance. After the training phase is completed, the
trained classifier is evaluated on the test data. In the remainder of this section, we will
explain each of these steps in detail.
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Figure 4.3: Relative frequencies of various total power consumption (sum of all phases
at 1 Hz) values during daytime and divided into presence and absence respec-
tively.
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4.2.1 Deriving features from the electrical load curve

In order to derive occupancy information from the electrical load curve, it is necessary to
identify features that may be indicative of occupants being present in the household. A
clear indicator for occupancy are changes in the electric load that require the interaction of
an occupant with a device or appliance (e.g. the operation of a television, stove or kettle).
The electricity consumption induced by appliances such as fridges, freezers or the standby
consumption of electric devices (e.g. the consumption of the digital video recorder) on the
other hand does not give any indication about the occupancy state of the household as no
direct interaction is required.

As introduced in Section 4.1.3, a number of authors have looked at NILM approaches
to detect the consumption of individual appliances from the electric load curve. However,
while these reliably detect high-power devices and cooling appliances, current state-of-
the-art NILM approaches require – for each household – detailed training data. This data
is typically gathered by recording the aggregated electricity consumption and observing
the activation states of installed appliances [21]. This training overhead makes the use of
NILM for occupancy detection infeasible. In the following section, we therefore identify
a set of appliance-agnostic features of the aggregated electrical load curve that directly
relate to occupancy.

Such features can be found by comparing the day-time electricity consumption during
periods of occupancy to times when the household is unoccupied. Since the ECO dataset
does not contain ground truth data on sleeping patterns, we consider daytime slots from 6
a.m. to 10 p.m. in our analysis and leave the detection of sleep to future work.

Figures 4.3a to 4.3e show the relative frequency (empirical probability) of the logarith-
mically binned total power consumption measurements over summer and winter periods
for all five households. Each figure shows from top to bottom the probability distribution
of observing a particular power consumption during daytime and when occupants are
home or away, for the particular household. We will refer to the latter two probability
distributions as the home and away distributions.

From Figures 4.3a and 4.3b we can see that the power consumption in households r1
and r2 is likely to have a higher absolute value and a greater variability whenever the
respective household is occupied. The away distribution is centred around 100 watts and
may be clearly distinguished from the overall daytime distribution. While the household
is occupied, the probability of observing a higher consumption increases. However, there
is still a significant probability to see lower consumption values even when the household
is occupied, resulting in an increased variance of the home distribution. This is due to
the fact that occupants may be at home but not using any electrical devices. The two
peaks around 30 and 100 watts in household r2 correspond to the operation of cooling
appliances and are thus visible in both the home and away distributions. As the home and
away distributions in households r3 to r5 are more difficult to distinguish we will focus on
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Table 4.1: Features computed on the aggregated electricity consumption traces.
# Feature names Description
f1, f2, f3 min1, min2, min3 Minimum of the samples in the slot for phase 1, 2 and 3
f4 min123 Minimum of the samples in the slot for the sum of phase 1, 2

and 3
f5, f6, f7 max1, max2, max3 Maximum of the samples in the slot for phase 1, 2 and 3
f8 max123 Maximum of the samples in the slot for the sum of phase 1, 2

and 3
f9, f10, f11 mean1, mean2, mean3 Arithmetic average of the samples in the slot for phase 1, 2

and 3
f12 mean123 Arithmetic average of the samples in the slot for the sum of

phase 1, 2 and 3
f13, f14, f15 std1, std2, std3 Standard deviation of the samples in the slot for phase 1, 2

and 3
f16 std123 Standard deviation of the samples in the slot for the sum of

phase 1, 2 and 3
f17, f18, f19 sad1, sad2, sad3 Sum of absolute differences of the samples in the slot for

phase 1, 2 and 3
f20 sad123 Sum of absolute differences of the samples in the slot for the

sum of phase 1, 2 and 3
f21, f22, f23 cor11, cor12, cor13 Value of the autocorrelation function at lag 1 computed over

the samples in the slot for phase 1, 2 and 3
f24 cor1123 Value of the autocorrelation function at lag 1 computed over

the samples in the slot for the sum of phase 1, 2 and 3
f25, f26, f27 onoff1, onoff2, onoff3 Number of detected on/off events within the slot for phase 1,

2 and 3
f28 onoff123 Number of detected on/off events within the slot for the sum

of phase 1, 2 and 3
f29, f30, f31 range1, range2, range3 Range of the samples in the slot for phase 1, 2 and 3
f32 range123 Range of the samples in the slot for the sum of phase 1, 2 and

3
f33 pprob Empirical probability of the slot to be occupied
f34 pfixed 1 (occupied) from 9 a.m. to 5 p.m., 0 (unoccupied) otherwise
f35 ptime Slot number (i.e. 1 – 65)

households r1 and r2 to select the features7.
Table 4.1 shows the features selected to represent these observations. All features

are computed over 15-minute intervals. To this end, we represent a day as a sequence
of Ns time slots of length Ts. Given the sampling frequency of 1 Hz and an slot length
Ns = 15, each feature is thus computed from a 900-element vector (i.e. Ts = 900). All
features – apart from pprob, pfixed and ptime – are computed separately for each of the
three phases of the smart electricity meter as well as for the sum of the three phases. We
use the subscripts 1, 2 or 3, to indicate that a feature has been computed on the data trace
corresponding to phase 1, 2 or 3, respectively. The subscript 123 indicates that the feature
has been computed on the sum of all three phase traces.

7We will further discuss the reasons for this behaviour and the resulting implications in Section 4.4.
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In all, we consider the features min, max, mean, std, sad, cor1, onoff, range, pprob,
pfixed and ptime. In choosing these features we aim to capture both the absolute value of
the consumption as well as its variability.

Absolute value of the power consumption

The features min, max and mean represent the minimum, maximum and arithmetic av-
erage of the samples within a 15-minute slot. The boilers in the five households were
programmed to operate during the night. Therefore, the absolute level of the consumption
is likely to be influenced by presence in the household.

Variability of the power consumption

Features std, sad, cor1 and onoff serve as indicators of the variability of the power
consumption. A high variability indicates that there have been significant changes in the
electricity consumption during the observed interval. Such changes may have been caused
by human actions (e.g. by operating the stove or the kettle) or by appliances with varying
consumption patterns (e.g. a television set with LED backlight).

Feature std denotes the standard deviation of the power consumption. As the standard
deviation only measures the distance to the mean of the data we have introduced an
additional measure sad – the sum of absolute differences. sad computes the absolute
difference between adjacent power measurements and adds them up, giving another
measure of the variability of the data. cor1 is the value at lag one of the autocorrelation
function of the sequence of samples in a slot. Finally, onoff is the number of on/off events
detected within a slot.8

Temporal dependence of occupancy

As the probability of the building being occupied varies with time, we introduced three
additional features – pprob, pfixed and ptime to model the temporal aspects of occupancy.
pprob is the empirical prior probability of a slot to be occupied. pprob is computed from the
ground truth occupancy data. To this end, only data from the training set is used. pfixed is
a “dummy” prior probability that assumes the household to be always unoccupied between
9 a.m. and 5 p.m. on weekdays and to be always occupied otherwise. ptime introduces a
notion of time by adding the slot number as a feature. Slots are numbered from 1 to 65,
whereas the first slots corresponds to the period between 6 a.m. and 6:15 a.m. and the last
one to the period between 10 p.m. and 10:15 p.m.

8An on/off event occurs when a electrical device is switched on or off. We detect on/off events using a
simple algorithm: if the difference between a sample and its predecessor is bigger than a threshold ThA
and this difference remains higher than ThA for at least ThT seconds, an on/off event is detected. We set
ThA = 30 W and ThT = 30 seconds.
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Figure 4.4: Features and labels are computed per day. From the 96 slots produced by
computing the features at 15-minute intervals only the 65 slots between 6 a.m.
and 10.15 p.m. are used. The days are allocated to the training and test sets
using two-fold cross validation.

4.2.2 Cross validation

To avoid a specific choice of the training and test sets to create artefacts in the obtained
results, we use two-fold cross validation [184] on ten different, randomly selected pairs of
training and test sets. That is, we randomly divide the feature data ten times into different,
equi-sized training and test sets.

For each, the former is used to train a classifier (cf. Section 4.2.3) and the latter to
evaluate its performance. Then, the role of the two sets is swapped and training and
evaluation are repeated. The performance of the classifier is computed as the average of
the performance obtained in the two cross-validation runs. The overall performance is
computed as the average of the performance obtained in each of the ten runs.

The use of ten runs also allows to analyse the stability of the feature selection (cf.
Section 4.2.4), that is to ascertain if different test and training sets yield different feature
sets. Feature selection is performed using an additional two-fold cross validation on the
training data (cf. Figure 4.2).

Classification limited to daytime hours Figure 4.4 shows the arrangement of the
input data for classification. Table 3.10 in Chapter 3 showed the number of days for each
household in the Summer and Winter periods. Each of these days is represented by 96
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Figure 4.5: Classification using support vector machines.

15-minute slots. For each slot i, the input for the classifier is the feature vector fi,1...35. As
we do not have ground truth data on the sleeping patterns of our participants, we restrict
the estimation of the occupancy states of a household to the time between 6 a.m. and 10.15
p.m. Thus only f24,1...35 to f89,1...35 are used for training and testing.

4.2.3 Classifiers

To infer occupancy from the electrical load curve, one must infer a mapping function
from the feature space (e.g. a mean consumption of 100 watts in the last 15 minutes) to
occupancy classes such as home and away (e.g. [feature] → class). This mapping
function – the classifier – can be inferred using models and algorithms from supervised
machine learning.

Supervised machine learning techniques infer the classifier from labelled training data.
During the training phase, the classifier is iteratively refined to correctly assign as many
examples (i.e. [[feature], class] tuples) as possible to their respective classes.

To avoid overfitting the classifier – that is, to build a classifier that describes the noise in
the data rather than the underlying relationship between features and classes – the data
must be split into training and test sets. The test set is used to provide an unbiased test of
how well the trained classifier performs for previously unseen data. We will discuss the
details on how we split the data into training and test sets in Section 4.3.

Several learning algorithms for training a classifier have been proposed in the litera-
ture [184]. The learning algorithms used in this chapter are support vector machines
(SVMs), K-nearest neighbours (KNNs), Gaussian mixture models (GMMs), hidden
Markov models (HMMs) and a simple thresholding (THR) approach. The SVM and
KNN classifiers have been chosen to evaluate both parametric and non-parametric ap-
proaches, while the HMM was chosen to reflect the temporal dependence of occupancy.
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Support vector machines (SVMs) are supervised learning models and algorithms to
perform linear and non-linear classification. A SVM models the examples of the training
set as points in space. It then constructs a hyperplane that separates these examples with
the widest possible margin, the maximum-margin hyperplane. In the simple case where
two classes are linearly separable, it is possible to select two hyperplanes that separate the
examples such that there are no data points between them and their distance – the margin –
is maximal. The examples closest to these hyperplanes are referred to as support vectors.

There may be an infinite number of different hyperplanes separating the classes. Fig-
ure 4.5a shows two classes separated by three different hyperplanes in a simple, two-
dimensional feature space. H1 and H2 both separate the two classes. H1 achieves the
maximum margin. H3 does not separate the two classes at all and misclassifies some
instances of the first class.

Figure 4.5b shows two classes that are not linearly separable. In such cases, an SVM
resorts to a higher-dimensional space using a procedure called the kernel trick [184]. In
the case of occupancy detection this may be necessary when occupants regularly run the
washing machine while they are away. The operation of the washing machine increases
the overall load above a threshold that would in a linear model indicate occupancy but
to a lower level than other indicators of occupancy such as the electric stove. A SVM
can identify the characteristic power consumption of the washing machine and correctly
classify such periods as absence. To implement the SVM classifier we used the LIBSVM
library by Chang and Lin [32].

K-nearest neighbour (KNN) classifiers use non-parametric models for classification.
This means they do not require an explicit learning phase. Instead during the classification
of an instance of test data, the KNN algorithm first finds the k closest examples in
the training data according to some distance metric (e.g. Euclidean distance, Hamming
distance, etc.). Using the known classes of these k neighbours, it then takes a majority
vote on the class membership of the unknown class of the test data. For the KNN classifier
we used the ClassificationKNN classes from the Matlab Statistics Toolbox [215]. We
use k = 1 and employ the Euclidean distance to find nearest neighbour.

Thresholding (THR) The THR classifier is based on the observation made in Fig-
ure 4.1 that a higher electricity consumption positively correlates with occupancy. To
this end, the classifier computes the mean of each feature vector [feature] during all
unoccupied slots. These means are used as thresholds above which a slot is labelled as
occupied. The classification of the test data is based on a majority vote of the thresholding
applied to all features. The thresholding classifier implicitly assumes that the magnitude
of the features positively correlated with occupancy.

58



4.2 System design

Occupancy

Sensor features

y
t-1 t

t+1
x

t-1 t

t+1
yy

x x

Figure 4.6: Hidden Markov Model.

Gaussian mixture models (GMMs) are parametric probability density functions
represented by a weighted sum of individual Gaussian component distributions [163].
Due to the limited size of the ECO dataset and the resulting sparsity in the feature data it
is not possible to build empirical multivariate probability density functions as shown in
Figure 4.3 for a combination of all features. However, having observed that the process
generating the raw power data is approximately following a log-normal distribution, we
use multivariate GMMs to approximate the probability density function of the input data.

The GMM is created by iteratively refining the parameters of a combination of K
Gaussian distributions (components) to fit the input data. During the training phase we
choose a suitable K by minimising the Akaike information criterion (AIC) [8]. The AIC
rewards goodness of fit, while including a penalty for the number of components used.

To implement the GMM classifier, we use the gmdistribution class from the Matlab
statistics toolbox [216]. During training, we build GMMs for both the occupied and
unoccupied distributions. During testing, we perform maximum-likelihood classification
by evaluating the likelihood of a test example belonging to either distribution. Besides
being used on their own as a maximum-likelihood classifier, we also employ GMMs to
smooth the emission probabilities for the Hidden Markov Model classifier.

Hidden Markov model (HMM) A HMM (see Figure 4.6) is a statistical state model
that relates (hidden) states (e.g. occupied, unoccupied) to emissions (e.g. the observed
electricity consumption) using matrices of emission and transition probabilities. In this
case, the observed electricity consumption at time t is then indicated by xt=1...T . The
unknown (occupancy) state is given by yt=1...T . HMMs improve upon the SVM, KNN,
THR and GMM approaches by considering the fact that it usually not very likely for a
household to change its occupancy state during a particular 15-minute interval. Indeed,
continuously switching the occupancy state is both unlikely and potentially harmful for a
smart heating system.

The training of a HMM requires a matrix of emission probabilities. In the context of
occupancy classification from electricity consumption data, this could for example be the
probabilities of observing some discrete level of power consumption during both occupied
and unoccupied states. Due to the limited observation time, the ECO dataset does not
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contain examples of all power levels for both states. To overcome the sparsity in the
input data, we build the emission probabilities using 2-dimensional GMMs of the first
principal component (cf. Section 4.2.4) and the ptime feature (e.g. the slot number) for
both the occupied and unoccupied states, respectively. We obtain the discrete emission
probabilities by numerally evaluating the integral of the GMMs.

4.2.4 Dimensionality reduction

Our feature set (cf. Table 4.1) contains 35 features. Using this complete set of features
allows to capture a variety of characteristics of the electricity consumption curve. However,
while some classifiers might take advantage of all the features included in this set, others
provide better performance operating only on a subset thereof. Indeed, for each classifier
there exists an optimal subset of features that maximises its performance [182]. To
limit the set of features to the most descriptive ones, we apply algorithms to reduce this
dimensionality as detailed below.

Feature selection

The set of optimal features can be found through an exhaustive search over all possible
subsets of the feature set [182]. However, the complexity of performing an exhaustive
search grows exponentially with the number of features [85].

To avoid such a computationally expensive operation9, we use a so-called feature
selection algorithm to identify adequate subsets of features. In particular, we adopt
the Sequential Forward Selection (SFS) [182] algorithm. SFS is an iterative algorithm
that applies a simple heuristic to determine the feature subset that allows to maximise a
performance metric J (e.g. the accuracy or Matthews correlation coefficient (MCC)).

Listing 4.1: Sequential Feature Selection (SFS)
1 X = [x0 . . .xn]; // Set of all features

2 Y = {∅}; // Best feature set of length k

3 m; // Maximum number of features

4
5 while(k ≤ |X | && k ≤ m) {

6 // Inclusion of best feature

7 x+ = argmax
x 6∈Yk

[J(Yk + x)];
8
9 Yk = Y k+ x+;

10 k = k+1;
11 }

12 return Ym

9The number of possible combinations for 35 features is 235 or roughly 34 billion.
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Listing 4.1 shows the pseudocode for the SFS feature selection algorithm. During the
first iteration, SFS considers one feature at a time and computes the corresponding value
of the performance metric J. The feature that allows to achieve the highest value of J
is retained and included in the selected feature subset. At each successive iteration, the
feature that – added to the already selected ones – allows to obtain the highest improvement
of the performance metric J is added to the already selected feature subset. The feature
selection procedure may be stopped if all features have been evaluated or a maximum
number of features has been reached. In this study, we do not limit the size of the feature
subset (i.e. we allow it to contain as much as 35 features) and we use the occupancy
detection accuracy (cf. Section 4.3.1) as the performance metric.

Principal component analysis

Some of the 35 features defined in Table 4.1 are closely related. A change in the max and
min features, for example, directly influences the value of the range feature. This makes
it difficult for a feature selection algorithm such as SFS to choose the best features. In
fact, a combination of different features may be more descriptive of the data. principal
component analysis (PCA) solves this problem by transforming the original data into a set
of linear combinations of the original features.

Principal component analysis is an orthogonal transformation of a set of observations X
of dimensionality D (e.g. D = 35 in our case) to a set of linearly uncorrelated variables
(i.e. principal components T) in a new coordinate system (cf. Equation 4.1) such that the
variance of the projected data is maximised [77]. Thus, the first component T1 explains
the largest possible variance. The transformation is then defined recursively, such that the
next principal component accounts for both the largest variance in the input data while
being orthogonal to the preceding components. This transformation is lossless and does
not reduce the dimensionality of the input data.

T = XW. (4.1)

In many cases, the first few components already explain most of the variance of the
input data. By restricting the number of components to the first L, we significantly reduce
the input data to the classifiers without sacrificing much information from the original
feature set. To obtain a suitable L, we use the number of components which accounts for
at least 95% of the variance of the input data.

4.3 Evaluation

Binary occupancy classification is a two-class problem. A household can either be
occupied or unoccupied during a particular 15-minute slot. Table 4.2 shows the four
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Table 4.2: Confusion matrix.
Actual class (ground truth)

p (occupied) n (unoccupied) Total

Predicted class p′ (occupied) True Positive False Positive t p+ f p
n′ (unoccupied) False Negative True Negative f n+ tn

Total t p+ f n f p+ tn N

possible outcomes of classifying such an slot. An instance of correctly assessing the
household’s occupancy from the electrical consumption data to be occupied is called
a true positive (t p). Likewise, correctly labelling the data to be unoccupied is called
a true negative classification (tn). False positive (f p) and false negative classifications
(fn) denote the instances of incorrectly labelling the household occupied or unoccupied,
respectively. Using this notation, we introduce several different established performance
criteria in the remainder of this section.

4.3.1 Accuracy

The classification accuracy is the simplest performance measure [184]. The classification
accuracy of a classifier c is computed as the number of correct classifications divided by
the total number of classifications:

Accc =
t p+ tn

t p+ tn+ f p+ fn
(4.2)

We use Prior – a maximum-likelihood classifier that always assigns an input data to the
class of the majority of data points in the training set – as a baseline for our comparisons.
Since in our dataset the households are occupied more than 50% of the time, Prior always
classifies the households as occupied. We use the accuracy of the Prior classifier as a
baseline for the other methods.

However, the classification accuracy only partially describes the performance of a
classifier. It does not take into account the relative costs of making a wrong classification.
A false negative classification by a smart thermostat (e.g. occupants are assumed to be
away although they are, in fact, present) usually results in an automatic reduction of the
temperature. On a cold day, this may severely impact the occupants’ comfort. Witten et al.
summarise this problem by saying that an “evaluation by classification accuracy tacitly
assumes equal error costs” [184].

In addition, the classification accuracy may be misleading if the distribution of classes
is unbalanced. In our case, households r4 and r5 have occupancy figures exceeding
90%. Thus, a high accuracy may be achieved by always predicting these household to be
occupied.
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Table 4.3: Confusion matrix for biased random classifier.
Actual class (ground truth)
occupied unoccupied Total

Predicted class occupied t p = p2 f p = (p−1)p t p+ f p
unoccupied f p = (p−1)p tn = (p−1)2 f n+ tn

Total t p+ f n f p+ tn N

4.3.2 Matthews Correlation Coefficient

In the case of occupancy detection, correctly classifying both occupied (true positive) and
unoccupied (true negative) states is paramount. For this reason we computed the Matthews
correlation coefficient (MCC) over the results of our classifiers [132]. For the MCC, a
perfect prediction is represented by a coefficient of +1. A value of −1 indicates that no
single instance was classified correctly. The MCC of a classifier c is calculated as:

MCCc =
t p× tn− f p× fn√

(t p+ f p)(t p+ fn)(tn+ f p)(tn+ fn)
(4.3)

The MCC provides a balanced measure even if the input data are heavily skewed towards
one class. The MCC is undefined for the Prior maximum-likelihood classifier as both the
numerator and denominator become zero.

4.3.3 False negative and false positive rate

Labelling a household as unoccupied, while it is in fact occupied is a false negative (fn)
classification. A false negative causes a problem for heating control applications: If the
household is falsely declared to be unoccupied, the thermostat lowers the temperature
while occupants are still present. This results in discomfort for the inhabitants. To be able
to quantify the number of such misclassifications we use the false negative rate (FNR).
The false negative rate of a classifier c is defined as the number of false negatives divided
by all unoccupied slots (true and false negatives).

FNRc =
fn

fn+ tn
(4.4)

Analogously, we call labelling an unoccupied household as occupied during a particular
slot a false positive (f p). A false positive classification means that a smart thermostat
will raise the temperature unnecessarily, resulting in a loss of efficiency. We use the false
positive rate (FPR) to denote the frequency of such occurrences. The false positive rate of
a classifier c is defined as the number of false positives divided by all occupied slots (true
and false positives).

FPRc =
f p

fp+ t p
(4.5)
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Figure 4.7: Maximum achievable accuracy AccC over all classifiers.

4.4 Results

In this section, we quantitatively evaluate the occupancy detection performance achievable
using features derived from aggregated electricity consumption data. We consider the set
of classifiers introduced in Section 4.2.3. These are SVM, KNN, THR, GMM, HMM
and the Prior classifier for baseline comparison. The classifiers take as input the set of
features computed of aggregated electricity consumption data introduced in Section 4.2.1
and output the estimated state of the household in a specific time slot. For dimensionality
reduction, we evaluate the SFS feature selection algorithm and PCA. To indicate the
used method, we will append “-SFS” or “-PCA” to the respective classifiers, where
applicable (e.g. SVM-SFS denotes the usage of the SVM classifier trained using SFS
feature selection).

We will first discuss the overall occupancy detection performance before discussing the
results of the different classifiers and the results of the feature selection. We will conclude
this section by analysing the suitability of these classifiers for occupancy detection in a
smart heating scenario.

4.4.1 Overall occupancy detection performance

For each household, we define AccC as the highest accuracy achievable by any classifier,
with C denoting the classifier achieving this accuracy. To put this value into context, we
also report the false positive and false negative rates achieved by C. Thus, FPRC is the
false positive rate and FNRC is the false negative rate of the classifier achieving the highest
accuracy. Figure 4.7 shows the values for AccC, FPRC and FNRC for all five households
in the (a) Summer and (b) Winter datasets.
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During both summer and winter, for households r1 to r3, AccC is higher than the Prior
accuracy as determined by the maximum-likelihood classifier. The classification shows
the highest performance in household r2 where AccC is on average 29% higher than the
Prior accuracy. With an accuracy over the whole year of 93%, just over one hour per day is
misclassified by the best classifier on average. This is achieved with a low fraction of slots
misclassified as unoccupied. The average FNRC over summer and winter is 6%. Thus
the classifier incorrectly assumes the house is unoccupied for an average of 38 minutes
per day. The average FPRC of 8% results in 26 minutes being incorrectly classified as
occupied. We will look at the reasons for these misclassifications in Section 4.4.4.

For households r1 and r3 the best classifiers achieve Accc = 85% and AccC = 81%,
respectively. For both households, this is a ten percent improvement over the Prior accuracy.
However, in contrast to r2, this comes at the potential cost of significant discomfort in
terms of false negative rates. For r1, a false negative rate of 15% means that almost 110
minutes are incorrectly classified as unoccupied while the participants were actually at
home. Similarly, in household r3, a false negative rate of 14% results in one hour and 35
minutes being misclassified as unoccupied.

Households r4 and r5 have a high average occupancy around 90%. For these households,
the accuracy of none of the classifiers significantly exceeds the accuracy achieved by the
Prior classifier. Since we lack detailed data on the behaviour of the occupants we cannot
establish the exact reasons for this result. We assume, however, that an explanation may
be found in the behaviour of the occupants. As r4 and r5 are almost always occupied,
there will inevitably be periods of occupancy during which no electric appliances are used.
When training the classifier, these periods look identical to those during which the house
is actually unoccupied. Due to the high occupancy, the number of such inactive periods
is also likely to exceed the unoccupied periods, resulting in the classifier almost always
classifying the home as occupied.

In order to alleviate this problem, we changed the behaviour of the classifiers by
undersampling the training data to obtain an even split of occupied and unoccupied slots.
However, this merely increased the number slots misclassified as unoccupied and reduced
the overall accuracy. As the main objective of a smart heating system should be to ensure
the comfort of the occupants at all times, this is not feasible. After all, high occupancy
households may not be interesting targets for smart thermostats in the first place as the
amount of energy that can be saved is reduced as the total occupancy increases10. While
we will list the results for households r4 and r5 in the remainder of this chapter for the sake
of completeness, we will not include them in our analysis due to their limited suitability
for the smart heating scenario.

10The connection between energy savings and occupancy will be discussed in Chapter 8.
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Table 4.4: Classification accuracy (expressed as percentages) obtained for each house-
hold and algorithm in the two periods Summer and Winter.

SFS PCA
SVM KNN THR SVM KNN GMM HMM Prior

House Summer
r1 80 76 77 83 80 78 83 75
r2 91 88 76 92 89 76 90 65
r3 78 76 71 83 79 70 82 71
r4 90 90 85 91 88 70 87 90
r5 90 88 81 90 84 59 79 90

Winter
r1 82 78 83 84 81 79 87 73
r2 93 91 77 94 91 88 92 63
r3 70 71 66 78 76 59 71 71
r4 92 92 90 92 90 70 84 93
r5 82 80 77 85 79 63 74 82

4.4.2 Performance by classifier

Table 4.4 shows the classification accuracy for all combinations of households and clas-
sifiers for the Summer and Winter datasets. The best classifier(s) are indicated in bold
print. The table shows that in terms of classification accuracy, the SVM-PCA classifier
outperforms the other classifiers in seven of ten cases. The SVM-PCA classifier achieves
an average accuracy of 86% for households r1 to r3. In contrast to the simple occupancy
detection algorithm introduced in Figure 4.1 at the beginning of Section 4.2, which classi-
fied any power consumption above a certain threshold as occupied, the more complex set
of features introduced in this section requires a non-linear classifier11. The SVM classifier
is especially well-suited for this sort of classification and thus performs better than the
KNN, THR, GMM and HMM classifiers.

