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Abstract: The transition between the two phases of 4D Euclidean Dynamical Triangula-

tion [1] was long believed to be of second order until in 1996 first order behavior was found

for sufficiently large systems [5, 9]. However, one may wonder if this finding was affected

by the numerical methods used: to control volume fluctuations, in both studies [5, 9] an

artificial harmonic potential was added to the action and in [9] measurements were taken

after a fixed number of accepted instead of attempted moves which introduces an additional

error. Finally the simulations suffer from strong critical slowing down which may have been

underestimated.

In the present work, we address the above weaknesses: we allow the volume to fluctuate

freely within a fixed interval; we take measurements after a fixed number of attempted

moves; and we overcome critical slowing down by using an optimized parallel tempering

algorithm [12]. With these improved methods, on systems of size up to N4 = 64k 4-

simplices, we confirm that the phase transition is 1st order.

In addition, we discuss a local criterion to decide whether parts of a triangulation are

in the elongated or crumpled state and describe a new correspondence between EDT and

the balls in boxes model. The latter gives rise to a modified partition function with an

additional, third coupling.

Finally, we propose and motivate a class of modified path-integral measures that might

remove the metastability of the Markov chain and turn the phase transition into 2nd order.
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1 Introduction

Euclidean Dynamical Triangulation (EDT) in four dimensions, as introduced below in

section 1.1, was first studied by J. Ambjorn and J. Jurkiewicz back in 1992 [1]. They found

that the model possesses two phases and the transition between them initially seemed to be

of 2nd order, which is necessary for a continuum limit to be defined. In 1996 then, P. Bialas,

Z. Burda, A. Krzywicki and B. Petersson reported for the first time the finding of some

1st order behavior in this phase transition for systems consisting of N4 = 32k 4-simplices [5].

Shortly afterwards B.V. de Bakker verified this finding and extended the study to larger

systems with N4 = 64k. However, we were not completely convinced by the numerical

methods used in the latter work. In particular, there were three things which disturbed us:

1. Measurements were taken after a fixed number of accepted (instead of attempted)

moves, which introduces a systematic error.

2. The use of an artificial harmonic potential to control volume fluctuations also intro-

duces a systematic error.

3. Autocorrelation and thermalization times could easily have been underestimated.

– 1 –
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Therefore we wanted to cross-check these old results with our own, hopefully correct code

which satisfies detailed balance, uses a potential well instead of a harmonic potential to

control volume fluctuations, and makes use of parallel tempering to cope with critical

slowing down.

The paper is organized as follows:

In the remainder of this section we give a brief overview of the EDT model and its phase

diagram. In section 2 we describe our simulation methods while in section 3 we present our

results: after having verified in part 3.1 that the phase transition is 1st order, we address in

part 3.2 the question whether we can observe a coexistence of the two phases and present

therefore a local criterion to determine whether a piece of triangulation is in a crumpled

or elongated state and try to identify the nature of the metastability in the Markov chain

that causes the 1st order transition. Finally in the appendix, we propose a modification of

the path-integral measure, based on a counting of the number of possible moves in each

triangulation, which could weaken the 1st order nature of the phase transition.

1.1 The EDT model

In 4-dimensional Euclidean Dynamical Triangulation (EDT) [1] the formal path integral

for Euclidean (local SO (4) instead of SO (3, 1) symmetry) gravity,

Z =

∫
D
[
gµν
]

e−SEH[gµν ], (1.1)

with the Einstein-Hilbert action SEH:

SEH = − 1

16πG

∫
d4 x
√
g (R − 2 Λ) , (1.2)

is regularized by approximating the configuration space (space of all diffeomorphism in-

equivalent 4-metrics) with the space of simplicial piecewise linear (PL) manifolds consisting

of equilateral 4-simplices with fixed edge length a (such manifolds are also called abstract

triangulations). Under such a discretization, (1.2) turns into the Einstein-Regge action SER

which for equilateral 4-simplices and a space-time of topology S4 takes the simple form

SER = −κ2N2 + κ4N4. (1.3)

Ni labels the number of i-simplices in the PL manifold and κ2, κ4 are related to the bare

gravitational and cosmological couplings G, Λ by

κ2 =
V2

4G
, κ4 =

10 arccos (1/4) V2 + ΛV4

8πG
, (1.4)

with Vn = an
√
n+1

n!
√

2n
being the volume of a n-simplex. The partition function (1.1) can

now be written as

Z (κ2, κ4) =
∑
T

1

CT
eκ2 N2(T )−κ4 N4(T ) =

∑
N4

Z (κ2, N4) e−κ4 N4 , (1.5)

where after the first equality sign the sum runs over all abstract triangulations T of S4 and

CT is a symmetry or degeneracy factor (to avoid over-counting) which is assumed to be

– 2 –
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Figure 1. Phase diagram for 4D EDT. The figure shows κpcr4 (κ2, N4) as a function of κ2 for

different N4 together with the corresponding pseudo-critical points (κpcr2 (N4) , κpcr4 (κpcr2 (N4) , N4)).

The dotted red line separates the crumpled from the elongated phase; in the limit N4 → ∞ this

line ends at the critical point : (κcr2 , κ
cr
4 ). To improve readability, the y-axis shows (κ4 − 2.33κ2)

instead of κ4 itself.

∼ 1 for sufficiently large systems. After the second equality sign, the canonical partition

function

Z (κ2, N4) =
∑

{T :N4(T )=N4}

1

CT
eκ2 N2(T ) (1.6)

was used.

The partition function (1.5) is suitable for use in a Markov chain Monte Carlo simula-

tion with Metropolis updates consisting of the so-called Pachner moves (see section 2.1).

1.2 Phase diagram

The grand canonical partition function (1.5) is finite only if κ4 > κcr
4 (κ2). We therefore

have a critical line for convergence in the (κ2, κ4)-plane, given by κcr
4 (κ2). To obtain

the thermodynamic limit (N4 →∞) we have to ensure that κ4
N4→∞−→ κcr

4 (κ2). For quasi-

canonical simulations around some fixed volume N4,1 we can use (1.6) to define a pseudo-

critical κpcr
4 by

κpcr
4

(
κ2, N4

)
=

∂ ln (Z (κ2, N4))

∂N4

∣∣∣∣
N4=N4

, (1.7)

which corresponds to the value of κ4 for which the N4-distribution is flat around N4.

For constant N4, we can define (see figure 1) a line κpcr
4 (κ2, N4) as a function of

κ2, along which two phases are separated by a pseudo-critical point at κ2 = κpcr
2 (N4).

For κ2 < κpcr
2 (N4) we are in the crumpled phase where a typical configuration is highly

collapsed in the sense that the distance between any two 4-simplices is very short, leading

1There is no set of ergodic moves known for fixed volumes, it is therefore necessary to let the volume

fluctuate around the desired value N4.

– 3 –



J
H
E
P
0
5
(
2
0
1
5
)
1
3
8

Figure 2. Representative configurations in the crumpled (left, κ2 = 1.26) and elongated (right,

κ2 = 1.30) phase at system size N4 ≈ 64k: in the crumpled phase, the triangulation consists of one

large, highly connected bunch with outgrowths which are at least an order of magnitude smaller. In

the elongated phase on the other hand, although a largest component still exists and may be called

“mother universe”, it is much smaller than in the crumpled phase and some of its outgrowths (the

“babies”) are of comparable size.

to a large (infinite) Hausdorff dimension. For κ2 > κpcr
2 (N4) we are in the elongated phase

with Hausdorff dimension ∼ 2, where a typical configuration consists of a so-called baby-

universe tree: the total volume is subdivided into smaller parts, the baby-universes,2 which

are pairwise connected by only a small minimal neck.3 This structure is hierarchical in a

treelike manner: consider the largest baby-universe as “mother” with outgrowing smaller

“babies” which in turn give birth to their own “babies”, and so on (see right-hand side of

figure 2).

