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Zusammenfassung

Genaue Studien für Systeme bestehend aus subatomaren Teilchen sind von
fundamentalem Interesse für viele Bereiche der Physik und der Chemie. Die
grundlegenste Theorie für Systeme von elektrisch geladenen Teilchen ist die
Quantenelektrodynamik. Sie quantisiert das Materie-Feld und das Strahlungs-
Feld und verhält sich konform mit der speziellen Relativitätstheorie. Jedoch
sind Berechnungen basierend auf der Quantenelektrodynamik aufwändig. Für
Systeme, in welchen Strahlung auch klassisch beschrieben werden kann, ist
es möglich, die Quantisierung des Strahlungs-Feldes zu vernachlässigen.

Der Dirac Hamiltonian liefert eine Beschreibung für Systeme von Fermionen
mit Spin 1/2, in denen nur das Materie-Feld quantisiert ist, aber wichtige As-
pekte der speziellen Relativitätstheorie wie die Geschwindigkeitsabhängigkeit
der Masse und magnetische und Retardations-Effekte korrekt beschrieben wer-
den. Das Hauptproblem des Dirac Hamiltonians ist das nach unten unbe-
schränkte Energiespektrum. Eine Lösung für dieses Problem ist die sogenannte
”Kinetic-Balance”. Leider ist nur eine Orbital-basierte Form bekannt, jedoch
keine explizit korrelierte. Ein Teil dieser Arbeit widmet sich der Herleitung
einer explizit korrelierten ”Kinetic-Balance”.

Der Dirac Hamiltonian ist die Grundlage der relativistischen Elektronenstruk-
turtheorie. Hier nutzt man die Born–Oppenheimer-Näherung. Translation-
seffekte müssen in diesem Fall nicht berücksichtigt werden. In der nicht-
relativistischen pre-Born–Oppenheimer-Theorie können Translationseffekte mit
Hilfe einer linearen Transformation der Kartesischen Koordinaten eliminiert
werden indem man die Kartesischen Koordinaten des Massenschwerpunkts
separiert. Eine solche lineare Transformation existiert nicht für die relativis-
tische Theorie. Als Alternative präsentieren wir translationsinvariante Inte-
gralausdrücke, welche gleichermassen auf relativistische wie nicht-relativistische
Probleme angewendet werden können.

Am Ende dieser Arbeit kombinieren wir die explizit korrelierte ”Kinetic-Ba-
lance” mit den translationsinvarianten Integralausdrücken. Dies liefert eine
erst-quantisierte relativistische viel-1/2-Fermionen Theorie frei von Transla-
tionskontamination falls notwendig. Wir verwenden diese Theorie um das
Feinstrukturenergiespektrum von Wasserstoff und wasserstoffähnlichen Ionen
zu studieren. Unsere Resultate sind numerisch exakt.
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Abstract

The accurate study of systems composed of subatomic particles is of fun-
damental interest to many branches of physics and chemistry. The most
fundamental theory for systems of electrically charged subatomic particles is
quantum electrodynamics. It quantizes both the matter-field and the radiation
field and is fully compliant with special relativity. Yet, calculations based on
quantum electrodynamics are cumbersome. For systems where the radiation
can be described classically, the quantization of the radiation field can be
neglected.

The Dirac Hamiltonian provides a covariant description of systems of fermions
with spin 1/2 where only the matter field is quantized but fundamental
aspects of special relativity such as mass-velocity effects and magnetic and
retardation effects are maintained. The main issue with the Dirac Hamiltonian
is the unboundedness of the energy spectrum. A solution to this problem is
the kinetic-balance condition. However, only an orbital-based form is known
but no explicitly correlated form. One part of this work is dedicated to the
derivation of an explicitly correlated kinetic-balance condition.

The Dirac Hamiltonian is the foundation of relativistic electronic structure
theory. Here, the Born–Oppenheimer approximation is employed. Transla-
tional effects do not need to be taken into account. In the non-relativistic
pre-BO theory, it is possible to perform a linear transformation of the Cartesian
coordinates to separate the center-of-mass Cartesian coordinate to eliminate
translational effects. No such transformation exists for the relativistic theory.
As an alternative, we present a scheme of translationally invariant integrals
which can be equally employed to the relativistic and non-relativistic frame-
work as it only considers translational effects but does not explicitly rely on
the center-of-mass coordinate.

Finally, we combine the explicitly correlated kinetic-balance with the frame-
work of translationally invariant integrals. This results in a relativistic many-
1/2-fermion theory free from translational contaminations if desired. We use
this framework to study the fine-structure spectrum of atomic hydrogen and
hydrogen-like ions. Our results are numerically exact.
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1
Introduction

Explicitly correlated trial wave functions contain factors which depend on
the pairwise inter-particle distances. These factors improve the quality of
the approximation of the state function significantly. In electronic structure
theory, explicitly correlated basis functions are used in F12 and R12 methods
to approach the basis set limit without having to rely on very large basis
sets [1].

The non-relativistic description of few-body systems in terms of quantum me-
chanics is based on the Schrödinger Hamiltonian. Methods based on basis-set
expansions for approximating the many-body state function have been devel-
oped during the last few decades [2,3]. Here, the Born–Oppenheimer (BO)
approximation [4–6] is not invoked and the parametrization of the trial wave
function treats all particles on the same footing. Such methods are known as
non-Born–Oppenheimer methods. Here, we use pre-Born–Oppenheimer (pre-
BO) methods in order to stress that the BO approximation is not invoked. Due
to the correlation between the particles, explicitly correlated basis functions
are of key importance for the generation of accurate trial wave functions.

Quantum electrodynamics (QED) is the most fundamental theory for systems
of electrically charged particles. It is fully Lorentz-covariant and therefore
complies with special relativity. Yet, calculations based on QED are cumber-
some. However, for chemical systems, only the quantization of the matter field
is important and particle pair-creation and -annihilation effects are not rele-
vant. Incorporating QED effects by perturbation theory is a common method
and provides a well-understood framework for the relativistic description. Yet,

5



Chapter 1 Introduction

there are certain drawbacks. For instance, perturbative methods do not ex-
hibit variational stability. Also, it is not known if high-order corrections are
accurately included or if the method breaks down.

A different approach is based on the Dirac Hamiltonian which provides a
first-quantized description of relativity suited for the description of chemical
systems [7–13]. It is the cornerstone of relativistic quantum chemistry and,
while not being fully Lorentz-covariant, it captures relativistic effects up to
second order in terms of the fine-structure constant α for the Dirac-Coulomb
Hamiltonian. Here, all interactions are considered instantaneous in terms of
the Coulomb interaction. Magnetic and retardation effects due to the finite
speed of light can be considered by the Breit interaction. Then, relativistic
effects are correctly included up to fourth order in the fine structure constant.

The unboundedness of the Dirac Hamiltonian requires certain precautions in
order to ensure variational stability of calculations. For trial wave functions
approximated as products of orbitals, variational stability can be ensured by
generating the model spaces in terms of the kinetic-balance condition [14–25].
The first problem for the development of a relativistic many-fermion theory
is the formulation of an explicitly correlated variant of the kinetic-balance
condition.

Once variational stability is ensured, the problem of translational invariance
has to be addressed. Each observable, such as the total energy or transition
dipole moments, can be separated into a translationally invariant and a trans-
lationally dependent part. Only the translationally invariant part is of interest
since it describes the internal properties of the molecule. Thus, the transla-
tionally dependent part has to be eliminated. In the non-relativistic theory,
the translational behavior of the center-of-mass Cartesian coordinate (CMCC)
describes the translation of the total system. Then, a linear combination of
the laboratory-fixed Cartesian coordinates (LFCC) which separates the CMCC
from some set of translationally invariant Cartesian coordinates (TICC) [26]
can be used to formulate a translationally invariant Hamiltonian [27]. The
CMCC does, however, not relate to the translation of a relativistic system
so that such a separation does not yield the desired effect [28]. A related
transformation involves the center-of-momentum frame [28], where the total
momentum of the system is zero. This is fairly straightforward but leads
to the problem that the non-relativistic and the relativistic framework rely
on different schemes for the elimination of the translational contamination.
Therefore, the issue of translational invariance has to be addressed anew in
order to formulate a framework which suits the relativistic and non-relativistic
theory equally.

6



In this thesis, we address the two main issues regarding a relativistic first-
quantized many-1/2-fermion theory which obeys the variational principle and
is free from translational contaminations.
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2
Non-Relativistic

pre-Born–Oppenheimer Theory

In this chapter, we focus on the non-relativistic pre-BO framework on which
we will later ground our relativistic framework [29,30]. For a detailed pre-
sentation, we refer the reader to Refs. [3, 31, 32], and the book by Suzuki
and Varga [2].

2.1 Schrödinger Hamiltonian

The N -particle Schrödinger Hamiltonian

Ĥ = T̂ + V̂ (2.1)

is the basis of the non-relativistic pre-BO framework. We generally rely on
Hartree atomic units unless otherwise stated. It consists of the kinetic-energy
operator

T̂ = −
N∑
i=1

1

2mi

∆ri , (2.2)

where mi is the mass of particle i and ∆ri is the Laplacian with respect to
ri, the Cartesian coordinates of particle i , and the potential-energy operator
V̂ . The potential energy consists of the Coulomb interaction among pairs of
particles

V̂C =
N−1∑
i=1

N∑
j=i+1

qiqj
|ri − rj|

(2.3)

9



Chapter 2 Non-Relativistic pre-BO Theory

where qi and qj are the charges of the interacting particles, and any external
fields present. The state function Ψ(r), where rT = (rT

1 , . . . , r
T
N) collects all

one-particle Cartesian coordinates, is determined together with the energy
through the Rayleigh factor

E[Ψ] =
〈Ψ| Ĥ |Ψ〉
〈Ψ |Ψ〉

. (2.4)

The state functions are eigenfunctions of the Hamiltonian in Eq. (2.1) and are
therefore critical points of the Rayleigh factor. Additionally, the variational
principle states that any approximation of the ground-state function has an
energy which is higher than the exact ground-state energy. Thus, minimization
of the energy is a valid strategy of optimizing any approximation to the state
function.

The energies of the Hamiltonian in Eq. (2.1) contains a contamination from
translational effects because the Hamiltonian is not translationally invariant.
A method of eliminating these translational effects is to perform a linear
transformation Ux of the original r to a set of TICC x and the CMCC xCM [26][

x

xCM

]
= Uxr and r = U−1

x

[
x

xCM

]
. (2.5)

The matrix Ux is non-singular with the general super structure

Ux =

[
M

µ

]
⇔ U−1

x =
[
M ′ ε

]
(2.6)

where the parts M , a (N − 1) × N matrix, and M ′, a N × (N − 1) matrix,
depend on the choice of translationally invariant coordinates, µi = mi/mtot is
a vector of dimension N containing all mass fractions and εi = 1 is a vector
of dimension N with 1 as each entry. M and M ′ depend on the choice of
translationally invariant coordinates and obey the restrictions

N∑
j=1

(Ux)ij = 0, with i = 1, 2, . . . , N − 1 (2.7)

and

(Ux)N,j = mj/mtot, with j = 1, 2, . . . , N . (2.8)

This guarantees the translational invariance for the coordinates x.

10



Approximations of the State Function 2.2

Transforming the Hamiltonian in Eq. (2.1) to some set of TICC leads to the
translationally invariant Hamiltonian and the center-of-mass kinetic-energy
operator

ĤTICM =
N−1∑
i=1

N−1∑
j=1

Mij∇T
xi∇xi +

N∑
i=1

N∑
j=1

qiqj(
f ij ⊗ I3

)T
x

+ T̂CM (2.9)

where

Mij =
N∑
k=1

(
U−1
x

)
ik

(
U−1
x

)
jk
/(2mk) (2.10)

and

(f ij)k =
(
U−1
x

)
ik
−
(
U−1
x

)
jk

. (2.11)

By eliminating the center-of-mass kinetic-energy operator

T̂CM = − 1

2mtot

∆xCM
(2.12)

from the transformed Hamiltonian in Eq. (2.9) we obtain the translationally
invariant (TI) Hamiltonian as

ĤTI = ĤTICM − T̂CM . (2.13)

As an alternative, this Hamiltonian can also be obtained from the condition
that the combined momenta of all particles is zero [33].

The translationally invariant energy is accordingly obtained by linearly trans-
forming the Rayleigh factor in Eq. (2.4) by transforming both the Hamiltonian
and the state function and then eliminating the center-of-mass Cartesian co-
ordinate xCM. This is the basis of the traditional pre-BO theory [3,30,34].

2.2 Approximations of the State Function

The state function of the LFCC Hamiltonian in Eq. (2.1) can be separated in
terms of a spin part and a spatial part. The spatial part can then be separated
into an angular part and a radial part. The spin part can be formed from the
elementary spin states of each particle type, as the spin of the particles only
interact among the same type of particles, e.g. only electron spins interact with
each other but they do not interact with the proton spins. The elementary
spin function χSt,MSt

t for Nt particles of type t can be calculated recursively

χ
St,MSt
t (Nt) =

S1∑
i=−S1

c(X, i|St,MSt , S1)χSt−X,MSt−i
t (Nt − 1)⊗ χS1,i

t (1) , (2.14)

11



Chapter 2 Non-Relativistic pre-BO Theory

where X is to be chosen such that St − X < (Nt − 1)St, through angular
momentum recoupling using the Clebsch–Gordan coefficients

c(X, i|St,MSt , S1) = 〈St −X,MSt − i;S1, i|St,MSt〉 (2.15)

as expansion coefficients. S1 is the spin of a single particle, St and MSt are
the spin quantum numbers of the particle ensembles. The ending condition
of the recursion relation are the one-particle spin states(

χ
S1,MS1
t (1)

)
i

= δi,MS1
+S1+1 . (2.16)

The total spin state for m ensembles of particles is formed as the direct
product the elementary spin functions

χ{St},{MSt}({Nt}) = χ
S1,MS1
1 (N1)⊗ . . .⊗ χSm,MSm

m (Nm) . (2.17)

Since the spin eigenstates can be represented by vectors, an implementation
of Eq. (2.14) only involves standard routines from linear algebra.

Before, we continue with the angular part of the state function, we will
shortly discuss the spin operators related to the spin eigenstates determined
by Eq. (2.14). For a single particle with spin S, the operator which can be
most easily determined is the projection onto the z-axis ŝz. It is a diagonal
square matrix with dimension 2S + 1. The entries are then ranging from +S

to −S in steps of 1:

(ŝz)ij = δij × (S − i) . (2.18)

The other two projection matrices are more difficult to calculate. It is conve-
nient to introduce the ladder operators ŝ+ and ŝ− which are related to the
x and y projection as

ŝx =
1

2
(ŝ+ + ŝ−) (2.19)

ŝy =
i

2
(ŝ+ − ŝ−) . (2.20)

The ladder operators raise or lower the MS quantum number of the one
particle state by ±1. The matrix representation of ŝ+ and ŝ− have dimension
2S + 1 and the elements are defined as

(ŝ+)ij = δi+1,j and (ŝ−)ij = δi−1,j (2.21)

and all elements of the matrix are zero except the elements directly below
(ŝ+) or above (ŝ−) the diagonal which are 1. The last operator ŝ2 can simply
be formed as

ŝ2 = ŝ2
x + ŝ2

y + ŝ2
z (2.22)

12



Approximations of the State Function 2.2

from the matrices defined in Eqs. (2.18) – (2.20). For ensembles of particles
of the same type, the spin operators can be formed as the direct sum of the
one-particle spin operators.

The Hamiltonian in Eq. (2.1) commutes with the total spatial angular mo-
mentum operator

L̂ =
N∑
i=1

l̂i (2.23)

where l̂i is the one-particle spatial angular momentum operator of particle
i. Therefore, the state function is an eigenfunction of L̂. One method of
generating the eigenfunction is reminiscent to Eq. (2.14) where L̂ is formed
recursively through angular momentum recoupling as products of the eigen-
functions of the one-particle spatial angular momentum operators l̂i. But
these eigenfunctions are solid harmonics and the evaluation of the integrals
will be involved. Suzuki and Varga [2,35,36] have presented a general form
for the eigenfunction of L̂ for N particles. This form is known as the global
vector representation (GVR)

YML
L (v, K) = |v|2K+LY ML

L (v̂) , (2.24)

with

v = u · r , (2.25)

where u is the global-vector and K some non-negative integer.

The radial part G(r) of the state function cannot be formulated exactly like the
spin part and the spatial angular part and therefore has to be approximated.
A reliable approximation of the radial part is a linear combination of square
integrable N -particle functions

G(r) =
n∑
i=1

ciGi(r) . (2.26)

A function well suited for representing the radial part are Slater-type functions.
However, integral expressions for such functions are difficult to evaluate.
Explicitly correlated Gaussian functions (ECGs)

Gi(r) = exp

(
−1

2
rT (Ai ⊗ 13) r

)
(2.27)

provide us with an alternative to Slater-type functions and lead to integral
expressions which are more easily evaluated. Ai is a N ×N positive definite
matrix in order to ensure that the metric of the state function is non-vanishing.
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Chapter 2 Non-Relativistic pre-BO Theory

Last, we have to enforce particle-exchange symmetry onto the state function.
This can be done with the (anti-)symmetrization operator

Â =
nt∏
i

Âi (2.28)

where

Âi =
∑
p∈P

ε(p)P̂p where ε(p) =

{
1 for bosons

(−1)p for fermions
(2.29)

is the (anti-)symmetrization operator for each ensemble of a certain type of
particles.

Combining the different parts we obtain the approximate state function

Ψ(r) =
N∑
i=1

ciΦ
L
ML i(r;Ai,ui, Ki)

=
N∑
i=1

ciÂχ{S},{MS}({Nt})YML
L (vi, Ki)Gi(r) (2.30)

where ci, Ai, Ki and ui are variational parameters for each basis function
ΦL
ML i(r;Ai,ui, Ki) which we are left to optimize such that the energy defined

in Eq. (2.4) is minimal in accordance with the variational principle. The
optimization of the expansion coefficients ci can be done analytically since
they are linear parameters. Minimization of the energy with respect to the
expansion coefficients leads to the generalized eigenproblem:

HC = ESC (2.31)

where H and S are the matrix representations of the Hamiltonian and the
overlap with the elements defined as

HIJ =
〈
ΦL
ML I(r;AI ,uI , KI)

∣∣ Ĥ ∣∣ΦL
ML J(r;AJ ,uJ , KJ)

〉
(2.32)

SIJ =
〈
ΦL
ML I(r;AI ,uI , KI)

∣∣ΦL
ML J(r;AJ ,uJ , KJ)

〉
. (2.33)

The matrix C contains the expansion coefficients for the different vibrational
states and the diagonal matrix E contains the corresponding energies. Integral
expressions for the non-relativistic kinetic energy can be found in Section 4.1
and expressions for the Coulomb interaction and the overlap are presented
in Section 8.2.
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Approximations of the State Function 2.2

The spatial terms of the basis functions described in Eq. (2.30) can also be
formulated in terms of a generating function [2]:

ΦL
ML

(r;A,u, K) =
1

BKL

∫
dε̂Y L

ML
(ε̂)

{
∂λ

∂aλ
g(r;A, au⊗ ε)

}
a=0,|ε|=1

(2.34)

where λi = 2K + L and with the generating function

g(r;A, au⊗ ε) = exp

(
−1

2
rT(A⊗ 13)r + (au⊗ ε)Tr)

)
(2.35)

and

BmL =
4π(L+ 2m)!(L+m+ 1)!2L+1

m!(2L+ 2m+ 2)!
. (2.36)

Note that we have omitted the (anti-)symmetrization operator, the spin part
and the basis function index for the sake of brevity. This form is particularly
convenient for the derivation of integral expressions.

The approximation of the state function in Eq. (2.30) has the convenient
property that its form is conserved under a linear transformation of r. Thus,
the state function can be transformed to some set of TICC by transformation
of Ai and ui as

A(x) = U−T
x AU−1

x ⇔ A = UT
xA

(x)Ux (2.37)

and

u(x) = U−T
x u ⇔ u = UT

xu
(x) . (2.38)

2.2.1 Parametrization Schemes

Depending on the framework, different parametrizations exist. A simple way
of parametrizing A and A(x) is related to the Cholesky decomposition

A = LLT (2.39)

where L is a lower triangular matrix with the only restriction that its diagonal
elements are positive definite. Additionally, based on the work by Boys [37],
it is possible to parametrize A as:

Aij =

(
αii +

N∑
l=1

βil

)
δij − βij(1− δij) (2.40)
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Chapter 2 Non-Relativistic pre-BO Theory

Here the α parameters are positive definite and both the αij and βij factors
are the new variational parameters.

Furthermore, there is a parametrization originally introduced by Mátyus [30]
which will later become important to ensure translational invariance:

(A)ij = −αij(1− δij) +

(
n+1∑

k=1,k 6=i

αik

)
δij + cA

mi

mtot

mj

mtot

. (2.41)

cu =
N∑
i=1

ui . (2.42)

Here, the αij factors are the new variational parameters of A. The factors cu
and cA describe the translational properties of the basis functions. The basis
functions are translationally invariant if both cu and cA are zero. For cu, this
is not a problem. For cA, we find that A is not positive definite anymore
and the norm of the basis function vanishes. We will illustrate in chapter 4,
how to overcome this issue.

If A and u are parametrized according to Eqs. (2.41) and (2.42), their
transformed forms in terms of Ux contain a special super structure

A(x) =

[
A(x) 0

0 cA

]
and u(x) =

[
u(x)

cu

]
. (2.43)

The optimization of the parameter set is computationally expensive and it
is therefore important that the optimization scheme is reasonably efficient.
Kinghorn [38] has illustrated how the work by Magnus and Neudecker [39,40]
can be used to formulate the matrix derivative for the energy functional in
Eq. (2.4) for ECGs. Analytical gradients can be used to implement a conjugate-
gradient optimization scheme which converges the energy to the next local
minimum. For ECGs with the GVR, however, the analytical gradients are costly
and other variational schemes are better suited. Expressions for analytical
gradients using ECG and the GVR are presented in Section 8.2.

Random optimization algorithms are generally employed if the gradient cannot
be calculated or only at great computational cost. Suzuki and Varga [2,41,42]
have shown that stochastic sampling is also an efficient method of optimizing
ECGs with the GVR. Here, in each sampling step, one variational parameter is
replaced by a new random guess and kept if the energy of the new parameter
set is lower than the energy of the original parameter set. Mátyus [30]
has investigated different sampling schemes for the αij parameters in the
parametrization of A according to Eq. (2.41) and using a normal distribution
for the sampling of ln(α) resulted in the most efficient sampling scheme.
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3
Relativistic Electronic Structure

Theory

In this chapter, which was published in Ref. [9], we review essentials of the
relativistic quantum theory of many-electron systems in the external field of
atomic nuclei, which provides the grounds for relativistic quantum chemistry
[7]. This quantum theory is based on Einstein’s relativity principle, i.e., on
the two postulates that (i) the speed of light has the same constant value
for any observer and that (ii) the mathematical form of fundamental physical
laws must be the same in all frames of reference. However, computational
considerations force one to sacrifice the latter of these principles. Nevertheless,
methods of relativistic quantum chemistry turned out to yield accurate results
for molecules containing heavy atoms and for high-resolution spectroscopy.
While many reviews of the field have been published in recent years (see, e.g.,
Refs. [10,43–54]), we focus in this account on the core principles of this first-
quantized, semi-classical theory and provide an overview of the computational
obstacles that one faces when turning the theory into a practical approach
for actual calculations.

The physical theory that describes the motion of electrons and photons is
quantum electrodynamics (QED). It is a second-quantized theory which, be-
sides the matter field, also treats the radiation field as quantized. Although
only few-electron systems (typically two- or three-electron atoms) have been
studied in this framework, QED can be considered to be the fundamental
theory of chemistry. However, it turned out that the quantization of the ra-
diation field is an unnecessary burden for almost all chemical applications.
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Chapter 3 Relativistic Electronic Structure Theory

In other words, the explicit description of particles of light, i.e., photons is
almost never necessary and classical electromagnetic fields can be used in-
stead. Hence, this theory is first-quantized as it considers only the matter
field as being quantized.

Electromagnetic fields may induce a change of the state of a molecule. The
photophysics of such a process can be described either by quantum dynam-
ics, i.e., by solving the time-dependent Schrödinger equation, or by time-
dependent perturbation theory (Fermi’s golden rule). However, most pho-
tochemical processes simply require knowledge about the initial and final
states rather than about the details of the transition from one state to the
other. Accordingly, the solution of the stationary Schrödinger equation for a
many-electron system is usually sufficient for the study of electronic effects
in molecules.

Relativistic effects were considered of little importance in such a theory as
molecular physics and chemistry belong to the realm of low-energy physics.
In the 1970s this assumption was proven wrong for molecules containing
heavy atoms (i.e., those with a high nuclear charge number Z). Hence,
Schrödinger quantum mechanics, as a non-relativistic theory, is not sufficient
for the whole of chemistry. The development of a first-quantized theory, which
can account for all relativistic effects needed to understand a given problem,
is required. As for QED, this theory is advised to settle on the Dirac theory
of the electron, although its development is not as straightforward as one
might think. However, many-electron Schrödinger quantum mechanics, which
is easier to formulate, can always serve as a guiding principle — after all,
almost all of organic and bio-chemistry can be described by non-relativistic
Schrödinger quantum mechanics. Accordingly, in the past five decades much
work has been devoted to establish a relativistic analogue based on the Dirac
Hamiltonian. Here, we shall present its ingredients and discuss its pathologies
as well as their remedies.

3.1 Dirac’s Theory of the Electron

The one-electron Dirac Hamiltonian [55,56] hD provides a relativistic descrip-
tion of a single electron in an external (classical) electromagnetic potential
V

hD =
(
cα · p+ βmc2 + V

)
, (3.1)

where c is the speed of light, m is the rest mass of the electron, and
p = (px, py, pz)

T is the momentum operator. The 4×4 complex matrices
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Dirac’s Theory of the Electron 3.1

α = (α1,α2,α3) and β are called Dirac matrices. They are uniquely deter-
mined by commutation relations, but several different representations exist.
The most common choice is

αi =

[
0 σi
σi 0

]
and β =

[
12 0

0 −12

]
(3.2)

where σi are the three Pauli spin matrices

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, and σ3 =

[
1 0

0 −1

]
. (3.3)

This choice is known as the standard representation of the Dirac matrices.

The wave function of a single electron ψ(r) is an eigenfunction of hD and
thus a four-component vector matching the dimension of the Hamiltonian,
called a 4-spinor. It is convenient to transfer the 2× 2 block structure of the
Dirac matrices to the wave function,

ψ(r) =

[
ψl(r)

ψs(r)

]
. (3.4)

The two components are known as the large (superscript “l”) and the small
(superscript “s”) components (sometimes referred to as “upper” and “lower”
components). Both, the large and the small component, are 2-spinors. For a
detailed discussion of the mathematical properties of the one-electron Dirac
Hamiltonian, the reader is referred to the review by Esteban, Lewin and
Séré [57].

If the potential-energy operator V is spherically symmetric, hD commutes
with the total angular momentum operators j2/jz. However, hD does not
commute with either the orbital angular momentum operators l2/lz or the spin
operators s/sz. Thus, ψ(r) is not an eigenfunction of either pair of operators.
One can show that for the total angular momentum operator defined as

j = l14 +
~
2
σ ⊗ 12, (3.5)

with σ being the vector of Pauli spin matrices. j2 and ji, with i ∈ (x, y, z),
both commute with hD.

The eigenvalue spectrum of the one-electron Dirac Hamiltonian differs signifi-
cantly from the non-relativistic one-electron Schrödinger Hamiltonian. Figure
3.1 illustrates the spectra of both. The one of the Schrödinger Hamiltonian
consists of two parts. First, the positive continuum describing the unbound
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Chapter 3 Relativistic Electronic Structure Theory

states of the electron, and second, the discrete (quantized) bound states. The
spectrum is therefore bounded from below, and the ground-state energy is
well-defined as the global minimum of the energy spectrum. By contrast,
the spectrum of the one-electron Dirac Hamiltonian features three parts (we
follow the notation by Pestka et al. for the denomination of the individual
parts of the spectrum [58]). First, there is the positive continuum of states
Σ(+) ranging from +mc2 to +∞. Then, we find the bound states E(1) between
−mc2 and +mc2 (for small nuclear charge numbers E(1) are close to +mc2)
and finally a negative continuum Σ(−) below −mc2. Σ(−) is a set of negative-
energy states (sometimes called positronic states) spanning the energy range
(−∞,−mc2). As a consequence, the Dirac Hamiltonian is not bounded from
below. The negative-energy continuum states pose conceptual and practi-
cal difficulties. However, they also led to the discovery of the anti-electron
(the positron), although this discovery eventually required the introduction
of a new theory, namely quantum electrodynamics, in which these positrons
feature positive energies and a ground state is well-defined.

Figure 3.1: Energy eigenvalue spectra of a Schrödinger (left) and a Dirac (right) electron
in an attractive external potential. Continuum states are represented by shaded areas and
bound states by solid lines. Note the different zero-energy references: In the Schrödinger
spectrum, the electron at rest has zero energy, while the rest energy is mc2 for the Dirac
electron.

If we compare the bound states of the Schrödinger Hamiltonian and the
corresponding ones of the Dirac Hamiltonian, we see that the energies are
lowered in the Dirac spectrum. This is due to kinematic relativistic effects,
which are also called scalar-relativistic effects as the lowering of the energy
can also be observed for quasi-relativistic Hamiltonians, in which the spin
degrees of freedom have been separated and omitted. Moreover, some of
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The Relativistic N -Electron Case 3.2

the non-relativistic bound states are split in the Dirac case, which is due to
the coupling of spin and orbital angular momentum. Spin–orbit coupling is
implicitly contained in the Dirac Hamiltonian (by contrast to the Schrödinger
Hamiltonian, which does not depend on the Pauli spin matrices).

3.2 The Relativistic N -Electron Case

An explicit expression for a truly relativistic, first-quantized many-electron
Hamiltonian is not known [59]. For a fixed number of N electrons in the
external electrostatic potential of atomic nuclei, it is possible to construct an
approximate model Hamiltonian H(N+),

H(N+) = Λ(+)H(N)Λ(+) = Λ(+)H
(N)
D Λ(+) +

N∑
i<j

Λ(+)g(i, j)Λ(+) , (3.6)

where the two-electron operator g(i, j) describes the interaction of the elec-
trons i and j. H(N)

D collects the one-electron energy contributions,

H
(N)
D =

N∑
i=1

hD(i), (3.7)

with

hD(i) = 14(1)⊗ · · · ⊗ 14(i− 1)⊗ hD ⊗ 14(i+ 1)⊗ · · · ⊗ 14(N). (3.8)

The many-electron Hamiltonian for N electrons thus has a tensor structure
of dimension 4N . Although based on the Dirac Hamiltonian it possesses a
well-defined ground state by virtue of projection operators. The projection
operators Λ(+) must be defined in such a way that only the positive-energy
bound and continuum electronic states are accessible, i.e., all positronic states
are dismissed. The problem is that these projection operators are not known a
priory since they depend on the electronic solutions of H(N+). Approximations
based on quantum-electrodynamical arguments have been proposed [60–65]
and aspects involving practical calculations were studied, for example, by
Indelicato [66,67]. Recently, these issues have again attracted attention [68–
70]. For the sake of brevity, we omit the projection operators in the following
expressions.

The interaction operator g(i, j) for two electrons i and j in Eq. (3.6) can
be approximated by the electrostatic Coulomb operator (in Hartree atomic
units)

gC(i, j) =
1

|rij|
, (3.9)
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Chapter 3 Relativistic Electronic Structure Theory

where rij = ri − rj is the inter-electronic distance vector. The resulting
many-electron Hamiltonian defines the Dirac–Coulomb model. This electro-
static interaction omits magnetic interactions and assumes that the interaction
is transmitted instantaneously. Since the speed of light c is the upper limit
at which interactions between electrons are transmitted by photons, the re-
tardation of the interaction between the two electrons should be taken into
account. Retardation and magnetic effects can be approximately described to
lowest order by the frequency-independent Breit-operator,

gB(i, j) = −1

2

(
αi ·αj
|rij|

+
(rij ·αi)(rij ·αj)

|rij|3

)
, (3.10)

to be added to gC(i, j).

The non-relativistic limit of the Hamiltonian is formally obtained in the limit
of an infinite speed of light

H
(N)
NR = lim

c→∞

[
H(N) −

N∑
i=1

βmc2

]
, (3.11)

where the rest energy of all electrons has been subtracted to match the non-
relativistic energy scale. The resulting Hamiltonian yields the one-component
electronic Schrödinger Hamiltonian

H
(N)
NR →

N∑
i=1

[
p2
i

2m
+ V ext,i

]
+
∑
i<j

g̃(i, j), (3.12)

where V ext,i collects all interactions of electron i with external electromagnetic
fields (e.g., with the electrostatic field of the atomic nuclei in BO approxima-
tion) and where g̃(i, j) is the electron–electron interaction operator connected
to its relativistic analogue g(i, j) by a unitary transformation (see below).

The relativistic N -electron Hamiltonian can also be described in terms of
its model space H(N) [71]. Accordingly, H(N) can be decomposed into its
one-electron subspaces

H(N) =
[
(H(1))⊗N

]A
, (3.13)

where the superscript A indicates antisymmetry with respect to pairwise ex-
change of electrons. The one-electron model spaces H(1) can be further
decomposed into

H(1) = H(l) ⊗H(s), (3.14)

where H(l) is the model space of the large component and H(s) is the model
space of the small component [71,72].
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To understand the spectrum of the N -electron Hamiltonian, we consider the
simplest case of two electrons, i.e., N = 2, first. Figure 3.2 illustrates the
spectrum of this Hamiltonian under the assumption that the two electrons
are not interacting. We can identify six different parts according to the pair-
ing of the one-electron Dirac energies of the individual electrons (again, we
follow the notation of Pestka et al. [58]). First, there are the discrete bound
states denoted by E(2) = E

(1)
1 + E

(1)
2 ∈ (−2mc2,+2mc2) where E

(1)
1 and E

(1)
2

are the bound states of Figure 3.1. Observing that Dirac one-electron states
may also be continuum states for both of the two electrons, we can iden-
tify three additional sets of states: the positive continuum Σ(++) spans the
range (+2mc2,+∞), whereas the negative continuum Σ(−−) spans the range
(−∞,−2mc2). A third continuum is generated by a combination of negative-
energy and positive-energy continuum states. This so-called Brown–Ravenhall
continuum Σ(+−) covers the complete energy range, i.e., (−∞,+∞). It is the
reason for the non-existence of a ground state for the fully interacting two-
electron system. The final two sets are mixtures of bound and continuum
states. Here, one electron is in a bound state, while the other electron is in ei-
ther a positive- or negative-energy continuum state: The former set is denoted
as Σ

(+)
d and spans the range (E(1) + mc2,+∞), while the latter is denoted

as Σ
(−)
d and spans the range (−∞, E(1) −mc2). If the electron-electron inter-

action is now switched on, we either face continuum or autoionizing states.
In the autoionizing states, a bound state couples to the continuum, which
would lead to its decay. As a consequence, the Dirac–Coulomb model (with-
out projection) is not considered a useful physical Hamiltonian. However, it
is the most widely applied Hamiltonian as projection on the square-integrable
one-electron bound states yields remarkably accurate results, despite their de-
pendence on the choice of the projection operators (see below for a further
discussion of these issues).