The HMM classifier is the second best classifier, outperforming the SVM-PCA classifier
for household r1 in winter and performing equally well in summer. The HMM classifier
achieves an average accuracy of 84% for households r1 to r3. In contrast to the other
classifiers, the HMM classifier does not merely rely on the features, but also takes into
account the previous occupancy state. Furthermore, like the SVM classifier, it also allows
for non-linear classification. However, as discussed in Section 4.2.3, the HMM classifier
operates on a fixed subset of the input data, putting it at a disadvantage to the SVM
classifier.

The GMM classifier performs worst, indicating that – while the logarithm of the overall

11The max feature, for example, may assume either (1) a low value, indicating absence, (2) a medium value
indicating the operation of a device like the television or (3) unrelated to the actual occupancy, a high
value for an electric boiler. Likewise, the ptime feature, which assigns slot numbers from 1 to 65 to
indicate the current time, has higher associated occupancy probabilities with the first (morning) and last
(evening) slots than the ones in-between (lunchtime and afternoon).

66



4.4 Results

Table 4.5: Matthews correlation coefficient obtained for each household and algorithm
in the two periods Summer and Winter.

SFS PCA
SVM KNN THR SVM KNN GMM HMM

House Summer
r1 0.40 0.35 0.35 0.52 0.46 0.49 0.60
r2 0.81 0.73 0.45 0.84 0.76 0.55 0.79
r3 0.46 0.42 0.32 0.61 0.49 0.44 0.61
r4 0.14 0.15 0.19 0.35 0.35 0.32 0.45
r5 / 0 0.05 / 0.11 0.13 0.19

Winter
r1 0.50 0.42 0.55 0.58 0.53 0.55 0.70
r2 0.84 0.81 0.51 0.88 0.82 0.75 0.84
r3 0.18 0.21 0.14 0.46 0.41 0.20 0.32
r4 0.10 0.09 0.19 0.15 0.20 0.22 0.26
r5 0.11 0.24 0.07 0.35 0.32 0.25 0.31

power consumption may follow approximately a normal distribution – the derived features
do not. Similarly, due to its reliance on the assumption that a higher absolute value of a
feature always indicates presence, the simple THR-SFS classifier only achieves an average
accuracy of 75%. While the KNN classifier performs better than the former two, it is
outperformed by SVM and HMM on five of six cases for households r1 to r3.

In terms of classification accuracy, using principal component analysis to reduce the
number of features prior to classification outperforms feature selection using the SFS
algorithm. While SVM-SFS performs similarly to SVM-PCA for r2, it is outperformed
by SVM-PCA and the PCA-based HMM in households r1 and r3. In Section 4.4.5 we
will look at the selected features and discuss possible explanations of why PCA performs
better than SFS on our data.

Table 4.5 confirms that PCA also outperforms SFS feature selection for the MCC (i.e.
for all households, PCA-based approaches yield a higher MCC). However, if the MCC is
taken as the measure of merit, the performance of the HMM and SVM-PCA classifiers
converge. Both have an average MCC of 0.64 for households r1 to r3. While HMM
now shows the highest performance for household r1 in summer and winter, SVM-PCA
performs better or equally well in households r2 and r3. The more clear separation of
HMM and SVM-PCA for for r1 using the MCC is due to the fact that the MCC rewards a
more even split between false positives and false negatives.

To further investigate this issue, Table 4.6 shows the FNR for all combinations of
households and classifiers. The FNR is especially important when considering a heating
system (i.e. a higher FNR produces an uncomfortable environment as the temperature is
allowed to drop when occupants are present). Again, bold print indicates the best (lowest)
values. The tables show that choosing the classifier according to the classification accuracy
(or MCC) may not always be the best strategy for a heating scenario. In the previous
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Table 4.6: False negative rate (expressed as percentages) obtained for each household
and algorithm in the two periods Summer and Winter.

SFS PCA
SVM KNN THR SVM KNN GMM HMM

House Summer
r1 9 15 14 10 14 22 16
r2 8 10 11 7 9 30 9
r3 16 17 21 15 16 36 20
r4 1 2 9 2 7 31 11
r5 0 2 12 0 9 42 17

Winter
r1 8 12 8 9 13 23 14
r2 6 7 15 5 7 15 9
r3 13 13 21 13 16 45 24
r4 1 1 5 1 4 30 14
r5 2 11 9 3 14 39 23

0 20 40 60 80 100 120 140 160 180 200

away
home
away
home
away
home
away
home
away
home

 

 

GT SVM−PCA KNN−PCA GMM−PCA HMM−PCA

Figure 4.8: Ground truth (GT) and classification results for an exemplary classification of
195 slots (3 days) of household r2.

section, we noted that AccC was 85% for household r1. This was achieved by choosing
the HMM classifier for both summer and winter periods12. However, the choice of the
HMM classifier results in an average FNR of 15% while choosing the SVM-PCA classifier
would have resulted in a FNR of just 10% at the expense of an average 2% reduction in
accuracy.

4.4.3 Suitability for controlling a thermostat

Both classification accuracy and MCC assess the performance of a classifier based on the
correct classification of individual slots. Any correct or incorrect classification of a slot
contributes with the same weight to the metric. The ability to detect occupancy transitions

12The accuracy for the HMM classifier is slightly higher than that for the SVM-PCA classifier which is not
visible in Table 4.4 due to rounding errors.
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Table 4.7: Root mean square error (RMSE) of the transitions predicted by the classifiers
compared with the number of actual occupancy transitions per day and average
number of daily occupancy transitions (ADOT) for each household and
algorithm in the two periods Summer and Winter.

SFS PCA
SVM KNN THR SVM KNN GMM HMM ADOT

House Summer
r1 11.7 9.3 11.5 7.4 6.2 9.2 8.7 2
r2 3.6 3.9 12.4 3.4 3.8 6.3 3.7 2.5
r3 10.1 7.2 9.9 7.8 6.0 11.1 10.4 2.3
r4 9.2 8.7 11.2 6.5 5.6 20.1 9.1 1.8
r5 12.1 11.1 9.0 12.1 7.4 22.9 11.7 1.3

Winter
r1 8.4 8.5 8.5 7.9 9.8 14.0 9.1 1.1
r2 2.6 2.9 6.3 2.5 2.8 3.9 3.0 2.2
r3 5.3 5.9 5.6 4.0 5.2 8.2 3.1 1.9
r4 9.3 9.1 7.1 8.4 5.7 26.9 15.2 1.3
r5 13.8 8.1 9.1 10.3 5.3 12.3 6.9 2.1

– i.e. changes in the occupancy state (from occupied to unoccupied and vice versa) – is
however crucial to many systems. For instance, when a smart heating system detects that
the household has become occupied, it may decide to start heating immediately. As every
transition may lead the heating system to thus change its state, correctly identifying the
number of transitions is of equal importance to the accuracy of the classification itself.
Figure 4.8 shows the classification for the first 195 15-minute slots of household r2 using
the SVM-PCA, KNN-PCA GMM-PCA and HMM-PCA classifiers. The ground truth
occupancy data shows 10 state transitions. The SVM-PCA classifier misses a short period
of occupancy on the first day but otherwise has the same number of transitions as the
ground truth. Due to its statefulness, the HMM misses both short occupancy periods but
also achieves results close to the ground truth in terms of the overall number of transitions.
The KNN-PCA and GMM-PCA however perform significantly worse, inducing a large
number of additional transitions in the occupancy state.

To further investigate the ability of the classifiers to detect the correct number of
occupancy state transitions, Table 4.7 shows the RMSE between the number of actual
occupancy transitions per day and the transitions predicted by the classifiers. For reference,
the table includes the average number of daily occupancy transitions (ADOT). We define
ADOT for each household and season as follows:

ADOT =
∑

Total number of days
d=1 Number of transitions for day d

Total number of days
(4.6)

The table shows that household r2 has the highest ADOT of all households. This
corresponds to the lowest occupancy (e.g. 64%) in the dataset. Again, the SVM-PCA
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Figure 4.9: Mean accuracy over 24 hours (r2, SVM, winter).

classifier allows for the highest performance in household r2 with an average error of
3 transitions. For the other households, the best classifiers overestimate the number of
transitions by 3 to 8. This means that additional smoothing in the heating controller
is needed to avoid unnecessary switches of the heating system. The system could for
example require to wait an hour before declaring the home to be unoccupied, thereby also
reducing the FNR.

4.4.4 Limits to occupancy sensing using electricity consumption

data

The accuracy, FNR and RMSE of the SVM-PCA classifier look promising for a heating
application. However, Figure 4.9 shows that the classification accuracy still exhibits
significant variations throughout the day. The figure shows the average classification
accuracy of the SVM-PCA classifier (r2, winter) over the day from 6 a.m. to 10 p.m. The
upper graph shows that while the accuracy stays around its average of 94% for most of the
day (e.g. from 10.15 a.m. to 10 p.m.), there is a significant drop in the morning.

The lower graph shows the average ground truth (i.e. the actual average occupancy)
and the average occupancy predicted by the SVM-PCA classifier. Up until 8.30 a.m., the
occupancy is constantly overestimated – probably reflecting the fact that the participants
are more likely to forgo their breakfast the earlier they leave the house. After 8.30 a.m., the
situation turns and the actual occupancy is higher than the predicted occupancy resulting
in a number of false positives. Possible explanations for this behaviour include sleeping in
on weekends and a reduced use of electrical appliances in the morning. For the rest of the
day, the predicted occupancy closely tracks the ground truth occupancy.
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(a) Summer.
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(b) Winter.

Figure 4.10: Number of times a specific feature has been chosen as part of the feature
subset selected by the SFS algorithm for a particular household and classifier.
A darker colour indicates a feature was chosen more frequently.

While this drop in accuracy in the morning does not negatively affect the comfort of
the inhabitants, it suggests that in order to make sure that a smart heating system does not
waste savings potential in the morning, additional instrumentation may be required.

4.4.5 Features selected by SFS

In this section we analyse which features of the electric load curve are most indicative
of occupancy. For this purpose, we look at the features chosen by the SFS algorithm13.
Figures 4.10a and 4.10b display – for the Summer and Winter periods, respectively – the
number of times a specific feature has been chosen as part of the feature subset selected
by the SFS algorithm. All features are listed on the x-axis. Each row in the plot shows the
number of times each feature has been chosen for a specific classifier and household, as
indicated on the y-axis.

These plots show that while there is a trend for the SFS feature selection algorithm to
select more features during summer than winter, no feature is chosen consistently over all

13As the PCA transforms the features into different dimensions, it does not help us with analysing which
features are actually well correlated with occupancy.
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Figure 4.11: Combined features chosen by SFS for SVM classifier (household r2).

households. This is partly due to the fact that in different households, similar appliances
may be attached to different phases (e.g. the max1 feature may detect the operation of a
kettle on the first phase in household r1, while the kettle in household r2 is captured by
max3). A specific feature computed on one of the phases might thus be very valuable for
one household but not for the other and vice versa.

Figures 4.10a and 4.10b also show that the feature set obtained by the SFS feature
selection is not stable. The feature selection results in different features being chosen
on successive runs for the same household. The reason for this is that there is a high
correlation between individual features. The range feature for example is composed from
the difference of the min and max features. Likewise, the onoff feature is very similar to
the sad feature. Whereas the former counts the number of instances of a specific delta
(i.e. 30 watts over 30 seconds) in the power consumption, the latter aggregates all deltas
of the power consumption (i.e. it computes the sum of the absolute differences between
subsequent measurements). As the features’ descriptive power is very similar, the selection
by SFS is influenced by small variations in the accuracy that are more to do with the
variance of the dataset than the descriptiveness of a particular feature. Incidentally, this is
the reason why the PCA dimensionality reduction performs well. By selecting only the n
first components comprising 95% of the variance of the training data, the overlap between
features is ignored.

Figure 4.11 shows the cumulative probability of a particular feature irrespective of the
phase it was computed on14 being chosen by SFS in the summer (Figure 4.11a) and winter
(Figure 4.11b) datasets. As noted previously, the chosen feature set is larger during the
summer than during the winter. During summer, the first six features are chosen in more
than 75% of runs, while during the winter only the first feature exceeds a 75% probability
of being chosen.

Overall, during summer and winter, the onoff feature is used most often. During

14For features that have been computed on more than one phase (i.e. min was computed for 1, 2, 3 and all 3
phases), the figure shows the probability of at least one of these features being used in a particular run.
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summer it it is used in all runs and in winter it is used in more than 90% of the runs. It is
followed by the max and min features in winter, while in the summer the similar range
feature comes in the third position. Furthermore, in winter, the time features – pprob,
pfixed and ptime – are less likely to be chosen. This is because during the summer, the
time features allow to establish a correlation between occupancy and the current time of
day when the electricity consumption itself is not sufficient (e.g. apart from a short period
of time to prepare breakfast, occupants are using less electricity in the morning). During
the winter, the requirement for lighting whenever the house is occupied in the morning or
evening makes these features less necessary.

The strong prevalence of the onoff feature confirms our initial expectation that by
knowing the activation state of individual appliances we can derive the occupancy of the
household. To investigate further how the actual activation state of appliances might im-
prove the classification performance we investigate the usage of device-level consumption
information for occupancy classification in the next section.

4.5 Using device-level consumption data

In light of the results presented thus far, a natural question to ask would be how much
better we could do if we had the disaggregated (i.e. device-level) consumption information
available. This information could be obtained by NILM algorithms (cf. Section 4.1.3) or
additional instrumentation of the households.

Knowledge about the activation state of selected household appliances could allow
for a more accurate assessment of the occupancy state. In particular, we expect that
using information about household appliances that are well-correlated with occupancy and
exhibit a small number of false positives (e.g. the TV or kettle) should help to increase the
performance of the occupancy detection. In this section we will evaluate the occupancy
detection accuracy obtainable from the device-level consumption data included in the
ECO dataset and compare it to the accuracy obtained from the aggregate load curve.

4.5.1 Correlation between appliance state and occupancy

In order to identify appliances whose on/off states are indicative of occupancy, we will
distinguish between three categories of devices. Devices which always exhibit a positive
correlation with occupancy we will identify as class A devices. Such devices include
televisions, kettles and stoves. These devices are usually only switched on when the
household is actually occupied. Appliances where the correlation is uncertain – such as
the dishwasher or the washing machine – we will identify as class B devices. In addition
to being operated when the house is occupied, these appliances may be switched on when
the occupants are leaving or programmed with a timer in order to run while the occupants
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Table 4.8: Appliance-level on/off classification (Household r2, summer). FPR and FNR in
percent.

FPR FNR Correlation Class
Appliance Summer

Tablet 1 98 0.00 C
Dishwasher 1 97 0.06 B

Vent 0 97 0.09 A
Fridge 61 31 0.08 C

Entertainment 1 38 0.52 A
Freezer 96 3 -0.01 C
Kettle 0 97 0.09 A
Light 0 96 0.11 A

Laptops 0 58 0.37 A
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Figure 4.12: Correlation between appliance activation state and occupancy.

are away. Whether a class B device has a positive or negative correlation must be learned
by an algorithm as it cannot be known in advance. Class C contains all the appliances that
have a low correlation with occupancy. Such appliances include the fridge and the freezer,
which exhibit relatively constant consumption patterns throughout the day.

Table 4.8 shows the classification of the appliances fitted with smart plugs in household
r2. The tablet computer was used as an in-home display to facilitate the data collection and
was always plugged into a charger. All devices apart from the freezer exhibit a positive
correlation with the occupancy ground truth. Some class A devices such as the ventilation
over the stove and the kettle show a weak correlation with occupancy since they are
only seldomly operated. The entertainment system and laptops show a strong correlation
with occupancy, however. Figure 4.12 shows the correlation between activation state and
occupancy for all appliances in the dataset. It can be shown that the activation state of
entertainment devices has the highest correlation with occupancy. Kitchen appliances such
as the kettle or the coffee machine on the other hand are also good indicators of occupancy.
However, they are only activated for a much shorter time.
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Figure 4.13: Accuracy for on/off only occupancy detection.

4.5.2 Detecting activation states

In order to compute the occupancy classification from the device-level information, we
calculate – analogous to the classification of the aggregated data – for each day i and 15-
minute slot j, the arithmetic mean of the electricity consumption meanpid,i, j as measured
by smart plug pid. If meanpid,i, j is greater than 5 watts, we set the corresponding slot in
the classification Cpid,i, j to 1. Table 4.8 shows the results of the device-level classification
in terms of false positive and false negative rates for r2 during the summer period. The
classification of all type A devices, including the home entertainment system and the
laptops, exhibits a low false positive rate. These appliances are mostly in use when
occupants are present. We use thresholding to exclude all appliances with a false positive
rate greater than 5%. While this also yields some class B and C devices, the overall
effect of this is negligible as these must also exhibit a low number of false positives to
be included. Note, that as the ground truth to establish the effect of including a certain
appliance is not available, users may be asked to manually classify their appliances into
the three categories.

In order to fuse the occupancy classification from the appliance activation states we
take all classifications Cpid from appliances pid for which the false positive rate is greater
than 5% and take their disjunction Conoff.

4.5.3 Occupancy detection performance

Figure 4.13 shows the occupancy detection accuracy that may be achieved by solely
using Conoff, the on/off state of the selected appliances. Due to the low percentage of
instrumentation in households r1, r3, r4 and r5, no clear assessment of the performance
of device-level occupancy classification can be given, in general. In these cases, the
accuracy is below 50% – the performance of a random guess. While this can be remedied
by performing occupancy classification analogous to the rest of this chapter, the low
correlation of the activation state of the instrumented appliances with occupancy makes
this infeasible.
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For household r2, however, the classification solely on the activation state of the
entertainment and laptop appliances achieves a detection accuracy of 81% in summer
and 84% in winter. However, as the lights and appliances such as the stove, microwave,
hairdryer and vacuum cleaner are not instrumented, the accuracy does not approach the
92% and 94% obtained when using the aggregated load curve. The analysis of the device-
level consumption information shows that the limits identified in Section 4.4.4 such as the
tendency of occupants not to use appliances in the morning if they leave the house early
cannot be remedied by device-level information.

4.6 A simple unsupervised approach: Revisiting the

mean classifier

Up to this point, we have analysed how to design a classifier based on features computed
from 1 Hz electricity consumption data and ground truth occupancy. In this section, we
revisit the simple mean classifier introduced in Figure 4.1 at the beginning of Section 4.2
to show how well occupancy can be inferred – without having to acquire ground truth data
for training – from data that is already available to utility companies today.

To this end we have implemented eight variants of a simple thresholding classifier. All
eight variants (DAY-AVG, DAY-MIN, NIGHT-AVG, NIGHT-MIN, LOG-DAY-AVG, LOG-
DAY-MIN, LOG-NIGHT-AVG, LOG-NIGHT-MIN) classify a household as occupied if its
15-minute aggregate electricity consumption exceeds a given threshold. To obtain suitable
thresholds we computed the average and minimum of both the daytime and nighttime
electricity consumption and their respective logarithms15.

Figure 4.14 shows the best accuracy AccC achieved by any of the eight classifiers
introduced above. For household r2, the accuracy reaches 78%, exceeding the Prior
accuracy on average by 14% meaning that the classification is wrong for approximately
three and a half hours per day but correct otherwise.

All other households have values for AccC close to the Prior accuracy. In these cases,
the algorithm almost always classifies the household as occupied. This can be seen most
clearly in Table 4.9 for households r1, r3 and r5. In these cases, the best classifications
are the ones relying on minimum of the respective consumption value. In contrast, the
classifier performing best for household r2 is using the average nighttime consumption as
a threshold to determine occupancy.

15Note, that in contrast to the mean123 feature used previously, the 15-minute aggregate electricity con-
sumption is not computed on the logarithm of the 1 Hz data as this data would not be available to the
utility company. Instead, as the 15-minute consumption is still approximately log-normally distributed,
we implemented LOG-DAY-AVG, LOG-DAY-MIN, LOG-NIGHT-AVG and LOG-NIGHT-MIN on the
logarithm of the 15-minute data.
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Figure 4.14: Best accuracy AccC among all eight simple unsupervised classifiers.

Table 4.9: Classification accuracy (expressed as percentages) obtained for each house-
hold and simple classifier in the two periods Summer and Winter.

DAY NIGHT DAY (LOG) NIGHT (LOG)
AVG MIN AVG MIN AVG MIN AVG MIN Prior

House Summer
r1 46 75 55 75 56 75 66 75 75
r2 61 65 77 66 68 65 78 66 65
r3 45 71 36 72 57 71 50 72 71
r4 40 89 16 86 49 89 31 86 90
r5 43 89 84 90 54 89 86 90 90

Winter
r1 48 73 61 73 58 73 70 73 73
r2 70 63 77 63 76 63 76 63 63
r3 48 71 35 72 58 71 58 72 71
r4 42 92 40 90 51 92 56 90 93
r5 44 82 25 82 52 82 51 82 82

The classification accuracy of these simple unsupervised approaches can certainly be
improved. Such approaches may include clustering of the consumption data using k-Means
or inferring the combined probability density function of the occupied and unoccupied
states using GMMs.

The conclusion of this experiment is two-fold. In order to use smart electricity meters as
opportunistic sensors to control a smart heating system, supervised methods and a sampling
rate of 1 Hz are preferable. However, while being unsuitable as input for an automatic
control system, the occupancy detection accuracy of these unsupervised approaches is
good enough for them to be employed by a utility company to identify households with low
occupancy. While, this certainly also warrants privacy concerns (e.g. this information may
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reveal the employment status of the inhabitants), the information could be used for good
by providing these households with information regarding smart heating systems [22].

4.7 Conclusions and lessons learned

In this chapter we addressed the problem of performing automatic home occupancy
detection using aggregated electricity consumption data. Our results show that the use
of smart electricity meters allows to achieve an average occupancy detection accuracy
of up to 94%. We further showed that due to the non-linear relationship between the
features derived from the electrical consumption and the occupancy, an algorithm capable
of non-linear classification, such as an SVM classifier, is required to achieve the best
performance.

Our analysis of the feature space highlights that features that correlate well with occu-
pancy in one household may not be transferred directly to another. Some of the features
are derived from the electricity consumption measured on a single phase. While this
enhances the descriptiveness of our feature set (e.g. the stove can be easily detected as it is
usually connected on multiple phases), this also means as different households may have
similar appliances attached to different phases, a certain feature that is very descriptive in
one household may be of little relevance in another. To select the most descriptive features
and to thus reduce the dimensionality of the input data for the classifiers, we have found
that using PCA outperforms the SFS feature selection algorithm.

Although our sample is too small to draw any conclusions yet, our results also indicate
that occupancy detection from electricity consumption data work best for small households
of young professionals with low occupancy. Such households have the ideal occupancy
pattern for the intended use case – automating a thermostat. Households with high
occupancy levels on the other hand not only do not offer a high potential for energy, but
are also inherently difficult to classify as the high imbalance in training information leads
to a bias towards occupancy.

Further improvements to the occupancy detection performance may be expected from
sensing the device-level consumption information (i.e. how much power each appliance
draws at any point in time). While a complete instrumentation of the household (i.e.
sensing the consumption of all appliances) is desirable, in practise, information about
long-running appliances such as entertainment systems, lights and computers should be
preferred to transient consumers such as kitchen appliances. However, our results show
device-level consumption information does not provide significant benefits over sensing
occupancy from the aggregated consumption, only. One reason for this might be that there
are times when the occupants are at home but the utilisation of electrical appliances is
minimal (e.g. in the morning before and after the preparation of breakfast).
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We began this chapter by noting how smart electricity meters are increasingly being
deployed in residential households. In fact, due to privacy concerns and disappointing
results (i.e. low energy savings between 3% and 7% [31, 54, 154]) from early field trials,
their adoption has somewhat stalled. In Europe, the adoption according to 2009/72/EC is
subject to a cost-benefit analysis [155]. Subsequently, several countries such as Germany
have negatively assessed the impact of smart meters and will not reach the targets of the
Commission [50]. One of the goals of the Third Package is to promote the “development
of energy services based on data from smart meters” [50] – utilising smart electricity
meters as opportunistic occupancy sensors is such a service.
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Building large-scale occupancy datasets

from unlabelled sensor data

A number of studies have shown how behavioural patterns of both groups and indi-
viduals can be discovered by analysing data collected using off-the-shelf mobile de-
vices [34, 38, 59]. In particular, mobile phones have been used to gather mobility traces
of individuals [63, 97]. The analysis of these traces enables identification of places of
interest in the daily lives of individuals [97] or even the prediction of the places that will
be most likely visited next by the mobile phone owners [168].

The use of mobile phones for the collection of mobility traces thus makes it possible to
explore, model and predict human behaviour. Retrieving mobility traces at a fine temporal
and spatial scale, however, may consume a significant amount of resources. For instance,
the continuous operation of a GPS sensor is known to shorten battery lifetime of mobile
phones significantly [35]. In practical settings, the use of GPS is thus typically “rationed”
and combined with other technologies, in particular cell- or Wi-Fi-based localisation [117].
This, however, also requires reliance on third-party services and might thus raise privacy
concerns. To reduce the impact of these issues, collecting data at a much coarser scale
might still be sufficient to support a large set of applications and at the same time preserve
mobile phone resources and protect users’ privacy. Such scenarios include applications
that rely on knowledge about when households’ occupants are likely to return home, like
home automation applications (e.g. automatic heating control), location-based reminders
or notification services to ensure the presence of children at home.

In this chapter, we focus on this specific class of applications and introduce the homeset
algorithm, a simple approach to estimate occupancy schedules from unlabelled sensor data.
The algorithm relies on Wi-Fi scan data (i.e. the information that mobile phones gather
about visible Wi-Fi access points (APs)) to determine when residents are at home and
when not. We validate our approach using the Mobile data challenge (MDC) dataset from
the Nokia Lausanne Data Collection Campaign that contains mobile phone traces of 38
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participants collected over more than one year. Since the data is unlabelled, we indirectly
validate our results by leveraging the information hidden in the anonymised GPS traces
contained in the dataset.

While the initialisation phase of the homeset algorithm can be used for a more seamless
setup of home automation systems, its main focus lies on the analysis of large-scale,
long-term location datasets. The occupancy schedules thus derived can then be used to
learn more about the behaviour of occupants and to improve existing occupancy prediction
algorithms (cf. Chapter 6).

Before presenting the homeset algorithm and discussing its performance in Section 5.2,
we summarise related work in Section 5.1. Section 5.4 concludes the chapter. This chapter
has been based on contributions made in [100, 101].

5.1 Related work

The idea of using mobile phones to discover human mobility patterns has been explored
extensively in the last few years [63]. Several authors have focused on identifying places
of interest (e.g. the workplace, home or gym) and on predicting transitions between such
places [12, 97]. Our work is related to these approaches since we aim to identify – although
not locate – the home of a mobile phone user in order to build an occupancy schedule that
could be used to control a thermostat.

5.1.1 Significant place sensing

Several authors have extended the problem space from occupancy sensing to the recog-
nition of users’ relevant places [12, 73, 97]. Most humans spend a large portion of their
day indoors at home, making it the most relevant place. Sensing relevant places using
a portable sensor such as a mobile phone may thus identify when the users are at home
as well as the places visited prior to returning home – information that can be used for
predicting occupancy (cf. Section 6). A broad categorisation of place sensing algorithms
classifies current approaches into fingerprint-based and geometry-based algorithms [138].

Fingerprint-based algorithms

A fingerprint-based algorithm periodically samples the radio-frequency (RF) signals from
stationary sources such as mobile phone towers and Wi-Fi access points [44, 97, 138].
If a certain set of cell towers or Wi-Fi access points is visible over an extended period
of time, a so-called “stable radio environment” [138] is detected. Such a stable radio
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environment implies that the user is currently staying in a place1. Following the premise
that the relevance of a place is correlated with the users’ duration of stay, such algorithms
identify the relevant places of users.

