Interactions between surface processes and fold growth in fold-and-thrust belts: application to the Zagros Fold Belt

Author(s):
Collignon, Marine

Publication Date:
2015

Permanent Link:
https://doi.org/10.3929/ethz-a-010464329

Rights / License:
In Copyright - Non-Commercial Use Permitted
INTERACTIONS BETWEEN SURFACE PROCESSES AND FOLD GROWTH IN FOLD-AND-THRUST BELTS:
APPLICATION TO THE ZAGROS FOLD BELT

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

MARINE COLLIGNON

MSc in Earth Sciences, Université de Strasbourg

born on 17.09.1988

citizen of

France

accepted on the recommendation of

Pr. Dr. Jean-Pierre Burg, ETH Zurich, Switzerland (examiner)
Pr. Dr. Boris Kaus, University of Mainz, Germany (co-examiner)
Pr. Dr. Sébastien Castellfort, Université de Genève, Switzerland (co-examiner)
Pr. Dr. Bernhard Grasemann, University of Vienna, Austria (co-examiner)

2015
Abstract

Thin-skinned fold-and-thrust belts result from the compressional deformation of a sediment pile over a basal decollement layer. The topographic evolution of fold-and-thrust belts results from the competition between climatic, tectonic and surface processes. Importance and complexity of interplays between these processes have been amply discussed and documented by numerous field, analogue and numerical studies. However, some aspects of these interactions, such as the effects of erosion and sedimentation on fold growth rate are not well parametrized. The effects of erosion, sedimentation and an initial topography on the fold pattern, as well as the conditions of surface uplift and fluvial incision to form wind gaps, were systematically investigated with numerical modelling and applied to the Zagros Fold Belt. Constraints on denudation rates in the Fars Province were obtained by cosmogenic nuclides measured on river sand.

A new finite-element based surface process model (SPM), which includes both sedimentation and erosion, was developed and coupled to the finite-difference 3D parallel mechanical code LaMEM (Lithospheric and Mantle Evolution Model). Both codes are written in C, using the PETSc library. This thesis describes the mechanical and surface process models, and how they are coupled.

The 3D fully-coupled mechanical and surface process model was used to investigate the effects of erosion, sedimentation and initial topography on fold patterns. The mechanical model considers variations in density and viscosity of a sedimentary cover with internal weak layers detached over a much weaker basal layer representing evaporites. The model topography is modified through time by mass redistribution, which is achieved by a combination of fluvial and hillslope processes. At the scale of the fold-and-thrust belt, erosion and sedimentation do not strongly modify the general fold pattern or fold wavelength. However, erosion reduces the amount of shortening required to initiate folding and enhances fold growth. The main contribution of surface processes is their ability to modify the pre-folding topography and hence the initial random noise. If larger initial random noise is present, folds amplify faster, which is consistent with previous detachment folding theory. Variations in thickness of the sedimentary cover, introduced by the presence of an initial topography, also have a significant influence on the folding pattern, resulting in long, cylindrical folds that amplify faster. A regional slope reduces the critical distance required for the transition between linkage and no-linkage modes. Erosion and redeposition of sediments, on the contrary, increase this distance. The location of the saddle point, where fold segments link, is shifted and its vertical distances to fold crests are increased or decreased compared to the case without erosion or initial topography, which can potentially affect the characteristics of hydrocarbon trap. Both erosion and redeposition enhance fold elongation, once the erosion velocity overcomes the folding velocity.

The quasi-cylindrical character of the long Fars anticlines and the persistence of small, high aspect ratio doubly-plunging structures suggest that an initial surface slope between 0 and 0.1% may have been present in this area before buckling. This initial slope could be associated with the formation of an accretionary prism during the collision. 3D high-resolution numerical models reproduce well the variety of fold shapes (doubly-plunging folds, long straight or sinuous folds) and fold linkages (linear or oblique linkage), observed in the Fars Province, favouring the idea that large parts of the Zagros could have formed by buckling of the sedimentary cover.
The new SPM was employed to quantify the interactions between surface uplift and river incision and predict the formation of wind gaps. Horizontal and vertical displacements were prescribed in a kinematic manner to better control the tectonic parameters. The model considers drainage network that initially developed on a tilted surface and subjected to vertical and horizontal movements that simulates fold growth and shortening, respectively. Three modes of morphological relationship between rivers and folds were identified: (1) transverse, (2) intermediate and (3) parallel. Besides, three modes of erosion pattern were distinguished: (1) maximum erosion rates at the fold, (2) maximum erosion rates in the upstream area of fold and (3) deposition of large sedimentary basins in the upstream area of fold. Transitions between these modes are not unidirectional and suggest that the investigated parameters are coupled and their effects on the drainage network are difficult to isolate. However, the parametric study allows determining a range of values for one parameter for which a simple relationship can be derived between drainage network and one or two other parameters. A range of values for the fluvial incision ratio, the maximum uplift rate, the time span of fold growth and the time at which the uplift rate is maximum, has been constrained for each incision and erosion mode, such that we are able to determine when transverse drainage and formation of large sedimentary basins occurs. Transverse drainage networks occur for uplift rates up to 0.8 mm.yr\(^{-1}\) and incision ratio between two successive layers between 0.5 and 5. Parallel drainage networks and formation of sedimentary basins occur for large values of incision ratio (> 20) and uplift rates between 1 and 2 mm.yr\(^{-1}\).

