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S U M M A RY

One of the core areas of ecological research is to understand species distributions across spatial and

environmental gradients. Environmental change can affect spatially structured species distributions

and modify ecosystem functioning. Many ecosystem functions, such as biomass production and the

decomposition of organic material, are driven by microbes, which are the most abundant organisms

on our planet, and essential drivers of ecosystem functions. While being so important for live on

earth, we still know very little about the factors governing microbial diversity. One reason for

this is that high resolution molecular methods, which allow for describing microbial diversity and

community composition, have only been developed within the last few decades. However, even

modern sequencing methods still have drawbacks and limitations and there is still no standard

method for analyzing microbial communities. Another reason is that natural ecosystems are highly

complex, and it is difficult to disentangle the multiple drivers of bacterial diversity in natural

populations. One useful way to investigate how environmental change affects aquatic communities

across multiple trophic levels is to replicated ecosystems in outdoor mesocosm, as this allows for

a balance between realism and experimental control over environmental conditions. The major

aim of this thesis was to investigate how bacterial communities are shaped by biogeography and

environmental variation. In order to quantify bacterial community responses, I first investigated

the effect of variable region of the 16S rRNA on ecological measures of diversity, which were

later applied to address ecological questions of bacterial community assembly. I then performed

two large-scale outdoor mesocosm experiments (using sets of 300L tanks), each running over

several months. I manipulated the food-web structure and environmental conditions of mesocosm

ecosystems in order to test for the responses of bacterial communities, and communities at higher

trophic levels. In general, my results show that mesocosms offer a good model system for

studying how environmental change and trophic interactions affect bacterial community structure

and functioning. In the first experiment, I tested how the presence of a consumer (Daphnia)

affects bacterial and phytoplankton communities within meta-communities with regular dispersal.

Daphnia strongly reduced the richness of both communities, and affected bacterial community

composition, and overall ecosystem functioning (respiration). In the second mesocosm experiment,

I investigated how environmental heterogeneity and the fluxes of material and organisms shape

bacterial, phytoplankton, and zooplankton communities. Communities showed very different

responses to the applied treatments, and I found strong effects on diversity, community composition,

as well as on the abundance of individual species. Overall, I show that organisms of higher trophic

levels have high impacts on the spatial structure of bacterial communities and bacteria mediated

ecosystem functioning.
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Z U S A M M E N FA S S U N G

Die Untersuchung, wie sehr sowohl biogeographische Gradienten, als auch Umweltveränderungen

die Ausbreitung und räumliche Verteilung von Organismen beeinflussen, ist ein Kerngebiet der

ökologischen Forschung. Umweltveränderungen können sich auf die räumliche Struktur der

Verteilung von Organismen auswirken und so auch Ökosystemfunktionen verändern. Kleinstlebe-

wesen (Mikroorganismen) sind nicht nur die häufigsten Lebewesen auf unserem Planeten, sondern

auch verantwortlich für viele Ökosystemfunktionen, wie zum Beispiel den Auf- und Abbau von

organischem Material. Obwohl das Leben auf unserer Erde ohne Mikroorganismen nicht möglich

wäre, wissen wir immer noch sehr wenig darüber, welche Faktoren ihre Vielfalt beeinflussen. Ein

Grund dafür ist, dass hochauflösenden molekulare Methoden, welche es uns erlauben, mikrobielle

Diversität besser zu untersuchen, erst in den letzten Jahrzehnten entwickelt worden sind. Doch

auch hochmoderne molekulare Sequenziermethoden haben noch immer ihre Nachteile und Gren-

zen, und so gibt es bisher noch keine Standardmethode für die Untersuchung von mikrobiellen

Gemeinschaften. Ein weiterer Grund, warum wir immer noch relativ wenig über die mikrobielle

Welt wissen, ist die hohe Komplexität von natürlichen Ökosystemen, welche es schwer macht, genau

herauszufinden, welche Faktoren wichtig sind die Verteilung von Organismen. Die Durchführung

von Mesokosmosexperimenten ist eine gute Möglichkeit, die Auswirkungen von Umwelteinflüssen

auf mehrere Trophiestufen in aquatischen Systemen zu untersuchen. Solche Experimente können

draussen und in grossen Replikaten durchgeführt werden und ermöglichen eine gute Balance

zwischen realistischen Umweltbedingungen und gleichzeitiger Kontrolle einiger Umweltfaktoren.

Das Hauptziel meiner Doktorarbeit war es, zu untersuchen, wie sich Umwelteinflüsse und bio-

geographische Gradienten auf die Bakteriengemeinschaft auswirken. Im ersten Teil meiner Arbeit

habe ich mich damit beschäftigt, welchen Einfluss die Verwendung unterschiedlicher hypervariabler

Regionen des 16S rRNA-Genes (ein Markergen für die Untersuchung von mikrobiellen Gemein-

schaften), auf verschiedene ökologische Analysen von Bakteriengemeinschaften hat. Des weiteren

habe ich zwei grosse Mesokosmosexperimente in replizierten 300L Tanks durchgeführt und dabei

die Auswirkungen der Zusammensetzung des Nahrungsnetzes auf die Bakteriengemeinschaft

sowie höhere Trophiestufen untersucht. Meine Ergebnisse haben gezeigt, dass Mesokosmen ein

gutes Modellsystem sind, um zu erforschen, wie Umwelteinflüsse auf trophische Interaktionen

und die Zusammensetzung sowie die Funktion von Bakteriengemeinschaften wirken. Im ersten

Mesokosmosexperiment habe ich den Einfluss Daphnien auf die Bakterien- sowie die Phytoplank-

tongemeinschaft untersucht und dabei herausgefunden, dass Daphnien die Artenvielfalt beider

Gemeinschaften stark reduziert haben. Des weiteren haben diese die Artenzusammensetzung der

Bakteriengemeinschaft und Ökosystemfunktionen (Respiration) verändert. Im zweiten Mesokosmo-

sexperiment habe ich den Einfluss von Umweltheterogenität, sowie der Verteilung von Organismen

und (organischem) Material zwischen verschiedenen Habitaten auf Bakterien-, Phytoplankton-

und Zooplanktongemeinschaften erforscht. Die verschiedenen Gemeinschaften haben sehr un-

terschiedliche Reaktionen auf diese experimentellen Manipulationen gezeigt, wobei ich grosse

Einflüsse auf die Diversität, die Artenzusammensetzung, sowie die Häufigkeit einzelner Arten aller
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trophischen Ebenen gemessen habe. Zusammenfassend habe ich mit dieser Arbeit gezeigt, dass die

Artenzusammensetzung verschiedener trophischer Stufen einen grossen Einfluss auf die Vielfalt

und Zusammensetzung von Bakteriengemeinschaften und deren Ökosystemenfunktionen haben

kann.
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I N T R O D U C T I O N

G E N E R A L B A C K G R O U N D

Understanding the spatial and temporal distribution of species on our planet is a core area

of ecological research that has fascinated generations of biologists. In the era of climate

change, it is particularly important to investigate if and how ongoing environmental

changes will affect the composition and species distributions of natural communities. This

knowledge is needed both for the conservation of biodiversity, and for the understanding

of how biodiversity changes may affect ecosystem functions and services, such as biomass

production and organic matter decomposition. Environmental change is predicted to alter

habitats and change community assembly processes across the landscape through changes

in, for example, precipitation and temperature. Emerging theory about how communities

interact via dispersal and energy (i.e. meta-community and meta-ecosystem theory) is

a useful starting point to explore how local and regional processes may explain spatial

variation in community composition and ecosystem functioning. Instead of focussing

on individual patches, these theories try to integrate how the surrounding patches and

environmental conditions interact with local community dynamics (Fig. 1.1).

From meta-communities to meta-ecosystems

A meta-community is defined as a set of local communities which are connected through

dispersal of organisms. Metacommunity theory (Leibold et al., 2004) describes four non-

exclusive theoretical paradigms which can help identify the processes governing patterns

of species distributions and coexistence in spatially structured communities (Leibold and

Norberg, 2004; Holyoak et al., 2005; Logue et al., 2011b). These paradigms are species-

sorting (SS), mass-effects (ME), patch-dynamics (PD) and neutral-model (NM) (Holyoak

et al., 2005), and each describe specific mechanisms which determine species distributions.

The species sorting paradigm assumes that local patches are heterogeneous and that patch

qualities and niche differentiation drive species occurrence patterns among patches. In the

1
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mass-effects paradigm, high amounts of dispersal between heterogenous patches can create

source-sink dynamics which overwhelm differences in niche use and and competitive

abilities among species. The patch-dynamics paradigm considers a trade-off between

dispersal and local fitness (competition-colonization trade-off), and the neutral-model

assumes that all species are equivalent in competitive abilities, movement and fitness, and

that stochasticity determines species abundances. None of these paradigms alone can

explain community dynamics, but they can be used as a general framework for describing

regional species distributions, where the importance of different mechanisms depends

on multiple biotic and abiotic characteristics, such as species identities and interactions,

food-web structure, ecosystem type, biogeography, and spatial scale (Heino et al., 2014).

A recent extension of meta-community theory is the meta-ecosystem concept, which not

only focuses on the dispersal of organisms between local patches, but also on the spatially

structured flux of organisms, energy and materials (Loreau et al., 2002).

A, B, C

D, E, F
A, B, C

A,B,C?

? ?

Figure 1.1: Conceptual meta-ecosystem illustration. The figure illustrates a network of lakes, which are connected
through different quantities of dispersal. What will happen to the local communities (displayed with different
letters), when they disperse to a new environment? Who will survive and grow? How do local and regional
environmental conditions, and the fluxes of material influence species compositions and ecosystem functioning?
How does the food-web structure affect community responses?
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A B CDirection Amount Frequency

D Type

Dispersal of organisms

Dispersal of materials

Figure 1.2: Conceptual figure of different dispersal characteristics. Amongst others, dispersal between patches can
vary in dispersal direction (A), dispersal quantities (B), and frequency of dispersal pulses (C), and can include
the dispersal of organisms and other materials, which can be dispersed in different quantities (D).

Dispersal

One important aspect of meta-community and meta-ecosystem dynamics is the nature

of dispersal between local patches, which may vary in direction, amount, and frequency

(Fig. 1.2). Dispersal can be either uni- or bi-directional, or non-existent due to insurmount-

able barriers (Fig. 1.2A). In a network of lakes that are connected through the flow of

water (Fig. 1.1), passive dispersers will generally move in the direction of water flow,

while motile organisms, and organisms with the ability to fly can move in either direction.

Dispersal quantities (Fig. 1.2B) are important for determining source-sink dynamics and

can create mass-effects. Finally, dispersal frequencies (Fig. 1.2C) can vary through time, for

example due to spring floods and water regulations. Both organisms and other materials

can disperse in different quantities (Fig. 1.2D) and vary in direction and frequencies. Due

to climate change, higher amounts of precipitation are expected in some parts of the world,

while other parts may suffer water shortages (Dore, 2005). Climate change also predicts an

increase in flood frequency for some parts of the world (Hirabayashi et al., 2013), which

can lead to strong variations in dispersal quantities and frequencies.

The importance of dispersal for meta-community dynamics and diversity has been studied

in several theoretical and empirical setups and for various communities (e.g. Logue et al.,
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2011b; Eklöf et al., 2012; Vanschoenwinkel et al., 2013; Berga et al., 2014), and studies

have revealed differential responses with body size and dispersal mode (Beisner et al.,

2006; De Bie et al., 2012; Verreydt et al., 2012). Most studies focussed on the dispersal of

organisms, but recent theoretical frameworks have also addressed how the dispersal of

material fluxes influences community and ecosystem responses (Massol et al., 2011).

Trophic interactions

Metacommunity dynamics also depend on the trophic structure within and among local

habitats. On the one hand, the emergence of species-rich food webs can be explained by

metacommunity theory, as intermediate levels of colonization and limited dispersal are

expected to maximize food-web complexity (Pillai et al., 2011). Food-web complexity, on

the other hand, can influence diversity within metacommunities. The presence of predators

has been shown to reduce both local and regional richness across multiple trophic levels

(Chase et al., 2009; Berga et al., 2014) and can therefore alter the mechanisms of spatially

structured community assembly. For example, Howeth and Leibold (2008) have shown

that zooplankton and phytoplankton biomass strongly responded to changes in trophic

structure, which were generated by differences in connectivity between patches. Verreydt

et al. (2012) has demonstrated that dispersal can lead to metacommunity responses that

cascade through food-webs. This is particularly true when keystone species, for example

Daphnia, are dispersal limited.

Nutrients

Zooplankton

Fish

DOM

Bacteria

Flagellates & Cilliates

Phytoplankton

Figure 1.3: Conceptual figure of a simple aquatic food web.
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Bacterial communities

Microbial communities are important drivers of many key ecosystem processes, such as the

cycling of carbon and nitrogen (Falkowski et al., 2008). The abundance and composition of

microbial taxa affects ecosystem functions and services, while environmental change can

affect species distributions (Petchey et al., 1999; Langenheder et al., 2010; Venail and Vives,

2013). However, ecological theory describing species distributions has been developed

mainly for plants and animals and can only partly be applied for bacterial communities

due to their unique properties such as asexual reproduction and horizontal gene transfer

(Prosser et al., 2007). Short generation times, small size, and recent advances in molecular

techniques, though, make bacterial communities more popular model systems, to help

bridge the gap between ecological theory and microbial ecology (Jessup et al., 2004).

Several metacommunity studies have investigated the importance of local environmental

and spatial distance for species distributions, and included bacterial communities (some

examples are shown in Table 1.1, and see also Logue et al. 2011b), but the importance of

environmental parameters and spatial structure for bacterial community responses remains

unclear. This may partly be due to the use of community fingerprinting methods that

differentially resolve bacterial diversity (such as ARISA and T-RFLP). Such methods only

consider dominant species (Orcutt et al., 2009), while species diversity may be hidden in

the rare and closely related species. Recent studies have started using next generation

sequencing techniques to characterize bacterial communities so as to understand how

environmental and spatial factors control bacterial communities. Combining high resolu-

tion sequencing methods and spatially structured food-web experiments might help to

understand how natural bacterial communities respond to environmental change, and how

this might affect ecosystem functioning.

Testing ecological theory in mesocosms

One way to study metacommunity dynamics in near-natural, but controlled conditions is

to use mesocosms (Fig. 1.4). While natural ecosystems are highly variable and complex

systems, mesocosms offer a bridge between small scale lab experiments in microcosms, and

natural systems (Stewart et al., 2013). Mesocosms are outdoor experimental units closely

simulating environmental conditions, which can be replicated and provide more realistic

conditions, that are not possible in the lab (Odum, 1984). Mesocosms have been used

to study components of environmental change, metacommunity structure, and trophic

interactions at multiple levels of complexity, at different scales, and in different habitats

(Stewart et al., 2013). Since mesocosms can be highly controlled, but still resemble near-
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natural ecosystems, they can serve as useful means for studying effects of environmental

change. For example, it is possible to manipulate dispersal events, nutrient conditions,

temperature, and food-web complexity.

A I M S O F T H I S T H E S I S

In this thesis, I explore the following questions in aquatic systems:

• How do biogeography and environmental variation influence diversity and ecosystem

functioning?

• How does food-web structure in general, and predation in particular, shape meta-

community diversity?

• How does environmental heterogeneity affect the spatial structure of diversity across

multiple trophic levels?

To address these questions, I have conducted a lake survey across Switzerland, as well as

two mesocosm experiments. The main focus of my work was to study bacterial community

responses to environmental change, but I also measured phytoplankton and zooplankton

community responses. Methods to characterize bacterial communities have evolved rapidly

over the last decades, from simple fingerprinting techniques to the sequencing of entire

communities. Because of recent advances in method developments, chapter I focusses on

how the hypervariable region of the 16S rRNA, a standard gene for comparing bacterial

community composition, influences measures of bacterial diversity and community com-

position. For chapter II, I have tested for the joint effects of grazing and the abundance of

bacterial cells on bacterial and phytoplankton communities using a mesocosm experiment.

Chapter III describes a second mesocosm experiment in which I explored the effects of

resource heterogeneity and dispersal regime on bacteria, phytoplankton, and zooplankton

communities. In chapters II and III, the bacterial community is characterized by the

method developed in chapter I.

M E T H O D S

Variable region comparison

Unlike phytoplankton and zooplankton taxa, which can be characterized morphologically

using microscopy, the use of morphological differentiation for species identification is not

possible for bacterial communities due to the small size the vast diversity of bacterial taxa.

The 16S rRNA has become a standard marker gene for determining bacterial community
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composition. This gene is highly conserved in prokaryotes, because it codes for ribosomes,

which are essential cell organelles, but certain parts of this gene are hypervariable among

species. Ideally, we would be comparing whole 16S rRNA sequences when comparing

and characterizing bacterial communities, but due to technical limitations, this is not yet

possible and researchers have to restrict themselves to one or several of the hypervariable

regions of the 16S rRNA gene. As regions vary in their abilities to identify and resolve

taxa, chapter I focusses on how this influences ecological measures of diversity, which will

then be applied in the subsequent chapters.

Mesocosm experiments

The two mesocosm experiments conducted for this thesis were performed in large, repli-

cated outdoor tanks (Fig. 1.4). Each experiment ran for several months, was sampled

regularly over the course of the experiment, and more intensively at the end of the ex-

periment. To create metacommunities and determine the spatial structure of diversity

(β-diversity), water was dispersed within mesocosm treatments (300L tanks).

In the first mesocosm experiment (chapter II), I tested how the presence of Daphnia, and the

initial abundance of bacterial cells interactivity affect bacterial and phytoplankton diversity

and community composition (Fig. 1.5A). The effect of Daphnia grazing for bacterial and

phytoplankton communities was investigated because results from previous experiments

using larger organisms suggests that predation can significantly reduce local and regional

richness and community dissimilarity of prey communities (Chase et al., 2009). Some

comparative studies (Table 1.1) of bacterial communities have included upper trophic levels

as determinants of bacterial community composition, but the influence of other trophic

levels on bacterial communities remains unclear. In addition to the grazing treatment,

we diluted the bacterial community in half of the metacommunities at the beginning of

the experiment in order to remove rare taxa and investigate how this might affect the

community assembly of both the bacterial and phytoplankton community.

In the second mesocosm experiment (chapter III), I tested for more complex trophic inter-

actions in spatially structured environments, and for the importance of meta-ecosystem

fluxes. I crossed a nutrient loading regime, in which I created either homogenous or

heterogenous metacommunities, with a dispersal regime, in which organisms were either

dispersed live or killed prior to dispersal. The dead dispersal regime was applied to test

for the importance of material fluxes, relative to the fluxes of material and organisms in

the live dispersal.
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2011 2012

Figure 1.4: Pictures of the mesocosm experiments from 2011 (left; chapter II) and 2012 (right; chapter III).
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Figure 1.5: Experimental design of the mesocosm experiments from 2011 (A; chapter II) and 2012 (B; chapter
III). Chapter II describes the results of the 2011 experiment, in which the presence of Daphnia was crossed
with the dilution of microbial cells, and chapter III describes the results of the 2012 experiment, in which
nutrient heterogeneity and dispersal mode were altered.
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Table 1.1: Examples of environmental & spatial factors tested in microbial metacommunity studies. x =
parameter was tested, but no significant effect was detected, xs = significant effect of parameter was detected.
The table also includes the method which has been used for measuring bacterial community composition.

Study system/ Reference
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Abiotic parameters
Water color xs x
Water transparency xs
Salinity xs x x
Total phosphorus x x x x x
Total nitrogen xs x x
pH xs xs x x x xs
DOC x x
DIC x
Absorbance x
Conductivity xs x x
Secchi depth x x
Temperature xs x x xs xs
Water retention time xs
Area x xs
Volume x x
Depth xs x
Environmental heterogeneity x
Geographic distance x x
Concentration of different ions xs
Biotic parameters
Chlorophyll a x xs x xs xs
Total phytoplankton biomass xs x
Total Zooplankton biomass xs x
Heterotrophic nanoflagellate density xs x xs
Daphnia concentration x
% Cyanobacteria x
% Bosmina xs
% Daphnia x
Cilliate biomass x
Dinoflagellate biomass xs
Calanoid copepod biomass xs
Bacterial abundance x x x
Abundance of several bacterial groups xs
Bacterial growth efficiency xs
Respiration xs
Local vs. regional factors
Local (environmental) factors x xs xs xs xs
Spatial factors x x x xs xs
Method for measuring bacterial community composition
Reverse blot hybridization x
DGGE x x
T-RFLP x x
454-Sequencing x x x

References: 1: Lindström et al. (2005), 2: Van der Gucht et al. (2007), 3: Beisner et al. (2006), 4: Langenheder
and Ragnarsson (2007), 5: Langenheder and Székely (2011), 6: Langenheder et al. (2011) 7: Pagaling et al.
(2009), 8: Berga et al. (2014).
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A B S T R A C T

Methods to estimate microbial diversity have developed rapidly in an effort to understand

the distribution and diversity of microorganisms in natural environments. For bacterial

communities, the 16S rRNA gene is the phylogenetic marker gene of choice, but most

studies select only a specific region of the 16S rRNA to estimate bacterial diversity. Whereas

biases derived from from DNA extraction, primer choice and PCR amplification are well

documented, we here address how the choice of variable region can influence a wide

range of standard ecological metrics, such as species richness, phylogenetic diversity, β-

diversity and rank-abundance distributions. We have used Illumina paired-end sequencing

to estimate the bacterial diversity of 20 natural lakes across Switzerland derived from

three trimmed variable 16S rRNA regions (V3, V4, V5). Species richness, phylogenetic

diversity, community composition, β-diversity, and rank-abundance distributions differed

significantly between 16S rRNA regions. Overall, patterns of diversity quantified by

the V3 and V5 regions were more similar to one another than those assessed by the V4

region. Similar results were obtained when analyzing the datasets with different sequence

similarity thresholds used during sequences clustering and when the same analysis was

used on a reference dataset of sequences from the Greengenes database. In addition we

also measured species richness from the same lake samples using ARISA Fingerprinting,

but did not find a strong relationship between species richness estimated by Illumina and

ARISA. We conclude that the selection of 16S rRNA region significantly influences the

estimation of bacterial diversity and species distributions and that caution is warranted

when comparing data from different variable regions as well as when using different

sequencing techniques.
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I N T R O D U C T I O N

One of the central goals of microbial ecology is to measure and understand the distribution

of diversity across spatial and temporal gradients. Ecologists are increasingly interested

in using microbial communities to test a wide range of classic ecological hypotheses

(Prosser et al., 2007; Nemergut et al., 2013; Martiny et al., 2006; Horner-Devine et al.,

2004). In the field of biogeography and macro-ecology, for example, microbial communities

have been used in numerous comparative and experimental studies to test whether

environmental properties could explain patterns of microbial diversity over a range of

spatial scales (Griffiths et al., 2011; Jankowski et al., 2014; Horner-Devine et al., 2003). In

metacommunity ecology, there is a growing interest in the relative importance of dispersal

and environmental conditions for explaining patterns of microbial diversity (Beisner et al.,

2006; De Bie et al., 2012; Declerck et al., 2012) and community assembly (Ofiteru et al.,

2010; Burke et al., 2011). Furthermore, in studies of biodiversity and ecosystem function

(Cardinale et al., 2012a), microbial communities are rapidly becoming model systems to

explore how the composition (i.e. species richness and functional diversity) and abundance

of microbial taxa can affect specific ecosystem functions and services (Venail and Vives,

2013; Petchey et al., 1999; Petchey and Gaston, 2006). Rank-abundance distributions of

microbial communities have also been used to discriminate between alternate models

of community assembly (Ofiteru et al., 2010) and to understand how the rare biosphere

might be functionally important (Pedrós-Alió, 2011; Besemer et al., 2012). While the rapid

development of methods to quantify microbial communities indeed shows great promise

for testing ecological theory, it is increasingly important to evaluate how estimates of

diversity vary due to technical and methodological considerations.