However, most of these algorithms require sampling rates which are not available in
public datasets. The PlaceSense algorithm by Kim et al. [97] samples the radio at 0.1 Hz
to find semantic places. Such a sampling rate results in short battery life-times that would
not be suitable for a long term deployment. As PlaceSense requires a stable scan window
(i.e. a consistent set of beacons) to detect entrance to a place, it struggles on datasets with
relatively low sampling rates such as the MDC dataset used in this chapter. In contrast,
our homeset algorithm requires collecting only coarse-grained traces of Wi-Fi scans and
can operate locally on the user’s phone.

Geometry-based algorithms

As they are agnostic of the actual geographic position of the relevant places, fingerprint-
based algorithms cannot directly provide positioning capabilities (i.e. provisioning of
addresses or latitude/longitude coordinates). Moreover, they become inaccurate as the
network topology changes and RF transmitters are added or removed. Geometry-based
approaches, which are based on clustering of latitude/longitude coordinates can provide
actual position data for the relevant places [12, 91, 187].

5.1.2 Public occupancy and location datasets

In the domain of ubiquitous computing, several authors have addressed the problem of
predicting the next location of a person. In [168], Scellato et al. address the problem of
estimating the arrival time of a user at specific location as well as “the interval of time
spent in that location”. In this context, Petzold presented the Augsburg Indoor Location
Tracking Benchmarks [159]. The dataset covers the rooms of one floor of a university
building. The location traces were obtained manually by four participants using a graphical
user interface on a personal digital assistant (PDA) computer. The collected traces were
collected during two periods – summer and fall and vary in length from one to seven
weeks.

In 2005, McNett et al. published a dataset containing mobility data of 275 PDA users
over 11 weeks [133]. An application on the PDA sampled the available access points as
well as the current association of the Wi-Fi module every 20 seconds. The dataset does
not contain ground truth on the actual position of the users and therefore relies on coarse
localisation using the (known) positions of the access points.

1Note that an unstable radio environment may not provide evidence of the user’s movements. Mobile cells
and Wi-Fi networks may “breathe”, resulting in an unstable radio environment even though the receiver
is staying in home place.
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Existing approaches to discover occupancy schedules often rely on the availability of
data from a GPS logger (e.g. standalone or embedded into mobile phones) to compute
distance from home or ad-hoc sensors (e.g. passive infrared sensors) installed in the
home [113, 169]. While the installation of ad-hoc sensors poses an additional burden
in terms of costs and maintenance effort, the continuous operation of a GPS module
is typically avoided due to energy constraints [117]. Thus GPS data is often replaced
by, or combined with, information gathered through Wi-Fi- or GSM-based localisation
services [97, 117]. Figure 5.3 shows a comparison of GPS based presence detection with
our homeset algorithm. Related work [113] has put a user as home if she was within a
100 m radius of her home. We therefore argue that being within the coverage area of a
Wi-Fi network is sufficient to detect occupancy at a much lower energy cost.

5.1.3 CDR datasets

Mobile phone operators collect data whenever a call has been established or a text message
was sent. Such call detail records (CDRs) provide coarse-grained location information for
each connection (e.g. the location of the cell tower) and can be used to create long-term
mobility traces of individual cell phone users. The pervasiveness of mobile phones2

enables the use of this data for the analysis of the behaviour of large populations of users.
Song et al. for example study the predictability of human mobility using a CDR dataset of
50,000 mobile phone users gathered over three months [173]. In a separate paper, Song et
al. also show that continuous-time random-walk (CTRW) models for human mobility,
which are currently employed in a wide range of scenarios from epidemic modelling to
traffic prediction, are in conflict with empirical data obtained from CDRs [172].

The increasing appreciation of the value of CDRs for the analysis of human mobility
and interaction patterns [4] has led to the release of a number of open and commercial
CDR datasets [27, 29]. Released as part of research competition by the mobile phone
operator Orange, the data for development (D4D) dataset contains anonymised CDRs
of five million mobile phone users in Ivory Coast between December, 2011 and April,
2012 [27]. In [120], Lima et al. have extracted mobility data from this dataset and study
the spread of diseases and potential counter-measures. Berlingerio et al. use the data for
developing data-driven ideas to improve public transit systems [25].

The mobile phone operator Telefónica offers a commercial CDRs for the analysis of
crowd behaviour [197]. While this dataset is mostly aimed at helping “companies and
public sector organizations [to] make informed business decisions”, it has also been used
in research. Bogomolov et al. use Telefónica’s3 CDRs in conjunction with demographic
information to predict crime hotspots in London with high accuracy [29].

2In 2014, the number of mobile phones in the world surpassed the number of people [30].
3The data was gathered by Telefónica’s subsidiary O2 in the United Kingdom.
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5.1.4 The Nokia LDCC/MDC dataset

None of the datasets discussed in the previous section contains fine-grained location
data4 gathered in a residential environment for a significant amount of time. In order to
obtain representative occupancy schedules, however, we need to ensure that the occupancy
sensing device is no longer noticed by the occupants and thus does not in itself affect their
behaviour.

For this reason we utilise Wi-Fi scans gathered in the context of the Lausanne data
collection campaign (LDCC). This campaign was launched in 2009 by the Nokia Research
Center in Lausanne, Switzerland and a subset of the collected data was released as part
of the Mobile data challenge (MDC) in 2012 [117]. To gather the dataset, almost 200
participants were given Nokia N95 mobile phones with a data collection software installed.
The dataset contains more than one year worth of traces of Wi-Fi scans, GPS coordinates,
accelerometer readings and several other sensors, as well as demographic information for
38 of the mobile phone users that participated in the data collection campaign5.

Since its release, a number of authors have analysed the MDC dataset. Montoliu et
al. showed that participants spent about two-thirds of their day at home and a quarter
at work [138]. Using the PlaceSense algorithm [97], Baumann et al. have identified the
distribution of relevant places in the MDC dataset [19]. They conclude that the participants
spend 56% of their time in the most visited location, on average. Domenico et al. show
how correlations between the trajectories of friends can be used to improve location
prediction [38]. Frank et al. present an approach to produce English-language narratives
of the events underlying the measured sensor data [59].

5.2 The Homeset Algorithm

The MDC dataset does not contain information about places of interest of the LDCC
participants (e.g. it does neither contains ground truth occupancy schedules nor location
labels). Therefore, we have no explicit ground truth about where the “home” of the
participants is. This means spatial proximity to specific Wi-Fi access points or geographic
locations cannot easily be associated with the home and recognised as occupancy. To
overcome this issues, we propose the homeset algorithm.

4Here we mean fine-grained both in a spatial and temporal sense. In order to build exact occupancy
schedules, we need to know precisely when the occupants are close (e.g. less than 100 m) to their home.
This information cannot be obtained from traditional CDR data alone as it merely contains the location
of the current cellular tower and is only gathered whenever a call is made or an SMS sent.

5The full LDCC dataset was subsequently released by Nokia. In contrast to the MDC subset, the full
LDCC dataset does not contain demographic information. In this chapter we therefore evaluate the
homeset algorithm on the MDC dataset. In this chapter, the participants are identified by the identifier
used in the MDC dataset (i.e. participant “007”).
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Household 007: female,39-44,working full time (WiFi)
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Figure 5.1: Probabilistic Wi-Fi occupancy schedule for participant 007. The participant is
most likely to be away from home on weekdays between 8 a.m. and 7 p.m.

0 1 2 3 5 10 15 30 30+
0

0.2

0.4

0.6

0.8

1

Interval length (minutes)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Figure 5.2: Cumulative probabilities for intervals from 1 minute to infinity across all
participants.

In contrast to previous approaches such as PlaceSense [97], the homeset algorithm
requires scans only to be performed at a coarse temporal scale (e.g. every 15 minutes).
By performing a time-based clustering of these traces, our algorithm can accurately
reconstruct the occupancy schedule of each household’s occupant. Figure 5.1 shows the
probabilistic occupancy schedule derived for participant 007 of the MDC dataset. This
schedule reveals that participant 007 is usually away from home between 8 a.m. and 7 p.m.
during weekdays, while her behaviour is far less regular on the weekends.
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Figure 5.4: Interval classification based on multiple scans and homeset.

5.2.1 Occupancy detection using the homeset algorithm

The goal of the homeset algorithm is to compute the occupancy schedule of the residence
of a mobile phone owner. A schedule is represented as a matrix O with Ns columns and
Nd rows. Ns is the number of temporal slots within a day. Ns can be set to an arbitrary
value, depending on the desired time granularity of the schedules. Figure 5.2 shows that in
the MDC dataset, the interval between consecutive Wi-Fi scans is less than 15 minutes in
95% of the cases. In the context of this work we thus consider slots of 15 minutes, such
that Ns = 24×60/15 = 96. Nd is the number of days contained in the dataset.

To compute the occupancy schedules, the homeset algorithm relies on logs of Wi-Fi
scans. Each time a mobile phone detects the presence of a Wi-Fi access point (AP) it
stores several pieces of information. Among these, the homeset algorithm only uses the
timestamp of the scan and the MAC addresses of the visible access points. A single Wi-Fi
scan is thus a tuple < ts,AP0,AP1, . . . ,APm−1 > where m is the total number of access
points seen in a particular scan and APi is the MAC address that uniquely identifies a
specific access point.

Figure 5.3 shows the homeset algorithm uses these scans to identify a set of access
points that are located within, or in the immediate proximity of, the household of a mobile
phone owner. We call this set the homeset (HS) and assume it contains n access points,
so that HS = {APHS

0 ,APHS
1 , ...,APHS

n−1}. We will for now assume n > 1 and discuss the
initialisation of the HS below.

Figure 5.4 shows occupancy classification with the homeset algorithm. Given a Wi-Fi
scan < ts,AP0,AP1, . . . ,APm−1 > the homeset algorithm tests if one of the sensed access
points is contained in the homeset:
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{AP0,AP1,AP2, ...,APm−1}∩HS 6= ∅ (5.1)

If this statement returns true, the algorithm assumes the household to be occupied in the
slot i of day j identified by the timestamp of the scan.

5.2.2 Initialisation of the homeset

In order to initialise the homeset in real home automation scenario, one could require the
user to manually enter the MAC address of the household’s private access point, if one
exists or to actively scan for nearby access points while at home. As this information is
not available in the MDC dataset and to eliminate this manual effort in initialising the
homeset, we base the initialisation of the homeset on the assumption that occupants are
most likely to be at home at night.

To find the nightly distribution of access points, we computed the empirical probability
ωx of seeing an access point x at least once between 3 a.m. and 4 a.m. on any particular
night from the available MDC data. The access point with the highest value for ωx is set
to be APHS

0 . Once APHS
0 has been identified, the homeset is constructed by including in

HS any other access point that appears in a Wi-Fi scan together with APHS
0 . This approach

significantly increases the reliability of the homeset algorithm.

Reliability of the occupancy detection

To measure this increase in reliability we define a metric called stability. We compute
the stability πx of an access point x over a time interval Tπ , which we set to be at night
between 3 a.m. and 4 a.m. If APHS

0 is seen at least once within Tπ , then it is reasonable to
assume that the household must be occupied during the whole period. Indeed, although
theoretically possible, it is unlikely that typical household occupants will leave the home
between 3 a.m. and 4 a.m. However, in some scans registered in the period Tπ APHS

0
does not appear. If the homeset algorithm relied on APHS

0 only, the household would be
declared as occupied in given slots within the period Tπ and unoccupied in others. This
instability would clearly cause false negatives to appear and thus decrease the reliability
of our algorithm.

To demonstrate that the homeset approach significantly improves on this aspect, we
thus compute the stability πx as the ratio of two quantities. The numerator is the total
number of scans in which the access point x appears in the period Tπ . The denominator
is the total number of scans in the period Tπ , whereby the scans are counted only if the
access point x is seen at least once in the period Tπ . A value of πx equal to 1 thus means
that if the access point is seen on any given night, it is going to be seen in all other scans
between 3 a.m. and 4 a.m. and thus that it is a stable indicator of household occupancy.
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Table 5.1: Empirical probability ω and stability π of the primary access point AHS
0 only

and the extended set of access points, the homeset (HS), for all participants
included in the dataset (n.a.: not available, ?: score too low).

ID πAPHS
0

ωAPHS
0

πHS ωHS Score In HS?
002 0.555 0.953 0.963 1.0 13 X
005 0.229 0.424 0.414 0.909 2 ?
007 0.859 0.654 0.892 0.946 16 X
009 0.477 0.78 0.954 0.962 n.a. n.a.
010 0.75 0.678 0.852 0.956 2 ?
017 0.805 0.978 0.981 0.985 8 ?
023 0.715 0.487 0.987 1.0 16 X
026 0.588 0.875 0.963 0.971 3 ?
034 0.883 0.481 0.866 0.57 16 X
042 0.674 0.678 0.964 0.931 10 X
050 0.668 0.948 0.979 1.0 10 X
051 0.516 0.982 0.985 1.0 2 ?
056 0.943 0.975 0.985 1.0 6 ?
060 0.921 0.977 0.983 0.996 12 X
063 0.851 1.0 0.995 1.0 5 ?
068 0.857 0.912 0.998 1.0 5 ?
075 0.634 0.481 0.892 0.659 16 X
077 0.76 0.875 0.961 0.938 n.a. n.a.
082 0.899 0.968 0.992 0.989 16 X
083 0.664 0.988 0.998 1.0 16 X
089 0.512 0.643 0.971 0.857 5 ?
094 0.794 0.584 0.832 0.887 n.a. n.a.
109 0.468 0.884 0.94 0.977 9 ?
111 0.676 0.462 0.975 1.0 11 X
117 0.375 0.825 0.964 0.997 15 X
120 0.77 0.72 0.96 0.805 13 X
123 0.813 1.0 0.994 1.0 5 ?
126 0.546 0.841 0.957 0.955 2 ?
127 0.704 0.689 0.949 0.974 16 X
139 0.472 0.391 0.916 0.457 n.a. n.a.
141 0.314 0.839 0.985 0.873 7 ?
160 0.538 0.876 0.984 1.0 16 X
165 0.615 0.968 0.962 0.992 n.a. n.a.
169 0.692 0.736 0.98 1.0 14 X
172 0.476 0.915 0.958 0.954 15 X
179 0.812 0.368 0.971 0.974 16 X
185 0.448 0.696 0.972 0.983 10 X
186 0.914 1.0 0.964 1.0 16 X
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Figure 5.5: Time-frequency analysis of the anonymised locations for participant 002.
Locations with less than 10 observations are excluded.

The rationale behind the homeset algorithm is that a set of access points has a higher
stability than a single one, even if this one is the private access point of the household.
Table 5.1 shows evidence of this observation for selected participants included in the MDC
dataset. For instance, for participant 009, using the whole HS instead of the single primary
access point only, increased stability from 0.477 to 0.954.

5.3 Evaluation

In order to thoroughly evaluate the homeset algorithm, a precise schedule of the absence
from or presence in, the household of the mobile phone owners would be necessary. As
this information is not available in the MDC dataset, we set out to evaluate our findings
indirectly by verifying whether the access points included in the homeset are plausibly
close to the location of the participants’ homes. To this end, we used the GPS data
available in the MDC dataset and considered the fact this data had been partially modified
in order to protect the privacy of the participants. In particular, the latitude and longitude
coordinates of sensitive places, like the participants’ homes or workplaces, have been
occasionally truncated to the third decimal digit. As the coordinates are reported along
with a timestamp, we could retrieve statistics about when participants were in sensitive
places, even though it was not possible to retrieve where exactly the participants were at
that specific time.
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Identifying sensitive places

We thus first extract all the truncated instances of the GPS data from the dataset. We then
assign each unique pair of truncated latitude and longitude coordinates to a symbolic loca-
tion k. For each location, we then create a frequency count vector ~CV k = (c0,c1, . . . ,c23)

with 24 elements, one for each hour of the day. Over the whole dataset, we then count the
number of occurrences of a location k in a given hour of the day and store this value in
the corresponding element of the vector CV k. We thus count how many times a specific
symbolic location has been “anonymised”.

Figure 5.5 shows the results of this analysis for participant 002, whereby we only
display the six most relevant symbolic locations. As visible in this picture, location 1 is
anonymised most of the times between 1 p.m. and 5 p.m. and is never anonymised before
8 a.m. or after 9 p.m. We thus conjecture that this location corresponds to the workplace
of the participant, as it is likely that between 1 p.m. and 5 p.m. the participant is at work
and thus there is a higher need to truncate coordinates that correspond to this sensitive
location. On the other side, location 5 is the one that is anonymised most frequently and
consistently over the whole course of the day. Therefore, we conjecture that this is the
location of the home of the participant.

Automatically validating the homeset

In order to automatically assess if a particular set of coordinates can identify a home
location, we compute a score for each location. To make results comparable, we round
CV k to binary values and multiply it with a weighting vector ~w = (w0,w1, . . . ,w23). Times
between 9 and 17 (i.e. w9 to w17) are set to 2

7 while all other times are set to 1. We chose
this weighting assuming a normal nine to five schedule with little presence during the day
except on weekends. A set of coordinates can score a maximum of 18.3 points under this
metric. We have chosen a threshold of 10 for a location to be accepted as a possible home
location.

Once we retrieved the (truncated and thus anonymised) location of the home of each
participant using the method described above, we compare the symbolic location with
the GPS coordinates of the Wi-Fi access points. To this end, we compute the locations
of the access points using temporal matching between the Wi-Fi and anonymised GPS
data. For 20 out of the 38 participants included in the dataset, a match was found. Of
the remaining cases, 13 times the score of the candidate locations was below 10 and in
five cases no anonymised coordinates could be found for the homeset access points. By
comparing the homesets we could further identify four out of the 13 participants with
low scores as couples (i.e. intersecting homeset, similar schedule, similar age, male and
female). As their candidate anonymised GPS locations are also identical, we could thus
lift their combined score over the threshold and validate four additional participants. Thus,
for the majority of the participants in the dataset, we could verify that the coordinates of
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the symbolic location identified as the home of the participants corresponded with the
coordinates of access points included in the homeset, thus establishing the reliability of
our homeset algorithm.

5.4 Conclusion and lessons learned

In this chapter we addressed the problem of learning occupancy schedules from unlabelled
Wi-Fi scans. We showed that occupancy schedules can be reliably detected by clustering
Wi-Fi access points seen during the night. By combining several access points to a
homeset, we showed that the number of false negatives can be reduced. We evaluated
the operation of the homeset algorithm by using artefacts of the anonymisation of GPS
locations to serve as implicit labels. We thereby further showed that while anonymising
significant locations helps to prevent the disclosure of the actual physical location of
the home, the anonymised data itself can be used to infer when occupants are at home.
The homeset algorithm, evaluated in this chapter on the MDC subset of the LDCC data
collection campaign, allows us to derive long-term occupancy schedules at a granularity
of 15 minutes. In the next chapter, we will apply the homeset algorithm on the full LDCC
dataset and analyse the resulting occupancy schedules with respect to a number of different
occupancy prediction algorithms for smart heating applications.
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Predicting occupancy schedules

Conventional programmable thermostats operate according to user-defined schedules.
Their settings need to be changed manually as the residents’ occupancy schedules vary.
Smart heating systems seek to overcome this need for manual re-programming by predict-
ing household occupancy and supplying the control schedules to the thermostat without
any direct user involvement. So when the occupants leave the building, the heating may be
switched off automatically and the temperature allowed to drop to the setback temperature.

This reactive strategy fails when the occupants return, as the thermal properties of
the house will result in a certain time lag until the comfortable temperature is reached
again. The time lag describes the time taken by the heating system to reach the comfort
temperature from the current indoor air temperature. The longer the house has been left
unoccupied and the temperature has been allowed to drop, the greater the time lag will be.
Therefore, at any given time, if the occupants have left the household, the system needs
to know how long it would take to re-heat the property and whether the house is likely
to be occupied within this time span. We call the time slots involved in this calculation
the prediction horizon. We refer to the process of computing the future occupancy states
within the prediction horizon as occupancy prediction.

In this chapter we will focus on occupancy prediction and perform a classification and
review of state-of-the-art approaches. In Section 6.1, we outline different techniques
used in the literature and identify three main classes (schedule-based, context-aware and
hybrid) into which existing approaches can be categorised. We then perform a quantitative
comparison of the prediction accuracy of selected schedule-based occupancy prediction
algorithms. Sections 6.2 and 6.3 describe the experimental setup and the evaluation. The
latter is based on actual occupancy data for 45 individuals collected over several months.
We derived this occupancy data by analysing mobile phone records collected as part of
the Lausanne data collection campaign (LDCC) [98]. Lastly, in Section 6.4 we present
the results before we conclude this chapter in Section 6.5. This chapter is based on
contributions made in [100, 101, 103].
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Figure 6.1: Classification of occupancy prediction algorithms.

6.1 A classification of occupancy prediction

approaches

A number of occupancy prediction algorithms have been proposed in the literature [48, 67,
113, 124, 169, 175, 179]. Thereby, different mathematical models – including artificial
neural networks [140] and Markov chains [48] – have been used.

Figure 6.1 shows an attempt to classify existing algorithms. We first differentiate
between algorithms that predict binary occupancy (i.e. whether the home is occupied or
not) and those that predict the occupancy level (i.e. how many occupants are present).
While the occupancy level is relevant for office buildings, where fluctuations in the CO2

level must be accounted for [48], binary occupancy prediction is sufficient for residential
smart heating systems.

Existing binary occupancy prediction algorithms can be broadly categorised into three
main classes – so-called schedule-based, context-aware and hybrid approaches. The
distinction between these classes depends on the nature of the data being used to predict
future occupancy. While schedule-based algorithms work solely on the historical occu-
pancy data of the building, context-aware approaches utilise information about the current
position, activity and environmental factors (such as the current traffic conditions) – the
context – to predict the arrival of individual occupants.

Naturally, as outlined in the previous chapter, a body-worn sensor such as a mobile
phone can be used to detect entry times to and stay durations in the home and thus provide
data for a schedule-based algorithm. However, as it may also be used to sense the current
context of the occupants, it may also be used for context-aware prediction. In this case,
a hybrid approach can combine advantages of both context-aware and schedule-based
occupancy prediction. In the following section we will describe the approaches classified
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Figure 6.2: Occupancy prediction using the Preheat algorithm from Scott et al. [169].

in Figure 6.1 with a specific focus on schedule-based algorithms.

6.1.1 Schedule-based approaches

Several approaches compute occupancy predictions relying on past occupancy schedules
only [113, 124, 168, 169]. Such approaches, which we refer to as schedule-based al-
gorithms, take as input historical data on the household occupancy state. This data is
typically collected over an extended period of time (weeks to months). Schedule-based
algorithms can be distinguished into those algorithms that try to detect routines in the
historical occupancy schedules (e.g. a late departure time could indicate a late return
time) [140, 169, 175, 179] and those that assume that routines can be explained by daily or
weekly timetables (i.e. human routine is assumed to be determined mostly by the current
day of the week and the time of the day) [113, 124].

Preheat

The Preheat (PH) algorithm presented by Scott et al. [169] is an example of a schedule-
based approach. The Preheat algorithm aims to exploit the occupants’ routines by analysing
the current occupancy and finding the most similar historical patterns. The authors thereby
assume that the future occupancy depends on the partial occupancy trace of the current
day.

For this purpose, the algorithm maintains a vector for storing the actual occupancy
state registered for the current day starting from midnight. Each element of the vector
represents the occupancy state of the home in a 15-minute interval. An element is set to 1
or 0 depending on whether the house is occupied or not during the relevant time interval.
To compute an occupancy prediction from a given time of day onwards, Preheat first
computes the Hamming distance between the occupancy pattern thus far observed for the
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Figure 6.3: Three layer artificial neural network architecture. The number of hidden units
is chosen by cross-validation.

current day and the corresponding segments of past occupancy vectors. The k past vectors
with the lowest Hamming distances are then selected (k is fixed and equal to 5 in [169])
and averaged element-by-element. These averages approximate to the probability for the
home being occupied during the corresponding time interval. The actual prediction is
computed assuming that the house will be occupied during a future time interval if the
corresponding probability exceeds a given threshold α , or else unoccupied. In [169], the
value of α is fixed and equal to 0.5.

Building upon this basic version of the algorithm, Scott et al. introduce two additional
features. The first consists of differentiating between weekdays and weekends. The second
is to pad the current occupancy vector with data for the 4 hours before and after midnight,
taken from the previous and following day respectively. This helps the algorithm to predict
past midnight. Once the prediction is computed, the algorithm decides whether to start
heating. This control decision depends on a number of factors including the current and
desired temperatures as well as the rate (in terms of degrees per hour) at which the house
can actually be heated.

Figure 6.2 shows a simplified version of the Preheat algorithm using 2-hour slots. The
current time is 10 a.m. and thus far five slots have been observed. This vector is compared
to previous days and the three most similar days are chosen according to their Hamming
distance. The predicted occupancy vector is computed as the average of these three days.

Neurothermostat

The Neurothermostat (NT) by Mozer et al. combines a prediction algorithm with fixed-
horizon planning to optimise the tradeoff between heating costs and occupant discom-
fort [140]. Like the Preheat algorithm, NT uses information about recent occupancy to
detect routines and predict future occupancy.
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Figure 6.4: Occupancy prediction for Mondays using the Presence Probabilities (PP)
algorithm [113].

To find the optimal time to start heating the building, the authors provide a simple first
order approximation of the heating cost as well a misery cost function which converts
uncomfortable temperatures to a monetary unit. The result is an optimisation problem
with the goal to minimise the combined cost of heating energy and discomfort.

Similar to other dynamic programming problems such as the shortest path problem [41],
NT considers at every time step all possible decision sequences over the planning horizon
to choose the sequence that minimises the expected cost. The occupancy predictor then
predicts if the house will be occupied at δ minutes in the future. For the deterministic
parts of the schedule (e.g. during the night), a lookup table is used. The table is indexed
by the time of the day and the current occupancy value. The residual structure is encoded
in an artificial neural network. Figure 6.3 shows a three layer artificial neural network
like the one used by Mozer et al. [140]. The authors used five consecutive months of real
occupancy data from the Neural Network House [139] to train the models and tested it on
the following month.

Presence Probabilities

The Presence Probabilities (PP) approach presented by Krumm and Brush is another
well-known schedule-based approach [113]. In contrast to Preheat, PP does not attempt
to find routines in the historical data but builds a fixed 7-day occupancy timetable. The
authors thereby assume that any variation in the occupancy is best described by the current
day of the week.

In [113], household occupancy is detected using a GPS device carried by the residents.
The home is assumed to be occupied if the device indicates that a resident is less than
100 meters away from it. Using the GPS data, PP computes the probability for a home
being unoccupied – called paway – during any time slot of a day of the week. The values
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of paway in slots are computed using the ratios between the number of GPS data points
that lie outside the 100-meter radius of the home and the total number of GPS data points
available for the slot. The value of paway for each time slot is stored in a vector called
pweek containing 336 elements (7 days a week, 48 slots a day). The probability within
each slot is smoothed using the values of the previous and subsequent slots. To adjust the
values of paway for weekdays, a generic vector pweekday that contains the average values of
paway for a “generic” weekday is used. Using a regularisation factor λwd this vector can
account for “greater or lesser variability on weekdays” [113]. The values of paway in each
slot of the final probabilistic schedule p̃week are then computed as the sum of the elements
of pweek and the relevant elements of pweekday.

Analogous to the example for the PH algorithm, Figure 6.4 shows a simplified example
of the PP algorithm for a particular Monday. In order to compute the predicted schedule,
all occupancy vectors of previous Mondays are averaged.

