Problem Statement & Context

A computational model is defined as a mapping:

\[x \in \mathbb{D}_X \subset \mathbb{R}^n \rightarrow y = \mathcal{M}(x) \in \mathbb{R} \]

- \(x \) is modelled by an imprecise random vector, \(X \), which accounts for both aleatory uncertainty (natural variability) and epistemic uncertainty (lack of knowledge).
- The elements of \(X \) are assumed statistically independent.
- The computational model is considered as a black-box.

Goal: Propagate uncertainty in \(X \) through an expensive-to-evaluate model to the random response \(Y = \mathcal{M}(X) \).

Nested Monte Carlo Algorithm

The uncertainty in parametric p-boxes can be propagated by nested MC loops.

- **Outer loop** samples the distribution parameters \(\theta \in [\theta, \bar{\theta}] \).
- **Inner loop** samples \(x \) from the distribution \(F_X(x|\theta) \).

\(\Rightarrow \) Requires a huge number of model evaluations.

\(\Rightarrow \) Speed-up achieved by using a surrogate model.

Augmented Polynomial Input Vector

Definition: \(Z \) is the vector of all parameters of all marginal distributions.

\[Z = \{ X | \Theta_X \} \]

Example: Simply Supported Truss

Problem: assess deflection \(u_i(p) \) of truss (Hurtado, 2013):

- loads \(P_i \), \(i = 1, \ldots, 7 \) independent,
- \(P_i \in [0,100] \), \(kN \), \(\sigma_{P} \in [13,17] \), \(kN \).

Augmented PCE:

- \(N = 100 \) latin-hypercube samples.
- \(N_{ph} = \{1,2,5,10\} \) phantom points.

Results: \(N_{ph} \) := convergence to true response p-box.

Conclusions

- The augmented input space allows for a distinction between aleatory and epistemic uncertainty in \(X \).
- Augmented PCE makes nested Monte Carlo simulations tractable for expensive-to-evaluate models with random input described by parametric p-boxes.
- The increased dimensionality of the augmented input space is handled with phantom points at no additional cost.
- Due to computational speed up, more advanced analyses (e.g. sensitivity analysis) become tractable.