It is important to understand that the preceding analysis is based on the
mathematically possible combinations of the one-electron Dirac energies in
the decoupled problem. Dirac already noted that the existence of the negative-
energy states requires a physical solution and hence proposed to occupy all
the infinitely many states by electrons, which would go unnoticed by us if the
potential created is homogeneous in space. Electron–positron pair creation is
then an excitation process of an electron from the negative-energy continuum,
the so-called Dirac sea, which leaves a (positively charged) hole, the anti-
electron, behind. This process shows a principle that is also preserved by
QED, namely that the total charge is conserved by such processes and thus a
constant of the motion. Clearly, the infinitely many negative charges in these
states create new conceptual problems as the theory was designed to describe
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Figure 3.2: Schematic representation of the spectrum of a system of two non-interacting
Dirac electrons. Continuum states are represented by shaded areas and bound states by
solid lines. The orientation of the lines in the shaded areas indicates (in addition to the
color) whether the continuum has positive- or negative-energy contributions. Note that
the bound states will be found close to +2mc2 for low nuclear charge numbers, but may
approach −2mc2 for very high nuclear charges (i.e., Z ≈ 137 for point-like nuclei or even
Z ≈ 170 for finite-sized nuclei).

only a single electron. In QED, the issue is resolved by letting these states
being accessible for anti-electrons with positive energies by virtue of normal
ordering. Here, we explicitly aim for a first-quantized theory and have to deal
with the negative-energy states. Especially in basis-set expansion approaches
(see below), they cannot be simply neglected, as this would cause basis-set
incompleteness issues — especially for molecular property calculations, for
which they must not be neglected (e.g., magnetic properties).

3.3 Approximation of the State Function

The N -electron state function Ψ can be approximated in various ways. Here,
we focus on analytic basis-set expansions, in which a model space is con-
structed from a finite number of n basis functions, rather than on numerical
grid-based methods. The state function is then obtained as a linear combi-
nation of many-electron basis functions within this model space,

Ψ =
n∑
I=1

CIΦI , (3.15)
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(in case of a complete basis set: n = ∞). The basis-set expansion will,
however, not be as straightforward as in the non-relativistic theory, which
can be understood by factorizing the model space H with respect to the
components of the state function. For N = 2 the factorization may be written
as [58]:

H(ll) =
[
Hl

1 ⊗Hl
2

]A
,

H([ls]) =
[
Hl

1 ⊗Hs
2 ⊕Hs

1 ⊗Hl
2

]A
,

H(ss) = [Hs
1 ⊗Hs

2]A . (3.16)

The individual model spaces can then be expanded analogously to Eq. (3.15).
The basis functions are functions of all electronic coordinates, r = (r1, . . . , rN).
The approximated state function Ψ has to fulfill the Pauli antisymmetry prin-
ciple, which is the reason for the ′A′ superscript in the equations above. The
antisymmetry may be explicitly written for the two-electron case, N = 2,
as [58],

Ψ(ll)(r1, r2) = −Ψ(ll)(r2, r1) ,

Ψ(ls)(r1, r2) = −Ψ(sl)(r2, r1) ,

Ψ(ss)(r1, r2) = −Ψ(ss)(r2, r1) . (3.17)

Basis functions ΦI , which also must fulfill the Pauli principle, can be con-
structed in a multitude of ways. Commonly, the N -electron basis functions are
constructed from one-electron functions, i.e., from 4-spinor basis states. It is,
however, possible to include two-electron functions already from the outset.
Such functions are convenient to describe the electronic cusp that emerges
at the coalescence point of two interacting electrons, and they are known
as correlation factors in quantum chemistry. N -electron basis functions that
contain such a dependence on inter-electronic distances are called explicitly
correlated basis functions. Since they have become popular in non-relativistic
quantum chemistry only recently (due to technical advances in the evalua-
tion of the integrals), their benefits in relativistic calculations yet have to be
exploited, although they may cause severe stability problems in relativistic
calculations (see next section).

In principle, the N -electron basis functions ΦI can be constructed directly, ex-
ploiting knowledge about the analytic form of the one-electron state functions.
However, there is no universal definition for such a function. In the origi-
nal work by Hylleraas and Undheim [73, 74] on the non-relativistic helium
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problem, the state function was directly approximated by

Ψ
({cnlm})
Hyl (r1, r2, r12) = exp

(
−1

2
(r1 + r2)

)
×

∞∑
nlm=0

cnlm(r1 + r2)n(r1 − r2)2l(r12)m, (3.18)

where cnlm are parameters to be optimized. Various studies have expanded on
this ansatz (see, e.g., Refs. [75–78]). In the relativistic realm, basis functions
constructed in the spirit of the Hylleraas state function have been successfully
applied by Pestka et al. (see Ref. [58] and references therein).

Another choice for basis functions are Gaussian-type functions, which allow
for comparatively easy analytic integral evaluation, while preserving some of
the structure of the one-electron state functions. In this case, a many-electron
basis function can be written directly in a compact form for an N -electron
system:

ΦI(r) = θ(r) exp

(
−1

2
rTA(I)r

)
. (3.19)

Recall that r collects all electronic coordinates. The matrix A(I) is a positive
definite N × N matrix containing all variational parameters of this many-
electron basis function. Note that it explicitly depends on the inter-electronic
distances rij if A(I) is a full square matrix. Such ECGs were introduced by
Boys [79] and Singer [80] into non-relativistic theory. For the simplification
of A(I) being a diagonal matrix, a decoupled basis function results,

ΦIPM
I (r) = θ(r) exp

(
−1

2
rTA

(I)
diagr

)
= θ(r)

N∏
i=1

exp

(
−A

(I)
ii

2
r2
i

)
, (3.20)

in which the individual electronic coordinates are separated and thus can only
describe the uncoupled problem well, often called the independent particle
model (IPM). Note that, for the sake of clarity, we have omitted the anti-
symmetrization step, which requires the application of an antisymmetrization
operator which implements the Pauli principle.

Boys [79] and Singer [80] chose for the angular part of a non-relativistic
basis function a product of polynomials

θP (r) =
N∏
i

xlii y
mi
i znii , (3.21)

while Suzuki and Varga developed a GVR of the eigenfunctions of the L2/Lz
operators [2,35,36]

θGVR(r) = |v|2K+LYLML
(v) . (3.22)
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with K ∈ N0, the spherical harmonics YLML
of degree L and order ML, and

the global vector
v = (u⊗ 13)r. (3.23)

The GVR has been successfully applied to non-relativistic calculations [29,30,
81–83] and can, in principle, be applied for the construction of relativistic
ECGs [81].

While we have given possible expressions for the many-electron basis functions
ΦI above, the standard procedure is to construct them step-wise in order to
find a basis-set expansion in Eq. (3.15) that is as compact as possible (for some
desired accuracy). In a first step, n = 1 is chosen. Then, the IPM is adopted
in order to write the only remaining basis function Φ1 as an antisymmetrized
direct product of N one-electron functions ψi(r),

Φ1(r) = Aψ1(r1)⊗ · · · ⊗ψN(rN), (3.24)

with A being an antisymmetrization operator, which explicitly implements
the Pauli principle (i.e., it produces all permutations of electronic coordi-
nates and changes the sign per pair permutation of coordinates). The ansatz
Ψ ≈ Φ1 defines the Dirac–Hartree–Fock model, i.e., the relativistic analogue
of Hartree–Fock theory. The individual one-electron functions ψi(r), which
are 4-spinors in the relativistic theory, are expanded in terms of one-electron
basis functions,

ψi(r) =

ni∑
j=1

c
(i)
j φj(r), (3.25)

where the spinor coefficients c(i)
j are the parameters to be determined by a

variational procedure (see below). Methods based on such basis functions
are called four-component methods. The two most common choices for a
component of the (four-component) basis spinors φj are Slater-type orbitals
(STO) [84]

φ
(STO)
j (r) = θ(r) exp (−ζj|r|) (3.26)

and Gaussian-type orbitals (GTO) [37]

φ
(GTO)
j (r) = θ(r) exp

(
−ζjr2

)
, (3.27)

where ζj > 0 are exponents to be suitably chosen and θ(r) is the angular part
of the function which is related to spherical harmonics. Boys [37] introduced

θ(r) = xlymzn (3.28)

to describe this angular part in non-relativistic calculations (Cartesian GTOs),
However, it should be noted that the most efficient way to expand a 4-spinor
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according to Eq. (3.25) is to exploit the 2×2 super-structure of the Dirac
Hamiltonian and thus to have one GTO (or STO) for each, the large and
small, component of the 4-spinor. Then, θ(r) can be chosen as a Pauli 2-
spinor which is an eigenfunction of the spin–orbit coupling operator and thus
constructed as a linear combination of products of spin and orbital angular
momentum eigenfunctions multiplied by a Clebsch–Gordan coefficient.

In recent years it has become increasingly obvious that the number of one-
electron and thus many-electron basis functions can only be reduced if the
inter-electronic distance is explicitly taken into account. Hence, explicitly cor-
related basis functions are employed in non-relativistic quantum chemistry to
make correlated methods — such as configuration interaction (CI), coupled
cluster (CC), and Møller–Plesset (MP) perturbation theory — more efficient
with respect to the number of one-electron basis functions needed for a desired
accuracy. Several variants have been analyzed in the non-relativistic frame-
work and the most efficient of them could be considered also for relativistic
calculations. While the old R12 methods directly rely on the inter-electronic
distances as factors, F12 methods use a function of the inter-electronic dis-
tance. The form of the function is determined by computational efficiency
and accuracy considerations but often reminiscent of Slater- or Gaussian-type
functions (see Refs. [85,86] for reviews). Their advent in a straightforward
application to relativistic four-component quantum-chemical methods may be
hampered by the unboundedness of the (unprojected) Dirac–Coulomb Hamil-
tonian, as we discuss in the following.

3.4 Variational Approaches

The state function of the ground state of the (projected) relativistic many-
electron Hamiltonian H(N) is a critical point of the Rayleigh quotient

E(H(N),Ψ) =
〈Ψ|H(N) |Ψ〉
〈Ψ |Ψ〉

. (3.29)

3.4.1 Variational Collapse

The critical point can be obtained by minimization of E(H(N),Ψ) with respect
to the parameters in Ψ. Depending on the ansatz in Eq. (3.15), excited states,
orthogonal to the ground state, may be obtained as well. In practice, the
relativistic variational approach is reminiscent to the one in non-relativistic
theory and thus similar methods have been developed [87–89]. It must be
emphasized, though, that they all require some sort of projection onto the
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positive-energy states as the unboundedness of H(N) would otherwise create
a collapse of any variational procedure yielding dramatically negative and
totally artificial electronic energies. Most of these projections are implicit by
making sure that the one-electron basis functions fulfill the kinetic-balance
condition, i.e., the relation between large and small components of the Dirac
4-spinor (see Refs. [23–25] for recent discussions and for further references
cited therein) and that only square-integrable, i.e., bound-state solutions are
obtained. One may show that the lowest-energy bound state is a saddle point
of E(H(N),Ψ) with respect to the extremalization of the corresponding large
and small components in Ψ [90–92]. Apart from the variational collapse, the
expansion of the state function in terms of a finite one-electron basis set can
lead to approximate energies which are close to the complete-basis-set result
but lower, which has been called prolapse by Fægri [93]. Subsection 3.4.3
focuses on this problem by presenting its origin and possible solutions. Fur-
thermore, if explicitly correlated basis functions are used the Brown–Ravenhall
continuum causes variational issues because of the energetical overlap of the
set of bound states and Σ(+−). Subsection 3.4.5 focuses on this problem
and reviews a possible solution: the Complex Coordinate Rotation (CCR)
method. For the next subsection, we assume that the Dirac–Coulomb model
with projection is applied.

3.4.2 Four-Component Methods

If the state function is minimized with respect to the expansion parameters
of Eq. (3.15), the resulting methods are called CI or exact-diagonalization
methods. There are various flavours of CI methods depending on the types of
function from which the model space is constructed (see [94] for an overview
in the non-relativistic case). Minimization of E(H(N),ΨCI) with respect to
the CI expansion parameters yields the general eigenproblem

HC = SCE, (3.30)

where H is an n×n matrix with elements HIJ = 〈φI |H(N) |φJ〉. The matrix
C collects the eigenvectors of H containing the CI expansion parameters of
Eq. (3.15) for different electronic states (note that the state index had not
explicitly been denoted in all previous equations). S is an n × n overlap
matrix which reduces to the n-dimensional unit matrix for orhogonal basis
functions ΦI . The elements of this metric are calculated by SIJ = 〈ΦI |ΦJ〉.
E is an n×n diagonal matrix containing the energies of the electronic states.

Minimization of E(H(N),Φ1) with respect to the expansion parameters of the
one-electron basis functions as described in Eq. (3.25) leads to the relativis-
tic Dirac–Hartree–Fock–Roothaan equations which we refrain from explicitly
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writing down for the sake of brevity. As for non-relativistic Roothaan–Hall
equations [95, 96], the coefficient functions in these equations depend on
their solution and hence they have to be solved iteratively resulting in a self-
consisting field (SCF) algorithm. The interaction of the electrons is treated
in an averaged way in the IPM. In order to improve on the IPM, the approx-
imation for the state function can be extended in post-DHF methods, called
correlation methods, by increasing the number of many-electron basis func-
tions in Eq. (3.15). Existing correlation methods, for which we provide only
a few selected references for the sake of brevity, comprise MP perturbation
theory (non-relativistic: [97,98]; relativistic: [99–101]), CI (non-relativistic.:
[102–104]; relativistic.: [105–108]), multi-configuration SCF (MCSCF) (non-
relativistic Refs.: [109–111]; relativistic Refs.: [66, 112–116]) including the
complete active space SCF (CASSCF) variant (non-relativistic: [117,118]; rel-
ativistic: [119]), and CC (non-relativistic: [120–123]; relativistic: [124–127]).

One aspect of avoiding variational collapse is based on relating the one-
electron model spaces Hl and Hs to one another [14–18] and constructing
the basis functions accordingly. From the structure of the one-electron Dirac
Hamiltonian, one can show that the two model spaces are related by [18]

cσ · p
2mc2 − V + E

Hl ⊂ Hs . (3.31)

Noting that 2mc2 � E − V for molecules, we see that this relation can be
approximately fulfilled as

σ · p
2mc

Hl ⊂ Hs . (3.32)

which is the (approximate) kinetic-balance condition [15]. Basis functions
that fulfill the kinetic-balance condition must be used to construct 4-spinors.
In the same way as one can relate Hl to Hs, the opposite is also possible. Basis
sets constructed from both relations are called dual basis sets [23,128] and
are considered to show better variational stability and faster and smoother
convergence [25]. Note that the relation in Eq. (3.32) has been derived in
terms of the one-electron model spaces. Therefore, they can only be applied
to basis sets generated from one-electron functions such as STO or GTO. For
explicitly correlated basis function no simple relations exist [18,58,72].

3.4.3 Prolapse

The origin of prolapse can be studied already for a single electron. For an
exact representation of its one-electron state function in a complete basis, the
identity [90]

[σ · p]2 = [p2] (3.33)
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holds, where the square brackets denote the matrix representation of the
operators. This relation is associated with the non-relativistic limit discussed
in section 3.1. In a finite basis set, the identity is not fulfilled anymore, but
the following relation holds [129,130]:

[σ · p]2ii < [p2]ii = −2m[T ]ii. (3.34)

This effect has been called the finite-basis disease [90] and can be related to
the (non-relativistic) kinetic energy T .

3.4.4 Two-Component Methods

For molecular physics and chemistry, the creation of electron–positron pairs
is not an energetically feasible process as it would require an energy of at
least 2mc2. Hence, a relativistic first-quantized theory for molecular sciences
does not need to account for this process. Accordingly, the negative-energy
continuum states could already be eliminated at the level of the one-electron
Hamiltonian so that all pathologies known for the four-component methods
can be eliminated from the outset. A block diagonalization of the Dirac
Hamiltonian can achieve this goal and yields decoupled positive- and negative-
energy states so that one may focus on the block of the Hamiltonian that yields
the positive-energy states. The corresponding state function then features only
two components, which is the reason for the name of these methods.

The block diagonalization can be achieved by a suitable unitary transformation
U of the Dirac Hamiltonian hD,

UhDU
† =

[
hD+ 0

0 hD−

]
and Uψ =

[
ψ̃
l

0

]
. (3.35)

There exist many different possibilities for choosing U , which can be grouped
into three families. First, there are sequential approaches, which expand the
transformation U in a series of unitary transformations:

U = . . .U 3U 2U 1U 0 . (3.36)

The only variationally stable one among these is based on a transformation
by Douglas and Kroll [131] and was developed into a working method by
Hess [132]. It expands hD in terms of the potential V and can be conveniently
evaluated in a one-electron basis set that diagonalizes the squared momentum
operator, i.e., the matrix p2. This method is called the Douglas–Kroll–Hess
(DKH) method [47, 49, 133] and the transformed Hamiltonian is known as
the Douglas–Kroll–Hess Hamiltonian (of some order in V ). The exact DKH
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transformation requires an infinite number of decoupling steps [134,135]. In
practical calculations, the transformation is truncated after some sufficiently
high order. For valence properties, second order is often sufficient, but fourth
order is recommended [136,137]. For core properties, like the contact density
[138–141], higher orders are required, which can be efficiently derived in
practical calculations [142–144]. Siedentop and Stockmeyer have studied the
convergence behaviour of DKH Hamiltonians analytically [145,146].

Furthermore, a two-step method exists which is based on work by Barysz,
Sadlej, and Snijders and therefore called in our work BSS approach [147–150].
The first step of the transformation UBSS is the free-particle Foldy–Wouthuysen
transformation [151] U fpFW of hD, which was inspired by the fact that this is
the mandatory first transformation in the DKH protocol [134]. However, for
a Dirac electron in an electrostatic potential, the fpFW unitary transformation
cannot achieve block diagonalization. Exact decoupling is then achieved only
after a second unitary transformation U 1, i.e.,

UBSS = U 1U fpFW . (3.37)

The second transformation can be expressed in terms of a non-hermitian
operator R

U 1(R) =

[
(12 +R†R)−1/2 (12 +R†R)−1/2R†

−(12 +RR†)−1/2R (12 +RR†)−1/2

]
. (3.38)

The matrix form of R is obtained iteratively by solving the matrix equation

hssR = Rhll +RhlsR− hsl. (3.39)

The third method yields U in a single step. It is rather straightforward to
show that the kinetic-balance relation

ψs = Xψl, (3.40)

which relates the large and small component of the 4-spinor through the
action of an operator X, can be used to provide an analytic expression of
the unitary transformation [22],

UX2C(X) =

[
(12 +X†X)−1/2 (12 +X†X)−1/2X†

−(12 +XX†)−1/2X (12 +XX†)−1/2

]
. (3.41)

Note that the above equation was also the foundation for Eq. (3.38). For a
one-electron Dirac Hamiltonian neglecting electron–electron interaction oper-
ators, X can be efficiently calculated from its eigenfunctions (but requires a
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diagonalization of its matrix representation in a one-electron 4-spinor basis
set). Neglecting the two-electron interaction for the unitary transformation
introduces a picture-change error [152] on the electron–electron interaction,
which turns out to be small in most cases though. The one-step approach
has become known as the exact two-component approach (X2C) [153–164].

For a direct comparison of all three unitary decoupling approaches we refer
the interested reader to Ref. [48].

Another variational scheme for the elimination of the small component of the
spinor is the regular approximation. Its most prominent variant is the zeroth-
order regular-approximation (ZORA) [165–171]. It employs only the first
term of the Taylor-series expansion that defines the regular approximation.
ZORA is a computationally cheap method and has become very successful in
chemistry, especially for the calculation of molecular properties [172,173].

3.4.5 Brown–Ravenhall Disease and its Cure

For more than one electron, employing an expansion in terms of explicitly
correlated basis functions without any projection tricks, the overlap between
the Brown–Ravenhall continuum Σ(+−) and the bound states E(N) causes an
arbitrary decrease of the N -electron energy E(N) depending on the finite basis
chosen. This unphysical effect is called the Brown–Ravenhall disease [174]
and is a potential source for variational collapse. Bound states coupling to a
continuum are generally called resonances. Since resonances are self-decaying
states with a finite life time τ and constitute a common problem in scattering
theory, several methods have been developed to overcome this problem. A
reliable method to treat resonances is the CCR method [175–178] (also known
as Complex Scaling). The interested reader is referred to either the review
by Reinhardt [179] or the one by Ho [180]; also the book on resonances by
Kukulin, Krasnopol’sky and Horáček [181] contains a chapter on CCR. The
CCR method is based on the transformation

r 7→ r exp(iΘ), (3.42)

where Θ is called the rotation angle. After this transformation, Eq. (3.6)
becomes

H(N)(r exp(iΘ))Ψ(r) = zΨ(r) (3.43)

where z is a complex number. The real and imaginary parts of z have
very distinct physical meanings. Re(z) is the energy of the state, whereas
Γ = −2Im(z) is the width of the resonance and is related to the life time τ of
the state as τ = ~/Γ. Since bound states are stable and not auto-decaying in a
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stationary problem, their life time is infinite and thus Γbound = 0. This implies
that bound states are not affected by the choice of Θ as long as |Θ| ≤ π/2.
The continuum states, however, are rotated into the complex plane by an the
angle Θ. Figure 3.3, drafted after the figures given in Refs. [58, 182, 183],
illustrates the eigenvalue spectra of a one-electron and a two-electron system
after the dilatation transformation described in Eq. (3.42) has been carried
out. In the one-electron case [58], we find several bound states, marked

Figure 3.3: Sketch of the spectra of a one-electron and a two-electron system after the
dilatation transformation in Eq. (3.42) drafted according to the figures in Refs. [58,182,183].
Bound states are marked with crosses on the real axis along the origin of the imaginary
axis. Continuum states are represented by solid lines.

by crosses along the real axis on the origin of the imaginary axis. The
two sets of continuum states, Σ(+) and Σ(−), are represented by solid lines
starting from Re(z) = mc2 and Re(z) = −mc2. These starting points are called
resonance thresholds. The two-electron case features a total of five sets of
continuum states [58]. The Σ(++) and Σ(−−) states have resonance thresholds
of Re(z) = 2mc2 and Re(z) = −2mc2, whereas the Σ

(+)
d and Σ

(−)
d states have

thresholds with values depending on the states of the bound electron. The
Brown–Ravenhall continuum Σ(+−) has no threshold but crosses the imaginary
axis at Re(z) = 0. We can clearly see how the bound states are now no longer
energetically overlapping with the continuum states and thus do not couple.
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3.5 Relativistic Calculations on Atoms and Molecules

Differences between the results of non-relativistic and relativistic quantum
chemistry are generally denoted as relativistic effects. Pyykkö has published
a series of reviews [52, 184, 185] discussing relativistic effects in chemistry
in great detail. Here, we limit ourselves to the simplest cases, namely, one-
and two-electron atoms and the dihydrogen molecule.

3.5.1 One- and Two-Electron Atoms

Analytical solutions of one-electron atoms are known [186–188]. After a
shift by the rest energy −c2 (all in Hartree atomic units) to match the non-
relativistic energy scale, the associated energies of the ground state is

EH,R(Z) = c2
[√

(1− (Z/c)2 − 1
]
, (3.44)

where Z is the charge number of the nucleus considered to be a point charge.

For two-electron atoms, no explicit solutions exist. However, such systems
have been subject to extensive work employing different approximation meth-
ods (see, e.g., Refs. [67, 189–191]). Pestka and co-workers calculated the
ground-state energy by means of CI-type expansions [58, 72, 182, 189, 192,
193]. The model space was factorized according to Eq. (3.16) and the ground
state fulfills the relations described in Eq. (3.17). The basis functions from
which the model space was constructed are Hylleraas-type functions [72]
with the Brown–Ravenhall disease cured by means of CCR.

Figure 3.4 shows a graph of the relativistic and non-relativistic energies for
both, one and two-electron atoms. We can clearly see that, for light nuclei, the
difference between the relativistic and non-relativistic energies are marginal.
For atoms with increasing Z, however, the relativistic total electronic energies
are considerably lower than the corresponding non-relativistic ones.

3.5.2 Dissociation Energy of Molecular Hydrogen

The simplest molecule one can think of is dihydrogen. Its bond energy has
recently been measured to unprecedented precision [195–197]. Pachucki and
co-workers [198,199] calculated the dissociation energy of molecular hydro-
gen and its deuterated isotopologs HD and D2. These theoretical results were
obtained by means of relativistic and quantum electrodynamical corrections
to the non-relativistic energy. The corrections are defined by a Taylor-series
expansion in terms of the fine-structure constant α = 1/c (in Hartree atomic
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Figure 3.4: Variational electronic energies (divided by Z2) for hydrogen- and helium-like
atoms of nuclear charge numbers Z up to 137, which is the maximum possible nuclear
charge number for point-like nuclei. The relativistic energies are represented by a solid
line. They are analytic for the hydrogen-like atoms and taken from the work of Pestka and
co-workers [72] for the helium-like atoms. The non-relativistic energies are represented
by a dotted line. They are analytic for the hydrogen-like atoms and were taken from the
work of Ottschofski and Kutzelnigg [194] for the helium-like atoms.

units). The agreement with experiment is remarkable, as can be seen from
Table 3.1.

In their work, Pachucki and co-workers included terms of an order up to
α = 4.

3.6 Summary

In this chapter, we have attempted to provide a brief, but self-contained de-
scription of the development of the relativistic first-quantized, semi-classical
many-electron theory for molecular physics and chemistry. As can be under-
stood from the list of references, this theory is still an active field of research.
In the future, we will continue to see emerging approximation methods based
on one-electron spinors as well as those for highly accurate calculations based
on explicitly correlated basis functions.
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4
Translationally Invariant Integrals

Expressions for the calculation of intrinsic properties of molecules should be
free of contributions from their overall translation. In the commonly used
BO approximation, the nuclei are fixed, and thus the translational contribu-
tion is automatically separated. In several combined electron-nuclear orbital
approaches [200–202] the translational dependence is eliminated automat-
ically by fixing one or a few heavy particles. Here, we consider molecules
as many-particle quantum systems with electrons and nuclei both treated as
quantum particles on equal footing in the pre-BO quantum theory.

Traditionally, in rovibrational calculations, in which all nuclei are treated as
quantum particles on a potential-energy surface [203–207], the first step is the
separation of the Cartesian coordinates of the center of mass followed by the
definition of a body-fixed frame, orientational angles, and internal coordinates.
This approach results in the replacement of the original LFCC with curvilinear
coordinates and the corresponding very complicated, translationally invariant
rotational-vibrational Hamiltonians, see for example [208].

Less complicated translationally invariant Hamiltonians are used in full pre-BO
calculations, where the original LFCC are replaced by some set of TICCs and
the CMCC are separated [3,29,30,34,82,83]. Although the resulting TICCs
are rectilinear coordinates, the corresponding Hamiltonian is still complicated.
It is therefore reasonable to ask whether we can make our calculations even
simpler, using the original LFCC formalism without having to rely on any
coordinate transformation at all. In this chapter we therefore explore the
usage of LFCCs in pre-BO calculations.
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Chapter 4 Translationally Invariant Integrals

If LFCCs are used one has to make sure that the energy of the overall
translation of the system is eliminated. The most straightforward way is the
subtraction of the kinetic-energy operator of the center of mass from the
total Hamiltonian, which, however, requires the evaluation of an additional
integral with mixed coordinate second derivatives [209, 210]. To avoid this
additional integral evaluation we develop here an alternative approach.

In short, our computational strategy in the LFCC formalism to obtain eigen-
states with various angular momentum quantum number is as follows. In our
variational procedure we use basis functions, which are eigenfunctions of the
total spatial angular momentum operators, L̂2 and L̂z [30]. This is the sim-
plest way to make sure that we obtain angular momentum eigenstates, since
rotational “contamination” cannot be removed by a simple subtraction of a
term from the full Hamiltonian [210,211]. Then, we investigate the effect of
the parametrisation of the basis functions on the translational contamination
of the total energy and correct for it during the evaluation of the integrals
in the LFCC formalism. This chapter was published in Ref. [81].

4.1 Non-Relativistic Kinetic Energy

In spite of the parametrisation difficulties described in Section 2.2, we in-
tend to use the LFCC formalism to construct the matrix representation for
the quantum Hamiltonian because of its original simplicity. We repeat here
only the necessary expressions from Ref. [30] and for the original integral
derivation see [2].

The matrix element of the kinetic-energy operator for the Ith and Jth quasi-
normalized basis (normalization with respect to the spatial basis functions)
functions is [30]:

TIJ = −1

2

N∑
i=1

〈ψI |∇T
ri

(M ⊗ 13)∇ri |ψJ〉
|ψI | |ψJ |

= D3/4

(
puI ,uI
quI

)KI (puJ ,uJ
quJ

)KJ
×
(

puI ,uJ√
quIquJ

)L min(KI ,KJ )∑
m=0

(
puI ,uJpuI ,uJ
puI ,uIpuJ ,uJ

)m [
RIJ + (KI −m)

PuI ,uI
puI ,uI

+(KJ −m)
PuJ ,uJ
puJ ,uJ

+ (L+ 2m)
PuI ,uJ
puI ,uJ

]
HLKIKJm (4.1)

where M is a diagonal matrix with Mii = 1/mi. The HLKIKJm terms are
precalculated factors

HLKIKJm =
4m(L+m+ 1)!

(KI −m)!(KJ −m)!m!(2L+ 2m+ 1)!
× 1√

FKILFKJL
(4.2)
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in order to increase efficiency and ensure numerical stability with the terms

FKL =
K∑
m=0

4m(L+m+ 1)!

(K −m)!(K −m)!m!(2L+ 2m+ 2)!
(4.3)

stemming from the quasi-normalization

|ψZ | = (〈ψZ |ψZ〉)
1
2 with Z ∈ {I, J}. (4.4)

For more information on quasi-normalized basis functions the reader is refered
to Ref. [30].

Furthermore we introduced short-hand notations for terms which we have to
study in terms of their dependence on cA as defined in Eq. (2.42). One term
we have to study is

D =
det(2AI) det(2AJ)

det(AIJ) det(AIJ)
(4.5)

stemming from the origin-centered Gaussian functions, where AIJ = AI+AJ .
Furthermore we have to analyze the terms depending on the global vectors

puX ,uY = uTXA
−1
IJuY with X, Y ∈ {I, J} (4.6)

PuI ,uI = −uTIA−1
IJAJMAJA

−1
IJuI (4.7)

PuJ ,uJ = −uTJA−1
IJAIMAIA

−1
IJuJ (4.8)

PuI ,uJ = uTIA
−1
IJAJMAIA

−1
IJuJ , (4.9)

the terms from the quasi-normalization

quZ =
1

2
uTZA

−1
Z uZ with Z ∈ {I, J} (4.10)

and the term

RIJ =
3

2
Tr
[
A−1
IJAJMAI

]
(4.11)

which can be associated with the radial motion of the system [38].

Here, we immediately see that the singularity of AI and AJ would cause
terms in Eqs. (4.5) – (4.11) to be not defined. The singularity is introduced
if the cA = 0 selection is made to guarantee translation-free expressions.

Since the potential-energy terms in Eq. (2.3) depend only on the inter-particle
distances, we can choose any cA > 0 value and evaluate the matrix elements
without any problem and the resulting potential-energy matrix elements are
independent of the value of cA. So, they are not discussed here any longer
and are evaluated according to Ref. [30].
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4.2 Identification and Elimination Strategy for the Transla-
tional Contamination

In Section 2.2, we noted that the ECGs take the same mathematical form,
independent of whether we choose the LFCCs r, or some xTICM. This simple
transformation behavior also transfers to the expressions of the integrals. Due
to this property we can study the influence of cA on the different terms in
Eqs. (4.5) – (4.11), only the parameter matrices AI ,AJ and uI ,uJ corre-
sponding to r have to be replaced by their according expressions in terms of
A

(x)
I ,A

(x)
J and u(x)

I ,u
(x)
J corresponding to xTICM. The parameter matrices are

related by the transformation given in Eqs. (2.37) – (2.38), and A
(x)
I ,A

(x)
J

and u(x)
I ,u

(x)
J have block structure, Eq. (2.43).

Firstly, let us consider the RIJ term of the kinetic-energy matrix elements,
Eq. (4.11), explicitly. We analyze the properties of RIJ with respect to cA
using the TICC formalism:

RIJ =
3

2
Tr
[
A−1
IJAJMAI

]
=

3

2
Tr
[
(A

(x)
IJ )−1A

(x)
J UxMUT

xA
(x)
I

]
(4.12)

and also exploit the block structure of the matrices,

A(x)
z =

[
A(x)
z 0

0 cA

]
and UxMUT

x =

[
µ(x) 0

0 cM

]
, (4.13)

with z ∈ {I, J, IJ}. The block structure of UxMUT
x follows from the con-

ditions of translation invariance, Eqs. (2.7) and (2.8), for x. We can thus
separate the cA-dependent terms in RIJ :

RIJ = RInt
IJ +

3

4
cAcM =

3

2
Tr
[
(A(x)

IJ )−1A(x)
J µ

(x)A(x)
I

]
+

3

4
cAcM . (4.14)

The cM factor of the linear contribution is

cM = (UxMUT
x )N,N =

N∑
i=1

(Ux)
2
N,i/mi = 1/mtot . (4.15)

and thus with cM = 1/mtot

RIJ = RInt
IJ +

3

4

cA
mtot

. (4.16)

Next, we investigate the cA dependence of the remaining terms and factors,
Eqs. (4.5) – (4.10), of the matrix representation of the kinetic energy in
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Elimination of the Translational Contamination 4.2

the LFCC formalism, Eq. (4.1). In Eq. (4.5) we find that any contribution
of cA cancels. In Eqs. (4.10) and (4.6) we see that cA only contributes if
cu > 0. Since we require cu = 0, this contribution is eliminated. Finally,
in Eqs. (4.7) – (4.9) we find that the contribution of cA to the exponent
matrices cancel. In short, only the RIJ term, Eq. (4.11), has a non-vanishing
(linear) cA dependence in the kinetic-energy matrix element, TIJ .