Smart Thermostat

The Smart Thermostat (ST) by Lu et al. [124] also relies on historical schedules to predict
occupancy. In contrast to PP, the authors do not make the distinction between individual
weekdays and focus on the use of arrival times to optimise a multi-stage heating system.

The occupancy state of a home is determined using a Hidden Markov Model. The
model allows an estimate of whether the home is occupied or not and in the former case
also whether the occupants are asleep or active. To compute the estimation, the Hidden
Markov Model takes as input both prior information derived from historical schedules and
actual data collected by several sensors deployed within the home (e.g. PIR sensors).

The model is trained using a set of actual past occupancy schedules and sensor data
traces. When the house is classified as unoccupied, ST switches the heating system off
and allows the temperature of the household to fall to a “deep” setback temperature. If the
occupants were to come back home unexpectedly while the house was at the deep setback
temperature they would experience a significant comfort loss. ST thus keeps records of
all previously observed arrival times (i.e. the time instants at which the house became
occupied again after a period of absence).1 The minimum of such previous arrival times is
set as the time by which the household must be preheated to at least a “shallow” setback
temperature. This mechanism makes it possible to reduce the risk of comfort loss.

ST also estimates the optimal time instant t∗ – called the preheat time – at which the
heating system must be activated to preheat the house. The preheat time t∗ is chosen so as
to minimise the average amount of energy wasted to heat the household and maintain it
at the comfort temperature when the occupants are out. To identify the preheat time for
a given day, ST considers all arrival times a = [a0,a1, . . . ,an] observed on previous days.

1Although this is not specified explicitly in [124], we assume that only one arrival event per day is
considered.
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Then it considers all time instants t ∈ [max(a),min(a)] for the current day as candidate
preheat times. For each ti ∈ [max(a),min(a)], the system computes the amount of energy
waste w j(ti) that would occur if ti were the preheat time and the household were to be
occupied again at arrival time a j. The expected average energy waste that would occur
if ti were the preheat time is then the average: w(ti) = ∑

n
j=1 w j(ti). The preheat time is

chosen as the time instant that minimises the expected average energy waste:

t∗ = argmin
ti∈[max(a),min(a)]

w(ti) (6.1)

The occupancy prediction mechanism of ST thus requires the identification of arrival
times based on past schedules. Both the minimum of these arrival times and their weighted
average are used to trigger different stages of the heating system. For the computation of
the amount of energy waste, ST assumes a three-stage heating system and the availability
of knowledge about the energy consumed by each stage.

Other schedule-based algorithms

Besides the Preheat algorithm, various authors have investigated how to cluster historical
occupancy data to obtain characteristic schedules for specific routines. To this end,
Tominaga et al. [175] present a non-parametric clustering approach based on Dirchlet
process mixtures (DPM). In contrast to simple classification approaches such as k-Means,
the authors do not require advance knowledge of the number of characteristic occupancy
schedules. In [179], Vazquez et al. introduce a similar clustering approach based instead
on fuzzy c-means [145] and self-organizing maps [108, 109].

6.1.2 Context-aware approaches

Due to the ubiquity of mobile phones with embedded GPS sensors, several authors have
proposed techniques that estimate the future occupancy state of a home by observing the
current context of its occupants. We refer to these techniques as context-aware approaches,
since they depend on the current context (e.g. location or activity) of the user, rather
than the home’s historical occupancy schedule. One example of this is the algorithm
presented by Gupta et al. [67], which estimates the time at at which residents will return
home based on their current position and driving trajectory. The position is determined
using GPS modules embedded either in dedicated devices or in occupants’ mobile phones.
A web-based mapping service is used to determine the distance from home and the
corresponding remaining drive time. The thermostat is then instructed to preheat the home
if the remaining drive time is less than a given threshold.
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Figure 6.5: Markov Model. Numbers denote occupants in room 1, corridor and room 2
respectively.

6.1.3 Hybrid approaches

As location data from mobile phones can also be used to build historical occupancy
schedules, several authors have sought to combine schedule-based and context-aware
approaches. In [113], Krumm and Brush show how to combine their PP algorithm with
Gupta et al.’s drive time prediction approach to build such a hybrid prediction algorithm.
In contrast to [67], Krumm and Brush allow drive times to be pre-computed, thereby
increasing efficiency but reducing accuracy, particularly in areas prone to congestion. In
an earlier paper [114], Krumm et al. also introduced a method called Predestination. This
method uses historical data along with information on a user’s driving habits to obtain
the most likely next destination. A similar system, TherML, is presented by Koehler et
al. [107]. TherML utilises a hybrid prediction algorithm that switches between predicting
the next destination and static schedules based on the user’s mode of travel (stationary,
walking or driving). Other approaches such as [168], [118] and [187] also use context
information about the user to predict where he/she is likely to go next.

6.1.4 Other approaches

A number of occupancy detection and prediction approaches focus not only on heating but
also on ventilation. Erickson et al. argue that in order to control ventilation and heating
one needs to sense and predict the level of occupancy (i.e. how many people are present in
each room at any one time) [48].

To detect occupancy, the authors have deployed 16 cameras at transition boundaries
(e.g. between corridor and offices). A Markov Model was then used to model occupancy
levels. The occupancy states are represented as shown in Figure 6.5. In order to predict
which rooms to condition, Erickson et al. use a Markov Chain Model which given the
occupancy distribution at time t, calculates the distribution at time t +∆ t by multiplying
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Figure 6.6: Prediction pipeline.

∆ t times the transition matrix. The transition matrix gives the probability of moving from
one occupancy state to another during a certain time interval.

This naı̈ve approach scales exponentially as more rooms are added. To overcome
this problem, the authors only use states observed over a 2-day training period. As the
probability of occupancy states is correlated with the time of day, one transition matrix per
hour is used. However, as not all states may be present in this matrix, sink states can occur.
In addition, due to the partitioning into hourly slots, boundary discontinuities may prevent
the system to transition from one to the next transition matrix. The authors overcome this
problem by using a Blended Markov Chain in which all hourly transition matrices are
blended together with a weighting that favours the current transition matrix over more
distant ones.

6.2 Experimental setup

In the remainder of this chapter we report the results of a quantitative analysis of the
schedule-based Preheat (PH), Presence Probabilities (PP) and Smart Thermostat (ST)
algorithms introduced in Section 6.1. The evaluated algorithms are listed in Table 6.1.
Using occupancy schedules derived using the homeset algorithm introduced in the previous
chapter we will investigate their prediction accuracy.

Figure 6.6 shows an overview of the occupancy prediction infrastructure. We first
compute the occupancy schedules from the raw Wi-Fi scans contained in the LDCC
dataset using the homeset algorithm. The resulting occupancy schedule is then split into
training and test data using cross validation. The training data is used for the initial
setup of the prediction algorithms. The algorithms then learn more information as past
days are added to the historical data. In this section, we will first discuss in detail our
implementation of the algorithms before reporting on the schedules used.
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Table 6.1: Algorithms considered for the comparative performance analysis.
Acronym Name Source
PH Preheat [169]
PP Presence Probabilities [113]
PPS Presence Probabilities Simplified [113]
MAT Mean Arrival Time Emulating ST [124]
MDMAT Minimum Distance Mean Arrival Time Emulating ST [124]
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Figure 6.7: Mean Arrival Time (MAT) occupancy prediction algorithm.

6.2.1 Algorithm implementations

Our comparative study focuses on schedule-based approaches and includes both the PP (or
PPS) and PH algorithms. We refer to the version of the Presence Probabilities algorithm
described above as PP and to a simplified version that does not consider smoothing or the
generic weekday schedule as PPS.

In place of ST itself we instead considered two heuristic prediction strategies – called
Mean Arrival Time (MAT) and Minimum Distance Mean Arrival Time (MDMAT) – which
mimic the occupancy prediction algorithm used by ST. As described in Section 6.1.1, ST
uses the minimum of all previously observed arrival times as the time instant at which the
household has to change from deep to shallow setback. ST also heats the house to the
comfort temperature using a policy that minimises energy waste. To this end, a three-stage
heating system with different efficiencies for each stage is assumed to be in place. In this
thesis, we analyse performance (e.g. efficiency gain) in terms of occupancy prediction
separately from a specific heating strategy (cf. Chapter 8). Also, we assume a single-stage
heating system. Thus, ST would always choose the latest observed arrival time as the
preheat time. This is due to the fact that heating reactively guarantees the lowest energy
waste when comfort loss is not considered and a single-stage heating system is in place.

We therefore introduce the MAT and MDMAT methods as adaptations of ST’s preheat-
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ing strategy. Like ST, the MDMAT algorithm records all n observed arrival times in a
vector a. For each ai ∈ a, i = 1, . . . ,n, MDMAT calculates the distance to all other arrival
times a j ∈ a, j 6= i as:

d(ai) = ∑
a j∈a, j 6=i

min(|ai−a j|, |ai− (a′j +24)|) (6.2)

The most likely arrival time for the current day is then chosen as:

a∗ = argmin
a∈a

d(a) (6.3)

As shown in Figure 6.7, MAT instead computes the expected arrival time for each day
as the arithmetic mean of the arrival times recorded on all previous days. To this end,
only one arrival time per day is considered. This is selected as the first arrival event after
2 p.m. and before 2 a.m. We impose this restriction to limit the effect of outliers (e.g.
unusual arrival events in the morning) and to avoid the computation of the arithmetic mean
of the arrival times causing misleading results due to the use of a 24-hour interval.2 In
contrast to ST’s original strategy, which targets a reduction in energy consumption, MAT
and MDMAT trade off energy efficiency against comfort loss.

6.2.2 Preparing the LDCC occupancy schedules

To compare the performance of different occupancy prediction algorithms in a consistent
manner, we evaluate them using a large dataset of actual occupancy schedules. We
infer these schedules from sensor data collected as part of the Lausanne data collection
campaign (LDCC) [98]. To the best of our knowledge, no publicly available data exists
of long-term, high-granularity occupancy schedules, making it necessary to build such
schedules in order to conduct our evaluation.

The LDCC dataset contains about 18 months’ worth of traces of Wi-Fi scans, GPS
coordinates, accelerometer readings and several other sensors, as well as demographic
information from mobile phone users [98]. However, the dataset does not contain any
information concerning users’ relevant places, i.e. it is not known where the user’s home,
office, etc. are located. In the previous chapter we have therefore introduced a technique,
called the homeset algorithm to infer this information from the available LDCC data.

For the analysis of the prediction algorithms introduced in this chapter, we ran the
homeset algorithm on all participants of the LDCC. To exclude participants with too little
data for evaluation, we used only occupancy schedules for users who had collected data for
at least 100 days (i.e. Nd > 100) and for whom the occupancy state could be inferred in at

2For example, given two arrival events – one at 1 a.m. and one at 9 p.m. (21:00), their arithmetic mean
computed over a 24-hour interval (from 00:00 to 24:00) would return the value 11 a.m., although the
desired mean value would be 11 p.m.
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Figure 6.8: Occupancy in hours for all 45 households in the dataset (identified by the
unique LDCC participant number).

least 70% of the slots. This was done to ensure sufficiently large training and test sets. We
also discarded the schedules of users whose probability of being at home between 3 a.m.
and 4 a.m. on weekdays was estimated to be less than 60%. This ensured we considered
in the study only users for whom the homeset algorithm could reliably identify the home.
This first data cleaning phase enabled us to select 59 occupancy schedules.

The Preheat algorithm by Krumm et al. imposes additional constraints on the input data.
For instance, daily schedules need to be padded with four hours from the previous day
and four hours from the next day [113]. We consequently discarded from the schedules all
days for which this information was not available in order to ensure all algorithms were
trained and tested on the same data. This left 45 schedules to be used for our evaluation.
Figure 6.8 shows the average occupancy in hours per day for all the participants in the
dataset. On average, these schedules include 74 days’ worth of occupancy data, with
the participants staying at home for 17 hours and 40 minutes per day on average. The
weekly probabilistic schedules for all 45 participants are included in the Appendix (cf.
Section C.2).

6.3 Evaluation

In this section we will outline the criteria used in our performance analysis of the MAT,
MDMAT, PP, PPS and PH algorithms. We will first describe how we measure the
performance before we explain how we use cross-validation to vary the training data.

6.3.1 Performance measures

We say that a true positive prediction occurs when an algorithm predicts a house will
be occupied during a time slot k and the house is indeed occupied during that time slot.
Likewise, correctly predicting the house to be unoccupied corresponds to a true negative
prediction. False positive and false negative predictions occur when the household is
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incorrectly predicted to be occupied or unoccupied, respectively. If, more formally, t p
denotes the number of time slots with a true positive prediction (and likewise for tn, f p
and fn), the prediction accuracy Accp of an algorithm is defined as:

Accp =
t p+ tn

t p+ tn+ f p+ fn
(6.4)

To compare the considered algorithm against a baseline, we introduced a so-called
naı̈ve predictor. Given the a priori probability pocc of the home being occupied, the
naı̈ve algorithm always predicts it to be occupied if pocc ≥ 50%. If pocc < 50% the naı̈ve
predictor always predicts the house to be unoccupied. For our study, we computed pocc

from the occupancy schedules as the number of slots containing a 1 in the schedule divided
by the total number of slots.3

6.3.2 Cross-validation

All occupancy prediction algorithms evaluated in this chapter require an initial training
phase to be able to predict future occupancy. As Figure 6.6 shows, we accommodate for
this by means of designated training data. Therefore, we split the data into n 14-day blocks
and perform n-fold cross validation on the choice of this initial training data. While for
every run those 14 days are only used for training, the other data is progressively learned
by the prediction algorithms as it becomes available.

6.4 Results

This section presents the results of our study. We first report on the prediction accuracy
achieved by the MAT, MDMAT, PP, PPS and PH algorithms for the occupancy schedules
derived from the LDCC dataset. We then show that they achieve a prediction accuracy
close to the theoretical upper bound defined by the predictability of the input schedules.

6.4.1 Prediction accuracy

Figure 6.9 shows the prediction accuracy of all five algorithms considered in this study
along with that of the naı̈ve predictor for the LDCC occupancy schedules. For each
prediction algorithm, the box plot indicates the median as well as the 25th and 75th
percentiles of the accuracy across all 45 households. The interquartile range between the
top and the bottom of the box thus represents the accuracy achieved in 50% of the homes.
The whiskers represent the extreme data points (within ±2.7σ ).

3As noted in [19], the naı̈ve predictor was often quite accurate since typical residents spend a significant
amount of their time (60% or more) at home.
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Crosses indicate α = 0.5.

With regards to median accuracy, all surveyed algorithms improve upon the baseline
provided by the naı̈ve predictor. The PP (or PPS) algorithm achieved the highest prediction
accuracy. Its median accuracy lies around 85%, which means that the algorithm achieves
at least this accuracy in 50% of the homes in the dataset. It is also the only algorithm for
which the accuracy never dropped below 70%, which is the median value of the naı̈ve
predictor. We used Tukey’s honest significant difference (HSD) test [161] at the 95% level
in conjunction with a one-way balanced analysis of variance (ANOVA) to establish that
the mean accuracy of the PP algorithm was significantly different to the accuracy of the
other algorithms (except PPS). The ANOVA assumes the distribution of the accuracy for
each algorithm to be Gaussian. Confirmation that this assumption holds for the data under
analysis was obtained using a two-tailed Shapiro-Wilk test at the 99% confidence level
(p-values between 0.23 and 0.75).

The PH algorithm also achieved a median accuracy around 80% although it exhibits
larger deviations to both sides of the median. This shows that for selected homes, PH can
achieve a higher accuracy. For the average home, however, PP was the algorithm that
performed best. In contrast, the prediction performance of MAT and MDMAT, which
are considered here as representative of the basic techniques used by the ST algorithm
was noticeably worse. The whiskers indicate that MAT and MDMAT are not suitable for
schedules resulting in high values for pocc (i.e. schedules for users who are almost always
or almost never at home). This is due to the fact that for every day, MAT and MDMAT
assume a period of absence between the computed mean departure and mean arrival times.
A single day containing a 9-hour absence may thus result in a predicted schedule with an
implied 63% probability of occupancy. In the case of a house otherwise occupied 90% of
the time (i.e. pocc = 90%), this results in a drop in accuracy of 27%.
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Figure 6.11: Impact of additional training data on prediction accuracy.

6.4.2 Parameter selection

Figure 6.10 shows the receiver operating characteristic (ROC) curves for the PH and PPS
algorithms. The curves highlight the tradeoff between the true positive rate, defined as
t p/(t p+ fn) and the false positive rate, defined as f p/(f p+ tn). The gray dotted line
shows the performance of the random predictor (i.e. tossing a coin). The curves are
obtained by varying the value of the threshold α (cf. Section 6.1.1). The cross markers on
the curves show the data points corresponding to α = 0.5. For both PH and PPS, setting
α = 0.5 as done in [169] achieved a good balance between true positive and false positive
rates. The figure also shows how the performance of the PH algorithm changes for different
values of the parameter k (which represents the number of nearest neighbours taken into
account when making the prediction). For α = 0.5 and k = 7, PH achieved a higher true
positive rate and a lower false positive rate than with other parameter configurations. As
mentioned above, this is the configuration we used for PH in this study as well as the
default choice proposed in [169]. For the PH algorithm we used a prediction horizon of
90 minutes.

6.4.3 Learning time and prediction accuracy

Figure 6.11 shows the average accuracy across all households over time. The scale on the
x-axis starts at day 15 (i.e. after the initial training). The right y-axis shows the number of
participants remaining while the left y-axis shows the accuracy of the algorithms. The size
of the available data varies between the participants. All participants have at least 30 days
of occupancy data. However, less then 10 out of the 45 participants have data exceeding
100 days.

The different curves show the accuracy for the MAT, MDMAT, PH and PPS algorithms.
As the prediction performance can vary strongly between subsequent days, their accuracy
has been smoothed by a 7-day sliding window. The figure shows that, despite the 14-day
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Figure 6.12: Distribution of predictabilities Π max over all participants.

training phase, there is a trend for the accuracy of all algorithms to improve slightly until
day 30. After 40 days, the accuracy does not improve any further. This indicates that a
30-day sliding window approach to train the algorithms would work best. However, due to
the limited amount of data, we cannot draw any conclusions about the long term behaviour
of the algorithms.

6.4.4 Limits of predictability

The results presented above show that among the algorithms considered in this study, the
PP predictor achieved the highest median accuracy of 85%. An obvious question to ask
would be: Is it possible to do better? In other words, how close is the performance of
PP to that of an “optimal” predictor? To answer this question, we built upon the results
presented by Song et al. [173]. Their work targets the problem of predicting the next place
visited by a person, given that the sequence of places visited thus far – referred to as the
mobility trace of this person – is known. In this context, they introduce the concept of the
predictability Π max of a mobility trace L and show that it represents the “upper bound
that fundamentally limits any mobility prediction algorithm in predicting the next location
based on historical records” [123].

The predictability Π max thus corresponds to the upper limit of the prediction accuracy
achievable by schedule-based predictors. If the focus is on occupancy prediction, the next
place visited by the participant in the LDCC dataset can either be home or “any place but
home.” We refer to these two places as L1 and L0 respectively. The sequence of places
visited by a participant up to a time slot k can then be derived from the schedules. A value
of 0 (or 1) in the schedule indicates that the place L0 (or L1) has been visited. For instance,
assuming 15-minute slots, an excerpt of a schedule indicating a participant is at home for 1
hour and then away from home for 30 minutes corresponds to the sequence L1L1L1L1L0L0.
In this way, we can derive the mobility trace for each participant and directly apply the
method proposed by Song et al. to compute predictability values.

Figure 6.12 shows the predictability values of the schedules for the 45 participants con-
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sidered in this study (left) along with the corresponding empirical distribution (right). The
predictability is computed for each participant over the whole schedule. The participants
are sorted in descending order of Π max from left to right. The maximum value of Π max is
95% while the minimum is 81%. The average of Π max over all homes is 90%. This value
is thus an upper bound for the average prediction accuracy achievable by any predictor. In
Section 6.4.1 (see Figure 6.9) we observed that the median accuracy of the PP algorithm
was 85%, which is just 5% below the upper bound of 90%. This indicates that a fairly
simple schedule-based approach such as PP can in itself capture most of the predictability
intrinsic in typical occupancy schedules. Furthermore, this result indicates that the use of
more sophisticated schedule-based algorithms will provide a maximum improvement in
accuracy of about 5% only. Note, however, that the use of context-aware algorithms may
push the achievable accuracy above the 90% limit, as with such algorithms information
other than past occupancy schedules is used to compute predictions.

6.5 Conclusions and lessons learned

In this chapter, we analysed the prediction performance of state-of-the-art schedule-
based occupancy prediction algorithms. Among the considered algorithms, the Presence
Probabilities (PP, PPS) approach by Krumm and Brush [113] provides for the best overall
performance in terms of prediction accuracy for the LDCC dataset. The approaches
suggested by Lu et al. [124] and Scott et al. [169] (MAT, MDMAT, PH) perform slightly
worse, albeit not by a large margin. All algorithms perform better if additional training
information is added. However, after about 30 days no further improvements can be seen.

The reason for this is that the prediction accuracy of existing schedule-based algorithms
is close to the achievable theoretical upper limit; this limit is expressed by the predictability
of the underlying occupancy schedules. Further performance improvements can thus only
be achieved by context-aware approaches that consider additional input information rather
than occupancy schedules only.
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Chapter 7
A simulation model to analyse the

performance of smart thermostats

The performance of state-of-the-art smart heating systems has been evaluated using a
number of different strategies. Several authors show the results of simulations [48, 124,
140], while others report findings from real world deployments [67, 169]. Although there
is no lack of models to simulate the energy consumption of a building, few authors have
compared their approaches to existing work using the same model and dataset. The use
of different evaluation scenarios and parameters, however, makes it difficult to compare
results obtained by different authors. Also, a thorough description of the evaluation setup
of an approach is often too verbose to be included in a research publication. The lack of
such a description, however, makes it infeasible for other authors to reproduce previously
achieved results. To ensure the comparability and reproducibility of research results on
smart heating control, however, it is crucial to build and improve upon state-of-the-art
approaches.

In this chapter, we first present a simple, generic and reproducible methodology based
on current building performance standards to evaluate the performance of smart heating
control systems. To simulate the building energy consumption we use the 5-resistance 1-
capacitance (5R1C) model from the ISO 13790 standard [84]. To this end, we first discuss
related work in Section 7.1 before we introduce resistance-capacitance models from first
principles in Section 7.2. We then go on to present a framework for the simulation
of the energy savings achieved by a smart heating system with a predictive controller
(cf. Section 7.5). In Section 7.3 we show how using real meteorological data from 20
years, characteristic weather scenarios can be defined that allow for an extrapolation of the
annual energy savings of a smart thermostat. In Section 7.4, we outline our parametrisation
of the 5R1C model for four fictitious buildings in Lausanne, Switzerland. Section 7.7
concludes this chapter after a discussion of the limitations of the ISO 13790 5R1C model
in Section 7.6. This chapter is based on contributions made in [103], [104] and [105].
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7.1 Related work

Numerous authors have sought to define thermal models to simulate the energy consump-
tion of buildings. Today, a large number of these approaches is based on the physical
principles of electrical circuits [26, 58, 90, 129]. One of the first authors to advocate the
use of resistors and capacitors to simulate the energy consumption of a heating system was
Clemens Beuken, who introduced the concept in his 1936 PhD thesis on the “Heat loss in
periodically powered ovens” [26]. In the Beuken method, the electric voltage corresponds
to the temperature and the electric current is equivalent to the heating flux q.

Since Beuken, many authors have presented approaches utilising such resistance-
capacitance (RC) models. The number of resistances and capacitances used varies between
models. Therefore such models are usually referred to by a shorthand such as NrRNcC,
whereby Nr and Nc denote the number of resistances and capacitances.

At the macro level, Kämpf et al. focus on the energy flows within urban districts
and use a simple 1R1C model for modelling an arbitrary number of zones [90]. In the
Neurothermostat [140], Mozer et al. simulate the energy consumption of the smart heating
system utilising a simple 1R1C model. Like Mozer et al., Wooley et al. investigate the
performance of occupancy-responsive thermostats using a simple 1R1C model. Rogers et
al. present a practical application of a simple RC model [164]. Their project, MyJoulo, a
small USB temperature logger, builds an RC model of the building and automatically infers
the operational settings of the heating system in order to predict the effect of intervention
strategies such as suggesting a lower setback temperature [164].

To obtain more precise results, other authors increase the number of nodes in the RC
model. In [129], Matthews et al. present a first-order thermal model to be used in building
design using four resistances and one capacitance (4R1C). Similarly, Fraisse et al. present
a three resistances and four capacities model to simulate a multi-layer wall (3R4C) [58].
Olofsson et al. [151] extend the European Standard EN 832 on the “thermal performance
of buildings” [82] by incorporating heat loss through the floor and solar gains. Since 2008,
EN 832 has been replaced by ISO 13790 which already includes these factors [84].

While the use of RC models is very popular in building performance simulations, several
authors also propose alternative approaches. Kalogirou et al. for example, use an artificial
neural network (ANN) that uses seasonal and building information to predict the energy
consumption of passive solar buildings [89]. Similarly, Neto et al. analyse the results
of modelling a building using an ANN for the energy consumption forecast of an office
building in São Paulo [142]. Kramer et al. provide a literature review of various simplified
building models including neural network models, linear parametric models and lumped
capacitance models [112].

In the design process of large building projects, commercial software such as TRN-
SYS [219] and EnergyPlus [220] are often used. Thereby, the EnergyPlus software,
developed by the United States Department of Energy, has become the de-facto standard
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tool for simulating the energy efficiency of buildings. Originally based on the earlier
BLAST and DOE-2.1E simulators, version 1.0 of EnergyPlus was published in April 2001.
As of the time of writing, the current version stands at 8.2. The software can perform
complex multi-zone calculations and output energy and water usage of a building as well
as its CO2 emissions. For this reason, EnergyPlus has been used by a large number of
projects including the One World Trade Center in New York City [203]. While several
papers have used EnergyPlus models to evaluate the expected energy savings of smart
heating systems [48, 124], its modelling approach is focussed at large commercial build-
ings and its control options are limited [148]. Its complexity results in models too specific
to be generalised in the residential environment.

To achieve the right trade-off between complexity and generalisability, we use a 5R1C
model for our simulation. This method has been standardised in the EN ISO 13790
energy performance standard [84] and adopted extensively for building simulations in
Europe [36, 88]. The standard was mandated by the EU Directive 2002/91/EC on the
energy performance of buildings (EPBD) which required a “common methodology for
calculating the integrated energy performance of buildings” [51]. In the next section
we will explain the operation of the resistance-capacitance models in general, before we
introduce the specifics of the ISO 13790 5R1C model.

7.2 Lumped capacitance models

In building design, the indoor temperature may be modelled as a transient heat transfer
problem. A simple example for transient conduction (i.e. heat transfer that is time depen-
dent) is a banana cake taken out of the oven and left to cool down in the kitchen. Energy
is transferred from the surface of the cake to its surroundings by convection and radiation.
At the same time conduction also occurs between the interior of the cake and its surface.
The energy transfer occurs as long as the cake has not reached a steady state temperature
distribution.

One of the simplest models for describing such transient conduction is the lumped
capacitance model [80]. The lumped capacitance model makes the simplifying assumption
that there is no temperature gradient within the solid. Thus, the temperature on the surface
of the cake is assumed to be the same as the interior temperature. This is clearly impossible
as it would imply the existence of infinite thermal conductivity in the cake. However, this
is well approximated if the internal conductivity in the cake is higher than the conductivity
to the surroundings.