Before the era of molecular techniques, microbial communities were commonly identified

using microscopy or cultivation (LeChevallier et al., 1980), but these methods are known

for only capturing a fraction of the microbial taxa present in the environment (Staley

and Konopka, 1985). Over the past three decades, microbial ecologists have increasingly

been using the 16S rRNA (Olsen et al., 1986; Ward et al., 1990) as a marker gene to

differentiate among microbial taxa, and the growing number of sequences in publicly

accessible reference databases makes taxa identifications from 16S rRNA sequences more

reliable. The characterization of microbial communities through 16S rRNA sequences has

become a standard method in microbial ecology and a growing number of open-source

sequence analysis tools (such as ”mothur” (Schloss et al., 2009), ”QIIME” (Caporaso et al.,

2010), or ”RDP” (Cole et al., 2013)) facilitate the analysis of the large amount of sequences

produced by modern massive parallel sequencing methods.
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Methods to characterize microbial communities through 16S rRNA sequences have

developed rapidly. To reduce costs and time, the classic approach of creating clone banks

(Pace et al., 1986; Schmidt et al., 1991) followed by Sanger sequencing (Sanger et al., 1977)

has been replaced by next-generation sequencing (NGS) technologies (Schuster, 2007) that

produce huge amounts of sequences in very short amounts of time. This development has

vastly increased our understanding of environmental microbial communities (e.g. Pinto

et al. 2012) and medically relevant microbiomes (e.g. Grice and Segre 2011; Turnbaugh

et al. 2006). However, one of the drawbacks of NGS approaches is the limited read length

and that sequencing the complete 16S rRNA gene of entire communities is still costly

and methodologically complicated. NGS research is therefore commonly restricted to

one or a few of the nine variable regions of the 16S rRNA gene. It is well known that

different variable regions of the 16S rRNA gene vary in their abilities to identify and

resolve microbial taxa (Kim et al., 2011; Vasileiadis et al., 2012; Guo et al., 2013; Vinje et al.,

2014; Schloss, 2010; Klindworth et al., 2012; Engelbrektson et al., 2010; Huse et al., 2012),

but there is no consensus about how to choose the best region to characterize microbial

communities, and how robust a particular ecological conclusion is based on the choice of

region.

Here, using data from 20 bacterial community samples from Swiss lakes (Figure S1),

we focus on how the choice of variable region of the 16S rRNA gene influences common

biodiversity metrics, including species richness (SR), community composition, phylogenetic

diversity (PD) (Cadotte et al., 2010), the relationship between SR and PD and environmental

gradients (Green et al., 2008), β-Diversity (Anderson et al., 2011) and rank-abundance

distributions (Preston, 1948; Aoki, 1995) (Fig. 2.1). We have used both Illumina MiSeq

sequencing of the 16S rRNA gene between the V3 and V5 regions and a community Fin-

gerprinting technique (ARISA = Applied automated Ribosomal Intergenic Spacer Analysis;

Fisher and Triplett 1999), which uses the intergenic spacer region between the 16S and

the 23S rRNA for determining bacterial diversity. We have used a set of natural lake

samples to explore variation in the composition of the microbial communities, and to

better understand how different variable regions of the 16S rRNA gene affect patterns

of diversity, and furthermore applied the same analysis pipeline to reference data from

the Greengenes database in order to compare our conclusions from natural samples to an

existing database of sequences.
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Figure 2.1: Conceptual figure of the study design. We have sampled 20 Swiss lakes, performed bioinformatical analyses
and applied several ecological concepts on evaluating the microbial communities both with a fingerprinting
method (ARISA), as well as by next generation sequencing (Illumina) from three variable regions of the 16S
rRNA gene.
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M AT E R I A L S A N D M E T H O D S

Sampling and DNA extraction

We sampled 20 Swiss lakes (Figure S1, Table S1) during the stratified period in the summer

of 2011 (July to October). The lakes span a broad range of environmental characteristics,

such as surface area, elevation, nutrient level, and dissolved organic carbon (DOC) concen-

trations. All lakes were sampled at their deepest point, using water samples integrated

over the first five meters of the water column. Between 60-240 mL of lake water were

filtered onto 0.2 µm polyethersulfone filters (Supor 200 Membrane Disc Filters) at the

same day of sampling, and filters were instantly frozen in liquid nitrogen and preserved

at -80
◦C until further processing. Microbial DNA was extracted from preserved filters

by enzymatic digestion and cetyltrimethyl ammonium bromide (CTAB) extraction (Llirós

et al., 2008). The same DNA samples were used both for Automated Ribosomal Intergenic

Spacer Analysis (ARISA) and NGS amplicon sequencing using Illumina technology.

Amplicon sequencing

Sample preparations and sequencing

Using a high-fidelity polymerase (Phusion High-Fidelity PCR, New England Biolabs),

we amplified the microbial 16S rRNA gene between the variable regions V3, V4, and V5

using a single primer set of custom-designed degenerate primers (forward primer: 327-

ACACGGYCCARACTCCTAC-345, reverse primer: 969-TTGCWTCGAATTAAWCCAC-

951). The primers were placed at conserved sites identified by Wang et al. (Wang and

Qian, 2009) and designed to reduce primer-dimers and hairpin structures, and to reduce

amplification of algal chloroplasts. To keep the PCR amplification bias low, we performed

three low cycle PCR reactions (15 cycles) for each sample and subsequently pooled the

PCR products. Pooled PCR products were then cleaned using AMPure XP beads (Beckman

Coulter). Illumina library preparations of the amplified and cleaned PCR products were

performed using the Nextera XT DNA Sample Preparation Kit (Illumina). The kit requires

very low amounts of starting material (1ng) and uses dual-indexing, which allows the

pooling of up to 96 samples in a single sequencing run. Paired-end (2x250nt) sequencing

was performed on an Illumina MiSeq at the Genetic Diversity Centre (GDC) in Zurich.
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Data processing

The raw Illumina reads were filtered and de-multiplexed using the Illumina MiSeq Reporter

system software version 2.3. Overlapping reads were merged using SeqPrep (Schmieder

and Edwards, 2011), and possible mismatches between the overlapping fragments of

the forward and reverse reads were corrected according to the base call with the higher

sequencer-assigned quality score. Non-overlapping reads were kept separate. In a next

step, the reads were quality-cleaned (minimum mean quality of 25) and size selected

(minimum read length of 100nt) using PrinSeq Lite version 0.20.3 (Schmieder and Edwards,

2011). The quality filtering step also includes the clipping of ambiguous nucleotides from

the ends and the removal of read with internal ambiguous nucleotides. Initial de-noising

was performed with a 99% similarity clustering using USEARCH version 7.0.1001 (Edgar,

2010). As false priming cannot be completely excluded due to the degeneration of primers

during PCR amplification of the 16S rRNA gene, de-noised reads were binned with the

usearch option and the 16S reference database, both provided by QIIME (version 1.7.0, (Ca-

poraso et al., 2010)). Reads without overlap were concatenated using Ns to facilitate read

trimming. The binning parameters were determined from blasting subsets of the dataset

against the NCBI 16S database to keep the error rate below 1%. De novo and reference

chimera detection were performed with the UCHIME algorithm (Edgar, 2010). After these

quality filtering steps, we retained a total of 112862 reads (merged and paired-end) from all

lakes (average reads per lake sample: 5643; SD: 1155; Table S1). The cleaned reads varied

in size and coverage and were trimmed into subsets of fragments covering different parts

of the targeted 16S rRNA gene region (V3, V4, V5, V3-V4, V4-V5). To trim the dataset into

subset datasets we have used conserved 11-mer regions in proximity of each of the variable

regions. The Gold 16S reference database was used to determine conserved 11-mer regions

across species. The reads were screened based on the determined 11-mers and reads that

did not carry the 11-mer were collected and the reverse complements of the those reads

was screened again. In a next step, all reads that contained the 11-mer were aligned and

trimmed to a specific length in order to cover the same variable region. 11-mer positions

are included in Table S2. Read lengths differed between subset-datasets and covered 120

nucleotides (nt) for the V3 and V4 dataset, 100 nt for V5 dataset, 360 nt for V3-V4 dataset

and 311 nt for the V4-V5 dataset. Read counts for the subset datasets were in the range of

hundreds to thousands of reads per lake sample (691-3085 reads) for V3, V4, and V5 and

hundreds of reads per lake sample (184-432 reads) for the double-region datasets V3-V4

and V4-V5 (Table S1). As the number of reads for sites covering two variable regions

(V3-V4, V4-V5) was comparatively low compared to the number of reads in the single
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region datasets (Table S1), we decided to perform most of the analyses using only the

single region datasets. The Illumina sequences have been submitted to the Sequence Read

Archive (SRA) and can be found under the project accession number SRP047505.

Data evaluation and statistical analysis

We used QIIME version 1.7.0 (Caporaso et al., 2010) for assigning operational taxonomic

units (OTUs) at a sequence similarity of 97%. Briefly, we performed de novo OTU pick-

ing using usearch61 (Edgar, 2010; Edgar et al., 2011) and picked a representative set of

sequences. Taxonomy was assigned (Wang et al., 2007) using the most recent Greengenes

database taxonomy (as of May 2013 (McDonald et al., 2012)). To calculate phylogenetic

diversity, OTUs were aligned and filtered, and a rooted tree was produced using the

default fast tree option. QIIME analyses were performed separately for each region, as this

allowed for de novo OTU picking and subsequent comparisons between the datasets of

the different regions. After QIIME analyses, all subsequent analyses were performed in R

(version 3.0.2, (R Core Team, 2013)). The R package ’Phyloseq’ (McMurdie and Holmes,

2013) was used to rarefy OTU tables to an even sampling depth. For analyses comparing

datasets from single regions (V3, V4, and V5), datasets were rarefied to 650 reads, while

for analyses of double region datasets (V3-V4 and V4-V5), datasets were rarefied to 150

reads per lake. The rarefaction was conducted to account for differences the number of

reads in the datasets from the different regions, and most of the subsequent analyses were

performed on the rarefied datasets. As the aim of our study was to compare the datasets

of the three variable regions, we did not remove chloroplast sequences, which might

affect diversity measures. Species richness (SR) was calculated as the number of unique

OTUs, and phylogenetic diversity (PD) was calculated as the sum of phylogenetic branch

lengths (Cadotte et al., 2008). To minimize the influence of rarefaction on SR and PD, these

measures were computed 1000 times, each time using a different rarefied OTU table, and

then averaged. We used Analysis of variance (ANOVA) and a post-hoc Tukey HSD test

to evaluate if SR and PD vary significantly between variable regions and major axis (MA)

regressions (Legendre and Legendre, 1998) for comparing lake-specific SR and PD data

between the different regions. Linear regressions were used to compare SR estimates from

Illumina sequencing to ARISA estimates of SR of the 20 lakes and to test for relationships

with environmental parameters. We quantified β-diversity of the V3, V4 and V5 region

datasets using three different metrics: Jaccard (presence absence data), Bray-Curtis (abun-

dance data) and Raup Crick (RC) (Chase et al., 2011). The RC dissimilarity index is less

sensitive to differences in SR among sites than the other dissimilarity metrics as it uses
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the total species pool of each dataset (γ-diversity) to calculate a null model distribution

for each combination of samples (N=10000 iterations), and the null distribution is then

compared to the real number of shared species between samples to test wether lakes share

more or less species than expected by chance. RC values range from -1 to 1, where a value

of between -1 and -0.975 means that lakes are significantly more similar than expected by

chance (i.e. lakes share more species than expected by the null model) and a value between

+0.975 and +1 indicates that lakes are significantly more dissimilar than expected by the

the null model (i.e. lakes share fewer species than expected by the null model). RC esti-

mates between -0.975 and +0.975 indicate that there are no significant differences between

the null model expectations and the observed number of shared species between lakes.

Pairwise comparisons of RC between for the same combinations of lakes for each of the

variable regions were plotted against each other to determine how the conclusions about

microbial community similarity between lakes depend on the choice of variable region.

Rank-abundance distributions were calculated in two ways. First, for a global comparison

of abundance data, we combined the datasets for all 20 lakes and created rank-abundance

tables for each of the single region datasets (V3, V4, V5). Second, for a pairwise comparison

between lakes, the abundance data was ranked separately for each lake and region. We

used the Kolmogorov-Smirnov (KS) test to test for significant differences in the shape of

rank-abundance distributions between variable regions. In addition to describing bacterial

diversity based on OTU abundances, we also investigated community composition at the

class level from sequences clustered at 97% sequence similarity. We used paired t-tests to

compare the relative abundance of the ten most common classes between communities

defined by the V3, V4 and V5 datasets.

ARISA Fingerprinting

For ARISA fingerprints of the microbial communities, the ribosomal intergenic spacer (ITS)

region between the microbial 16S and 23S genes was amplified using a fluorescein (6-FAM)-

labeled universal forward primer 1406f-6FAM and the bacteria-specific reverse primer 23Sr

(Yannarell and Triplett, 2005). Binning of the ARISA peaks was performed in R 3.0.2 (R

Core Team, 2013) using a window size of 1.5 and a shift value of 0.3 (Bürgmann et al., 2011).

Influence of sequence similarity threshold

A 97% sequence similarity threshold (SST) is often used during OTU picking to cluster

similar sequences at species level (Schloss and Handelsman, 2005). We tested how different

SST values (99, 95, 90, and 85% sequence similarity) affect SR, PD, β-diversity as well
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as rank-abundance distributions. For SR and PD calculations, we again performed 1000

repeated rarefactions and averaged the results to decrease the bias of random rarefaction.

Reference dataset analysis

To test wether our observed differences among regions are generalizable beyond our lake

survey, we ran our pipeline (Fig. 2.1) with trimmed V3, V4 and V5 sequences from the

Greengenes database (as of May 2013 (McDonald et al., 2012)), which were trimmed in

the same way as our lake survey samples. In order to make the comparison between the

Greengenes dataset and our lake survey data, we randomly selected sequences in the same

quantity as in our lake dataset (Table S3). Subsequently, we performed the same QIIME

analysis as described above and calculated SR and PD for the Greengenes database dataset,

after rarefaction to the same level as the lake survey data (650 reads per lake sample).
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R E S U LT S

Species Richness and Phylogenetic Diversity

Absolute estimates of Illumina SR and PD varied significantly between the three variable

regions for both rarefied (SR: F=68.79 (p<0.001), PD: F=264.70 (p<0.001); Fig. 2.2A) and raw

data (SR: F=64.83 (p<0.001), PD: F=188.80 (p<0.001); Figure S2). To account for differences

in read counts of the different lake datasets, which were generated by differences in

sequencing depth, all of the following results are based on rarefied data only. The dataset

based on the amplicons covering the V4 region resulted in significantly higher SR estimates

(median: 366 unique OTUs) compared to the V3 (median: 262) and the V5 (median: 235)

region. Corresponding with this, PD was also highest for the V4 region and significantly

lower for both the V3 and the V5 region datasets (Fig. 2.2A).

When comparing SR estimates of individual lakes between the different variable regions

(Fig. 2.2B; MA statistics: Table 2.1) we found that SR generated from the different variable

regions were correlated. Even though absolute SR was higher for the V4 region datasets,

the slopes of the relationship were neither different from one another, nor were they

different from a slope of 1. When comparing the same patterns for PD, we found that the

three regions resolve PD differentially (MA statistics: Table 2.1, Figure S3). Together, these

results suggest that V3 and V5 region datasets produce more similar patterns of diversity

than V4 region dataset.

SR and PD were significantly positively correlated for all three regions (Fig. 2.2C; MA

statistics: Table 2.1), and the slopes of these relationships did not differ significantly

between the different dataset. R2 estimates, however, were quite variable between datasets.

This result indicates that SR and PD increase simultaneously, but also that the fit of the

relationship between SR and PD strongly depends on the variable region (Table 2.1).We

found a positive relationship when comparing SR estimates of the V4 region to SR esti-

mates of the two datasets spanning over two variable regions (V3-V4 and V4-V5; Table

2.1, Figure S4). The V4 region dataset showed higher estimates of SR compared to the

extended regions, but the slopes of the relationship were not different from 1. Evaluating

the relationships between SR, respectively PD, and environmental parameters, we found

either weak or no relationships (Table S4). The only significant (p<0.05) relationships of

environmental parameters and SR were detected were a negative correlation of SR of the

V3 region dataset with PO4 concentrations (p=0.02) and a positive correlation of SR of the

V3 dataset with Chlorophyll a concentrations (p=0.01). PD of the V4 region was negatively

correlated with PO4 concentrations (p=0.04) and positively correlated with Chlorophyll a

concentrations (p=0.02). Given these infrequent and weak relationships, it is unclear how
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the choice of variable region might alter our understanding of drivers of species diversity

along environmental gradients.

Table 2.1: Major axis (MA) regression results

Figure Rarefied Parameter x-axis y-axis R2 slope 2.5% 97.5% posthoc
(reads) comparison value slope slope test

2B Yes (650) SR V3 V4 0.351 0.771 0.337 1.518 a
2B Yes (650) SR V3 V5 0.869 0.861 0.708 1.042 a
- Yes (650) SR V4 V5 0.555 1.022 0.645 1.627 a

S2 Yes (650) PD V3 V4 0.583 1.872 1.273 3.063 a
S2 Yes (650) PD V3 V5 0.671 0.801 0.553 1.127 b
S2 Yes (650) PD V4 V5 0.799 2.099 1.664 2.758 a

2C Yes (650) SR vs. PD V3 SR V3 PD 0.568 22.855 15.954 40.228 a
2C Yes (650) SR vs. PD V4 SR V4 PD 0.400 14.197 8.822 36.001 a
2C Yes (650) SR vs. PD V5 SR V5 PD 0.951 18.466 16.600 20.803 a

- No SR V3 V4 0.195 4.959 2.399 337.240 a
- No SR V3 V5 0.926 0.783 0.679 0.898 b
- No SR V4 V5 0.251 0.170 0.027 0.322 c

- No PD V3 V4 0.435 3.318 2.073 7.300 a
- No PD V3 V5 0.731 0.666 0.481 0.889 b
- No PD V4 V5 0.515 4.565 3.056 8.652 a

- No SR vs. PD V3 SR V3 PD 0.624 26.520 19.156 43.051 a
- No SR vs. PD V4 SR V4 PD 0.824 24.030 19.554 31.156 a
- No SR vs. PD V5 SR V5 PD 0.960 23.996 21.783 26.708 a

S4 Yes (150) SR V4 SR V3-V4 SR 0.305 1.393 0.664 3.753 a
S4 Yes (150) SR V4 SR V3-V4 SR 0.212 1.870 0.795 12.044 a

MA was calculated in R using the lmodel2() function (Legendre, 2013). We used the 2.5% and
97.5% slope estimates to evaluate significant relationships between variables.

β-Diversity estimates

The bacterial lake communities appeared more dissimilar from each other when char-

acterized by the V4 region, as indicated by Jaccard, Bray-Curtis, as well as Raup-Crick

dissimilarities. Median Jaccard dissimilarities were significantly different between the three

variable regions (F=163.6, p<0.001) and highest for the V4 dataset (Fig. 2.3A). Bray-Curtis

dissimilarities, which make use of abundance distributions, show a similar pattern, as

pairwise dissimilarities between lakes were higher for the V4 dataset and lower for the V5

dataset as compared to the V3 dataset (Fig. 2.3B). However, as both Jaccard and Bray-Curtis

dissimilarities can be biased by differences in species richness among sites and regions, we

also compared Raup-Crick estimates between the regions (Fig. 2.4). The RC comparison

revealed that both for the V3 and V5 region datasets, bacterial communities were on

average more similar to each other than expected by random chance (Fig. 2.4A). On the
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Figure 2.2: Number of observed species (SR; left side) and phylogenetic diversity (PD; right side) of the rarefied
dataset from Illumina OTU data of the lake samples.
A: SR and PD estimates for the three different regions. Points show the mean SR/PD of all lake samples and
lines the standard error of the mean.
B: SR of individual lakes from the V3 region plotted against SR of the same lake from the V4, respectively
the V5 region dataset. The solid central line shows the 1-to-1 line, dashed lines show the Major Axis (MA)
regressions of the two comparisons.
C: SR (x-axis) plotted against PD (y-axis) for each of the three regions, where each dot represents one lake
sample. The different symbols indicate the three different regions. Lines show the MA regression lines for
each variable region dataset.
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other hand, there was a high proportion of pairwise RC comparisons in which lakes shared

fewer species than expected by the null model for the V4 region (Fig. 2.4B). These patterns

appear to be correlated for the V3 and V5 region, as, when plotted against each other, most

points fall into the lower left corner (Fig. 2.4A). This suggests that these two regions yield

similar conclusions about community dissimilarity. However, when we compare RC for

V3 and V4, there is more uncertainty in our conclusions. For example, more points fall

at the edges of the plot (Fig. 2.4B), indicating that one of the variable regions suggests

the communities are not different from random expectations, while the other suggests the

communities are either more or less dissimilar than expected by chance. Overall, pairwise

comparisons of RC estimates indicate that the V3 and V5 region yield similar conclusions

in a high proportion of pairwise lake comparisons (Fig. 2.4D) and would lead to the

conclusion that communities are more similar to each other than expected by random

chance. Pairwise RC estimates of the microbial communities using the V4 region, however,

less often come to the same conclusion as the other two variable regions and indicate that

lakes are more dissimilar than expected by chance. These results indicate that higher SR

estimates by the V4 region dataset also affects pairwise comparisons between communities

and results in fewer shared species, as compared to the number of shared species found

when comparing reads of the V3 or V5 region.