Thus, if cA = 0 was chosen, the translational dependence vanishes, but the
exponents matrices, AI ,AJ , are singular without having an inverse. Thus, for
an implementation in a computer program we can choose a non-zero value
for cA, and eliminate the translational contribution explicitly by subtracting
3cA/(4mtot) from the RIJ matrix element. This is a simple computational
strategy which we are going to follow in the LFCC formalism.

We also note here that the direct variational optimisation of all parameters,
including cA here, would be another option that has been suggested already
in the literature, e.g., in Ref. [201]. From the theoretical details presented so
far, we understand that the total energy with cA > 0 is always an upper bound
to the total energy free of the overall translation of the system, Etot(cA) ≥ ETI.
But as we have shown for cA = 0 several parameter matrices incorporated in
Etot(cA) are singular, so in spite of the fact that the limit exists, the application
in a computer program is problematic (cu = 0 is chosen throughout the
discussion).

This explains our preference for the approach developed here, which releases
the translation-free condition for the basis functions and corrects for the
translational contamination in the kinetic energy explicitly for each basis
function, I = 1, 2, . . . , N . The details of our algorithm are:

1. Generate, optimize or read in the αI,ij values for

i = 1, 2, . . . , N, j = i+ 1, i+ 2, . . . , N .

2. Construct the elements of the exponent matrix in the LFCC formalism as

(AI)ij = −αI,ij(1− δij) +

(
N∑

k=1,k 6=i

αI,ik

)
δij + cA

mi

mtot

mi

mtot

with i, j = 1, 2, . . . , N and cA > 0.

3. Due to the cA > 0 choice the matrix AI is non-singular, and 1/ det(AI) and
A−1
I can be calculated. At the same time the total kinetic energy contains

some translational contamination.
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Chapter 4 Translationally Invariant Integrals

4. The translational contamination is eliminated by replacing RIJ , Eq. (4.11),
with RIJ − 3cA/(4mtot) in the expression of the kinetic-energy matrix ele-
ment, TIJ , Eq. (4.1).

Throughout this computational strategy for the elimination of the translational
contamination in the LFCC formalism we have cu = 0, cA > 0.

4.3 Numerical Examples

In this section we present numerical applications using the LFCC formal-
ism. The appearance of the translational contamination and its elimination
according to the strategy described in Section 4.2 are demonstrated.

Our test cases are the lowest energy levels of the para-H2 (L = 0, p = +1) and
the ortho-H2 (L = 1, p = −1) molecules both in the singlet electronic state.
These are the two lowest-energy rotational states of the hydrogen molecule. L
is the total spatial (orbital and rotational) quantum number and p is the parity.
The wave functions are obtained by a direct solution of the linear variational
problem using 1500 basis functions with an optimized parametrisation taken
from [30]. Here we use the LFCC formalism exclusively, thus all parameters
were transformed first to the LFCC representation, according to Eqs. (2.37)
and (2.38). The exponent matrix for each basis function was constructed
according to Eq. (2.41). During this transformation we were free to choose
cA to simulate different levels of translational contamination, while cu = 0

was fixed. We used the same cA value for each basis function. Table 4.1
collects the results of our numerical calculations.

The first column of Table 4.1 lists the five values of cA which have been stud-
ied. The next two columns provide the total energies of the system with and
without translational contamination, respectively. The last two columns list
the kinetic-energy contribution with and without translational contamination,
respectively. We observe that those energies, which contain translational con-
tributions (columns 2 and 4) depend on the value of cA and that an increase
of the value of cA causes an increase of the energy, according to Section 4.2.
We also note that the corrected energies (columns 3 and 5) are independent
of cA. Furthermore, we list the translational correction given in Eq. (4.16).
Hence, these results give a numerical confirmation that we have identified
and eliminated the translational contamination depending on the cA basis
function parameter, while choosing cu = 0.
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4.4 Summary

Instead of transforming the coordinates we accounted for the translational
and rotational invariances of the isolated many-particle problem by using an
appropriate form and parametrisation of the basis functions in the variational
procedure. The basis functions were constructed using ECGs and the GVR,
and as an extension of our earlier work [30] we focused here on the usage
of LFCCs and the problem of translational invariance.

First of all, we observed that it is impossible to parametrize explicitly cor-
related Gaussian functions (ECGs) in such a way that the total system is at
rest in LFCCs and at the same time the basis functions are square-integrable
with a non-vanishing norm.

Fortunately, it was possible to devise a simple computational strategy to cir-
cumvent this problem. So, for the sake of the stability of the numerical com-
putations we released the translational constraint on the basis functions, by
choosing a non-zero value for the free parameter, cA, in the LFCC parametrisa-
tion of the ECG exponents, and then explicitly corrected for the translational
contamination in the kinetic-energy integral expressions. This correction term
is a simple constant, which depends linearly on cA. Its form was derived by
considering a few mathematical relationship of the formalism: a) the proper-
ties of the linear transformation between LFCCs and translationally invariant
and center-of-mass Cartesian coordinates (TICMCCs); b) the corresponding
transformation of the basis function parameter matrices; c) the fact that the
parameter matrices are block diagonal in TICMCCs.

It was also shown that the uncorrected total energy Etot(cA) is an upper bound
to the translation-free total (intrinsic) energy. Thus, in principle, we could
obtain this value by the variational optimisation of the LFCC parametrisation
(implicitly including the cA value in the optimisation). We prefer, however,
our explicit treatment for the elimination of the translational contamination,
because in the cA = 0 limit the exponent matrix, A, of each ECG would be
singular, and thus the numerical evaluation of 1/ det(A) and A−1 would be
impossible.

Finally, to demonstrate the numerical applicability of our approach we cal-
culated the lowest two rotational levels of the singlet hydrogen molecule
corresponding to the para and ortho proton spin states, respectively.

The presented LFCC formalism with the explicit translational contamination
correction is an alternative but equivalent to the traditional approaches using
some set of TICC with the Cartesian coordinates of the center of mass explicitly

46



Summary 4.4

separated already in the Hamiltonian, e.g. [30, 34]. The simplicity of the
LFCCs is an appealing choice for the variational solution of the Schrödinger
equation with the non-relativistic Hamiltonian. Furthermore, one can think
of more complicated operators for which the usage of the simplest possible
coordinate representation and the avoidance of any coordinate transformation
is more than just a comfortable option.
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5
Transition Dipole Moments using
Translationally Invariant Integrals

In this chapter we are interested in the evaluation of the electric transition
dipole moment. In a semi-classical picture, it mediates transitions between
two rovibrational or rovibronic states of a molecule induced by the electric
component of electromagnetic-radiation. Nowadays, most calculations rely
on the BO approximation which separates the electronic and nuclear degrees
of freedom. For small systems, however, very accurate calculations can be
carried out if the BO approximation is avoided. Simultaneous description
of electrons and nuclei using ECGs has been pioneered by the Adamowicz
group [3,31] and Suzuki and Varga [2,35,36]. In the present work we follow
these lines and extend our earlier work [29,30,81]. The basis functions are
constructed using ECGs [79, 80, 212–214] and the GVR [2, 35, 36] in order
to ensure that the wave function is an eigenfunction of the total spatial
angular momentum operators, L̂2 and L̂z, and parity. The basis function
parameters are optimized variationally through stochastic sampling. Rather
than relying on a set of Cartesian coordinates which separates the TICC from
the center of mass, we use LFCC. Any translational contamination to the total
energy is eliminated from the integrals as presented in chapter 4 [81]. We
illustrate in this chapter that this scheme can be applied to the calculation of
molecular properties such as the electric transition dipole moment. Previous
calculations in the literature of the electric transition dipole moment in a
pre-BO framework have been performed in TICC [215, 216]. This chapter
was published in Ref. [217].

49



Chapter 5 Transition Dipole Moments

5.1 Electric Permanent and Transition Dipole Moments in
Pre-BO Theory

In this chapter, we are interested in the components of the electric transition
dipole moment in pre-BO theory. In systems containing N particles the electric
dipole moment operator is defined as

µ̂ =
N∑
i=1

qiri (5.1)

where qi and ri are the electric charge and position of particle i, respectively.
This operator has odd parity and describes both permanent and transition
dipole moments. But although being closely related, there are significant
conceptual differences between the two types of dipole moments which we
will discuss in this section.

Molecules described in the BO approximation have generally a non-zero per-
manent electric dipole moment (i.e. they are polar). The only exceptions are
molecules which are non-polar due to certain symmetry properties contained
within the molecular structure (e.g. methane, benzene or H2). This illustrates
how closely the molecular structure and the permanent electric dipole are
related. The concept of structure (or shape) where the nuclei form a rigid
scaffold, which is stabilized by the electrons, is the core concept in chemistry
and clearly defined in the BO picture. Yet, there is currently no complete
understanding how this concept is to be interpreted in a pre-BO framework
since the nuclei are not fixed but treated as quantum particles to which par-
ticle densities are assigned. Several authors have been discussing the subject
in great detail [82,83,200,202,218–231].

Generally, the symmetry properties of a pre-BO wave function are enough to
gain some information about pre-BO permanent dipole moments. The total
pre-BO wave function is an eigenfunction of the parity operator if no external
potential is present. This is due to the isotropy of space and the resulting
conservation of the total spatial angular momentum. The parity of the pre-BO
wave function together with the odd parity of the dipole moment operator
results in an integral over a function with ungerade symmetry and therefore
always evaluates to zero. Yet, the squared length of the dipole moment

µ̂Tµ̂ =
N∑
j=1

N∑
i=1

qiqjr
T
i rj , (5.2)

has even parity. Thus, the integral of the squared length has gerade symmetry
and is not strictly zero. We can conclude from this that a pre-BO wave function
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Dipole Moments in Pre-BO Theory 5.1

has no permanent dipole moment but can still be polarized. This indicates
that the permanent dipole does not exist due to the symmetry properties of
the wave function. This idea might be investigated in later work. Another
method to determine the permanent transition dipole moment (and higher-
order electric properties) was presented by Cafiero, Bubin and Adamowicz
[34]. They included the interaction energy of an external electric field with
the permanent electric dipole in the total Hamiltonian and extrapolated the
zero field energy and electric properties from results at various field strengths.

In contrast to the status of the permanent dipole moment, which is related to
the classical chemical structure concept, the evaluation of the electric transi-
tion dipole moment, which is a spectroscopic quantity, is more straightforward
in the pre-BO theory. The pre-BO wave function already contains not only
the electronic but also the rotational-vibrational degrees of freedom.

The subscripts i and f denote the initial and final states of a transition.
Transitions mediated through an electric transition dipole feature a set of
selection rules such that

µif = 〈Ψi| µ̂ |Ψf〉 6= 0 . (5.3)

Electric transition dipole moments are complex three-vectors of the form
µ = (µx, µy, µz)

T. The length of the electric transition dipole moment is then

|µ| = (µ† · µ)1/2 . (5.4)

For the spatial angular quantum numbers (Li,MLi) and (Lf ,MLf), with natural
parity pi = (−1)Li and pf = (−1)Lf , the integral in Eq. (5.3) is non-vanishing if
Li−Lf ∈ {+1,−1} and for MLi−MLf ∈ {+1, 0,−1}. The selection rules for ML

are related to different polarizations of the absorbed/emitted light. For the
spin quantum numbers one finds Si − Sf = MSi −MSf = 0. Transitions which
do not fulfill these selection rules are either symmetry forbidden (selection
rules related to L and ML) or spin forbidden (selection rules related to S

and MS). Spin forbidden transitions become allowed if different spin states
mix, e.g, if relativistic effects are considered. Symmetry forbidden transitions
become allowed with respect to transitions mediated by means of higher-order
electric transition multi-poles.

Furthermore, degenerate substates have to be considered: Transitions involve
all rotational substates ΨL,ML

with −L ≤ML ≤ L and all possible transitions
for which Eq. (5.3) is fulfilled. The squared length of the transition dipole
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moment is then obtained as [232]

|〈ΨLi
|µ̂| ΨLf

〉|2 =

Li∑
j=−Li

Lf∑
k=−Lf

|〈ΨLi,j |µ̂| ΨLf ,k〉|
2 . (5.5)

5.2 Evaluation of the Electric Transition Dipole Moment In-
tegrals

In this section we focus on the electric transition dipole moment and its
determination using ECGs with the GVR in an LFCC pre-BO framework. We
start by presenting two different forms of the electric transition dipole mo-
ment, commonly known as the velocity and the length representation. The
two representations are equivalent only for the exact wave function. Then,
expressions are presented for the transition dipole integrals.

5.2.1 Velocity and Length Representation

The transition dipole moment between the “i” initial and “f” final state is

µ
(l)
if =

N∑
j=1

〈Ψi |qjrj| Ψf〉 (5.6)

in the “length” (l) representation, while it can also be evaluated using the
“velocity” (v) representation [233]

µ
(v)
if = − 1

(Ei − Ef)

N∑
j=1

〈
Ψi

∣∣∣∣ qjmj

∇rj
∣∣∣∣ Ψf

〉
. (5.7)

The equivalence of Eqs. (5.6) and (5.7) can be shown with the help of the
commutation relation

[Ĥ, qjrj] = − qj
mj

∇rj . (5.8)

Acting with the initial state from the left and the final state from the right
leads to the integral

〈Ψi| [Ĥ, qjrj] |Ψf〉 = −〈Ψi|
qj
mj

∇rj |Ψf〉 . (5.9)

Exploiting the fact, that the inital and the final state are eigenfunction of the
Hamiltonian we find

(Ei − Ef) 〈Ψi| qjrj |Ψf〉 = −〈Ψi|
qj
mj

∇rj |Ψf〉 (5.10)
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where Ei and Ef are the energies of the initial and the final states, respectively.
Eq. (5.10) can be easily rearranged into

〈Ψi| qjrj |Ψf〉 = − 1

(Ei − Ef)
〈Ψi|

qj
mj

∇rj |Ψf〉 (5.11)

which are the individual terms of the sums in Eqs. (5.6) and (5.7). The
equality of the two sides in Eq. (5.11) holds only for the exact wave functions.
At the same time, no conclusion can be made [234], which representation is
less sensitive to approximations in the wave functions.

5.2.2 Evaluation of the Integrals

The following three-step evaluation procedure used already for the evalua-
tion of the overlap, kinetic and Coulomb potential-energy integrals [30] is
employed in the present work for the calculation of the transition dipole
moment integrals in both the length and velocity representation. The three
steps for some operator Ô are:

1. Evaluate the integrals of Ô with the generating functions of Eq. (2.35):

I1 = 〈g(r,AI , aIuI ⊗ εI)| Ô |g(r,AJ , aJuJ ⊗ εJ)〉 . (5.12)

2. Evaluate the derivatives at aI = aJ = 0:

I2 =
∂2KI+LI

∂a2KI+LI
I

∂2KJ+LJ

∂a2KJ+LJ
J

I1(aI , aJ)

∣∣∣∣
aI=aJ=0

. (5.13)

3. Evaluate the angular integrals:

I3 =
1

BKILIBKJLJ

∫
dε̂I

∫
dε̂JY

LI∗
MLI

(ε̂I)Y
LJ
MLJ

(ε̂J)I2(εI , εJ) . (5.14)

In order to avoid numerical instabilities, quasi-normalized basis functions are
used, i.e., each basis function is normalized with respect to its spatial part.
The (I th,J th) matrix elements for operator Ô are then

[O]IJ =

〈
φ

(LI ,MLI)
I (r;AI ,uI , KI)

∣∣∣ Ô ∣∣∣φ(LJ ,MLJ )
J (r;AJ ,uJ , KJ)

〉
∣∣∣φ(LI ,MLI)
I

∣∣∣ ∣∣∣φ(LJ ,MLJ )
J

∣∣∣ , (5.15)

where
∣∣∣φ(LI ,MLI)
I

∣∣∣ and
∣∣∣φ(LJ ,MLJ )
J

∣∣∣ are the normalization factors and the square

brackets denote the matrix representation of Ô.
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In this chapter the integrals in Eqs. (5.6) and (5.7) are evaluated with ECG
basis functions in the GVR. Instead of the original Cartesian components
α ∈ {x, y, z} we use transformed components

(Ω̂j)+ = (Ω̂j)x − i(Ω̂j)y (5.16)

(Ω̂j)− = (Ω̂j)x + i(Ω̂j)y (5.17)

(Ω̂j)z = (Ω̂j)z (5.18)

collected under the label β ∈ {+,−, z} where Ω̂j ∈ {µ̂(v), µ̂(l)}. The trans-
formed components are especially convenient for evaluating the angular inte-
grals. For the complete derivation we may refer the reader to the supporting
information of Ref. [217].

Following this integration scheme we get the expression:

[Ωβ]IJ =

〈
φ

(LI ,MLI)
I

∣∣∣ Ω̂β

∣∣∣φ(LJ ,MLJ )
J

〉
∣∣∣φ(LI ,MLI)
I

∣∣∣ ∣∣∣φ(LJ ,MLJ )
J

∣∣∣
=

(
det(2AI) det(2AJ)

det(AIJ) det(AIJ)

)3/4(
pII
qI

)KI (pJJ
qJ

)KJ ( pIJ√
qIqJ

)LJ
(qI)

−1/2

×Cβ
1 (LJ , LI ,MLJ ,MLI)

GΩ
I

min(KI ,KJ )∑
m=0

(
pIJpIJ
pIIpJJ

)m
H1(m,KI , KJ , LJ)

+
GΩ
J pII
pIJ

min(KI+1,KJ )∑
m=1

(
pIJpIJ
pIIpJJ

)m
H2(m,KI , KJ , LI)


+

(
det(2AI) det(2AJ)

det(AIJ) det(AIJ)

)3/4(
pII
qI

)KI (pJJ
qJ

)KJ ( pIJ√
qIqJ

)LI
(qJ)−1/2

×Cβ
2 (LI , LJ ,MLI ,MLJ)

GΩ
I pJJ
pIJ

min(KI ,KJ+1)∑
m=1

(
pIJpIJ
pIIpJJ

)m
H2(m,KJ , KI , LJ)

+GΩ
J

min(KI ,KJ )∑
m=0

(
pIJpIJ
pIIpJJ

)m
H1(m,KI , KJ , LI)

 (5.19)

where β ∈ {+,−, z}, AIJ = AI +AJ and the terms related to the overlap of
the ECGs are

pXY =
1

2
uXA

−1
IJuY with X, Y ∈ {I, J} . (5.20)
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The length and velocity dependence is contained within the factors

GΩ
I =


∑
n

qn(AJA
−1
IJ vI)n

mn(Ei − Ef)
if Ω = µ

(v)
if∑

n

qn(A−1
IJ vI)n if Ω = µ

(l)
if

(5.21)

GΩ
J =


∑
n

qn(AJA
−1
IJ vJ − vJ)n

mn(Ei − Ef)
if Ω = µ

(v)
if∑

n

qn(A−1
IJ vJ)n if Ω = µ

(l)
if

(5.22)

while the different contributions from the “x”, “y” and “z” components are
contained within the factors

Cβ
1 (LJ , LI ,MLJ ,MLI)

=



(
(LJ+MLJ+1)(LJ−MLJ+1)

(2LJ+1)(2LJ+3)

)1/2

δMLJ ,MLI
δLI ,LJ+1 if β = z(

(LJ−MLJ+2)(LJ−MLJ+1)
(2LJ+1)(2LJ+3)

)1/2

δMLJ ,MLI+1δLI ,LJ+1 if β = +

−
(

(LJ+MLJ+2)(LJ+MLJ+1)
(2LJ+1)(2LJ+3)

)1/2

δMLI ,MLJ+1δLI ,LJ+1 if β = −

(5.23)

Cβ
2 (LI , LJ ,ML,MLJ)

=



(
(LI+MLI+1)(LI−MLI+1)

(2LI+1)(2LI+3)

)1/2

δMLI ,MLJ
δLJ ,LI+1 if β = z

−
(

(LI+MLI+2)(LI+MLI+1)
(2LI+1)(2LI+3)

)1/2

δMLJ ,MLI+1δLJ ,LI+1 if β = +(
(LI−MLI+2)(LI−MLI+1)

(2LI+1)(2LI+3)

)1/2

δMLI ,MLJ+1δLJ ,LI+1 if β = −

(5.24)

which include the selection rules for the different transitions. Note that the
selection rules emerge naturally from the derivation and are not included in
a technical fashion. In order to increase the efficiency of the calculations the
following terms are precalculated:

H1(m,K1, K2, L)

=
BmL

(K1 −m)!(K2 −m)!(2m+ L)!
[F (K1, L+ 1)F (K2, L)]−1/2 (5.25)

H2(m,K1, K2, L)

=
B(m−1)L

(K1 −m+ 1)!(K2 −m)!(2m+ L− 2)!
[F (K1, L)F (K2, L− 1)]−1/2 . (5.26)
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The remaining terms

qX =
1

2
uT
XA

−1
X uX with X ∈ {I, J} (5.27)

F (K,L) =
K∑
m=0

4mBmL

4K(K −m)!(K −m)!(L+ 2m)!
(5.28)

originate from the quasi-normalization.

Finally, we perform the back transformations from Eqs. (5.16) and (5.17) in
order to obtain the original (x, y, z) Cartesian components

Cβ
1 (LJ , LI ,MLJ ,MLI)

=

{
1
2
[C−1 (LJ , LI ,MLJ ,MLI) + C+

1 (LJ , LI ,MLJ ,MLI)] if β = x
i
2
[C−1 (LJ , LI ,MLJ ,MLI)− C+

1 (LJ , LI ,MLJ ,MLI)] if β = y
, (5.29)

Cβ
2 (LI , LJ ,ML,MLJ)

=

{
1
2
[C−2 (LI , LJ ,ML,MLJ) + C+

2 (LI , LJ ,ML,MLJ)] if β = x
i
2
[C−2 (LI , LJ ,ML,MLJ)− C+

2 (LI , LJ ,ML,MLJ)] if β = y
. (5.30)

This concludes the derivation for the integral expressions for the electric
transition dipole moment. The squared length is then calculated according to
Eq. (5.5) as the sum of the squared lengths of the allowed transitions among
the degenerate substates of the initial and final state.

5.2.3 Elimination of the Translational Contamination

The contributions from cA to Eq. (5.19) are identified by substituting A and
u with their corresponding expressions in terms of A(x) and u(x) according
to Eqs. (2.37) and (2.38). Most of the contributions of cA cancel from the
integral expressions due to the quasi-normalization of the basis functions. The
remaining contributions of cA are then eliminated from the integral expres-
sions by subtraction if necessary. There are two terms through which such a
contamination might be introduced in the dipole integrals: GΩ

I , Eq. (5.21),
and GΩ

J , Eq. (5.22). Performing the substitutions, we find that the results of
Eq. (5.19) are free from any translational contamination if cu is zero. This
allows us to evaluate and implement the transition dipole integrals using the
LFCC formalism.

The advantages of performing calculations in LFCC are three-fold. First, one
does not have to choose a set of TICC, which introduces some ambiguity.
Furthermore the physical picture is more intuitive, and most importantly, the
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many-particle integrals are evaluated more easily [27]. An advantage of a
TICC pre-BO framework is that the dimension of A is (N − 1) × (N − 1)

rather than N×N so some of the involved matrix operations become slightly
computationally less expensive. TICCs are also more suited to represent
correlations paths among certain particles [30].

Since the parameters cA and cu are independent for the specific choice of
the transformation Ux, LFCC-TICC hybrid methods can be imagined where
specific correlations paths can be included into the parametrization. This idea
might be investigated in later work.

The numerical implementation of the dipole integrals has been validated for
HT+ using the results of Bekbaev and co-workers [216] and Tian and co-
workers [215] as references.

5.3 Numerical Results

In this section we present numerical results for the electric transition dipole
moment calculated for the H2 = {p+, p+, e−, e−} molecule. Pure rotational
dipole transitions of H2 with ∆L = ±1 are not possible because of the al-
ternating ortho (Sp = 1) and para (Sp = 0) states in the ground electronic
state [229]. There can be however non-vanishing transition moments be-
tween rovibronic levels of different electronic states with the same electron
spin state (Se). Thus, we have considered rovibronic transitions between en-
ergy levels assignable to the two lowest-lying singlet electronic states in the
BO theory, X 1Σ+

g and B 1Σ+
u (Figure 5.1). For these transitions the electronic

dipole transition function has already been calculated [235], but we are not
aware of any calculation of the dipole transition moments using this dipole
transition function in a non-adiabatic framework. In the present work, we
do not rely on any dipole moment function, but evaluate the electric tran-
sition dipole moments by directly evaluating the transition dipole integrals
with the pre-BO wave functions. The wave functions used in this chapter
have been successfully applied for the calculation of resonances in a recent
work [29]. The employed parameter sets corresponding to 2250 basis func-
tions for each state are provided in the supporting information of Ref. [217].
The mass of the proton mp was chosen in terms of the electron mass me as
mp/me = 1836.15267247 [236].

Table 5.1 lists the energies corresponding to the basis functions which we
use for the considered rovibronic states. We use reference values from the
literature to assess the quality of our parameter sets. All parameter sets are
either comparable to the best available reference values (X 1Σ+

g ) or better
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Figure 5.1: Schematic visualization of the spectrum of H2 = {p+,p+, e−, e−} for the lowest
two rovibronic states involved in this chapter. All states are illustrated in terms of the
BO and the pre-BO framework. The individual electronic states are designated by their
electronic state labels X 1Σ+

g and B 1Σ+
u and the relevant quantum numbers (L: spatial

angular momentum state; p: parity (−1)L; Se: electronic spin state; Sp: proton spin state).
Furthermore, all potential transitions are listed and it is designated whether the transitions
are allowed or forbidden with respect to electric dipole transitions. Note that the pre-BO
energy levels are generally higher than the corresponding BO energy levels.

(B 1Σ+
u ) and therefore suited for the calculation of electric transition dipole

moments.

The calculated electric transition dipole moments are listed in table 5.2. The
transition dipole moments are presented with a precision that shows the
first differing digit. We recognize that the values for |µ(l)

if | and |µ(v)
if | have

converged.

5.4 Summary

In this chapter, we presented the expressions for the integrals of the electric
transition dipole moments and its squared length. We exploited the simple
form of the electric transition dipole operators in LFCC. Integral expressions
were presented for the components of the transition dipole in the length
and the velocity representation. These two representations are only truly
equivalent in the case of the exact wave functions.

We have then calculated the electric transition dipole moments for the H2

molecule for transitions between the lowest two rovibronic levels of the ortho-
and para-H2. Some sensitivity to the approximation of the wave functions
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was observed. Yet this was negligible and we obtained converged results for
the electric transition dipole moments.

Furthermore we illustrated the strength of our scheme for the elimination of
the translational contribution to any internal molecular property. This scheme
was presented in our previous work [81] and allows us to perform pre-BO
calculations in LFCC. Previously, a linear combination of the LFCC into a set
of TICC, which separates the center-of-mass Cartesian coordinate, had to be
performed in order to eliminate any contribution from the overall motion of
the system.
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6
Ensuring Variational Stability

In this chapter, we focus on the issue of variational stability. Four-component
calculations rely on the kinetic-balance condition for variational stability. This
condition is well-defined for single fermions [14–22] and has therefore been
solely applied to orbital-based methods such as the Dirac–Hartree–Fock ap-
proach and relativistic variants of electron-correlation methods [99–101,106–
108, 113, 114, 116, 119, 125–127]. A first solution to the problem of kinetic-
balance for explicitly correlated trial wave functions was only recently pre-
sented by Pestka and co-workers who have published a series of papers inves-
tigating the relativistic helium isotropic series treated as a two-electron system
in a central potential [58,72,182,189,192,193]. Their solution is an infinite
series of transformations of the individual components of the two-electron
16-spinor which is truncated in order to obtain an approximately kinetically
balanced trial wave function. Unfortunately, little technical information was
provided in Refs. [58, 72, 182, 189, 192, 193] and it remains unclear how
such an approximate kinetic-balance condition can be extended to systems
containing more than two fermions. Other work focusing on explicitly corre-
lated four-component methods was recently presented by Ten-no and Yamaki
who have formulated an explicitly correlated four-component second-order
Møller–Plesset perturbation theory using positive-energy-states projection op-
erators in combination with the one-electron kinetic-balance condition [239].
Li and co-workers have studied coalescence conditions for explicitly corre-
lated four-component wave functions [240] but without addressing the issue
of kinetic-balance.

As an alternative to the kinetic-balance condition, we investigate a numerical
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solution to the problem of variational stability. A modified matrix form of
the σ · p was proposed by Schwarz and Mark [129].

6.1 Modified Matrix Form of the Dirac Hamiltonian

Mark and Schwarz have shown that variational collapse is primarily caused
by the incompleteness of a finite basis [129]. The problem is related to the
identity

〈Ψ|σ · p |Ψ〉 〈Ψ|σ · p |Ψ〉 ≤ 〈Ψ|p2 |Ψ〉 . (6.1)

For an incomplete basis, this relation becomes an inequality and the kinetic
energy of the non-relativistic limit is underestimated. Therefore is the total
energy underestimated which results in an energy, lower than the ground
state, i.e., variational collapse occurs. This problem becomes less severe for
a large number of basis functions and the energy obtained for the Dirac
hydrogen atom from a calculation using 1000 basis functions is accurate to
at least 9 significant digits.

If the basis functions for a one-fermion system have the form

φi =



[
φli

0

]
if i < n/2

[
0

φsi

]
if i ≥ n/2

(6.2)

then the matrix form of the α·p operator exhibits a particular super structure:

[α · p] =

 [0] [σ · p]

[σ · p] [0]

 . (6.3)

where the off-diagonal matrices are the matrix representation of the σ · p
operator with the entries

[σ · p]IJ = 〈φI |σ · p |φJ〉 . (6.4)

Schwarz and Mark [129] have proposed a modified matrix form of the [σ ·p]

operator based on the super structure of the matrix form of the α·p operator in
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Eq. (6.3). The purpose of this transformation is to correct the non-relativistic
limit such that the relation

[σ · p]Tmod [σ · p]mod = [p2] (6.5)

is fulfilled even in a finite basis. For simplicity, only the one-fermion case is
considered here.

Their modified form reads as

[σ · p]mod1 = [σ · p]
(
[σ · p]−1[p2][σ · p]−1

)1/2 (6.6)

where the square braces indicate that all operations are performed with the
matrix representations of the operators. Eq. (6.6) minimizes the relative
difference between [σ · p]mod1 and [σ · p]. In a footnote, Mark and Schwarz
[129] present another transformation which minimizes the absolute difference
between [σ · p]mod2 and [σ · p]:

[σ · p]mod2 = [p2][σ · p]
(
[σ · p][p2][σ · p]

)−1/2 (6.7)

In principle, is is also possible to form the matrix form of σ · p as the
matrix square-root of the matrix form of p2:

[σ · p]mod3 = [p2]1/2 . (6.8)

While this form is calculated most easily, it does not contain information from
the unmodified σ · p operator.

The modified [σ · p] matrix can then be used to form the modified [α · p]

matrix as

[α · p]mod =

 [0] [σ · p]mod

[σ · p]mod [0]

 . (6.9)

The first two transformations involve the inverse of the [σ · p] matrix. This
step is prone to severe numerical instabilities and requires great care when
generating a parameter set. This problem can partially be solved using an
increased numerical precision, e.g., using the GMP library [241].

The square root of a matrix X can be calculated from the diagonal eigen-
value matrix Ω and ortho-normal eigenvectors Q as

X1/2 = QTΩ1/2Q (6.10)
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where Ω1/2 is a diagonal matrix containing the square-root of the eigenvalues
as elements. However, the evaluation of Q is another source of numerical
problems. This issue is not so easily solved. Extremely high numerical pre-
cision is required to ensure numerical stability. This is not a problem of the
implementation or the algorithm. We have tested the MPACK library [242]
(an implementation of LAPACK and BLAS based on GMP) and the eigen pack-
age [241] using MPFR [243] for increased numerical accuracy. They rely on
the same eigensolver (QR algorithm [244–246]) and yield identical results.

Furthermore, we implemented a custom eigensolver based on the divide
and conquer algorithm according to Gu and Eisenstat [247] using the MPFR
library and the eigen package. It yields identical results as the QR algorithm.
In addition to the increased numerical precision, a simple test

max |[X]− [X]1/2[X]1/2| ≤ ε , (6.11)

where ε is some threshold to be specified by the user, is performed and
parameter sets where Eq. (6.11) is not fulfilled are discarded in the process
of stochastic sampling.

Calculations using the numerically stabilized framework still exhibit pro-
lapse. This is independent from the modified form of the σ ·p operator. All of
them yield results for the Dirac hydrogen atom with relativistic effects about
ten times as high as compared to the analytical solution.

6.2 Derivation of the One-Electron Kinetic-Balance Condi-
tion

An effective means of dealing with the problem of variational collapse is
the kinetic-balance condition [14–22] which relates the large and the small
component of the one-fermion eigenfunction:

ψs(r) ≈ σ · p
2mc

ψl(r) . (6.12)

The derivation of this relation is straightforward. The Dirac eigenvalue prob-
lem

(hD − E)ψ(r) = 0 (6.13)
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leads to a set of two linear equations for the two-component parts of the
4-spinor of Eq. (3.4). After the energy spectrum has been shifted by −mc2,
this system of equations reads

(V − E)ψl(r) + cσ · p ψs(r) = 0 , (6.14)

(V − E − 2mc2)ψs(r) + cσ · p ψl(r) = 0 . (6.15)

We only need one of the two equations to relate the small component to the
large one. Since the σ ·p has no multiplicative inverse, it is more convenient
to choose the second equation in order to obtain an expression for ψs(r).
After rearranging the terms, we obtain the exact relation for Eq. (6.15)

ψs(r) =
cσ · p

(E − V + 2mc2)
ψl(r) . (6.16)

This relation depends on the energy of the system which is not known a priori
but is one of the desired results of the problem. Eq. (6.16) can therefore not
be applied to our problem. However, due to the large value of mc2 and the
fact that we are interested in systems for which E and V are comparatively
small, we can introduce the approximation

E − V + 2mc2 ≈ 2mc2 . (6.17)

Inserting this relation into Eq. (6.16) yields the kinetic-balance condition in
Eq. (6.12).

Obeying Eq. (6.12) for basis-set expansions yields a variational stable pa-
rametrization of the trial wave function. For convenience, we denote the
kinetically balanced components as

ψ(r) ≈
[
|l〉
|s〉

]
=

[
1

σ · p
2mc

]
ψl(r) (6.18)

Eq. (6.12) may also be formulated in terms of the one-fermion model spaces
[18,71,72]

|l〉 ∈ Hl and |s〉 ∈ (σ · p)Hl ⊂ Hs . (6.19)

The kinetic-balance condition in Eq. (6.12) also ensures the correct non-
relativistic (NR) limit for c→∞. Forming the Rayleigh coefficient according to
Eq. (3.29) and taking the limit c→∞ leads to the non-relativistic Schrödinger
energy:

ENR = lim
c→∞

〈Ψ|hD |Ψ〉
〈Ψ |Ψ〉

=

〈
l

∣∣∣∣ p2

2m
+ V

∣∣∣∣ l〉
〈l |l〉

. (6.20)
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For our purposes here, it is important to realize that the small component is
imaginary

|s〉 = −〈s| (6.21)

if |l〉 is chosen to be real, since the momentum operator in the kinetic-balance
condition is imaginary.