When looking at a building scenario, the rate of heat loss ˙Eout of the building must be
the same as the rate of change of its internal energy ˙Estored. This may be written as:

− ˙Eout = ˙Estored (7.1)
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Table 7.1: Variables used in calculation of transient heat transfer with the lumped capaci-
tance model.

Variable Description
˙Eout Heat loss (W)

Ėin Heat gain (W)
˙Estored Heat stored (W)

Θin Indoor temperature (K)
Θout Outside temperature (K)
R Thermal resistance (K/W)
C Thermal capacitance (J/K)
h Heat transfer coefficient (W/(m2 K))
As Surface area (m2)
ρ Density (kg/m3)
V Volume (m3)
c Specific heat (J/(kg K))

7.2.1 A simple resistance-capacitance (1R1C) model

When considering the indoor temperature, we are not merely interested in reaching the
steady state temperature distribution of the building with the outside as it cools down.
Instead we want to know how much energy must be spent to keep the building at a
comfortable temperature level and how long it takes to heat up to this level. Thus we must
counteract the rate of change of the internal energy ˙Estored by introducing heat gain Ėin

into the system. Figure 7.1 shows the simple resistance-capacitance circuit used for this
purpose.

Ėin = ˙Eout + ˙Estored (7.2)

Introducing the temperature difference between the indoor temperature Θin and outside
temperature Θe, the equation may be re-written as:

Ėin =
Θin−Θe

R
+C

dΘin

dt
(7.3)

where R stands for the thermal resistance (R = 1
hAs

) and C for the thermal capacitance
(C = ρV c) of the building components facing the outside, respectively. Table 7.1 shows
the definition of all parameters.

Now equation (7.3) may be rewritten as:

dΘin

dt
+

Θin

RC
=

ĖinR+Θe

RC
(7.4)

Multiplying by integrating factor e
∫ 1

RC dt = e
t

RC and applying the product rule in reverse
gives:
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Figure 7.1: Simple 1R1C model.
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∫ dΘin

dt
e

t
RC =

∫ ĖinR+Θe

RC
e

t
RC (7.5)

Θin(t) = (ĖinR+Θe)+De
−t
RC

ĖinR+Θe

RC
(7.6)

Fixing Θin(0) =Θin(t−1) for t = 0 we can calculate D:

Θin(t−1) = (ĖinR+Θe)+D
ĖinR+Θe

RC
(7.7)

Substituting D in Θin(t) gives the indoor temperature at time t – Θin(t) – as a function
of the indoor temperature at the previous interval Θin(t−1), the outside temperature Θe,
the resistance and capacitance values (R and C) and the heat added to the system Ėin.
Equation 7.8 thus describes the temporal behaviour of the 1R1C model:

Θin(t) =Θin(t−1)e
−t
RC +(ĖinR+Θe)(1− e

−t
RC ) (7.8)
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7.2.2 Limitations of the 1R1C model

The simple 1R1C model does not explicitly model the losses of the heating system itself.
This is important as an over-dimensioned and under-utilised boiler is usually less efficient.
Furthermore, the asymptotic behaviour of the system would lead to the conclusion that a
more powerful heating system is always preferable.

Figures 7.2 and 7.3 show the asymptotic behaviour of the 1R1C model if the available
heating power is increased. As the available heating power tends to infinity, the time needed
to heat the building approaches zero. The product of power and time – i.e. the energy
used to preheat the building, however, approaches a non-zero value. From Equation 7.8
it can be derived that the minimum energy required for preheating ˙Emin approaches the
product of the capacitance and the temperature difference between the comfort and setback
temperatures1:

˙Emin = (Θcomf−Θsetb)×C (7.9)

Thus, as the available power approaches infinity, the energy required to reheat the
building is not dependent on the resistance R. It is only dependent on the capacitance
(i.e. the ability of the building to store energy). While it is to be expected that the energy
required may not fall below the capacitance – as, after all, the heating process must adhere
to the law of the conservation of energy – this result would point to an increase in the
design heat load to save energy.

For this reason, we do not use the simple 1R1C model in our evaluation but focus on the
ISO 13790 5R1C model. To avoid distorting the results by an over-dimensioned heating
system, we further compute the design heat load ΦH,max (i.e. the maximum heating power
available) using the DIN EN 12831 standard [42].

7.2.3 The ISO 13790 5R1C model

The simple 1R1C model has further drawbacks. It does not differentiate between the
indoor air temperature and the temperature of walls and other building parts. This produces
inaccurate results as the primary goal of the smart heating system is to ensure a comfortable
indoor air temperature. Furthermore, the simple model ignores ventilation losses as well
as solar and internal gains.

These factors are addressed by the ISO 13790 energy performance standard [84]. To
simulate the hourly energy expenditure, ISO 13790 includes 5R1C model. The circuit
of the 5R1C model is shown in Figure 7.4. The most significant parameters used by the
model are listed in Table 7.2. The RC circuit models the transient conduction between the
property and its surroundings and offers a method to calculate the energy needs for heating
and cooling while maintaining specified set-point temperatures. In contrast to the simple

1The interested reader may find the complete derivation in the appendix.
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Cm
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Htr,is
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Θm ΘairΘs

Θe Θsup

Figure 7.4: ISO 13790 5R1C model.

Table 7.2: Excerpt of ISO 13790 5R1C parameters.
Symbol Units Description Notes

Output
Θm

◦C Mean radiant (masonry) temperature
Θair

◦C Mean air temperature
Input

Θint,H,set
◦C Heating setpoint temperature Θcomf = 20◦C,

Θsetb = 10◦C
Θint,C,set

◦C Cooling setpoint temperature
Θm,0

◦C Mean radiant temperature at time t = 0
Θe

◦C Outside temperature
Θsup

◦C Temperature of ventilation air Θsup =Θe
ΦHC,nd W Actual heat input ΦHC,nd in ISO 13790 covers

heating and cooling
ΦH,max W Maximum heating input
Φint W Internal heat gains
Φsol W Solar heat gains
Hve K/W Ventilation heat transmission coefficient
Htr,w K/W Transmission heat transfer coefficient (windows, doors)
Htr,op K/W Transmission heat transfer coefficient (opaque elements)
Cm J/K Thermal capacitance of building mass
Af m2 Floor area

1R1C model, the 5R1C model takes into account the heat transfer by transmission and
ventilation as well as solar and internal gains. The model also allows for the calculation of
the mean transient air temperature Θair, the mean radiant (masonry) temperature Θm and
the internal surface temperature Θs. In the following sections we will describe how we
computed weather scenarios and building configurations for the 5R1C model. We then
describe a predictive controller and conclude by discussing limitations of the 5R1C model.
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Figure 7.5: In Switzerland, the total energy consumption of space heating is closely
following the heating degree hours (2000-2013).

7.3 Weather scenarios

The amount of energy required for heating is closely correlated with the weather. Figure 7.5
shows the average heating degree days and the energy required for space heating in
Switzerland from 2000 to 2013. It shows that the energy consumed by space heating
closely follows the heating degree days2.

To investigate the performance of the smart heating system as close to a real system as
possible, we use actual weather data for calibrating the 5R1C model for the design heat
load and for simulating different environmental conditions. To set up the system, we use
20 years of weather data from Pully, Switzerland (close to Lausanne) to find Θd, the norm
outside temperature, and Θ̂e, the yearly mean of the outside temperature. Both are used in
Section 7.4.2 for the calculation of the design heat load ΦH. The weather data has been
provided by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss).3 For
details of the design heat load calculation the reader is referred to Section 7.4.2. Table 7.4
shows the weather data used. We use this data to design different environmental scenarios
based on the distribution of the outside temperature.

Figure 7.6 shows the distribution of the daily average temperatures over 20 years from
January 1994 to January 2014. To generate possible heating scenarios, we only consider
days with an average outside temperature Θe,d < 20, as only these may contribute to the
total heating degree days. The left part of the figure shows that there is a peak in the
relative frequency around 6◦C. The small subfigure on the right shows that the median
temperature in the observed sample is 10◦C (i.e. 50% of the days requiring heating have
temperatures below 10◦C), while the lower quartile is 5◦C (i.e. 25% of the days requiring

2The heating degree day is a measure of the energy demand for heating a building. It is derived from the
outside temperature and defined relative to a base temperature – the minimum outside temperature at
which heating is not required. In theory, the base temperature should vary with the characteristics of the
building. A well-insulated building which makes good use of internal and solar gains has a lower base
temperature than a poorly insulated building. However, for simplicity reasons, the base temperature is
often assumed to be 16 ◦C or 18 ◦C.

3MeteoSwiss provides a web interface for researchers at http://gate.meteoswiss.ch/idaweb.
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Figure 7.6: Distribution of daily average temperature Θe,d in Pully, Switzerland (Jan 1994
to Jan 2014). Θe,d ≥ 20◦C are excluded. Right subfigure shows median and
quartiles.

Table 7.3: Weather scenarios. For each of the eight scenarios, the table shows the daily
average temperature Θe,d and the daily average of the global radiation Iavg for
reference.

Θe,d (◦C) Iavg (W/m2)
Scenario Range clear cloudy clear cloudy
Very low temperature −6◦C≤Θe ≤−4◦C -5.4 -4.7 142.9 35.5
Freezing temperature −1◦C≤Θe ≤ 1◦C 0.1 0.0 137.5 30.2
Low temperature 4◦C≤Θe ≤ 6◦C 5.1 5.1 148.5 26.1
Moderate temperature 9◦C≤Θe ≤ 11◦C 10.1 10.0 180.7 29.7

heating have temperatures below 5◦C). The minimum value observed is −10◦C. Since
we have established that the norm outside temperature of our heating system is −6◦C, we
do not consider the minimum temperature. This led us to the eight test scenarios for our
heating simulation shown in Table 7.3.

By choosing the bounds for the very low temperature to be slightly above the norm
outside temperature, we seek to avoid a scenario where the power of our modelled heating
system is insufficient to heat up the property to a comfortable temperature during parts of
the day.

The eight weather scenarios are built using data from January 1, 2005 to January 1,
2014. All calculations on the solar radiation as described in Section 7.4.5 were done at a
granularity of 10 minutes. The resulting dataset was resampled at 15-minute intervals to
coincide with the occupancy schedules derived in Chapter 5. Θe,d denotes the daily average
of the outside temperature and Id denotes the daily average of the global radiation. Days
with Iavg ≥ 100 have been considered clear. Days with Iavg ≤ 50 have been considered
cloudy. The scenarios were built by considering all days in the dataset which fit the criteria.
Figures showing the actual values for Θe and Idir for all scenarios in conjunction with the
response of an optimal controller can be found in the appendix.
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Table 7.4: MeteoSwiss dataset: Pully, Switzerland (46◦30′44′′, 06◦40′03′′).
Variable Description From To
I Global radiation 01/01/2005 01/01/2014
Θe Outside temperature (2 m above surface) 01/01/1994 01/01/2014

Weather data and occupancy Due to the fact that the occupancy traces from different
households do not necessarily cover the same timespan (or have the same length), we
cannot compare the energy savings obtained in different households if we were to use
weather data corresponding to the actual occupancy data. Therefore, we assume that
there is no correlation between the occupancy schedule of a household and the weather
conditions.

7.3.1 Annual model

In order to estimate how much energy may be saved by a predictive heating system on an
annual basis, we must take into account the relative frequency of the weather scenarios and
weigh the scenarios accordingly. As Figure 7.6 shows, the very low temperature scenario
with its proximity to the norm outside temperature is not very likely to occur on a typical
day. The moderate temperature scenario on the other hand is much more likely to occur.
Using the relative frequencies for temperatures below 20◦C shown in Figure 7.6, we have
calculated the probabilities for the different weather scenarios. For this, we extended the
ranges shown in Table 7.3 to the ones in Table 7.5. This had no effect on the derivation of
the scenarios, but made sure that the performance evaluation of the smart heating system
covers the temperatures relevant for heating. Thus, Table 7.5 shows that a temperature
between−2.5◦C and 2.5◦C is half as likely than a temperature between 2.5◦C and 7.5◦C.
We have extended the ranges of the very low and moderate temperature scenarios to cover
the whole range of temperatures.

While this does not affect the low temperature scenario (temperatures under −6◦C
do not occur very often), the probability of the moderate scenario is now overestimated
in order to cover the temperatures up to 19◦C. Compared to a scenario with equi-sized
bounds (i.e. 7.5◦C to 12.5◦C), the probability of the moderate temperature scenario
increases from 24% to 63% - an overestimation of 39%.

In order to understand the implications of this one must look at the behaviour of
the heating system as the outside temperature increases. For higher temperatures, the
absolute available savings drop to zero as Θe approaches Θcomf and the solar gains are
sufficient to heat the building. Heating becomes unnecessary. At the same time, the
relative (percentage) savings increase as shorter preheat times lead to a more reactive
heating system (i.e. the heating system can stay in the off state for longer). However, the
relative savings are bounded above by the occupancy of the household. Heating can only
be forgone when the building is unoccupied. The participants in our dataset are absent
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Table 7.5: New ranges for weather scenarios with probabilities. Where ranges overlap,
each scenario is assigned one half of the relative frequency of that particular
temperature.

Range (◦C) Probability (%) Used weather scenario
−10≤Θe ≤−2.5 1 Very low temperature
−2.5≤Θe ≤ 2.5 11 Freezing temperature
2.5≤Θe ≤ 7.5 24 Low temperature
7.5≤Θe ≤ 19 63 Moderate temperature

Table 7.6: Average, average lowest and absolute lowest outside temperatures (Θe) in ◦C
for selected cities for January to March. Estimated norm outside temperature
(cf. Section 7.4.2) for the dimensioning of the heating system. Temperature data
obtained from wikipedia.org, if available, otherwise from weatherbase.

com.
Avg. Θe Avg. lowest Θe Abs. lowest Θe Est. Θd

City Jan Feb Mar Jan Feb Mar Jan Feb Mar
Moscow -8 -7 -2 -11 -11 -5 -36 -33 -27 -20.5
Toronto -5.8 -5.6 -0.4 -10.1 -10.2 -5.3 -35.2 -25.7 -25.6 -18.7
Beijing -4 -1 6 -8.4 -5.6 0.4 -17 -15 -8 -8.9
Stockholm -2.8 -3 0.1 -5 -5.3 -2.7 -27 -27 -20 -14.5
New York 0.5 1.8 5.7 -3 -1.9 1.4 -21.1 -26.1 -16.1 -11.1
Frankfurt 1 2 6 -1 -1 2 -20 -18 -12 -8.3
Lausanne 1.3 2.8 5.5 -0.5 0.5 2.7 -9.7 -13 -9.1 -4.9
Brussels 3.3 3.7 6.8 0.7 0.7 3.1 -17 -13 -7 -5.4
London 4.3 4.5 6.9 1.2 1 2.8 -12 -13 -7 -4.5
Paris 5 5.6 8.8 2.7 2.8 5.3 -14.6 -14.7 -9.1 -4.6
Seattle 5.6 6.3 8.1 2.7 2.7 4.1 -22.8 -27.4 -15 -9.3

from home on average 26% of the day [103]. This means that the average savings are
bounded above by 26% as we cannot do better than switching off the temperature during
unoccupied periods.

By using the moderate temperature as a model also for temperatures above 12.5◦C we
thus both overestimate the total energy spent and underestimate the percentage savings,
leading to an acceptable error overall.

7.3.2 Global weather scenarios

The potential for energy savings achievable by a predictive heating system varies by
region. In fact, some more moderate climates may rarely need any heating at all during
the year. Moreover, the performance of a heating system is closely tied to its norm outside
temperature and the resulting design heat load. A climate region with a larger variance
in the outside temperature requires a more powerful heating system to cope with the
lowest temperatures. This “excess capacity” to deal with the norm outside temperature
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(cf. Section 7.4.2) then also reduces the ramp-up time during warmer days. Table 7.6
shows the average, average lowest and absolute lowest outside temperatures for the months
from January to March for a selection of cities around the world. Since we were missing
detailed weather data for the last 20 years for all cities, the norm outside temperature was
determined as the mean of the average lowest and the absolute lowest temperatures from
January to March.

The table shows that Toronto has the largest differences between the monthly average
temperatures and the norm outside temperature Θd (varying from 13◦C to 18◦C), while
Beijing has the lowest (between 5◦C and 15◦C). A heating system in Toronto is thus
designed for a temperature of −19◦C, while a heating system in Beijing is sized to match
outside temperatures around −9◦C.

We have used these data to simulate the impact of different climate scenarios by creating,
for each city, three weather scenarios with constant temperatures equaling the average
temperatures during the months from January to March. This means, for example, that the
month of January in Toronto was simulated using a constant temperature of −5.8◦C. All
weather scenarios were modelled without solar gains.

7.4 Building configurations

Our goal is to build a simulation framework that allows to show bounds on the potential
of occupancy prediction algorithms to save energy in residential heating scenarios. In
the simplest case, the possible savings are determined by the insulation of the building
(transmission losses), its orientation and number of windows (solar gains), the building’s
exposure and tightness (ventilation losses) as well as heat gains due to occupants and
appliances (internal gains). In the following section, we will describe how we calculated
these heat losses and gains for four fictitious building scenarios.

In reality, the extent of the possible energy savings in a heating scenario also depends
upon many other factors. Besides the particular solar energy transmittance of the glass
used, solar gains are also influenced by the level of shading afforded by blinds, overhangs
and other buildings or structures. Furthermore, the potential for solar gains is highly
dependent on the location of the building. In mountainous terrain such as Switzerland, the
sun may be partly or completely obscured during large parts of the day, resulting in lower
solar gains. Similarly, ventilation losses are influenced not only by the characteristics of
the building itself but also by its surroundings. An exposed building has higher ventilation
losses than a building that is shielded off by adjacent structures. In addition to the tightness
of the building, the level of exposure in conjunction with the current wind conditions
determines the amount of ventilation losses. For similar reasons, the amount of heat
losses due to ventilation depends on the height of the building. For tall buildings, the
wind conditions near the top are different to those near ground level. Unless the building

122



7.4 Building configurations

Table 7.7: 5R1C model parameters for different building variants.
Building variant

Parameter F-Ulow F-Uhigh H-Ulow H-Uhigh Units
Thermal transmission coefficient for
opaque building elements – Htr,op

47.16 184.57 103.57 379.35 W/K

Thermal transmission coefficient for win-
dows and doors – Htr,w

12.68 31.50 33.07 102.06 W/K

Thermal transmission coefficient for venti-
lation – Hve

47.33 47.33 161.57 161.57 W/K

Internal zone capacitance – Cm 8.51 8.51 29.04 29.04 MJ/K
Floor area – Af 51.56 51.56 176.00 176.00 m2

Design heat load according to [42] – ΦH,max 2.80 6.86 7.78 16.75 kW

is detached and completely exposed, the energy required to heat might also vary as
neighbouring buildings contribute to either transmission gains or losses. In particular, in
an apartment complex, a particular party might not need to heat at all if the adjacent parties
have heated their apartments to temperatures exceeding the comfort temperature of the
first party. In fact, the heating scenario becomes much more complicated when multiple
zones with different setpoint temperatures, unconditioned zones and occupancy schedules
are considered.

We focus on an idealised scenario in which there is no heat transmission from and to
adjacent buildings or zones. The buildings are considered to be a single zone with a single
temperature setpoint. This simplification allows us to isolate the effect of the occupancy
prediction algorithms on the energy expenditure of the building. We leave the analysis of
the savings potential inherent in occupancy schedules of multi-party buildings to future
work.

The two building configurations used in this study are a studio flat and a house. Both
were simulated with low U-values following recent legislatorial guidelines [3] (good
insulation: F-Ulow and H-Ulow) and high U-values (bad insulation: F-Uhigh, H-Uhigh),
respectively. We then expose each of these four fictitious properties to a range of en-
vironmental conditions. Figures 7.7 and 7.8 show the geometry of the two simulated
properties. The studio flat (F-Ulow and F-Uhigh) has an area of 52 m2. The house (H-Ulow

and H-Uhigh) has an area of 176m2. All windows are sized 1.4 m by 1.4 m. The height of
the rooms is 2.5 m in both cases. The doors are 1.4 m by 2 m. The flat has one window
facing east and three windows facing south. The house has two east-facing windows, four
windows on the south side, two to the west and two windows facing north.

In the remainder of this section, we will show how we calculated the design heat load
ΦH,max as well as the heat gains (Φint and Φsol) and heat transfer coefficients for the ISO
13790 5R1C model (Htr,w, Htr,op and Hve). Table 7.7 summarises the resulting parameters
used in the simulation using the ISO 13790 5R1C model.
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Figure 7.7: Blueprint of studio flat (F-Ulow and F-Uhigh).

7.4.1 Transmission losses

A large share of the heat lost during cold weather is due to insufficient insulation. The
insulation capacity of a material is described using the so-called U-value. The U-value
gives the amount of energy (J) which is transmitted across the component at every second
for a certain difference in temperature (K). As the difference between the inside and
outside temperatures increases, the building loses more energy to its surroundings. The
U-value is the inverse of the R-value with SI units of W/(m2 K). Table 7.8 shows two sets
of characteristic U-values. The first set is taken from a low U-value reference building [3].
As there is no standard definition of high U-values (often anything higher than current
building regulations allow is considered high), we have taken generic high U-values from
wikipedia.org for the low insulation case [223].

The heat transfer coefficients Htr,w and Htr,op are calculated by multiplying the surface
area of the building part facing the outside with its U-value.

124

wikipedia.org


7.4 Building configurations

11.00

16.00
South

Person 3

Person 1

Person 2

Figure 7.8: Blueprint of house (H-Ulow and H-Uhigh).
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Table 7.8: U-values (W/(m2K)).
Component Low U-Values High U-Values
Walls, ceiling against outside 0.28 1.5
Ground plate 0.35 1.0
Roof 0.20 1.0
Windows 1.30 4.3
Doors 1.80 1.8

Table 7.9: Design heat load for each building variant.
Building variant

Term F-Ulow F-Uhigh H-Ulow H-Uhigh Units
ΦH,max 2.80 6.86 7.78 16.75 kW
ΦH,max per m2 12 30 10 21 W/m2

Htr,w = ~Awalls,ceiling · ( ~Uwalls,ceiling + ~∆UWB)+HT,g (7.10)

Htr,op = ~Adoors,windows · ( ~Udoors,windows + ~∆UWB) (7.11)

where ∆UWB is a generic thermal bridge correction factor which is set to 0.05 according
to [71]. The calculation of the heat transfer coefficient to the ground HT,g is shown in the
next section.

7.4.2 Design heat load

In order to appropriately dimension the heating infrastructure (e.g. radiators and boilers)
in a property, the DIN EN 12831 standard allows for the calculation of the design heat
load. The design heat load is the amount of heat that needs to be supplied to a building
to keep the target comfort temperature Θint even when the outside temperature is at its
lowest. In the case of the DIN EN 12831 model, Θd, the design outside temperature, is
the lowest two-day average temperature which was measured at least 10 times over a
period of 20 years. We have determined Θd using meteorological data from MeteoSwiss.
Θd was calculated to be −6◦C for the period from January 1994 to January 2014 for
Pully, Switzerland. Likewise, we determined the yearly mean of the outside temperature
Θ̂e to be 11.3◦C. The temperature variable used for the calculations was the 10-minute
average temperature (2 m above ground). The target indoor temperature Θint was 20◦C.
The resulting design heat loads are shown in Table 7.9. They are within the range of
buildings built from 1978 to 1983 (high U-values) and buildings built after 2001 (low
U-values) [56].
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Table 7.10: DIN EN 12831 [42] parameters. † DIN EN 12831 refers to the norm outside
temperature by Θe. To avoid confusion with the current outside temperature
Θe as defined in ISO 13790, we chose to rename it.

Symbol Units Description
ΦH,max W Design heat load: ΦTL +ΦV
ΦTL W Heat loss due to transmission
ΦV W Heat loss due to ventilation
HT,e K/W Heat transmission coefficient to the outside (R-value)
HT,g K/W Heat transmission coefficient to the ground (R-value)
Θint K Indoor temperature
Θd † K Norm outside temperature
Θ̂e K Yearly mean of outside temperature
Af m2 Floor area
P m Circumference of ground plate in contact with environment

Heat transmission coefficients

The heat loss due to ventilation ΦV was calculated using the method used in Section 7.4.3
to determine the heat transfer coefficient for the ventilation Hve. The heat transmission
coefficient to the ground HT,ig was calculated using the method from [71]:

HT,g = Af×Uequiv× fg1× fg2 (7.12)

where fg1 = 1.45, fg2 = (Θint,i− Θ̂e)/(Θint,i−Θe) and Uequiv from Table 7.11 using
B′ = Ag

2P . The heat transmission coefficient to the outside was calculated as:

HT,e = ~A · (~U + ~∆UWB) (7.13)

where A and U are vectors containing the areas and U-values of the buildings parts’
(i.e. walls, windows, doors and ceiling), respectively. ∆UWB is a generic thermal bridge
correction factor which is set to 0.05 according to [71]. The U-values used for the
calculation of HT,g and HT,e are the same as used in the previous section (cf. Table 7.8).

7.4.3 Ventilation losses

Ventilation heat losses occur due to cracks or small openings in the building envelope
(natural ventilation) and the need to regularly exchange the air to increase the comfort of
the inhabitants (hygienic ventilation). In the following section, we will discuss how we
calculated the ventilation heat losses according to the DIN EN 12831 model.

Natural ventilation mainly depends on the tightness of the building envelope, the
exposure of the building and the wind speed. Some of the heat losses from natural
ventilation may be thus recovered by making windows and doors draught-proof. On the
other hand, heat losses due to hygienic ventilation arise from the need for inhabited spaces
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Table 7.11: Equivalent transmission coefficient Uequiv for buildings without cellar. Table
from [71].
B’[m] Uequiv (W/(m2 K))

Ugroundplate (W/(m2 K))
no insulation 2.0 1.0 0.5 0.25

2 1.30 0.77 0.55 0.33 0.17
4 0.88 0.59 0.45 0.30 0.17
6 0.68 0.48 0.38 0.27 0.17
8 0.55 0.41 0.33 0.25 0.16

10 0.47 0.36 0.30 0.23 0.15
12 0.41 0.32 0.27 0.21 0.14
14 0.37 0.29 0.24 0.19 0.14
16 0.33 0.26 0.22 0.18 0.13
18 0.31 0.24 0.21 0.17 0.12
20 0.28 0.22 0.19 0.16 0.12

to be regularly ventilated to reduce the concentration of harmful gases such as carbon
dioxide. Ventilation is also necessary to counter the humidity introduced by inhabitants
(e.g. by breathing, cooking or taking a shower) – which may lead to mold. Therefore
these losses cannot be avoided. The Recknagel4 [160] minimum (hygienic) ventilation is
defined as the minimum amount of air exchange required to maintain 1000 ppm CO2.

For our model, we have calculated the heat losses due to ventilation Hve using the
simplified method from DIN EN 12831. In DIN EN 12831, Hve is defined as the maximum
of the hygienic minimum ventilation Vmin and Vinf, the natural ventilation by infiltration.
Vmin is the volume of the room to be heated multiplied by a factor nmin. In this case, we
chose nmin = 0.5 which is given by DIN EN 12831 as the standard value for an inhabited
room. The heat loss due to infiltration is given by:

Vinf = 2×Vr×n50× e× ε (7.14)

Here Vr denotes for the volume of the room, n50 is a factor for the tightness of the
building. We set n50 = 6, which corresponds to a detached house with tight walls. The
shielding factor e we set to 0.09 which corresponds to moderate shielding. We do not
employ an elevation correction and thus set ε = 1. Since Vinf = 2×Vr×6×0.09×1= 1.08,
Vinf >Vmin, which means that the hygienic air flow is already guaranteed by the natural
ventilation, Hve =Vinf. The ventilation heat transfer coefficient is thus equivalent to the
losses due to natural ventilation.