Rank-abundance distributions

The rank-abundance distributions of the three different variable regions also indicate

significant differences between the bacterial communities characterized by the V4 dataset

as compared to the V3 and V5 datasets. We detected significant differences in the shape of

the rank-abundance distributions of the three variable regions, both when comparing indi-

vidual lakes and when averaging over all lakes. Rank-abundance distributions averaged

over all lakes were significantly different between the V4 and both the V3 and V5 region,

but not between the V3 and V5 region datasets (Fig. 2.5A). Comparing rank-abundance

distributions of individual lakes (Fig. 2.5B), we found no significant differences between

the distributions of the V3 and the V5 datasets for any of the lakes, while for 55% of the

lakes, significant differences between the distributions of the V3 and V4 datasets were

detected, and for 80% of the lakes, the V4 rank-abundance distribution was significantly

different from the distribution of V5 dataset (Fig. 2.5C).
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Figure 2.3: Comparison of Jaccard and Bray-Curtis dissimilarities between the variable 16S rRNA regions
from the lake survey dataset.
A: Median Jaccard dissimilarities of rarefied data for the three different variable regions. Each dot represents
the median Jaccard dissimilarity from the pairwise comparisons of one lake to the other 19 lakes for one
variable region. Lines connect the median dissimilarities of the same lake for the three different regions.
B: Bray-Curtis pairwise dissimilarities of V3 plotted against V4 (stars) and V5 (circles) pairwise dissimilarities
of the same pairwise combination of lakes. Central line shows 1:1 line.
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Figure 2.4: Raup-Crick (RC) comparisons between the three variable 16S rRNA regions from the lake survey
dataset.
A: Modified RC probability comparison of V3 and V4 (for rarefied data). Each dot represents the RC value
of one pairwise dissimilarity comparison of the V3 region plotted against the same pairwise dissimilarity
comparison of the V4 region. Values between -1 and -0.975 indicate that communities are significantly
less dissimilar, and values between +0.975 and +1 that communities are significantly more dissimilar than
expected by chance. Values between -0.975 and + 0.975 indicate that communities are not different from
random expectation. Dashed lines show boundaries of significance (-0.975 and +0.975), where points falling
between -1 and -0.975, respectively +0.975 and +1 indicate significant deviations from the null-model
distribution. Dark areas in the plot represent high densities of points.
B: Same as A, but for V3 plotted against V4 values.
C: Conceptual figure illustrating the four different possible combinations when two RC-matrices are compared.
a (white area): both regions come to the same conclusion about the dissimilarity among communities, b (dark
grey): one of the regions estimates β-diversity of one lake pair to be significantly more similar than expected
by chance while the other region estimates the β-diversity of the same lake pair to be not different from a
random null-model distribution, c (light grey): one of the regions estimates β-diversity of one lake pair to
be significantly more dissimilar than expected by chance while the other region estimates the β-diversity of
the same lake pair to be not different from a random null-model distribution, d (black): cases where pairwise
lake comparison of one region estimate β-diversity to be significantly more similar than expected by random
chance, while the other region estimates β-diversity to be significantly more dissimilar than expected by
chance.
D: Barplot showing the number of cases where the compared regions come to the same (a) or different (b, c, d)
conclusions about β-diversity. Coding is illustrated in panel C.
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Figure 2.5: Rank-abundance evaluation of the variable 16S rRNA regions from the lake survey dataset. A:
Rank-abundance plot of the complete dataset for each of the three variable regions, where abundance data
was added up for all of the 20 lakes, plotted on log-log scale. Vertical dashed lines show the range of the
rank-abundance plot (ranks 12 to 440) for which we found a significant difference between the rank-abundance
distributions of V4 to V3 and V5. For the same region, the V3 and V5 rank-abundance distributions did not
differ significantly from each other (significant Kolomogorov-Smirnov (KS) test : p<0.05) .
B: Example rank-abundance plot of the rarefied data for one lake (Murtensee), plotted on log-log scale. X-axis:
OTU rank, y-axis: OTU abundance.
C: Result of KS-test using rank-abundance data of the individual lakes. X-axis: compared regions, y-axis:
p-value distribution of KS test, dashed line plotted at p-value of 0.05. Each dot represents the comparison
of rank-abundance curves from two regions of the same lake. P-values below 0.05 indicate a significant
difference between the the rank-abundance distributions, whereas p-values above 0.05 indicate that there are
no significant differences between two rank-abundance distributions.
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Species richness comparisons of ARISA and Illumina sequencing data

Overall, the SR estimates based on the ARISA and the Illumina data did not show a

significant (p<0.05) correlation for any of the three variable regions (Fig. 2.6, Table S5),

but SR of V3 and V4 from Illumina sequencing were marginally positively correlated with

ARISA SR estimates (V3: F=3.99, p=0.06, slope=1.42; V5: F=3.89, p=0.06, slope=1.22), while

no such correlation for V4 Illumina SR estimates and ARISA estimates was found (V4:

F=0.14, p=0.72, slope=-0.25). The slopes of the individual 16S rRNA regions did not differ

significantly from one another (F=1.59, p=0.21). Again, however, the V3 and V5 datasets

appear more similar to each other as compared to the V4 dataset.

Figure 2.6: Species richness (SR) estimates from ARISA Fingerprinting plotted against SR estimates from
Illumina sequencing. Each symbol represent the SR estimates of one lake for the two different methods
clustered at a SST of 97%. Different symbols represent Illumina estimates from the three different regions.
Lines show major linear regressions for each variable region (regression slopes: Table S5).

Influence of sequence similarity threshold (SST)

We furthermore analyzed how the SST, which is used during the sequence analysis to

cluster similar sequences, affects the above described indices and patterns (Figure S5). As

expected, SR and PD decreased for all regions when the SST was lowered, but SR and PD

decreased at unequal rates. At levels between 90-95% SST, SR of the V4 region reached

similar levels as SR of the V3 and V5 region at a SST of 97% (Figure S5A). SR estimates

of V4 became very similar to SR estimates of V3 when the SST was lowered, while V5 SR

remained lowest. PD, on the other hand, decreased at a much lower rate when the SST was

reduced (Figure S5B). Even at a SST of 85%, PD of the V4 dataset was still approximately
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2-fold higher than PD of the V3 and V5 dataset. In either case, the widening gap between

the V4 region dataset and the V3 and V5 region datasets with increasing SST indicates

that the differences between these regions are related to an increased diversity at higher

clustering thresholds. As expected, Jaccard and Bray-Curtis mean pairwise dissimilarities

also decreased, showing that the communities are more similar at a lower SST due to

less stringent clustering parameters. Using presence-absence data (Jaccard dissimilarity),

relative differences between mean pairwise dissimilarities of the three variable regions

remained equal (Figure S5C), while when using abundance data (Bray-Curtis dissimilarity),

differences between the datasets from the three variable regions became less pronounced

and V3 and V4 dissimilarities converged (Figure S5D). Lowering the SST decreased the

number of rare species and flattened rank-abundance distributions, resulting in steeper

slopes of the rank-abundance curves for all three regions (Figure S5E). With a lowered

SST, the V4 rank-abundance distribution became less different from the V3 distributions,

but stayed significantly different from the V5 rank-abundance distributions for 30% of

the lakes even at a SST of 85% (Kolgorov-Smirnov Test: p<0.05; Figure S6). Linear model

comparisons of SR estimates from Illumina and ARISA overall revealed several cases

where Illumina estimates of SR of the V3, as well as the V5 region, were marginally

(p-value between 0.07 and 0.05) correlated with ARISA SR estimates (Figure S5F, Table

S5). SR estimates of the V4 region, however, never showed significant correlations with

ARISA estimates of SR, irrespective of the SST value. Overall, the SST analysis revealed

that differences between the three variable regions remain even when the sequences are

clustered at different similarity thresholds.

Taxonomic evaluation

Analyzing the community composition based on bacterial classes of the V3, V4 and V5

region datasets revealed significant differences in relative abundances of the ten most

abundant classes (Fig. 2.7, Table S6). Clearly, the relative abundances of the V3 and V5

datasets are more similar in their composition, while both of them differ markedly from

the V4 dataset (Fig. 2.7), and this observation is well supported by paired t-tests (Table S6).

Comparison with reference data

By analyzing the Greengenes dataset using the same parameters that were applied to

the lake survey data, we detected that the V4 region consistently resolved PD differently

than the V3 and V5 region datasets, but did not always show a higher SR (Figure S7A).

Furthermore, the coupling of SR and PD was different for the reference data as compared
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to the lake survey data (Figure S7B). The slopes of the relationship varied significantly

between variable regions (F=25.88, p<0.001). This result indicates that even when using a

random selection of reference sequences, the V4 region resolves PD significantly higher

than the V3 and V5 region.

Figure 2.7: Barchart of the most abundant bacterial classes. Relative abundances of the ten most abundant bacterial
classes across the V3, V4 and V5 datasets. Each bar represents the relative class distribution in one lake and
each group of bars represents the relative abundances for one of the tree variable regions (V3, V4, V5). Bars
are ordered from left to right by alphabetical order (see Figure S1 and Table S3 for more information about the
lakes). Appendant results of paired t-test statistics are shown in Table S5. Square brackets indicate candidate
class names.
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D I S C U S S I O N

In this study, we amplified the V3 to V5 regions of the microbial 16S rRNA from 20

natural lake water samples using a single bacteria-specific primer set, and after Illumina

sequencing, trimmed the data into three datasets corresponding to three variable 16S rRNA

regions (V3, V4, V5). We then estimated bacterial diversity and were able to show that the

choice of variable region strongly influences the estimation of diversity based on SR and

PD, and, as such, may significantly alter the ecological conclusions for a given study.

Most studies that investigated the influence of 16S rRNA region on diversity estimates

have focussed on measures of α-diversity (e.g. (Wang and Qian, 2009; Youssef et al.,

2009; Kim et al., 2011; Soergel et al., 2012; He et al., 2013)), whereas here, we additionally

investigated the effect of 16S rRNA region on PD, community composition, rank-abundance

distributions as well as β-diversity. One novel aspect of our approach is the use of PCR

products produced by a single primer pair instead of using separate primer pairs for each

of the variable 16S rRNA regions. This method minimizes the influence of different primer

pairs on the composition of the PCR products, which can affect species composition and

SR estimates (Rainey et al., 1994). Furthermore, we used the same bioinformatic pipeline

for analyzing an environmental dataset originating from natural lake samples, as well

as an in-silico dataset extracted from the Greengenes reference database. Comparing our

dataset of environmental samples to a reference dataset allowed us to investigate the

generality of differences between the variable regions of the 16S rRNA gene. Comparisons

to other available datasets, however, would be necessary to show if this is a general

pattern across reference data. We are aware that various choices made during sequence

analysis, such as the selection of the reference database, the taxon calling, and the sequence

clustering can influence our results, but we tried to minimize these results by carefully

choosing our analysis pathway, by comparing our lake survey data to reference data,

and by analyzing how the sequence clustering threshold influences various of the chosen

measures of diversity (Fig. 2.1).

The results from our lake survey dataset suggest that different variable regions of the

16S rRNA gene resolve SR and PD differently. Both SR and PD were significantly higher

for the V4 region dataset, but we think that these parallel patterns for absolute estimates

of SR and PD do not only arise from the fact that higher SR was measured for the V4

dataset, as PD estimates are not directly linked to the number of species in a system

(Faith, 1992). Instead, the results suggest that the three variable regions differ in how

species composition and identities are resolved and contain different types of phylogenetic

information. This finding was underlined by the fact that we found significant differences
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between the relative abundances of bacterial classes (Fig. 2.7). The significantly higher

estimates of PD for the V4 region were also found in the Greengenes reference dataset

and were robust to changes in the sequence similarity threshold (SST) during sequence

clustering (Figure S5), suggesting that the patterns we obtained are inherent to the 16S

regions themselves and not specific to our samples or to the OTU clustering threshold. Kim

et al. (Kim et al., 2011) already suggested that the threshold for defining a molecular species

must be adapted for variable regions of the 16S rRNA gene, and that it may be necessary to

change SST depending on which of the nine 16S rRNA regions is chosen. Our lake survey

results are in accordance with previous studies that have also found higher SR for the V4

region compared to the V3 and V5 regions (Youssef et al., 2009; Vinje et al., 2014). Vinje et

al. (Vinje et al., 2014) revealed that the V4 region contains in proportion at least twice as

many informative sites compared to V3 and V5 to discriminate taxa, but they also noted

that half of the discriminative sites were found outside of variable regions. Targeting the

amplification of fragments where the number of discriminative sites is optimized would

allow robust downstream analyses such as taxonomic assignment, phylogeny and species

richness estimates. As a consequence, it is promising that improvements on read length

are advancing for Illumina sequencing, as this will furthermore improve downstream

analyses. Although the absolute number of identified species depended strongly on the

region, estimates of SR derived from different 16S regions were highly correlated (Fig. 2.2B).

This is encouraging as it suggests that studies choosing different target regions may be

comparable on a relative scale. However, this was not the case for PD, which seems to be

strongly influenced by the choice of variable region. Furthermore, SR and PD were not

correlated equally between the three regions.

Estimates of β-diversity (i.e. differences in diversity between the lake samples) were also

particularly sensitive to the choice of variable region (Fig. 2.3 and 2.4). Pairwise β-diversity

dissimilarities based on Jaccard and Bray-Curtis were higher for the V4 dataset and lower

for the V5 dataset as compared to the V3 dataset (Fig. 2.3). By using the Raup-Crick

(RC) dissimilarity matrix in addition to Jaccard and Bray-Curtis dissimilarities, we found

that the differences in dissimilarities between the three regions are not only driven by

the absolute number of species. RC matrices of the V3 and V5 region appear to be more

similar to each other, as pairwise distance matrices show strong overlap. As a result,

the V3 and V5 regions would yield similar conclusions about patterns of β-diversity, but

using the V4 region could lead to dramatically different conclusions. In many pairwise

comparisons between lakes, communities that were more similar than random expectation

when using the V3 or V5 region were actually more dissimilar than expected when using
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the V4 region dataset (Fig. 2.4D). Hence, the ecological conclusion is reversed based on

the choice of region. One potential explanation for such results is that the V4 region

resolves reads at different taxonomic levels than both the V3 and V5 regions, which leads

to comparably less overlap between the communities and greater dissimilarities when

comparing lake pairs. Interestingly, this may also happen when taking longer regions of

the 16S rRNA into account. Longer regions should provide a better phylogenetic placement

of an individual read, but they can still mask sample-to-sample differences depending on

the similarity cutoff used for species definitions. Hence, comparing patterns of β-diversity

among samples or studies (such as performed e.g. by Shade et al. (Shade et al., 2013)) will

be sensitive to the choice of region of the 16S rRNA.

We also found that rank-abundance distributions can be significantly different depending

on which variable region is analyzed (Fig. 2.5). It is well known that rank-abundance distri-

butions can be highly influenced by PCR artifacts (Pinto and Raskin, 2012) and sequencing

errors (Kunin et al., 2010), but as far as we are aware, the influence of the variable region of

the 16S rRNA has not been investigated. The rank-abundance distributions of individual

lakes using the V3 and V5 datasets were never significantly different from each other, while

they were both significantly different to the distribution of the V4 region dataset for the

majority of lakes. Rank-abundance curves are influenced by the way species abundances

are distributed between the different taxa, and so the difference of the V4 rank-abundance

curves is likely due to higher species richness in the V4 datasets. By decreasing the SST,

we were able to show that the steepness of the rank-abundance curve increases, which

indicates that species with low frequencies are lost as OTUs are clustered at less stringent

SSTs.

While Pilloni et al. (2012) demonstrated a strong correlation between NGS (454) and

Fingerprinting (T-RFLP) data, we did not find the same pattern for the comparison be-

tween Illumina and ARISA. ARISA estimates SR by measuring the variability within the

intergenic spacer region between the 16S and the 23S rRNA genes, whereas most NGS

surveys target parts of the 16S rRNA to estimate SR. Generally, NGS is considered to be

the more accurate technique for measuring microbial diversity, as there is an ever growing

number of reference sequences to which NGS data can directly be compared. However, to

our knowledge, the assumption that Illumina is a more appropriate method to estimate SR

has not been tested intensively and few studies have directly compared the outcome of

NGS richness to richness estimates from Fingerprinting techniques. A recent study (Gobet

et al., 2013) has compared ARISA and 454 Sequencing results and found strong correlations

between richness estimates of ARISA and 454 sequencing, however, it is unknown how



34 chapter i : variable region comparison

this relationship is influenced by the selected region of the 16S rRNA. Future work should

investigate more in depth whether NGS sequencing and classical Fingerprinting techniques

provide similar information about microbial diversity and evaluate how the variable region

might affect the results.

Overall, our results suggest that the choice of variable region of the 16S rRNA might be

important for many ecological studies, particularly in the context of biogeography (Morlon

et al., 2011), metacommunity theory (Leibold et al., 2010; Pillar and Duarte, 2010) or

(human) microbiome studies (O’Dwyer et al., 2012; Grice and Segre, 2011; Turnbaugh et al.,

2009), where information from diversity indices and rank-abundance distributions are

common tools for comparing microbial communities. Currently, there is a lot of variation

in the 16S rRNA regions used by different projects. Furthermore, the lack of a relationship

between ARISA results and the three variable regions from Illumina sequencing also

suggests that caution is warranted for comparing conclusions among studies which have

used different techniques. Large scale projects, such as the Human Microbiome Project

(HMP) or the Earth Microbiome project (EMP) try to make their data comparable by

mostly sequencing the same part of the 16S rRNA, but many smaller studies use various

parts of the 16S rRNA and thus make data comparisons between studies difficult or even

impossible. We can not make general recommendations about which regions to use for

NGS sequencing, but we have demonstrated, using three different variable 16S rRNA

regions, that there are inherent differences between the regions of the 16S rRNA, which

researchers should be aware of. This could motivate further research in order to find better

techniques or approaches for estimating bacterial diversity, which we hope will lead to an

improved understanding of bacterial communities.
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A P P E N D I X

Supplementary Figures

Figure S1: Map of the sampling locations of the 20 Swiss lakes included in the lake survey as well as lake
name abbreviations (see Table S1).

11

Figure S2: Species richness (SR) and phylogenetic diversity (PD) of the Illumina OTU data for the three
different regions prior to rarefaction. Points show the mean and lines the standard error of the mean.
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Figure S3: Rarefied PD of individual lakes from the V3 region plotted against PD of the same lake from V4,
respectively V5. Central line shows 1:1 line, dashed lines show the Major Axis (MA) model regression slopes of the two
comparisons.

Figure S4: SR of individual lakes from the V4 region plotted against SR of the same lake from the V3-V4,
respectively the V4-V5 region dataset using data rarefied to 150 OTUs per sample. Central line shows 1:1 line,
dashed lines show the MA model regression slopes of the comparisons.
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Figure S5: Results from applying different sequence similarity threshold levels (SST) during OTU clustering
(85, 90, 95, 97, and 99% sequence similarity). A: changes in SR, B: changes in PD, C: changes in Jaccard dissimilar-
ities, D: changes in Bray-Curtis dissimilarities, E: changes in global rank-abundance slopes, F: changes in the linear
model slopes between ARISA Fingerprints and Illumina sequencing. The graph shows the mean and standard error (SE)
for each region and SST.
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Figure S6: Changes in rank-abundance distributions of the three variable region datasets clustered at different
sequence similarity threshold levels (85, 90, 95, 97, and 99% sequence similarity). Large plots: Rank plotted
against abundance on a log-log scale. Small plots show the changes in significant differences between the three variable
regions (see Fig. 2.5C for a more detailed description of the inlay plots).
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Figure S7: Analysis of SR and PD of the Greengenes reference dataset. A: Rarefied SR and PD calculated from a
subset of the Greengenes database using the same parameters used as for the lake survey data. Points show the mean and
lines the standard error of the mean. PD was significantly higher in the V4 dataset (F=1406, p<0.001) compared to the
V3 and V5 datasets. The SR of the V4 region dataset was only significantly different form the V5, but not from the V3
dataset (F=14.99, p<0.001). B: SR plotted against PD for each of the three variable regions where each dot represents one
lake sample. Lines show the MA regression model for each dataset. R2 values: V3 = 0.10, V4 = 0.49, V5 = 0.50.
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Supplementary Tables

Table S1: Number of quality filtered reads of the different lakes and variable regions of the 16S rRNA (untrimmed and
trimmed reads).

Number of reads after quality filtering

Lake name Abbreviaton untrimmed V3 V4 V5 V3-V4 V4-V5

Baldeggersee Ba 4809 1211 1561 1065 389 301

Bielersee Bi 5584 1141 2052 1003 359 315

Brienzersee Br 7134 1069 2711 926 197 250

Burgäschisee Bu 5537 1199 1865 1109 365 332

Caumasee Ca 4344 901 1559 683 184 212

Greifensee Gr 6302 1207 1614 1384 245 232

Halwilersee Ha 6337 992 2034 943 192 209

Inkwilersee In 4256 918 1449 920 243 238

Lag Grand LG 6116 1011 2162 1405 219 285

Melchsee Me 7959 1445 3058 1242 240 277

Murtensee Mu 8461 1634 2872 1565 422 432

Neuenburgersee Ne 5221 990 1730 974 250 233

Rotsee Ro 5253 1154 1684 1082 360 330

Sempachersee Se 3508 754 962 691 237 195

Soppensee So 5074 959 1757 954 209 229

Thunersee Th 5455 941 1798 901 268 268

Türlersee Tu 5124 1081 1594 1059 281 257

Vierwaldstättersee Vi 5262 1074 1869 969 361 333

Zürichsee ZS 5569 1113 1288 1184 222 189

Zugersee Zu 5557 995 1804 844 218 197

Total # of reads 112917 21798 37432 20909 5461 5315

Mean # of reads (SD) 5643 (1155) 1089 1871 1045 273 266

Table S2: Positions of 11-mers used for subsetting the quality filtered Illumina reads as well as the number of nucleotides
(nt) of the trimmed datasets. Positions are given relative to E. coli 16S rRNA positions.