6.3 Partitioning of the Wave Function

The wave function for N non-interacting fermions can be constructed as the
direct product of one-fermion 4-spinors ψi(ri),

Ψ(r) = ψ1(r1)⊗ . . .⊗ψi(ri)⊗ . . .⊗ψN(rN) , (6.22)

where we leave aside the antisymmetrization for the sake of brevity. Now,
r = (r1, . . . , rN)T collects all N one-fermion coordinates. In the case of two
fermions, we have the direct product of two basis states

ψ1(r1)⊗ψ2(r2) =


ψl11 (r1)

ψl21 (r1)

ψs11 (r1)

ψs21 (r1)

⊗

ψl12 (r2)

ψl22 (r2)

ψs12 (r2)

ψs22 (r2)

 =



ψl11 (r1)ψl12 (r2)

ψl11 (r1)ψl22 (r2)

ψl11 (r1)ψs12 (r2)

ψl11 (r1)ψs22 (r2)

ψl21 (r1)ψl12 (r2)

ψl21 (r1)ψl22 (r2)
...

ψs21 (r1)ψs22 (r2)


. (6.23)

The superscript indicates the element of the one-fermion four-spinor: The
letters l and s indicate the large or the small 2-spinor as before. The number
attached to these letters indicates the element of a 2-spinor. For instance, the
elements of the large-component 2-spinor are then

ψl1(r1) =

[
ψl11 (r1)

ψl21 (r1)

]
. (6.24)

An N -fermion wave function for arbitrary fermions may be constructed to be
consistent with the model space

H(N) = Hl...l ⊕ . . .⊕Hλ1...λN ⊕ . . .⊕Hs...s. (6.25)
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where each Hλ1...λN is constructed from the one fermion model spaces

Hλ1...λN = Hλ1 ⊗ . . .⊗HλN (6.26)

with λ1, . . . , λN ∈ {l, s}. The highlighted vector components in Eq. (6.23)
are those contained within the model space Hll. We recognize that the wave
function in Eq. (6.22) and the model space in Eq. (6.25) are not compatible
since it is not possible to partition Eq. (6.22) in terms of the one-fermion
model spaces. However, we can reorder the spinor elements of the wave
function as

P TΨ(r) = ψ1(r1) � . . .�ψi(ri) � . . .�ψN(rN) (6.27)

where � is the Tracy-Singh product and P is a permutation matrix (see
Eq. (B.4) and further detaills in the appendix B.1). Then, our two-spinor
example reads

ψ1(r1) �ψ2(r2) =


ψl

1(r1)⊗ψl
2(r2)

ψl
1(r1)⊗ψs

2(r2)

ψs
1(r1)⊗ψl

2(r2)

ψs
1(r1)⊗ψs

2(r2)

 =



ψl11 (r1)ψl12 (r2)

ψl11 (r1)ψl22 (r2)

ψl21 (r1)ψl12 (r2)

ψl21 (r1)ψl22 (r2)

ψl11 (r1)ψs12 (r2)

ψl11 (r1)ψs22 (r2)
...

ψs21 (r1)ψs22 (r2)


. (6.28)

The vector components highlighted in Eq. (6.28) are those contained within
the Hll model space as in Eq. (6.23). We see that the wave function in
Eq. (6.28) can be partitioned such that the individual components are part
of the different model spaces in Eq. (6.25),[

P TΨ(r)
]λ1...λN

= ψλ1
1 (r1)⊗ . . .⊗ψλi

i (ri)⊗ . . .⊗ψλN
N (rN) , (6.29)

where λ1, . . . , λN ∈ {l, s} as in Eq. (6.26).

The Hamiltonian is transformed accordingly (cf. Eq. (B.3) in the appendix)

H
(N)
DTS = P TH

(N)
D P

=
N∑
i=1

P T (hD(i) +W )P =
N∑
i=1

hDTS(i) + P TWP (6.30)
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with

hDTS(i) = P ThD(i)P

= 14(1) � · · ·� 14(i− 1) � hD(ri) � 14(i+ 1) � · · ·� 14(N) (6.31)

where all matrices are partitioned into 2 × 2 blocks. The potential-energy
operator

W =
N∑
i<j

g(i, j) , (6.32)

which describes the pairwise interaction among the fermions, will be invariant
under this transformation if the instantaneous Coulomb interaction only is
considered as it is a diagonal matrix with identical entries. The situation
is more complicated when magnetic interactions are taken into account. An
N -fermion wave function for 1/2-fermions can then be partitioned in terms
of the model space into 2N components each of dimension 2N ,

Ψ(r) =


Ψl...l(r)

. . .

Ψλ1...λN (r)

. . .

Ψs...s(r)

 . (6.33)

Note that a related reordering of the Hamiltonian similar to Eq. (6.30) is
key for the quaternion formulation of four-component self-consistent filed
algorithms [248].

6.4 Exact Two-Particle Kinetic-Balance Condition

In this section, we derive the kinetic-balance condition for explicitly correlated
basis functions for a system of two fermions. According to Eq. (6.25) the
model space takes the form

H(2) = Hll ⊕Hls ⊕Hsl ⊕Hss (6.34)

where the four model spaces

Hll = Hl ⊗Hl (6.35)

Hls = Hl ⊗Hs (6.36)

Hsl = Hs ⊗Hl (6.37)

Hss = Hs ⊗Hs (6.38)
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are formed from the single-fermion model spaces Hl and Hs. Each model
space in Eqs. (6.35) – (6.38) is assigned to one of the four components in the
wave function. The Dirac Hamiltonian has to respect the Tracy-Singh product
(see Eq. (B.1) in the appendix) to match the partition of the wave function
according to Eq. (6.33). We then obtain the following block structure for the
two-fermion Hamiltonian defined in Eq. (6.30):

H
(2)
DTS(r1, r2) =


V c(σ2 · p2) c(σ1 · p1) 0

c(σ2 · p2) V − 2m2c
2 0 c(σ1 · p1)

c(σ1 · p1) 0 V − 2m1c
2 c(σ2 · p2)

0 c(σ1 · p1) c(σ2 · p2) V − 2m12c
2

 (6.39)

where we have introduced an energy shift of the whole spectrum by a factor
of −m12c

2 with m12 = m1 + m2 and introduced V = V (r1) + V (r2) + W

as the total potential-energy operator. Also, we absorbed the direct products
into σi as

σ1 = (σx ⊗ 12,σy ⊗ 12,σz ⊗ 12)T , (6.40)

and

σ2 = (12 ⊗ σx,12 ⊗ σy,12 ⊗ σz)T . (6.41)

The idea of kinetic-balance is to relate the small-component one-fermion
model spaces to their large-component one-fermion model spaces in the eigen-
value problem (

H
(2)
DTS − E

)
Ψ(r1, r2) = 0 . (6.42)

This leads to a system of four equations, according to the Eqs. (6.14) and
(6.15):

0 = (V − E)Ψll + c(σ2 · p2)Ψls + c(σ1 · p1)Ψsl (6.43)

0 = c(σ2 · p2)Ψll + (V − E − 2m2c
2)Ψls + c(σ1 · p1)Ψss (6.44)

0 = c(σ1 · p1)Ψll + (V − E − 2m1c
2)Ψsl + c(σ2 · p2)Ψss (6.45)

0 = c(σ1 · p1)Ψls + c(σ2 · p2)Ψsl + (V − E − 2m12c
2)Ψss (6.46)

where we have suppressed the coordinate dependence of the 4-spinors and
will continue to do so where appropriate for the sake of brevity. We have to
eliminate one of these four equations because we search for relation between
the four components of the wave function which we can then apply as a
constraint for choosing explicitly correlated basis functions. As in the case of
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a single fermion, we eliminate the energy E from the equations using the
approximate relation

2mic
2 + E − V ≈ 2mic

2 (6.47)

where mi ∈ {m1,m2,m1 +m2}. We eliminate the first equation, Eq. (6.43),
from the system of equations since it is the only equation where 2mic

2 does
not occur so that Eq. (6.47) cannot be applied. After applying Eq. (6.47) to
Eqs. (6.44) – (6.46), we find the following relations among the four compo-
nents of the two-fermion wave function:

0 ≈ c(σ2 · p2)Ψll − 2m2c
2Ψls + c(σ1 · p1)Ψss (6.48)

0 ≈ c(σ1 · p1)Ψll − 2m1c
2Ψsl + c(σ2 · p2)Ψss (6.49)

0 ≈ c(σ1 · p1)Ψls + c(σ2 · p2)Ψsl − 2m12c
2Ψss . (6.50)

The matrix form of this under-determined system of linear equations can be
interpreted as the augmented form of a linear system with a unique solution:

A =

(σ2 · p2) −2m2c 0 −(σ1 · p1)

(σ1 · p1) 0 −2m1c −(σ2 · p2)

0 (σ1 · p1) (σ2 · p2) 2m12c

 {1}{2}
{3}

(6.51)

The augmented form of linear systems and row reduction are explained in
more detail in section B.2 in the appendix. The number in curly brackets on
the right-hand side of every row indicates the line number. It will be used
to express the manipulations in the row reduction below.

There is no row-reduced echelon form for the augmented form in Eq. (6.51).
The lack of a multiplicative inverse of the differential operator prohibits us
from setting the leading element of each row of the row-reduced echelon
form to 1 (see Eq. (B.8) in the appendix) and therefore to relate Ψll(r1, r2),
Ψls(r1, r2) and Ψsl(r1, r2) to Ψss(r1, r2). However, we are able to find a
similar form with pairwise relations between Ψss(r1, r2) and the other three
components. We now present the individual steps necessary to obtain this
modified row-reduced echelon form:

1. Insert (σ1 · p1){1} − (σ2 · p2){2} into {2}:(σ2 · p2) −2m2c 0 −(σ1 · p1)

0 −2m2c(σ1 · p1) 2m1c(σ2 · p2) p2
2 − p2

1

0 (σ1 · p1) (σ2 · p2) 2m12c

 {1}{2}
{3}
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2. Insert {2}+ 2m2c{3} into {3}:(σ2 · p2) −2m2c 0 −(σ1 · p1)

0 −2m2c(σ1 · p1) 2m1c(σ2 · p2) p2
2 − p2

1

0 0 2m12c(σ2 · p2) p2
2 − p2

1 + 4m2m12c
2

 {1}{2}
{3}

3. Insert −m12

m2

{2}+
m1

m2

{3} into {2}:

(σ2 · p2) −2m2c 0 −(σ1 · p1)

0 2m12c(σ1 · p1) 0 p2
1 − p2

2 + 4m1m12c
2

0 0 2m12c(σ2 · p2) p2
2 − p2

1 + 4m2m12c
2

 {1}{2}
{3}

4. Insert (σ1 · p1)m12{1}+m2{2} into {1}:m12(σ2 · p2)(σ1 · p1) 0 0 −m1p
2
1 −m2p

2
2 + 4m1m12c

2

0 2m12c(σ1 · p1) 0 p2
1 − p2

2 + 4m1m12c
2

0 0 2m12c(σ2 · p2) p2
2 − p2

1 + 4m2m12c
2

 {1}{2}
{3}

We instantly recognize that we have now a set of simple pairwise relations
between Ψss(r1, r2) and the other three components

−(σ1 · p1)(σ2 · p2)m12Ψ
ll =

(
m1p

2
1 +m2p

2
2 − 4m1m2m12c

2
)

Ψss (6.52)

−2c(σ1 · p1)m12Ψ
ls =

(
p2

2 − p2
1 − 4m1m12c

2
)

Ψss (6.53)

−2c(σ2 · p2)m12Ψ
sl =

(
p2

1 − p2
2 − 4m2m12c

2
)
Ψss (6.54)

and note the similarity of the operators acting on the components on the left
hand sides of the equations. Forming the least common multiple from these
operators, we can introduce a 4-spinor Θ(r1, r2) related to the Ψss(r1, r2)

component

Ψss(r1, r2) = −2cm12(σ1 · p1)(σ2 · p2)Θ(r1, r2) , (6.55)

insert it into Eqs. (6.52) – (6.54) and eliminate identical terms on both sides.
Instead of relating the upper component to the lower component, we relate
all four component to some spinor Θ(r1, r2) having the same dimension as
a single component:

|ll〉 = UllΘ(r1, r2) =
(
m1p

2
1 +m2p

2
2 − 4m1m2m12c

2
)
Θ(r1, r2) (6.56)

|ls〉 = UlsΘ(r1, r2) =
(σ2 · p2)

2c

(
p2

2 − p2
1 − 4m1m12c

2
)
Θ(r1, r2) (6.57)

|sl〉 = UslΘ(r1, r2) =
(σ1 · p1)

2c

(
p2

1 − p2
2 − 4m2m12c

2
)
Θ(r1, r2) (6.58)

|ss〉 = UssΘ(r1, r2) = −m12(σ1 · p1)(σ2 · p2)Θ(r1, r2) . (6.59)
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Here, we have introduced the short-hand notation for balanced components
equivalent to the one-fermion case. The physical role of Θ(r1, r2) will become
clear when we study the non-relativistic limit (see below).

Ψss(r1, r2) is for any type of function uniquely defined by Θ(r1, r2) up to
a constant factor, i.e., the constant of integration, due to the differential
operators involved. For square-integrable functions, this constant factor is
zero. Hence, cancellation of differential operators is not a problem and all
components are uniquely determined by Θ(r1, r2).

Eqs. (6.56) – (6.59) show that there is some connection to the one-fermion
kinetic-balance condition. The highest-order terms in c in each of the four
relations are those one would obtain from the one-fermion kinetic-balance
condition applied for both fermions subsequently.

We can now analyze the real and imaginary parts of the four components.
Because of the odd number of (σ1 · p1) and (σ2 · p2) operators acting on |sl〉
and |ls〉, respectively, we find that these two components are imaginary and
because of the even number of (σ1 ·p1) and (σ2 ·p2) operators acting on |ll〉
and |ss〉, respectively, we find that these two components are real.

Last, we consider fermion exchange symmetry for the two identical fermions
leading to the relations [58]

Ψll(r1, r2) = −Ψll(r2, r1) (6.60)

Ψls(r1, r2) = −Ψsl(r2, r1) (6.61)

Ψss(r1, r2) = −Ψss(r2, r1) (6.62)

which have to be fulfilled in addition to the relations in Eqs. (6.56) – (6.59).
Θ(r1, r2) is antisymmetrized before the components are constructed according
to Eqs. (6.56) – (6.59) because the operators (σ1 · p1) and (σ2 · p2) do not
commute with the permutation operator which exchanges fermions 1 and 2.

6.5 The Non-Relativistic Limit

The one-fermion kinetic-balance condition yields the correct non-relativistic
limit for c→∞. This is a key requirement ensuring variational stability. We
therefore require any kinetic-balance condition for more than one fermion to
yield the correct non-relativistic limit.

Finding the non-relativistic limit for the one-fermion case is fairly trivial. For
the two-fermion kinetic-balance condition, this is somewhat more involved.
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In order to find the correct limit, we rely on l’Hôpital’s rule for limits,

lim
x→y

f(x)

g(x)
= lim

x→y

f ′(x)

g′(x)
. (6.63)

where f ′(x) and g′(x) are the derivatives of f(x) and g(x) with respect to x

and y is the limiting value of x.

The non-relativistic limit of the two-fermion total energy for an kinetically
balanced wave function according to Eqs. (6.56) – (6.59), can be taken as a
limiting case of the Rayleigh coefficient

ENR[H
(2)
DTS,Θ] = lim

c→∞

〈Ψ|H(2)
DTS |Ψ〉

〈Ψ |Ψ〉

= lim
c→∞

〈ll| c(σ1 · p1) |ls〉+ 〈ll| c(σ2 · p2) |sl〉+ 〈Ψ|V |Ψ〉
〈Ψ |Ψ〉

. (6.64)

We now apply l’Hôpital’s rule to Eq. (6.64) by taking the fourth-order deriva-
tive with respect to c of both the nominator and denominator:

ENR[H
(2)
DTS,Θ] = lim

c→∞

∂4

∂c4
〈ll| c(σ1 · p1) |ls〉+ 〈ll| c(σ2 · p2) |sl〉+ 〈Ψ|V |Ψ〉

∂4

∂c4
〈Ψ |Ψ〉

= lim
c→∞

〈Θ| 192m2
12m1m

2
2p

2
1 + 192m2

12m
2
1m2p

2
2 |Θ〉

384m2
12m

2
1m

2
2 〈Θ |Θ〉

+
〈Θ| 384m2

12m
2
1m

2
2V +O(c−2) |Θ〉

384m2
12m

2
1m

2
2 〈Θ |Θ〉

. (6.65)

Only the potential-energy term still contains contributions depending on c.
These contributions are of order c−2 and higher. When taking the limit, they
are all zero and we find the limit to be a simpler Rayleigh factor depending
on Θ(r1, r2)

ENR =

〈
Θ

∣∣∣∣ p2
1

2m1

+
p2

2

2m2

+ V

∣∣∣∣Θ〉
〈Θ |Θ〉

, (6.66)

which is clearly the Schrödinger energy and therefore the correct non-relativis-
tic limit is obtained. The limit also identifies Θ(r1, r2) as the non-relativistic
two-fermion Schrödinger wave function.
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Chapter 6 Ensuring Variational Stability

From Eq. (6.65) we see that different components define the non-relativistic
limit for the kinetic-energy part and the potential-energy part. For the kinetic
energy, the non-relativistic limit is defined by the components |ll〉, |ls〉, and
|sl〉. The non-relativistic limit of the potential-energy is only defined by the
|ll〉 component. The |ss〉 component is not directly involved in defining the
non-relativistic limit.

Only the leading terms in c of the three components define the non-relativistic
limit since we have used l’Hôpital’s rule. The leading terms are

|ll〉 (c2) = −4m1m2m12c
2 , (6.67)

|ls〉 (c) = −2m1m12c(σ2 · p2) (6.68)

and

|sl〉 (c) = −2m2m12c(σ1 · p1) . (6.69)

We note the similarity to Eq. (6.12) and realize that the non-relativistic limit
is determined by the one-fermion kinetic-balance condition. The one-fermion
kinetic-balance condition may not be sufficient to ensure variational stability
[18, 71, 72]. Then, the non-relativistic limit will not be a sufficient, albeit
necessary condition for variational stability.

6.6 Kinetic-Balance Condition for more than Two Fermions

The derivation presented in section 6.4 can also be applied to systems with
more than two fermions. How this can be achieved for the result obtained
by Pestka and co-workers [18, 71, 72] is not obvious and was not discussed
in their papers. In our ansatz, we obtain rather lengthy expressions for three
fermions, which we refrain from presenting explicitly for the sake of brevity.
The resulting expressions can, however, be expanded into a polynomial with
respect to c. The individual terms d(3)

i (c) feature an important property

d
(3)
i (c) = ki(m1,m2,m3)× c(6−u−v−w)(σ1 · p1)u(σ2 · p2)v(σ3 · p3)w (6.70)

where the positive semi-definite exponents u, v and w obey the constraints
0 ≤ (u+ v + w) ≤ 7 and we have

σ1 = (σx ⊗ 14,σy ⊗ 14,σz ⊗ 14)T , (6.71)

σ2 = (12 ⊗ σx ⊗ 12,12 ⊗ σy ⊗ 12,12 ⊗ σz ⊗ 12)T , (6.72)

σ3 = (14 ⊗ σx,14 ⊗ σy,14 ⊗ σz)T . (6.73)
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The multiplicative prefactors ki(m1,m2,m3) depend on the masses of the
individual fermions and the kinetic-balance condition expressions simplify
significantly if all three fermions have equal masses.

From Eq. (6.70), we recognize that the explicitly correlated kinetic-balance
condition for three particles features the momentum operator to the power
of seven, which is most unfortunate from a computational point of view.
However, we also see that the power of the momentum operators decreases
with increasing orders of c. The leading terms with respect to c are again
the one-fermion kinetic-balance terms and ensure the non-relativistic limit.

Also the two-fermion kinetic-balance condition can be expanded in terms of
the type in Eq. (6.70) as

d
(2)
i (c) = ki(m1,m2)× c(4−u−v)(σ1 · p1)u(σ2 · p2)v . (6.74)

The multiplicative prefactors ki(m1,m2) again depend on the masses of the two
fermions. The positive semi-definite exponents u and v obey the constraints
0 ≤ (u+ v) ≤ 3.

Comparing the results for two and three fermions listed in Eqs. (6.70) and
(6.74), we can conclude that the power of c and the power of the σi · pi
operators behaves as follows for the different terms in the exact solution

d
(N)
i (c) = ki(m1, . . . ,mN)× c(2N−u)

N∏
j=1

(σj · pj)uj , (6.75)

where

0 ≤ u =
N∑
j=1

uj ≤ 2N + 1 , (6.76)

and where the multiplicative prefactors ki(m1, . . . ,mN) depend on the masses
of the different fermions and all exponents are positive semi-definite. In con-
trast to the approach by Pestka and co-workers [18,71,72], it is now possible
to systematically formulate approximate forms for the explicitly correlated
kinetic-balance conditions with respect to the order in c, in order to reduce
the computational cost associated with high powers of the σi · pi operator.
As an example, we present the approximate kinetic-balance condition for an
electronic system of three particles where only the first few leading terms of
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c are included:

|lll〉 =
(
48c6 − 14((σ1 · p1)2 + (σ2 · p2)2 + (σ3 · p3)2)c4

)
Θ (6.77)

|lls〉 = (σ3 · p3)
(
(−(σ1 · p1)2 − (σ2 · p2)2 − 7(σ3 · p3)2)c3 + 24c5

)
Θ (6.78)

|lsl〉 = (σ2 · p2)
(
(−(σ1 · p1)2 − 7(σ2 · p2)2 − (σ3 · p3)2)c3 + 24c5

)
Θ (6.79)

|lss〉 = 12(σ2 · p2)(σ3 · p3)c4Θ (6.80)

|sll〉 = (σ1 · p1)
(
(−7(σ1 · p1)2 − (σ2 · p2)2 − (σ3 · p3)2)c3 + 24c5

)
Θ (6.81)

|sls〉 = 12(σ1 · p1)(σ3 · p3)c4Θ (6.82)

|ssl〉 = 12(σ1 · p1)(σ2 · p2)c4Θ (6.83)

|sss〉 = −6(σ1 · p1)(σ2 · p2)(σ3 · p3)c3Θ . (6.84)

Here, we have used the definitions in Eqs. (6.71) – (6.73) for the σi · pi
operators. Θ(r) with r = (r1, r2, r3)T is the non-relativistic limit of Ψ(r).
We see that the lowest order of c that we need to consider is 3 due to the
|sss〉 component. Eqs. (6.77) – (6.84) can be considered a minimal explicitly
correlated kinetic-balance condition for an electronic three-fermion system.

6.7 Basis-Set Expansion and Numerical Results

Until now, we have only considered state functions. In practice, the state
function is approximated in terms of a basis set expansion

Ψ(r) =
∑
i

ciΦi(r) (6.85)

where ci are the expansion coefficients and Φi(r) are the basis functions used
in the expansion.

The one-fermion kinetic-balance condition can be imposed by a transformation
[48] of the basis functions,

U
(1)
KB =

1 0

0
σ · p
p

 (6.86)

where p = |p|. The model spaces for the large and the small components are
generated in terms of this transformation and the advantage of this form of the
kinetic-balance condition is that the large-component and small-component
model spaces are normalized. This is equivalent to the transformation of the
state function in terms of the transformation matrix in Eq. (6.86). Yet, it
is also possible to transform the Dirac Hamiltonian and then form identical
model spaces for the large and small components. The transformed Dirac
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Hamiltonian is the so-called “modified Dirac Hamiltonian” and is the basis of
exact decoupling methods [48].

A similar transformation can be formulated for the explicitly correlated kinetic-
balance condition as

U
(2)
KB =



Ull
|Ull|

0 0 0

0
Uls
|Uls|

0 0

0 0
Usl
|Usl|

0

0 0 0
Uss
|Uss|


(6.87)

in the notation introduced in Eqs. (6.56) – (6.59). The N -fermion trial wave
function is then expressed in terms of the transformation as

Ψ(r) =
∑
i

ci

(
U

(N)
KB Θi(r)

)
. (6.88)

6.7.1 Numerical Results

As an example, we present numerical results for a simple two-electron system:
the helium atom treated as two electrons in a central potential in the BO
approximation. Since we consider only the ground state, we can generate a
trial wave function according to Eq. (6.88) using ECGs [2, 3, 27, 29–31, 34–
36,79–81,217,249–257],

Θ(r1, r2) = exp

(
−1

2
rT (A⊗ 13) r

)
, (6.89)

where A is a 2 × 2 positive definite matrix and r = (r1, r2)T collects the
Cartesian coordinates of the two fermions. Insertion of the trial wave function
of Eq. (6.88) into the Rayleigh coefficient

E[H
(2)
DTS,Θ(r)] =

〈
U

(N)
KB Θ(r)

∣∣∣H(2)
DTS

∣∣∣U (N)
KB Θ(r)

〉
〈
U

(N)
KB Θ(r)

∣∣∣U (N)
KB Θ(r)

〉 (6.90)

and minimization with respect to the expansion coefficients ci yields the
generalized eigenproblem

HC = ESC . (6.91)
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The Hamiltonian and overlap matrices are defined as

HI,J =
〈
U

(N)
KB ΘI(r)

∣∣∣H(2)
DTS

∣∣∣U (N)
KB ΘJ(r)

〉
(6.92)

and

SI,J =
〈
U

(N)
KB ΘI(r)

∣∣∣U (N)
KB ΘJ(r)

〉
(6.93)

for n basis functions, respectively. They are of dimension n×n. C is a n×n
matrix containing the expansions coefficients ci and E is a n × n diagonal-
matrix with the energies as its entries.

Table 6.1 lists the energies we obtained for the ground state of the helium
atom for various sizes of the parameter sets together with the non-relativistic
limit of each parameter set. We recognize that both the relativistic energy and
the non-relativistic energy continuously approach the ground state energy of
the reference, forming an upper limit to the actual energy.

Table 6.1: Energies of the He= {e−, e−} atom for different parameter sets. ∆ER

and ∆ENR are the differences between the calculated relativistic and non-relativistic
energies in comparison to the reference values, respectively. With increasing size of
the parameter set, the energy gradually converges towards the reference values in
a variationally stable fashion.

n ER [Eh] ∆ER [Eh] ENR [Eh] ∆ENR [Eh]
50 -2.90377913 0.00007771 -2.90364752 0.00007686
100 -2.90385291 0.00000393 -2.90372249 0.00000189
500 -2.90385512 0.00000172 -2.90372403 0.00000035
1000 -2.90385650 0.00000034 -2.90372431 0.00000007
Ref. [72] -2.90385684 Ref. [258] -2.90372438
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7
Dirac–Coulomb Fine-Structure of

Hydrogen-Like Ions

In this chapter, we extend our non-relativistic pre-BO framework [29,30,81,
217] to a relativistic first-quantized formulation employing the Dirac Hamil-
tonian [55, 259], which is the basis of most of relativistic quantum chem-
istry [7–13]. Here, only the matter field is quantized, while the radiation
field is described classically.

Despite the popularity and importance of the Dirac Hamiltonian in relativistic
quantum chemistry, there exist few explicitly correlated methods due to vari-
ational problems caused by the unboundedness of the energy spectrum of the
Dirac Hamiltonian. For so-called four-component methods, variational stabil-
ity is ensured through the kinetic-balance condition [15]. For orbital-based
methods, the one-fermion kinetic-balance is a reliable means of avoiding vari-
ational collapse. Pestka and co-workers have presented an approximate form
of explicitly correlated kinetic-balance without explaining the means for gen-
eralization for more than two particles [58,72,182,189,192,193]. The exact
explicitly correlated variant was presented in chapter 6.

We treat all particles on equal footing and therefore do not invoke the BO
approximation. Hence, our framework represents a pre-BO theory (note that
the term ”non-Born–Oppenheimer” may refer to various theoretical improve-
ments that go beyond the BO approximation while we want to stress by
”pre-BO” that the ”ubiquitous” BO approximation is not applied at all). As a
basic problem is related to the overall motion of the system we have to elim-
inate translational effects in order to be able to formulate a translationally
invariant theory.
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Chapter 7 Dirac–Coulomb Fine-Structure

7.1 Relativistic Trial Wave Function

The trial wave function employed in this work is partitioned according to
Eq. (6.22) with the components labeled according to Eq. (6.33) and approx-
imates the eigenfunction Ψ(r1, r2) of the Dirac Hamiltonian in Eq. (3.7) as
a linear combination of explicitly correlated basis functions Φi(r1, r2)

Ψ(r1, r2) =
∑
i

∑
λ∈Λ

cλi Φ
λ
i (r1, r2) . (7.1)

Here, Φλ
i (r1, r2) are the components of the individual basis functions where

λ ∈ Λ = {ll, ls, sl, ss} indicates the component. Each basis function is related
to its non-relativistic limit Θi(r1, r2) as [260]

Φi(r1, r2) = U
(2)
KBΘi(r1, r2) . (7.2)

The trial wave function, is therefore generated from its non-relativistic limit
and the linear expansion in Eq. (7.1) can then be formulated as

Ψ(r1, r2) =
∑
i

∑
λ∈Λ

cλi

(
U

(2)
KBΘi(r1, r2)

)λ
. (7.3)

We now need to choose proper basis functions for the Θi(r1, r2) part of the
basis functions Φi(r1, r2). Since pre-BO theories are well established for the
non-relativistic theory, we follow recipes given in previous work [29, 30,81,
217] as a guide for choosing efficient basis functions.

The spatial part of Θi(r1, r2) will be represented by ECGs in the original
LFCC

Gi(r;Ai) = exp

(
−1

2
rT(Ai ⊗ 13)r

)
(7.4)

where Ai is a positive definite 2 × 2 matrix and r
T

= (r
T

1 , r
T

2 ) collects the
Cartesian coordinates of the two fermions. ECGs were originally introduced by
Boys [79] and Singer [80] and have been successfully used in our previous
non-relativistic work [29, 30, 81, 217]. ECGs are also commonly used by
Adamowicz and co-workers for their non-relativistic work [3,27,31,34,249–
257] and by Suzuki and Varga [2,35,36].

In a series of papers, Marsch has derived an analytical solution for the two-
fermion Dirac Hamiltonian [261–264]. In a first step, angular and radial
degrees of freedom are separated. This leads to the total angular momentum
operator

Ĵ = L̂+ Ŝ (7.5)
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where L̂ is the total spatial angular momentum operator and Ŝ is the total
spin operator. Its square

Ĵ
2

= L̂
2

+ 2L̂ · Ŝ + Ŝ
2

(7.6)

and projection onto the z-axis

Ĵ z = L̂z + Ŝz (7.7)

commute with the two-fermion Dirac Hamiltonian and the angular part of
Θi(r1, r2) is constructed from the GVR [2,35,36]

YML
L (v) = |v|2K+LY L

ML
(v̂) , (7.8)

with the global vector

v = (u⊗ 13)r , (7.9)

and the strictly non-negative integer K, as the eigenfunction of operators J2

and J z. In this work, we focus on the case where K = 0. The GVR is an
eigenfunction of the total spatial angular momentum operators L2 and Lz
in non-relativistic theory describing the spatial angular momentum state in
terms of the quantum numbers L and ML. The GVR has been previously
used in our non-relativistic work [29, 30, 81, 217]. For the spin-triplet state,
we find two possible representations. The first one, where k = J = L+ 1, is

θML
L (v) =

√
(L+ 1)2 −M2

L

2(L+ 1)(2L+ 1)


√

L+ML

L−ML+1
YML−1
L (v)

YML
L (v)

YML
L (v)√

L−ML

L−ML+1
YML+1
L (v)

 , (7.10)

and the second one, where k = −l and j = l − 1, is

θML
L (v) =

√
L2 −M2

L

2L(2L+ 1)


−
√

L−ML+1
L+ML

YML−1
L (v)

YML
L (v)

YML
L (v)

−
√

L+ML+1
L−ML

YML+1
L (v)

 . (7.11)

Here, we have introduced the auxiliary quantum number k.

The well known fine-structure of the hydrogen atom only shows up in the
spin-triplet state. The spin-singlet state lacks the spin-orbit splitting. We do
only consider triplet hydrogen in this work.
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The ECGs and the total angular momentum function formulated in terms of
the GVR can then be combined to form

Θi(r1, r2) = ΘJ
MJ i(r1, r2;ui,Ai)

=

√
(L+ 1)2 −M2

L

2(L+ 1)(2L+ 1)


√

L+ML

L−ML+1
YML−1
L (vi)

YML
L (vi)

YML
L (vi)√

L−ML

L−ML+1
YML+1
L (vi)

 exp

(
−1

2
rT(Ai ⊗ 13)r

)
(7.12)

for states with J = L + 1. The matrix Ai and the global vector ui are the
two non-linear variational parameters of basis function i. Their structure is
discussed in chapter 4.

The linear factors cλi in Eq. (7.3) are determined such that they minimize the
Rayleigh quotient in Eq. (3.29). This leads to the generalized eigenproblem

HC = ESC (7.13)

which is solved for the diagonal (n× 2N)× (n× 2N) matrix E containing the
energies of the different eigenstates and the (n × 2N) × (n × 2N) matrix C
which contains the expansion coefficients from Eq. (7.1). H and S are the
matrix representations of the Hamiltonian and the overlap with the elements
defined as

H(I×n+λI),(J×n+λJ ) =
〈

(U
(N)
KB ΘI(r))λI

∣∣∣H(2)
DTS

∣∣∣(U (N)
KB ΘJ(r))λJ

〉
(7.14)

and

S(I×n+λI),(J×n+λJ ) =
〈

(U
(N)
KB ΘI(r))λI

∣∣∣(U (N)
KB ΘJ(r))λJ

〉
, (7.15)

respectively. The two matrices are of dimension (n× 2N)× (n× 2N). We use
the indices I, J , λI and λJ which run from zero in order to obtain simpler
relations.

The generalized eigenvalue problem corresponding to the matrix representa-
tion of the Hamiltonian is solved using the standard linear algebra library
routines of LAPACK (Version 3.2.1) [265] through the Armadillo framework
(Version 3.4.0) [266].