4The Taschenbuch für Heizung + Klimatechnik or Recknagel in short is the standard reference for heating
and cooling in the German language. First issued in 1897, it is currently in its 76th issue.
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7.4.4 Internal gains

Internal heat gains are divided into gains due to appliances (e.g. dishwasher, washing
machine, dryer and stove), losses from the heating/cooling system (e.g. pumps and fans)
and the metabolic heat from occupants. We do not include internal gains due to appliances
since we do not have accurate ground truth data to predict their operation. In addition, we
assume that there are no losses from the heating system that may be recovered as part of
the internal gains. We do, however, include internal gains due to the metabolic heat rate of
the occupants. An average person produces 125 watts of heat [83]. For our simulation we
have assumed the flat to be occupied by 2 people and the house by 3 people. Since the
algorithms in our sample only consider binary occupancy, we assumed all occupants to be
present whenever the property was occupied (i.e. Φint = 250 watts and Φint = 375 watts
whenever the flat or house are occupied, respectively).

7.4.5 Solar gains

While solar gains are most important when assessing the need for air-conditioning and
ventilation in summer, the sun’s radiation must also be taken into account to properly assess
the energy needed for heating in winter. Such is the importance of solar gains that the field
of passive solar building design focuses on using solar gains in winter and avoiding those
gains in summer through the placement of windows, shading and insulation [147].

An increase in temperature through solar gains is the net result from two different
processes: (a) long wavelength radiation being trapped inside the building and (b) an
increase in the temperature of the building envelope through absorbed sunlight. Here we
will focus on the former – solar gain through transparent building parts. When a building
material such as glass is more transparent to the shorter wavelengths (visible light) than
the longer (infrared radiation), heat is trapped inside the room. This is due to the fact that
the room is heated up and any re-emitted (infrared) radiation cannot escape through the
windows. This effect is best exhibited in green houses and occurs at a smaller scale in
residential buildings.

The incident solar radiation causing the internal gains may be divided into two categories:
Direct and diffuse radiation. Direct radiation are direct line-of-sight rays from the sun,
while diffuse radiation is light reflected from the surroundings. The direct radiation is the
reason why, in the northern hemisphere, buildings are often constructed with windows
facing south to maximise exposure to the sun.

The weather data used in the following experiments contains the global (sum of direct
and diffuse) radiation on a horizontal surface. To calculate the solar gain through the
windows, we must first obtain the position of the sun relative to our location. We then
divide the global radiation into direct and diffuse radiation using the Reindl∗ method [72].
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Figure 7.9: Position of the sun. Θz is the solar zenith angle. Θi is the angle between the
normal to the window and the sun. In our case the normal to the surface of
the window is assumed to be perpendicular to the normal to the surface of
the earth and therefore β , the solar elevation is β = 90−Θz = Θi. α is the
orientation of the window with zero degrees being south.

Finally, we transform the direct radiation from the horizontal to a vertical plane and thence
to the different orientations of the windows.

Position of the sun

In order to correctly compute the incident solar radiation on the windows, we must find the
sun’s current position in terms of its elevation β and azimuth angle ψs. The sun’s elevation
is at its maximum over noon. Figure 7.9 shows a simplified version of the problem. In this
case the normal to the surface of the window is assumed to be perpendicular to the normal
to the surface of the earth (i.e. there is no tilt or rotation of the window in the vertical
plane). β and ψs are calculated as follows:

sinβ = cos latcosδ cosω + sin lat sinδ (7.15)

sinψs = cosδ
sinω

cosβ
(7.16)

The calculation of β and ψs needs the local apparent solar time of the current position.
This is due to the fact that the Earth follows an elliptical orbit and that its axis is not
perpendicular to the plane of that orbit. The result is that the mean solar time (clock time)
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Table 7.12: Sun angle parameters.
Variable Description
lat latitude of building
δ 23.45sin(284+n) 360

365 , where n = day of the year
ω 0.25(suntime−720)

Table 7.13: Parameters for the calculation of the local apparent solar time.
Variable Description
time local time (CET)
lon longitude of building
lonstored standard meridian of building / CET (15)
4(lat− latstored) constant deviation (4 minutes per degree)
E 9.87sin2B−7.53cosB−1.5sinB
B (n−81)∗360/364, where n = day of the year

does not accurately reflect the current position of the sun. The local apparent solar time
suntime is calculated as follows using the variables defined in Table 7.13:

suntime = time+4(lat− latstored)+E (7.17)

Direct and diffuse radiation: Reindl∗

With the current elevation β of the sun, we can split the global radiation obtained from the
weather data into direct and diffuse components. As the Pully station does not provide
detailed information on the cloud cover including the type of clouds, position and number
of layers, we must use a decomposition model to determine incident direct and diffuse
radiation [72]. The Reindl∗ is a piecewise regression (cf. Equation 7.18) to compute the
relationship between the diffuse radiation Id and the global radiation I with respect to a
clearness factor kt . The clearness factor depends on the extraterrestrial radiation (solar
energy) I0, the current global radiation I as measured by the weather station as well as Θz,
the angle between the zenith and the sun. The method is described in detail in [72]. The
parameters are listed in Table 7.14.

Id/I =


1.020−0.248kt if 0≤ kt ≤ 0.3, Id/I ≤ 1.0

1.400−1.749kt +0.177sinβ if 0.3 < kt < 0.78,0.1≤ Id/I ≤ 0.97

0.147 if kt ≤ 0.78

(7.18)
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Table 7.14: Reindl∗ parameters.
Variable Description
I Global radiation as measured by the weather station
Id Diffuse radiation on the horizontal surface
Ib Direct radiation on the horizontal surface
I0 Extraterrestrial radiation / solar energy in W/m2

I0 1356.5+48.5cos(0.01721∗ (n−15))
kt

I
I0 cosΘz

, Clearness factor 0≤ kt ≤ 1
Θz 90−β , angle between zenith and sun

Solar radiation on vertical surfaces

From the incident direct solar radiation on the vertical plane, we can now compute the
direct solar radiation on a vertical plane using the angles computed previously as follows:

Ib,vert =
Ib

cosθz
cosθi (7.19)

where

cosθi =−sinδ cos lat cosα + cosδ cos lat cosα cosψs + cosδ sinα sinψs (7.20)

Here α is the clockwise orientation of the window with zero degrees being south (cf.
Figure 7.9). For our model we assume that the house is positioned directly on the north
south axis. This means that that the windows are facing directly to the north, east, south
and west directions. In order to calculate the incident solar radiation on the windows we
can use the following equation:

Φsol,x = AW,x×g(0)× (1− tan4(Θi/2))× Ib

cosΘz
× cosΘi (7.21)

Here AW,x is the area of the windows (x ∈ {east,south,west}) and g(0) is the g-value
(solar transmittance) of the window. We set g(0) = 0.6, corresponding to double-glazed
windows. Ib and Θz are the direct solar radiation on the horizontal plane and the angle
between the zenith and the sun as previously calculated. Once we have obtained Φsol,east,
Φsol,south and Φsol,west, Φsol is computed as the sum of the individual solar gains (i.e.
Φsol = Φsol,east +Φsol,south +Φsol,west). Like the temperature Θe, the solar gains Φsol have
been calculated at 15-minute intervals for all5 β > 5.

5The clearness factor kt is only defined for β > 5 degrees due to the cosine in kt =
I

I0 cosΘz
.
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Table 7.15: Controller parameters.
Symbol Units Description
Θcomf

◦C Comfort / set-point temperature
Θsetb

◦C Setback temperature
t / Current 15-minute timeslot
S {1,0} Actual occupancy schedule
Pt {1,0} Predicted occupancy schedule at interval t

7.5 Controller design

In order to act upon the predictions made by the occupancy prediction algorithms, we must
translate their predicted occupancy schedules into an actual heating schedule containing
setpoint temperatures. As the heating system cannot reach the target comfort temperature
immediately, these setpoint temperatures have to be chosen so to reach a comfortable
temperature upon the occupants’ arrival (e.g. in order to reach a comfortable temperature
upon the arrival of the occupants at 5 p.m. we might have to set the setpoint temperature
to the comfort temperature at 3 p.m. already).

Algorithm 1 shows the high-level6 controller used to alternate between setpoint Θcomf

and setback Θsetb temperatures. The rationale behind our approach is that by simulating
the time it takes to heat up the property to a comfortable temperature, we can decide if
the predicted schedule gives us enough time to forgo heating for another timestep. For
each 15-minute time interval t, the controller looks at the current occupancy St of the
household given by the occupancy schedule S at at time t. If the household is currently
occupied, we must keep the setpoint temperature and therefore we set Θint,H,set to Θcomf.
If the household is not occupied at time t, we use the predictive policy. The predictive
policy first looks at the current prediction from time t onwards Pt and finds the number of
intervals until the next occupied interval. It then computes the next indoor temperature
Θair,noheat, which would result from using the setback temperature for the current interval.
Finally, it computes the number of intervals it will take to heat from Θair,noheat to the
setpoint temperature Θcomf. If this number is larger than the number of intervals to the
next occupied timeslot, we must heat at the current time t.

A reactive policy is obtained if for all times t1 and all predicted intervals t2 at these times,
the building is predicted to be unoccupied – or more formally: ∀t1, t2 : Pt1,t2 = 0. Similarly,
an always-on policy is obtained if for all times t during the simulation the building’s
occupancy is set to 1 – formally ∀t : St = 1. In the appendix, we show the behaviour of
the control algorithm for all weather scenarios for a building unoccupied from 9 a.m. to 5
p.m. in terms of the heating setpoint Θint,H,set and indoor air Θair temperatures as well as
the heat input – ΦHC,nd.

6Further to this, there is an internal controller inside the RC model that regulates the heat input to obtain
the desired target temperature at each timestep.
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Algorithm 1 Control algorithm.
1: procedure C O N T R O L L E R
2: t← Current time interval
3: S← Actual occupancy schedule
4: Pt ← Predicted occupancy schedule at interval t
5: Reactive policy:
6: if isOccupied(St) then
7: Θint,H,set←Θcomf
8: else
9: Predictive policy:

10: nhorizon← nextOccupied(Pt)
11: Θair,noheat← iso137905R1C(Θsetb,Θm,t−1, . . .)
12: npreheat← Preheat time from Θair,noheat to Θcomf
13: if nhorizon ≥ npreheat then
14: Θint,H,set←Θsetb
15: else
16: Θint,H,set←Θcomf

17: Θm,t,ΦHC,nd,t,Θair,t← iso137905R1C(Θint,H,set,Θm,t−1, . . .).
18: t← t +1
19: goto Reactive policy.

Obtaining a steady-state When we first start the simulation, we do not know the
value for Θm,0. As Θm – the temperature of the building mass – is different from the indoor
air temperature Θair (cf. Figure 7.4), we cannot set Θm,0 = Θsetb. We thus first obtain a
steady state temperature for Θm,0 by repeatedly running iso137905R1C( Θsetb, Θm,t−1,

. . .) with the same environmental parameters until Θm,t converges. For the initial value of
Θm,t we use Θsetb.

7.6 Limitations

Mathematical models of complex physical systems are usually simplified renditions of
their real-world counterparts. Translating all variables influencing the operation of a
heating system is not feasible. Mathews et al. summarise this problem as follows:

“Simplified hypotheses, or mathematical models, idealize reality because of
the impossible task of accounting for every detail in complicated real life
phenomena.” [129]

No current approach to simulate the behaviour of smart heating systems thus accounts
for all possible variables involved. Therefore, as discussed in this chapter, we have made a
number of simplifying assumptions.
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Figure 7.10: Temperature response of ISO 5R1C model.

Weather and occupancy To be able to investigate the effects of occupancy and
weather on the overall energy required, we have evaluated both ceteris paribus. That is,
we have assumed that there is no correlation between weather conditions and household
occupancy. Additional work is needed to establish how the current weather conditions
might affect occupancy (e.g. when the weather is good, occupants may stay outdoors for
longer).

Building configurations We have also made a number of simplifying assumptions in
the design of our four sample buildings F-Ulow, H-Ulow, F-Uhigh and H-Uhigh. For all
buildings we assume that they are free-standing, contain a single zone and that there is no
heat transfer to and from adjacent buildings. We further used simplified facades and did
not take into account the effects of overhangs or other means of shading. We argue that,
as there is no single “example” house that can be used, these simplifications are valid to
understand the general effect of smart thermostats and to be able to compare their efficacy
in small vs. large and well vs. poorly insulated buildings.

ISO 13790 5R1C model Figure 7.10 shows the temperatures7 simulated by the ISO
5R1C model for a building occupied from midnight to 9 a.m. and again from 5 p.m. to
midnight (well insulated flat). The heating setpoint temperature Θint,H,set is lowered to
the setback temperature at 9 a.m. (Θsetb = 10◦C) in order to save energy. To reach a
comfortable temperature (i.e. Θair = Θcomf) upon the arrival of the occupants, Θint,H,set

is set to the comfort temperature (Θcomf = 20◦C) at 2.15 p.m. – this “optimal” control
strategy is described in more detail in Section 7.5.

The development of the indoor air temperature Θair in Figure 7.10 is noteworthy. As
the heat input from the heating system is reduced to zero at 9 a.m., Θair drops by over
5◦C. Similarly, there is a significant jump in Θair when the heat input is increased again at

7That is the mean air temperature, Θair, the mean radiant temperature Θm, the heating setpoint temperature
Θint,H,set, the temperature of the surface node Θs and the mean operating temperature Θop (cf. Table 7.2).
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Table 7.16: Example parameters for the calculation of Θair.
Building variant

Term F-Ulow F-Uhigh H-Ulow H-Uhigh Units
Htr,isΘs (Heat recovered from surface node)

Htr,is 1044 1044 3564 3564 W/K
Htr,is×16◦C 16.70 16.70 57.02 57.02 kW
Htr,is×18◦C 18.79 18.79 64.15 64.15 kW

HveΘsup (Heat loss by ventilation)
Hve 47.33 47.33 161.57 161.57 W/K
Hve×0◦C 0 0 0 0 kW
Hve×−5◦C -0.24 -0.24 -0.81 -0.81 kW

HveΘsup (Maximal heat gains when occupied)
Φia 0.13 0.13 0.19 0.19 kW
ΦHC,nd (ΦH,max) 2.80 6.86 7.78 16.75 kW

2.15 p.m. The circuit diagram in Figure 7.4 shows that the heat source ΦHC,nd is directly
connected to the node for the indoor air temperature Θair. Θair loses heat to the outside
while heating the supplied air. It further exchanges heat with the building surface. The
capacitor Cm, which stores some of the heat is located at the other side of the circuit.
While the function for Θm is continuous and shows no jumps in the temperature, this
arrangement causes the function for Θair to be discontinuous. This can also be seen from
the calculation of Θair (cf. Equation C11, ISO 13790 [84]). Here, Θair is derived from Θm

via Θs:

Θair = (Htr,isΘs +HveΘsup +Φia +ΦHC,nd)/(Htr,is +Hve) (7.22)

Table 7.16 shows an exemplary calculation of the parameters of the above equation at 9
a.m. The coupling conductance Htr,is between the air node Θair and the surface node Θs

is given by Htr,is = hisAtot where his = 3.45 (cf. 7.2.2.2 of ISO 13790). Atot is the area of
all surfaces facing the building zone and calculated as Af×4.5. As Htr,is is fixed for each
building configuration, the first term of the summation only varies with Θs. When Θs is
18◦C (9 a.m.), the heat from the inner surface of the building is 19 kW for the flat and
64 kW for the house. As Θs drops to 16 kW after the heating is switched off, this heat is
reduced to 17 kW and 57 kW for the flat and house, respectively. In both cases, this is a
decrease of 11% in the energy supplied by the walls to heat Θair

Hve is the ventilation heat transmission coefficient and Θsup is the temperature of the
supplied air – in our case Θsup =Θe. Thus, the second term only varies with the outside
temperature. If we assume that there is no significant difference in the outside temperature
between 9 a.m. and 9.15 a.m., this term does not contribute to the steep drop in the indoor
air temperature.

Φia is defined as half of the internal gains. ΦHC,nd is the heat input, bounded above by
the design heat load. The drop in temperature occurs when the building is unoccupied after
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9 a.m. as both ΦHC,nd and Φia become zero8. Table 7.16 shows that Φia only contributes
0.13 kW to 1.19 kW to the overall gains. In contrast, the impact from switching off the
heating system is much larger. Depending on the level of insulation and the size of the
building, between 2.8 kW and 16.75 kW are removed entirely from the system at 9.15 a.m.
Especially for the poorly insulated buildings, the heat supplied directly by the heating
system (rather than through the surface node) has a substantial effect on the indoor air
temperature. For the poorly insulated flat, the heating system can supply 7 kW, while the
walls supply 19 kW at 18◦C and 17 kW at 16◦C. Removing this heat from the system
entirely, invariably produces the significant drop in temperature after 9 a.m.

To lengthen the ramp-up time and in order for it to more accurately reflect the heating
behaviour of hydronic heating systems common in Europe, the 5R1C model should be
extended to model the lag caused by boilers and radiators. A hydronic heating system
needs to heat up the water in circulation first, before the heat can be transmitted to the
indoor air and the structure of the building via radiation. Similarly, the temperature in
the radiators does not drop immediately when the setpoint temperature is lowered. Pipes,
radiators and the boiler may thus constitute an additional RC circuit, separated from the
rest of the building. However, in absence of a better model, the 5R1C model gives us a
good first indication of the effects of a smart thermostat based on occupancy prediction.

7.7 Conclusions and lessons learned

In this chapter we have presented a predictive controller and a method for calculating the
heating energy consumption of a building based on the ISO 13790 5R1C model. In order
to assess the effect of different building characteristics, we have modelled a flat and a
house, both with poor and good insulation levels. We have furthermore investigated the
effect of weather and climate conditions by introducing characteristic weather scenarios
for the Lausanne area. We have shown how these scenarios can be used to determine the
annual energy savings of a smart heating system. We will use this modelling framework
to analyse a number of smart heating strategies in Chapter 8.

8Depending on the setback and outside temperatures, ΦHC,nd might stay above zero.
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Chapter 8
Smart Thermostats: How much do they

save?

The main goal of a smart heating system is to save energy while maintaining occupant
comfort. The system automatically sets the temperature of a building based on its current
occupancy state and a prediction of the future occupancy states of the building. The
occupancy prediction algorithms introduced in Chapter 6 thereby aim to reduce the energy
consumed by heating, while at the same time avoiding any loss of comfort for the residents.
We have seen that state-of-the-art schedule-based occupancy prediction algorithms provide
a prediction accuracy around 85% while their performance is limited by the predictability
of the participants’ schedules. However, although inaccurate predictions may lead to
thermal discomfort or a waste of energy, the performance of such a smart heating system
is not only dependent on said algorithms. The efficiency of a heating system is also
determined by:

• The actual occupancy. Occupancy is an important factor in assessing the perfor-
mance of a smart heating system. Occupancy can vary between different households
in absolute terms (e.g. one household may have a higher overall occupancy) and in
terms of occupancy distribution (i.e. variations in the duration of occupied periods).
Both the overall occupancy and its distribution influence the savings of a smart
heating system.

• The parameters of the building. The materials used in and the composition of
the building envelope determine the efficacy of the heating system. The ability of
the building to store energy as well as its ability to retain it influence the energy
required to heat the building. Furthermore, the parameters of the building have
a large influence on the preheat times and therefore the prediction horizon. If a
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building requires a longer time to heat up, the smart heating system needs to be able
to predict further into the future. This increases the potential for wrong predictions,
which could lead to smaller energy savings and higher comfort loss.

• The weather conditions. Weather arguably plays the most important role as heat-
ing is the necessary is only necessary due to changes in the outside temperature.
However, the environmental conditions can also substantially lower the energy re-
quired by the heating system as solar gains help to increase the indoor temperature.

• The control strategy. Especially for large and complex commercial buildings, the
controller employed to regulate the heating, ventilation and cooling infrastructure
is an important factor for the total energy consumption. Without considering occu-
pancy, a more efficient control strategy can for example save energy by maximising
solar gains through intelligent control of the blinds.

In this final chapter we combine the work of Chapters 5 to 7 to investigate the tradeoff
between achievable savings and the risk of comfort loss of a smart thermostat for household
residents. We evaluate a smart thermostat with a predictive heating controller that uses the
MAT, MDMAT, PP(S) and PH algorithms for occupancy prediction. To this end, we utilise
the occupancy schedules derived from the LDCC dataset as discussed in Chapter 5, the
implementations of the occupancy prediction algorithms from Chapter 6 and the simulation
model for smart thermostats from Chapter 7. We will thus analyse the performance of
five schedule-based prediction algorithms in 32 different building and weather scenarios
and report on the projected annual savings of a smart thermostat based on occupancy
prediction.

The structure of this chapter will be as follows. In Section 8.1 we will give an overview
of existing approaches that automatically reduce the energy consumption of space heating.
We will then describe the setup of our experiment (cf. Section 8.3) and discuss the
relevant metrics in Section 8.4. We will outline our results in Section 8.5 and conclude in
Section 8.7. This chapter is based on contributions made in [103], [104] and [105].

8.1 Related work

Commercial and residential buildings account for a large fraction of the total energy
consumption. In the United States, buildings account for over 40% of the primary energy
consumption [221]. Their consumption is dominated by HVAC which accounts “for
close to half of all energy consumed in the buildings sector” [221]. Various studies have
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shown that the operation of HVAC systems can be optimised to reduce the overall energy
footprint of buildings [55, 128, 148, 181]. In commercial buildings there is often little to
no correlation between the energy consumed by the HVAC system and occupancy [128].
Similarly, many residential households fail to achieve potential savings as programmable
thermostats are too difficult to use [143, 158]. For this reason, a number of authors have
looked into automatically controlling heating, ventilation and cooling systems to save
energy without sacrificing occupant comfort [67, 113, 124, 150, 169].

8.1.1 Model predictive control

Automating the regulation of processes such as space heating by means of control theory
without the direct intervention of humans is conventionally referred to as automatic control.
Automating heating control has been the focus of the research community for some years.

Most notable among current control strategies is the concept of model predictive control
(MPC) [62]. In contrast to traditional proportional-integral-derivative (PID) controllers,
which react to changes in a control variable, MPC-based controllers are able to incorporate
predictions of future events when taking control decisions. These predictions are based on
dynamic models of the physical system that are usually obtained by system identification.
A smart heating system based on occupancy prediction is an example of such a model
predictive system. In order to find the appropriate time to start preheating the building, its
future occupancy must be predicted. If it is predicted to be occupied in the near future, a
thermal model of the building in conjunction with the projected weather conditions must
be used to compute the right setpoint temperatures for the next time intervals.

Many authors have investigated the performance of MPC approaches to reduce the
energy consumption of space heating [23, 55, 64, 148, 150, 178, 181]. Oldewurtel et al.
use stochastic model predictive control in conjunction with uncertain weather forecasts
to automatically control blinds and ventilation as well as heating and cooling in order to
improve the climate control in commercial buildings [148]. Similarly, Široký et al. [181]
present an MPC-based control system that uses weather predictions to automatically
control the heating and cooling in an office building in Prague, Czech Republic. The
authors obtained energy savings between 15% and 28% but note that these savings cannot
be generalised as they are dependent upon many factors such as the building parameters
and weather conditions. Ferreira address the system identification challenge of MPC (i.e.
obtaining the model of the building that can be used to predict future behaviour) by the use
of artificial neural networks [55] and project energy savings exceeding 50% in a university
building.

Model predictive control has so far mainly focussed on large commercial buildings. An
exception is the work by Vasak et al., who evaluate the use of an MPC controller to control
heating and cooling in a residential household [178]. The authors use an RC model as part
of their control strategy and show using the TRNSYS simulation [219] that this choice is a
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good fit. The authors do not integrate occupancy prediction and do not evaluate the energy
consumption of their approach. Similarly, Rogers et al. address the need of residential
households for a cheap off-the-shelf heating solution by using MPC to control the radiator
valves of a common hydronic heating system [165]. The authors use MPC to improve
temperature regulation and focus on an increase in thermal comfort rather than energy
savings.

MPC using occupancy data In a follow-up work to [148], Oldewurtel et al. compare
the use of long-term occupancy predictions to a fixed occupancy schedule as input to a
model predictive controller and conclude that a “large part of [the] potential [of occupancy
prediction] can already be captured by taking into account instantaneous occupancy infor-
mation” [150]. However, in contrast to our work, Oldewurtel et al., focus on “long-term
vacancies” such as business trips, holidays or illnesses in commercial buildings instead of
the daily occupancy patterns in residential households. Goyal et al. investigate MPC-based
heating control with short prediction horizons and perfect occupancy predictions and find
that current ventilation standards1 prevent significant savings in commercial buildings [64].
Other authors use more complex models for occupancy prediction. Using Erickson et
al.’s occupancy prediction algorithms (cf. Chapter 6), Beltran et al. build an MPC-based
controller and obtain 9.4% savings for heating in a commercial building [23].

8.1.2 Other control strategies

Traditionally, research in automatic control is produced in civil, mechanical and electrical
engineering as well as architecture departments. With the advent of mobile phones
and wireless sensor networks, computer science researchers focussing on exploiting
advances in information and communication technology to save energy [131] have recently
started to discover this field. This has resulted in a number of papers on smart heating
systems [6, 48, 67, 67, 76, 118, 124, 140, 169]. In contrast to prior work in the area
of automatic control, these approaches focus on fine-grained occupancy sensing and
prediction techniques and do not analyse other improvements to the heating control
infrastructure.

This occupancy-centric approach has implications on the generalisability of results.
Most publications only include a cursory evaluation of energy savings over a small
number of non-standard scenarios. Most approaches thereby fail to take into account other
environmental factors such as solar and internal gains.

As the respective environmental and baseline data vary significantly, it is difficult to
compare the results of individual approaches. Moreover, while some authors based their
findings on simulations [48, 67, 76, 124, 140] others used real world deployments to

1ASHRAE ventilation standard 62.1-2010 prescribes ventilation even during unoccupied times [14].
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Table 8.1: Savings achieved in the various projects. S and D denote values gathered in
simulation and deployment respectively. †Derived value. ‡Combined savings.

Authors Environment (S/D) Savings Baseline
Mozer et al. [140] Home (S) 12%† Always-on
Gupta et al. [67] Home (S/D) 3.4% Always-on
Lu et al. [124] Home (S) 27.9% Always-on
Erickson et al. [47, 48] Office (S) 30% and 42% Scheduled
Agarwal et al. [6] Office (D) 7.7%† Scheduled
Scott et al. [169] Home (D) 8% and 18% Scheduled
Hong et al. [76] Office (D) 8% to 28% Always-on
Beltran et al. [23] Office (S) 9.4% Scheduled
Lee et al. [118] Office (D) up to 25% Always-on

measure potential savings [6, 118, 169]. Although actual deployments show the feasibility
of the approach, it is difficult to compare different strategies as one cannot replicate the
environmental conditions.

The main goal of this chapter is to use the standard simulation techniques introduced in
Chapter 7, including a number of representative weather and building scenarios, to evaluate
the savings potential of existing state-of-the-art schedule-based occupancy prediction
algorithms (cf. Section 6.1.1). However, before we go on to describe our own experimental
setup in Section 8.3, we will briefly describe how previous work has evaluated the energy
savings of smart heating systems using occupancy detection and prediction. Table 8.1
shows an overview of the discussed approaches.