16S region 11-mer position reading direction # of nt

V3 518-508 reverse 120

V4 558-568 forward 120

V5 779-789 forward 100

V3-V4 415-425 forward 460

V4-V5 789-779 reverse 310



chapter i : variable region comparison 41

Ta
bl

e
S3

:E
nv

ir
on

m
en

ta
lp

ar
am

et
er

s
of

th
e

la
ke

s
th

at
w

er
e

sa
m

pl
ed

fo
r

th
is

st
ud

y.

La
ke

Sa
m

pl
in

g
Sa

m
pl

in
g

lo
ca

ti
on

m
ax

im
um

El
ev

at
io

n
D

O
C

N
O

3
PO

4
Te

m
p

pH
O

xy
ge

n
C

hl
a

Se
cc

hi
da

te
[L

at
,L

on
g]

D
ep

th
[m

]
[m

]
[m

g
C

/L
]

[m
g/

L]
[µ

g/
L]

[◦
C

]
[m

g/
L]

[m
g/

L]
de

pt
h

[m
]

Ba
ld

eg
ge

rs
ee

(B
a)

1
0

-1
0
-2

0
1

1
4

7
.0

5
0

9
N

7
.1

0
2

6
E

6
6

4
6

3
4
.0

0
.8

0
.5

1
5

.8
2

7
.9

7
9

.6
3

3
2

.1
3

1
.5

Bi
el

er
se

e
(B

i)
1

4
-0

9
-2

0
1

1
4

6
.4

3
4

0
N

7
.5

7
5

7
E

7
4

4
2

9
1
.7

0
.6

1
.4

2
0

.0
9

8
.1

2
9

.3
5

3
.1

2
4

.5
Br

ie
nz

er
se

e
(B

r)
1

2
-0

7
-2

0
1

1
4

7
.1

0
0

8
N

7
.4

0
0

4
E

2
6

1
5

6
4

1
.7

0
.3

4
.4

1
7

.8
3

8
.2

7
1

0
.0

0
0

.9
6

3
.0

Bu
rg

as
ch

is
ee

(B
u)

0
5
-1

0
-2

0
1

1
4

6
.4

9
1

1
N

9
.1

7
4

5
E

3
1

4
6

5
7
.6

0
.7

1
.3

1
9

.3
8

8
.3

5
9

.7
4

6
.0

6
4

.0
C

au
m

as
ee

(C
a)

1
9
-0

7
-2

0
1

1
4

7
.2

1
1

0
N

8
.4

0
3

7
E

3
0

9
9

7
1
.2

0
.3

1
.0

1
6

.9
0

8
.5

8
8

.8
1

1
.6

4
7

.0
G

re
if

en
se

e
(G

r)
1

5
-0

7
-2

0
1

1
4

7
.1

7
4

9
N

8
.1

2
3

9
E

3
2

4
3

5
4
.4

1
.5

1
.9

2
1

.9
0

8
.3

5
1

1
.4

1
9

.9
8

2
.5

H
al

w
ile

rs
ee

(H
a)

1
3
-0

7
-2

0
1

1
4

7
.1

1
5

2
N

7
.3

9
4

3
E

4
7

4
4

9
8
.5

0
.6

4
.2

2
3

.0
6

8
.3

0
9

.8
3

1
.7

4
6

.0
In

kw
ile

rs
ee

(I
n)

0
5
-1

0
-2

0
1

1
4

6
.4

8
2

8
N

9
.1

5
2

5
E

6
4

6
1

7
.5

0
.3

2
.1

1
7

.7
5

7
.2

1
4

.2
1

3
7

.4
6

1
.5

La
g

G
ro

nd
(L

G
)

1
9
-0

7
-2

0
1

1
4

6
.4

6
2

2
N

8
.1

6
2

2
E

5
1

0
1

6
2
.8

0
.3

1
.0

1
7

.4
1

7
.8

0
6

.2
6

1
1

.1
5

1
.5

M
el

ch
se

e
(M

e)
1

2
-0

7
-2

0
1

1
4

6
.5

5
5

5
N

7
.0

5
0

6
E

1
8

1
8

9
1

2
.9

0
.3

4
.4

1
7

.5
8

8
.0

0
8

.7
1

2
.8

2
4

.0
M

ur
te

ns
ee

(M
u)

1
5
-0

9
-2

0
1

1
4

6
.5

4
2

1
N

6
.5

1
3

2
E

4
5

4
2

9
3
.8

1
.4

1
.7

2
0

.7
3

8
.2

0
9

.4
6

1
0

.5
0

2
.0

N
eu

en
bu

rg
er

se
e

(N
e)

1
4
-0

9
-2

0
1

1
4

7
.0

2
2

7
N

8
.1

1
0

6
E

1
5

3
4

2
9

2
.6

0
.7

1
.2

2
1

.1
0

7
.9

7
9

.4
0

2
.2

6
7

.0
R

ot
se

e
(R

o)
0

6
-1

0
-2

0
1

1
4

7
.1

1
3

8
N

8
.2

1
1

0
E

1
6

4
1

9
1
.8

0
.3

2
.3

1
8

.7
1

8
.6

1
1

2
.7

6
8

.3
7

3
.0

Se
m

pa
ch

er
se

e
(S

e)
1

7
-1

0
-2

0
1

1
4

7
.0

8
3

8
N

8
.0

9
0

7
E

8
7

5
0

5
3
.8

0
.3

1
.0

1
5

.3
1

8
.3

1
8

.5
5

4
.4

2
4

.5
So

pp
en

se
e

(S
o)

1
8
-0

7
-2

0
1

1
4

7
.0

5
2

3
N

8
.0

4
5

1
E

2
8

5
9

6
6
.4

0
.9

1
.2

2
1

.0
0

8
.4

9
1

1
.4

2
6

.1
5

3
.5

Th
un

er
se

e
(T

h)
1

1
-0

7
-2

0
1

1
4

6
.4

2
4

6
N

7
.4

0
2

2
E

2
1

7
5

5
8

1
.1

0
.4

3
.2

1
8

.2
7

8
.3

9
9

.6
6

0
.7

1
6

.5
T

ür
le

rs
ee

(T
u)

2
0
-0

7
-2

0
1

1
4

7
.1

6
1

2
N

8
.3

0
1

0
E

2
2

6
4

3
3
.8

0
.3

1
.0

1
9

.8
5

8
.4

5
1

1
.7

7
1

2
.1

4
3

.0
V

ie
rw

al
ds

tä
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Table S5: Linear model statistics of species richness (SR) estimates from ARISA and Illumina sequencing at different
sequence similarity threshold (SST) clustering values.

16S region SST slope R2 F-value p-value

V3 85 0.76 0.20 4.59 0.05

V3 90 0.95 0.18 3.85 0.07

V3 95 1.27 0.18 3.81 0.07

V3 97 1.42 0.18 3.99 0.06

V3 99 1.38 0.19 4.09 0.06

V4 85 0.71 0.12 2.54 0.13

V4 90 0.67 0.08 1.66 0.21

V4 95 0.10 0.00 0.03 0.87

V4 97 -0.25 0.01 0.14 0.72

V4 99 -0.66 0.05 0.86 0.37

V5 85 0.40 0.09 1.85 0.19

V5 90 0.65 0.13 2.68 0.12

V5 95 1.01 0.15 3.21 0.09

V5 97 1.22 0.18 3.89 0.06

V5 99 1.37 0.19 4.24 0.05

Table S6: Paired t-test results of the ten most abundant bacterial classes.

Bacterial class* global V3 / V4 V3 / V5 V4 / V5

Abund. [%] T-statistic p-value T-statistic p-value T-statistic p-value

Betaproteobacteria 33.16 -12.58 <0.01 10.81 <0.01 19.19 <0.01

Alphaproteobacteria 8.53 1.14 0.27 -3.48 <0.01 -3.20 <0.01

Gammaproteobacteria 5.66 2.99 <0.01 3.23 <0.01 1.19 0.25

Synechococcophycideae 5.33 -4.54 <0.01 -1.63 0.12 3.39 <0.01

Flavobacteriia 5.16 10.08 <0.01 2.82 0.01 -13.24 <0.01[
Saprospirae

]*
4.42 13.65 <0.01 -2.98 <0.01 -12.16 <0.01

Chloroplasts 3.90 -0.42 0.68 -4.97 <0.01 -3.10 <0.01

Deltaproteobacteria 1.78 -3.62 <0.01 -2.72 0.01 1.68 0.11[
Methylacidiphilae

]*
1.64 3.66 <0.01 -2.14 0.05 -3.24 <0.01

Sphingobacteriia 1.59 8.68 <0.01 0.75 0.47 -7.50 <0.01

*Note: Data was calculated for the ten most abundant classes across the complete dataset. Square brackets
indicate candidate class names.
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A B S T R A C T

Consumers can have strong biotic and abiotic effects on food web and ecosystem dynamics

at multiple trophic levels. Their effects have been well studied in various ecosystems

and for multiple trophic levels, but not much is known about how consumers can affect

bacterial communities, which are responsible for many ecosystem functions and dynamics.

We have used a replicated outdoor metacommunity mesocosm experiment in which we

manipulated the presence of a keystone grazer (Daphnia), crossed with a dilution manipu-

lation, to investigate effects on diversity (of phytoplankton and bacteria) and ecosystem

functioning. The Daphnia manipulation had strong effects on local and regional diversity of

both the phytoplankton and the bacterial community, while dilution affected community

dissimilarity within metacommunities. We found strong effects of Daphnia on the bacterial

community composition, rank abundance distributions, and ecosystem functioning (respi-

ration rates).
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Figure 3.1: Experimental design (left) and setting (right) of the mesocosm experiment. Circles (A) represent
300L tanks, which were distributed randomly at the field site in Kastanienbaum, Switzerland (B).
Graphs in panels C+D illustrate different hypotheses of how Daphnia and dilution might affect
community assembly.
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I N T R O D U C T I O N

It is well established that consumers can profoundly modify community and ecosystem

dynamics (Paine, 1966; Duffy, 2002; Schmitz et al., 2000). Consumers can have biotic

effects (consumptive and non-consumptive) that influence prey biomass, composition,

and diversity, as well as abiotic effects that alter the cycling of nutrients (Elser and

Urabe, 1999; McIntyre et al., 2008) and energy flux (Jones et al., 1997) in ecosystems. The

effects of consumers often extend well beyond their prey communities, and can propagate

both laterally and vertically throughout food webs (Duffy et al., 2007), influencing both

biomass (Shurin et al., 2002) and diversity (Duffy, 2002) at multiple trophic levels (e.g.

meta-communities and -ecosystems), where they can influence coexistence, community

composition and assembly (Chase et al., 2009; Verreydt et al., 2012) and ecosystem flux

among patches (Gravel et al., 2010a).

While there is strong tradition for studying the propagation of consumer effects through-

out ecosystems (Hillebrand et al., 2009), there is growing evidence that consumers can

indirectly control key biogeochemical processes, such as carbon flux (Atwood et al., 2013;

Schmitz et al., 2014) and nutrient recycling (Ngai and Srivastava, 2006). For example,

experimentally manipulating predators can significantly alter CO2 fluxes across a diverse

range of aquatic ecosystems (ponds, streams, and bromeliads; Atwood et al. (2013)). Such

biogeochemical effects of consumers imply strong top down control on microbially me-

diated ecosystem dynamics (e.g. sulfate reduction, iron oxidation, methane oxidation,

nitrification and anaerobic ammonia oxidation), that are under direct control by the com-

position and activity of microbial communities (Falkowski et al., 2008). While there is a

growing appreciation for the importance of bacterial diversity for regulating ecosystem

functioning (Bell et al., 2005; Battin et al., 2003; Besemer et al., 2009), much less is known

about how consumers influence biogeochemical processes through effects on microbial

diversity.

Studying the effects of keystone grazer species (e.g. Daphnia) in spatially structures

aquatic ecosystems is a useful starting point for exploring the effects of consumers on

microbial communities and biogeochemical processes. Daphnia have strong biotic and

abiotic effects on aquatic ecosystems, including effects on water transparency (Mazumder

and Lean, 1994), nutrient cycling (Elser and Urabe, 1999), atmospheric carbon exchange

(Schindler, 1997), phytoplankton abundance, productivity, and diversity (Sarnelle, 2005;

Harvey et al., 1935), and bacterial abundance, composition, and productivity (Zöllner et al.,

2003; Sarnelle, 2007; Jack and Gilbert, 1994; Langenheder and Jürgens, 2001; Jürgens and

Matz, 2002). However, much of this work was done before the emergence of next-generation
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sequencing (NGS) methods that can resolve bacterial community composition in much

more detail. Early fingerprinting methods of microbial diversity (e.g. DGGE and ARISA)

revealed strong effects of environmental variation on the spatial structure of bacterial

communities (Van der Gucht et al., 2007), and some evidence for consumer effects on

bacterial communities (Declerck et al., 2012; Jürgens et al., 1994; Jürgens, 1994; Cottingham

et al., 1997; Jürgens and Matz, 2002). However, next-generation sequencing of bacterial

communities can reveal a much greater taxonomic resolution that can be used to study

fundamental questions about the dynamics of community assembly, while also providing

information about phylogenetic relationships among species in a community. In a very

recent paper, Berga et al. (2014) found that Daphnia strongly influenced the composition of

bacteria in a metacommunity and influenced respiration rates. Such results support the

notion that consumers can drive compositional shifts in the microbial communities that

can alter the biogeochemistry of ecosystems.

Here, we investigate how the diversity (of algae and bacteria) and functioning of aquatic

metacommunities (Leibold et al., 2004) are jointly influenced by Daphnia grazing (presence

and absence), as well as by the initial diversity and abundance of the the bacterial commu-

nity, which we manipulated by diluting the initial bacterial inoculum. We performed a

large scale mesocosm experiment using 24 replicated freshwater metacommunities, each

comprised of two 300L mesocosms connected by low levels of dispersal (weekly manual

dispersal). We manipulated the presence and absence of Daphnia to test for effects on the

spatial structure of diversity for both the phytoplankton and bacteria community. We

expected both communities to be strongly affected by Daphnia, via a combination of direct

(Degans et al., 2002) and indirect effects (Zubkov and Tarran, 2008), but we were also inter-

ested in how Daphnia affects bacterial community composition and phylogenetic structure.

Taxonomic groups of bacteria likely exhibit different tradeoffs associated with resource allo-

cation, survival, and growth, and, as a result, changes in the biotic and abiotic environment

caused by Daphnia could drive compositional changes in bacterial communities (Jürgens

and Matz, 2002) and affect elemental cycling in ecosystems (Jiang and Krumins, 2006).

We diluted the initial inoculum of bacteria with the aim of manipulating the diversity

of natural microbial communities (Fig. 3.1D), acknowledging that this manipulation also

affected other parts of the inoculum community. Our rational was that the dilution treat-

ment would preferentially remove rare species from the community, and provide a useful

contrast to Daphnia grazing, which might preferentially affect the most common species

in the community, but may also have indirect effects on rare species (Fig. 3.1C). Such a

dilution of the inoculum could also influence the balance of stochastic versus deterministic
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factors governing how predators affect community assembly (Chase et al., 2009; Hillebrand

et al., 2009) . By using high throughput sequencing of the microbial community, we could

track changes in relative abundance of microbial community constituents, and test for

interactive effects of Daphnia and dilution on diversity and community structure.

M AT E R I A L S A N D M E T H O D S

Experimental design and setup

The mesocosm experiment ran for 12 weeks in late the summer/early autumn of 2011 and

was conducted in 300L tanks (mesocosms) with two tanks making up a metacommunity

(Fig. 3.1). Each experimental metacommunity consisted of two tanks, between which

small amounts of water (50mL) were dispersed on a weekly schedule. The experiment

was designed in a randomized block design with four different treatments, which were

replicated six times, adding up to a total of 48 mesocosms. We used a factorial design

with two levels of Daphnia abundance (+ Daphnia, - Daphnia) crossed with two levels of

dilution (+ Dilution, - Dilution; Fig. 3.1A). Mesocosms were filled with approximately

250L of tap water, which originate from the nearby lake Lucerne. Each block received

lake water from two randomly selected lakes from a Swiss lake survey, which was either

prefiltered through 5µm filters to remove zooplankton and large phytoplankton (ZF water),

or prefiltered in the same way and then additionally filtered through 0.2 µm to remove

bacterial cells (BF water). Undiluted (- Dilution) mesocosms received 10L of ZF water from

one of the lakes to seed the bacterial community and additionally 10L of BF water from

the other lake to keep the environmental within a metacommunity the same. Diluted (+

Dilution) mesocosm received 10L of BF water from one of the lakes, 1mL of ZF water from

the same lake to seed a 1-million-fold diluted bacterial community, as well as 10L of BF

water from the other lake to preserve environmental conditions within the metacommunity.

Mesocosms from the + Daphnia treatment received 30 individuals of a Daphnia galeata

clone (G100). One metacommunity thus consisted of two mescosoms with the bacterial

community from two different lakes which were connected by regular dispersal, whereas

half of the metacommunities contained Daphnia. All mesocosm additionally received the

same amount of phytoplankton inoculum from lake Lucerne.
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Mesocosm sampling

Over the course of 12 weeks, various biological, physical, chemical and ecosystem function-

ing parameters were sampled and measured on a regular basis (Table 3.1). We performed

weekly samplings of algal biomass (Chlorophyll a), dissolved organic carbon (DOC) con-

centration and composition, as well as bacterial cell densities and cell size distribution.

As we were interested in how the treatments affected the bacterial and phytoplankton

community after several weeks, we conducted an intensive sampling at the end, where we

also measured several environmental parameters and two ecosystem functions (Table 3.1).

Table 3.1: Sampling schedule of the mesocosm experiment.

sampling week

Metrics Parameter 1 2 3 4 5 6 7 8 9 10 11 12

Biological Chlorophyll a x x x x x x x x x x x x
Bacterial cell density1 x x x x x x x x x x x x
Bacterial cell size distribution1 x x x x x x x x x x x x
Phytoplankton density1 x x x x x x x x x x x x
Phytoplankton counts2 x

Physical/ DOC concentration x x x x x x x x x x x x
Chemical DOC spectral slope x x x x x x x x x x x x

DOC absorption a320 x x x x x x x x x x x x
Dissolved oxygen x x x
pH x x x
Temperature x x x
Conductivity x x x
PAR light extinction x

Ecosystem Enzyme (phosphatase) activity x
Functions Respiration x

Biodiversity Bacterial diversity3 x
Phytoplankton diversity2 x

Analysis techniques: 1: Flowcytometry, 2: Stereo-microscopic counting, 3: Illumina sequencing

Sample processing and analysis

Chlorophyll a concentrations were determined spectrophotometrically at 665nm from

GF/F (Whatman) filtered water. The filtrate was acidified and stored at 4
◦C for measuring

DOC concentration on a Shimadzu TOC-V CPH, as well as for recording a DOC absorption

spectrum over the wavelengths of 190 to 800 nm. For flowcytometric measurements of

bacterial cell density and cell size distribution, 40 mL of tank water were fixed with a

filter-sterilized solution of paraformaldehyde and glutaraldehyde (0.01% and 0.1% final

concentrations, pH 7; (Nizzetto et al., 2012)) and stored at 4
◦C until flowcytometric

measurements were carried out on a BD AccuriTM C6 Flowcytometer.
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Phytoplankton was sampled from the water column, preserved with Lugol’s solution and

manually counted and identified by stereo microscopy. Dissolved oxygen, pH, temperature

and conductivity were measured in situ at approximately 0.5 m water depth using portable

water sensors. Enzyme (phosphatase) activity was quantified following a protocol by

German et al. (2011). Respiration rates were assessed in the lab using custom-built

temperature controlled glass vials and fiber-optic oxygen mini-sensors (FIBOX 3, PreSens),

in which oxygen concentrations were measured every 30 seconds at 16
◦C over the course

of six hours.

The bacterial community was analyzed using Illumina sequencing. Briefly, mesocosm

water was filtered onto 0.2µm polyethersulfone filters (Supor 200 Membrane Disc Filters),

which were instantly frozen in liquid nitrogen and preserved at -80
◦C until further process-

ing. DNA was extracted by enzymatic digestion and cetyltrimethyl ammonium bromide

(CTAB) extraction using a modified protocol of Llirós et al. (2008). Ilumina sequencing

and sequence analysis was performed as described previously (Chapter I). We have used

the V3 region of the 16S rRNA for the analysis of bacterial diversity. Sequences have been

submitted to GenBank and can be found under accession number PRJNA264620.

Data analysis

We analyzed the results from the end of the experiment using linear mixed effect model

statistics. All data was analyzed using the statistical software R (R Development Core Team,

2014). Sequencing data was analyzed using the bioinformatics pipeline QIIME (Kuczynski

et al., 2011) and has afterwards been processed in R, as described in (PAPER 1). Unless

specified differently, all analyzed data of the bacterial communities has been rarefied to

200 OTUs (Operational Taxonomic Units) per mesocosm due to large variations in read

counts of the individual mesocosms. When metacommunities were analyzed, mesocosms

were aggregated by metacommunity and OTUs were summed up.

Profile analysis (Fidell and Tabachnick, 2006) of the time-series data was performed for

bacterial abundance, bacterial size distribution and chlorophyll concentrations, which were

measured weekly during the course of the experiment. The analysis was conducted on the

4 cross-treatments as well as on the Daphnia and the dilution contrast. Additionally, we

used the same LME statistic as described above to test for significant effects of Daphnia,

dilution and the interaction of the two treatments for each week of the time-series data

separately.

Estimates of α, β and γ-diversity, phylogenetic diversity (PD) and metacommunity

UniFrac distances were computed based on averages of 1000 rarefied OTU matrices. Species
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richness (SR; α-diversity = local diversity) was calculated as the number of unique OTUs

per tank and then averaged across metacommunities. β-diversity was estimated for each

metacommunity using Jaccard and Bray-Curtis dissimilarities, and γ-diversity (regional

diversity) was calculated as the number of unique OTUs per metacommunity. Phylogenetic

diversity (PD) was quantified for each metacommunity as the sum of phylogenetic branch

length (Cadotte et al., 2008).