7.2 Integrals over Cartesian Explicitly Correlated Gaussians

The kinetic-balance condition presented in Eqs. (6.56) – (6.59) requires the
action of the σ · p operator on the function ΘJ

MJ i(r1, r2;ui,Ai) defined in
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Eq. (7.12). Unfortunately, the basis function does not maintain its general
form due to the GVR. We therefore have to recast the GVR in a form which
is invariant under the action of the σ · p operator. The simplest form are
explicitly correlated Gaussians with Cartesian polynomial prefactors (CECGs):

G(r;A)[l] =
N∏
n=1

∏
µ∈{x,y,z}

rlnµnµ G(r;A) (7.16)

where l is a vector containing the exponents for the different factors in the
polynomial and where we have omitted the basis function index for the sake
of brevity. For K = 0, the GVR can be expressed as a linear combination of
Cartesian polynomials [2] according to

YML
L (v) =

√
2L+ 1

4π
(L+ML)!(L−ML)!

⌊
L−ML

2

⌋∑
p=max(0,ML)

2ML−2pvL+ML−2p
z

(L+ML − 2p)!

×
p∑
a=0

p−ML∑
b=0

(−1)ML+b va+b
x (ivy)

2p−a−b−ML

a!b!(p− a)!(p−ML − b)!
. (7.17)

Our ansatz for ΘJ
MJ i(r1, r2;ui,Ai) in Eq. (7.12) can then be written as a

linear combination of CECGs,

ΘJ
MJ i(r1, r2;ui,Ai) =

∑
j=1

cj(ui)Gj(r;A)[lj] , (7.18)

where the expansion coefficients cj(ui) and the polynomial exponents lj are
determined according to Eq. (7.17).

Expressions for integrals over CECGs were presented by Boys [79], Singer
[80], Kozlowski and Adamowicz [254], and Cencek and Rychlewski [213]. As
an alternative, Saito and Suzuki [267] have presented recursion relations for
integrals over CECGs involving the Fourier kernel. This approach is far less
involved, especially for CECGs centered at the origin. The Fourier kernel limits
the applicability of this approach when integrals for inverse-law potentials

VC(λ) = |eT r|−λ (7.19)

are involved. e is an N -vector defining the linear combination of one-particle
coordinates. For a single particle j, e has the elements ei = δij and the
potential becomes

VC(λ) = |rj|−λ (7.20)
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while for a potential depending on the distance of two particles p and q, e
becomes ei = δip−δiq. Since there will be no Fourier transform for Eq. (7.19)
if λ > 1, it can only be applied to Coulomb-type interactions but not for
Breit-type interactions which contain terms with λ = 3. An alternative to
the Fourier kernel is the modified Laplace kernel. The integral transform of
Eq. (7.19) then reads

|eTr|−λ =

∫ ∞
0

du
2uλ−1

Γ(λ/2)
exp

(
−u2(eTr)2

)
. (7.21)

This Laplace kernel has been exploited by Obara and Saika [268, 269] for
the four-center electron repulsion integrals and also by Shiozaki for the Breit
interaction [270]. Their work, however, is based on orbitals, not ECGs. We
therefore have to adjust the derivation for origin-centered CECGs.

The integrals involve the product of two origin-centered CECGs multiplied
with the modified Laplace kernel. The product of the two CECGs conveniently
leads to a new CECG also centered at the origin

G(r)[l] ≡ G[l] = G(r;AI)[lI ]G(r;AJ)[lJ ] exp
(
−u2(eTr)2

)
= exp

(
−1

2
rT (A⊗ 13) r

) N∏
n=1

∏
µ∈{x,y,z}

rlnµnµ exp
(
−u2(eTr)2

)
= G(r;A)[l] exp

(
−u2(eTr)2

)
(7.22)

where

A = AI +AJ (7.23)

and

l = lI + lJ . (7.24)

First, the primitive integral

[l]N =

∫ ∞
−∞

dr G[l] (7.25)

is used to derive the basic recurrence relation. All further integral expressions
can then be obtained through reduction operators acting on the primitive
integral and its recurrence relation. The recurrence relation is obtained from
the derivative of Eq. (7.22) with respect to riµ

∂

∂riµ
G[l] = liµG[li − 1µ]−

N∑
m=1

[
A− 2u2eeT

]
im
G[li + 1µ] . (7.26)
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Note, that we follow the notation of Ref. [267] and only print those exponents
li which change in the manipulation for the sake of brevity. Integrating both
sides over r leads to

0 = liµ[li − 1µ]N −
N∑
m=1

[
A− 2u2eeT

]
im

[li + 1µ]N (7.27)

since ∫ ∞
−∞

dr
∂

∂riµ
G[l] = 0 . (7.28)

We can now from a vector equation according to Eq. (7.27)
0

0
...
0

 =


l1µ[l1 − 1µ]N
l2µ[l2 − 1µ]N

...
lNµ[lN − 1µ]N

− [A− 2u2vvT
]


[l1 + 1µ]N
[l2 + 1µ]N

...
[lN + 1µ]N

 (7.29)

which can be rearranged into
[l1 + 1µ]N
[l2 + 1µ]N

...
[lN + 1µ]N

 =
[
A− 2u2eeT

]−1


l1µ[l1 − 1µ]N
l2µ[l2 − 1µ]N

...
lNµ[lN − 1µ]N

 . (7.30)

The inverse of [A−2u2eeT] is problematic in its current form, since it depends
directly on u over which we will later integrate. The factor 2u2eeT is a rank-
one correction to the inverse of A and we can use the Sherman–Morrison
formula [271–273] to obtain a more convenient form

[
A− 2u2eeT

]−1
= A−1 − 2u2

1 + 2u2eTA−1e
A−1eeTA−1

= A−1 − 2ρ
u2

ρ+ u2
Z (7.31)

where we have introduced the factors

1/ρ = 2eTA−1e (7.32)

and

Z = A−1eeTA−1 . (7.33)
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Based on Eqs. (7.30) and (7.31) we find the primitive recurrence relation

[li + 1µ]N =
N∑
m=1

(
A−1
mi − 2ρ

u2

ρ+ u2
Zmi

)
lmµ[lm − 1µ]N (7.34)

with the initial integral

[0]N =

∫ ∞
−∞

dr exp

(
−1

2
rTAr − u2(eTr)2

)
=

(
(2π)N

det (A+ 2u2eeT)

)3/2

. (7.35)

Again, we would like to separate u in this expression since we will integrate
over it later. Using the matrix determinant lemma [274] we find

det
(
A+ 2u2eeT

)
= det (A)

(
1 + 2u2eTA−1e

)
= det (A)

(
1 + u2/ρ

)
(7.36)

where we have again exploited that 2eeT has rank one. The primitive initial
integral then becomes

[0]N =

(
(2π)N

det (A) (1 + u2/ρ)

)3/2

. (7.37)

7.2.1 Overlap and (Non-)Relativistic Kinetic-Energy Integral

Acting with the reduction operator

RS ≡ lim
u→0

(7.38)

on the primitive recursion relation in Eq. (7.34) and the primitive initial
integral in Eq. (7.37) leads to the overlap integrals of CECGs S[l]N :

S[li + 1µ]N =
N∑
m=1

A−1
milmµS[lm − 1µ]N (7.39)

S[0]N =

(
(2π)N

det (A)

)3/2

. (7.40)

We can avoid the formulation of reduction operators for both the non-
relativistic kinetic-energy operator and the σ · p operator by exploiting the
fact the CECGs maintain their general form when these operators act on them
and then use the expressions for the overlap integral after the transformation.
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7.2.2 Inverse Law Potential Integral

The general reduction operator for inverse law potentials described in Eq. (7.19)
is

RV [m;λ] ≡ 2

∫ ∞
0

du

(
u2

ρ+ u2

)m
uλ−1

Γ(λ/2)
(7.41)

where m is an auxiliary index. Reduction to the inverse law potential integral

V [l;m;λ] = RV [m,λ][l]N (7.42)

leads to the recursion relation

V [li + 1µ;m;λ]N =
N∑
m=1

A−1
milmµV [lm − 1µ;m;λ]N

− 2ρ
N∑
m=1

ZmilmµV [lm − 1µ;m+ 1;λ]N (7.43)

with the initial integral

V [0;m;λ]N = 2

∫ ∞
0

du

(
u2

ρ+ u2

)m
uλ−1

Γ(λ/2)

(
(2π)N

det (A) (1 + u2/ρ)

)3/2

(7.44)

=
2S[0]

Γ(λ/2)

∫ ∞
0

du

(
u2

ρ+ u2

)m
uλ−1

(
1 + u2/ρ

)−3/2
. (7.45)

The integral over u can be simplified by introducing the substitution

t =
u2

ρ+ u2
=⇒ u2 = ρ

t

1− t
(7.46)

so that

du =
1

2

(
ρ

t

1− t

)−1/2

(1− t)−2dt . (7.47)

The initial integral then takes a new form as

V [0;m;λ]N =
2S[0]

Γ(λ/2)
ρ(λ−1)/2

×
∫ 1

0

dt tm
(

t

1− t

)(λ−1)/2(
1 +

t

1− t

)−3/2

(1− t)−2 . (7.48)

Partial fraction decomposition allows us to reformulate the term

t

1− t
=

1

1− t
− 1 (7.49)
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which simplifies Eq. (7.48) as

V [0;m;λ]N =
2S[0]

Γ(λ/2)
ρλ/2B(m+ λ/2, 1.5− λ/2) (7.50)

in terms of the beta function

B (x, y) =

∫ 1

0

dt tx−1(1− t)y−1 . (7.51)

The ratio

K[m;λ] =
B(m+ (λ− 1)/2, 3− λ/2)

Γ(λ/2)
(7.52)

depends on two non-negative integers m and λ. Calculations can therefore
be performed more efficiently by precalculating K[m,λ] for a suitable range
of m values for a specific choice of λ, i.e., a specific type of interaction.

The Breit term in Eq. (3.10) is rarely included in relativistic electronic-
structure calculations. This is due to the r−3 term present in the operator,
which leads to expensive two-electron four-center integrals. The results pre-
sented by Shiozaki, however, show that it is possible to evaluate this integral
at a similar computational cost, as the Coulomb integral. Our derivation is
based on the same strategy and, not surprisingly, we find that the computa-
tional cost for our integrals is nearly independent of λ.

7.2.3 Translationally Invariant Integrals

To identify contributions from cA to some function F (A,u) we use the sub-
stitution

F (A,u) = F (UT
xA

(x)Ux,U
T
xu

(x)) . (7.53)

We illustrate this procedure for the inverse of the sum of two matrices AI

and AJ which is important for the integrals in Eqs. (7.39) and (7.43). We
start with the substitution and form the inverse

(AI +AJ)−1 =
(
UT
x (A

(x)
I +A

(x)
J )Ux

)−1

= U−1
x (A

(x)
I +A

(x)
J )−1U−T

x . (7.54)

Studying the block structure of the general form of the transformation matrix
in Eq. (2.6) and A(x)

U−1
x (A

(x)
I +A

(x)
J )−1U−T

x =
[
M ′ ε

] [(A(x)
I + A(x)

J )−1 0

0 1/(2cA)

][
M ′T

εT

]
= M ′(A(x)

I + A(x)
J )−1M ′T +

1

2cA
εεT . (7.55)
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This leads to the tranlationally invariant inverse

(AI +AJ)−1
TI = (AI +AJ)−1 − 1

2cA
εεT (7.56)

where εεT evaluates to a N × N matrix filled with ones. So we can sim-
ply subtract 1/2cA from each element in the inverse in order to obtain its
translationally invariant form.

Following this procedure, it becomes clear that the initial integrals in Eqs. (7.39)
and (7.43) are free from translational effects as long as cu is zero and the
only contribution of cA is eliminated by using the translationally invariant
inverse in Eq. (7.56).

7.3 Results

We first focus on the results for atomic hydrogen and compare them to the
analytical results obtained by Marsch [261]. Note that the analytical expres-
sions for the energy given in Refs. [261–264] are not identical. Unfortunately
the reason for these inconsistencies remain unknown [275].

The trial wave functions contained 100 basis functions for all calculations.
The non-linear parameters Ai and ui in Eq. (7.12) are generated using a
system adapted random number generator according to Ref. [30] following the
variational stochastic sampling method [2,41,42]. The mass of the proton mp

was chosen in terms of the electron mass me as mp/me = 1836.15267247 [236].
Table 7.1 lists the non-relativistic energies in the first half and the Dirac-
Coulomb results in the second half. We obtain results converged to at least
7 significant digits.

Next, we study the non-relativistic limit for c → ∞ and the BO limit for
mp → ∞. Table 7.2 collects results for large values of c (105 a.u.) and mp

(1012 a.u.). Clearly, the correct limits are obtained.

Finally, we present the ground-state energies for hydrogen-like ions with
nuclear charges between 2 and 10. We have selected isotopes with nuclear
spin 1/2. The elements for which no isotope with nuclear spin 1/2 exists were
not considered. Table 7.3 presents both the relativistic and non-relativistic
ground state energies of seven isotopes. We should note that Marsch [261]
did not include the nuclear charge into the derivation. However, following the
original derivation, we find that the energy expression can easily be expanded
as

E(n, k) = (m1 +m2)c2

√
1 + 2

m1m2

(m1 +m2)2
(e(n, k)− 1) (7.57)
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with

e(n, k) =

(
1 +

Z2

c2(
√
k2 − Z2/c2 − |k|+ n)2

)−1/2

(7.58)

where n is the principal quantum number in this context. The estimated
accuracy of our results is at least six significant digits. The nuclear masses
were taken from Ref. [276] and expressed in terms of the electron mass.
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8
Improvements of Computational
Efficiency and Scaling Behavior

In this chapter, we present further work focusing on improvements of the
computational efficiency and the scaling behavior with respect to the number
of particles. Also alternatives for ensuring variational stability in relativistic
calculations were investigated.

8.1 Matrix Form of the (Anti-)Symmetrization Operator

The computational cost of imposing the correct particle exchange symme-
try scales factorially with respect to the number of particles involved. It is
the factor which prohibits the study of systems containing more than a few
particles.

The (anti-)symmetrization with respect to some type of particle is presented
in Eq. (2.29). It can be recast in product form as

A = (1− P1,2)(1− P1,3 − P2,3) . . . (1− P1,N − . . .− PN−1,N) . (8.1)

To show that the two formulations are identical is rather straightforward and
can be done by expansion of Eq. (8.1).

Another way of looking at Eq. (8.1) is illustrated in Figure 8.1. Here a
particle is added to a system containing N particles with the proper particle
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exchange symmetry already imposed. The new N + 1 wave function is then
symmetrized trough the operator

AN = (1− P1N+1 − . . .− PN N+1) (8.2)

which performs all exchanges of the N particles with the (N + 1)th particle.

Insertion of the resolution of the identity

1 = |Ψ〉 〈Ψ| (8.3)

into Eq. (8.1) can be used to form a matrix representation of the (anti-)-
symmetrization operator as

A = 〈Ψ| (1− P12) |Ψ〉 〈Ψ| (1− P13 − P23) |Ψ〉 . . .
× . . . 〈Ψ| (1− P1N − . . .− PN−1 N) |Ψ〉 . (8.4)

This form scales much more favorable than Eq. (2.29) since it only involves
N2 matrices. The main problem with the matrix form is the resolution of the
identity. Treated as an approximation in terms of an auxiliary basis set leads
to the obvious problem: How to find the auxiliary basis set? An incomplete
auxiliary basis set leads to a false normalization of the state function as

1 ≥ |Ψ〉 〈Ψ| (8.5)

and therefore

H ≤ AH0A and S ≤ AS0A (8.6)

where H0, S0 are the matrix representations of the Hamiltonian and the
metric where the particle exchange symmetry is not enforced, and A is the
matrix representation of (anti-)symmetrization operator. Thus, this approx-
imate matrix representation of the (anti-)symmetrization operator leads to
variationally unstable calculations because the energy depends on the inverse
of S.

8.2 Analytical Gradients

Kinghorn has presented a convenient mathematical framework for the deriva-
tion of analytical energy gradients [38]. This form of matrix differential calcu-
lus was introduced by Magnus and Neudecker [39,40]. It has the advantage
of having a well-defined chain rule which is not present in other forms of
matrix differential calculus. The derivatives of the energy integral presented
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Figure 8.1: Imposing particle exchange symmetry for a system with an increased number
of particles. The symmetrization only involves exchanges with the new particle if the
original system is already properly symmetrized.

by Kinghorn is not directly applicable to our work, since they use a different
parametrization of the correlation matrix A and also do not employ the GVR.

Based on the mathematical framework formulated by Magnus and Neudecker
and presented by Kinghorn, we have derived new gradient expressions for
the basis functions in Eq. (2.30). These gradients are not included into our
computer program BlueBerry, since they are computationally too expensive
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to be practical and do not provide us with an advantage over our stochastic
sampling routines. Numerical gradients are more efficient than analytical
gradients, but do also not provide us with any advantage compared to our
stochastic sampling routines.

8.2.1 Matrix Derivative

The general matrix derivative of some function F (A) : Rm×n 7→ Rp×q relies
on the vec function for a general n×m matrix

vec A =
[
A11 A12 . . . An,m−1 An,m

]T
(8.7)

and takes the form

F ′(A) =
∂vec F (A)

∂ (vec A)T
. (8.8)

The gradient is

∇AF (A) = F ′(A)T . (8.9)

Similarly, for square symmetric n×n matrices, a vech function can be defined
as

vech A =
[
A11 A12 . . . Ai,i Ai,i+1 . . . An,m

]T
. (8.10)

8.2.2 General Method for the Derivation of Gradients

The derivative in Eq. (8.8) is obtained in three steps. The first step is to form
dF (X) using the product rule

d(U × V ) = dU × V +U × dV where × ∈ {·,⊗} , (8.11)

and the following relations for the trace, transpose, inverse and determinant

dTr (U) = Tr (dU ) , (8.12)

dUT = (dU)T , (8.13)

d det (U) = det (U)
(
vec(U−T)

)T
dvec U , (8.14)

dvec U−1 = −
(
U−T ⊗U−1

)
dvec U . (8.15)

For the derivation of these relations, we refer the reader to either the work
by Kinghorn [38] or to the original work by Magnus and Neudecker [39,40].
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The next step in the derivation is to form

vec (dF (A)) = dvec (F (A)) = F ′(A)dvec(A) . (8.16)

If F (A) is a vector or a scalar, then it is not affected by the vec operation.

The most important relations for this step are

vec abT = b⊗ a , (8.17)

Tr
(
ATB

)
= (vec A)T vec B , (8.18)(

AT ⊗B
)

vec C = vec (ABC) . (8.19)

In the last step we form the derivative of Eq. (8.8) from Eq. (8.16).

8.2.2.1 Structured Matrices

The matrix A is required to be positive-definite. Therefore, a variety of special
parametrization schemes for A exist which lead to special structures of this
matrix. An important parametrization of A is the Cholesky decomposition:

A = LLT (8.20)

in terms of the lower triangular matrix L. In order to respect the special
structure imposed onto A by Eq. (8.20), the matrix L is introduced. It is
defined by the relation

vec A = Lvec L . (8.21)

Using the chain rule, we can relate any derivative in terms of the original
matrix A to L as

F ′(A(L)) =
∂F (A)

∂A

∂A(L)

∂L
= F ′(A)L . (8.22)

Similar to Eq. (8.20) the vec and the vech operations can be related in terms
of the duplication matrix

vech A = Dnvec A (8.23)

and the α parameters in Eq. (2.42) as

vec α = Qvec A . (8.24)
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8.2.3 Matrix Derivative of the Energy

The derivation of the total energy with respect to A is given as [38]

∇AE =

(
∂vech H

∂(vec A)T
− E ∂vech S

∂(vec A)T

)T

vech
(
2ccT − diag

(
ccT
))

, (8.25)

if the basis functions are ortho-normal, where H and S are the matrix forms
of the Hamiltonian and the overlap operators and c is a vector containing
the expansion coefficients of the state of the system. We continue now with
the derivatives for the overlap, the kinetic-energy and the potential-energy
operators.

8.2.4 Matrix Derivative of the Overlap Integral

The integral expression for the overlap of two ECGs with the GVR is [30]

SIJ = D3/4q
−KI−L/2
I q

−KJ−L/2
J

min(KI ,KJ )∑
m

p2m+L
IJ pKI−mII pKJ−mJJ HL,KI ,KJ ,m (8.26)

with

D =
det(2AI) det(2AJ)

det(AIJ)2
, (8.27)

pXY = uTXA
−1
IJuX where X, Y ∈ {I, J} , (8.28)

qX =
1

2
uTXA

−1
X uX where X ∈ {I, J} . (8.29)

The derivative of the first term is obtained through the product rule in
Eq. (8.11) and the derivative of the determinant in Eq. (8.14). The resulting
expression reads as:

dD

dvec(AI)
= D [V (AI)− 2V (AIJ)] with V (A) =

(
vec(A−T)

)T (8.30)

and the derivative of the quadratic terms read as

−UXY =
dpXY

dvec(AX)
= −

(
uTXA

−1
IJ ⊗ uTYA

−1
IJ

)
(8.31)

where we have used Eq. (8.15) for the derivative of the inverse and then
applied the vec operation. Since pXY is a scalar it is not affected by the vec
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operation. Accordingly the derivative of the term of the quasi-normalization
is

−1

2
QI =

dqI
dvec(AI)

= −1

2

(
uTIA

−1
I ⊗ uTIA

−1
I

)
. (8.32)

Trivially, the derivative of qJ is

dqJ
dvec(AI)

= 0 . (8.33)

From relations in Eqs. (8.30) – (8.32) we find the derivative of the overlap
integral as

dSIJ
dvec(AI)

= SIJ

(
V (AI)− 2V (AIJ) +

(KI + L/2)

2qI
QI −

L

pIJ
UIJ

−KI

pII
UII −

KJ

pJJ
UJJ

)
+ S

(m)
IJ

(
1

pII
UII +

1

pJJ
UJJ −

2

pIJ
UIJ

)
(8.34)

with

S
(m)
IJ = D3/4q

−KI−L/2
I q

−KJ−L/2
J

×
min(KI ,KJ )∑

m

m p2m+L
IJ pKI−mII pKJ−mJJ HL,KI ,KJ ,m . (8.35)

8.2.5 Derivative of the Kinetic-Energy Operator

The integral expression for the kinetic energy reads as [30]

TIJ = D3/4q
−KI−L/2
I q

−KJ−L/2
J

min(KI ,KJ )∑
m

[RIJ + (KI −m)PII

+(KJ −m)PJJ + (L+ 2m)PJJ ]

(
pIJpIJ
pIIpJJ

)m
HKI ,KJ ,L,m (8.36)

with

RIJ =
3

2
Tr(A−1

IJAIMAI) , (8.37)

PJJ = −uTJA−1
IJAIMAIA

−1
IJuJ , (8.38)

PII = −uTIA−1
IJAJMAJA

−1
IJuI , (8.39)

PIJ = uTIA
−1
IJAJMAIA

−1
IJuJ . (8.40)
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The derivative of Eq. (8.37) is obtained through Eq. (8.12) for the trace and
Eq. (8.15) for the inverse. It reads as

R′IJ =
dRIJ

dvec(AI)
=

3

2
vec(A−1

IJAJMAJAIJ−1) . (8.41)

The derivatives of Eqs. (8.38) – (8.40) are

UJJP
′
JJ =

dPJJ
dvec(AI)

= UJJ

[(
1⊗AIMAJA

−1
IJ

)
+
(
AIMAJA

−1
IJ ⊗ 1

)]
, (8.42)

U IIP
′
II =

dPII
dvec(AI)

=
(
U II

(
1⊗AJMAJA

−1
IJ

)
+U II

(
AJMAJA

−1
IJ ⊗ 1

))
(8.43)

and

U IJP
′
IJ =

dPIJ
dvec(AI)

= U IJ

((
1⊗AJMAJA

−1
IJ

)
−
(
AIMAJA

−1
IJ ⊗ 1

))
. (8.44)

They are derived using the product rule in Eq. (8.11) and the derivative of
the inverse in Eq. (8.15).

In order to facilitate the derivation of the final expression, we continue with
the derivatives of the following products

d(RIJp
L+2m
IJ pKI−mII pKJ−mJJ )

dvec(AI)
= [FRIJ + Fm ×m]

×RIJp
L+2m
IJ pKI−mII pKJ−mJJ , (8.45)

d(PIIp
L+2m
IJ pKI−m−1

II pKJ−mJJ )

dvec(AI)
= [F PII + Fm ×m]

× PIIpL+2m
IJ pKI−m−1

II pKJ−mJJ , (8.46)

d(PJJp
L+2m
IJ pKI−m−1

II pKJ−mJJ )

dvec(AI)
= [F PJJ + Fm ×m]

× PJJpL+2m
IJ pKI−mII pKJ−m−1

JJ (8.47)

and

d(PJJp
L+2m
IJ pKI−m−1

II pKJ−mJJ )

dvec(AI)
= [F PIJc + F PIJm ×m]

× PIJpL+2m−1
IJ pKI−mII pKJ−mJJ , (8.48)
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where

FRIJ =
R′IJ
RIJ

− LU IJ

pIJ
− KIU II

pII
− KJUJJ

pJJ
, (8.49)

F PII =
U IIP

′
II

PII
− LU IJ

pIJ
− (KI − 1)U II

pII
− KJUJJ

pJJ
, (8.50)

F PJJ = −UJJP
′
JJ

PJJ
− LU IJ

pIJ
− KIU II

pII
− (KJ − 1)UJJ

pJJ
, (8.51)

F PIJ =
U IJP

′
IJ

PIJ
− (L− 1)U IJ

pIJ
− KIU II

pII
− KJUJJ

pJJ
, (8.52)

Fm =
U II

pII
+
UJJ

pJJ
− 2U IJ

pIJ
. (8.53)

We can then use Eqs. (8.45) – (8.48) to obtain the following derivative

d

dvecAI

[
RIJ + (KI −m)

PII
pII

+ (KJ −m)
PJJ
pJJ

+(L+ 2m)
PIJ
pIJ

](
pIJpIJ
pIIpJJ

)m
=
[
F 0 + F 1m+ F 2m

2
](pIJpIJ

pIIpJJ

)m
(8.54)

with

F 0 = RIJFRIJ +KIF PII

PII
pII

+KJF PJJ

PJJ
pJJ

+ LF PIJ

PIJ
pIJ

, (8.55)

F 1 = RIJFm +KIFm
PII
pII
− F PII

PII
pII

+KJFm
PJJ
pJJ

− F PJJ

PJJ
pJJ

+ LFm
PIJ
pIJ

+ 2F PIJ

PIJ
pIJ

, (8.56)

F 2 =

[
2
PIJ
pIJ
− PII
pII
− PJJ
pJJ

]
Fm . (8.57)

We are now ready to derive the final expression for the derivative of the
kinetic-energy integral. By combining Eqs. (8.30) – (8.32) from the derivative
of overlap integral together with Eq. (8.54) leads to the final expression for
the derivative of the kinetic-energy integral:

d

dvec(AI)
TIJ = TIJ [V (AI)− 2V (AIJ)] + TIJ

KI + L/2

2qI
QI +D3/4q

−KI−L/2
I

×q−KJ−L/2J

min(KI ,KJ )∑
m

[
F 0 + F 1m+ F 2m

2
](pIJpIJ

pIIpJJ

)m
HKI ,KJ ,L,m . (8.58)
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8.2.6 Derivative of the Coulomb Interaction Integral

Since the Coulomb potential only depends on the distance between particles
i and j, it is advantageous to introduce the transformed coordinates [30]

U = 1− I ij where I ij = 1 if j > i and else 0 (8.59)

which substitutes the coordinate of the ith particle which the distance of
particles i and j. After the transformation, the integral expression of the
Coulomb integral reads as [30]

Vi =

√
2

π
G3/4q

−KI−L/2
I q

−KJ−L/2
J

L+KI+KJ∑
m

m∑
i

m−i∑
j

∑
n

c−1−m
IJ tm+i−j

I tm−i+jJ

×τ−i−n+KI
II τ−j−n+KJ

JJ τ−m+i+j+2n+L
IJ HL,KI ,KJ

m,i,j,n (8.60)

with

G =
det(2AI) det(2AJ)

det Γ det Γ
, (8.61)

tX = (uX)1 − γTΓ−1ωX with X ∈ {I, J} , (8.62)

τXY = ωTXΓ−1ωY with X, Y ∈ {I, J} , (8.63)

cIJ = A12 − γTΓ−1γ . (8.64)

Γ, γ, and A12 are defined as in terms of AIJ . Γ is obtained by eliminating
the ith row and column from AIJ . γ is the jth column of AIJ with the ith

element removed. Last, A12 is the ith element of the jth column in AIJ .

ωX and (uX)1 are defined in terms of uX where ωX is uX with the ith

element eliminated and (uX)1 is the ith element of uX .

Before we can continue with the derivation of the derivative of the Coulomb
interaction integral, we need to formulate matrix expressions for Γ, γ, A12,
ωX and (uX)1. For this, we introduce the N × (N − 1) matrix Ri which is
defined as the N × N identity matrix with the ith column eliminated. We
then find

Γ = RT
i AIJRi . (8.65)

Furthermore, we introduce the N vector si with the element at position q

defined as (si)q = δiq. The remaining terms are then defined as

γ = RT
i AIJsi , (8.66)

A12 = sTi AIJsi , (8.67)

ω = RT
i u , (8.68)

(u)1 = siu . (8.69)

106



Analytical Gradients 8.2

Eq. (8.60) contains the inverse of Γ and since Ri has no inverse, it is not
possible to rearrange Eq. (8.65) in terms of the inverse of the individual
matrices. Therefore, we have to use the chain rule to obtain the derivative
of the inverse of Γ:

dΓ−1 = −Γ−1RT
i dAIRiΓ

−1 . (8.70)

The derivative of cIJ then reads

c′IJ =
dcIJ

dvec(AI)
= (sTi ⊗ si) + (γTΓ−1RT

i ⊗ sTi )

−(γTΓ−1RT
i ⊗ γTΓ−1RT

i ) + (sTi ⊗ γTΓ−1RT
i ) . (8.71)

The derivatives of Eqs. (8.62) and (8.63) are

t′X =
dtX

dvec(AI)
=

= (ωTXΓ−1RT
i ⊗ γTΓ−1RT

i )− (ωTXΓ−1RT
i ⊗ sTi ) with X ∈ {I, J} (8.72)

and

τ ′XY =
τXY

dvec(AI)
= (ωTXΓRT

i ⊗ ωTY ΓRT
i ) with X, Y ∈ {I, J} . (8.73)

The final expression for the derivative of the Coulomb interaction is

dVi
dvec(AI)

= Vi
[
V (AI)− 2V (RiΓ

−1RT
i )
]
− Vi

KI + L/2

2qI
QI

+

√
2

π
G3/4q

−KI−L/2
I q

−KJ−L/2
J

L+KI+KJ∑
m

m∑
i

m−i∑
j

∑
n

[
−1 +m

cIJ
c′IJ

+
m+ i− j

tI
t′I +

m− i+ j

tJ
t′J +

KI − i− n
τII

τ ′II

+
KJ − j − n

τJJ
τ ′JJ +

L−m+ i+ j + 2n

τIJ
τ ′IJ

]
×

c−1−m
IJ tm+i−j

I tm−i+jJ τ−i−n+KI
II τ−j−n+KJ

JJ τ−m+i+j+2n+L
IJ HL,KI ,KJ

m,i,j,n . (8.74)
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9
Conclusion and Outlook

9.1 Conclusion

Explicitly correlated methods have proven to be highly successful in theoreti-
cal physics and chemistry for the study of many-body systems. The accuracy
of variational non-relativistic pre-BO calculations employing ECGs are unpar-
alleled regarding both the energy and molecular properties. The relativistic
descriptions of such systems using similar variational approaches has long been
under-developed and relativity was primarily included through perturbation-
based approaches. In this work, we discussed the main obstacles arising
when one aims at developing a variational first-quantized relativistic many-
1/2-fermion framework: ensuring both variational stability and translational
invariance. Furthermore, we have presented solutions to these problems and
illustrated their effectiveness in terms of numerical examples.

In chapter 6, we focused on variational collapse in variational Dirac–Coulomb
calculations. Variational collapse occurs due to the unboundedness of the
Dirac Hamiltonian and the finite size of the basis set [129]. In this work, it
is avoided by an explicitly correlated kinetic-balance condition. In order to
evaluate the integrals, we had to recast the explicitly correlated basis functions
from ECGs with the GVR to CECGs. This is necessary because the ECGs do not
maintain their general form after enforcing the kinetic-balance condition. The
integral expressions for CECGs are derived according to the work presented
by Saito and Suzuki [267] and the work presented by Shiozaki [270].

The problem of translational invariance is not solved by the introduction of a
TICC transformed Hamiltonian as it is generally done for the non-relativistic
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Schrödinger Hamiltonian. The relativistic equivalent to the center-of-mass
frame is the center-of-momentum frame and an accordingly transformed
Hamiltonian can be formulated. Also, the transformation of the kinetic bal-
ance condition is, in principle, not an issue.

In chapter 4, we showed how translational effects can be eliminated from
integral expressions using a special parametrization. This leads to our frame-
work of translationally invariant integrals which allows us to perform calcu-
lations in LFCCs. This framework can be applied equally to relativistic and
non-relativistic calculations of energies and also to calculations of molecular
properties. We have therefore developed a common description of transla-
tional invariance for both the relativistic and non-relativistic framework. This
facilitated the implementation of our code immensely and allowed us to use
non-relativistic parameter sets in the relativistic calculations as they are related
to the non-relativistic limit through our explicitly correlated kinetic-balance
condition.

We have applied our findings to calculate transition dipole moments for the
hydrogen molecule using our non-relativistic framework, presented in chap-
ter 5. Furthermore, we illustrated in chapter 7 that we can formulate a
translationally invariant and variationally stable many-1/2-fermion theory by
reproducing the fine-structure spectrum of atomic hydrogen and accurate
ground-state energies for hydrogen-like ions. Since the Lamb shift is not
an inherent part of the Dirac–Coulomb Hamiltonian, it was not part of our
fine-structure calculations.

9.2 Outlook

Future work should primarily focus on the extension of our framework for
systems of more than two particles. This requires the derivation of an ap-
propriate kinetic balance for each system size. While the basic framework is
completed, there is still work left regarding extensions of both the relativistic
and non-relativistic framework. In this section we present ideas for further
projects.

9.2.1 Visualization of pre-Born–Oppenheimer Particle Densities

The visualization of electron densities is an important tool in quantum chem-
istry. They help us to understand chemical behavior and physical properties.
For pre-BO wave functions, there currently exists no method which visual-
izes many-particle densities. The main issues are the rotational properties of
the wave function. While the molecular structure exists in a pre-BO wave
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function, its features need to be individually extracted [82] unlike in BO
frameworks, where the structure is an explicit part of the theory. Combin-
ing these individually extracted features into one particle density should be
studied.