The true critical point in the thermodynamic limit is obtained as

(κcr
2 , κ

cr
4 ) = lim

N4→∞
(κpcr

2 (N4) , κpcr
4 (κpcr

2 (N4) , N4)) . (1.8)

2 Simulation methods

2.1 Pachner moves

In d dimensions, there exist (d+ 1) Pachner moves. They form an ergodic set of local

updates [15] in the space of abstract triangulations of fixed topology without boundary. A

2We consider a baby-universe as a collection of 4-simplices which could all be pairwise connected by a

path on the dual lattice that does not pass through any 3-simplex that belongs to a minimal neck .
3In four dimensions, a minimal neck consists of five 3-simplices forming a closed hyper-surface that looks

like the boundary of a 4-simplex, but without a corresponding 4-simplex being present in the triangulation.

Intuitively, a minimal neck is something like the bottleneck of a sand glass (but an extremely narrow

bottle neck).

– 4 –
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Figure 3. Illustration of a Pachner 3-move in four dimensions: on the left-hand side we have two

4-simplices which share a common 3-simplex (red, projected onto two dimensions). The 3-move

replaces this complex with the one shown on the right-hand side of the figure where four 4-simplices

share a common 1-simplex (blue). The 1-move is just the inverse of the 3-move.

n-move (n ∈ {0, . . . , d}) consists of the following procedure: pick a n-simplex which is con-

tained in (d+ 1− n) d-simplices. The complex consisting of these (d+ 1− n) d-simplices

has the same boundary as a corresponding dual complex spanned by (n+ 1) d-simplices

that share a common (d− n)-simplex. We can therefore just replace the complex around

the selected n-simplex with its dual (see figure 3 for an illustration in four dimensions). The

only additional constraint is the so called manifold constraint, that is: the (d− n)-simplex

shared by the (n+ 1) newly created d-simplices of the dual complex must not already exist

in the triangulation as this could result in topology changes. From now on we will consider

only the 4-dimensional case.

2.2 Detailed balance

Calling Tk the current triangulation in our Markov chain, we obtain Tk+1 as follows:

1. randomly choose a move type n ∈ {0, . . . , 4},

2. randomly choose one of the N4 4-simplices of Tk and call it D,

3. randomly choose one of the
(

5
n+1

)
n-simplices contained in D and call it S,

4. perform a Metropolis test with acceptance probability pn (Tk, S):

• accept: Tk+1 is obtained from Tk by applying the n-move at S,

• reject: Tk+1 = Tk.

The acceptance probability at step 4 is given by [10]

pn (T, S) =

{
pn (N4 (T )) if n-move possible at S ∈ T

0 else
, (2.1)

where pn (N4) = min
{

1, N4
N4+∆N4(n) eκ2∆N2(n)−κ4∆N4(n)

}
is the so-called reduced transition

probability, ∆Ni (n) labels the change of Ni under a n-move, and a n-move is considered as

– 5 –
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possible at S if S is contained in (5− n) 4-simplices and the application of the move does

not violate the manifold constraint mentioned above in section 2.1.

Equation (2.1) can be derived from the detailed balance condition: assume first we

have two valid 4-dimensional triangulations T, T ′, where T ′ can be obtained from T by

applying a n-move at a specific n-simplex S of T . The detailed balance equation then reads

ρ (T ) P
(
T n→T ′

)
= ρ

(
T ′
)
P
(
T ′ 4−n→ T

)
, (2.2)

where ρ (T ) = eκ2 N2(T )−κ4 N4(T ) and P (T n→T ′) is the transition probability. The latter

can be written as

P
(
T n→T ′

)
=

5− n
5N4 (T )

(
5

n+1

)pn (N4 (T )) , (2.3)

where pn (N4) is again the reduced transition probability and the factor in front of it is

the probability for selecting (with the update scheme mentioned above) the n-simplex S

through which T and T ′ can be related by applying a n-move: 1/5 is the probability for

choosing the correct move type n, 5−n
N4

the one for selecting a 4-simplex D which contains

S and 1

( 5
n+1)

is the probability for selecting S out of the
(

5
n+1

)
n-simplices of D. Note that

5−n
( 5
n+1)

is the local 4-volume of a n-simplex4 that allows for a n-move (in units of V4) and

pn (N4) can therefore be interpreted as the transition probability for a n-move per unit

volume, as the term reduced suggests.

For the inverse transition probability on the right hand side of (2.2) we have analo-

gously:

P
(
T ′ 4−n→ T

)
=

n+ 1

5N4 (T ′)
(

5
5−n
)p4−n

(
N4

(
T ′
))

=
5− n

5N4 (T ′)
(

5
n+1

)p4−n
(
N4

(
T ′
))
. (2.4)

Equation (2.2) reduces therefore to

ρ (T )
1

N4 (T )
pn (N4 (T )) = ρ

(
T ′
) 1

N4 (T ′)
p4−n

(
N4

(
T ′
))
, (2.5)

which, by noting that N4 (T ′) = N4 (T ) + ∆N4 (n), is satisfied by setting

pn (N4) = min

{
1,

N4

N4 + ∆N4 (n)
eκ2 ∆N2(n)−κ4 ∆N4(n)

}
. (2.6)

This gives the upper part of (2.1). For the lower part, when T ′ does not exist, we have

ρ (T ′) = 0 and in order to satisfy (2.2), we have to set

P
(
T n→T ′

)
=

5− n
5N4 (T )

(
5

n+1

)pn (T, S) = 0. (2.7)

We now have a prescription for how to produce a Markov chain containing the configu-

rations required to evaluate (1.5). As neighboring elements in our Markov chain are highly

correlated, it is appropriate to take measurements only on every kth element in the chain,

4The 4-volume containing all points which are closer to the n-simplex under consideration than to any

other n-simplex.

– 6 –
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where k must be a constant in order to preserve the probability distribution. As already

mentioned at the beginning, this was not always respected in previous work, as e.g. in [9]

the measurements were separated by a fixed number of accepted moves, which turns the

true separation k between measurements into a random variable whose value depends on

what kind of configurations is currently sampled by the Markov chain.

2.3 Controlling the volume

As κpcr
4

(
κ2, N4

)
is monotonically growing with N4, it is practically impossible to run fully

grand canonical MC simulations for the EDT model. But canonical simulations are anyway

better suited to investigate finite size scaling. Unfortunately, as already mentioned before,

there is no set of ergodic moves known for the space of triangulations of fixed N4 and it

is therefore not possible to run canonical simulations either. The best we can do is to run

quasi canonical simulations based on (1.5) but with N4 constrained to fluctuate around

some desired N4. In previous work [1, 5, 9], this was often achieved by adding a harmonic

potential,

U
(
N4, N4, δ

)
=

δ

2

(
N4 − N4

)2
, (2.8)

to the action (1.3). This of course introduces a systematic error for all moves which change

N4. We therefore decided to rather use a infinite potential well of some reasonable width

w ≈ 2σ (N2) / 2.5, where 2.5 = max
n

{
∆N2(n)
∆N4(n)

}
and σ (N2) is the square root of the

N2-variance.