UniFrac distances, a measure of phylogenetic β-diversity (Lozupone and Knight, 2005),

were computed in multiple ways. First, weighted and unweighted UniFrac distances

were calculated for each metacommunity separately. Second, to illustrate if there is

a treatment effect in UniFrac clustering, we computed an unweighted UniFrac matrix

using the non-rarefied OTU table, which was transformed to relative abundances and

merged by metacommunity. We then performed hierarchical clustering using Ward’s

minimum variance and plotted the result, accompanied by approximately unbiased (AU)

bootstrap p-values (Shimodaira, 2002). To test for treatment effects on UniFrac distances, we

computed weighted and unweighted UniFrac distance matrices, and, using 1000 random

permutations, calculated how often the sum of the random permutations was smaller than

the within treatment result (treatments here are Daphnia, Dilution and the interaction). The

test was repeated 1000 times after which test results were averaged. Together with the

hierarchical clustering of the unweighted UniFrac distance matrix, we plotted the a bar

chart of the ten most abundant bacterial classes and ordered the bar chart by hierarchical

clustering results to illustrate which bacterial classes might be causing the hierarchical

clustering pattern. For this, we used the same non-rarefied OTU table, which had been

used before to compute the UniFrac matrix. In order to test for treatment effects on the

rank abundance distribution of bacteria (Fig. 3.1C+D), we calculated rank abundance

slopes for metacommunity-aggregated OTU tables 1000 times and analyzed the averages

using the above described LME statistics. Furthermore, we determined the average ranks

of the 300 most abundant OTUs by calculating the average rank of each OTU with and

without Daphnia and with and without Dilution. Average rank changes were calculated

by subtracting the average OTU rank with Daphnia/ dilution from the average OTU rank

without Daphnia/ dilution.

We have used the rank changes of the 300 most abundant OTUs and tested wether

these showed any evidence of phylogenetic signal. Using Blomberg’s K, we calculated the

phylogenetic signal of rank change as result of Daphnia presence/ absence and dilution/

no dilution. We repeated this analysis 100 times to avoid rarefaction artifacts and we then

calculated the proportion of significant p-values (p<0.05). We performed this analysis
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using the phylogenetic tree of the 300 most abundant OTUs as well as a phylogenetic tree

of the 300 most abundant OTUs aggregated to class level. To visualize rank-abundances

and rank changes across the phylogenetic tree we plotted the class level tree of the 300

most abundant OTUs of one single rarefaction, together with relative abundance and rank

change information.

R E S U LT S

Ecosystem dynamics through time

Over the course of the experiment, we found significant effects of Daphnia and dilution

on bacterial abundance, bacterial size distribution and algal biomass (Flatness test; Table

3.2, Fig. 3.2). Chlorophyll a concentrations were significantly higher in metacommunities

containing Daphnia during the course of the whole experiment (Levels test; Table 3.2,

Fig. 3.2C), while the trajectory of bacterial abundance and bacterial cell size distributions

were significantly different among treatments (Parallelism test; Table 3.2, Fig. 3.2A+B).

ANOVA at different time points revealed significant effects of Daphnia, dilution, and inter-

active effects (Fig. 3.2). For example, bacterial density and bacterial cell size distribution

both showed significant Daphnia effects during two of the twelve weeks. Bacterial density

showed significant interactive effects in week #2 and bacterial cell size distribution exhib-

ited significant effects of dilution in week #8 (Fig. 3.2A+B). Algal biomass was significantly

lower in the presence of Daphnia but was also affected by dilution and interactive effects

during three of the twelve weeks (Fig. 3.2C). Overall, bacterial densities did not exhibit

large changes as response to treatment, but we saw a trend for increased proportions of

small bacterial cells in metacommunities with Daphnia (Fig. 3.2B).

Table 3.2: Results of profile analysis on bacterial abundance (BaN), bacterial size class distribution (BactSize)
and Chlorophyll a (Chl-a).

Test Comparison Test statistic BaN BactSize Chl-a

Time Treatment F10,11 6.29 (<0.01) 8.58 (<0.01) 10.03 (<0.01)
(Flatness) Daphnia F12,11 6.07 (<0.01) 8.73(<0.01) 7.99 (<0.01)

Dilution F12,11 7.08 (<0.01) 6.82 (<0.01) 7.37 (<0.01)

Treatment Treatment F3,20 1.37 (0.28) 0.77 (0.53) 9.42 (<0.01)
(Levels) Daphnia F1,22 0.81 (0.38) 2.48 (0.13) 18.76 (<0.01)

Dilution F1,22 0.00 (0.99) 0.01 (0.92) 0.69 (0.41)

Time x Treatment Treatment Wilk’s λ3,20 0.04 (0.05) 0.03 (0.02) 0.07 (0.23)
(Parallelism) Daphnia Wilk’s λ1,22 0.27 (0.04) 0.17 (<0.01) 0.41 (0.23)

Dilution Wilk’s λ1,22 0.33 (0.10) 0.35 (0.13) 0.40 (0.20)
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Ecosystem properties at the end of the experiment

At the end of the experiment, we found significantly lower phytoplankton densities in

metacommunities with Daphnia, as determined by flowcytometry, microscopic counts, and

chlorophyll a concentrations. However, no significant changes in bacterial densities were

found, nor did we find significant differences in bacterial size classes. We furthermore

found significantly higher dissolved oxygen concentrations and respiration rates, and a

trend for decreased pH in the presence of Daphnia. No significant effects of Daphnia on dis-

solved organic carbon (DOC) concentrations or composition, temperature and conductivity

were detected. The dilution treatment did not significantly alter environmental parameters

at the last sampling time point (Table 3.2).

Diversity

We found that the presence of Daphnia significantly reduced local (α) and regional (γ)

diversity of both the bacterial (BC) and the phytoplankton (PC) community (Fig. 3.3A+D,

Table 3.3). In contrast to the effects of fish on plankton, (Chase et al., 2009) bacterial and

phytoplankton metacommunities did not become significantly more similar to each other

in the presence of Daphnia (Jaccard: BC: p=0.28, PC: p=0.77; Bray-Curtis: BC: p=0.07, PC:

p=0.99; Fig. 3.3C+F, Table 3.3). Although we did not find significant differences in α-

and γ-diversity of the bacterial community between diluted and undiluted tanks at the

end of the experiment, β-diversity measures showed that tanks within a metacommunity

were significantly more similar to each other if they received a diluted source community

(Fig. 3.3B+C, Table 3.3). In contrast, the phytoplankton community increased in α- and

γ-diversity, and diluted tanks showed a trend for decreased community similarity (p=0.08).
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Phylogenetic Diversity

Although Daphnia had weak effects on abundance, Daphnia had strong effects on the phy-

logenetic composition of the bacterial metacommunities. The average metacommunity PD

(Fig. 3.4A) was significantly lower in the presence of Daphnia (p<0.01), but not significantly

different between diluted and undiluted tanks (p=0.21). UniFrac distances of mesocosm

within a metacommunity (Fig. 3.4B) were not significantly different as response to Daphnia

(unweighted UniFrac: p=0.72, weighted UniFrac: p=0.73), but showed a trend to be lower in

diluted metacommunities (unweighted UniFrac: p=0.08, weighted UniFrac: p=0.15). Using

a UniFrac distance matrix, however, we found a clear separation and significant differences

between metacommunities with and without Daphnia, but no separation between diluted

and undiluted metacommunities. A permutation test revealed a significant influence of

the Daphnia treatment, but no significant dilution effect nor interaction. This results was

the same both for the (repeated) rarefied OTU data as well as for the non-rarefied OTU

data (Table S3).
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Figure 3.4: Changes in Phylogenetic diversity (A) and UniFrac distance (B) as an effect of Daphnia and Dilu-
tion treatment. Colors and statistics: see Fig. 3.

Community composition

We found strong treatment effects on composition of the ten most abundant classes of the

bacterial community, which together represented approximately 82% of all OTUs (Fig. 3.5B,

Table 3.3). We found an interactive effect of Daphnia and dilution on Betaproteobacteria, the

most abundant class of bacteria, which comprised almost 40% of all OTUs. The abundance

of two of the top ten classes was significantly affected by Daphnia (significant increase
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in Alphaproteobacteria and significant decrease in Betaproteobacteria). Dilution significantly

increased the abundance of Saprospirae and decreased the abundance of Flavobacteriia and

Chloroplasts. Furthermore, the top ten bacterial classes comprised a significantly higher

proportion of bacterial OTUs in metacommunities with Daphnia (D: 85%, ND: 80%; p<0.01).
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Figure 3.5: Hierarchical clustering of UniFrac distances of the 24 metacommunities (Top) as well as bacterial
composition of the corresponding metacommunities at the Class level. Colors and symbols of the top
part indicate the 4 different treatments (see Fig. 1), red numbers: AU (approximately unbiased) p-values
(Shimodaira, 2002).
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Rank abundance

The bacterial rank-abundance distributions (Fig. 3.1C+D), which are a combined measure of

species richness and evenness, differed significantly between treatments. Rank-abundance

slopes of metacommunities with Daphnia were significantly (p=0.01) steeper than in meta-

communities without Daphnia (Fig. 3.6A+B, Table 3.3), indicating a more even distribution

of OTUs as well as more OTUs with low abundances in the absence of Daphnia and higher

abundances of a few dominant OTUs in the presence of Daphnia. Dilution did not have

significant effects on rank-abundance slopes (p=0.20). We also investigated the extent of

average rank changes of individual OTUs as a result of Daphnia and dilution treatment

and found that rank changes were much stronger in the presence of Daphnia, i.e. that

the abundances of individual OTUs were changing more strongly in metacommunities

containing Daphnia (Fig. 3.6C+D). Generally, low-rank (i.e. highly abundant) OTUs often

remained low-rank OTUs, while high-rank (i.e. low abundant) OTUs were facing large

rank changes (Fig. 3.6C). This was true both when looking at the Daphnia and the dilution

contrast (Fig. 3.6C), but rank changes were much more pronounced for the Daphnia contrast

(Fig. 3.6D).

Phylogenetic Signal

We found a clear phylogenetic signal of rank changes as a result of Daphnia presence/absence,

but not of dilution (Fig. 3.7, Table S4), both when analyzing the phylogenetic tree of the

300 most abundant OTUs as well as when aggregating the data to the class level. This

indicates that closely related species have a similar response (either increase or decrease in

abundance) to the presence of Daphnia.
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Table 3.3: Summary of ANOVA results from the last sampling (week 12) of the metacommunity experiment. F
and p results for the effect of Daphnia, dilution, and interactive effects. Significant values are highlighted wild
bold letters.

F and p values of ANOVA analysis

Metrics Parameter Daphnia Dilution Interaction

Bacterial α-diversity (Species richness) 14.80 (<0.01) 1.90 (0.19) 1.02 (0.33)
Community β-diversity (Jaccard) 1.23 (0.28) 5.70 (0.03) 0.24 (0.63)

β-diversity (Bray-Curtis) 3.77 (0.07) 4.43 (0.05) 0.21 (0.66)
γ-diversity 13.59 (<0.01) 1.90 (0.19) 1.02 (0.33)
Phylogenetic Diversity 13.08 (<0.01) 1.74 (0.21) 0.57 (0.46)
Rank abundance slopes (log-log) 10.44 (0.01) 1.80 (0.20) 0.21 (0.66)
UniFrac distance 0.14 (0.72) 3.43 (0.08) 0.04 (0.85)
weighted UniFrac distance 0.12 (0.73) 2.33 (0.15) 0.00 (0.95)
Bacterial density 0.72 (0.41) 0.62 (0.44) 3.51 (0.08)
Bacterial size 0.28 (0.60) 0.06 (0.82) 0.03 (0.86)

Top 10 Bacterial Betaproteobacteria [39%] 30.67 (<0.01) 14.17 (<0.01) 16.94 (<0.01)
Classes Alphaproteobacteria [11%] 18.79 (<0.01) 0.47 (0.50) 1.04 (0.32)

Saprospirae (Bacteriodetes) [8%] 1.55 (0.23) 4.90 (0.04) 0.35 (0.56)
Flavobacteriia [6%] 1.26 (0.28) 8.29 (0.01) 3.04 (0.10)
Cytophagia [5%] 3.59 (0.08) 0.14 (0.71) 0.07 (0.80)
Gammaproteobacteria [5%] 0.72 (0.41) 0.09 (0.77) 0.04 (0.85)
Chloroplasts (Cyanobacteria) [2%] 2.35 (0.15) 4.93 (0.04) 0.83 (0.38)
Sphingobacteriia [2%] 0.58 (0.46) 1.74 (0.21) 2.16 (0.16)
Verrucomicrobiae [2%] 3.44 (0.08) 0.02 (0.89) 2.42 (0.14)
Actinobacteria [2%] 18.25 (<0.01) 1.36 (0.26) 1.72 (0.21)
Others [18%] 18.73 (<0.01) 2.56 (0.13) 2.70 (0.12)

Phytoplankton α-diversity (Species richness) 5.53 (0.03) 7.10 (0.02) 0.01 (0.91)
Communtiy β-diversity (Jaccard) 0.09 (0.77) 3.42 (0.08) 0.11 (0.75)

β-diversity (Bray-Curtis) 0.00 (0.99) 0.12 (0.74) 0.16 (0.69)
γ-diversity 4.61 (0.05) 2.44 (0.14) 0.02 (0.89)
Rank abundance slopes (log-log) 1.71 ( 0.21) 0.40 (0.54) 1.89 (0.19)
Phytoplankton density (FCM) 6.49 (0.02) 0.02 (0.89) 0.40 (0.54)
Phytoplankton counts 10.37 (0.01) 0.09 (0.77) 1.45 (0.25)
Chlorophyll-a 10.43 (0.01) 0.02 (0.89) 1.41 (0.25)

Physical/ DOC 0.05 (0.82) 0.21 (0.65) 0.13 (0.73)
Chemical DOC Spectral slope 2.91 (0.11) 0.07 (0.79) 0.04 (0.85)

DOC Absorption a320 1.06 (0.32) 0.41 (0.53) 0.06 (0.81)
Dissolved oxygen 9.40 (0.01) 0.57 (0.46) 0.89 (0.36)
pH 3.98 (0.06) 0.25 (0.62) 0.13 (0.73)
Temperature 3.56 (0.08) 1.47 (0.24) 3.28 (0.09)
Conductivity 0.85 (0.37) 0.63 (0.44) 0.36 (0.56)

Ecosystem Enzyme (phosphatase) activity 1.36 (0.26) 0.16 (0.70) 0.00 (0.99)
Functions Respiration 10.73 (0.01) 2.82 (0.11) 6.01 (0.03)



chapter ii: meta-community dynamics 63

D I S C U S S I O N

Our experiment is one of the first to explore the interactive effects of Daphnia grazing

and dilution on the diversity of bacterial and phytoplankton meta-communities. Using

a replicated setup of large outdoor mesocosms, we have shown that bacterial and phyto-

plankton community assembly is strongly affected by Daphnia grazing, and, though to a

lesser extent, by the initial abundance of bacterial cells (Table 3.3).

A previous study by Chase et al. (2009) found that fish predation reduced the diversity of

macroinvertebrates, zooplankton and amphibians at both local (α) and regional (γ) scales,

and increased community similarity (lower β-diversity). They concluded that deterministic

processes become more important for community assembly in the presence of a fish

predator, probably because species that persisted with fish were a similar size (Chase et al.,

2009). Our study has taken a similar approach, but instead of studying the effects of fish

predation on macroinvertebrates, zooplankton and amphibians, we have studied effects of

predation at lower trophic levels, namely how Daphnia grazing affects community assembly

of bacteria and phytoplankton. In bacteria, we know little about the distribution of traits

among species that affect growth and survival in the presence of Daphnia. In addition

to measures of diversity, we also used molecular methods to characterize the bacterial

community composition and phylogenetic structure. Similar to the results from Chase et al.

(2009), we also found a significant decrease in α- and γ-diversity of both the bacterial and

the phytoplankton community in the presence of Daphnia (Fig. 2.3). Daphnia did not affect

β-diversity of both the bacterial and the phytoplankton community, i.e. that communities

did not become more similar to each other in the presence of Daphnia.

Although the diversity of both bacterial and phytoplankton communities decreased in

the presence of Daphnia, these patterns are likely to arise from very different mechanisms.

Daphnia are considered non-selective filter feeders (Hartmann and Kunkel, 1991), and are

well known to feed on phytoplankton, but the ingestion of phytoplankton by Daphnia

depends on the mesh size of Daphnia (Gophen and Geller, 1984) as well as the size of

the phytoplankton species (Böing et al., 1998). We have shown, that over the course

of the 12-week experiment, chlorophyll a concentrations were significantly lower in the

presence of Daphnia (Fig. 3.2C) and we assume that the strong grazing pressure reduced

in α- and γ-diversity within the phytoplankton community. Our finding that β-diversity

remained constant irrespective of Daphnia regime further strengthens the assumption that

the shaping force of Daphnia on the phytoplankton community was not species selective,

but rather size selective. By decreasing overall levels of phytoplankton diversity, stochastic

effects are likely to be the main driver of community composition in the Daphnia-containing



64 chapter ii: meta-community dynamics

metacommunities, while deterministic mechanisms, such as resource availability, inter- and

intraspecific competition, and niche differentiation, are more likely to be the main drivers

of phytoplankton community composition in the absence of Daphnia. However, differences

in species composition, such as shifts to inedible phytoplankton taxa in the presence of

Daphnia grazing (Mccauley and Briand, 1979) might be hidden in the species composition,

which was not investigated in this study. Both α- and γ-diversity of the phytoplankton

community increased with dilution treatment, while community dissimilarity (β-diversity)

decreased. The increase in local and regional diversity might be explained by priority

effects (Chase, 2003), where the phytoplankton community was able to establish larger

diversity and occupy empty niches when the initial abundance of bacterial cells was re-

duced. Decreased β-diversity indicates that deterministic processes, such as environmental

properties and niche properties (Chase, 2003), might be important drivers of phytoplankton

community composition when initial abundance of bacterial cells is low, while stochastic

processes might have been the main drivers of phytoplankton community assembly at

higher bacterial densities due to higher competition pressure for nutrients and niche space

with the bacterial community (Cottingham et al., 1997).

While we already know quite a bit about the mechanisms how Daphnia shape phy-

toplankton communities, less is known about the mechanisms how Daphnia predation

shapes bacterial communities. We were able to show that bacterial cell densities, other than

phytoplankton densities, remained fairly constant throughout the experiment (Fig. 3.2A)

and no significant differences between treatments were found at the end of the experiment.

Jürgens and Matz (2002) have shown, that small bacterial cells dominate in the presence of

Daphnia due to reduced densities of phagotrophic protists, such as heterotrophic nanoflag-

ellates (HNF) and ciliates, which feed on bacterial cells. When Daphnia grazing is reduced,

bacterial composition often shifts towards larger morphologies, which are resistant towards

protist grazing. In our study, we also found a clear trend towards smaller bacterial cell

sizes in the presence of Daphnia during the course of the experiment (Fig. 3.2B), which

confirms the notion that small bacterial cells are more likely to be found in the presence

of Daphnia (Jürgens and Matz, 2002). Bacterial densities might remain constant due to a

combination of direct and indirect effects, where the presence of the keystone predator

indirectly releases grazing pressure of protists on the bacterial community. However,

Daphnia also can feed directly on large bacterial cells (Kamjunke and Zehrer, 1999). In the

presence of Daphnia, α- and γ-diversity, as well as phylogenetic diversity, were significantly

reduced. We also found a clear differentiation between metacommunities with and without

Daphnia when comparing UniFrac distances (Fig. 3.5), as well as significant differences
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in community composition of the bacterial community, where some classes showed sig-

nificant differences in abundance between metacommunities with and without Daphnia

predation (e.g. Alphaproteobacteria, Betaproteobacteria and Actinobacteria). Summarizing

bacterial community at the class level masks a lot of variation among bacterial OTUs,

but finding clear patterns even at the class level is a strong evidence that the presence of

Daphnia poses a strong and general shaping force on the bacterial community.

Changes in bacterial community composition might be due to bacterial size and differ-

ences in grazing resistance of bacterial taxa (Pernthaler, 2005), as well as trophic interactions,

which has previously been shown to lead to changes in bacterial size and community

composition (Jürgens and Matz, 2002). Alphaproteobacteria, for example, are known to form

filaments to resist ingestion by HNF (Jürgens et al., 1999), which increases in the absence

of Daphnia, and they were also found to be significantly more abundant in the absence of

Daphnia during our study. Betaproteobacteria, which were significantly more abundant in the

presence of Daphnia, have previously been shown to be negatively affected by HNF grazing

(Salcher et al., 2010). We think that both the presence and the absence of Daphnia lead

to distinctly different food-web structures, where microbial communities are controlled

either through direct and indirect effects of Daphnia, or direct and indirect effects of other

organisms, such as HNF, in the absence of Daphnia, which both lead to distinct bacterial

communities.

Similar as for the phytoplankton community, dilution of the initial bacterial inoculum

decreased dissimilarity in the microbial community, which indicates that the bacterial

community was affected by the initial abundance of bacterial cells, despite showing similar

species richness at the end of the experiment. Species richness, which did not show

significant differences as a result to dilution treatment, was likely not affected by dilution

as metacommunities were open and could receive bacterial cells from the surrounding

environment (e.g. through rain, air and other incoming organisms). Increased similarity

in the diluted metacommunities might stem from priority effects (Alford and Wilbur,

1985), where early arriving bacterial taxa could occupy niches and adapt to the local

conditions more easily. In diluted metacommunities, bacteria were facing less competition

for resources and niche spaces due to lower concentrations of bacterial cells and might

therefore have assembled more stochastically. Undiluted metacommunities, on the other

hand, were more dissimilar from each other, suggesting that stochastic processes were

more important when bacterial densities were higher. Significant shifts several bacterial

taxa as response dilution treatment furthermore indicate that the bacterial community did

show a distinct response to the dilution manipulation.
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One of the novel aspects of our study is the analysis of phylogenetic signal of the bacterial

community in response to Daphnia grazing as well as dilution, where we found a clear

signal of rank change as result of Daphnia presence/absence at both the OTU and the class

level (Fig. 3.7, Table S4). Genetically closely related bacterial OTUs, respectively classes,

are likely to respond to the presence/absence of Daphnia in a similar way due to similar

functional capacities, such as described above for Alphaproteobacteria and Betaproteobacteria.