Simulated savings

Lu et al. evaluate the energy savings of their ST occupancy prediction algorithm in a
residential home (cf. Section 6.1.1) in the EnergyPlus simulator [220] over 14 days in
winter. The authors show that an optimal prediction yields 35.9% savings on average
over maintaining a constant temperature. In contrast, ST achieves 27.9% savings. The
results for the ST algorithm are quite specific to the used three-stage boiler. In a later work,
Hong et al. build upon these results and utilising the same heating infrastructure – with a
slightly different prediction algorithm – achieve savings between 8% and 28% [76].

To compute the energy savings of their NT algorithm (cf. Section 6.1.1), Mozer et al. use
a simple 1R1C model (cf. Section 7.2) of an old schoolhouse [140]. The mean daily cost
of the ST approach in U.S. dollars was then generated from “three training/test splits []
formed by training on five consecutive months and training on the next month”. In contrast
to the work by Lu et al., Mozer et al. thus do not compute percentage savings. Instead, the
authors convert lost comfort to a monetary value and combine it with the heating costs.
To be able to compare the savings of the NT algorithm to the other approaches, we have
computed the percentage savings shown in Table 8.1 from the monetary values of the NT
and constant temperature approaches in Table 2 of [140].
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Gupta et al. evaluate their GPS thermostat (cf. Section 6.1.2) over the course of a 14
day period in a single household. Unlike Lu et al. and Mozer et al., the authors focus on
cooling rather than heating. Gupta et al. simulate the savings of controlling the temperature
using their GPS-based thermostat. These simulations resulted in 3.4% savings over the
course of the observation period.

Erickson et al. use Markov Models to predict the occupancy level in a commercial
building (cf. Section 6.1.4) and compare the savings of their algorithm to a scheduled
baseline strategy “assuming maximum occupancy for ventilation and conditions all rooms
from 7:00 – 22:00” [48]. After modelling and simulating the building in EnergyPlus [220],
the authors achieve 30% and 42% energy savings on average [47, 48].

Savings in real world deployments

A small number of authors also shows savings estimates from real world deployments.
The longest and most comprehensive deployment was done by Scott et al. in five homes
over an average period of 61 days per house [169]. Scott et al. deployed their system
in three U.S. households and two households in the United Kingdom. Only the two UK
households and one U.S. household yielded energy savings of 8%, 18% and 2%. The
other two U.S. households showed increases in the energy consumption by 5% and 1%.

Deployments in commercial buildings also exist. In [118], Lee et al. report savings
above 25% for a university building. Similarly, Agarwal et al. present the implementation
of a reactive control system that reduced the energy consumption by an average of 7.7%
over the two day deployment in a university building [6].

8.2 Discussion

Table 8.1 shows an overview of recent occupancy-aware smart heating approaches. For
homes, the savings achieved by occupancy detection and prediction algorithms range from
3.4% [67] to 28% [124]. For office buildings the approaches yield between 8% and 42%.
Due to the limited description of the setup of most experiments is not clear whether the
large difference between approaches is caused by superior algorithms, differing baseline
results or varying environmental conditions. In the remainder of this thesis we will try to
address this issue by simulating the energy savings and comfort loss of the selected state-
of-the-art schedule-based algorithms introduced in Chapter 6 on a number of representative
scenarios.
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Figure 8.1: Simulated scenarios.

8.3 Experimental setup

The algorithms analysed in this chapter aim to predict occupancy for smart heating control
systems. The goal of such systems is to reduce the energy consumed by heating, while at
the same time avoiding any loss of comfort for the residents. We therefore assessed the
suitability of the prediction algorithms in terms of their ability to save energy and ensure
comfortable temperatures when required. To this end, we built a predictive controller
to control the temperature of a building based on the current occupancy state and the
algorithms’ predictions of the future occupancy states of the building. In order to analyse
the performance of the controller under different conditions, we ran simulations using
the 5R1C thermal building model from the ISO 13790 energy performance standard [84]
on 32 different scenarios. In particular, we analysed the influence of different weather
conditions, building sizes and insulation levels.

In the following section we will give a high-level overview of our experimental setup.
For a detailed description of the occupancy prediction algorithms we refer the reader to
Chapter 6. The simulation model is described further in Chapter 7.

8.3.1 Building model and simulation setup

The ISO 5R1C model simulates the transient heat conduction between the property and
its surroundings using an analogous electrical resistance-capacitance (RC) circuit and
thus offers a method of calculating the energy required for heating and cooling while
maintaining specified setpoint temperatures. This modelling principle was first introduced
by Beuken in 1936 [26] and has since been widely employed in building design [129]. In
contrast to simpler models [140], the ISO 5R1C model takes into account the heat transfer
by transmission and ventilation as well as solar and internal gains.
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Figure 8.1 shows the simulated scenarios. The response of the heating system was
simulated for 32 different weather and building settings. We considered two different
building sizes – a 52 m2 studio flat (F) and a 176 m2 house (H). In order to measure the
effect of the building envelope on thermal performance, we also simulated the response
of the ISO 5R1C model for low and high U-values2. The U-value (W/(m2 K)) denotes
the overall heat transfer coefficient of a building element. Elements with high U-values
conduct more heat per unit temperature difference between the inside and outside. A
building with high U-values is considered poorly insulated and thus leaking a significant
amount of heat to the outside. For each of the resulting four building configurations (flat
F-Ulow, F-Uhigh; house H-Ulow, H-Uhigh), the design heat load (maximum heat input) in
watts ΦH,max was determined using the DIN EN 12831 standard [42]. The internal gains
Φint were assumed to be 250 watts and 375 watts, whenever the house was occupied,
equivalent to the metabolic heat rate of two and three residents for the flat and house
respectively.

The effect of different weather conditions on the heating load was captured by eight
representative weather scenarios synthesised from real weather data for the Lausanne
(Switzerland) area where also the data used to derive the occupancy schedules was gathered
(cf. Chapters 5 and 6). Lausanne is situated within a transition zone between a humid
oceanic climate zone and a continental temperate zone.

Figure 8.1 also shows the eight weather scenarios used in the evaluation. The scenarios
cover four different temperature levels under clear as well as cloudy sky conditions.
Each scenario consists of 24-hour vectors of the outside temperature and the direct solar
radiation, replicated n times to reflect the number of days in the occupancy data. A
detailed description of the methodology used to define the weather scenarios is described
in Chapter 7.

8.3.2 Heating controller

We implemented a predictive heating controller to translate the occupancy schedules
predicted by the algorithms into actual heating schedules. A heating schedule defines the
target indoor air temperature Θair,set at 15-minute time intervals t. Given the predicted
occupancy schedule and the RC model, the heating controller sets Θair,set to Θcomf for t if:
(1) The house is occupied at time t (reactive policy); (2) The house is expected to become
occupied between t +1 and t + I∗. The prediction horizon I∗ is the time needed to raise
the indoor air temperature Θair to Θcomf (predictive policy), starting from the temperature
at time t +1, using the maximum available heating power ΦH,max (DIN EN 12831 design
heat load) and assuming that the target temperature was Θsetb at time t. If neither of these

2The U-values for a well-insulated buildings (F-Ulow and H-Ulow) correspond to the maximum allowed
U-values for new properties in Germany according to EnEV’14 [3]. For the poorly insulated buildings
(F-Uhigh and H-Uhigh), we used a list of high U-values reported in [223].
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Figure 8.2: Typical behaviour of a heating system according to the ISO 5R1C model
(F-Ulow, very low temperature, clear sky) for a scenario where the house is
unoccupied between 9 a.m. and 5 p.m. The upper part shows the inputs (solar
gain Φsol, heat input ΦH and internal gain Φint), the lower part the direct
radiation Ib,{east,south,west} and outside temperature Θe. Θair,crit denotes the
critical temperature at which the preheating starts to reach Θcomf at 5 p.m.

two conditions is fulfilled, the controller sets the target temperature to Θsetb in order to
save energy. The heat input ΦH at any point in time is directly determined by the current
setpoint temperature. In all cases, the controller has perfect knowledge3 of the future
weather.

The predictive heating controller is always in one of three different states: the preheat
state, the heating state or the cool down state. If the current air temperature is below
the setpoint temperature Φair,set, the controller is in the preheat state where the system
heats with ΦH,max, the maximum heating power available. If the current air temperature is
equal4 to the setpoint temperature, the controller is in the heating state. Here the heating
power is lower than the maximum value and equivalent to the power needed to maintain
the setpoint. Otherwise, if the setpoint is lower than the measured air temperature, the
system is in cool down state and no heat is added to the system (i.e. ΦH = 0).

The upper part of Figure 8.2 shows the behaviour of the controller and the indoor air
temperature Θair for a typical occupancy schedule and the F-Ulow, freezing temperature,
clear sky scenario. The lower part of the figure shows the corresponding weather data

3The alternative, predicting the future weather in order to determine when to heat, would prevent us from
isolating the performance of the occupancy prediction algorithm.

4In practice “equal” is often taken with a grain of salt: To avoid excessive switching and to prevent wear of
control equipment, controllers (in particular on-off systems) are typically designed to include hysteresis,
effectively substituting the setpoint with a delta interval (the “comfort band”) around the setpoint.
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(Ib,{east,south,west} indicating the direct solar radiation and the outside temperature Θe) used
in this scenario. When the occupants leave at 9 a.m., the indoor air temperature is allowed
to drop until 2.15 p.m. (from 20◦C to 13◦C), with no heat being added to the system. The
controller then preheats the property such that Θair =Θcomf = 20◦C when the occupants
return home at 5 p.m.

8.4 Evaluation

Having discussed the accuracy of schedule-based occupancy prediction algorithms in
Chapter 6, we now investigate the performance of a predictive heating controller that
uses the MAT, MDMAT, PP(S) and PH algorithms. For reference purposes we have also
included OPT, which uses an oracle to provide a perfect prediction of household occupancy.
To measure the energy consumption of the heating system, we built a simulation system in
Chapter 7 based on the ISO 5R1C model. We assumed the heating controller behaves as
described in Section 8.3.2, irrespective of the algorithm used to predict occupancy. We
simulated the response of the controller for the four building variants (F-Ulow, F-Uhigh,
H-Ulow and H-Uhigh) and eight weather scenarios described in Section 8.3.1, resulting in
32 different configurations.

8.4.1 Efficiency gain and comfort loss

We measured the performance of the controller for each algorithm in terms of efficiency
gain. Let Qpred be the heat injected by a predictive heating controller into the home and
Qno setback the corresponding heat injected by a controller that maintains the temperature
of the home constantly at Θcomf throughout the day. The efficiency gain is then defined as:

Efficiency Gain = (Qno setback−Qpred)/Qno setback (8.1)

Defining and measuring thermal discomfort in an appropriate way is not easy. In 1970,
Gupta proposed using “the ratio of the temperature-time curve area outside the specified
comfort zone to that area of the comfort zone” as a “degree of discomfort” [66]. We used
a discretised variant of that measure which yields absolute values per day. Discomfort
degree hours as a measure of comfort loss are defined as the average sum of hourly
differences between the actual indoor air temperature Θair and Θcomf for all occupied
intervals, formally:

Discomfort degree hours = 1/4(ΘcomfΓ1..96−Θair,1..96) ·Γ1..96 (8.2)

Here, Γ1..96 denotes the ground truth occupancy vector containing 1’s for occupied
intervals and 0’s for unoccupied intervals. Thus, if Θair = 17◦C upon the arrival of the
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Table 8.2: ISO 13790 average efficiency gain for all experiments with low U-values (good
insulation). � and � denote clear and cloudy scenarios respectively. The
rightmost column shows the average total daily energy consumption when no
occupancy prediction and setback algorithm is applied.

Efficiency gain (%) ∑kWh
OPT MAT MDMAT PP PPS PH REA NO SETB.

Weather � � � � � � � � � � � � � � � �
F-Ulow (well insulated flat)

Very low 5 4 4 2 4 2 4 2 4 2 4 3 13 14 51 55
Freezing 8 6 6 5 6 5 6 5 6 5 6 5 10 12 38 44

Low 10 9 8 8 8 8 8 8 8 8 8 8 10 12 27 32
Moderate 11 12 10 11 10 11 10 11 10 11 10 11 11 13 17 20

H-Ulow (well insulated house)
Very low 4 3 3 1 3 1 3 1 3 1 3 2 15 16 155 166
Freezing 6 5 4 4 4 3 5 3 4 3 5 4 10 12 119 134

Low 8 7 6 6 6 6 6 6 6 6 7 6 9 10 84 99
Moderate 9 10 8 8 8 8 8 8 8 8 8 8 9 10 53 65

Table 8.3: Same as Table 8.2, but with high U-values (poor insulation).
Efficiency gain (%) ∑kWh

OPT MAT MDMAT PP PPS PH REA NO SETB.
Weather � � � � � � � � � � � � � � � �

F-Uhigh (poorly insulated flat)
Very low 10 9 9 9 9 9 9 9 9 9 9 9 11 11 123 124
Freezing 14 13 14 13 14 13 14 13 14 13 14 13 14 14 95 100

Low 16 17 16 17 16 17 16 17 16 17 16 17 16 17 69 74
Moderate 18 19 18 19 18 19 18 19 18 19 18 19 18 19 45 48

H-Uhigh (poorly insulated house)
Very low 7 6 6 6 6 5 6 5 6 5 6 5 12 12 328 332
Freezing 11 10 10 9 10 9 10 9 10 9 10 9 13 13 255 269

Low 14 14 13 13 13 13 13 13 13 13 13 13 14 14 186 200
Moderate 15 15 14 15 14 15 14 15 14 15 14 15 15 15 122 133

occupants at 5 p.m. and the heating system requires 1 hour to heat up to Θcomf = 20◦C
(e.g. Θair,17:15 = 18◦C, Θair,17:30 = 19◦C, Θair,17:45 = 19.5◦C and Θair,18.00 = 20◦C), then
the discomfort degree hours for this day will be 0.75.

8.5 Results

Tables 8.2, 8.3 and 8.4 present the results for all 32 configurations. They show the
efficiency gain and discomfort degree hours for all analysed algorithms. It is worth noting
that the absolute values for the metrics reported clearly depend on the specific model, data
and parameters used in this study. The generalisability of these results is discussed at the
end of this section.
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8.5.1 Efficiency gain

A predictive heating system is able to achieve the highest efficiency gain in poorly insulated
buildings. The potential efficiency gain as determined by OPT is 9% to 19% for the flat
F-Uhigh and 6% to 15% for the house H-Uhigh (Table 8.3). For well insulated buildings
(low U-values), the efficiency gain under optimal prediction is reduced to a value of 4% to
12% for the flat and 3% to 10% for the house (Table 8.2). Higher U-values mean that the
buildings’ indoor temperature drops more quickly. At the same time, the prediction horizon
I∗ is reduced due to a higher design heat load ΦH,max (cf. Table 7.7 in Section 8.3.1) and
the efficiency gain increases. This happens regardless of the prediction algorithm. As
I∗ approaches zero, the predictive controller’s behaviour approaches that of the reactive
controller. The reactive controller (REA), which does not predict or preheat (i.e. only heats
the building when it is occupied), has the highest efficiency gain for all scenarios – 9% to
19%. However, this also comes at the expense of the highest average discomfort degree
hours (i.e. a large loss of comfort). For this reason, simplified Presence Probabilities (PPS)
is clearly not a practical alternative in particular on very cold and freezing days. As the
difference between Θcomf and the outside temperature Θe becomes smaller, OPT and the
reactive strategy converge since it takes less time to heat up the building.

The inability of the analysed algorithms to perfectly predict occupancy has the largest
impact on well-insulated buildings (i.e. F-Ulow and H-Ulow) when solar gains and outdoor
temperatures are low (i.e. very low temperature, cloudy scenario). In this case, when
compared to OPT, the algorithms typically do not achieve much more than 50% of possible
savings. This is due to the fact that this scenario requires prediction over a longer prediction
horizon I∗.

8.5.2 Heating degree hours

As Table 8.4 shows, none of the prediction algorithms (OPT, MAT, MDMAT, PP, PPS
and PH) produced significant comfort loss in terms of discomfort degree hours. Apart
from the very low temperature scenario, where the temperature sometimes dropped below
−6◦C (the design temperature5 used for the calibration of ΦH,max), the average discomfort
degree hours are less than one for all scenarios and prediction algorithms. Moreover,
even for PPS there was no significant comfort loss for the low and moderate temperature
scenarios. We will discuss possible reasons for this behaviour in Section 8.6.1.

One should realise that to achieve significant savings, the response of the “standard”
heating controller (cf. Section 8.3.2) to the algorithms’ predictions may be too conservative.
Especially for lower temperatures and well-insulated buildings, the additional efficiency
gain of the reactive over a predictive controller is substantial. This indicates that with

5The design temperature is defined as the minimum two-day average temperature that was reached at least
10 times in the last 20 years [42].
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Table 8.4: Average discomfort degree hours per day (as a measure for comfort loss) for all
experiments. � and� denote clear and cloudy scenarios.

Discomfort degree hours per day
OPT, (MD)MAT, PP(S) PH REA OPT, (MD)MAT, PP(S), PH REA

Weather � � � � � � � � � �
F-Ulow (well insulated flat) F-Uhigh (poorly insulated flat)

Very low 0 17 22 0 1 1
Freezing 0 2 7 0

Low 0 0 1 0
Moderate 0 0

H-Ulow (well insulated house) H-Uhigh (poorly insulated house)
Very low 0 1 1 28 35 0 8 8
Freezing 0 5 12 0 1 2

Low 0 0 2 0
Moderate 0 0

Table 8.5: ISO 13790 annual efficiency gains.
Efficiency gain (%)

OPT MAT MDMAT PP PPS PH REA
Building � � � � � � � � � � � � � �
H-Ulow 8 8 7 / 6 9 11
F-Ulow 10 10 8 9 8 8 9 8 9 8 9 9 11 12
H-Uhigh 13 14 13 14 15
F-Uhigh 16 17 16 / 17 16 17

some (negligible or at least acceptable) comfort loss or simply by defining a reasonable
temperature comfort bound around the setpoint, higher savings should be obtainable by
more “courageous” predictive controllers. A modified controller, which not only optimises
for zero miss-time (e.g. Θair = Θcomf±∆ ) upon the arrival of the occupants) but also
assigns a cost to discomfort degree hours and balances this with the actual heating costs,
may obtain a higher efficiency gain while incurring only minimal additional discomfort
degree hours (and thus comfort loss) per day. This approach has already been suggested
by Mozer et al. in [140]. We leave the investigation of controllers that trade comfort loss
for efficiency gain to future work.

8.5.3 Annualised savings

So far, the results in this section have shown the efficiency gain for selected weather
scenarios. The annual efficiency gain is determined by the number of occurrences of
each of these scenarios per year. Thus, they can be computed by weighting the efficiency
gain of the weather scenarios by their empirical probability as derived from historical
weather data. Table 8.5 shows the annualised efficiency gain for all four building scenarios.
The weightings for the weather scenarios were determined using the historical weather
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Table 8.6: Average outside temperatures for selected cities and simulated efficiency gain
for January to March (F-Ulow).

Average temperature (◦C) Efficiency gain OPT (%)
City Jan Feb Mar Jan Feb Mar
Moscow -8.0 -7.0 -2.0 6 7 9
Toronto -5.8 -5.6 -0.4 7 7 9
Beijing -4.0 -1.0 6.0 5 6 11
Stockholm -2.8 -3 0.1 7 7 9
New York 0.5 1.8 5.7 8 8 11
Lausanne 1.3 2.8 5.5 6 7 9
Brussels 3.3 3.7 6.8 8 8 10
London 4.3 4.5 6.9 8 8 10
Seattle 5.6 6.3 8.1 10 11 12

distribution of the 20 years from 1994 to 2014. The table shows that all the prediction
algorithms (MAT, MDMAT, PP(S) and PH) achieved the same annual efficiency gain,
close to OPT, ranging from 6% (well insulated house) to 17% (poorly insulated flat).

8.5.4 Impact of climate conditions

Different climate zones may offer varying potential for energy savings. To indicate how
well our findings for Lausanne can be generalised to other locations, Table 8.6 shows
the efficiency gain achievable by OPT for the average weather conditions from January
to March for selected cities6. For these simulations, a simplified model of F-Ulow with
no solar gains and constant outside temperatures was applied. The outside temperature
equaled the average temperature for the month in question. Further details are outlined in
Chapter 7.

Table 8.6 shows an increase in the efficiency gain of between 5% (Beijing) and 10%
(Seattle) in January to a range between 9% (Toronto) and 12% (Seattle) in March. This
pegs the efficiency gain closely to the annualised figures obtained for the more detailed
Lausanne simulation shown in Table 8.5. Cities with larger differences in the average
outside temperature (e.g. Beijing has a difference of 10◦C between January and March),
generally also have a larger variance in efficiency gain. This is due to the fact that the
heating system is designed for the lowest temperatures. As the temperatures increase, the
additional power of the heating system can be used to heat up the building more quickly.

8.5.5 Impact of the occupancy schedules

As one might expect, the potential for energy savings is highly correlated to a home’s
occupancy schedule. We analysed the impact of occupancy in the freezing temperature,

6Temperature data obtained from wikipedia.org, if available, otherwise from weatherbase.com.
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8.5 Results

Figure 8.3: Efficiency gain and comfort loss measured in discomfort degree hours per day
according to the ISO 5R1C model (F-Ulow, freezing temperature, cloudy).
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(a) Low U-values (well insulated).
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(b) High U-values (poorly insulated).

Figure 8.4: Efficiency gain / occupancy correlation: Freezing temperature, cloudy.

cloudy sky scenario weather scenario. Figure 8.3 shows that for the well insulated
flat F-Ulow, efficiency gain and discomfort degree hours vary considerably between the
participants. The bar plot shows the median, quartiles and extreme values of metrics for
each algorithm (outliers have been removed). The left side of the figure shows the results
for the predictive controller in conjunction with the assessed prediction algorithms. The
right side shows the results for the reactive controller for comparison. As noted previously,
the discomfort degree hours induced by the prediction algorithms are negligible. Overall,
there are no significant differences between the algorithms and the distribution of their
efficiency gain across the participants.

Figure 8.4 shows the correlation between average occupancy and the efficiency gain
that may be obtained by OPT for all 45 participants. Figures 8.4a and 8.4b contrast this
relationship between F-Ulow (good insulation) and F-Uhigh (poor insulation). The figures
show that the quarter of homes that are least-occupied (25th percentile) outperformed
the most-occupied homes (75th percentile) by a factor of 4-5. Low occupancy houses
are clearly much better suited for installing smart heating systems than those with high
occupancy.

The figures also show that for the 25% of homes with the lowest occupancy, the
efficiency gain almost doubles from 11% to 21% from the well insulated to the poorly
insulated flat. Not surprisingly, one can thus conclude that smart heating systems yield the
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highest benefits in poorly insulated buildings.
Figure 8.4b shows an almost linear relationship between occupancy and efficiency gain.

This relationship is less pronounced in Figure 8.4a. Here, the efficiency gain for the
quarter of participants between the 25% quantile and the median is almost constant. As
OPT’s prediction is perfect, the reason for this effect lies in the structure of the occupancy
schedules in conjunction with the increased prediction horizon due to the better insulation.
The more arrival and departure events a schedule contains, the more difficult it is for the
heating system to lower the temperature to a setback temperature.

8.6 Modelling limitations

Due to their novel nature, performance data from smart heating installations in residential
buildings is still sparse. However, to make substantiated claims regarding the impact of
different variables such as the building’s occupancy and insulation on the efficiency gain
and comfort loss of a predictive heating system, one must analyse each variable ceteris
paribus. Thus, for the time being, in order to analyse the specific impact of different
variables, one must resort to simulations. Simulation and modelling naturally involve a
trade-off between model complexity and simulation accuracy. In the following, we will
briefly discuss some of the shortcomings of the ISO 5R1C model used in this thesis and
analyse our choice of baseline strategy for computing efficiency gain.

8.6.1 Building model

To simulate the heating system, we used the 5R1C model from the ISO 13790 standard [84].
In this model, the heat source is connected via the node for the indoor air temperature.
As such, even though it has been widely adopted for building design in Europe [88, 152],
the ISO 5R1C model more closely resembles a forced-air heating system common in the
US, rather than the hydronic systems more typically encountered in Europe. A forced-
air heating system typically reduces the preheat time and lowers the penalty for false
predictions, thereby resulting in the low comfort loss exhibited by the simulation results
(cf. Table 8.4). From the variations between different insulation levels (cf. Figure 8.4), we
have already seen that shorter preheat times induced by more powerful heating systems
result in an almost reactive strategy and thus in higher energy savings. As such, our
evaluation hints at an upper bound on the savings that can be achieved using predictive
heating systems and may lead to an underestimation of comfort loss.

8.6.2 Baseline metrics

In [176], Urban et al. describe the problem with choosing a representative baseline
scenario for the energy savings of a smart thermostat. They highlight that using average
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setpoint schedules of a range of users or the historical energy use does not yield satisfying
results due to the irregularity of the former and differing existing setups in the households
influencing the later. They thus argue to use “one fixed temperature setpoint during the
entire heating season”.

For this reason, we employed such an always-on strategy as the baseline for evaluating
the predictive controller and the occupancy prediction algorithms. In practice, however,
many households use a (static) nighttime setback. Allowing the temperature to drop
during the night by 4◦C to 6◦C has been shown to result in savings between 4% and 7%
[81, 127]. A baseline strategy using a nighttime setback thus lowers the overall energy
consumption, thereby – assuming the predictive setback generally occurs during the day
– slightly increasing the efficiency gain of the predictive controller. Using a nighttime
setback strategy as the baseline, however, necessitates a clear separation between the
efficiency gain achieved by this setback and the predictive strategy.

8.7 Conclusions and lessons learned

The insights gained through our simulation-based performance analysis of occupancy-
based approaches for smart heating control, based on real-world weather data and estab-
lished building standards, can be summarised as follows.

Actual comfort loss in terms of discomfort degree hours is lower than the values implied
by the accuracy of the prediction algorithm. A prediction accuracy of around 80% does
not necessarily result in an uncomfortable thermal environment for 20% of the time. This
is mainly due to the reactive nature of the heating scenario (e.g. heating is not turned off
prematurely based on a predicted state if the occupants are still present). Moreover, the
comfort loss is bounded by the time it takes to heat from the current temperature to the
comfort temperature.

The efficiency gain achievable by occupancy prediction depends on the structure of the
building, its occupancy and the weather conditions. Annual savings range from 6% to 17%
depending on the type of building (cf. Table 8.5). Savings are almost doubled for poorly
insulated buildings. The 25% of households with the lowest occupancy have a 4-5 times
higher potential for efficiency gains than the quarter of homes with the highest occupancy.
Lower temperatures and cloudy skies reduce efficiency gain and increase comfort loss as
it takes longer to heat the building. Our data confirms similar results by [81] and [127]
which showed energy savings of between 6% and 10% for cool and temperate climates
using setback thermostats.

The algorithms’ inherent difficulty in correctly predicting the arrival time of the occu-
pants imposes a penalty on the efficiency gain. To save more energy, additional intelligence
could thus be incorporated into the controller. One example would be to forgo heating if
only a short period of occupancy is predicted that would nevertheless result in significant
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energy expenditure to heat up the property. A mobile application or simple “override”
button on the thermostat to enable the occupants to control the smart thermostat in a simple
and easy manner could deal with exceptional cases and increase user acceptance.
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Chapter 9
Conclusions and outlook

The goal of this thesis is to provide the technical foundations for the design and evaluation
of future smart heating systems. Such systems, which reduce the energy consumption au-
tomatically by keeping the comfort temperature only when necessary (i.e. when occupants
are present or will be present in the near future), require occupancy sensing and prediction
infrastructure to operate.

In this final chapter, we outline our findings along the three research questions stated in
the introduction: (i) Can existing technology be used opportunistically to sense occupancy?
(ii) How accurately can occupancy be predicted? (iii) How much energy may be saved by
a smart heating system using occupancy detection and prediction? We conclude this thesis
with an outlook on future directions for research.