As with such a potential well we cannot use the saddle point expansion method

from [10] to tune κ4 to its pseudo-critical value κpcr
4

(
κ2, N4

)
, we instead made use of

a method mentioned in [4]: as the N4-histogram has to be flat around N4 if κ4 =

κpcr
4

(
κ2, N4

)
, we have that

pgeo
4

(
N4

)
ppcr

4

(
N4

)
= pgeo

0

(
N4 + ∆N4 (4)

)
ppcr

0

(
N4 + ∆N4 (4)

)
, (2.9)

where ppcr
n (N4) is the reduced transition probability (2.6) with κ4 = κpcr

4

(
κ2, N4

)
and

pgeo
n (N4) is the average geometric probability for a n-move, i.e. the fraction of the total

volume that allows for a change (through one of the Pachner moves), to which a n-move

could be applied5 (see figure 4):

pgeo
n (T ) =

5−n
( 5
n+1)

Nn (T ) f legal
n (T )

4∑
m=0

5−m
( 5
m+1)

Nm (T ) f legal
m (T )

, (2.10)

5Alternatively, one could define pgeo
n (T ) as the fraction of the overall total volume of a triangula-

tion T , to which a n-move could be applied, which would lead to a different normalization: pgeo
n (T ) =

1
5N4

5−n
( 5
n+1)

Nn (T ) f legal
n (T ), such that pgeo

n (T ) would coincide with the probability to select a good location

for a n-move within the update scheme described above in section 2.2.

– 7 –
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where f legal
n (T ) is the fraction of n-simplices in the triangulation T where a n-move is

possible. One can then solve for κpcr
4

(
κ2, N4

)
which leads to

κpcr
4

(
κ2, N4

)
=

1

∆N4 (4)

[
ln

(
pgeo

4

(
N4

)
pgeo

0

(
N4 + ∆N4 (4)

)) − ln

(
1 +

∆N4 (4)

N4

)]
+

∆N2 (4)

∆N4 (4)
κ2. (2.11)

Note that the 4-move is always possible and one therefore effectively only has to measure

the average fraction of vertices which allow for a 0-move in order to determine κpcr
4

(
κ2, N4

)
.

Furthermore, as the average geometric probabilities vary slowly with N4, we can, as long

as the width of the potential well for N4 is much smaller than N4, just use
〈pgeo

4 〉
〈pgeo

0 〉
instead

of
pgeo

4 (N4)
pgeo

0 (N4+∆N4(4))
to set κ4 to its pseudo-critical value.

2.4 Autocorrelation time

The autocorrelation time τ is a measure for the typical distance between two uncorrelated

elements in a Markov chain. It can be thought of as the time it takes for a change to

propagate through the typical volume of the system over which the degrees of freedom

are correlated. One therefore writes τ ∝ ξz, where ξ is the correlation length and the

dynamical critical exponent z is expected to be z ≈ 2 for a local update scheme; i.e.

updated information propagates in a diffusion-like manner.

For a 2nd order transition where the correlation length diverges when approaching the

critical point, ξ is truncated by the linear system size L and we have τ ∝ Lz = V z/dH

with dH being the Hausdorff dimension of the system. In this case the autocorrelation time

obviously diverges as a power of the system size.

For a 1st order transition ξ remains finite at the transition point for all system sizes.

Nevertheless the autocorrelation time can diverge even more dramatically as transitions be-

tween the two phases that coexist at the transition point become exponentially suppressed

with increasing system size. The autocorrelation function should then consist of two parts:

a relatively steep first one corresponding to the decay of autocorrelations within a single

phase, as well as a second, much less steep part which reflects the fact that the system

remains in one and the same phase for a rather long time. Unfortunately it is almost im-

possible to verify this as it would need ridiculously long simulations to obtain the required

accuracy on the auto-correlation function.

In both cases, for 1st and 2nd order phase transitions, parallel tempering can be used

to reduce autocorrelations [11, 12]. The idea is to run K simulations for different values

of the couplings in parallel where the couplings are chosen such that they lie on a line in

coupling space which connects a region with slow relaxation with another where relaxation

is fast. One now periodically attempts to swap configurations between neighboring sets

(called replicas) with an acceptance probability given by

pswap
[{

(κi, Ni) ,
(
κ′i, N

′
i

)}
→
{(
κi, N

′
i

)
,
(
κ′i, Ni

)}]
= min

{
1, eS(κi,Ni)−S(κi,N ′i)+S(κ′i,N ′i)−S(κ′i,Ni)

}
, (2.12)

– 8 –
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Figure 4. The average geometric probabilities pgeon

(
N4

)
, n ∈ {0, . . . , 4}, are plotted as functions of

κ2 for different system sizes N4 = 2k (blue), 4k (red), 8k (dark gray), 16k (dark yellow), 32k (dark

blue), 48k (dark red), 64k (dark green). Note that, as the 4-move is always possible, the change in

pgeo4

(
N4

)
is just due to the normalization chosen in (2.10).

The last plot at bottom right shows the pseudo-critical κpcr4

(
κ2, N4

)
corresponding to pgeo0

(
N4

)
and pgeo4

(
N4

)
as given by (2.11). It is a close up version of figure 1, showing in more detail the

behavior of κpcr4

(
κ2, N4

)
close to the pseudo critical point (to improve readability, the y-axis shows

again (κ4 − 2.33κ2) instead of κ4 itself). The small red dots indicate the pseudo-critical points.

where (κi, Ni) , (κ
′
i, N

′
i) are the sets of couplings and configuration variables for the two

neighboring replicas and S (κi, Ni) is the action of a configuration with variables Ni at

couplings κi. The advantage of this procedure is twofold: first, we no longer have just

one Markov chain per simulation point in coupling space that has to build up the whole

corresponding statistical ensemble but now all K chains alternately contribute to all of

the statistical ensembles at different couplings. Second, if every Markov chain frequently

reaches regions in coupling space where relaxation is fast before passing again through

the critical region, then the configurations which the chain contributes to the statistical

– 9 –
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Figure 5. The figures show Monte Carlo time histories for the observable N2 (number of triangles)

for systems of size N4 = 32k with κ2 set to the pseudo-critical value κpcr2 (32k) ≈ 1.258. The

left-hand figure corresponds to the result of an ordinary simulation whereas the right-hand figure

was obtained using parallel tempering with 24 replicas.

ensembles in the critical region, are on average much less correlated than corresponding

configurations of a Markov chain that remains all the time in the critical region. For

more details see [11, 12] where it is also explained how this procedure can be optimized.

Especially in [12] the application of parallel tempering to 1st order transitions is discussed.

In our implementation we chose, for a fixed average volume N4, 24 or 48 equally spaced

(w.r.t. the κ2 direction) couplings along the pseudo-critical line κpcr
4

(
κ2, N4

)
, such that they

join a region in the crumpled phase where relaxation is fast, with one in the elongated phase

where relaxation is also fast (compared to the critical region), and thereby pass through

the critical region around κpcr
2

(
N4

)
. After some runtime, the optimization procedure

of [11, 12] is applied which gives us a new set of couplings for which the configuration

exchange between replicas is more frequent.

In figure 5, two Monte Carlo time histories for the observable N2 (number of triangles)

are shown for comparison, both for a system of size N4 = 32k at the pseudo-critical point

κ2 = κpcr
2 (32k) ≈ 1.258. The left one stems from an ordinary simulation while the right

one was obtained using parallel tempering.