In the Fars Province, the relation between rivers and folds and the presence of large sedimentary basins in synclines fit incision mode 2 and erosion mode 3. Comparing incision modes, uplift rates and stratigraphy from geological observation and measurements with results of the numerical models permitted to determine the incision ratio between two successive lithologies in some anticlines of the Central and Coastal Fars.

Basin-averaged denudation rates for the Fars Province were constrained by cosmogenic nuclides (\(^{10}\)Be) on river samples collected along the Mand river and two of its tributaries: The Shur and Qareh Aghaj rivers. Denudation rates range from 0.049 to 0.185 mm.yr\(^{-1}\) with a clear trend of ~ 3 times faster rates in downstream areas, close to the Mountain Front Fault, than in upstream areas. This trend of erosion rates correlates with the present day GPS velocity field, which indicates faster shortening in the coastal area than in Central Fars. Results were not applied in numerical models, but should be used for future work.
Résumé

Les chaînes de plissement-chevauchement de tectonique superficielle sont le résultat de la déformation compressive d’une couverture sédimentaire au-dessus d’un niveau de décollement. L’évolution topographique de ces chaînes est interdépendante des processus tectoniques, climatiques et de surface. L’importance et la complexité des interactions entre ces processus ont été amplement discutées et documentées par de nombreuses études analogiques, numériques et de terrain. Cependant, certains aspects de ces interactions, tels que les effets de l’érosion et de la sédimentation sur la croissance des plis, ne sont pas correctement paramétrés. Les effets de l’érosion, de la sédimentation et de la topographie initiale sur la morphologie du réseau de plis, ainsi que les conditions de surrection et d’incision fluviatile nécessaires à la formation de cluses sèches, ont été systématiquement étudiés à l’aide de modèles numériques et comparés à la chaîne plissée du Zagros.

Un nouveau modèle numérique de processus de surface, utilisant les éléments finis et intégrant à la fois l’érosion et la sédimentation, a été développé et couplé au code parallèle mécanique 3D LaMEM (Lithospheric and Mantle Evolution Model), qui utilise les différences finies. Les deux modèles numériques sont écrits en langage C et utilisent la librairie PETSc. Cette thèse décrit les modèles numériques et la manière dont ils sont couplés.

Le modèle 3D couplé de processus mécaniques et de surface a été utilisé pour tester les effets de l’érosion, de la sédimentation et d’une topographie initiale sur la morphologie du réseau de plis. Le modèle mécanique considère les variations de densité et de viscosité d’une couverture sédimentaire avec des niveaux internes incompétents et un niveau basal de décollement de type évaporites. La topographie du modèle est modifiée au cours du temps par la redistribution de masses qui s’effectue par une combinaison de processus fluviatiles et de versants. À l’échelle de la chaîne de plis et de chevauchements, l’érosion et la sédimentation ne modifient pas fortement la morphologie générale du réseau de plis ou la longueur d’onde des plis. Cependant, l’érosion réduit la quantité de raccourcissement requise pour initier le plissement et favorise la croissance des plis. La contribution principale des processus de surface est leur habilité à modifier la topographie avant le plissement, et donc le bruit aléatoire initial. Si ce bruit aléatoire initial augmente, les plis grandissent plus vite; ce qui est en adéquation avec les théories de plissements-chevauchements. Les variations d’épaisseurs de la couche sédimentaire, introduites par la présence d’une topographie initiale, ont aussi une influence significative sur la morphologie du réseau de plis, résultant en longs plis cylindriques qui se développent plus vite. Une pente régionale réduit la distance critique requise entre les modes "liaison" et "pas de liaison" lors de l’interaction entre les segments de plis. L’érosion et la re-déposition de sédiments, au contraire, augmentent cette distance. La position du point de liaison entre deux plis est déplacée, et sa distance verticale à la crête du plis est soit réduite soit augmentée, comparée au cas sans érosion ou topographie initiale; ce qui peut modifier les caractéristiques des réservoirs pétROLIÈRES. L’érosion et la sédimentation favorisent l’élargissement du pli, une fois que la vitesse d’érosion dépasse la vitesse de plissement.