This indicates that ecological traits, which lead to differences in OTU abundance as

response to the presence or absence of Daphnia, are phylogenetically conserved (Koeppel

and Wu, 2013). Other studies have used phylogenies to explore how species relatedness

can predict responses to environmental change or stress (Helmus et al., 2007). Our results

suggest that bacterial phylogenetic relationships might also help us explore different

mechanisms of community assembly.

The Daphnia manipulation also affected rank-abundance distributions of the bacterial

community (Fig. 3.6). By decreasing diversity of the bacterial community, Daphnia also

changed the dominance structure, leading to fewer but more dominant OTUs, whereas

more rare OTUs could persist in the absence of Daphnia. High grazing pressure of Daphnia

might explain the removal of rare OTUs, which are stochastically removed due decreased

population sizes. Interestingly, Daphnia also affected the average rank distribution of

bacterial OTUs, leading to large rank changes of individual OTUs when their rank was

compared in metacommunities with or without Daphnia. This again indicates that Daphnia

pose strong selection pressure on the microbial community and strongly affects dominance

of individual OTUs. Due to various direct and indirect effects of Daphnia and HNF

grazing, which have been described above, large shifts in bacterial community composition,

especially among the rare OTUs, were observed, while the most abundant OTUs remained

abundant.

Daphnia significantly increased respiration rates of the bacterial community, indicating

higher activity of the bacterial community in the presence of Daphnia and significant

changes in community functions. One explanation for increased respiration in the presence

of Daphnia might changes in community structure of the bacterial community, which might

promote fast-growing bacterial taxa. Betaproteobacteria, for example, which were the most

abundant group of bacteria in all metacommunities and significantly more abundant in

the presence of Daphnia are known to be fast-growing (Simek et al., 2006) and might drive

differences in community respiration. Daphnia, however, did not significantly change

phosphates activity. Phosphatase is an important enzyme to utilize phosphorus, which is

an essential nutrient, and it is therefore likely that this function is carried out by various
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members of the phytoplankton. Previous work has found that such generalized ecosystem

functions are not as sensitive to compositional changes as are enzyme activities driven by

more specialized bacteria (Comte and del Giorgio, 2010).

C O N C L U S I O N

Overall, using a replicated metacommunity mesocosm experiment, we were able to show

that the presence/absence of Daphnia strongly affects bacterial and phytoplankton diversity

as well as bacterial community structure and composition. By using high-throughput

sequencing, we were able to resolve the microbial community in far more detail than

traditional fingerprinting techniques, which allowed us to analyze the bacterial community

composition, dominance structure and phylogenetic structure, which were strongly affected

by Daphnia. Dilution of the bacterial source community had weaker effects on the bacterial

and the phytoplankton community, but increased phytoplankton species richness, which

indicates that priority effects were important drivers of phytoplankton community richness

as phytoplankton could occupy more nice space in the diluted metacommunities.The

Daphnia manipulation significantly affected respiration, which indicates that ecosystem

functioning may be affected by food-web structure and bacterial composition.
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A P P E N D I X

Supplementary Tables

Table S2: Read count summary of the different treatments from the mesocosm experiment

Treatment # Tanks # Metacommunities Mean SE Min Max

D-DIL 12 6 676 52 370 958

D-NDIL 12 6 740 82 292 1220

ND-DIL 12 6 835 92 255 1236

ND-NDIL 12 6 897 87 282 1397

global 48 24 787 41 255 1397

Table S3: p-values of permutation test of the UniFrac distance matrices

Distance matrix Rarefied Daphnia Dilution Interation

unweighted UniFrac x <0.01 0.12 0.10

weighted UniFrac x <0.01 0.24 0.11

unweighted UniFrac <0.01 0.12 0.14

weighted UniFrac <0.01 0.27 0.11

Table S4: Phylogenetic Signal of Daphnia and dilution contrast using the 300 most abundant OTUs

Average K % significant* Average K % significant*

Daphnia (SD) K values dilution (SD) K values

Top 300 OTUs 0.842 (0.018) 83 0.783 (0.019) 3

Top 300 OTUs, Class level 0.838 (0.017) 81 0.786 (0.020) 4

*Significance threshold: 0.05
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A B S T R A C T

Meta-community theory is a usefull concept for investigating species distributions across

space, and a growing number of field and experimental surveys have measured the

effects of dispersal, environmental heterogeneity, grazing, and trophic structure on meta-

community dynamics. However, meta-community theory does not consider how the

movement of organisms interacts with the material fluxes between patches, and this limita-

tion prompted the development of a meta-ecosystem theory. Previous experiments have

measured how ecosystems respond to manipulations of dispersal, but no empirical study

has quantified the importance of material fluxes in relation to the dispersal of organisms.

Using mesocosms, we have manipulated meta-ecosystem dynamics in two ways. First, we

manipulated how resources are distributed across space by creating heterogenous and

homogenous meta-ecosystems, and second, we applied two different dispersal regimes to

test for how responses vary depending on if only material is dispersed, versus if material

and organisms are dispersed. We found that both environmental properties and communi-

ties responded to nutrient loading and dispersal regime, but community responses varied

between trophic groups. The nutrient loading contrasts affected both spatial heterogeneity

and average ecosystem responses. Bacterial richness and community composition were

strongly shaped by dispersal regime, while phytoplankton richness interactively responded

to dispersal and resource loading, and community composition differed strongly with

nutrient loading. The zooplankton community showed only weak responses to the manip-

ulations, but individual taxa were affected by both resource heterogeneity, dispersal, and

their interaction. In addition, nutrient identity had strong effects on community composi-

tion at all trophic levels. Overall, we could show that meta-ecosystem dynamics, i.e. the

flux of both organisms, and materials within spatially structured landscapes, are important

for understanding both for ecosystems and community responses to environmental change.
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I N T R O D U C T I O N

Ecologists have progressively developed conceptual models of spatial community dynamics

in response to the growing recognition that local communities can be strongly influenced

by surrounding communities and environments at various spatial scales. Research on

meta-population dynamics initially focussed on the distribution of the populations of

individual species across space (Hanski and Gilpin, 1991). A decate later, meta-community

theory was developed to include the spatial dynamics of multiple populations and entire

communities. Both concepts exclusively focus on populations and communities that are

connected via dispersal of organisms (Leibold et al., 2004) and do not include the spatial

flow of energy and non-living organic matter that can also affect community structure

and ecosystem functioning. Around the same time, the field of landscape ecology began

focussing on how the flow of material between ecosystem patches might affect ecosystem

functioning in general, and biogeochemical cycles driven particularly by organisms at low

trophic levels (Massol et al., 2011). Recently, these two perspectives have been merged

into meta-ecosystem theory (Loreau et al., 2002; Gravel et al., 2010a), which integrates

the flow of material into meta-community theory so as to investigate how dispersing

organisms and spatial fluxes of any material might interactively affect community and

ecosystem dynamics. Such fluxes can include the movement of nutrients between patches

either through inorganic material (direct flow) or through organic material stored in living

organisms and detritus (indirect flow) (Gravel et al., 2010a), and can affect community

structure both in the source and sink habitat.

Since the onset of meta-community theory, the spatial scale of environmental hetero-

geneity has been a central concept for understanding the diversity and functioning of

ecosystems. Species diversity, for example, can be strongly influenced by variation in

nutrient availability among sites, whereas the form of the relationship can depend on the

spatial scale (Chase and Leibold, 2002). At the local scale species richness often peaks

at intermediate productivity, while at the regional scale richness increases linearly with

productivity, because productivity tends to increase community dissimilarity among local

sites. The importance of spatial scale and ecosystem size becomes increasingly important

when quantifying the diversity of multiple groups of organisms, as spatial scaling of

species richness varies among species of different body size, dispersal mode, and trophic

level (Logue et al., 2011a; Reche et al., 2005). Species sorting, either along environmental

gradients, or among heterogeneous patches is commonly considered to be an important

structuring force in meta-communities (Cottenie, 2005), but likely varies among commu-

nities with different amounts of niche variation among species. For example, Soininen
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(2014) recently found that the degree of species sorting varies between trophic groups

and ecosystem types, with the importance of species sorting being lower for freshwater

and terrestrial communities, as compared to estuaries and marine sites. Heterogenous

environments can clearly promote species sorting and contribute to regional (γ) diversity

within communities so long as species vary in their niches (Ricklefs, 1977; Grubb, 1977;

Chesson and Warner, 1981; Ai et al., 2013). Environmental heterogeneity can also increase

or decrease community dissimilarity (β-diversity), depending on the relative importance

of stochastic versus deterministic factors that drive local diversity (Chase and Myers, 2011).

By impacting the structure of biodiversity at multiple trophic levels in meta-communities,

environmental heterogeneity likely plays a key role in the dynamics of meta-ecosystems

(Langenheder et al., 2010; Bulling et al., 2008; Cardinale et al., 2000).

Understanding why and how species from multiple trophic levels coexist in meta-

ecosystems is a fundamental issue in ecology. A previous comparative study of plankton

diversity among lakes suggests that different trophic groups of aquatic organisms (bacteria,

phytoplankton, and zooplankton) are regulated independently by different environmental

gradients (Longmuir et al., 2007), meaning that heterogeneity in a meta-ecosystem might

have contrasting effects on different organismal groups. For example, Longmuir et al.

(2007) found that zooplankton richness was negatively correlated with elevation and total

organic carbon, while phytoplankton and bacteria richness were positively correlated with

water transparency (measured as light extinction and secchi depth). The observed lack of

relationship between richness across trophic levels suggest weak trophic control over the

mechanisms that maintain biodiversity in these systems (Longmuir et al., 2007), however

this has yet to be tested experimentally. Organisms at different trophic levels might also

differ in their dispersal capacities among sites within a meta-ecosystem, which might

change the relative importance of space and environmental differences for structuring

the diversity of local patches (Beisner et al., 2006; De Bie et al., 2012). Larger organisms,

for example, are much more likely to be dispersal limited and exhibit meta-community

dynamics than are smaller species (Beisner et al., 2006). Dispersal limitation of equally

sized organisms is also lower for organisms which possess the ability to fly as compared

to passive dispersers (De Bie et al., 2012). Larger species, as well as those with resting

stages, may move more or less independently from fluxes of organic materials among

meta-ecosystem sites. Such variation in dispersal capacities among species and trophic

groups is likely to be important for both diversity and ecosystem dynamics. A recent meta-

community study by Declerck et al. (2012) has found that even small amounts of dispersal

can significantly reduce β-diversity of zooplankton, bacteria and viruses, irrespective of
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nutrient heterogeneity. A different study of bacterial lake communities, however, has

found strong positive correlations of heterogeneity on bacterial abundance, richness, and

community similarity (Jankowski et al., 2014). To elucidate the relative roles of both

environmental heterogeneity and dispersal in structuring the spatial variation of diversity

across trophic levels in meta-ecosystems, more research and empirical studies are needed.

Here, we present the results from an experimental study testing the joint influence of

dispersal and nutrient heterogeneity on community structure of three different trophic

levels (zooplankton, phytoplankton and bacteria). We conducted a mesocosms experiment

in which we established meta-ecosystems (three patches of 300L each) that were either

homogeneous or heterogeneous in nutrient conditions among patches, while keeping the

total loading of nutrients added to each meta-ecosystem equal. The nutrient heterogeneity

treatment was crossed with two different dispersal regimes, to test the importance of the

flow of energy within meta-ecosystems relative to the flow of organisms and energy. In one

case we dispersed the living organisms, while in the other case we killed the organisms

prior to dispersal in order to disperse only the organic and inorganic material within the

water. To our knowledge, no experimental tests of have yet been conducted to test for

the importance of these two processes for meta-ecosystem dynamics. We hypothesized

that heterogeneous environments would contain a larger variety of niche spaces and thus

lead to higher species richness due to species sorting. Furthermore, we expected that

species sorting would vary among species at different trophic levels, with richness of

largest organisms (zooplankton) being the least strongly affected by resource heterogeneity.

We also hypothesized that the dispersal of live versus dead organisms would alter both

richness and composition of the local meta-ecosystem sites. One possible outcome is that

killing the migrants would not allow species to disperse among local sites, and this might

limit opportunities for species sorting and reduce overall diversity and potentially inhibit

the development of β-diversity over time. Another possible outcome is that pulses of

organic matter (and organisms) from outside the local sites could introduce new resources

that would promote local diversity, leading to increases in both α- and γ-diversity. We also

anticipated that the strength of such effects would vary with trophic position, as groups of

organisms vary in their dispersal limitation, their niche variation among species, and their

likelihood to be affected by interactions among trophic levels.
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M AT E R I A L S A N D M E T H O D S

Experimental design and setup

Using a mesocosm design (n=60), we studied the interactive effects of nutrient heterogeneity

and dispersal regime within a meta-ecosystem. We created a 2x2 factorial block design

(Fig. 4.1) by crossing two different nutrient loading regimes (homogenous (Ho) and

heterogeneous (He) nutrient loading) with two different dispersal regimes (alive (A) and

dead (D) dispersal). Different dispersal regimes were established in order to investigate

how the dispersal of organic material and live organisms, in contrast to the dispersal

of just organic material, affects community and ecosystem properties. The different

nutrient loading regimes were established to create differences in niche spaces among

patches within meta-ecosystems. Each meta-ecosystem replicate consisted of three 300L

tanks (mesocosms), which were connected by bi-weekly manual dispersal. In total, the

experiment thus consisted of 20 meta-ecosystems, divided into four different treatment

combinations (5 replicate blocks): 1: alive dispersal and heterogeneous nutrient loading

(A-He), 2: alive dispersal and homogenous nutrient loading (A-Ho), 3: dead dispersal and

heterogenous nutrient loading, and 4: dead dispersal and homogenous nutrient loading

(D-Ho). The mesocosm experiment ran for 20 weeks (May - September 2012) at the aquatic

research institute Eawag in Kastanienbaum (Switzerland). Mesocosm were initially filled

with unfiltered water from the nearby lake Lucerne.

The different nutrient conditions were established through bi-weekly additions of phos-

phorus (P), nitrogen (N) and dissolved organic carbon (DOC). Within homogenous meta-

ecosystems, each mesocosm received the same amounts of P, N, and DOC, while in

heterogeneous meta-ecosystems, we established a high nutrient (HN), a low nutrient (L),

as well as a DOC mesocosm (Table 4.1, Fig. 4.1). The HN mesocosms received ten times as

much N and P as both the L and the DOC mesocosms. The DOC mesocosms additionally

received higher quantities of DOC leachate compared to the other tanks. While the loading

of DOC also increased the loading of P and N (Table 4.1, average loadings were equal for

all meta-ecosystems. DOC leachate was produced by soaking standard garden turf for

several weeks and then filtering the leachate through a coarse net to remove large particles

prior to the addition to the mesocosms. In sum, the homogeneous mesocosms received

the same amount of nutrients and DOC as the three heterogeneous mesocosms, but here

the amounts were split equally between tanks. To initiate the different nutrient conditions,

each mesocosm received twice as much nutrients and DOC as added during the bi-weekly

additions.

To establish different dispersal regimes, equal quantities of water (1L) were sampled every
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second week from each tank within a meta-ecosystem (prior to the nutrient additions),

mixed, and then re-distributed to in equal amounts (300mL) to each mesocosm. To kill

the organisms within the dispersed water of the dead dispersal treatment, we autoclaved

the water before re-distributing it between tanks. All tanks additionally received equal

quantities of phytoplankton and zooplankton from lake Alpnach and lake Rot prior to the

start of the experiment.
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Figure 4.1: Experimental Design. Design of the mesocosm experiment, showing the two nutrient loading regimes
(heterogeneous and homogenous), the two dispersal regimes (alive and dead dispersal), as well as coding for
the different treatments and contrasts.

Mesocosm sampling

Over the course of the 20 week experiment, various biological, physical, chemical and

ecosystem functioning parameters have been sampled and measured on a regular basis

(Table 4.2). We performed ten bi-weekly samplings of algal biomass (Chlorophyll a),

dissolved organic carbon (DOC) concentration and composition, as well as bacterial cell

densities and cell size distributions. As our main interest was to investigate how the dif-

ferent treatments affected the bacterial, phytoplankton and zooplankton community after

several weeks of nutrient additions and dispersal, we sampled these three communities,

and measured several other parameters at the end of the experiment (sampling week 19,

Table 4.2). The bacterial community was sampled by filtering mesocosm water onto 0.2µm

polyethersulfone filters (Supor 200 Membrane Disc Filters), which were instantly frozen
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in liquid nitrogen and preserved at -80
◦C until further processing. Phytoplankton was

sampled by sampling mesocosm water from the water column and preserved with Lugol’s

solution. Integrated zooplankton samples were taken from the water column, filtered

through a 30 µm net, and stored frozen prior to analysis.

Table 4.2: Sampling schedule of the mesocosm experiment.

sampling week

Metrics Parameter Abbreviation 1 3 5 7 9 11 13 15 17 19

Biological Chlorophyll a (water) Chla x x x x x x x x x x
Chlorophyll a (Periphyton) Chla P x x x
Microbial density BaN x x x x x x x x x x
Microbial cell size distribution BactBig/BactSmall x x x x x x x x x x

Physical/ DOC concentration DOC x x x x x x x x x x
Chemical DOC spectral slope DOCaS x x x x x x x x x x

DOC absorption a320 DOCa320 x x x x x x x x x x
Phosphate PO4 x x x
Nitrogen NO3.NO2 x
Water temperature WaterTemp x x x x
Dissolved oxygen DO x x x
Sedimentation rate Sedim. x x x
pH pH x x
Conductivity Cond x x
PAR light extinction PAR x

Ecosystem Respiration (16
◦C) Resp16 x x x

Functions Primary productivity GPP, NPP, Resp x x x

Biodiversity Bacterial community Bact x
Phytoplankton community Phyto x
Zooplankton community Zoop x

Sample processing

Chlorophyll a (Chl-a) concentrations from the water column were determined chromato-

graphically on a high performance liquid chromatograph (HPLC) from GF/F (Whatman)

filtered water. For measuring the chlorophyll concentration of the periphyton community,

we hung plastic strips into the tanks at the beginning of the experiment and cut a 50cm2

after several weeks (see Table 4.2). Chlorophyll was extracted from the plastic strips using

90% ethanol and measured in the same way as the for the water samples. The filtrate from

the chlorophyll filtrations was acidified and stored at 4
◦C for measuring DOC concen-

tration on a Shimadzu TOC-V CPH, for recording a DOC absorption spectrum over the

wavelengths of 190 to 800 nm spectrophotometrically, and for measuring the concentrations

of phosphate (PO4) and nitrogen (the sum of NO3 and NO4). To determine bacterial cell

densities and cell size distributions flowcytometrically, 40 mL of tank water were fixed

with a filter-sterilized solution of paraformaldehyde and glutaraldehyde (0.01% and 0.1%
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final concentrations, pH 7; Nizzetto et al., 2012) and stored at 4
◦C until measurements

were carried out on a BD AccuriTM C6 Flowcytometer.

Conductivity, pH, temperature and conductivity were measured in situ at approximately

0.5 m water depth using portable water sensors. We estimated primary productivity be

measuring the O2 concentrations in each tank three times over the course of 24 hours

(morning - evening - morning) and calculated gross and net primary productivity (GPP,

NPP) and respiration (Resp) at the whole ecosystem level. We also measured respiration

rates (Resp16) at controlled temperature conditions were additionally assessed in the lab

using custom-build temperature controlled glass vials at 16
◦C and fiber-optic oxygen

mini-sensors (FIBOX 3, PreSens). O2 concentrations were measured every 30 seconds over

the course of six hours and O2 uptake rates were calculated per hour. We measured the

sedimentation rate by hanging a 50mL Falcon tube into each tank and weighing the dried,

deposited material after several weeks (see Table 4.2).

The bacterial community composition was analyzed using Illumina sequencing. DNA

was extracted by enzymatic digestion and cetyltrimethyl ammonium bromide (CTAB)

extraction using a modified protocol from Llirós et al. (2008). Ilumina sequencing and

sequence analysis was performed as described previously (Chapter I). We have used the

V3 region of the 16S rRNA for the analysis of bacterial diversity. Phytoplankton and

zooplankton abundances were determined manually by stereo microscopy at the genus

level. Phytoplankton taxa that occurred in less than three tanks were removed. The

zooplankton community was divided into macro- and micro-zooplankton for statistical

analysis, where the micro-zooplankton fraction consisted of rotifer species only.

Data analysis

All data was analyzed using the statistical software R (R Development Core Team, 2014).

The sequencing data of the bacterial communities was analyzed using the bioinformatics

pipeline QIIME (Kuczynski et al., 2011) prior to analyses in R, as described in (Chapter I).

Sequences were clustered at a sequence similarity threshold of 97%, bacterial communities

were rarefied to 325 OTUs (Operational Taxonomic Units) per mesocosm due to large

variations in read counts. When meta-ecosystems parameters were analyzed, mesocosm

were aggregated by meta-ecosystem using OTU sums.

Profile analysis (Fidell and Tabachnick, 2006) of the time-series data was performed for the

meta-ecosystem mean and standard deviation of Chl-a concentrations, for various mea-

sures of DOC, bacterial abundance, and bacterial size distribution. All of these parameters

were measured at each sampling point during the course of the experiment. The analysis
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was conducted on the four cross-treatments (Treatment), as well as for the dispersal and

the nutrient contrasts (Disp and NutrL).

We estimated the effect size by quantifying log response rations (LRR) of the nutrient (N)

and dispersal manipulation (D), as well as their interaction (NxD) of the environmental

data as well as the species abundance data using:

LRRN=(ln YD-Ho + ln YA-Ho)-(ln YD-He + ln YA-He)

LRRD=(ln YD-He + ln YD-Ho)-(ln YA-He + ln YA-Ho)

LRRNxD=(ln YD-Ho + ln YA-He)-(ln YA-Ho + ln YD-He)

where Y is the mean response value among metacommunities. The significance of the

effects for the mean and coefficient of variation of the environmental data was tested using

linear mixed effect models with block as a random factor. The species abundance data was

log-transformed prior to LRR calculation, and significance of the effect sizes was tested

using either linear mixed effect models.