2.5 Data analysis

Due to the use of a potential well instead of a harmonic potential to control the system

volume and due to the tuning of κ4 to its pseudo-critical value, we have significant volume

fluctuations in the data which also affect for example the N2 distribution. To take this into

account, we project the data in the (N2, N4)-plane along the “correlation direction” before

evaluating any observables (see figure 6), i.e. instead of N2 we use

N2 = N2 − f (N4) (2.13)

to evaluate observables depending on N2, where

f (N4) =
〈(N2 − 〈N2〉) (N4 − 〈N4〉)〉

〈N4 − 〈N4〉〉2
(N4 − 〈N4〉) . (2.14)
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Figure 6. The figure shows the N2–N4 distribution at κ2 = 2.8014 for a system of average size

N4 = 64k. As long as the fluctuations in N4 are forced to be much smaller than the average

system size N4 itself, we can project the data along the N2–N4-correlation direction (indicated by

a red line) and evaluate observables as if we had a true canonical simulation at system size N4 and

fluctuating triangle number N2 as given by (2.13) and (2.14).

We checked that this leads to the same results as when evaluating the observables only on

data subsets corresponding to single, fixed N4 values.

After that, we use multi-histogram reweighting [13] with respect to κ2. The parallel

tempering optimization procedure mentioned above also leads to a good distribution of

simulation points for the reweighting. The errors are determined by the Jack-Knife method

with 20 sets. In multi-histogram reweighting, these sets consist of the simultaneous data

of all the simulations at different κ2 values (i.e. to form the Jack-Knife sets we consider as

a measurement all the measurements at different κ2 values which correspond to the same

Monte Carlo time), therefore cross correlations should automatically be taken into account.

3 Results

3.1 Order of phase transition

3.1.1 N2 distribution

As stated in [9], the pseudo-critical N2-distribution starts to be visibly double-Gaussian

for systems consisting of more than about 32000 4-simplices. For systems containing 32k,

48k and 64k 4-simplices, these distributions are shown in figure 7, where κ2 was tuned to

produce peaks of equal height (left) or equal area (right). Either way it can be seen that

the double peak structure becomes more pronounced with increasing system size and that

there is so far no sign that the peaks will merge again in the thermodynamic limit. This

behavior is characteristic of a 1st order transition.

The reason for the double peak structure in the N2-distribution is, that at a 1st order

transition point, the two phases can coexist (see figure 8) while N2 takes on different average

values in each of these phases.

– 11 –
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Figure 7. Normalized N2-distribution for systems of size N4 = 32k (blue), 48k (red) and 64k

(green): the solid lines are double-Gaussian fits to the data. To the left, the values of κ2 were

chosen such that the two Gaussian parts of the distribution function have the same height, whereas

on the right-hand side the κ2 values are such that the two Gaussians have the same area, i.e.

the two states are equally probable. It can be seen that the double peak structure becomes more

pronounced with increasing system size and there is no sign that the peaks will merge again in the

thermodynamic limit. This is characteristic of a 1st order transition.

Figure 8. Example of a crumpled (left) and an elongated (right) configuration with N4 ≈ 64k,

both recorded at κ2 = 1.28, which is approximately the pseudo-critical point.
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3.1.2 Scaling of B4

A more quantitative method to determine the order of a phase transition is to study finite-

size scaling of the 4th order Binder cumulant (Kurtosis) of the N2 distribution, B4 [N2] =
〈(N2−〈N2〉)4〉
〈(N2−〈N2〉)2〉2

. According to [14], for large enough N4 this quantity should scale like

Bpcr
4 [N2] (N4) ≈ Bcr

4 [N2] + c1N
−ω
4 , (3.1)

where Bcr
4 [N2] is the critical, infinite volume value of the Binder cumulant. For a 2nd order

transition one should get 1 < Bcr
4 [N2] < 3 and ω = 1/dHν, where ν is the critical exponent

of the correlation length ξN2 ≈ |κcr
2 − κ2|−ν and dH the Hausdorff dimension, whereas for

a 1st order transition we should obtain Bcr
4 [N2] = 1 and ω = 1.

We tried to fit our data for Bpcr
4 [N2] (N4) assuming 1st and 2nd order scaling ansaetze

(see figures 10 and 9). For the 2nd order ansatz, we looked at Bpcr
4 as a function of the

average linear system size Lpcr instead of volume N4, as a diverging correlation length will

be truncated to this Lpcr, which is defined as

Lpcr (N4) =
∑
r

r n (r;N4, κ
pcr
2 (N4)) , (3.2)

with n (r;N4, κ2) being the average volume profile of a triangulation of size N4 at a given

value of κ2, i.e.:

n (r;N4, κ2) =

〈
1

N2
4

∑
s1

∑
s2

δ (d∆ (s1, s2)− r)

〉
κ2

, (3.3)

where s1, s2 run over all N4 4-simplices and d∆ (s1, s2) is the geodesic distance between

the simplices s1 and s2 in the triangulation ∆ and 〈. . .〉κ2
refers to the average over tri-

angulations at κ2. As is typical for a weak 1st order transition, the 2nd order fit seems to

work fine, but the obtained values Bcr
4 [N2] = −4.2 ± 5.0 and ν = 1/dHω = 2.01 ± 0.74

do not make much sense. Instead fixing ω = 1 for the 1st order ansatz, and using only

the data points from the largest two simulated systems (N4 = 64k and 48k), we obtain

Bcr
4 [N2] = 1.00 ± 0.08 which is the expected value for a 1st order transition. A fit to the

data of the next smaller pair of systems, i.e. those consisting of 48k and 32k 4-simplices,

leads to Bcr
4 [N2] = 1.50± 0.07. This large change in the value of the extrapolated Bcr

4 [N2]

indicates that we are still far away from the thermodynamic limit.

3.2 Coexistence of phases

As the phase transition is 1st order we expect for finite systems a coexistence of the elon-

gated and crumpled phases in some neighborhood of the pseudo-critical point. Instead of

speaking of crumpled and elongated configurations as in figure 8, we should rather speak

of configurations in which the crumpled or the elongated part dominates. For example,

the left-hand graph in figure 8 is dominated by the large bubble6 in the middle that is in

the crumpled state, but attached to that large bubble are baby-universe trees which are

6Bubble is just another word for baby-universe as defined above in footnote 2.
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Figure 9. Binder cumulant Bpcr
4 [N2] as a func-

tion of average linear system size Lpcr (N4) (3.2),

assuming a 2nd order transition, together with

a fit of the form (3.1) where Nω
4 = (Lpcr)

1/ν
.

We also included higher order corrections. It

can be seen that the fit seems to work fine, but

the obtained values Bcr
4 [N2] = −4.2 ± 5.0 and

ν = 2.01 ± 0.74 do not make much sense.

Figure 10. Binder cumulant Bpcr
4 [N2] as a func-

tion of 1/N4. The red lines correspond to fits of

the form (3.1) with ω = 1 (1st order transition)

to the data of the largest and second largest pair

of systems. The value Bcr
4 [N2] = 1.00± 0.08 ob-

tained from the largest pair is compatible with

the expected value of 1 for a 1st order transi-

tion. The fit for the second largest pair yields a

too large value: Bcr
4 [N2] 1.50 ± 0.07. This large

change indicates that we are still far away from

the thermodynamic limit.

in the elongated state. Similarly, the right-hand graph in figure 8, whose strong branching

indicates that the configuration is mainly in the elongated state, also contains some larger

bubbles that presumably are in the crumpled state.