La nature quasi-cylindrique des longs anticlinaux des Fars et la persistance de petites structures doublement plongeantes suggèrent qu’une pente de surface initiale entre 0 et 1 % a pu être présente à cet endroit avant la phase de plissement principale. Cette pente initiale peut être associée à la formation du prisme d’accrétion pendant la collision.
Les modèles numériques 3D de haute résolution reproduisent bien la diversité de morphologies des plis (plis doublement-plongeant, plis longs et droits ou sinueux) ainsi que les liaisons entre plis (liaisons linéaires ou obliques), observées dans la Province des Fars, favorisant ainsi l'idée qu’une grande partie du Zagros a pu être formée par une phase de plissement affectant principalement la couverture sédimentaire.

Le nouveau modèle numérique de processus de surface a été utilisé pour quantifier les interactions entre surrection et incision fluviatile et prédire la formation de cluses sèches. Les déplacements horizontaux et verticaux sont imposés de manière cinématique, afin de mieux contrôler les paramètres tectoniques. Le modèle considère un réseau de drainage qui se développe initialement sur une surface inclinée, soumise à des mouvements verticaux et horizontaux qui simulent la croissance d’un pli et le raccourcissement, respectivement. Trois modes, décrivant la relation morphologique entre le réseau de drainage et le pli (modes d’incision) ont été identifiés: (1) transverse, (2) intermédiaire et (3) parallèle. De manière similaire, trois modes pour le réseau d’érosion ont été distingués: (1) taux d’érosion maximal au niveau du pli, (2) taux d’érosion maximal en amont du pli et (3) formation de larges bassins sédimentaires en amont du pli. Les transitions entre ces modes ne sont pas unidirectionnelles et suggèrent que les paramètres testés sont couplés et que leurs effets sur le réseau de drainage sont difficiles à isoler. Cependant, l'étude paramétrique permet de déterminer une gamme de valeurs d’un paramètre donné pour laquelle une relation simple peut être dérivée entre le réseau de drainage et un ou deux des autres paramètres. Une gamme de valeurs pour le rapport d’incision et d’érosion, afin de pouvoir prédire les réseaux de drainage transverses sont présents pour des taux de surrection jusqu’à 0.8 mm.yr$^{-1}$ et des rapports d’incision fluviatile entre deux couches successives entre 0.5 et 5. Les réseaux parallèles et la formation de bassins sédimentaires ont lieu à larges rapports d’incision et des taux de surrection entre 1 et 2 mm.yr$^{-1}$.

Dans les Fars, la relation morphologique entre les rivières et les plis, ainsi que la présence de larges bassins sédimentaires dans les synclinaux correspond à un mode d’incision de type (2) et un mode d’érosion de type (3). En comparant les modes d’incision, les taux de surrection et la stratigraphie, obtenus par les observations et mesures géologiques avec les résultats des modèles numériques, il est possible de déterminer le rapport d’incision entre deux lithologies successives pour certains anticlinaux des Fars centrales et côtières.

Des taux d’érosion moyen de bassin dans la Province des Fars ont été mesurés par la méthode des nucléides cosmogéniques sur des sables de rivières, prélevés le long de la rivière Mand et de deux de ces affluents: les rivières Shur et Qareh Aghaj. Les taux d’érosion varient entre 0.049 et 0.185 mm.yr$^{-1}$, avec une tendance nette de taux ∼ 3 fois plus rapides en aval, près de la Moutain Front Fault, qu’en amont. Cette tendance dans les taux d’érosion est corrélée avec les vitesses actuelles de GPS, qui indiquent un raccourcissement plus rapide dans les régions côtières que dans les Fars Centrales. Ces résultats n’ont pas été pris en compte dans nos modèles, mais devraient être utilisées pour de futurs travaux.