Only the translationally invariant degrees of freedom are of interest for
chemists. Translational and rotational degrees of freedom therefore need
to be eliminated from the particle densities. The Z-Matrix [277] is a means
of storing BO structures independent of their position in space and angle of
rotation. It encodes all relevant information in terms of bond length, bond
angles, and dihedral angles.

The concept of the Z-Matrix can be used to develop a similar formalism
for pre-BO particle densities. The density of a two-particle system is then
one-dimensional and defined by the distance between the two particles. If a
third particle is added to the system, then the next particle density is two-
dimensional, defined by the distance to the second particle, and the angle
with the first and second particle. For any further particle which is added
to the system, the particle density is three-dimensional. Figure 9.1 illustrates
the process how a particle density for pre-BO systems is constructed based
on the concept of the Z-Matrix for two and three particles.

The one-particle density of the first particle, ρ1(r1), is simply a Dirac delta
function,

ρ1(r) = δ(r) , (9.1)

located at the origin. The two-particle density, ρ2(R), of the first and second
particle only depends in the inter-particle distance,

ρ2(r) = 〈Ψ| δ(r12 − r) |Ψ〉 . (9.2)

The three-particle density, ρ3(R), of the first three particles is then,

ρ3(r, φ) = 〈Ψ| δ(r13 − r)δ(φ312 − φ) |Ψ〉 , (9.3)

where r13 is the distance between the first and third particle, and φ312 is the
angle between the third and second particle around the first particle.

The resulting particle densities can be interpreted as the densities as-seen from
the first particle using the second an third particles as a spatial reference.
Thus, the density distribution of the first particle is a Dirac-delta function.
The density distribution of the second particle is a linear distribution since it
uses the first particle as a reference and the particle-particle distance is the
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Figure 9.1: Generation of pre-BO particle densities for two and three particle. The top
part illustrates a particle density distribution for two particles. The middle part illustrates
the particle density distributions for a three-particle system.

only relevant information remaining. The density distribution of the third
particle then uses the second particle as the angular reference which leads
to a two-dimensional density distribution.
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The main challenge is the derivation of computationally feasible integral
expressions for the angular and dihedral particle densities. For ECGs with the
GVR, the angular integral expressions are computationally expensive. CECGs
might provide a basis for more computationally feasible integral expressions.

9.2.2 Hybrid Cartesian-Coordinates Sampling Method

A TICC-parametrized matrix A can be transformed to LFCC and vice verse
using Eqs. (2.37) and (2.38). This can be exploited to form a framework
where any TICC can be used for the stochastic sampling. Different TICC
might accentuate different correlation paths and increase sampling efficiency.
For the calculation of the integrals, the convenient LFCC framework can be
used to eliminate the translational effects.

9.2.3 Matrix Form of the (Anti-)Symmetrization Operator

In section 8.1, we have presented an alternative scheme for enforcing the
particle-exchange symmetry, based on a matrix representation of the (anti-)-
symmetrization operator. The operator exhibits polynomial scaling with re-
spect to the number of particles. However, as it involves the resolution of the
identity approximation, variational collapse occurs. Another approach for the
formulation of a matrix form of the (anti-)symmetrization operator is based
on the relation:

S = ATS0A , (9.4)

where S is the matrix representation of the metric with the correct particle
exchange symmetry imposed, S0 is the matrix of the metric with no particle
exchange symmetry imposed and A is the matrix representation of the (anti-
)symmetrization operator. An expression for A can be obtained by starting
from

S = ATS0A = (S
1/2
0 A)TS

1/2
0 A . (9.5)

Taking the square root of both sides leads to

S1/2 = S
1/2
0 A . (9.6)

Acting with the inverse of S1/2
0 from the left on both sides of the equation

leads to the final expressions

A = S
−1/2
0 S1/2 . (9.7)
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This method exhibits factorial scaling with respect to the number of particles
since S is calculated using the exact (anti-)symmetrization operator. How-
ever, only (computationally cheap) overlap integrals have to be evaluated
to determine A and the number of integrals of the Hamiltonian becomes
independent of the number of particles. Furthermore, this will simplify the
problem of finding an auxiliary basis set for the matrix form of the (anti-)-
symmetrization operator presented in section 8.1 if Eq. (8.4) is applied to
Eq. (9.5).

An important question regarding the matrix representation of the (anti-)-
symmetrization operator is whether different operators have different A.

9.2.4 Hyperfine-Structure of Atoms and Molecules

So far, we have only studied the fine-structure spectrum of 1/2-fermion-
binaries in terms of the Dirac–Coulomb Hamiltonian. Further steps, should
focus on the extension to many-1/2-fermion systems. This requires the imple-
mentation of the kinetic-balance condition for more than two 1/2-fermions
either complete or in an approximate way.

Furthermore, future developments should focus on the inclusion of magnetic
and retardation terms. This can be achieved in terms of the Breit interaction
as presented in Chapter 7.
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A
List of Abbreviations

BO Born–Oppenheimer approximation

CC Coupled cluster

CCR Complex-coordinate rotation

CECG Explicitly Correlated Gaussian with Cartesian polynomial prefactors

CI Configuration interaction

CMCC Center-of-mass Cartesian coordinate

DHF Dirac–Hartree–Fock

DKH Douglas–Kroll–Hess

ECG Explicitly correlated Gaussian function

GTO Gaussian-type orbital

GVR Global vector representation

IPM Independent particle model

LFCC Laboratory-fixed Cartesian coordinates

MCSCF Multi-configuration self-consisting field

MP Møller–Plesset perturbation theory

pre-BO pre-Born–Oppenheimer
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Appendix A List of Abbreviations

QED Quantum electrodynamics

SCF Self-consisting field

STO Slater-type orbital

TICC Translationally invariant Cartesian coordinates

TICMCC Translationally invariant and center-of-mass Cartesian coordinates

TII Translationally invariant integrals
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B
Mathematical Relations

B.1 Tracy-Singh Product

In this part, we introduce the Tracy-Singh product [278] and present its
relation to the Kronecker product. The Tracy-Singh product is defined as

Atsp = B �C = [(Bij ⊗Cuv)] =

 (B11 ⊗Cuv) · · · (B1n ⊗Cuv)
...

(Bm1 ⊗Cuv) · · · (Bmn ⊗Cuv)

 (B.1)

where B = [Bij] and C = [Cuv] are two matrices of dimension m × n and
p×q, respectively. They are partitioned block-wise in terms of the matrices Bij

and Cuv. Atsp is a matrix of dimension mp× nq. It is partitioned block-wise
with the elements being the matrices (Bij ⊗Cuv). The Tracy-Singh product
may be considered a more general form of the Kronecker product

Akp = B ⊗C = [(bijcuv)] =

 b11C · · · b1nC
...

bm1C · · · bmnC

 (B.2)

where bij and cuv are the matrix elements of B and C, respectively. Akp is a
matrix of dimension mp×nq. The two matrices Atsp and Akp are identical in
the case that B and C are not partitioned (or partitioned into 1× 1 blocks).
Generally the two products are related through a permutation of the row and
column space of either matrix [279–281]

P T (B1 ⊗ . . .⊗Bn)Q = B � . . .�Bn (B.3)
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where P and Q are the permutation matrices for the row and the column
space and n is the number of matrices involved. For vectors we find the
relation

P T(v1 ⊗ . . .⊗ vn) = v1 � . . .� vn (B.4)

where v and t are two vectors of arbitrary dimension. The partitioning of
the matrices and vectors depends on the permutation matrices P and Q. If
all matrices are square and symmetrically partitioned, we find that the two
permutation matrices are identical [279]

P = Q (B.5)

and the two products are related through a unitary transformation.

B.2 Row Reduction and Row Reduced Echelon Form

Systems of linear equations are conveniently solved by first representing them
in matrix form

A · x− b = 0 , (B.6)

where A is a matrix containing the linear factors. x is a vector and contains
the values which are to be determined and b is a vector containing the
constant factors of the linear system.

A reliable method of solving such a linear system is row reduction, i.e.,
Gaussian elimination. It involves performing a series of operations on the
augmented form

Aaug =
[
A|b

]
(B.7)

until it is in row-reduced echelon form. The row-reduced echelon form is

Arre =
[
1|b′

]
(B.8)

for systems with a unique solution. Possible operations are permutation of
two rows, multiplication of individual rows with a constant scalar factor and
evaluating the difference of two rows.
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C
BlueBerry Reference Manual

In this chapter, we present the principal ideas behind the implementation
of our pre-BO framework called BlueBerry. It is implemented in C++ and
heavily relies on third-party libraries in order to provide reliability and to
minimize maintenance of the code.

C.1 YAML File Format

All input and output is standardized using the YAML file format [282]. It
was developed for the purpose of data serialization and third-party libraries
exist for a variety of programming languages. It is based on the idea, that
all information can either be stored as lists or associative arrays or as combi-
nations of the two. Listing C.1 shows a simple example for a list. It contains
three elements, each starts with a ”-”. Also, note that each YAML file starts
with a --- as the first line.

Listing C.1: A simple example for a YAML formatted list containing three elements.

---

- first element

- second element

- third element

Listing C.2 shows an example for an associative array. Here, each entry
consists of a key and a value, separated by a ”: ”. The space is important
and cannot be omitted. One of the peculiarities of YAML is that the order
of elements in an associative array is not fixed and any permutation of the
entries is considered identical.
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Listing C.2: A simple example for a YAML formatted associative array containing three
elements. The key and value are separated by ”: ” .

---

first key: first value

second key: second value

third key: third value

Each element of an array or a list can again be an array or a list. Sublists and
Subarrays are organized in terms of their indentation. Listing C.3 presents
an example for a simple BlueBerry input file.

Listing C.3: A simple example for a YAML formatted BlueBerry input file. The sublists
and subarrays are defined through their indentation.

---

composition:

particles:

- type: E

number: 1

s: 1

ms: 1

- type: H1

number: 1

s: 1

ms: 1

angular momentum:

j: 0

mj: 0

cA: 1

born oppenheimer: false

size: 100

relativistic: true

polynomials: true

loewdin: 1.0e-12

potential:

- BBCCoulomb

kinetic: BBCKinetic

overlap: BBCOverlap

Here, we see how the indentation leads to an easily readable structure.
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C.1.1 XML vs. YAML

The XML file format is widely employed for data serialization. In quantum
chemistry, its CML variant [283–289] serves as a basis of large scale automa-
tion of calculations and big-data evaluation. But since XML was developed
for a different purpose, namely as a markup language, it has certain draw-
backs. The main issue associated with XML is its verbosity. Earlier versions
of BlueBerry employed XML. But its hard-to-read style made the generation
of input files tedious and its verbosity led to large files for storing basis set
information. We will therefore not present any technical information about
XML. Information about the standard can be found on the website of the
W3C [290].

The same information presented in Listing C.3 can also be formatted according
to the XML standard. Yet, this form is much more verbose as it can be seen
from Listing C.4.

Listing C.4: An XML formatted BlueBerry input file. The tag structure leads to a lot of
noise

<?xml version="1.0"?>

<input >

<composition >

<particles >

<particle >

<type >E</type >

<number >1</number >

<s>1</s>

<ms >1</ms>

<particle >

<particle >

<type >H1 </type >

<number >1</number >

<s>1</s>

<ms >1</ms>

<particle >

</particles >

<angular_momentum >

<j>0</j>

<mj >0</mj>

</angular_momentum >

<cA >1</cA>

<born -oppenheimer >false </born -oppenheimer >
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</composition >

<size >100</size >

<relativistic >true </ relativistic >

<polynomials >true </ polynomials >

<loewdin >1.0e-12</loewdin >

<potentials >

<potential >

BBCCoulomb

</potential >

</potentials >

<kinetic >BBCKinetic </kinetic >

<overlap >BBCOverlap </overlap >

</input >

In XML, all information is organized through a tag structure. This tag structure
leads to a large amount of noise. This noise is responsible for the large file
size and its hard-to-read structure.

C.2 External Resources

BlueBerry depends on externally stored data. This includes particle specific
parameters such as the mass, charge and spin of the different isotopes and
particles. Furthermore, precalculated values are stored to facilitate the integral
evaluation and polynomial generation. All files are stored in the resources di-
rectory and in the YAML file format. The files containing resource information
are

particleData.yml: Stores particle specific parameters such as mass, charge
and spin.

F2Values.yml: Precalculated values of FKL in Eq. (4.3). Order of keys is L,
K.

HValues.yml: Precalculated values of HLKIKJm in Eq. (4.2). Order of keys
is L, KJ , KI , m.

H1Values.yml: Precalculated values of H1(m,K1, K2, L) in Eq. (5.25). Order
of keys is L, KJ , KI , m.

H2Values.yml: Precalculated values of H2(m,K1, K2, L) in Eq. (5.26). Order
of keys is L, KJ , KI , m.
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GValues2.yml: Precalculated values of K(m,λ) in Eq. (7.52). Order of keys
is m, λ.

Factorials.yml: Precalculated Factorials.

Binomials.yml: Precalculated Binomials.

C.3 Dependencies

BlueBerry relies on a number of third-part libraries in order to increase stability
and performance while reducing the effort of maintenance. The libraries are:

Armadillo: C++ linear algebra library, capable of interfacing to BLAS im-
plementations [266]. It provides a number of convenient classes for
handling vectors, matrices and cubes and contains many routines for
most important linear algebra functions such as inverse, eigensolvers
etc. It will be highly efficient if the appropriate BLAS implementations
are linked.

BLAS: Basic Linear Algebra Subprograms for which a variety of implemen-
tations exist such as OpenBlas [291, 292] (based on GotoBLAS2 1.13
BSD version — freely available under Ref. [293]) or the MKL library
distributed by intel [294].

yaml-cpp: A library capable of parsing and emitting yaml files. Freely avail-
able under Ref. [295].

gsl: GNU Scientific Library [296]. Used for the efficient calculation of Clebsh-
Gordan coefficients.

libb64: A library providing the functionality of base64 two-way text-to-binary
conversion [297]. This makes it possible for BlueBerry to store parameter
set information in binary. Freely available under Ref. [298].

C.4 BBAlphaOperator Class Reference

BBAlphaOperator is an implementation of a component of the αi(j) three-
vector (cf. Eq. (3.2)) as part of the many-fermion Dirac Hamiltonian where
j is the particle index. It acts on the BBRBasisFunction class to generate
a spin-transformed instance of the BBRBasisFunction. The matrix is formed
using the BBSigmaOperator class. It is used in the integral expressions for
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the Breit and the Gaunt operators. It also contains operators for the coupling
of several BBAlphaOperator instances.

#include <BBAlphaOperator.h>

Public Member Functions

• BBAlphaOperator(BBComposition& composition, int axis, unsigned
int index)

Constructor specifying the particle index and the axis (0=x,1=y,2=z).

• BBAlphaOperator(const BBAlphaOperator& c)

Copy constructor.

• virtual ∼BBAlphaOperator()

Deconstructor.

• unsigned int key(unsigned int index) const

Returns the component index (or key) on which the component index acts.

• BBAlphaOperator& operator∗=(const BBAlphaOperator& alpha)

Multiplication assignment operator for two BBAlphaOperator. instances.

• BBAlphaOperator& operator=(const BBAlphaOperator& c)

Assignment operator.

Private Attributes

• int m axis

Axial component index: x=0, y=1, z=2.

• unsigned int m particleIndex

Particle index.

• vector<BBAlphaOperator> m alpha

Coupling BBAlphaOperator instances.

• BBComposition m composition

BBComposition instance of the system for which this BBAlphaOperator is
valid.

• BBSigmaOperator m sigma

BBSigmaOperator to form the α matrix.
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Friends

• BBRBasisFunction operator∗(const BBAlphaOperator& alpha, const
BBRBasisFunction& function)

Multiplication operator for an BBAlphaOperator instance alpha and an
BBRBasisFunction instance function. Returns a spin-transformed instance
of BBRBasisFunction.

• BBAlphaOperator operator∗(const BBAlphaOperator& alphal, const
BBAlphaOperator& alphar)

Multiplication operator for two BBAlphaOperator instances. alphal is the
left term and alphar is the right term in the multiplication.

C.5 BBAntisymmetrizer Class Reference

BBAntisymmetrizer is a class which can generate permutation matrices needed
for imposing the correct spin symmetry onto a basis function. It can be used
to cycle through the permutation matrices in lexical order.

#include <BBAntisymmetrizer.h>

Public Member Functions

• BBAntisymmetrizer()

Standard constructor.

• BBAntisymmetrizer (BBComposition& composition)

Constructor taking the composition of the system.

• ∼BBAntisymmetrizer()

Deconstructor.

• bool next(BBComposition& composition)

Loads next matrix and returns true if a cycle was completed. It requires
the composition of the system.

• double sign(BBComposition& composition)

Returns the sign of the permutation. This is always positive for bosons,
but each odd permutation of fermions changes the total sign.

• void matrix(BBComposition& composition)

Determines the new matrix. Requires the composition of the system.

• Mat<int>& matrix()

Returns the current permutation matrix.
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• unsigned int permutations()

Returns the number of total permutations. This is equal to the number
steps in a full cycle.

• void reset(BBComposition& composition)

Resets the matrix to the identity matrix. This will restart the cycle from
the beginning.

Private Attributes

• vector<BBPermutationMatrix> m permutationMatrices

Stores the permutations matrices for the particle types.

• Mat<int> m matrix

Current permutation matrix.

• unsigned int m dimension

The dimension of the permutation matrix.

• unsigned int m permutations

Number of total permutations.

C.6 BBCache Class Reference

BBCache is a class which stores precalculated values for easy access. The
files are read in form a YAML file and can also be stored as a YAML file
using the BBDataFile class. The number of keys, i.e., the dimension of the
data array can vary and is not limited by the implementation. For example,
precalculated binomial coefficients can be stored as a two-dimensional array.
The number of keys is then two. The data itself is stored in a one-dimensional
array. Thus, the key are internally transformed from an n-dimensional key
to a single values key corresponding to the internal data storage.

#include <BBCache.h>

Public Member Functions

• BBCache()

Standard constructor.

• BBCache(YAML::Node node, string& filename)

Constructor reading values from YAML structure node. The filename will
be used for error messages.
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• BBCache(const BBCache& c)

Copy constructor.

• virtual ∼BBCache()

Deconstructor.

• void data(YAML::Node& node, string& filename)

Loading the YAML formatted data from node The filename will be used
for error messages.

• unsigned int dimension()

Returns the number of keys.

• double& at(unsigned int i[ ])

Returns a value from a multi-dimensional key i.

• double& at(unsigned int i)

Returns a value from a one-dimensional key i.

• void keys(YAML::Node node)

Loads the number of legal values for each key element from the original
YAML structure node.

• double∗ load(YAML::Node node, unsigned int &N)

Parses a YAML structure node and returns all the data. The number of
entries will be stored in N .

• BBCache& operator=(const BBCache& c)

Assignment operator.

Private Attributes

• vector<unsigned int> m keys

Range of different key elements.

• unsigned int m size

Number of stored values.

• double∗ m data

Pointer storing values in an allocated array.

• string m fileName

File name for error messages.
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C.7 BBComposition Class Reference

BBComposition stores the parameters of a calculation. This includes parti-
cle information, physical parameters, sampling parameters and characteristic
quantum numbers. Particle information is stored as a list of types and a list
of according numbers, rather than a list of individual particles. The spin
quantum numbers for non-relativistic calculations are stored accordingly. The
angular momentum quantum number denominators J and MJ store the or-
bital angular momentum for non-relativistic calculations and the total angular
momentum for relativistic calculations. The speed of light is also stored and
set to 137.0359895 a.u. as a default but can be changed to a different value.
Sampling parameters involve the standard deviations and means for both the
matrices containing the α values in Eq. (2.42) and u global vectors by particle
type. The cA parameter in Eq. (2.42) will be set to 1 by default but can be
changed. Also factorials are stored as an instance of BBCache. The according
instance of BBCache has to be generated and stored after initialization.

C.7.1 Description

#include <BBComposition.h>

Public Member Functions

• BBComposition()

Standard constructor.

• BBComposition(const BBComposition& c)

Copy constructor.

• BBComposition(YAML::Node node, YAML::Node particles)

Constructor loading YAML input from node and YAML resource file particles
containing particle parameters.

• virtual ∼BBComposition()

Deconstructor.

• unsigned int size() const

Returns the number of particles.

• unsigned int size(unsigned int i)

Returns the number of particles of type i.

• unsigned int types()

Returns the number of particle types.
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• vector<BBParticle>& particles()

Returns a reference to the particle vector.

• BBParticleType type(unsigned int i)

Returns the ith type of the stored particles.

• double mass()

Returns the total mass of all particles.

• double mass(unsigned int i)

Returns the mass of particle i.

• int charge(unsigned int i)

Returns the charge of particle i.

• double& charge()

Returns a reference to the value of the charge of the central Coulomb
potential.

• int spin(unsigned int i)

Returns the value of the spin of particle i.

• int& s(unsigned int i)

Returns the value of the S quantum number of particle type ensemble i.

• int& ms(unsigned int i)

Returns the value of the MS quantum number of particle group i.

• int& j()

Returns the value of the J quantum number of the system.

• int& mj()

Returns the value of the MJ quantum number of the system.

• int& l()

Returns the value of the L quantum number of the system in case of LS
coupling. Returns -1 otherwise.

• int& s()

Returns the value of the S quantum number of the system in case of LS
coupling. Returns -1 otherwise.

• bool& bo()

Returns true if a BO calculation, false if pre-BO.

• BBParticle& at(unsigned int i)

Returns a reference to the ith particle.

• unsigned int offset(unsigned int i)

Returns the first particle index of ith particle type.
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• double factor(unsigned int i, unsigned int j)

Returns the mass factor for ith and jth mass factor (m(i)m(j)/m2
t ).

• void load(YAML::Node node, YAML::Node particles)

Loads system composition from a YAML structure node and YAML resource
file particles containing particle parameters.

• YAML::Node node()

Returns a YAML node containing all information of the current composition.

• double& cA()

Returns a reference to the cA factor.

• double& sdA(int i, int j)

Returns a reference to the standard-deviation value for the α sampling-
parameter for particles i and j.

• mat& sdA()

Returns a reference to the standard-deviation matrix.

• void sdA(double a, int i, int j)

Sets the standard-deviation value for the α sampling-parameter for particles
i and j.

• double& meanA(int i, int j)

Returns a reference to the mean value for the α sampling-parameter for
particles i and j.

• mat& meanA ()

Returns a reference to the mean value matrix.

• void meanA (double a, int i, int j)

Sets the mean value for the α sampling-parameter for particles i and j.

• double& sdU (int i)

Returns a reference to the standard-deviation value for the u sampling-
parameter for particle i.

• vec& sdU ()

Returns a reference to the standard-deviation vector.

• double& meanU (int i)

Returns a reference to the mean value for the u sampling-parameter for
particle i.

• vec& meanU()

Returns a reference to the mean vector.

• double& alphaMin()
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Returns a reference to minimal sample-value for the α parameters.

• double& alphaMax()

Returns a reference to maximal sample-value for the α parameters.

• void factorials(BBCache cache)

Stores the factorial values stored in cache.

• double factorials (unsigned int i)

Returns the factorial for the value i.

• void binomials (BBCache cache)

Stores the binomial coefficients stored in cache.

• double binomials (unsigned int i, unsigned int j)

Returns the binomial coefficient for the pair of values (i, j).

• double& c()

Returns a reference to the value of the speed of light.

• void update()

Calculates the mass factors, total mass, total number of particles and the
particle indices for direct particle access.

• void calculateMassFactors()

Calculates the mass factors for generating A matrices from the α parameters.

• void calculateTotalMass()

Calculates the total mass of the system.

• void calculateNumberOfParticles()

Calculates the total number of particles of system.

• void calculateParticleIndices()

Calculates the particle indices for direct particle access.

• BBComposition& operator=(const BBComposition& c)

Assignment operator.

Private Attributes

• int m j

Total/Orbital angular momentum J/L quantum number.

• int m mj

Total/Orbital angular momentum MJ/ML quantum number.

• int m totalL
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Spatial angular momentum quantum number L used for generating total
angular momentum state J .

• int m totalS

Spin quantum number S used for generating total angular momentum state
J .

• vector<BBParticle> m particles

Particle types contained in the system.

• vector<int> m particleNumbers

Number of each particle type.

• vector<int> m s

Vector for the S2 quantum numbers in the non-relativistic theory.

• vector<int> m ms

Vector for the MS quantum numbers in the non-relativistic theory.

• double m totalMass

Total mass.

• unsigned int m numberParticles

Total number of particles.

• vector<unsigned int> m particleIndex

Stores information for the direct access of ith particle in m particles.

• double m centralCharge

Nuclear charge for atomic BO calculations.

• bool m bo

True if it is a BO calculation, false if pre-BO.

• double m ca

cA factor for the Gaussian A matrix

• mat m massFactors

Matrix containing the mass factors: m(i)/mt ∗m(j)/mt.

• mat m sdA

Standard-deviation values for the sampling of the α parameters.

• mat m meanA

Mean values for the sampling of the α parameters.

• vec m sdU

Standard-deviation values for the sampling of the u parameters.

• vec m meanU
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Mean values for the sampling of the u parameters.

• BBCache m factorials

Storing precalculated factorial values.

• BBCache m binomials

Storing binomial precalculated coefficients values.

• double m alphaMin

Minimal value for the sampling of the α parameters.

• double m alphaMax

Maximal value for the sampling of the α parameters.

• double m speedOfLight

Stores speed of light.

C.8 BBDataFile Class Reference

A class for YAML file i/o. Only reads/writes from/to disk. It does not interpret
or parse data. Only YAML type files are supported.

#include <BBDataFile.h>

Public Member Functions

• BBDataFile()

Standard constructor.

• virtual ∼BBDataFile()

Deconstructor.

• BBDataFile(const BBDataFile& c)

Copy constructor.

• BBDataFile(string file, BBDFMode mode)

Constructor taking filename and i/o mode.

• void read()

Reads in YAML file.

• void write()

Writes YAML file to disk.

• void write(string s)

Writes string s to disk.

• BBDFMode& mode()
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Returns i/o mode.

• string& file()

Returns the file name.

• YAML::Node node()

Returns the stored YAML node.

• void load(YAML::Node node)

Loads YAML file from node.

• void append(YAML::Node node)

Appends node to already stored YAML structure.

Private Attributes

• string m fileName

File name.

• YAML::Node m file

YAML file.

• BBDFMode m mode

i/o mode

C.9 BBEnumMap Class Reference

Interconverts particle/integral enums and strings. All functions are static.

C.9.1 Description

#include <BBEnumMap.h>

Public Member Functions

• BBEnumMap()

Standard constructor.

• virtual ∼BBEnumMap()

Deconstructor.
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Static Public Member Functions

• static void initialise()

Initializes the maps storing enum and string associations.

• static string toString(BBParticleType p)

Returns the name of the particle type p as a string.

• static string toString(BBIntegralType p)

Returns the name of the integral type p as a string.

• static string toString(BBKineticBalance p)

Returns the name of the kinetic balance type p as a string.

• static BBIntegralType toIntegral(string s)

Returns integral type parsed from string s.

• static BBParticleType toParticle(string s)

Returns particle type parsed from string s.

• static BBKineticBalance toKineticBalance(string s)

Returns kinetic balance type parsed from string s.

Static Private Attributes

• static map<string, BBParticleType> m particleToString

Map with particle strings as keys.

• static map<BBParticleType, string> m stringToParticle

Map with particle types as keys.

• static map<string, BBIntegralType> m integralToString

Map with integral strings as keys.

• static map<BBIntegralType, string> m stringToIntegral

Map with integral types as keys.

• static map<string, BBKineticBalance> m kineticBalanceToString

Map with integral strings as keys.

• static map<BBKineticBalance, string> m stringToKineticBalance

Map with integral types as keys.

C.10 BBErrorHandler Class Reference

A class for error handling.
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C.10.1 Description

A class which can handle errors and warnings. In case of a severe error, the
program will be automatically terminated after printing an error message.

#include <BBErrorHandler.h>

Public Member Functions

• BBErrorHandler()

Standard constructor.

• virtual ∼BBErrorHandler()

Deconstructor.

• void checkErrorValue(BBError e, string s1=””, string s2=””)

Checks error values. Two stings s1 and s2 can be used for adding additional
information.

C.11 BBGaussian Class Reference

BBGaussian represents the radial Gaussian part of an ECG. It contains the α
parameters and the correlation matrix A. It performs appropriate sampling
of the α parameters. The sampling distinguishes between the BO and pre-BO
descriptions through the BBComposition class. BBComposition also provides
the sampling parameters. The factor for the quasi-normalization is stored
numerically for the integral evaluation using CECG.

#include <BBGaussian.h>

Public Member Functions

• BBGaussian()

Standard constructor.

• BBGaussian(const BBGaussian& c)

Copy constructor.

• BBGaussian(BBComposition& composition)

Constructor taking the composition of the system.

• BBGaussian(YAML::Node node, BBComposition& composition)

Constructor loading values from YAML structure node.

• virtual ∼BBGaussian()
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Deconstructor.

• mat& a()

Returns a reference to the correlation matrix A.

• void a(BBComposition& composition)

Generates the correlation matrix A from stored α values.

• mat& alpha()

Returns a reference to the matrix containing the α values.

• void alpha(BBComposition& composition)

Samples a set of α values according to the sampling parameters stored in
composition.

• double& norm()

Returns a reference to the numerical quasinormalization factor.

• void norm(int l, int k, vec u)

Calculates the normalization factor for non-relativistic ECGs using the pa-
rameters of a GVR: l is the L quantum number, k is the K value and u

is the global vector.

• void symmetry(Mat<int>& p)

Transforms A and the α parameters according to the Permutation matrix
p.

• YAML::Node node(BBDataFormat format, bool minimal=true)

Returns a YAML structure of the instance. All information will be saved if
minimal is set to false. Otherwise only the α parameters will be saved. The
A matrix can be reconstructed from the α parameters. Numerical values
will be stored as text if format is set to BBAscii and as b64 represented
binary if format is set to BBBinary.

• void load(YAML::Node node, BBComposition& composition)

Loads a YAML structure node of the instance.

• BBGaussian& operator=(const BBGaussian& c)

Assignment operator.

Private Attributes

• mat m a

Correlation matrix A.

• mat m alpha

Matrix containing the α parameters.
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• double m norm

Numerical value for the quasi-normalization.

C.12 BBIntegral Class Reference

BBIntegral is responsible for the evaluation of the integrals. Integrals can
be evaluated at different levels such as at ECG and CECG level or at basis
function level. The type of integral is specified in the constructor and does
not need to be specified during the evaluation process.

C.12.1 Description

#include <BBIntegral.h>

Public Member Functions

• BBIntegral()

Standard constructor.

• BBIntegral(const BBIntegral& c)

Copy constructor.

• BBIntegral(BBComposition& composition, BBIntegralType type)

Constructor defining the integral type. Loads externally stored precalculated
values.

• virtual ∼BBIntegral()

Deconstructor.

• BBIntegralType type()

Returns the type of the integral.

• complex<double> Evaluate(BBComposition& composition, BBGaus-
sian& gbra, BBGaussian& gket, BBPolynomial& pbra, BBPolynomial&
pket, Mat<int> P, unsigned int p1=-1, unsigned int p2=-1)

Evaluates the integral at ECG and CECG level. gbra and bket are the
BBGaussian of the bra and the ket. The pbra and the pket are the
BBPolynomial of the bra and the ket. P is a permutation matrix, and p1

and p2 are particle indices which are required by one and two particle
operators.

• double Evaluate(BBComposition& composition, BBNRBasisFunction&
bra, BBNRBasisFunction& ket, unsigned int p1=0)
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Evaluates the integral at the BBNRBasisFunction level for the non-relativistic
case. bra and ket are the according BBNRBasisFunction instances. p1 is
required by one particle operators.

• double Evaluate(BBComposition& composition, BBRBasisFunction&
bra, BBRBasisFunction& ket, unsigned int p1=0)

Evaluates the integral at the BBRBasisFunction level for the relativistic
case. bra and ket are the according BBRBasisFunction instances. p1 is
required by one particle operators.

• double Evaluate(BBComposition& composition, BBNRBasisFunction&
bra, BBNRBasisFunction& ket, Mat<int> p, unsigned int p1=0, un-
signed int p2=0)

Evaluates the integral at the BBNRBasisFunction level for the non-relativistic
case or at component level in the relativistic case for a specific permutation
P . bra and ket are the according BBNRBasisFunction instances. p1 and p2

are particle indices which are required by one and two particle operators.

• double EvaluateSigmaP(BBComposition& composition, BBRBasisFunc-
tion& bra, BBRBasisFunction& ket, BBSigmaPOperator& o, unsigned
int p1)

Evaluates the integral for the σ ·p operator at BBRBasisFunction level. bra
and ket are the according BBRBasisFunction instances. o is the BBSigma-
POperator instance for particle p1.

• double EvaluateGaunt(BBComposition& composition, BBRBasisFunc-
tion& bra, BBRBasisFunction& ket)

Evaluates the Gaunt integral at BBRBasisFunction level. bra and ket are
the according BBRBasisFunction instances.

• double EvaluateGaunt(BBComposition& composition, BBNRBasisFunc-
tion& bra, BBNRBasisFunction& ket, Mat<int> p, unsigned int p1,
unsigned int p2, unsigned int axis)

Evaluates the Gaunt integral at BBNRBasisFunction level for two particles
along a certain axis and for a specific permutation bra and ket are the
according BBRBasisFunction instances. p is the permutation matrix and
p1 and p2 are the particle indices. axis is 0 for the x-axis, 1 for the y-axis
and 2 for the z-axis.

• double EvaluateBreitR3(BBComposition& composition, BBRBasisFunc-
tion& bra, BBRBasisFunction& ket)

Evaluates the Breit integral at BBRBasisFunction level. bra and ket are
the according BBRBasisFunction instances.

• double COverlap(Mat<int>& indices, mat& inverse, int size, double
s0)
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Evaluates the recursive CECG Overlap integral. indices contains the power
indices of the current term in the polynomial. inverse contains the inverse
of the bra and ket correlation matrix AI +AJ . size contains the number
of particles. s0 is the integral value at the end of the recursion.

• double CCoulomb(Mat<int>& indices, mat& inverse, int size, double
s0, Col<int>& n, double& Z, unsigned int& p1, unsigned int& p2)

Evaluates the recursive CECG Coulomb integral. indices contains the power
indices of the current term in the polynomial. inverse contains the inverse
of the bra and ket correlation matrix AI +AJ . size contains the number
of particles. s0 is the integral value at the end of the recursion. n is the
auxiliary factor in the recursion. p1 and p2 are the indices of the two
particles for which the interaction will be calculated. The integral will be
evaluated according to the derivation scheme presented by Saito [267].