Although criteria like “strong branching” and “large bubbles” seem to work well to

decide if a piece of triangulation corresponds to the elongated or crumpled phase, there is

some ambiguity in what “strong branching” should mean or what bubble sizes should be

considered as small. As a first attempt, we could define the elongated phase as consisting

of bubbles of size 6 and everything else as belonging to the crumpled phase. By the

“size” of a bubble, we mean from now on the number of the bubble’s 4-simplices plus

the number of its minimal necks7 (i.e. the volume the bubble would have after replacing

all minimal necks by ordinary 4-simplces). In contrast: the “volume” of a bubble still

refers to just the number of 4-simplices of that bubble. Figure 11 shows, as a function

of κ2, the average fractional volume of a triangulation contained in size 6 bubbles. The

complementary fractional volume would therefore be the one contained in bubbles of size

larger than 6. It can be seen that at small values of κ2, deep in the crumpled phase, the

volume is dominated by contributions from large bubbles (in fact one very large bubble

containing almost all the 4-simplices) whereas at large values of κ2, deep in the elongated

phase, the dominant contribution to the total volume comes from the size 6 bubbles. The

swap in the dominance occurs not exactly at the pseudo-critical point but at a somewhat

larger value of κ2 = κds2 which, however, seems to coincide with the expected infinite

volume critical value of the coupling κcr
2 ≈ 1.33.

7A bubble of size 6 (which is the smallest possible size) can consist of five 4-simplices plus a minimal

neck or four 4-simplices plus two minimal necks, and so on.
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Figure 11. The left-hand figure shows the ensemble averaged fractional volume contained in

bubbles consisting of five or less 4-simplices (i.e. bubbles of size 6) as a function of κ2 at system

size N4 = 32k. With increasing κ2, it can be seen that at some point κ2 = κds2 (N4), the curve

goes above 0.5 and therefore the two classes of bubbles, those consisting of more than five and

those consisting of five or less 4-simplices, change their roles as dominant and non-dominant parts

of the system. The right-hand figure shows the same quantity but for three different system sizes,

N4 = 32k (dark blue), 48k (dark red), 64k (dark green), in a neighbourhood of the corresponding

pseudo-critical points: κpcr2 ({32k, 48k, 64k}) = {1.258, 1.271, 1.280}. Due to the finite volumes,

κpcr2 (N4) is smaller than κds2 (N4) which seems to be volume independent and is very close to the

expected infinite volume critical value of the coupling κcr2 ≈ 1.33.

As the curves in figure 11 show no volume dependency in the elongated phase and may

get close to unity only in the limit κ2 → ∞, it should be clear that the characterisation

of this phase as consisting of just size 6 bubbles is not adequate. The reason is, that if a

system would consist of size 6 bubbles only, Pachner 3-moves could only be applied to 3-

simplices which are part of minimal necks, such that these moves would necessarily destroy

those necks and thereby produce bubbles of size larger than 6. As can be seen in figure 12,

which shows as a function of κ2 the quantity ∆necks (n), i.e. the average change of the

number of necks under a n-move,8 indeed, more and more 3-moves change the number

of necks as κ2 increases. But nevertheless, the size 6 bubbles seem to be the dominant

building blocks of the elongated phase.

In the pseudo-critical region, in order to change from a rather crumpled to a rather

elongated state, the system has to go through the process of producing and growing new

baby-universe branches on top of the large “mother universe”, until almost the whole

volume fits into them while a (distinguishable) “mother universe” disappears. This is

illustrated in figure 13 where, as a function of κ2, it is shown how the total volume of a

system with N4 = 32k is distributed, on average, over bubbles of different sizes.

Regarding this process of creating new baby-universe branches, which necessarily starts

with the creation of a new size 6 bubble, it is interesting to note that applying a 4-move

to a 4-simplex contained in a bubble that consists of only five 4-simplices results in a

triangulation which is slightly more restrictive with respect to further application of 3- and

0-moves, as compared to the case where a 4-move is applied outside of such a “volume

8The quantity ∆necks (n) is computed by counting for each location where a n-move could be applied,

the number of necks that would be created or destroyed by such a move, and taking the average.
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Figure 12. The figure shows for a system of size N4 = 32k, as a function of κ2, the average

change of the number of necks caused by the next n-move. The 0- and 4-moves always remove or

add a “volume 5” bubble and a corresponding neck, while the 2-move never changes the number of

necks. For the 1- and 3-moves ∆necks (n) changes as function of κ2 as the fraction of 3-simplices,

which allow for a 3-move and are also part of a minimal neck changes. For κ2 > 1.6, it seems

that the average 3-simplex which allows for a move, is rather part of more than one neck than of

no neck, which is why ∆necks (3) drops below -1. The behaviour of ∆necks (1) follows from the

fact that the 1-moves is the inverse of the 3-move. Thus for κ2 > 1.6, the triangle that will be

created by applying a 1-move to one of the 1-simplices that allow for such a move, will be rather

part of more than one neck than of no neck. At the pseudo-critical point κpcr2 = 1.258, we have

that ∆necks ({1, 3}) ≈ {0.8,−0.8}.

Figure 13. The figures both show (on different scales) as a function of κ2 how the total volume of

a N4 = 32k system is distributed, on average, over bubbles of different sizes, where the size is given

by the number of 4-simplices plus the number of minimal necks: for κ2 � κpcr2 (N4), almost the

whole volume is concentrated in just one large bubble, but with increasing κ2 the volume distributes

over more and more (and larger) small bubbles until the (distinguishably) largest bubble disappears

for κ2 ≈ κpcr2 (N4). At this point, the largest bubble contains only about 20% of the total volume.
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5”-bubble. This is explained in more detail in figure 14 for the two-dimensional case, and

in figure 15, we show that the effect of this mechanism is indeed observable: the latter

figure shows, for different system sizes, the average numbers of possible Pachner n-moves

at the pseudo-critical point as a function of N2/N4. Comparing the graphs in figure 15

with figure 7 in order to identify which N2/N4-interval corresponds to which phase, we see

that the numbers of possible moves undergo an abrupt change precisely in the region where

the valleys of the corresponding graphs in figure 7 are located. These abrupt changes are

just as one would expect from the phenomenon described in figure 14 which occurs a soon

as a 3-move is applied to a 3-simplex that is part of a minimal neck between a “volume

4”- and a “volume 5”-bubble (which leads to a “volume 11”-bubble i.e. a “size 12”-bubble

with just one neck): the number of possible 3- and 0-moves is lower and the number of

possible 2-moves higher than in a configuration of the same size but without this particular

“volume 11”-bubble.

At the beginning of this section, we mentioned also using the branching factor, at least

on an intuitive level, as a criterion to decide if a piece of triangulation is in the elongated

or crumpled phase. The branching factor itself turns out not to be a good criterion to

distinguish between the two phases as its average value drops again with increasing κ2 for

κ2 > κpcr
2 (see figure 16). On the other hand, the related average neck density or “branch-

ing factor per size” is monotonic and seems to yield a meaningful criterion to distinguish

between the two phases (see figure 17). In figure 18 we show how the total volume dis-

tributes over bubbles with different neck densities but it remains to be understood what

the exact value of the critical density, which seems to be around 1/9, should be and where

it comes from.