As a measure of local and regional species diversity, we calculated average α- and γ-

diversity for each meta-ecosystem. Average α-diversity (richness) was calculated as the

number of unique taxa/ OTUs for each mesocosm and then averaged across metacommuni-

ties, and γ-diversity as the number of unique taxa/ OTUs within each meta-ecosystem. We

calculated average jaccard dissimilarity for each meta-ecosystem on the presence-absence

data as a measure of β-diversity. As for the environmental data, we used linear mixed

effect model statistics with block as a random factor to identity if the diversity indices

were significantly affected by dispersal contrast, nutrient contrast, and the interaction of

dispersal and nutrient regime. The species composition of bacteria, phytoplankton, and

the two zooplankton communities was furthermore analyzed for treatment effects using

distance based redundancy analysis (db-RDA) of both hellinger-transformed abundance

and presence-absence data and run with random block effect. P-values were calculated for

the model attributes using 10000 random permutations. The first two axes of the db-RDA

have been plotted to visualize relationships between metacommunities.
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R E S U LT S

Ecosystem dynamics through time

Even though all replicated meta-ecosystems received identical total amounts of both nutri-

ents and DOC over the course of the 20 weeks experiment (Table 4.2), mean environmental

parameters and spatial variability differed among our treatments. Over time, chlorophyll a

(Chl-a) and DOC properties, as well as bacterial densities and the distribution of bacterial

size classes, responded in different ways to both the spatial distribution of nutrient loading

and the nature of dispersal (Fig. 4.2+4.3).

Meta-ecosystems with dispersal of living organisms had significantly higher levels of Chl-a

(Fig. 4.2A, Table 4.3) and different temporal dynamics in the spatial variability of both

Chl-a and DOC (Fig. 4.3A+C) among sites compared with meta-ecosystems receiving the

dead dispersal treatment). Meta-ecosystems with different loading regimes had similar

levels of Chl-a, but heterogeneous meta-ecosystems had significantly lower mean levels

and different temporal dynamics of both DOC (Fig. 4.2D) and bacterial densities (Fig.

4.2F). The nutrient heterogeneity treatment also increased the variability of both DOC and

Chl-a among meta-ecosystem sites, but the effect was much larger for DOC (Fig. 4.3B+D).

Table 4.3: Profile analysis results.

Mean Coefficient of variation

Levels Parallelism Levels Parallelism
Test Comparison (Treatment) (Time x Treatment) (Treatment) (Time x Treatment)

Chl-a Treatment F3,16 5.20 (0.01) F
3,16

0.14 (0.64) F
3,16

1.88 (0.17) F3,16 0.01 (<0.01)
Disp F1,18 10.85 (<0.01) F

1,18
0.38 (0.19) F

1,18
0.55 (0.47) F1,18 0.07 (<0.01)

NutrL F
1,18

1.26 (0.28) F
1,18

0.48 (0.38) F1,18 5.02 (0.04) F
1,18

0.30 (0.07)

DOC Treatment F3,16 11.16 (<0.01) F3,16 0.03 (0.04) F3,16 53.89 (<0.01) F
3,16

0.07 (0.24)
Disp F

1,18
3.48 (0.08) F

1,18
0.62 (0.70) F

1,18
0.00 (0.96) F1,18 0.27 (0.05)

NutrL F1,18 18.83 (<0.01) F1,18 0.22 (0.02) F1,18 163.51 (<0.01) F
1,18

0.36 (0.15)

DOCaS Treatment F3,16 4.02 (0.03) F3,16 0.01 (<0.01) F3,16 23.34 (<0.01) F
3,16

0.08 (0.30)
Disp F

1,18
0.33 (0.57) F

1,18
0.32 (0.10) F

1,18
0.11 (0.74) F

1,18
0.63 (0.74)

NutrL F1,18 12.59 (<0.01) F1,18 0.22 (0.02) F1,18 75.57 (<0.01) F
1,18

0.34 (0.12)

DOCa320 Treatment F3,16 5.00 (0.01) F
3,16

0.12 (0.53) F3,16 102.81 (<0.01) F3,16 0.01 (<0.01)
Disp F

1,18
1.05 (0.32) F

1,18
0.60 (0.68) F

1,18
0.00 (0.96) F

1,18
0.60 (0.68)

NutrL F1,18 13.27 (<0.01) F
1,18

0.56 (0.56) F1,18 342.39 (<0.01) F1,18 0.10 (<0.01)

BaN Treatment F3,16 5.84 (<0.01) F
3,16

0.07 (0.09) F
3,16

1.95 (0.16) F
3,16

0.12 (0.32)
Disp F

1,18
3.13 (0.09) F

1,18
0.67 (0.71) F

1,18
3.11 (0.09) F

1,18
0.66 (0.68)

NutrL F1,18 10.35 (<0.01) F1,18 0.25 (0.02) F
1,18

0.93 (0.35) F
1,18

0.35 (0.08)

BactSmall Treatment F
3,16

1.79 (0.19) F3,16 0.05 (0.04) F
3,16

1.73 (0.20) F
3,16

0.27 (0.87)
Disp F

1,18
1.50 (0.24) F

1,18
0.66 (0.68) F

1,18
0.64 (0.43) F

1,18
0.78 (0.90)

NutrL F
1,18

3.59 (0.07) F1,18 0.23 (0.01) F
1,18

3.88 (0.06) F
1,18

0.47 (0.25)
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Ecosystem properties at the end of the experiment

Dispersal and nutrient loading regimes had significant effects on both the meta-ecosystem

mean and the spatial variability (coefficient of variation) of various environmental pa-

rameters at the end of the experiment (Table 4.4, Fig. 4.4). For example, Chl-a was both

more abundant (Fig. 4.4A) and more variable (Fig. 4.4B) in meta-ecosystems with live

dispersal. Heterogenous nutrient loading led to increased mean nitrogen, conductivity,

and the proportion of large bacteria, whereas homogenous nutrient loading resulted in

higher mean pH and DOC concentrations. The heterogenous nutrient treatment increased

the spatial variability of pH, sedimentation, DOC properties (DOC concentration and

absorption in the UV range (DOCa320)), and of ecosystem functioning (respiration, GPP,

and NPP). Interestingly, the spectral slope of DOC absorption (DOCaS) was affected by

the interaction of nutrient loading and dispersal (Fig. 4.4A), suggesting that a key resource

for bacterial growth, i.e. DOC, was modified by treatment combinations.

Table 4.4: Summary of ANOVA results from the last sampling (week 19) of the meta-ecosystem experiment.
F and p results for the effect of dispersal, nutrient loading, and interactive effects. Significant values are
highlighted wild bold letters.

Mean Coefficient of variation

Parameter Disp NutrL Interaction Disp NutrL Interaction

DOC 3.90 (0.07) 7.39 (0.02) 0.91 (0.36) 0.19 (0.67) 55.18 (<0.01) 0.01 (0.94)
DOCaS 4.44 (0.06) 2.96 (0.11) 7.94 (0.02) 1.79 (0.21) 1.17 (0.30) 1.56 (0.24)
DOCa320 0.47 (0.51) 2.21 (0.16) 0.08 (0.78) 0.31 (0.59) 50.24 (<0.01) 0.00 (0.99)
Chla 9.87 (0.01) 0.36 (0.56) 0.91 (0.36) 19.54 (<0.01) 1.77 (0.21) 0.02 (0.89)
Chla P 0.06 (0.82) 3.89 (0.07) 0.02 (0.89) 0.58 (0.46) 0.15 (0.70) 0.55 (0.47)
BaN 2.69 (0.13) 3.69 (0.08) 0.21 (0.66) 0.16 (0.70) 3.04 (0.11) 3.67 (0.08)
BactSmall 3.80 (0.08) 5.97 (0.03) 0.00 (0.97) 0.01 (0.94) 0.86 (0.37) 0.64 (0.44)
PO4 1.81 (0.20) 0.81 (0.39) 0.04 (0.85) 1.80 (0.20) 4.17 (0.06) 0.89 (0.36)
NO3.NO2 2.46 (0.14) 14.35 (<0.01) 0.05 (0.83) 0.04 (0.84) 0.18 (0.68) 0.33 (0.58)
GPP 1.80 (0.21) 0.84 (0.38) 0.00 (0.98) 0.22 (0.64) 12.14 (<0.01) 2.39 (0.15)
NPP 1.94 (0.19) 0.67 (0.43) 0.00 (0.96) 0.00 (0.99) 6.63 (0.02) 2.22 (0.16)
Resp 1.45 (0.25) 0.92 (0.36) 0.01 (0.92) 0.52 (0.48) 7.12 (0.02) 1.49 (0.25)
Resp16 1.11 (0.31) 0.12 (0.74) 0.43 (0.84) 0.38 (0.55) 1.05 (0.33) 0.07 (0.80)
Sedim. 0.42 (0.53) 0.07 (0.80) 0.06 (0.81) 0.25 (0.63) 9.22 (0.01) 0.34 (0.57)
PAR 0.05 (0.82) 0.29 (0.60) 0.26 (0.62) 0.03 (0.86) 4.33 (0.06) 0.29 (0.60)
pH 0.01 (0.94) 5.93 (0.03) 0.13 (0.73) 0.29 (0.60) 5.08 (0.04) 1.80 (0.20)
Cond 1.02 (0.33) 15.89 (<0.01) 0.03 (0.86) 0.66 (0.43) 0.27 (0.61) 0.40 (0.54)
WaterTemp 1.56 (0.24) 0.01 (0.92) 1.13 (0.31) 0.12 (0.73) 0.18 (0.68) 0.01 (0.92)
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Figure 4.4: Effect size (log response rations LRR) and corresponding linear mixed effect results of the envi-
ronmental parameters. Environmental parameters with significant LME statistics displayed by colored,
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Diversity and community composition

The spatial structure of biodiversity was affected by dispersal, nutrient loading, and

their interaction, but responses varied among trophic groups (Table 4.5, Fig. 4.5), with

greatest observed effects on small organisms (bacteria and phytoplankton). Both average

α- and γ-diversity of the bacterial community were higher in meta-ecosystems which

received the dispersal of live organisms (Fig. 4.5A+E), but mean community dissimilarity

(β-diversity) did not differ significantly among treatments (Fig. 4.5I). Phytoplankton γ-

diversity and β-diversity were significantly higher in meta-ecosystems with heterogenous

sites and live dispersal (Fig. 4.5F), and both average α-diversity was interactively affected

by nutrient loading and dispersal regime (Fig. 4.5B). Phytoplankton communities were

most dissimilar in homogenous tanks with live dispersal and in heterogenous tanks with

dead dispersal (Fig. 4.5J). Differences in α-diversity between dead and alive dispersal, as

well as the nutrient addition contrasts, were particularly pronounced for heterogenous

meta-ecosystems (Fig. S1, Table S1). Average α- and γ-diversity of both rotifer (micro-

zooplankton) and macro-zooplankton communities were not affected by dispersal and

nutrient loadings (Fig. 4.5C,D,G,H), but rotifer β-diversity was interactively affected by

the treatment combinations with communities being most similar in homogenous meta-

ecosystems receiving the alive dispersal treatment (Fig. 4.5L).
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Treatments had strong effects on the community composition of bacteria and phytoplank-

ton (Table 4.6, Fig. 4.6, Fig. S2). The bacterial community composition was significantly

affected by dispersal and nutrient loading regimes when comparing species identities,

based on db-RDA (presence/absence data, Fig. 4.6A), and by nutrient loading when

comparing species abundances (Fig.S2A). Nutrient loading had significant effects on

the community composition of the phytoplankton community based on species identi-

ties (Fig. 4.6B). The community composition of zooplankton taxa from both size classes

(macro- and micro-zooplankton) was not significantly different among meta-ecosystems

(Fig. 4.6C+D, Fig. S2C+D). Nutrient identity, i.e. resource loading regime (HN, L, DOC,

Homo), significantly affected the community composition at all trophic levels (Table 4.7,

Fig. 4.7, Fig. S3).

Table 4.5: Summary of ANOVA results from the last sampling (week 19) of the meta-ecosystem experiment. F
and p results for the effect of dispersal (Disp), nutrient loading (NutrL), and interactive effects (Interaction).
Significant values are highlighted wild bold letters.

F and p values of ANOVA analysis

Metrics Parameter Disp NutrL Interaction

Bacteria α-diversity 8.07 (0.01) 0.31 (0.59) 1.27 (0.28)
γ-diversity 7.54 (0.02) 0.61 (0.45) 0.62 (0.45)
β-diversity (Presence/Absence) 0.31 (0.59) 2.74 (0.12) 1.65 (0.22)
β-diversity (Abundance) 3.36 (0.09) 2.62 (0.13) 0.55 (0.47)

Phytoplankton α-diversity 12.45 (<0.01) 14.82 (<0.01) 5.15 (0.04)
γ-diversity 6.77 (0.02) 13.44 (<0.01) 2.02 (0.18)
β-diversity (Presence/Absence) 6.12 (0.03) 2.56 (0.14) 8.43 (0.01)
β-diversity (Abundance) 0.17 (0.69) 0.19 (0.67) 7.05 (0.02)

Macro-Zooplankton α-diversity 0.07 (0.80) 0.00 (1.00) 0.41 (0.54)
γ-diversity 0.05 (0.83) 0.43 (0.53) 0.21 (0.65)
β-diversity (Presence/Absence) 0.61 (0.45) 2.77 (0.12) 0.01 (0.92)
β-diversity (Abundance) 2.44 (0.14) 2.45 (0.14) 3.30 (0.09)

Micro-Zooplankton α-diversity 1.88 (0.20) 0.26 (0.62) 0.30 (0.60)
(Rotifers) γ-diversity 2.89 (0.11) 2.89 (0.11) 1.79 (0.21)

β-diversity (Presence/Absence) 0.00 (0.99) 5.52 (0.04) 1.85 (0.20)
β-diversity (Abundance) 0.03 (0.86) 1.54 (0.24) 0.08 (0.79)
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Figure 4.6: db-RDA of Dispersal x Nutrient Loading using presence-absence (showing the first two axes). A:
Bacterial community, B: Phytoplankton, C: Macro-Zooplankton, D: Micro-Zooplankton (Rotifers).

Table 4.6: Results of db-RDA: Dispersal (Disp) x Nutrient Loading (NutrL).

Test Comparison Abundance Presence-Absence

Bacteria Disp F1,12 1.14 (0.07) F1,12 1.08 (0.05)
NutrL F1,12 1.75 (<0.01) F1,12 1.26 (<0.01)
Disp:NutrL F1,12 0.96 (0.60) F1,12 0.98 (0.70)

Phytoplankton Disp F1,12 1.47 (0.15) F1,12 1.33 (0.19)
NutrL F1,12 1.23 (0.25) F1,12 2.54 (0.01)
Disp:NutrL F1,12 0.89 (0.52) F1,12 0.55 (0.91)

Macro-Zooplankton Disp F1,12 1.39 (0.18) F1,12 1.14 (0.33)
NutrL F1,12 0.83 (0.59) F1,12 0.73 (0.69)
Disp:NutrL F1,12 1.55 (0.12) F1,12 1.34 (0.21)

Micro-Zooplankton Disp F1,12 0.54 (0.83) F1,12 0.57 (0.84)
(Rotifers) NutrL F1,12 0.78 (0.59) F1,12 1.19 (0.29)

Disp:NutrL F1,12 2.12 (0.06) F1,12 1.78 (0.08)
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Figure 4.7: db-RDA of Dispersal x Nutrient identity (NutrID) using presence-absence data (showing the first
two axes). A: Bacterial community, B: Phytoplankton, C: Macro-Zooplankton, D: Micro-Zooplankton
(Rotifers).

Table 4.7: Results of db-RDA: Dispersal (Disp) x Nutrient identity (NutrID).

Test Comparison Abundance Presence-Absence

Bacteria Disp F
1,28

1.12 (0.17) F
1,28

1.05 (0.17)
NutrID F3,28 2.73 (<0.01) F3,28 1.64 (<0.01)
Disp:NutrID F

3,28
0.99 (0.48) F

3,28
0.99 (0.59)

Phytoplankton Disp F
1,28

1.38 (0.12) F1,28 1.77 (0.02)
NutrID F3,28 2.23 (<0.01) F3,28 2.52 (<0.01)
Disp:NutrID F

3,28
1.00 (0.45) F

3,28
0.77 (0.90)

Macro-Zooplankton Disp F1,28 2.31 (0.01) F
1,28

1.37 (0.16)
NutrID F3,28 1.90 (<0.01) F3,28 2.41 (<0.01)
Disp:NutrID F

3,28
1.13 (0.24) F

3,28
1.05 (0.39)

Micro-Zooplankton Disp F
1,28

0.74 (0.71) F
1,28

0.93 (0.52)
(Rotifers) NutrID F3,28 2.13 (<0.01) F

3,28
1.02 (0.44)

Disp:NutrID F
3,28

1.26 (0.15) F
3,28

1.25 (0.16)
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Taxon and OTU specific responses

Nutrient loading and dispersal regime both had significant effects on the abundances

of individual taxa, respectively bacterial OTUs (Fig. 4.8). Of the 100 most abundant

OTUs, 22 OTUs were significantly affected by either nutrient loading, dispersal, or both,

as determined by linear mixed effect models (Fig. 4.8A). We found some clear patterns

in the distribution of bacterial taxa with resource loading and dispersal regime. OTUs

which were significantly more abundant in heterogeneous meta-ecosystems all belonged

to the Betaproteobacteria class, which covered half of the significant OTUs (11 out of 22).

OTUs which were associated with homogeneous meta-ecosystems included Flavobaceria,

Saprospirae, Chloroplasts, Verrucomicrobiae and Opitutae. Alphaproteobacteria were significantly

affected by dispersal regime. By determining the average meta-ecosystem rank of the

Top100 OTUs (Fig. 4.9), we also found that L and DOC communities, which were both

low nutrient tanks, were more similar to each other compared to the HN and Homo

communities, as large rank changes were observed between L/DOC and HN/Homo, but

not between L and DOC mesocosms. The low nutrient bacterial communities, as well as

HN and Homo communities were also more similar at the bacterial class level (Fig. S5). For

example, Betaproteobacteria were more abundant in the low nutrient tanks and covered over

60% of all bacterial OTUs, whereas bacterial classes were more evenly distributed across

the HN and Homo tanks. The abundance of several phytoplankton taxa was affected by

nutrient loading and dispersal regime (Fig. 4.8B). Nutrient loading affected the abundance

of Ankyra and Oocystis, whereas Ankyra was more abundant in homogenous and Oocystis

in heterogeneous meta-ecosystems. Kirchnerriella showed higher abundances in alive dis-

persal meta-ecosystems, and Mougeotia, Scenedesmus, Elakatothrix, Tetraedon, and Coelastrum

were more abundant in heterogenous systems receiving the alive dispersal. Zooplankton

taxa were also affected by dispersal and nutrient loading, but the pattern was less clear

compared to the bacterial and phytoplankton community (Fig. 4.8C). Chironomids were

found more frequently in heterogenous meta-ecosystems, while Scapholeberis sp. was more

abundant in meta-ecosystems with dead dispersal. Daphnia was affected by both dispersal

and nutrient loading, being more abundant in homogenous systems receiving the dead

dispersal treatment. Alona sp., Polyarthra and Cyclopoids were all affected by an interaction

of the two treatment regimes. All of these three were more abundant in meta-ecosystems

with alive dispersal, whereas Cyclopoids were more abundant in homogenous mesocosms,

and Alona sp. and Polyarthra in heterogenous mesocosms.
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Figure 4.8: Effect size (log response rations LRR) and corresponding linear mixed effect results of individual
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effect, black dot: significant interaction. A: Bacterial community (100 most abundant OTUs). Numbers
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community



90 chapter iii : meta-ecosystem dynamics

0
20

40
60

80

L DOC HN Homo

A
ve

ra
ge

 r
an

k

Nutrient identity (NutrID)

Figure 4.9: Rank-change of the 100 most abundant OTUs between different nutrient identities. Low ranks
indicate hight abundances, high ranks low abundances.

D I S C U S S I O N

Meta-ecosystem theory is an important extension of meta-community theory and, through

the integration of material fluxes between patches, might lead to a better understanding

of the spatial structure of ecosystems and organisms. Classical meta-community theory

has already investigated the spatial structure of community dynamics in response to

environmental heterogeneity (Declerck et al., 2012), grazing (Berga et al., 2014) or trophic

structure (De Bie et al., 2012; Verreydt et al., 2012). In our mesocosm experiment, we

additionally investigated the importance of meta-ecosystem fluxes in spatially structured

environments, by dispersing either live organisms or killing the organisms prior to dis-

persal. We found that not only the fluxes of nutrients and organic material, but also the

dispersal of organisms shaped community and environmental responses. The responses

varied depending on environmental heterogeneity and trophic position of the dispersing

organisms. Dispersal affected bacterial and phytoplankton diversity and community com-

position, while heterogeneity affected phytoplankton diversity and the composition of both

of these communities. Although zooplankton diversity and community composition did

not respond significantly to the two treatments, individual species were more commonly

affiliated with certain treatment combinations.

Environmental responses

Our results suggest that the spatial structure of nutrient loading in meta-ecosystems can

dramatically affect both the temporal dynamics (Fig. 4.2) and spatial variability of envi-
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ronmental conditions (Fig. 4.3+4.4), with potential effects on biodiversity structure. As

expected, many environmental parameters showed greater spatial variability in response

to heterogeneous nutrient loading (Fig. 4.4B). In theory, such environmental gradients

should allow species sorting to occur across multiple trophic levels (Whittaker, 1962;

Leibold et al., 1997). However, multiple environmental conditions also differed in their

mean values between treatment combinations (Fig. 4.4A), even though the total nutrient

loading was equivalent in both homogenous and heterogenous meta-ecosystems. Many

biological processes that cause imbalances in utilization of resources among sites could

lead to changes in mean conditions despite similar loading at the meta-ecosystem scale.

Differences in nutrient availability (e.g. N, P) can affect ecosystem productivity (Elser et al.,

2007) which in turn can affect the cycling of nutrients in a system and can cause diver-

gence in mean environmental parameters. Nutrient availability can also affect physical

characteristics of the system, such as light penetration, which can be caused by variations

in DOC concentrations (Pace and Cole, 2002) or algae biomass. For example, species rich

algal communities have different resource use efficiencies (Ptacnik et al., 2008) compared to

species poor communities. If species responded independently to these mean and spatially

structured environmental conditions among meta-ecosystems, this could affect biodiversity

patterns both within individual sites, as well as across meta-ecosystem scales.