• double CCoulomb2(Mat<int>& indices, mat& inverse, int size, double
s0, double m, double& rho, unsigned int& p1, unsigned int& p2)

Evaluates the recursive CECG Coulomb and Central Potential integral.
indices contains the power indices of the current term in the polyno-
mial. inverse contains the inverse of the bra and ket correlation matrix
AI +AJ . size contains the number of particles. s0 is the integral value
at the end of the recursion. m is the auxiliary index and rho is the ρ

factor in the recursion relation. p1 and p2 are the indices of the two
particles for which the interaction will be calculated. The integral will be
evaluated according to the derivation scheme presented by Shiozaki [270]
(see Section 7.2).

• double CLambda3(Mat<int>& indices, mat& inverse, int size, double
s0, double m, double& rho, unsigned int& p1, unsigned int& p2)

Evaluates the recursive CECG Lambda3 inverse distance potential( r−3)
integral. indices contains the power indices of the current term in the
polynomial. inverse contains the inverse of the bra and ket correlation
matrix AI +AJ . size contains the number of particles. s0 is the integral
value at the end of the recursion. m is the auxiliary index and rho is the
ρ factor in the recursion relation. p1 and p2 are the indices of the two
particles for which the interaction will be calculated. The integral will be
evaluated according to the derivation scheme presented by Shiozaki [270]
(see Section 7.2).

• double CCentralPotential(Cube<int>& indices, mat& inverse, int size,
double∗ s0, Col<int>& n, double& Z, unsigned int& p1)

Evaluates the recursive CECG Central Potential integral. indices contains
the power indices of the current term in the polynomial. inverse contains
the inverse of the bra and ket correlation matrix AI +AJ . size contains
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the number of particles. s0 is the integral value at the end of the recursion.
n is the auxiliary factor in the recursion. p1 and p2 are the indices of the
two particles for which the interaction will be calculated. The integral will
be evaluated according to the derivation scheme presented by Saito [267].

• double Wx(Col<int>& n, double& Z, int M)

Evaluates the auxilliary recursion relation for the index n according to
Saito [267]. Z is the according factor in the recursion relation and M is
the auxiliary index.

• double Overlap(BBComposition& composition, BBGaussian& gbra,
BBGaussian& gket, BBPolynomial& pbra, BBPolynomial& pket,
Mat<int> P)

Evaluates the ECG/GVR integrals for the overlap. gbra and gket are the
BBGaussian of the bra and the ket. pbra and pket are the BBPolynomial
for the bra and the ket. P is the permutation matrix.

• double Kinetic(BBComposition& composition, BBGaussian& gbra,
BBGaussian& gket, BBPolynomial& pbra, BBPolynomial& pket,
Mat<int> P)

Evaluates the ECG/GVR integrals for the kinetic energy. gbra and gket

are the BBGaussian of the bra and the ket. pbra and pket are the
BBPolynomial for the bra and the ket. P is the permutation matrix.

• double Coulomb(BBComposition& composition, BBGaussian& gbra,
BBGaussian& gket, BBPolynomial& pbra, BBPolynomial& pket,
Mat<int> P)

Evaluates the ECG/GVR integrals for the Coulomb energy. gbra and gket

are the BBGaussian of the bra and the ket. pbra and pket are the
BBPolynomial for the bra and the ket. P is the permutation matrix.

• double CentralPotential(BBComposition& composition, BBGaussian&
gbra, BBGaussian& gket, BBPolynomial& pbra, BBPolynomial& pket,
Mat<int> P)

Evaluates the ECG/GVR integrals for the central spherical Coulomb poten-
tial. gbra and gket are the BBGaussian of the bra and the ket. pbra and
pket are the BBPolynomial for the bra and the ket. P is the permutation
matrix.

• double Momentum(BBComposition& composition, BBGaussian& gbra,
BBGaussian& gket, BBPolynomial& pbra, BBPolynomial& pket,
Mat<int> P, unsigned int i)

Evaluates the ECG/GVR integrals for the one-particle momentum. gbra and
gket are the BBGaussian of the bra and the ket. pbra and pket are the
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BBPolynomial for the bra and the ket. P is the permutation matrix. i is
the particle index.

• double Dipole(BBComposition& composition, BBGaussian& gbra,
BBGaussian& gket, BBPolynomial& pbra, BBPolynomial& pket,
Mat<int> P, unsigned int i)

Evaluates the ECG/GVR integrals for the transition dipole integral for one
particle. gbra and gket are the BBGaussian of the bra and the ket. pbra and
pket are the BBPolynomial for the bra and the ket. P is the permutation
matrix. i is the particle index.

• BBIntegral& operator=(const BBIntegral& c)

Assignment operator.

Private Attributes

• BBIntegralType m type

Integral type.

• vector<BBCache> m caches

Vector of BBCache storing the precalculated values.

• vector<BBAntisymmetrizer> m symmetry

Vector of BBAntisymmetrizer. Size will be defined by the number of OMP
nodes.

C.13 BBNRBasis Class Reference

BBNRBasis is a non-relativistic basis set. It contains a list of BBNRBasis-
Function. The class contains functions for calculating the matrix representa-
tion of the Hamiltonian and for solving the generalized eigenproblem. Before
an initial calculation can be performed, the matrices have to be reset. Fur-
thermore, it contains functions for the optimization of the parameter set. It
requires an instance of BBComposition in order to specify the system which
will be described by the basis set.

#include <BBNRBasis.h>

Public Member Functions

• BBNRBasis()

Standard constructor.
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• BBNRBasis(const BBNRBasis& c)

Copy constructor.

• BBNRBasis(BBComposition& composition, int size, int j, int mj, int S,
int L, int maxK, bool polynomials)

Constructor using the composition to generate a non-relativistic basis for a
total angular momentum state. The number of basis functions is defined
by size. The total angular momentum state is defined by j and mj. The
total spin state is defined by S. The largest value for K is set by maxK

and if polynomials is set true, then the polynomial representation of the
GVR will be generated.

• BBNRBasis(BBComposition& composition, int size, vector<int> S,
vector<int> MS, int l, int ml, int maxK, bool polynomials)

Constructor using the composition to generate a non-relativistic basis for
a total spatial angular momentum state and elementary spin states. The
number of basis functions is defined by size. The total spatial angular
momentum state is defined by l and ml. The elementary spins states are
stored in S and MS. The largest value for K is set by maxK and if
polynomials is set true, then the polynomial representation of the GVR
will be generated.

• BBNRBasis(YAML::Node node, BBComposition& composition, bool poly-
nomials)

Constructor loading YAML input from node. If polynomials is true, then
the polynomial representation of the GVR will be generated.

• virtual ∼BBNRBasis()

Deconstructor.

• BBComposition& composition()

Returns a reference to the composition of the basis set.

• void reset()

Resets the matrices for the integral matrices.

• void resize(BBComposition& composition, int size, int j, int mj, int S,
int L, int maxK, bool polynomials)

Changes the size of the basis for total angular momentum basis functions.
The new number of basis functions will be size. The angular momentum
state is j and mj. S is the total spin state. maxK is the largest sample value
for K in the GVR. If polynomials is true, then the polynomial representation
of the GVR will be generated.

• void resize(BBComposition& composition, int size, vector<int> S,
vector<int>MS, int l, int ml, int maxK, bool polynomials)
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Changes the size of the basis for total spatial angular momentum basis
functions and elementary spin states. The new number of basis functions
will be size. the angular momentum state is j and mj. The elementary
spins states are stored in S and MS. maxK is the largest sample value for
K in the GVR. If polynomials is true, then the polynomial representation
of the GVR will be generated.

• unsigned int size()

Returns the number of basis functions.

• BBNRBasisFunction& at(unsigned int i)

Returns a reference to the ith basis function.

• vector<BBIntegral>& potentials()

Returns a reference to the vector containing the potential integrals.

• void potentials(unsigned int i, unsigned int j=0)

Calculates the integrals for the potential operators. The ith column and
row of the integrals matrices are calculated starting from the jth element.
By default the whole column and row are calculated.

• mat potentialMat(unsigned int i)

Returns a the matrix of the ith potential in the Hamiltonian.

• BBIntegral& metric()

Returns a reference to the overlap integral.

• void metric(unsigned int i, unsigned int j=0)

Calculates the integrals for the overlap. The ith column and row of the
integrals matrices are calculated starting from the jth element. By default
the whole column and row are calculated.

• mat metricMat()

Returns the overlap matrix.

• BBIntegral& kinetic()

Returns a reference to the kinetic-energy integral.

• void kinetic(unsigned int i, unsigned int j=0)

Calculates the integrals for the kinetic energy. The ith column and row
of the integrals matrices are calculated starting from the jth element. By
default the whole column and row are calculated.

• mat kineticMat()

Returns the kinetic-energy matrix.

• void loewdin(double t=1.0e-12)

Performs the Löwdin ortho-normalization. The threshold for selecting ortho-
normal basis functions is t. It is by default 1e-12.
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• mat loewdinMat()

Returns the matrix representation of the Löwdin ortho-normalization trans-
formation.

• double evaluate(BBIntegral integral, int v, unsigned int p1=0,
unsigned int p2=0)

Evaluates the expectation values for the operator specified by integral. p1
and p2 specify the particles for one- and two-particle operators.

• void calculate()

Calculates all integral matrices.

• void update(unsigned int i)

Updates column and row i of all integral matrices.

• void solve(double t=1.0e-12)

Solves the generalized eigenproblem. It performs a Löwdin ortho-normalization
with the threshold t. it is 1e-12 by default.

• cx vec solveCCR(double angle, double t=1.0e-12)

Solves the generalized eigenproblem for the Complex Coordinate Rotation
method using the current integral matrices. The rotation is defined by
angle. It performs a Löwdin ortho-normalization with the threshold t. It
is 1e-12 by default.

• cx vec solveCAP(double angle, double t=1.0e-12)

Solves the generalized eigenproblem for the Complex Absorption Potential
method using the current integral matrices. The rotation is defined by
angle. It performs a Löwdin ortho-normalization with the threshold t. It
is 1e-12 by default.

• mat states()

Returns the eigenvectors of the solution of the generalized eigenproblem.

• vec energies()

Returns the energies obtained from the solution of the generalized eigen-
problem.

• void sample(int rounds, double t, unsigned int k, bool polynomials,
int v)

Optimizes the basis set by sampling of the correlation matrices A. The
number of sampling steps is defined by rounds. t is the threshold for the
Löwdin ortho-normalization. k is the largest value for K in the GVR. The
polynomial representation of the GVR will be generated if polynomials is
true. v is the vibrational quantum number.

• void sampleU(int rounds, double t, int v)
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Optimizes the basis set by sampling of the global vector u. The number
of sampling steps is defined by rounds. t is the threshold for the Löwdin
ortho-normalization. k is the largest value for K in the GVR. v is the
vibrational quantum number.

• void parameters(unsigned int i, unsigned int j)

Performs a statistical analysis of the α parameters in A for types i and j

and changes the sampling parameters accordingly.

• void parametersU(unsigned int i)

Performs a statistical analysis of the parameters in u for type i and changes
the sampling parameters accordingly.

• void parameters()

Performs a statistical analysis of the α parameters in A for all pairs of
types and changes the sampling parameters accordingly.

• void parametersU()

Performs a statistical analysis of the parameters in u for types and changes
the sampling parameters accordingly.

• void randomStepUniform(unsigned int steps, double t, double range,
int v)

Optimizes the basis by performing random steps of the α parameters. The
number of sampling steps is defined by rounds. t is the threshold for the
Löwdin ortho-normalization. range specifies the maximal step size. k is
the largest value for K in the GVR. v is the vibrational quantum number.

• mat lengthTransitionP(BBNRBasis& final)

Calculates the integral matrix for the length representation of the transition
dipole operator µ̂(l)

+ . final specifies the final state of the transition.

• mat lengthTransitionM(BBNRBasis& final)

Calculates the integral matrix for the length representation of the transition
dipole operator µ̂(l)

− . final specifies the final state of the transition.

• mat lengthTransitionZ(BBNRBasis& final)

Calculates the integral matrix for the length representation of the transition
dipole operator µ̂(l)

z . final specifies the final state of the transition.

• mat velocityTransitionM(BBNRBasis& final)

Calculates the integral matrix for the velocity representation of the transition
dipole operator µ̂(v)

− . final specifies the final state of the transition.

• mat velocityTransitionZ(BBNRBasis& final)

Calculates the integral matrix for the velocity representation of the transition
dipole operator µ̂(l)

z . final specifies the final state of the transition.
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• mat velocityTransitionP(BBNRBasis& final)

Calculates the integral matrix for the velocity representation of the transition
dipole operator µ̂(l)

+ . final specifies the final state of the transition.

• mat hamiltonian()

Returns the matrix representation of the Hamiltonian.

• double virial(int v)

Returns the virial for the vibrational state v.

• double metricError()

Returns the maximal error of the Löwdin ortho-normalization.

• void load(YAML::Node node, BBComposition& composition, bool poly-
nomials)

Loads the basis from node. It requires the composition of the system and
the polynomial representation of the GVR will be generated if polynomial
is true.

• YAML::Node node(BBDataFormat format, bool minial=true)

Returns a YAML representation of the basis. format specifies if the nu-
merical values are stored as plain text ASCII of Binary. If minimal is set
to false, all information will be stored. minimal is by default true.

• void publication(YAML::Emitter& node)

Stores a YAML representation of the basis suited for publication in node.

• void analyze(int v)

Prints the energy contributions from the different terms of the Hamiltonian
to the total energy for state v.

• void writeIntegrals(string fileName)

Writes integrals to file fileName.

• void loadIntegrals(string fileName)

Loads integrals from file fileName.

• BBNRBasis& operator=(const BBNRBasis& c)

Assignment operator.

Private Attributes

• vector<BBNRBasisFunction> m basisFunctions

Vector storing the basis functions.

• vector<BBIntegral> m potentialIntegrals

Vector storing the potential integrals of the Hamiltonian.
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• BBIntegral m overlapIntegral

Overlap integral.

• BBIntegral m kineticIntegral

Kinetic-energy integral.

• vector<mat> m potentials

Vector of potential-energy integral matrices.

• mat m potential

Total potential-energy matrix.

• mat m metric

Integral matrix of the overlap.

• mat m kinetic

Integral matrix of the kinetic energy.

• BBComposition m composition

Composition of the system.

• mat m state

Eigenvectors of the generalized eigenproblem.

• vec m energies

Energies of the generalized eigenproblem.

• mat m loewdin

Löwdin ortho-normalization matrix.

C.14 BBNRBasisFunction Class Reference

BBNRBasisFunction represents a non-relativistic ECG with the GVR or a
CECG. The Gaussian part is represented by a BBGaussian instance and the
angular momentum part is represented by a list of spin states and spatial
angular momentum state which is described by an instance of BBPolyno-
mial. Each spin state is associated with the according spatial angular mo-
mentum part. If the basis function is an eigenfunction of the total spa-
tial angular momentum operator, then the basis function will contains only
one spin state/BBPolynomial pair. If the basis function is an eigenfunction
of the total angular momentum operator, then it can contain several spin
state/BBPolynomial pairs depending on the Clebsh-Gordan expansion.

#include <BBNRBasisFunction.h>
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Public Member Functions

• BBNRBasisFunction()

Standard constructor.

• ∼BBNRBasisFunction()

Deconstructor.

• BBNRBasisFunction(const BBNRBasisFunction& c)

Copy constructor.

• BBNRBasisFunction(BBComposition& composition, int j, int mj, int S,
int L, int maxK, bool polynomials)

Constructor using the composition to generate a non-relativistic basis func-
tion for a total angular momentum state. The total angular momentum
state is defined by j and mj. The total spin state is defined by S and
the total spatial angular momentum is defined by L. The angular part is
then generated according to the LS coupling scheme. The largest value
for K is set by maxK and if polynomials is set true, then the polynomial
representation of the GVR will be generated.

• BBNRBasisFunction(BBComposition& composition, vector<int> S,
vector<int> MS, int l, int ml, int maxK, bool polynomials)

Constructor using the composition to generate a non-relativistic basis func-
tion for a total spatial angular momentum state and elementary spin states.
The total spatial angular momentum state is defined by l and ml. The
elementary spins states are stored in S and MS. The largest value for
K is set by maxK and if polynomials is set true, then the polynomial
representation of the GVR will be generated.

• BBNRBasisFunction(YAML::Node node, BBComposition& composition,
bool polynomials)

Constructor loading YAML input from node. If polynomials is true, then
the polynomial representation of the GVR will be generated.

• BBGaussian& gaussian()

Returns a reference to the Gaussian.

• BBPolynomial& polynomial(unsigned int i)

Returns a reference to the ith term in the polynomial representation of the
GVR.

• vector<BBPolynomial>& polynomials()

Returns a reference to the vector of polynomials.

• Col<int> spinPattern(BBComposition& composition, Mat<int> p,
unsigned int i, unsigned int j=0)
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Returns a the spin pattern for a permutation p of element i of spin state j.
The spin pattern is a vector of integers, where the each element represents
a spin of a single particle and the value of the element represent its state.

• complex<double>& factor(unsigned int i, unsigned int j=0)

Returns a reference to the factor of a spin state at position i for the spin
state j.

• complex<double>& factor(BBComposition& composition, Col<int>
pattern, unsigned int j=0)

Returns a reference to the factor of a spin state at the position specified
by the spin pattern stored in pattern for the spin state j.

• cx vec factorVec(unsigned int i)

Returns the spin state i.

• cx vec factorVec(BBComposition composition, unsigned int i, Mat<int>
P)

Returns the spin state i for a permutation P .

• vector<cx vec>& factors()

Returns the vector of all spin states.

• double& norm()

Returns the numerical quasi-normalization factor.

• void normalize()

Calculates the numerical quasi-normalization factor.

• void convertToTotal(BBComposition& composition, int j, int mj, int l,
int S, bool polynomials)

Returns a reference to the composition of the basis set.

• void convertToSpatial(BBComposition& composition, vector<int> S,
vector<int> MS, int l, int ml, bool polynomials)

Converts the basis function to a total spatial angular momentum form. S
and MS contain the elementary spin states and l and ml specify the total
spatial angular momentum state. If polynomial is true, then the polynomial
representation of the GVR will be generated.

• unsigned int size()

Returns the number of polynomials.

• BBNRBasisFunction at(unsigned int i)

Returns a basis function only containing the ith spin state and the according
polynomial.

• void push back(BBPolynomial polynomial, cx vec spin)
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Adds a pair of spin state and polynomial to the basis function.

• void resample(BBComposition& composition)

Generates a new guess for A.

• void resampleU(BBComposition& composition)

Generates a new guess for u.

• void resampleK(BBComposition& composition, unsigned int k, bool
polynomials)

Generates a new guess for K.

• void symmetry(BBComposition& composition, Mat<int>& p, int sign)

Performs a particle permutation p and a sign change on the basis function.

• void correctSpinSign()

Reorders the signs and imaginary factors between a spin state and its
polynomial such that the first element of the spin state is real and positive.

• void contract()

Contracts redundant spin states and polynomials to shorter forms.

• BBNRBasisFunction braket(BBComposition& composition, BBNRBasis-
Function& ket, Mat<int> p)

Forms a new basis functions from the product of two basis functions bra
and ket for a particle permutation p of the ket.

• YAML::Node node(BBDataFormat format, bool minimal=true)

Returns a YAML representation of the basis function. format specifies if the
numerical values will be stored as plain text ASCII of Binary. If minimal
is set to false, all information will be stored. minimal is by default true.

• void load(YAML::Node node, BBComposition& composition, bool poly-
nomials)

Loads the basis from node. It requires the composition of the system and
the polynomial representation of the GVR will be generated if polynomial
is true.

• BBNRBasisFunction& operator+=(const BBNRBasisFunction& rhs)

Assignment addition operator.

• BBNRBasisFunction& operator-=(const BBNRBasisFunction& rhs)

Assignment subtraction operator.

• BBNRBasisFunction& operator∗=(const double rhs)

Assignment multiplication operator.

• BBNRBasisFunction& operator/=(const double rhs)

Assignment division operator.
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• BBNRBasisFunction& operator∗=(const BBPolynomial rhs)

Assignment multiplication operator.

• const BBNRBasisFunction operator+(const BBNRBasisFunction& rhs)
const

Addition operator.

• const BBNRBasisFunction operator-(const BBNRBasisFunction& rhs)
const

Subtraction operator.

• const BBNRBasisFunction operator∗(const double rhs) const

Multiplication operator.

• const BBNRBasisFunction operator/(const double rhs) const

Division operator.

• BBNRBasisFunction& operator=(const BBNRBasisFunction& c)

Assignment operator.

Private Attributes

• BBGaussian m gaussian

Gaussian part.

• vector<BBPolynomial> m polynomials

Polynomial part.

• vector<cx vec> m spinStates

Vector of spin states.

Friends

• const BBNRBasisFunction operator∗(const double lhs, const BBNR-
BasisFunction& rhs)

Multiplication operator.

• const BBNRBasisFunction operator∗(const BBPolynomial& lhs, const
BBNRBasisFunction& rhs)

Multiplication operator.

• const BBNRBasisFunction operator/(const double lhs, const BBNR-
BasisFunction& rhs)

Division operator.
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• BBNRBasisFunction operator∗(const BBSigmaPOperator& lhs, const
BBNRBasisFunction& rhs)

Multiplication operator.

• BBNRBasisFunction operator∗(const BBSigmaOperator& lhs, const
BBNRBasisFunction& rhs)

Multiplication operator.

C.15 BBNRSpinOperator Class Reference

BBNRSpinOperator is a class which contains functions for generating the
matrix representation of spin operators and the vector eigenstates. The op-
erators can be generated for any number of particles with any spin. The Ŝz,
Ŝ+ and Ŝ− operators have simple matrix form and can thus be generated
directly. All other operators, such as Ŝx, Ŝy and Ŝ2, are generated from the
initial three operators. The eigenvectors are generated recursively through
angular momentum recoupling.

#include <BBNRSpinOperator.h>

Public Member Functions

• BBNRSpinOperator()

Standard constructor.

• BBNRSpinOperator(const BBNRSpinOperator& c)

Copy constructor.

• virtual ∼BBNRSpinOperator()

Deconstructor.

• Col<int> z(BBComposition& composition)

Returns the Ŝz operator for the system described by composition.

• Mat<int> total(BBComposition& composition)

Returns the Ŝ2 operator for the system described by composition.

• Mat<int> raising(BBComposition& composition)

Returns the Ŝ+ operator for the system described by composition.

• Mat<int> lowering(BBComposition& composition)

Returns the Ŝ− operator for the system described by composition.

• Mat<int> y(BBComposition& composition)

Returns the Ŝy operator for the system described by composition.
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• Mat<int> x(BBComposition& composition)

Returns the Ŝx operator for the system described by composition.

• unsigned int dimension(BBComposition& composition)

Returns the matrix dimension of the spin operators.

• unsigned int dimension(vector<BBParticle>& particles)

Returns the matrix dimension of the spin operators for the vector particles.

• vec state(int S, int MS, BBComposition& composition)

Returns the total spin state for a system described by composition for the
state S, MS .

• vec state(vector<int> S, vector<int> MS, BBComposition& composi-
tion)

Returns the spin state for a system described by composition for the ele-
mentary spin states listed in S and MS .

• vec state(int S, int MS, BBComposition& composition, vector<BBPar-
ticle>& particles)

Returns the spin state for a list of particles for the elementary spin states
listed in S and MS.

• Mat<int> spinStructure(BBComposition& composition)

Calculates all spin patterns.

Private Member Functions

• int maxS(vector<BBParticle> particles)

Calculates the largest possible value for S for a list of particles.

C.16 BBParticle Class Reference

BBParticle contains the physical parameters of a particle type. The parame-
ters include the mass, charge, spin and a type specifier. The values for the
parameters have to be provided and are not stored internally.

#include <BBParticle.h>
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Public Member Functions

• BBParticle()

Standard constructor.

• BBParticle(const BBParticle& c)

Copy constructor.

• BBParticle(BBParticleType type, int spin, int mass, int charge)

Constructor specifying the type, spin, mass and charge of the particle.

• BBParticle(BBParticleType type)

Constructor using only the type. The other parameters are to be specified
later.

• BBParticle(YAML::Node node)

Constructor loading parameters from a YAML node.

• virtual ∼BBParticle()

Deconstructor.

• BBParticleType& type()

Returns the type of the particle.

• int& spin()

Returns the spin of the particle.

• double& mass()

Returns the mass of the particle.

• int& charge()

Returns the charge of the particle.

• void load(YAML::Node node)

Loads parameters from a YAML node.

• BBParticle& operator=(const BBParticle& c)

Assignment Operator.

Private Attributes

• BBParticleType m type

Type identifyer of the particle.

• int m spin

Spin of the particle.

• double m mass
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Mass of the particle.

• int m charge

Charge of the particle.

Friends

• bool operator==(const BBParticle& a, const BBParticle& b)

Equal to operator.

• bool operator!=(const BBParticle& a, const BBParticle& b)

Not equal to operator.

C.17 BBPermutationMatrix Class Reference

BBPermutationMatrix is an implementation of a particle-permutation matrix.
It contains one permutational state at each time. It is possible to cycle
through all permutations of a set of particles. A cycle starts at the identity
matrix and all further matrices are generated in lexical order. An instance of
BBPermutationMatrix only requires the number of particles to be permutated.

#include <BBPermutationMatrix.h>

Public Member Functions

• BBPermutationMatrix()

Standard constructor.

• BBPermutationMatrix(unsigned int n)

Constructor for n particles.

• BBPermutationMatrix(const BBPermutationMatrix& c)

Copy constructor.

• virtual ∼BBPermutationMatrix()

Deconstructor.

• void next()

Loads next permutation.

• Mat<int>& matrix()

Returns matrix of current permutations.

• unsigned int dimension()

Returns dimension of permutation matrix.
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• int parity()

Returns the sign of the current permutation.

• bool last()

Returns true if the former permutation was the last permutation.

• void reset(unsigned int n)

Resets the permutation to the initial state for n particles.

• BBPermutationMatrix& operator=(const BBPermutationMatrix& c)

Assignment operator.

Private Attributes

• Mat<int> m matrix

Permutation matrix.

• vector<unsigned int> m currentPermutation

Vector or permuted particle indices.

• bool m last

True if the former permutation was the last, false otherwise.

C.18 BBPolynomial Class Reference

BBPolynomial is an implementation of the angular part of an ECG. It can
represent a GVR or Cartesian polynomials. The Cartesian polynomials are not
automatically generated. If they are generated, the according the current GVR
(see Eq. (2.24)) is formed. K is always assumed to be zero if the polynomial
representation is generated. It contains routines which generate a guess for
the global vector u and it distinguishes between BO and pre-BO calculations.
In pre-BO calculations, cu is zero, if not otherwise specified. If the polynomial
form is generated, then it is possible to use the multiplication operators. The
GVR is ignored for all operators except the assignment operator. Polynomials
can be multiplied with each other and can be multiplied and divided by scalar
factors. Polynomials can also be added and subtracted from each other.

#include <BBPolynomial.h>
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Public Member Functions

• BBPolynomial()

Standard constructor.

• BBPolynomial(const BBPolynomial& c)

Copy constructor.

• BBPolynomial(YAML::Node node, BBComposition& composition, bool
polynomials)

Constructor loading YAML input. If polynomials is true, then the polynomial
representation of the GVR will be generated.

• BBPolynomial(BBComposition& composition, int l, int ml, int k, bool
polynomials)

Constructor using GVR parameters. l and ml are the spatial angular mo-
mentum quantum numbers and k is the K factor in the GVR. If polynomials
is true, then the polynomial representation of the GVR will be generated.

• virtual ∼BBPolynomial()

Deconstructor.

• void u(BBComposition& composition)

Samples a new global vector u.

• vec& u()

Returns a reference to the global vector u.

• int& l()

Returns a reference to the L quantum number.

• int& ml()

Returns a reference to the ML quantum number.

• int& k()

Returns a reference to the K factor in the GVR.

• void polynomials(BBComposition& composition)

Generates polynomial representation of the GVR.

• void indices(Mat<int>& indices, cx vec& prefactors, int k, BBCompo-
sition& composition, bool pref=true)

Generates the polynomial terms recursively for the expanded form of a
polynomial of type (x1 + ...+xN )k. In indices are the calculated exponents
returned and in prefactors are the calculated multiplicative factors of each
polynomial term returned. k is the order of the polynomial. If pref is set
true, the factors of the entries of the global vectors will be included in the
calculation. Otherwise the elements will be assumed to be 1.
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• Col<int> indices(unsigned int c, unsigned int i)

Returns exponentials of term c for axis i.

• Mat<int> indices(unsigned int i, Mat<int> P)

Returns exponentials for axis i for the permutation P .

• Mat<int> indices(unsigned int i)

Returns exponentials for axis i.

• Cube<int>& indices()

Returns all exponentials. Each slice in the returned Cube<int> represents
an axis and each row represents a term.

• BBPolynomial conj()

Returns the complex conjugated polynomial.

• complex<double>& factors(unsigned int i)

Returns a reference to the multiplicative prefactor of term i in the poly-
nomial.

• cx vec& factors()

Returns a reference to all multiplicative prefactors in the polynomial.

• int size()

Returns the number of terms in the polynomial.

• void symmetry(Mat<int>& p, int sign)

Performs a particle permutation where p is the permutation matrix and
sign specifies the sign change on the polynomial.

• void contract()

Contracts terms which appear multiple times in the polynomial.

• YAML::Node node(BBDataFormat format, bool minimal=true)

Returns a YAML representation of the polynomial. If minimal is set to false,
all information will be stored. minimal is by default true. Numerical values
will be stored as text if format is set to BBAscii and as b64 represented
binary if format is set to BBBinary.

• void load(YAML::Node node, BBComposition& composition)

Loads the polynomial from node.

• BBPolynomial& operator+=(const BBPolynomial& c)

Assignment addition operator.

• BBPolynomial& operator-=(const BBPolynomial& c)

Assignment subtraction operator.

• BBPolynomial& operator∗=(const double& c)
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Assignment multiplication operator.

• BBPolynomial& operator/=(const double& c)

Assignment division operator.

• BBPolynomial& operator∗=(const BBPolynomial& c)

Assignment multiplication operator.

• const BBPolynomial operator+(const BBPolynomial& c)

Addition operator.

• const BBPolynomial operator-(const BBPolynomial& c)

Subtraction operator.

• const BBPolynomial operator∗(const double& c)

Multiplication operator.

• const BBPolynomial operator/(const double& c)

Division operator.

• const BBPolynomial operator∗(const BBPolynomial& c) const

Multiplication operator.

• BBPolynomial& operator=(const BBPolynomial& c)

Assignment operator.

Private Attributes

• vec m u

Global vector.

• int m l

L quantum number

• int m ml

ML quantum number

• int m k

K factor in the GVR.

• Cube<int> m indices

Exponentials ordered as: slices=terms, row=axis, column=particle.

• cx vec m prefactors

Multiplicative prefactors for each term in the polynomial.
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Friends

• const BBNRBasisFunction operator∗(const BBPolynomial& lhs, const
BBNRBasisFunction& rhs)

Multiplication operator.

C.19 BBRBasis Class Reference

BBRBasis is a relativistic basis set. It contains a list of BBRBasisFunctions.
The class contains functions for calculating the matrix representation of the
Hamiltonian and solve the generalized eigenproblem. Before an initial cal-
culation can be performed, the matrices have to be reset. Furthermore, it
contains functions for the optimization of the parameter set. It requires an
instance of BBComposition in order to specify the system which is described
by the basis set.

#include <BBRBasis.h>

Public Member Functions

• BBRBasis()

Standard constructor.

• BBRBasis(BBRBasis& c)

Copy constructor.

• BBRBasis(BBComposition& composition, int size, int j, int mj, int S,
int L, int maxK, BBKineticBalance balance)

Constructor generating a relativistic basis for a total angular momentum
state. composition specifies the system which is represented by the basis.
The number of basis functions is defined by size. The total angular mo-
mentum state is defined by j and mj. The total spin state is defined by
S. The largest value for K is set by maxK and if polynomials is set true,
then the polynomial representation of the GVR will be generated. balance
states which kind of kinetic-balance condition will be used.

• BBRBasis(BBComposition& composition, int size, vector<int> S,
vector<int> MS, int l, int ml, int maxK, BBKineticBalance balance)

Constructor generating a non-relativistic basis for a total spatial angular
momentum state and elementary spin states. composition specifies the
system which is represented by the basis. The number of basis functions
is defined by size. The total spatial angular momentum state is defined
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by l and ml. The elementary spins states are stored in S and MS. The
largest value for K is set by maxK and if polynomials is set true, then
the polynomial representation of the GVR will be generated. balance states
which kind of kinetic-balance condition will be used.

• BBRBasis(YAML::Node node, BBComposition& composition)

Constructor loading YAML input.

• virtual ∼BBRBasis()

Deconstructor.

• BBComposition& composition()

Returns a reference to the composition of the basis set.

• void reset()

Resets the integral matrices.

• unsigned int size()

Returns the number of basis functions.

• BBRBasisFunction& at(unsigned int i)

Returns a reference to the ith basis function.

• vector<BBIntegral>& potentials()

Returns a reference to the vector containing the potential-energy integrals.

• void potentials(unsigned int i, unsigned int j=0)

Calculates the integrals for the potential operators. The ith column and
row of the integrals matrices are calculated starting from the jth element.
By default the whole column and row are calculated.

• mat potentialMat(unsigned int i)

Returns a the matrix of the ith potential-energy operator in the Hamiltonian.

• void metric(unsigned int i, unsigned int j=0)

Calculates the integrals for the overlap. The ith column and row of the
integrals matrices are calculated starting from the jth element. By default
the whole column and row are calculated.

• mat metricMat()

Returns the overlap matrix.

• void kinetic(unsigned int i, unsigned int j=0)

Calculates the integrals for the kinetic-energy. The ith column and row
of the integrals matrices are calculated starting from the jth element. By
default the whole column and row are calculated.

• mat kineticMat()

Returns the kinetic-energy matrix.
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• void resting(unsigned int i, unsigned int j=0)

Calculates the integrals for the rest energy. The ith column and row of the
integrals matrices are calculated starting from the jth element. By default
the whole column and row are calculated.

• mat restingMat()

Returns the rest-energy matrix.

• void loewdin(double t=1.0e-12)

Performs the Löwdin ortho-normalization. The threshold for selecting ortho-
normal basis functions is t. It is by default 1e-12.

• mat loewdinMat()

Returns the matrix representation of the Löwdin ortho-normalization trans-
formation.

• void calculate()

Calculates all integral matrices.

• void update(unsigned int i)

Updates column and row i of all integral matrices.

• void normalize()

Normalizes the components of all basis functions.

• bool normalize(unsigned int i, bool del=true)

Normalizes the components of the ith basis function. If del is true, then
the basis function will be resampled if numerical problems occur. del is
by default true.