3.3 Balls in boxes model

It is well known that the balls in boxes model [6, 7] describes nicely the qualitative fea-

tures observed in EDT simulations. In the canonical formulation the model describes the

statistical ensemble of a fixed total number N of balls distributed in a varying number M

of boxes:

Z (N,κ) =

∞∑
M=1

eκM
∑

q1,...,qM

p (q1) · · · p (qM ) δN,q1+...+qM , (3.4)

where p (q) is the probability for a single box to contain q balls and κ is a coupling in-

troduced to control the number of boxes. As shown in [6], the qualitative behavior of the

model depends only on the sub-exponential factors of the single-box-occupation probability

p (q), since a redefinition

p (q) → p′ (q) = e−κ0 eµ0q p (q) (3.5)

just results in

Z (N,κ) → Z ′ (N,κ) = eµ0N Z (N,κ− κ0) . (3.6)

For power like sub-exponential weight factors

p (q) = q−β , q ∈ N (3.7)
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Figure 14. Illustration in two dimensions: in the left figure, by applying a 2-move to the general

triangle (abc) (which is not part of a “volume 3”-baby-universe), we have replaced the triangle

by a baby-universe “A” (horizontally shaded) consisting of the three triangles (abg), (bcg) and

(cag). We could continue by applying 1-moves to all the 1-simplices of the neck (abc) which would

replace the link (ac) by (gf), (cb) by (gd) and (ba) by (ge). In the right hand figure, we have

instead produced another “volume 3”-baby-universe “B” (vertically shaded) with neck (agc) inside

the already existing baby-universe “A”. In this case, we can only apply a 1-move either to (ac)

and (ag) or to (ac) and (gc), as applying a 1-move to both (ag) and (gc) would result in a double

link (hb).

It is also clear that the insertion of the vertex “h” into one of the triangles of “A” makes it

impossible to remove the vertex “g” by a 0-move. If “h” had instead been inserted into e.g. the

triangle (acf), not just “h”, but also “g” could still be removed.

Similarly in the four dimensional case, a piece of triangulation produced by applying a 4-move

inside a “volume 5”-baby-universe “A” to produce a new “volume 5”-baby “B” of “A”, has the

following effects:

- the number of possible 0-moves is not increased, as the 4-move that created “B” has also

destroyed an already existing location where a 0-move could have been applied: the vertex

that was in the center of “A”. This does not happen, if a 4-move is applied to a 4-simplex

that is not part of a “volume-5”-bubble,

- all the 3-simplices that are only part of the neck between “A” and “B” (but not of the neck

between “A” and the rest of the triangulation), would allow for a 3-move, but by performing

one of these 3-moves, the remaining ones become impossible. If “B” were not the baby of a

“size 5, 4 or 3”-bubble, 3-moves could in general be applied to all of its neck’s 3-simplices,

- and finally, in four dimensions, there is also an effect on the 2-move: the application of a

3-move to one of the 3-simplices that are part of only the neck between “A” and “B”, removes

another location where a 0-move had been possible (as it destroys “B”), but at the same time,

generates three new locations where a 2-move could be applied.

it was shown in [7] that the free energy

F (κ) = lim
N→∞

1

N
log (Z (N,κ)) (3.8)

has a singularity at κcr = − log (ζ (β)) for β ∈ (1,∞), where ζ (x) is the Riemann Zeta-

function. The phase is called fluid for κ > κcr and condensed for κ < κcr. For β > 2 the

phase transition is 1st order whereas for β ∈
(
n+1
n , n

n−1

]
the transition is nth order. The

order parameter for the transition is the first derivative of the free energy (3.8) with respect
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Figure 15. From top to bottom: average numbers of possible 3, 2, 1 and 0-moves (normalized by

the system size) vs. N2/N4 for systems of size (from left to right) N4 = 32k, 64k and 128k at the

pseudo-critical point. Comparison with figure 7 shows, that the strong changes (e.g. for N2/N4 =

[2.398, 2.402] in the N4 = 64k case) happen at the location of the valley of the corresponding graph

in figure 7.

to κ, which yields the average number of boxes divided by the number of balls

r =
∂F (κ)

∂κ
= lim

N→∞

〈M〉
N

, (3.9)

which vanishes in the condensed phase and equals 1 in the fluid phase.

The relation to the 4-dimensional EDT model is normally established by identifying

the triangles (or nodes) in the triangulation with boxes and the number of balls in a box

with the number of 4-simplices that share the corresponding triangle (node). In this way,

the coupling κ2 of the EDT model nicely takes over the role of the κ in the balls in boxes

model, the average Regge curvature becomes in the thermodynamic limit the analogue of

the order parameter (3.9), and the β in (3.7) is related [7] to the β used in EDT models with

a modified measure term [2]. Alternatively, one can identify the bubbles or baby-universes
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Figure 16. The figure shows, as a function of

κ2, the average branching factor, i.e. the average

number of necks, of bubbles which are neither

the largest bubble in the system nor volume 5

bubbles, which are just the terminating leaves of

a baby-universe branch. As the branching fac-

tor decreases again after the phase transition at

κ2 ≈ 1.258, a large branching factor alone is not

a good indicator for a bubble to be in the elon-

gated phase.
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Figure 17. The figure shows, as a function of κ2,

the average density of necks of the largest bub-

ble in the system, i.e. “number of necks of bub-

ble”/“’size of bubble” (where the size is again

given be the sum of the numbers of necks and

4-simplices). As the largest bubble can be as-

sumed to correspond to the crumpled phase for

κ2 < κpcr2 (N4) ≈ 1.258, but for κ2 � κpcr2 (N4)

is just the slightly largest of many almost equally

sized bubbles, which are all part of the elongated

phase, this shows, that it is the neck-density of a

bubble rather than its total neck number which

distinguishes between the two phases. Note also

that for size 6 bubbles, the neck density is always

≥ 1/6 ≈ 0.167 which according to this figure is

clearly elongated, as it should be.

with the boxes and the number of necks of each bubble with the number of balls in the

corresponding box [8]. This yields an effective theory for EDT in the form of a branched

polymer model, in which the bubbles are the vertices and the necks correspond to links

between the nodes (as in the figures 2, 8, but ignoring the different sizes of the nodes).

While the latter yields just an effective theory, the problem with the former correspon-

dence is, that due to geometric constraints, the interplay between the number of 4-simplices

per triangle (or per node) and the number of triangles (nodes) itself is much more involved

than the interplay between the balls and boxes in the balls in boxes model. We would

therefore like to propose a different correspondence in which the numbers of “balls” and

“boxes” are less constrained.

To this end, let us focus on the largest bubble of a triangulation which we will from

now on also call base-manifold : this largest bubble is made up of elementary building-blocks

consisting of 4-simplices and minimal necks.9 Now consider these elementary building-

blocks of the base-manifold as boxes and the number of 4-simplices contained in them as

9Instead of thinking of a minimal neck as a kind of worm-hole to a baby-universe, rather think of the

baby-universe as the blown-up interior of a space-time region that has the boundary of a 4-simplex, i.e. a

minimal neck.
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Figure 18. The figure shows for a system of size N4 = 32k, how the total volume is distributed

over bubbles with different neck densities, i.e. different ratios “number of necks of the bubble”/“size

of the bubble” and how this distribution changes with κ2.

balls. An elementary building-block that is an ordinary 4-simplex corresponds to a box

containing a single ball, whereas an elementary building-block consisting of a minimal neck

corresponds to a box that contains as many balls as there are 4-simplices in the baby-

universe branch behind that neck. The 4 dimensional EDT model therefore corresponds

to a balls in boxes model with N4 balls, where each box contains at least one ball and

the number M of boxes can vary from 6 (minimal size for a (combinatorial) simplicial

4-sphere) to N4 (no necks in the triangulation). The canonical EDT partition function

could therefore be interpreted as the κ = 0 case of the more general partition function

Z (κ2, N4, κ) =

N4∑
M=6

eκM Z (κ2, N4,M) =

N4∑
M=6

eκM
∑

T∈T (M,N4)

1

CT
eκ2 N2(T ), (3.10)

where T (M,N4) is the set of triangulations that possess a largest bubble of size M and

consist in total of N4 4-simplices.