9.1 Opportunistic occupancy sensing

Accurate occupancy detection is an integral factor for the operation of a smart heating
system. In fact, for existing commercial solutions, automatic control is often deactivated
due to the poor occupancy detection accuracy of the systems [186]. Thus, the first third
of this thesis was dedicated to opportunistic occupancy sensing using technology that
already exists in many households. While dedicated infrastructure is still costly, the
opportunistic use of such technology can reduce the cost of new smart heating installations
and improve the accuracy of existing ones. Two examples of such existing technology are
smart electricity meters and mobile phones.

Smart electricity meters are increasingly being deployed in households to facilitate
billing and encourage a more economical use of resources. Our hypothesis was that current
meters, which can measure a range of variables at a sampling rate of 1 Hz, can be used
to detect occupancy in households. To investigate this hypothesis, we deployed a large
set of sensors in six Swiss households over seven months (cf. Chapter 3). The Electricity

157



Chapter 9 Conclusions and outlook

Consumption and Occupancy (ECO) dataset contains the total electricity consumption
on all three phases, the consumption of selected appliances, events from a PIR sensor
and ground truth occupancy data. In total, the dataset, which has been made open to the
community, contains over 800 million records.

In Chapter 4 we use the ECO dataset to evaluate supervised machine learning ap-
proaches to sense occupancy from the electrical load curve. To this end, we derive 35
features describing the electricity consumption over 15-minute intervals. We then train
four different classifiers (i.e. support vector machines (SVMs), K-nearest neighbours
(KNNs), Gaussian mixture models (GMMs), hidden Markov models (HMMs) and a sim-
ple thresholding (THR) approach) in conjunction with SFS feature selection and principal
component analysis (PCA) to remove redundant and irrelevant features. Our analysis
showed that, using the SVM classifier in conjunction with PCA, an occupancy detection
accuracy of up to 94% can be achieved in low-occupancy households.

For high-occupancy households (e.g. households with more than 80% occupancy)
the accuracy does not significantly exceed the baseline accuracy provided by a simple
maximum-likelihood predictor. In these households, the correlation between the energy
consumption and occupancy is lower. A possible reason for this is that high occupancy
actually increases the probability of observing intervals during which no electrical ap-
pliances are used. Furthermore, if the building is only unoccupied for brief periods of
time, occupants may be less inclined to switch off appliances to save energy during these
absences.

However, high occupancy households also leave little room for optimising the heating
schedule. We showed that simple unsupervised approaches – which for example assume
that the distribution of the nighttime electricity consumption is similar to the distribution
during absence – can identify high and low occupancy households. Thus, our results
show that for those households that can benefit from a smart heating system, opportunistic
occupancy sensing using smart electricity meters is feasible, while simple unsupervised
approaches can reliably infer which households should be targeted.

Mobile phones are a promising proxy for occupancy as current models often include
localisation capabilities such as GPS or Wi-Fi. From the past locations of the mobile phone
(and thus in most cases its owner), mobility patterns can be inferred that identify whenever
a person was at home. In Chapter 5 we introduce the homeset algorithm and describe
how it can be used to extract occupancy schedules from the LDCC mobile phone location
dataset [117]. We show that inferring occupancy is possible using simple heuristics and
highlight how a temporal matching of anonymised GPS traces to Wi-Fi scans can be used
to infer information about when the participants were at home. By inferring occupancy
schedules from a large, unlabelled dataset, we address the problem that currently no large
public occupancy dataset exists that could be used to evaluate the performance of smart
heating systems.
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9.2 Occupancy prediction

Accurate occupancy sensing can be used by the thermostat to let the temperature drift
to save energy whenever the building is not occupied. However, if the temperature has
been allowed to drop during the absence of the residents, reheating the building requires a
non-negligible time. Thus, reactively controlling the temperature can cause significant
thermal discomfort for the occupants. In order for the heating system to decide when to
start reheating, it thus needs to know the expected arrival time of its occupants.

In Chapter 6 we use 45 occupancy schedules derived from the LDCC mobile phone
location dataset [117] using the homeset algorithm (cf. Chapter 5) to analyse the perfor-
mance of a number of state-of-the-art occupancy prediction algorithms. We begin this
middle third of the thesis by performing a literature review and classify existing occupancy
prediction algorithms into schedule-based, context-aware and hybrid approaches. We
then provide five implementations (i.e. MAT, MDMAT, PP, PPS and PH) of three differ-
ent schedule-based occupancy prediction algorithms [113, 124, 169] and evaluate their
performance against a maximum-likelihood predictor. Our results show that while all ap-
proaches outperform the naı̈ve maximum-likelihood predictor, the Presence Probabilities
(PP) approach by Krumm et al., built upon the assumption that occupancy is correlated
with the time of the day and the current day of the week, performed best with a median
accuracy of 85% over the 45 participants.

To highlight the (lack of) potential for further improvements in schedule-based predic-
tion approaches we further showed that the prediction accuracy of current state-of-the-art
approaches is close to the predictability (i.e. the fundamental upper limit to the accuracy as
posed by the natural irregularity of the participants’ occupancy schedules) of the 45 sched-
ules. This shows that major improvements to the prediction accuracy can only be achieved
through hybrid approaches which combine schedule-based with context-aware prediction
that relies also on the current context (e.g. position and activity) of the occupants.

9.3 Energy savings

The potential energy savings and comfort loss of a smart heating system do not only
depend on the performance of the occupancy detection and prediction infrastructure,
but also on the actual occupancy, the physics of the building and the prevailing weather
conditions.

In the final third of this thesis we thus attempt to answer the question how much
energy smart thermostats based on occupancy sensing and prediction may save under
different environmental conditions. To this end, we develop a set of thermal models
based on the ISO 13790 standard [84] (cf. Chapter 7) and compute the heating energy
consumption for a range of different building and weather conditions (cf. Chapter 8). We
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then simulate the energy consumption for 45 residents from the LDCC dataset. We evaluate
predictive controllers using the five schedule-based occupancy prediction algorithms (i.e.
MAT, MDMAT, PP, PPS and PH) as well as a reactive controller (REA) and an optimal
predictive controller (OPT) with perfect occupancy prediction. We measure energy savings
against a thermostat that keeps the same temperature year-round.

We show that the energy savings of a smart heating system are largely dependent on the
properties of the building, its occupancy and the weather conditions. From all approaches,
the reactive controller saves most energy. However, as expected, such a system also incurs
a substantial comfort loss for the residents. All prediction algorithms achieve savings
close to the optimum controller, while the potential savings vary substantially with the
environmental conditions. Depending on the building parameters, the annual savings of
using occupancy detection and prediction range from 6% to 17%. The actual occupancy
of the household also has a strong impact on the possible energy savings. The quarter of
households with the lowest occupancy can achieve 4-5 times higher savings than those
25% with the highest occupancy.

9.4 Future work

In the following we will list several limitations with our current approaches and suggest
ideas for future work. We align these ideas along occupancy sensing, prediction, heating
control strategies and the evaluation of potential energy savings.

9.4.1 Sensing

Sensor fusion for occupancy detection In Chapter 4 we show how to sense occu-
pancy solely using smart electricity meters. In fact, many households contain additional
sensors such as mobile phones (cf. Chapter 5) or other even dedicated occupancy sensing
infrastructure such as PIR sensors. For future work, we suggest an investigation of how
to combine data from multiple heterogenous sensors with different failure models to
increase overall occupancy detection performance. A possible approach would be to use
Dempster–Shafer theory (DST) which combines evidence from different, possibly con-
flicting sources to establish at a degree of belief [17]. Thereby, we can address occupancy
detection failures that stem for example from a mobile phone being left behind (or having
a depleted battery) or the occupants not using any electric appliances whilst at home.

Sleep detection Previous work has shown that a nighttime setback by 4◦C to 6◦C can
result in savings from 4% to 7% [81, 127]. In order to increase the energy savings, a
smart thermostat should thus also sense whenever the occupants have gone to bed to let
the temperature drift accordingly.
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More complex unsupervised approaches Simple unsupervised occupancy detection
algorithms operating at a 15-minute granularity already achieve a considerable detection
accuracy (cf. Chapter 4). However, the performance of these approaches may be further
improved. Possible refinements include k-Means clustering to find distinct power levels
and GMMs to infer the joint probability function of the electricity distributions of the
occupied and unoccupied states. While we could construct a supervised approach using
occupancy data gathered by mobile phones or other sensors, such information is not
available when the system is first set up. Therefore unsupervised approaches are important
for the system to work seamlessly when it is first taken into operation. Furthermore,
unsupervised approaches may be used to establish which households are actually suitable
for a smart heating system by establishing with reasonable certainty whether a candidate
household has low or high occupancy. A utility company providing gas and electricity, for
example, may analyse their data to find customers that are suitable for a subsidised smart
heating system.

Room-level sensing, prediction and control In Chapter 4, we highlight that occu-
pancy detection by means of the electricity consumption of the households works best for
a smaller living space with fewer inhabitants. One hypothesis is that sensing occupancy at
the room level could not only improve the occupancy detection accuracy but also increase
the potential for energy savings. By deploying submeters, we could measure the electricity
consumption of individual rooms and therefore potentially infer room level occupancy. In
addition, we could use Wi-Fi fingerprinting approaches to detect presence using mobile
phones. By heating rooms independently, we could then make use of the fact that some
rooms such as bedrooms are not used during the day, while others such as the living room
are not used at night.

9.4.2 Prediction

Hybrid occupancy prediction In Chapter 6 we show that further improvements to
state-of-the-art schedule-based occupancy prediction approaches are limited by the pre-
dictability of the schedules. Thus, while it is possible to predict regular behaviour, irregular
events such as holidays or business trips cannot be reliably predicted from the past occu-
pancy of the building. In these cases, a hybrid approach that – in addition to the historical
occupancy data – makes use of the occupants’ current context (e.g. their location or ac-
tivity) may improve the prediction. If the mobile phone of the occupant is logged into a
cellular tower which is located several hours away from the home it is unlikely that the
occupant will return shortly. Regardless of the historical occupancy schedule, the heating
system can use this information to save energy by letting the temperature drift.
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9.4.3 Control

User in the loop First experiences with smart heating systems have shown that auto-
matic heating faces user acceptance problems if the decisions are not made transparent.
If the occupants do not feel in control of the system, they are likely to turn it off com-
pletely [186]. A smart heating should thus have some means for measuring the comfort of
the occupants. If the control modalities remained the same (e.g. we use the same valves
in a hydronic heating system) comfort could for instance be measured in the number of
interactions with the system. Alternatively, the users could be provided with an override
button that enables occupants to trigger a reset to the comfortable temperature.

Incorporating comfort models In Chapter 2, we give an overview of existing ap-
proaches to quantify comfort. A smart heating system should incorporate models that
allow to create a comfortable thermal environment for all occupants. Different occupants
may have different thermal comfort criteria depending on their physiology. Furthermore,
depending on the current activity, the same person will have different metabolic rates,
resulting in temporal variations of the comfort criteria. To address both these issues,
body-worn sensors such as activity trackers and smart watches may be used to sense the
current activity level and infer metabolic rate of the occupants.

More sophisticated control strategies Currently, our simulation approach uses a
very simple predictive controller that has perfect knowledge of the thermal model of the
building and the future weather. In reality, a smart heating system must rely on weather
forecasts to establish the right time to heat up the building. Furthermore, user comfort
models may vary and users may wish to set different comfort temperatures for different
rooms and different times. A controller must therefore not only learn the thermal model of
the building on-the-fly, but also make sure that the constraints of the user are matched as
the environmental conditions remain unpredictable. A number of authors has looked into
this problem in the context of model predictive control (MPC). However, little attention
has so far been given to enabling MPC in residential environments.

9.4.4 Evaluation of energy savings

Different thermal models While the ISO 13790 model does not simulate a specific
heating system, it most closely resembles forced air heating. This type of heating is not
very common in Europe, where most households use hydronic heating. Future work to
investigate the impact of occupancy detection and prediction must thus also take into
account different heat generation and transmission systems. In contrast to a forced air
heating system, a hydronic system using wall-mounted radiators has a longer reheat time
as the heat is not directly transmitted to the air. At the same time, the home stays warm for
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longer as the radiators still store some heat even as the central heating system has already
switched off. The time lag increases the prediction horizon and therefore the impact of the
prediction accuracy on the overall efficiency gain and comfort loss.

Varying baseline In Chapter 8 we argued for our decision to use an always-on heating
schedule as the baseline for our evaluation. This choice is well-founded in the literature –
due to a variety of different reasons people do not use setbacks on their programmable
thermostats [143, 146, 157, 158]. However, the households that do actually already operate
a setback schedule are most likely the ones interested in saving even more energy by
utilising a smart thermostat with occupancy detection and prediction. For this reason,
a fair comparison should also take into account the effect of various nighttime setback
strategies.
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pancy monitoring using environmental & context sensors and a hierarchical analysis
framework. In Proceedings of the 1st ACM Conference on Embedded Systems for
Energy-Efficient Buildings (BuildSys ’14), pages 90–99, Memphis, Tennessee, 2014.
ACM.
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Appendix A
Questionnaires

This appendix contains the replies given by the participants in the questionnaires prior to
the deployment. We have omitted data that was necessary for the deployment but could
identify individual participants. The responses of participants who were not selected for a
deployment are not listed.
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Appendix B
1-Resistance 1-Capacitance (1R1C) model

This appendix contains the complete derivation of the transient heat transfer equation for
the 1-resistance 1-capacitance model introduced in Chapter 7. In addition, we show that
the energy required to heat up the system from Θcomf to Θsetb asymptotically approaches
(Θcomf−Θsetb)×C as t tends to zero.

B.1 Derivation

Figure B.1 shows the RC circuit of a simple 1-resistance 1-capacitance model. In this
model, the energy input to the system must be equal to the energy lost and the energy
stored by the building.

Ėin = ˙Eout + ˙Estored (B.1)

Introducing the temperature difference between the indoor Θin and outside temperatures
Θe, the Equation B.1 may be re-written as:

Ėin =
Θin−Θe

R
+C

dΘin

dt
(B.2)

C

R Ėin

Θin

Θe

Figure B.1: 1-resistance 1-capacitance (1R1C) model.
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Chapter B 1-Resistance 1-Capacitance (1R1C) model

where R stands for the thermal resistance (R = 1
hAs

) and C for the thermal capacitance
(C = ρV c) of the building components facing the outside, respectively.

Now equation (B.2) may be rewritten as:

Ėin =
Θin

R
−Θe

R
+C

dΘin

dt
(B.3)

dΘin

dt
+

Θin

RC
=

Ėin

C
+

Θe

R
(B.4)

dΘin

dt
+

Θin

RC
=

ĖinR+Θe

RC
(B.5)

Multiplying by integrating factor e
∫ 1

RC dt = e
t

RC and applying the product rule in reverse
gives: ∫ dΘin

dt
e

t
RC =

∫ ĖinR+Θe

RC
e

t
RC (B.6)

Θin(t)e
t

RC =
ĖinR+Θe

RC
(RCe

t
RC +D) (B.7)

Θin(t) =
ĖinR+Θe

RC
e
−t
RC (RCe

t
RC +D) (B.8)

Θin(t) = (ĖinR+Θe)+De
−t
RC

ĖinR+Θe

RC
(B.9)

Fixing Θin(0) =Θin(t−1) for t = 0 we can calculate D:

Θin(t−1) = (ĖinR+Θe)+D
ĖinR+Θe

RC
(B.10)

D = [Θin(t−1)− (ĖinR+Θe)]
RC

ĖinR+Θe
(B.11)

Substituting D in Θin(t) gives the indoor temperature at time t – Θin(t) – as a function
of the indoor temperature at the previous interval Θin(t−1), the outside temperature Θe,
the resistance and capacitance values (R and C) and the heat added to the system Ėin:

Θin(t) = (ĖinR+Θe)+ [Θin(t−1)− (ĖinR+Θe)]
RC

ĖinR+Θe
e
−t
RC

ĖinR+Θe

RC
(B.12)

Θin(t) = (ĖinR+Θe)+ [Θin(t−1)− (ĖinR+Θe)]e
−t
RC (B.13)
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B.2 Convergence

Θin(t) =Θin(t−1)e
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RC ) (B.14)

B.2 Convergence
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−t
RC

1− e
−t
RC

= ĖinR+Θe (B.17)

Θcomf−Θsetbe
−t
RC

1− e
−t
RC

−Θe = ĖinR (B.18)

Ėin =

Θcomf−Θsetbe
−t
RC

1−e
−t
RC

−Θe

R
(B.19)

˙Emin = lim
t→0

t×
Θcomf−Θsetbe

−t
RC

1−e
−t
RC

−Θe

R
(B.20)

˙Emin = lim
t→0

t×Θcomf−Θsetbe
−t
RC

R−Re
−t
RC

−Θe

R
(B.21)

˙Emin = lim
t→0

tΘcomf− tΘsetbe
−t
RC

R−Re
−t
RC

− tΘe

R
(B.22)

Since tΘe
R goes to zero we can simplify as follows:

˙Emin = lim
t→0

tΘcomf− tΘsetbe
−t
RC

R−Re
−t
RC

(B.23)

Since as limt→0 tΘcomf− tΘsetbe
−t
RC = limt→0 R−Re

−t
RC = 0 we can employ l’Hôpitals

rule:

lim
t→c

f (t)
g(t)

= lim
t→c

f ′(t)
g′(t)

(B.24)

where
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f (t) = tΘcomf− tΘsetbe
−t
RC (B.25)

Applying the product rule twice

f ′(t) =Θcomf−Θsetb(e
−t
RC +

−t
RC

e
−t
RC ) (B.26)

lim
t→0

f ′(x) = lim
t→0

Θcomf−Θsetb(e
−t
RC +

−t
RC

e
−t
RC ) =Θcomf−Θsetb (B.27)

and

g(t) = R−Re
−t
RC (B.28)

applying the chain rule once:

g′(t) =
R

RC
e
−t
RC (B.29)

Thus

lim
t→0

g′(x) = lim
t→0

R
RC

e
−t
RC =

1
C

(B.30)

Therefore as limt→c
f (t)
g(t) = limt→c

f ′(t)
g′(t) :

˙Emin = (Θcomf−Θsetb)×C (B.31)

194



Appendix C
Occupancy prediction

This appendix contains a description of the LDCC data used to evaluate the occupancy
prediction algorithms presented in Chapter 6. It further includes the prediction accuracy of
the MAT, MDMAT, PP(S) and PH algorithms for all 45 participants. A detailed overview
of the results is shown in Section C.1. For reference, Section C.2 includes the probabilistic
schedules of all 45 participants.

C.1 Dataset overview and prediction results

Table C.1: Complete results in percent, sorted by occupancy. Π max is the predictability of
the schedules.

Prediction accuracy
LDDC # Occupancy Π max # Days MAT MDMAT PP PPS PH
6060 97 94 83 67 69 97 97 97
5986 95 95 153 73 82 95 95 95
5955 95 93 35 74 88 93 93 94
5977 95 93 36 67 87 92 92 94
6012 94 94 72 63 79 93 93 94
5976 92 94 115 72 81 92 92 92
5988 90 87 44 65 80 87 87 90
6032 87 91 97 70 78 86 86 84
6175 85 94 31 53 77 88 88 86
5924 85 87 45 73 76 84 84 84
5958 84 92 58 60 73 82 82 84
5961 84 93 51 78 78 92 91 84
6078 83 95 199 72 74 85 85 83
5972 81 87 163 69 75 81 81 77
6082 79 93 65 76 77 84 84 76
6096 78 87 79 61 64 77 76 65

Continued on next page
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Chapter C Occupancy prediction

Table C.1 – continued from previous page
Prediction accuracy

LDDC # Occupancy Π max # Days MAT MDMAT PP PPS PH
6076 78 93 44 77 79 83 83 75
6031 77 95 142 80 80 89 89 78
5943 75 93 76 80 81 86 86 81
5966 74 93 77 78 76 91 91 79
6104 72 90 102 77 76 87 87 75
6063 71 93 35 77 79 86 86 73
5985 71 90 57 76 76 81 81 75
6198 71 90 41 78 77 80 80 74
6014 71 89 43 72 73 74 73 71
5987 70 93 35 83 77 83 83 84
6039 69 86 98 82 82 92 92 81
5936 69 92 40 76 77 85 85 71
6077 68 93 44 84 82 87 87 81
5960 68 92 90 85 79 94 94 88
5980 67 93 74 81 81 91 91 80
5942 67 95 111 86 85 90 90 85
6061 66 81 71 71 72 76 76 62
6040 66 93 103 85 82 92 92 83
5962 65 85 66 88 85 91 91 87
6075 65 93 40 88 87 91 91 88
6168 64 82 86 79 76 89 89 77
6033 62 94 31 78 74 81 81 70
6097 61 86 90 76 76 81 81 75
6007 59 90 32 83 82 84 84 82
6010 58 87 62 80 77 85 85 78
5957 58 82 48 79 77 86 86 79
5965 53 83 75 73 71 77 77 67
5978 52 89 132 72 68 75 75 57
6043 43 82 68 76 76 78 78 74
Average: 74 90 74 75 78 86 86 80
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C.2 Probabilistic schedules
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(a) 5924: male, 33-38, working full time.
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(b) 5936: female, 45-50, working full time.
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(c) 5942: female, 33-38, studying full time.
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(d) 5943: female, 33-38, working full time.
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(e) 5955: male, 39-44, housewife/homemaker.
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(f) 5957: male, 28-33, working full time.
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(g) 5958: male, 28-33, studying full time.
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(h) 5960: female, 39-44, working full time.

Figure C.1: Probabilistic occupancy schedules (households 5924 to 5960).

197



Chapter C Occupancy prediction

Day of week

T
im

e 
of

 d
ay

 

 

Mon Tue Wed Thu Fri Sat Sun

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

Pr
ob

ab
ili

ty
 o

f 
oc

cu
pa

nc
y

0

0.2

0.4

0.6

0.8

1

(a) 5961: male, 39-44, working part time.
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(b) 5962: female, 28-33, working full time.
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(c) 5965: male, 33-38, working full time.
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(d) 5966: male, 28-33, working part time.

Day of week

T
im

e 
of

 d
ay

 

 

Mon Tue Wed Thu Fri Sat Sun

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

Pr
ob

ab
ili

ty
 o

f 
oc

cu
pa

nc
y

0

0.2

0.4

0.6

0.8

1

(e) 5972: male, 33-38, working full time.
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(f) 5976: female, 39-44, working full time.
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(g) 5977: male, 39-44, housewife/homemaker.
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(h) 5978: female, 28-33, studying full time.

Figure C.2: Probabilistic occupancy schedules (households 5961 to 5978).

198



C.2 Probabilistic schedules

Day of week

T
im

e 
of

 d
ay

 

 

Mon Tue Wed Thu Fri Sat Sun

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

Pr
ob

ab
ili

ty
 o

f 
oc

cu
pa

nc
y

0

0.2

0.4

0.6

0.8

1

(a) 5980: female, 28-33, working full time.
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(b) 5985: female, 33-38, missing data.
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(c) 5986: male, 45-50, not currently working.

Day of week

T
im

e 
of

 d
ay

 

 

Mon Tue Wed Thu Fri Sat Sun

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

Pr
ob

ab
ili

ty
 o

f 
oc

cu
pa

nc
y

0

0.2

0.4

0.6

0.8

1

(d) 5987: female, 33-38, working full time.
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(e) 5988: male, 33-38, working full time.
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(f) 6007: male, 28-33, working full time.
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(g) 6010: female, 33-38, working full time.
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(h) 6012: male, 28-33, not currently working.

Figure C.3: Probabilistic occupancy schedules (households 5980 to 6012).
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(a) 6014: male, 33-38, working full time.
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(b) 6031: female, 45-50, working part time.
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(c) 6032: male, 33-38, working part time.
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(d) 6033: male, 22-27, studying full time.
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(e) 6039: female, 28-33, working full time.
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(f) 6040: female, above 50, working full time.
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(g) 6043: male, 33-38, working full time.
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(h) 6060: female, 28-33, studying full time.

Figure C.4: Probabilistic occupancy schedules (households 6014 to 6060).
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(a) 6061: female, 28-33, studying full time.
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(b) 6063: female, 28-33, working part time.
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(c) 6075: female, 33-38, working full time.
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(d) 6076: male, 28-33, housewife/homemaker.
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(e) 6077: female, 33-38, working full time.
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(f) 6078: female, 33-38, studying full time.
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(g) 6082: female, 28-33, studying full time.
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(h) 6096: male, 28-33, studying full time.

Figure C.5: Probabilistic occupancy schedules (households 6061 to 6096).
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(a) 6097: female, 28-33, working full time.
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(b) 6104: female, 28-33, working full time.
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(c) 6168: female, 22-27, working full time.
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(d) 6175: female, 45-50, working full time.
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(e) 6198: male, 45-50, working full time.

Figure C.6: Probabilistic occupancy schedules (households 6097 to 6198).
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Appendix D
Simulation scenarios

This appendix shows the details of all 32 building and weather scenarios derived in
Chapter 7 and used in the evaluation of the energy savings of a smart heating system in
Chapter 8. Figures D.1 to D.4 show the typical behaviour of a heating system according
to the ISO 5R1C model for a scenario where the building (F-Ulow, F-Uhigh, H-Ulow and
H-Uhigh) is unoccupied between 9 a.m. and 5 p.m.
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(h) Moderate Temperature, cloudy.
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Figure D.1: Typical behaviour of a heating system according to the ISO 5R1C model for a
scenario where the well insulated flat (F-Ulow) is unoccupied between 9 a.m.
and 5 p.m. For each, (a) to (h), the upper part shows the heat inputs of the
5R1C model (solar gain Φsol, heat input ΦH and internal gain Φint) and the
resulting indoor air temperature Θair, while the lower part shows the direct
radiation Ib,{east,south,west} and outside temperature Θe of the weather scenario.
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(h) Moderate Temperature, cloudy.
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Figure D.2: Typical behaviour of a heating system according to the ISO 5R1C model for a
scenario where the poorly insulated flat (F-Uhigh) is unoccupied between 9
a.m. and 5 p.m. For each, (a) to (h), the upper part shows the heat inputs of
the 5R1C model (solar gain Φsol, heat input ΦH and internal gain Φint) and
the resulting indoor air temperature Θair, while the lower part shows the direct
radiation Ib,{east,south,west} and outside temperature Θe of the weather scenario.
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(h) Moderate Temperature, cloudy.
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Figure D.3: Typical behaviour of a heating system according to the ISO 5R1C model for a
scenario where the well insulated house (H-Ulow) is unoccupied between 9
a.m. and 5 p.m. For each, (a) to (h), the upper part shows the heat inputs of
the 5R1C model (solar gain Φsol, heat input ΦH and internal gain Φint) and
the resulting indoor air temperature Θair, while the lower part shows the direct
radiation Ib,{east,south,west} and outside temperature Θe of the weather scenario.
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(b) Very low temperature, cloudy.
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(d) Freezing temperature, cloudy.
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(e) Low temperature, clear.
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(f) Low temperature, cloudy.
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(g) Moderate Temperature, clear.
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(h) Moderate Temperature, cloudy.
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Figure D.4: Typical behaviour of a heating system according to the ISO 5R1C model for a
scenario where the poorly insulated house (H-Uhigh) is unoccupied between
9 a.m. and 5 p.m. For each, (a) to (h), the upper part shows the heat inputs of
the 5R1C model (solar gain Φsol, heat input ΦH and internal gain Φint) and
the resulting indoor air temperature Θair, while the lower part shows the direct
radiation Ib,{east,south,west} and outside temperature Θe of the weather scenario.
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