• void solve(double t=1.0e-12)

Solves the generalized eigenproblem. It performs a Löwdin ortho-normalization
with the threshold t. It is 1e-12 by default.

• cx vec solveCCR(double angle, double t=1.0e-12)

Solves the generalized eigenproblem for the Complex Coordinate Rotation
method using the current integral matrices. The rotation is defined by
angle. It performs a Löwdin ortho-normalization with the threshold t. It
is 1e-12 by default.

• cx vec solveCAP(double angle, double t=1.0e-12)

Solves the generalized eigenproblem for the Complex Absorption Potential
method using the current integral matrices. The rotation is defined by
angle. It performs a Löwdin ortho-normalization with the threshold t. It
is 1e-12 by default.

• mat states()

Returns the eigenvectors of the solution of the generalized eigenproblem.
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• vec energies()

Returns the energies obtained from the solution of the generalized eigen-
problem.

• void sample(int rounds, double t)

Optimizes the basis set by sampling of the A correlation matrices. The
number of sampling steps is defined by rounds. t is the threshold for the
Löwdin ortho-normalization. k is the largest value for K in the GVR. The
polynomial representation of the GVR will be generated if polynomials is
true. v is the vibrational quantum number.

• void randomStepUniform(unsigned int steps, double t, double range)

Optimizes the basis by performing random steps of the α parameters. The
number of sampling steps is defined by rounds. t is the threshold for the
Löwdin ortho-normalization. range specifies the maximal step size. k is
the largest value for K in the GVR. v is the vibrational quantum number.

• void parameters()

Performs a statistical analysis of the α parameters in A for all pairs of
types and changes the sampling parameters accordingly.

• void balanceTest()

Performs a test if the kinetic-balance condition is correctly imposed. It
prints the results to screen.

• void symmetryTest()

Performs a test if the particle exchange symmetry is correctly imposed. It
prints the results to screen.

• int groundstate()

Returns the index of the ground state in the energy vector.

• void writeIntegrals(string fileName)

Writes integrals to the file with the name fileName.

• void loadIntegrals(string fileName)

Loads integrals from the file with the name fileName.

• void remove(unsigned int i)

Removes ith basis function.

• void load(YAML::Node node, BBComposition& composition)

Loads the basis from node.

• YAML::Node node(BBDataFormat format)

Returns a YAML representation of the basis. Numerical values will be
stored as text if format is set to BBAscii and as b64 represented binary
if format is set to BBBinary.
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• double metricError()

Returns the maximal error of the Löwdin ortho-normalization.

• mat hamiltonian()

Returns the matrix representation of the Hamiltonian.

• void analyze(int v)

Prints the energy contributions from the different terms of the Hamiltonian
to the total energy for state v.

• BBRBasis& operator=(const BBRBasis& c)

Assignment operator.

Private Attributes

• BBRBasisFunction∗ m basisFunctions

Array storing the basis functions.

• unsigned int m size

Number of basis functions.

• vector<BBIntegral> m potentialIntegrals

Vector storing the potential-energy integrals of the Hamiltonian.

• vector<BBSigmaPOperator> m sigmaP

Vector storing BBSigmaPOperator for each particle.

• BBIntegral m overlapIntegral

Overlap integral.

• BBIntegral m SPIntegral

Kinetic-energy integral.

• BBIntegral m restingIntegral

Rest-energy integral.

• vector<mat> m potentials

Vector of potential-energy integral matrices.

• mat m potential

Total potential-energy matrix.

• mat m metric

Integral matrix of overlap.

• mat m kinetic

Integral matrix of kinetic-energy.

• mat m resting
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Integral matrix of rest energy.

• BBComposition m composition

Composition of the system.

• mat m state

Eigenvectors of the generalized eigenproblem.

• vec m energies

Energies of the generalized eigenproblem.

• mat m loewdin

Löwdin ortho-normalization matrix.

• int m groundstate

Index for the ground-state energy.

C.20 BBRBasisFunction Class Reference

BBRBasisFunction represents a relativistic many-fermion spinor. The spinor
is partitioned according to Eq. (6.22). Each component is represented by
an instance of BBNRBasisFunction. The components can be accesses by the
index which is a single number specifying the vector element. Alternatively, it
is possible to access a component through the Λ key according to Eq. (6.22).
Here, l is represented by 0 and s is represented by 1. Thus the ls component
of a two-fermion spinor is represented as a Col<int> with the elements (0,1).
The quasi-normalization factor is generally not generated by itself. This is
done by the BBRBasis class which allows for more flexibility. BBRBasis-
Function contains the functions to impose the kinetic-balance condition on
the non-relativistic limit. It supports both the explicitly correlated kinetic-
balance condition and the one-fermion kinetic-balance condition.

#include <BBRBasisFunction.h>

Public Member Functions

• BBRBasisFunction()

Standard constructor.

• BBRBasisFunction(const BBRBasisFunction& c)

Copy constructor.

• BBRBasisFunction(BBComposition& composition, vector<int> S,
vector<int> MS, int l, int ml, int k, BBKineticBalance balance)
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Constructor generating a relativistic basis function for a total spatial angular
momentum state and elementary spin states. composition specifies which
system is represented. The total spatial angular momentum state is defined
by l and ml. The elementary spin states are stored in S and MS. k currently
ignored. balance specifies the kinetic-balance condition used.

• BBRBasisFunction(BBComposition& composition, int j, int mj, int S,
int L, int k, BBKineticBalance balance)

Constructor generating a relativistic basis function for a total angular mo-
mentum state. composition specifies which system is represented. The total
angular momentum state is defined by j and mj. The total spin state is
defined by S and the total spatial angular momentum is defined by L. The
angular part is then generated according to the LS coupling scheme. k is
currently ignored. balance specifies the kinetic-balance condition used.

• BBRBasisFunction(YAML::Node node, BBComposition& composition)

Constructor loading YAML input.

• BBRBasisFunction(YAML::Node node, BBComposition& composition,
BBKineticBalance balance)

Constructor loading YAML input and specifying the kinetic-balance condi-
tion.

• BBRBasisFunction(BBComposition& composition, BBNRBasisFunction
theta, BBKineticBalance balance)

Constructor loading the non-relativistic limit YAML input and specifying
the kinetic-balance condition.

• virtual ∼BBRBasisFunction()

Deconstructor.

• unsigned int key(Col<int> i)

Calculates the the component index from the Λ key stored in i. 0 represents
l, 1 represents s.

• BBNRBasisFunction& at(unsigned int component, unsigned int sym-
metry=0)

Returns a reference to the permutation specified by symmetry of a com-
ponent specified by component. By default, the original permutation is
returned.

• BBNRBasisFunction& at(Col<int> component, unsigned int symme-
try=0

Returns a reference to the permutation specified by symmetry of a compo-
nent specified by the Λ key stored in component. By default, the original
permutation is returned.
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• BBNRBasisFunction& theta(unsigned int symmetry=0)

Returns a reference to the non-relativistic limit for a permutation specified
by symmetry. By default, the original permutation is returned.

• BBPolynomial& polynomial(unsigned int component, unsigned int
polynomial, unsigned int symmetry=0)

Returns a reference to the polynomial for a component specified by the
index for a permutation specified by symmetry. By default, the original
permutation is returned.

• BBPolynomial& polynomial(Col<int> component, unsigned int poly-
nomial, unsigned int symmetry=0)

Returns a reference to the polynomial for a component specified by the
Λ key stored in component for a permutation specified by symmetry. By
default, the original permutation is returned.

• BBGaussian& gaussian(unsigned int symmetry=0)

Returns a reference to the Gaussian. The permutation index is specified
by symmetry. By default, the original permutation is returned.

• complex<double>& factor(unsigned int component, unsigned int
spinor, unsigned int spinorelement, unsigned int symmetry=0)

Returns a reference to the factor of a spin state at position spinorelement for
the spin-state spinor for a component specified by the index component for
a permutation specified by symmetry. By default, the original permutation
is returned.

• complex<double>& factor(BBComposition& composition, Col<int>
component, Col<int> spinor, unsigned int spinorelement, unsigned
int symmetry=0)

Returns a reference to the factor of a spin state at position spinorelement for
the spin-state spinor for a component specified by the Λ key component for
a permutation specified by symmetry. By default, the original permutation
is returned.

• void normalize(double norm)

Sets the numerical quasi-normalization factors to norm for each component.

• Col<int> pattern(BBComposition& composition, unsigned int i)

Returns the Λ key for the component i.

• Col<int> spinPattern(BBComposition& composition, Mat<int> p,
unsigned int component, unsigned int spinor, unsigned int spinorele-
ment)

Returns a the spin pattern for a permutation matrix p of element spinorelement
of the spin-state spinor for a component specified by the index component.
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The spin pattern is a vector of integers, where each element represents a
spin of a single particle and the value of the element represent its state.

• unsigned int size(unsigned int i)

Returns the number of spin states of component i.

• unsigned int size(Col<int> i)

Returns the number of spin states of the component specified by the Λ

key stored in i.

• unsigned int size()

Returns the number of components.

• unsigned int permutations()

Returns the number of permutations.

• void resample(BBComposition& composition)

Generates a new guess for A. kinetic-balance condition and the quasi-
normalization are updated automatically.

• void uniformStep(BBComposition& composition, double range)

Change A by performing a uniform step for the α parameters where the
size is specified by range. The kinetic-balance condition and the quasi-
normalization are updated automatically.

• void balance(BBComposition& composition, BBKineticBalance balance)

Imposes the kinetic-balance condition specified by balance onto the non-
relativistic limit.

• void balance(BBComposition& composition)

Imposes the kinetic-balance condition onto the non-relativistic limit.

• void symmetry(BBComposition& composition)

Generates particle-permuted terms of the non-relativistic limit.

• YAML::Node node(BBDataFormat format, bool minimal=true)

Returns a YAML representation of the basis function. Numerical values will
be stored as text if format is set to BBAscii and as b64 represented binary
if format is set to BBBinary.

• void load(YAML::Node node, BBComposition& composition)

Loads the basis from node.

• void loadNR(YAML::Node node, BBComposition& composition, BBKine-
ticBalance balance)

Loads the basis from node for a non-relativistic limit and a kinetic-balance
condition specified by balance.

• BBRBasisFunction& operator∗=(const BBPolynomial& rhs)
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Assignment multiplication operator.

• BBRBasisFunction& operator=(const BBRBasisFunction& c)

Assignment operator.

Private Attributes

• vector<vector<BBNRBasisFunction>> m components

Particle exchanged terms of components. First key is component key, second
key is permutation key.

• vector<BBNRBasisFunction> m theta

Particle exchanged terms of non-relativistic limit.

• BBKineticBalance m balance

Kinetic-balance condition type.

• vector<BBSigmaPOperator> m sigmaP

Vector of σ · p operators for each particle.

• BBAntisymmetrizer m symmetry

(Anti-) symmetrization operator.

Friends

• BBRBasisFunction operator∗(const BBAlphaOperator& alpha, const
BBRBasisFunction& function)

Multiplication operator.

• BBRBasisFunction operator∗(const BBPolynomial& lhs, const
BBRBasisFunction& function)

Multiplication operator.

C.21 BBSigmaOperator Class Reference

BBSigmaOperator is an implementation of the σµ operator where µ ∈ {x, y, z}
according to Eq. (3.2). It can act on an instance of BBNRBasisFunction and
generate a spin-transformed instance.

#include <BBSigmaOperator.h>
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Public Member Functions

• BBSigmaOperator()

Standard constructor.

• BBSigmaOperator(BBComposition& composition, int axis, unsigned
int index)

Constructor specifying the particle index and the axis (0=x,1=y,2=z)

• BBSigmaOperator(const BBSigmaOperator& c)

Copy constructor.

• virtual ∼BBSigmaOperator()

Deconstructor.

• cx mat matrix()

Returns σ matrix.

• BBSigmaOperator& operator∗=(const BBSigmaOperator& sigma)

Assignment multiplication operator.

• BBSigmaOperator& operator=(const BBSigmaOperator& c)

Assignement operator.

Private Attributes

• int m axis

Axis key. x=0, y=1, z=2.

• unsigned int m particleIndex

Particle index.

• cx mat m matrix

σ matrix

• BBComposition m composition

Composition of the system.

• vector<BBSigmaOperator> m preceeding

Preceding σ operators. Used for chaining of several σ operators.
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Friends

• BBSigmaOperator operator∗(const BBSigmaOperator& lhs, const
BBSigmaOperator& rhs)

Multiplication operator.

• BBNRBasisFunction operator∗(const BBSigmaOperator& lhs, const
BBNRBasisFunction& rhs)

Multiplication operator.

C.22 BBSigmaPOperator Class Reference

BBSigmaPOperator is an implementation of the σ · p operator according to
Eq. (3.2). It can act on an instance of BBNRBasisFunction to generate a
transformed form if the instance of BBNRBasisFunction is represented in its
CECG form.

#include <BBSigmaPOperator.h>

Public Member Functions

• BBSigmaPOperator()

Standard constructor.

• BBSigmaPOperator(const BBSigmaPOperator& c)

Copy constructor.

• BBSigmaPOperator(BBComposition& composition, unsigned int i)

Constructor for the ith particle in the system described by composition.

• virtual ∼BBSigmaPOperator()

Deconstructor.

• BBPolynomial act(BBPolynomial polynomial, int axis, int particle, dou-
ble prefactor) const

Returns transformed polynomial. The transformation will be performed on
the axial component specified by axis. particle indicates the particle index
of the σ · p operator. prefactor multiplies the transformed form by some
factor.

• BBPolynomial act(BBGaussian polynomial, int axis, int particle, dou-
ble prefactor) const
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Returns transformed Gaussian. The transformation will be performed on
the axial component specified by axis. particle indicates the particle index
of the σ · p operator. prefactor multiplies the transformed form by some
factor.

• BBNRBasisFunction act(BBNRBasisFunction function, int axis, int par-
ticle, double prefactor) const

Returns transformed non-relativistic basis function. The transformation will
be performed on the axial component specified by axis for all particles.
prefactor multiplies the transformed form by some factor.

• BBNRBasisFunction act(BBNRBasisFunction function, int axis, double
prefactor) const

Returns transformed non-relativistic basis function. The transformation will
be performed on the axial component axis. particle states the particle of
the σ ·p operator. prefactor multiplies the transformed form by some factor.

• cx mat matrix(unsigned int i)

Returns the σ matrix of the axis specified by i (x=0, y=1, z=2).

• cx cube& matrices()

Returns all σ matrices.

• vec& particles()

Returns the linear combination of one-particle σ · p operators.

• BBSigmaPOperator& operator∗=(const BBSigmaPOperator& rhs)

Assignment multiplication operator.

• BBSigmaPOperator operator∗(const BBSigmaPOperator& rhs)

Multiplication operator.

• BBSigmaPOperator& operator=(const BBSigmaPOperator& c)

Assignment operator.

Private Attributes

• unsigned int m index

Particle index.

• vec m particles

Linear combination of particle indices. Used for center-of-momentum frame.

• unsigned int m order

Order of the σ · p operator. Facilitates evaluation of (σ · p)2.

• double m prefactor
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Multiplicative prefactor.

• cx cube m spinMatrices

Axial σ matrices.

• vector<BBSigmaPOperator> m preceeding

Preceeding σ · p operators. Used for chaining of several σ · p operators.

• bool m bo

True if a BO calculation is performed.

Friends

• BBSigmaPOperator pow(const BBSigmaPOperator& arg, unsigned int
i)

Calculates the power of a σ · p operator. i is the exponent.

• BBNRBasisFunction operator∗(const BBSigmaPOperator& lhs, const
BBNRBasisFunction& rhs)

Multiplication operator.

• BBSigmaPOperator operator∗(const BBSigmaPOperator& lhs, const
double& rhs)

Multiplication operator.

• BBSigmaPOperator operator∗(const double& lhs, const BBSigmaP-
Operator& rhs)

Multiplication operator.

C.23 Enumerations

Enumerations

• enum BBError {
BBAttributeWarning, BBOptionsWarning, BBDataFileOpenWrite,
BBNoError,
BBInputFileLoad, BBParseComposition, BBParseOption, BBOptions-
Fatal,
BBAttributeFatal, BBDataFileOpenRead, BBDataFileMode, BBSpinor-
Misfit,
BBNullAntisym, BBCacheOOB, BBIntNaN, BBIntInf,
BBBasisFktAdd, BBSpinorAdd, BBSpinorInsertOOB, BBSpinorAccess-
OOB,
BBNRSpinorQN, BBParticleNA }
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List of error denominators.

• enum BBParticleType {
E, H1, H2, H3,
He3, He4, Li6, Be9,
B10, C12, Ps, Mu,
Pt195, Ne19, Be13, C13,
N15, O15, F19 }

List of particle types.

• enum BBDFMode { BBRead, BBWrite }
List of i/o modes.

• enum BBIntegralType {
BBOverlap, BBKinetic, BBCoulomb, BBMomentumZ,
BBMomentumP, BBMomentumM, BBDipoleZ, BBDipoleP,
BBDipoleM, BBCentralPotential, BBCOverlap, BBCKinetic,
BBCCoulomb, BBCMomentumZ, BBCMomentumX, BBCMomentumY,
BBCRestEnergy, BBCCentralPotential, BBCSigmaP, BBCGaunt,
BBCCoulomb2, BBCBreit, BBCGaunt2, BBCCentralPotential2,
BBCOneParticleKinetic }

List of integrals types.

• enum BBDataFormat { BBBase64, BBAscii }
List of format types.

• enum BBKineticBalance { BBOneParticle, BBExact }
List of kinetic balance types.
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This is a short manual for the BlueBerry software which implements our
framework for non-relativistic many-particle and relativistic many-1/2-fermion
calculations. Calculations can be performed in a field-free environment as
pre-BO calculations and with a spherical central Coulomb potential as BO
calculations. In order to run BlueBerry, an input file is required. During the
course of a calculation, the parameter set can be stored in different files. Also,
a log file is created at the end of a calculation which saves all user defined
parameters. This log file has the same structure as an input file and can be
stored to perform the calculation again under identical starting conditions at
a later time. All file in and output relies on the YAML file format [282] for
standardization.

D.1 Input File

D.1.1 composition Block

The first part of the input file which has to be present, is the composition
block. It primarily defines which particle types are involved in the calculation
and how many particles of each type are present. Also, it defines the spin
states of each particle type ensemble. Listing D.1 presents an example for
the composition block of the input file for H+

2 .

particles Contains the information regarding the individual groups of parti-
cles. The label in the type block indicates the elementary particle or the
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Listing D.1: An example for a composition block in a BlueBerry input file.

composition:

particles:

- type: H1

number: 2

s: 2

ms: 0

- type: E

number: 1

s: 1

ms: 1

angular momentum:

j: 2

mj: 0

cA: 1

born oppenheimer: false

isotope of the atomic nucleus. Additional information is stored exter-
nally and does not need to be specified. The currently supported particle
types are: E (electron), H1 (proton), H2 (deuterium), H3 (triton), He3
(helium-3), He4 (helium-4), Ne19 (neon-19), Be13 (beryllium-13), C13
(carbon-13), N15 (nitrogen-15), O15 (oxygen-15), F19 (fluorine-19),
Pt195 (platinum-195), Ps (positron) and Mu (muon). Note that, if the
particle type represents an atom type, it will always represent the ac-
cording nuclei. Thus Be13 does not represent the Beryllium-13 isotope
atom but its nucleus.

In the case where the mass or the charge needs to be changed, it is
not necessary to modify the external resources. It is possible to use the
mass (mass in terms of the electron mass), atomic mass (atomic mass
in terms of atomic mass units) and the charge blocks. In this example:

particles:

- type: H1

number: 1

s: 1

ms: 1

mass: 1

the proton will be have charge +1 and mass 1 and therefore have the
same properties as the positron.
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Only one list entry should be present for each type of particle. The
according particle exchange symmetry is only enforced on each block
and the individual list entries in the particles block are not contracted.
In this example:

particles:

- type: E

number: 1

s: 1

ms: 1

- type: E

number: 1

s: 1

ms: 1

the particle exchange symmetry will not be imposed since the two elec-
trons have individual blocks.

The number block states the number of particles of this type. If it is
set to zero, the list entry will be skipped when BlueBerry parses the
input file.

The spin quantum numbers are stated in the s and ms blocks. All
spatial and spin angular momentum quantum numbers are multiplied
by a factor of two in order to ensure integer (rather than half integer)
numbers for the spin quantum numbers. Therefore, the system presented
in Listing D.1 is in its ortho state regarding the spins of the protons
(Sp=1).

angular momentum In the angular momentum block are the total (spatial)
angular momentum quantum numbers specified through the j and mj
blocks. Again, the angular momentum quantum numbers are multiplied
by a factor of two. Thus, the system presented in Listing D.1 is in its first
excited rotational state with L = 1. If the l and s quantum numbers are
listed, instead of forming the total spatial angular momentum state, the
total angular momentum state is constructed in terms of LS-coupling:

angular momentum:

j: 2

mj: 0

l: 0

s: 2
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where the system is in a total angular momentum state with J = 1 and
MJ = 0.

cA Defines the value of cA in the parametrization Eq. (2.42). This allows
the user to test that the calculations are translationally invariant by
performing the calculations for a range of cA values.

born oppenheimer Is either set to true or false and defines if the calculation
will be a BO or a pre-BO calculation. This will affect the parametrization
of the basis functions and decide whether translational invariance will
be imposed or not. If this block is set to true, the parametrization of A
will follow Eq. (2.40) and cu in Eq. (2.42) will be a random number. If
this block is set to false, the parametrization of A will follow Eq. (2.42)
with cA specified in the cA block. cu will then be zero.

central charge Sets the charge of a spherical external Coulomb potential.
This entry is optional. An external Beryllium-like central potential with
Z=4 is included as

central charge: 4

The charge can also be negative and fractional. Note that this only
defines the magnitude of the central charge, but does not introduce the
potential-energy term itself. This has to be done later in the potentials
block.

speed of light Sets the value used for the speed of light to be used in the cal-
culation. This entry is optional and has a default value of 137.0359895
as taken from Ref. [183]. Changing this value to a large value can be
used for reproducing the non-relativistic limit in a relativistic calculation:

speed of light: 1e5

sampling parameters Contains the blocks which define the sampling param-
eters for the generation of the A matrix and the global vector u. This
parameter is optional and contains two blocks a and u. This is an
example for the sampling parameters block:

sampling parameters:

u:

mean matrix: " 0.0\n 0.0\n"

sd matrix: " 1.0\n 1.0\n"

a:

sd matrix: " 10.0 5.0\n 5.0 2.5\n"

mean matrix: " 0.0 0.0\n 0.0 0.0\n"
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The a block contains two matrices. The mean matrix contains the mean
values and the sd matrix contains the standard deviation values for the
normal distribution of the sampling of the elements of the A matrix.
The matrices are square and the dimension is defined by the number
of particle types used in the calculation. Therefore, the above example
contains the matrices for a system of two types of particles, e.g, H+

2 .

The u block contains two vectors. The mean matrix contains the mean
values and the sd matrix contains the standard deviation values for the
normal distribution of the sampling of the elements of the global vector.
The dimension of the vectors depends on the number of particle types.

By default, all entries in the two mean matrix blocks are set to 1 and
in the two sd matrix blocks are set to 0.

D.1.2 Further Options

Besides the composition block, there are further options which can be set.

size Sets the number of basis functions to be generated. This value is ignored
if a parameter set is read from file.

size: 100

relativistic Is set to true or false. It defines if a non-relativistic or relativistic
calculation will be performed. This entry is optional and by default
false.

relativistic: true

polynomials Is either set to true or false. It defines if the polynomial rep-
resentation of the GVR will be generated. If it set to true, K will be
taken as zero.

polynomials: true

potentials Lists the potentials which will be contained in the Hamiltonian
and sets which formula will be used for the evaluation. Possible entries
are:

BBCoulomb particle-particle Coulomb interaction evaluated using the
formula for ECGs and the GVR (see Eq. (8.60)).
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BBCCoulomb particle-particle Coulomb interaction evaluated using the
formula for CECGs published by Saito and Suzuki [267]. The
polynomials entry has to be set to true in order to use this formula.

BBCCoulomb2 particle-particle Coulomb interaction evaluated using the
formula for CECGs based on the work of Shiosaki [270] and adapted
for explicitly correlated basis functions (see Section 7.2). The poly-
nomials entry has to be set to be true in order to use this formula.

BBCentralPotential central Coulomb potential evaluated using the for-
mula for ECGs and the GVR (see Eq. (8.60)).

BBCCentralPotential central Coulomb potential evaluated using the for-
mula for CECGs published by Saito and Suzuki [267]. The poly-
nomials entry has to be set to true in order to use this formula.

BBCCentralPotential2 central Coulomb potential evaluated using the
formula for CECGs based on the work of Shiosaki [270] and adapted
for explicitly correlated basis functions (see Section 7.2). The poly-
nomials entry has to be set to true in order to use this formula.

BBCGaunt Gaunt interaction evaluated using the formula for CECGs
published by Saito and Suzuki [267]. The polynomials entry has
to be set to true in order to use this formula. Always returns zero
in non-relativistic calculations.

BBCGaunt2 Gaunt interaction evaluated using the formula for CECGs
based on the work of Shiosaki [270] and adapted for explicitly
correlated basis functions (see Section 7.2). The polynomials entry
has to be set to true in order to use this formula. Always returns
zero in non-relativistic calculations.

BBCBreit Breit interaction evaluated using the formula for CECGs based
on the work of Shiosaki [270] and adapted for explicitly correlated
basis functions (see Section 7.2). The polynomials entry has to
be set to true in order to use this formula. Always returns zero in
non-relativistic calculations.

The potentials block is used as

potentials:

- BBCCoulomb

- BBCCentralPotential

loewdin Sets the threshold for the selection of eigenvalues in the loewdin
ortho-normalization process. This entry is optional and by default 1e−12.
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loewdin: 1e-13

overlap Defines which formula will be used for the evaluation of the overlap
integrals. There are two possible values: BBOverlap which uses ECGs
and the GVR to evaluate the integrals (see Eq. (8.26)), and BBCOverlap
which uses CECGs and uses the formula presented by Saito and Suzuki
[267]. BBCOverlap requires that the polynomials entry is set to true.

overlap: BBOverlap

kinetic Defines which formula will be used for the evaluation of the non-
relativistic kinetic-energy integrals. There are two possible values: BBKi-
netic which uses ECGs and the GVR to evaluate the integrals (see
Eq. (8.36)), and BBCKinetic for CECGs which uses the formula presented
by Saito and Suzuki [267]. BBCKinetic requires that the polynomials
entry is set to true.

kinetic: BBKinetic

kmax Sets the maximal value for K in the GVR to be used when basis
functions are generated. The values for K will be sampled in a range
of 0 to kmax. This entry is optional and the default value is 0.

kmax: 5

v Sets the vibrational quantum number. This entry is optional and the default
value is 0.

v: 2

write to Sets the name of the file in which the basis parameters will be
stored at the end of the calculation. This entry is optional.

write to: HT+L1Sp1.yml

read from Sets the name of the file from which the basis parameters will
be read at the beginning of the calculation. This entry is optional.

read from: HT+L1Sp1.yml

seed Sets the seed value for the generation of the random numbers. This
value is optional and a different value is generated by default each time
BlueBerry is started. If this value is set to some value, the sampling
will always produce the same series of random numbers. This allows
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the user to reproduce the results of previous calculations as long they
know the value which was used. The value will be stored in the log.yml
file and displayed on the screen during the calculation.

seed: 5528327

write integrals Sets the name of the file which is used to store the integral
matrices at the end of a calculation. This entry is optional and by default
no integrals are stored.

write integrals: HT+L1Sp1_integrals.yml

read integrals Sets the name of the file from which integral matrices will
be read from at the beginning of a calculation. This entry is optional
and by default no integrals are read in but calculated.

read integrals: HT+L1Sp1_integrals.yml

D.1.3 procedure Block

The procedure block is optional and specifies what calculations and operations
will be performed after the initial calculation. The following options are
defined for both non-relativistic and relativistic calculations:

sample Optimizes the parameter set by sampling the A matrices.

- sample:

steps: 100

steps sets the number of basis functions which will be individually sam-
pled, and not how many times the complete basis set will be sampled.
The sampling order is back to front, such that new basis functions will
be sampled first.

uniform steps Optimized the parameter set by performing random steps for
the parameters of A. The step sizes are randomly generated from a
uniform distribution. A step will only be performed if the resulting
parameter set has a lower energy compared to the original one.

- uniform steps:

steps: 100

range: 1e-7
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steps sets the number of basis functions which will be sampled and
range sets the maximum step size.

save Saves the current intermediate parameter set.

- save

The parameter set is saved in a file which is named through a time-
stamp.

ccr Performs a complex coordinate rotation of the current parameter set. It
uses the precalculated integrals and therefore only involves the solution
of the complex generalized eigenproblem. The resulting points in the
complex spectrum will be written to two files. The first one contains
the real values (file extension .real) and the second one contains the
imaginary values (file extension .imag).

- ccr:

angle: 0.1

write to: results

Here, the results will be written to the files results.real and results.imag.

debug Starts the debug section of the program. This allows the developer
to test parts of the program without major modifications.

- debug

These options are only defined for non-relativistic calculations:

resize Changes the size of the parameter set. If the new number of basis
functions is larger than the original one, additional basis functions will
be appended. If the new number of basis functions is lower than the
original one, then basis functions will be removed from the back.

- resize:

size: 500

cap Includes a complex absorption potential for the study of resonances. The
complex absorption potential is a simple r2 type potential. The resulting
points in the complex spectrum will be written to two files. The first
one contains the real values (file extension .real) and the second one
contains the imaginary values (file extension .imag).
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- cap:

angle: 0.4

write to: results

Here, the results will be written to the files results.real and results.imag.

transition dipole Calculates the transition dipole moment to some final state.
The parameter set will be read from an external file.

- transition dipole:

read from: final.yml

The parameter set for the final state will be read from final.yml.

change spin Changes the spin state of the different particle groups. It is
either possible to change the spin state individually for each particle
ensemble as

- change spin:

total: false

particles:

type: E

s: 0

ms: 0

type: H1

s:1

ms: 1

or the total spin state for all particles can be generated as

- change spin:

total: true

s: 0

ms: 0

change angular Changes the angular momentum state of the basis. This al-
lows the user to switch between basis functions which are eigenfunctions
of the total spatial angular momentum L:

- change angular:

total: false

j: 0

mj: 0

or the total angular momentum J = L+ S
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- change angular:

total: true

j: 2

mj: 0

s: 2

l: 0

publication Writes the parameter set to a specific file in a format suitable
for publication.

- publication:

write to: publication.yml

These options are exclusively defined for relativistic calculations:

analyze state Prints the energy contributions of the σ ·p, mc2 and potential-
energy operators to the total energy of a vibrational state.

- analyze state:

state: 0

non-relativistic test Performs a non-relativistic calculation and calculates the
relativistic effect from the difference of the non-relativistic energy and
the relativistic energy.

- non -relativistic test

D.1.4 Examples

Here we present some examples for input files.

D.1.4.1 Stochastic Optimization

The first example in Listing D.2 creates and optimizes a parameter set for the
hydrogen molecule in its para proton-spin state. We use 500 basis functions
and calculate the ground-state energy. 500 sampling steps are performed,
i.e., the parameter set is sampled once fully. The final parameter set is saved
in a file. We do not use CECGs, but ECGs with the GVR. Since it is a pre-
BO calculation, the potential-energy only contains the interactions among all
pairs of particles.
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Listing D.2: A BlueBerry input file for the hydrogen Molecule in its para proton-spin
state. The number of basis functions is 500. The quantum numbers are L = 0, ML = 0

and v = 1. The parameter set is stored in the file H2Sp1Se0L0v1.yml at the end of the
calculation.

---

composition:

particles:

- type: E

number: 2

s: 0

ms: 0

- type: H1

number: 2

s: 2

ms: 0

angular momentum:

j: 0

mj: 0

cA: 1

born oppenheimer: false

size: 500

v: 1

loewdin: 1.0e-12

potential:

- BBCoulomb

kinetic: BBKinetic

overlap: BBOverlap

write to: H2Sp1Se0L0v1.yml

procedure:

- sample:

steps: 500
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Listing D.3: A BlueBerry input file for the calculation of transition dipole moment between
two rotational states of HT+ The initial state is read from HT+L0.yml and the final state
from HT+L1.yml.

---

composition:

particles:

- type: E

number: 1

s: 1

ms: 1

- type: H1

number: 1

s: 1

ms: 1

- type: H3

number: 1

s: 1

ms: 1

angular momentum:

j: 0

mj: 0

cA: 1

born oppenheimer: false

size: 500

loewdin: 1.0e-12

potential:

- BBCoulomb

kinetic: BBKinetic

overlap: BBOverlap

read from: HT+L0.yml

procedure:

- transition dipole moment:

final state: HT+L1.yml
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D.1.4.2 Transition Dipole Moment

Listing D.3 presents an input file for a calculation of a transition dipole
moment for two rotational states of HT+.

D.1.4.3 Relativistic Calculation

Listing D.4 presents an input file for a relativistic calculation of the hydrogen
atom treated as a two-particle system. The number of basis functions is 200.
After the initial calculation, the energy contributions of the different terms in
the Hamiltonian are listed and a non-relativistic calculation is performed in
order to check the non-relativistic limit and calculate the relativistic effect.
Note that the potential block is stored in the parameter set file. Therefore, if
a non-relativistic calculation is used for the generation of the initial parameter
set, it is important to use either BBCCoulomb or BBCCoulomb2.

D.1.5 Starting the Calculation

The calculation is started as

BlueBerry_No0012 input.yml 10

where input.yml is the input file and 10 is the number of cores used in the
calculation.
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Listing D.4: A BlueBerry input file for a relativistic calculation of the hydrogen atom in the
total angular momentum state J = 1 MJ = 1 generated from the L = 0 and S = 1 states
through LS coupling. 200 basis functions are used in the calculation. It is mandatory
that the polynomial representation is created. After the initial calculation, a non-relativistic
calculation is performed to find the non-relativistic limit. In the end, the parameter set is
written to HJ1 200.yml.

---

composition:

particles:

- type: E

number: 1

s: 1

ms: 1

- type: H1

number: 1

s: 1

ms: 1

angular momentum:

j: 2

mj: 0

l: 0

s: 2

cA: 1

born oppenheimer: false

size: 200

loewdin: 1.0e-12

polynomials: true

potential:

- BBCCoulomb

write to: HJ1_200.yml

procedure:

- non -relativistic test
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Switzerland
Thesis: Developments for a Relativistic
Many-1/2-Fermion Theory.
Supervisor: Prof. Dr. Markus Reiher

2010 – 2011 Master of Science in Chemistry, ETH
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