In terms of (3.10) the average size of the largest bubble and the corresponding suscep-

tibility shown in figure 19 could for example be expressed as

〈M〉 (κ2, N4)

N4
=

1

N4

∂ lnZ (κ2, N4, κ)

∂κ

∣∣∣∣
κ=0

(3.11)〈
(M − 〈M〉)2

〉
(κ2, N4)

N4
=

1

N4

∂2 lnZ (κ2, N4, κ)

∂κ2

∣∣∣∣
κ=0

. (3.12)

A histogram for the M/N4-distribution at the pseudo-critical point is shown in figure 20

and should be compared with figure 2 of ref. [6]. As can be seen, figure 20 looks much more
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Figure 19. Average (normalized) number 〈M〉 /N4 of elementary space-time building blocks in the

largest bubble (left) and the corresponding susceptibility (right) as a function of κ2 for systems of

total size N4 ≈ 32k (dark blue), N4 ≈ 48k (dark red) and N4 ≈ 64k (dark green).

Figure 20. Histogram for the fraction of 4-simplices contained in the largest bubble of a system

of size N4 ≈ 32k at κ2 = 1.2577 (left) and κ2 = 1.2587 (right). This quantity serves as an

approximation for M/N4, the number of elementary building-blocks of the largest bubble divided

by the total number of 4-simplices, for which we would have to take into account also the number

of necks of the largest bubble, which would lead to about 12% larger values.

like figure 2 of ref. [6] than the N2/N4-distribution shown in figure 7, which would be the

corresponding quantity according to the old identification: triangles → boxes, 4-simplices

→ balls. In particular, M/N4 is a nice order parameter as it tends to zero in the elongated

phase, while N2/N4 remains finite.

In what follows, we will show that the Z (κ2, N4,M) appearing in (3.10) can be writ-

ten as

Z (κ2, N4,M) = Z0 (κ2,M)

N4+1−M∑
n1,...,nM=1

(
M∏
k=1

p (κ2, nk)

)
δN4,n1+···+nM , (3.13)

where the first factor Z0 (κ2,M) corresponds to the average number of ways a base-manifold

consisting of M elementary building blocks (i.e. minimal necks or ordinary 4-simplices) is

realized at κ2, and the second factor, the sum, is the corresponding probability for N4 4-

simplices to fit into the M elementary building blocks, with p (κ2, n) being the probability

for a single elementary building block, to have volume n.
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To write Z0 (κ2,M) and p (κ2, n) more explicitly, we need the micro-canonical partition

function Z1 (N2, N4) that counts the number of possible triangulations with N2 triangles,

N4 4-simplices and which have a boundary of the form of a minimal neck. For N4 ≥ 5

each such triangulation can be obtained by removing a 4-simplex from a corresponding

triangulation without boundary, that has the same number N2 of triangles but consists of

(N4 + 1) 4-simplices. Thus Z1 (N2, N4) can be expressed in terms of the ordinary micro-

canonical partition function Z (N2, N4) as:10

Z1 (N2, N4) =

{
1/5! , N4 = 1 , N2 = 10

(N4 + 1) Z (N2, N4 + 1) , N4 ≥ 5
, (3.14)

where 1/5! is the symmetry factor of a 4-simplex and (N4 + 1) is the number of possibilities

to remove one 4-simplex from a triangulation of size (N4 + 1).

The corresponding canonical partition function is then:

Z1 (κ2, N4) =
∑

T∈T1(N4)

1

CT
eκ2(N2(T\∂T )+ 1

2
N2(∂T )) =

∑
N2

Z1 (N2, N4) eκ2(N2−5), (3.15)

where T1 (N4) is the set of triangulations with a minimal boundary that consist of N4

4-simplices.

We can now express Z0 (κ2,M) in terms of (3.15) and (1.6) by noting that the number

of ways in which M elementary building blocks can be glued together to form a base-

manifold, is the same as the number of ways to form a triangulation, consisting of M

4-simplices, that does not have any neck. We can therefore write:

Z0 (κ2,M) = Z (κ2,M)− 5!
∑
m

Z1 (κ2,M −m) Z1 (κ2,m)

=
∑
N2

(
Z (N2,M)− 5!

∑
m

∑
n2

Z1 (N2 − n2,M −m) Z1 (n2,m)

)
eκ2 N2 ,

(3.16)

where the first term within the brackets on the second line corresponds to the number of

triangulations consisting of M 4-simplices and N2 triangles, while the second term, which is

a sum over all possibilities to form a triangulation of size M by glueing two triangulations,

each with a minimal boundary, along their boundaries (in [3], this second term was used

to measure the entropy exponent by baby-universe counting), subtracts the subset of these

triangulations that in addition possess at least one minimal neck,11 such that the whole

bracket yields the number of triangulations with M 4-simplices, N2 triangles and no necks.

10We neglect complications due to changing symmetry factors CT , occurring when removing a 4-simplex

from triangulations, as the number of symmetric configurations contributing to Z (N2, N4) is hopefully

negligible for large N4. For small N4, it might be necessary to take the effect of a changing CT into

account.
11Again, corrections due to changing symmetry factors (when gluing two triangulations along their min-

imal boundary) might be necessary in (3.16).
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The probability distribution p (κ2, n) required for the second factor in (3.13) is given

by p (κ2, N4) ∝ 5!Z int
1 (κ2, N4), where

Z int
1 (κ2, N4) =

∑
T∈T1(N4)

1

CT
eκ2N2(T\∂T ) =

∑
N2

Z1 (N2, N4) eκ2(N2−10) (3.17)

is the canonical partition function for the interior of triangulations at κ2 that consist of N4

4-simplices and possess the boundary of a 4-simplex.

The reason for subtracting the whole boundary from the action in (3.17) is, that these

terms are already taken into account in Z0 (κ2,M) and we want to avoid over-counting.12

After having written the EDT partition function in the generalized form (3.10), i.e.

in terms of a base manifold and its elementary volume elements, which can be excited to

form “baby universes”, some comments are in order:

1. The terminology “base-manifold” and “elementary building blocks” already suggests

that we would like to look at the triangulations, observed in EDT simulations, in

a slightly non-standard way. The main reasons for such a re-interpretation are the

following:

• it seems that the base-manifold, with all elementary volume elements in the

“ground state” (such that they are just ordinary 4-simplices), can be mapped

on a corresponding Lorentzian or causal triangulation,

• although the boundaries of the elementary volume elements are always minimal,

their volume can now change in a discrete manner. This makes EDT to fit a

little better into the quantum gravity picture provided by spin-foam models.

2. The altered physical interpretation suggests, that the thermodynamic limit should be

taken by sending M , the number of elementary building blocks of the base manifold,

to infinity instead of (just) N4.13

3. According to [16], the phase transition is associated with a change of sign in the

effective curvature. In the crumpled phase, the base-manifold (or “mother universe”)

has negative curvature: there are two singular vertices, which could be seen as the

centres of two hyperbolic 4-balls (each of them formed by many 4-simplices that are

all incident to the same central vertex) that are glued along their boundary to form

a topological 4-sphere. Without a term in the action that prevents the base-manifold

from shrinking, it seems to be favourable for a triangulation to collapse into a baby-

universe tree as soon as the singular vertices disappear. Running simulations at quasi

fixed M instead of quasi fixed N4 (but with κ4 sufficiently large), or at a non-zero

12Including the boundary terms as in (3.15) into the action for the elementary building-blocks does not

work as now at least three boundaries (not just two) meet at each boundary-triangle. The boundary action

of an elementary building-block Ti is therefore given by S (∂Ti) = κ2

∑
∆∈∂Ti

1
n(∆)

, where ∆ runs through

all triangles in ∂Ti and n (∆) is the number of boundaries which contain ∆. The p (κ2, N4) would then

depend (through the n (∆)) on the connectivity of the base manifold, which is highly undesirable.
13As each elementary building block of the base-manifold contains at least one 4-simplex, M →∞ implies

N4 →∞, but the converse is not true.
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value of the new coupling κ, would prevent the triangulation from such a collapse.

The base-manifold should then survive the disappearance of the singular vertices and

develop a positive effective curvature itself (instead of generating the positive effective

curvature by producing many small bubbles), which would give rise to a new phase

and a new phase transition that could be of higher than 1st order.

4. For finite systems, the role played by the new coupling κ in (3.10) is related to that

of the anisotropy factor in CDT as κ affects the ratio of the average diameter14 (∼
average time needed to pass through) and volume of the elementary building-blocks

of the base manifold.

In a follow-up paper we will try to verify the above assumptions and study the prop-

erties of (3.10) in more detail. An interesting question is of course whether for some values

of κ, (3.10) yields a 2nd or higher order transition in κ2 (or the fixed ρ = N4/M , or fixed

M version of (3.10)) and if, when integrating out the volume fluctuations of the elemen-

tary building blocks of the base manifold, κ and κ4 can be combined to yield a kind of

effective cosmological constant, such that one recovers the form of the original Euclidean

Einstein-Regge action. Alternatively one could interpret the additional weight in (3.10) as

a measure term.

4 Conclusion

Our study confirms the qualitative findings of [5, 9]: for κ2 ≈ κpcr
2 (N4) we find for N4 ≥

32k a clear double peak structure in the N2 distribution, which becomes more pronounced

with increasing system size (and there is no sign that the two peaks will eventually merge

again in the thermodynamic limit). This is characteristic of a weak 1st order transition. A

finite size scaling analysis of the 4th order Binder cumulant of the N2 distribution confirms

this further.

As the phase transition is 1st order, finite systems should allow for coexisting phases

in a neighbourhood of the pseudo-critical point. It turned out to be difficult to give a

precise criterion to distinguish “locally” between the two phases but a candidate could be

that bubbles with a neck density ρnecks > ρcr
necks, can be considered as corresponding to

the elongated phase, where ρcr
necks is not yet known exactly but seems to be around 1/9.

Bubbles with ρnecks < ρcr
necks would then correspond to the crumpled phase.

Finally we proposed a new correspondence between the EDT and “balls in boxes”

models which leads to a generalization of the EDT partition function (with an additional

parameter κ) and a modified interpretation of triangulations contributing to the EDT par-

tition sum in terms of a largest bubble or “mother universe” and its elementary building

blocks, which can undergo volume excitations such that their interior could also be inter-

preted as a baby-universe branch. The additional coupling κ enriches the phase structure

of the model which could now possibly contain a 2nd order phase transition line.

14The average diameter of an elementary building-block (i.e. the average time needed to pass through it)

consisting of N4 4-simplices and N2 triangles (counting also the ones in the boundary) can be determined by

measuring the average return time of a random walk in systems with (N4 + 1) 4-simplices and N2 triangles,

according to (3.14).
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In the appendix, we propose and motivate a change in the EDT path-integral measure

which introduces tunable parameters (rn). For appropriate choices of the rn, the order of

the phase transition of the ordinary EDT model might also change to second order.
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A Geometric probabilities and path-integral measure

It has recently been suggested [2] that the 1st order transition of the EDT model could

perhaps be changed into a 2nd order transition by a change of the measure in the partition

sum (1.5). However, none of these attempts has proved successful. Here we motivate and

derive a new proposal for a measure that could have the desired properties.

The measure that is normally used is the trivial one for which we have

ρ (T ) =
eκ2N2(T )−κ4N4(T )

CT
≈ eκ2N2(T )−κ4N4(T ) (A.1)

in the detailed balance equation (2.2). But we could also introduce a measure z (T ) on the

space of possible triangulations T such that we would have

ρ (T ) =
z (T ) eκ2N2(T )−κ4N4(T )

CT
≈ z (T ) eκ2N2(T )−κ4N4(T ) . (A.2)

To motivate a particular form of the measure z (T ), assume we are currently in a triangula-

tion T which possesses fn (T ) locations where a n-move could be applied. This means that

T has
4∑

n=0
fn (T ) “neighboring” triangulations. Now think of each location in T where a

move can be applied as something similar to a site in an Ising spin system where a spin-flip

can occur. But in our case, the “spin-flip” consists of the application of a Pachner-move,

e.g. a Pachner n-move that flips a piece of triangulation, spanned by (5 − n) 4-simplices

into one that is spanned by (n+ 1) 4-simplices but has the same boundary. As the regions

where different moves are possible can overlap, the flip of one region will in general de-

stroy some of the other regions where flips were possible and instead create new ones. We

therefore have a fluctuating number of degrees of freedom (see figure 21) and the system

is much more involved than an Ising system. Nevertheless, one could argue that, as long

as the couplings κ2 and κ4 are turned off, all possible moves in a triangulation T should

be considered as equally likely, just as in the Ising case. More generally: one could assign

different probabilities rn to different move types n ∈ {0, . . . , 4}, as long as rn = r4−n. For

example, one could choose rn proportional to the local volume of a n-simplex15 that allows

for a n-move (the local volume is the same for n and (4− n)-simplices which allow for

a move).

15As mentioned earlier: the local volume of a n-simplex is the volume of all points which are closer to

this n-simplex than to any other n-simplex.
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Figure 21. Average total number of degrees of freedom (i.e. number of possible moves) per

volume (left) and the corresponding susceptibility (right) as functions of κ2 for different system sizes

N4 = 2, . . . , 64k. The red dot on each graph marks the corresponding pseudo-critical point/value

(i.e. where κ2 = κpcr2 (N4), corresponding to the peak in the N2-susceptibility). The simulation was

performed with the update scheme described in section 2.2.

Having such fixed probabilities for the different moves, implies that triangulations with

different numbers of locations where moves could be applied, are not equally likely. The

corresponding probability weight for a triangulation T can be derived from the balance

equation

z (T ) =

4∑
n=0

∑
T ′ ∈ nbrn(T )

z (T ) rn∑
m
rm fm (T )

=

4∑
n=0

∑
T ′ ∈ nbrn(T )

z (T ′) r4−n∑
m
rm fm (T ′)

, (A.3)

where nbrn (T ) is the set of all triangulations that can be obtained from T by a n-move.

The detailed balance equation corresponding to (A.3) reads

z (T ) rn
4∑

n=0
rn fn (T )

=
z (T ′) r4−n
4∑

n=0
rn fn (T ′)

, (A.4)

which is obviously satisfied if we have

z (T ) ∝
4∑

n=0

rn fn (T ) . (A.5)

Such measures are particularly simple to implement: by choosing move candidates accord-

ing to the selection probability,

p(sl)
n (T ) =

rn
4∑

m=0
rm fm (T )

, (A.6)

the measure term drops out of the detailed balance equation for the (reduced) transition

probabilities pn (T ):

ρ (T ) p(sl)
n (T ) pn (T ) = ρ

(
T ′
)
p

(sl)
4−n

(
T ′
)
p4−n

(
T ′
)
, (A.7)

where ρ (T ) is given by (A.2), such that there is no need to determine the possible moves

of the candidate configuration.
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