Community responses

Meta-ecosystem and meta-community theory make different predictions about the mecha-

nisms structuring of biodiversity, as the former concept additionally considers how fluxes

of materials are interacting with dispersal of organisms among sites. For example, spatial

fluxes of non-living materials (such as nutrients and organic matter) in meta-ecosystems

can affect source-sink dynamics and cause sinks to be become sources and vice versa

(Gravel et al., 2010a). One possible mechanism is that nutrient fluxes among patches can

alter coexistence of species that vary in their competitive and dispersal abilities (Gravel

et al., 2010b). In our experiment, the movement of living organisms strongly affected

both richness of bacteria and algae (Fig. 4.5), as well as the abundance and temporal

dynamics of algae and DOC (Fig. 4.2,4.3,4.4). This implies that the spatial structure of

diversity (Fig. 4.5) and community composition (Fig. 4.6+S2, Table 4.6) at lower trophic

levels in meta-ecosystems, which experience the same total flux of total organic matter, is

nevertheless strongly influenced by the meta-community dynamics (i.e. the movement of

living organisms).
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Meta-community theory generally assumes that patch heterogeneity is fixed over time,

whereas by considering flows of materials between patches, which can also affect temporal

variations of environmental heterogeneity, the meta-ecosystem perspective allows for more

complex dynamics of niche variation. Heterogenous environments might increase species

richness, if the movement of materials opens up new niches or facilitates coexistence. How-

ever, if the material fluxes homogenize environments then this might decrease richness

over time. Heterogenous environments may also create patches with different productiv-

ities, where some patches are net exporters of nutrients and act as keystone ecosystem

patches, while other ecosystem patches act as net sinks (Mouquet et al., 2013). We found

interactive effects of dispersal and nutrient heterogeneity on phytoplankton (Fig. 4.5B) and

micro-zooplankton diversity (Fig. 4.5L), and of nutrient heterogeneity on the composition

of bacteria and phytoplankton (Fig. 4.6). Within our heterogeneous treatment, species com-

position differed strongly among the nature of nutrient loading (i.e. HN, L, DOC; Fig. 4.7),

and across all communities, some species were more common in either homogeneous or

heterogeneous environments (Fig. 4.8). Interestingly, the distributions of some species were

affected by dispersal and its interaction with meta-ecosystem heterogeneity, suggesting

evidence of niche differentiation of species within all trophic levels (Fig. 4.8). Although the

specific mechanism underlying such effects are still uncertain, one possibility is that the

interactive effects of heterogeneity and dispersal on both average (e.g. Chl-a, and DOC

absorbance spectra) and spatial variability (Chl-a) of meta-ecosystem conditions influence

species distribution patterns.

The relative importance of dispersal and heterogeneity in meta-ecosystems differs

among groups of organisms, and can be affected by parameters such as dispersal abilities,

body size, niche width, and trophic interactions. The relationship between body size

and dispersal capacities has gained a lot of attention (Jenkins et al., 2007), because of

its importance in determining biogeographical patterns of species distributions. De Bie

et al. (2012) recently performed an observational study across trophic levels in aquatic

communities and found that dispersal limitation increases with body size for passive

dispersers, while for active dispersers, the dispersal mode and connectivity between patches

determines dispersal capacities. Small organisms, such as prokaryotes and small eukaryote

species, are considered to be less dispersal limited (Fenchel and Finlay, 2004; Finlay, 2002).

Their large population sizes and short generation times presumably allows them to adapt

rapidly to environmental changes (Korhonen et al., 2010). However, in our study we

found a strong effect of dispersal regime on the richness of small organisms (bacteria and

phytoplankton), where live dispersal significantly increased local and regional richness,
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while larger organisms (zooplankton) showed no clear signal of dispersal limitation,

as richness was equivalent at both dispersal treatments. Our results, thus, suggest,

that bacterial and phytoplankton communities were either dispersal limited or limited

in some way by what is being dispersed (for example grazers or competitors) within

the experimental setup. As for the zooplankton richness, it is possible that either the

small dispersal volumes were not sufficient to disperse zooplankton species within meta-

ecosystems, or that persistence of zooplankton was not strongly influenced by dispersal

treatments, or that richness is not sensitive enough to detect compositional effects of

dispersal.

Another important factor for structuring communities in meta-ecosystem is the degree

of niche differentiation among different individuals, species, populations and trophic

levels (Leibold et al., 1997; Bolnick et al., 2003, 2007). Niche theory originally describes the

degree of species specialization in an n-dimensional space (Hutchinson, 1957), and was

later formalized to include how organisms both respond to and impact their environment

(Leibold, 1995). The fundamental and realized niches may differ among species depending

on the surrounding conditions, for example due to competition for space and resources,

or predation pressure (Vandermeer, 1972), with generalist species being less restricted in

niche requirements possessing larger fundamental niche spaces compared to specialist

species (Devictor et al., 2010). Furthermore, environmental heterogeneity can increase

niche specialization (Büchi and Vuilleumier, 2014). Organisms at higher trophic levels

might also tend to be more generalist and have wider niches than smaller taxa (Farjalla

et al., 2012). In our experiment we manipulated environmental heterogeneity, but the

effects on richness will depend on how niche variation among species aligns with the

environmental gradients we imposed. We found that heterogeneity increased richness

of the phytoplankton community, consistent with strong niche differentiation within

the phytoplankton community (Fig. 4.6). Nevertheless, there was evidence of niche

differentiation at all trophic levels based on community composition (Fig. 4.7), highlighting

the importance of niche differentiation across all studied trophic groups. However, the fact

that bacterial richness, unlike phytoplankton richness, was not increased in heterogeneous

environments might be due to differential niche requirements. One possible explanation

for this might be that the heterogenous environments, which we created in our experiment,

harbored a larger number of different niches for the phytoplankton community, but less

so for the bacterial community. This matches previous results suggesting that niche

variation increases with organism body size (Farjalla et al., 2012). For bacteria, even the

homogenous meta-ecosystems might have contained heterogenous properties and a wide
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distribution of niche spaces, which might have generated variable responses in different

phylogenetic and functional groups of bacteria. Bacterial community data furthermore

(Fig. 4.6+4.7) underlines strong niche differentiation within the bacterial community within

all treatments and nutrient identities, which might have been masked in the richness data.

Yet another important component of shaping diversity and community compositions

is food web structure (Paine, 1966). Trophic interactions and differences between trophic

groups have been integrated into meta-community theory, with the aim of understanding

how various trophic levels are structured differently by spatial and environmental gradients

(Beisner et al., 2006). Longmuir et al. (2007) has shown that the diversity and composition

of zooplankton, phytoplankton, and bacteria is regulated independently from each other

and that communities respond to different environmental parameters, while a recent study

by Verreydt et al. (2012) points out the importance of trophic interactions for dispersal

limitations. We did not directly manipulate trophic interactions in this experiment, but we

think that some of the observed patterns in community responses might be affected by

trophic interactions that were altered by dispersal. For example, responses in phytoplank-

ton densities (Fig. 4.2), diversity (Fig. 4.5), and community composition (Fig. 4.6A) are

likely not only affected by dispersal, niche differentiation and body size, but also by preda-

tion of the zooplankton community and the availability of resources from lower trophic

levels. Similarly, the bacterial community responses supposably interacted other trophic

levels, e.g. through predation pressure (Berga et al. 2014; chapter II), resource competition

and resource recycling. Further work is needed to disentangle the relative importance

of trophic interactions and dispersal, possibly by size fractioning the dispersing community.

Response of individual taxa/ OTUs

Next to analyzing community responses of different trophic levels using richness and

community composition data, we also analyzed how individual species across trophic

levels responded to our experimental treatments. We did this because species specific

responses might be masked by overall community responses. Across all trophic levels,

certain taxa, respectively OTUs, were strongly associated with either one or both of

out treatments (Fig. 4.8). Even though we cannot explain the mechanisms, we found

it interesting that several OTUs of the Betaproteobacterial class were strongly associated

with heterogeneous environments, while OTUs, that were significantly more abundant in

homogenous meta-ecosystems belonged to several different classes (Fig. 4.8A).

Betaproteobacteria are often the dominant class in freshwater systems, constituting up

to 70% of total cell counts, and also the most studied freshwater bacterial class (Newton
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et al., 2011). Mesocosm experiments have shown that species of this class grow fast when

high amounts of nutrients are available, and are prone to size-selective grazing (Newton

et al., 2011). Another ubiquitous class in freshwater systems are Alphaproteobacteria, which

are not as well studied as the Betaprotoebacteria, but research suggests that they are more

competitive at low nutrient conditions and are more resistant to grazing compared to other

bacterial classes (Newton et al., 2011). The high abundance of Betaproteobacteria specifically

at our low nutrient treatments (L and DOC; Fig. S4) indicates that nutrient availability

has not been the main driver of Betaproteobacteria abundance in our experiment. Other

factors, such as grazing pressure or other ecosystem properties, which were not solely

defined by nutrient additions, might have shaped species abundances within this class.

Alphaproteobacteria, on the other hand, were less abundant at low nutrient conditions (Fig.

S4), which also indicates that nutrient availability has not been the driving force for these

groups of bacteria. Some OTUs from the Alphaproteobacteria class were significantly associ-

ated with dispersal regime, which could indicate that they possess traits which allowed

them to be good dispersers in our experimental setup. In general, the applied nutrient

loading regimes have been the most important shaping force of the bacterial communities

(Fig. 4.9+S4), and previous studies have already suggested that habitat filtering can be

a main driver of bacterial community assembly (Armitage et al., 2012; Cardinale et al.,

2012b). Rank abundance and relative abundance distributions revealed high community

similarities in L and DOC tanks (Fig. 4.9+S4), and community composition of these two

treatments overlapped (Fig. 4.7+S3). Even though absolute nutrient concentrations might

not have been the governing force, other environmental properties, which were affected

by the nutrient loading regimes could have created the observed patterns. Analyzing

the bacterial community at lower taxonomic resolutions, and comparing differences in

environmental parameters between heterogenous tanks might help explain this pattern. As

richness and community composition data already revealed, the phytoplankton richness

and community composition differed strongly among treatments (Fig. 4.6+S4). Several

phytoplankton taxa were also affected by both dispersal and environmental heterogeneity,

which might indicate that the dispersal volumes were high enough for phytoplankton

taxa to find their preferred niche spaces and that heterogenous environments contained

a larger amount of niche variation among species, which could sustain larger regional

diversity. Individual zooplankton taxa were also affected by treatment combinations,

but patterns were not as clear as for the bacterial and phytoplankton communities. It

is possible, that individual zooplankton species responded to both treatment effects and
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trophic interactions.

C O N C L U S I O N

Our experiment has been one of the first to test for the importance of material fluxes for

meta-community dynamics. We have shown both resource heterogeneity and dispersal

regime can affect the diversity and community composition in spatially structured environ-

ments, and that responses varied between trophic levels. Using a meta-ecosystem design,

in which we could limit suppress the movement of organisms, and high-throughput se-

quencing, which allows for a high resolution of the bacterial community, we observed that

bacterial richness was strongly affected by the movement of live organisms. This indicates

that bacterial communities were strongly limited by space or other resident organisms

(for example through through priority effects) and less affected by the environmental

heterogeneity imposed with our treatments. Overall, this highlights the importance of both

biogeography and local environmental conditions (Lindström and Langenheder, 2011). By

integrating community responses of three different trophic levels we have furthermore

shown that each community exhibited distinct responses to meta-ecosystem dynamics.
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A P P E N D I X

Supplementary Tables

Table S1: Summary of ANOVA results from the last sampling (week 19) of the meta-ecosystem experiment. F
and p results for the effect of dispersal (Disp), nutrient identity (NutrID), and interactive effects. Significant values
highlighted wild bold letters.

F and p values of ANOVA analysis

Metrics Disp NutrID Interaction

Bacteria 1.73 (0.20) 0.42 (0.74) 0.65 (0.59)
Phytoplankton 7.10 (0.01) 8.68 (<0.01) 1.26 (0.31)
Macro-Zooplankton 0.00 (1.00) 1.89 (0.16) 0.53 (0.67)
Micro-Zooplankton 2.91 (0.10) 0.27 (0.85) 0.54 (0.66)
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C O N C L U S I O N A N D O U T L O O K

The aim of this thesis was to investigate how biogeography and environmental variation

affect the diversity and functioning of aquatic ecosystems, focussing specifically on bac-

terial communities. The microbial community (which includes microscopic organisms

such as bacteria and archaea, but also small eukaryotes and fungi) comprise a bulk of the

phylogenetic diversity and biomass on earth (Fierer and Lennon, 2011) and is essential

for biogeochemical cycling (Falkowski et al., 2008). However, ecological theory is less

commonly tested using microbial compared to other communities (Prosser et al., 2007),

partly due to methodological constraints in analyzing microbial diversity. Using large scale

mesocosm experiments, which allow for a balance between realism and experimental con-

trol, I have investigated community responses to food-web and ecosystem manipulations

across multiple trophic levels (bacteria, phytoplankton and zooplankton).

Measuring microbial diversity

Methods for measuring microbial diversity and community composition have evolved

rapidly over the last few decades, allowing for ever greater resolution and precision

(Zinger et al., 2012). Early methods for characterizing microbial communities included

cultivation and microscopy, and while still valuable for certain ecological questions, such

approaches only capture a fraction of the microbial community and miss a vast diversity

of microbial community present in natural environments. A substantial breakthrough

for analyzing microbial diversity has been the use of DNA based methods (Amann et al.,

1995). Community fingerprinting techniques and rRNA-targetting microscopy already

allowed for better analyses of microbial communities, but recent advances in the sequenc-

ing of the small-subunit ribosomal RNA gene (prokaryotes: 16S rRNA, eukaryotes: 18S

rRNA) have revolutionized the abilities to analyze microbial communities. These new

methods sequence the hypervariable regions of the 16S rRNA gene (Ward et al., 1990), and

sequences can then be compared to databases for phylogenetic matching. Unfortunately,

101
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standard methods do not yet allow for sequencing of the complete 16S rRNA gene (circa

1550 bp long) of entire communities at an affordable cost, and researchers therefore have

to restrict themselves to sequencing only parts of the 16S rRNA. Currently, there is no

consensus among research groups about which regions of the 16S rRNA is best suited for

community analysis. In part, this is due to the fact that different regions are better suited

for characterizing certain bacterial groups, but this can become a problem when comparing

whole communities from natural environments. Currently, a growing number of large

scale microbiome projects are sequencing microbial communities from a large variety of

habitats to explore the the composition and dynamics of microbial communities across

the globe (Nelson, 2013). Examples are the Earth Microbiome Project (EMP) (Gilbert et al.,

2014), the Human Microbiome Project (HMP) (Peterson et al., 2009), and the Brazilian

Microbiome Project (Pylro et al., 2014). While each of these projects has chosen a standard

region of the 16S rRNA for measuring microbial diversity, the projects do not use the same

variable regions, making broad scale comparisons difficult. The EMP for example uses the

V4 region, while the HMP is using the the V3-V5 regions of the 16S rRNA gene. In order

to be able to compare data across these studies, it is important to know if this difference

will affect comparisons of biodiversity among studies.

Lack of ecological theory in microbial studies

The field of microbial ecology has focussed intensively on method development and gener-

ating large amounts of sequence information, but has made less progress in developing and

testing ecological theory (Prosser et al., 2007). My project tries to bridge ecological theory

and microbial community ecology, which have developed more or less independently

from one other. In order to apply ecological measures to microbial communities, which

is what I did in the experiment described in chapters II and III, it was first important to

know if sequencing different regions of the 16S rRNA affects ecological conclusions about

microbial biodiversity. I therefore explored how the choice of variable region influences

common ecological measures of diversity in chapter I.

Results of chapter I: Influence of variable region on ecological measures

In chapter I I shown that ecological measures of bacterial diversity can be strongly influ-

enced by the choice of variable region of the 16S rRNA gene. The three compared regions

(V3, V4, and V5) differed strongly in terms of absolute estimates of diversity (species rich-

ness, phylogenetic diversity, β-diversity), rank-abundance distributions, and phylogenetic

classification of operational taxonomic units (OTUs). When comparing individual lake
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samples, species richness estimates were correlated among the three variable regions, but

the same was not true for phylogenetic diversity. Overall, results from the V3 and V5

region were more similar to each other than to the V4 region. Additionally, I also compared

my Illumina sequences to fingerprinting data (ARISA) and did not find a correlation in

species richness between methods. This part of my thesis has shown that ecological

conclusions can differ depending on which variable region of the 16S rRNA gene is chosen

for characterizing bacterial diversity. I was not able to make recommendations on which

region might be best suited for ecological studies due to a several reasons, including the

fact that my study has only analyzed three of the nine variable regions. However, I could

show that caution is warranted when selecting a region and when comparing results across

studies which have used different variable regions. For example, comparisons of diversity

from the EMP and the HMP should be treated with caution. If read length remains a

limitation due to sequencing techniques, future research should address this issue across

the complete 16S rRNA and researchers should discuss if defining a standard 16S region

for ecological studies might be useful to increase the robustness of meta-analyses.

For pragmatic reasons I have chosen to use the V3 region to quantify bacterial diversity in

chapters II and III. Species richness of the V3 region is better correlated with phylogenetic

diversity then for the V4 region (Fig. 2.2C), and the V3 region has a longer read length

compared to the V5 region (chapter I, Table S2).

S PAT I A L LY S T R U C T U R E D T R O P H I C I N T E R A C T I O N S

Chapters II and III focus on the effects of food-web structure in a spatially structured

landscape on various trophic levels, and particularly on the bacterial community. As

bacteria are key drivers of ecosystem functions and services (Falkowski et al., 2008), it

is important to investigate if spatially structured variations in food-web structure can

affect the phylogenetic and functional diversity of bacterial communities. In chapter II,

I investigated the effect of a specific consumer (Daphnia) on bacteria and phytoplankton,

while in chapter III, I included a more diverse zooplankton community in my experimental

ecosystems (Fig. 1.5), and tested for the importance environmental heterogeneity as well

as fluxes of either materials alone, or materials and organisms, among ecosystem patches.

Importance of environment and space

Community ecologists commonly estimate the relative importance of both environmental

variation and space for shaping species distributions. Environmental variability across the

landscape can interact with niche differentiation among species, leading to species sorting.
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A recent study by Soininen (2014) has analyzed the relative importance of species sorting

across multiple trophic levels and ecosystems and found that the importance of species

sorting varied between trophic groups, but was relatively unpredictable based on body

size and dispersal mode. The author found that species sorting was most pronounced

for autotrophs and omnivores, and substantially lower for decomposers and herbivores.

In a different study, Soininen (2015) investigated the importance of of spatial scale and

found that body size, thermoregulation, and interactions between body size and dispersal

mode were important factors for predicting the importance of spatial scale across meta-

ecosystems.

While analyzing the importance of niche differentiation has a long tradition for larger

organisms, it is more difficult to determine if spatial patterns of bacterial communities

are caused by niche differentiation among species. This is partly due to the enormous

diversity of bacterial taxa, technical limitations in measuring bacterial diversity, and the

ability of bacterial species to adapt rapidly to environmental conditions. Bacteria are

known to exhibit high levels of phenotypic plasticity (Justice et al., 2008), particularly

associated with changes in cell size, cell wall structure, morphology, mobility patterns,

toxin release, or gene expression (Pernthaler, 2005). Unlike other organisms, bacteria also

have genotypic plasticity, because they are able to exchange DNA with surrounding cells

through horizontal gene transfer (Thomas and Nielsen, 2005) and take up and incorporate

extracellular DNA from the surrounding environment (Lorenz and Wackernagel, 1994).

Overall, these characteristics of bacteria allow for rapid adaptation and the persistence in

response to environmental change.

In my second mesocosm experiment (chapter III), resource identity has lead to clear

separations of community composition across all trophic groups, and was particularly

pronounced for the bacterial community (Fig. 4.7). Even though the initial bacterial source

pool was the same in all mesocosms, the nutrient loading had clear and repeatable effects

on bacterial composition, which indicates that the treatments have imposed strong selection

pressure on the bacterial communities.

Trophic interactions

When studying the responses of groups of organisms to environmental and spatial gra-

dients, we should not forget that trophic interactions are important shaping forces for

community composition in natural environments. Under laboratory conditions, it is com-

mon to study how individual species or groups of organisms respond to selected abiotic

or biotic conditions, but natural communities are always affected by complex interactions
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Figure 5.1: Possible effects of environmental change on the composition of dissolved organic carbon (DOC).
Environmental change, such as increased temperature, might alter DOC composition through multiple
pathways. Temperature changes can directly affect the physical breakdown of DOC (A), or lead to changes
in environmental properties and dispersal, which can either directly affect the DOC composition, or change
the bacterial community (BCC), which can lead to indirect changes of the DOC pool (B). Furthermore,
food-web structure can affect the DOC composition (C). Here, the bacterial community (BCC), which is the
main biological driver of DOC decomposition, can be altered in indirectly by the food-web structure due to
differential DOC release, or directly, if organisms can use bacteria as a food-source (grazing).

with the environment, spatial structure, and the community structure of other groups of

organisms at the same and other trophic levels. For understanding natural ecosystems, it

is therefore important to integrate food-web complexity. While food-web interactions have

intensively been studied for phytoplankton, zooplankton, and fish (Polis and Strong, 1996),

the importance of bacterial diversity for food-web interactions is less well understood.

Bacteria are considered an important link for re-mobilizing organic carbon for higher

trophic levels through the ’microbial loop’ (Azam et al., 1983), but it is not yet known how

the aquatic food-web structure can influence such bacterial-mediated functions. There

are different pathways in which food-web structure might affect the bacterial community

structure and nutrient cycling. The classical theory describes that microbes can return

carbon to the food-web by incorporating excess carbon released by other organisms. The

source pool of dissolved organic carbon (DOC) might then shape the bacterial community

as it adapts to the nutrient conditions. Alternatively, if grazers can directly feed on bacterial

taxa, this can affect the bacterial community composition and DOC cycling (Fig. 5.1).

In chapter II I have investigated the effects of consumers (Daphnia) and the initial abun-
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dance of bacterial cells (i.e. dilution) on bacterial and phytoplankton communities, and

found that the richness both communities decreased in the presence of Daphnia. The

bacterial community composition was furthermore strongly affected by food-web structure

and both the presence and the absence of Daphnia selected for specific bacterial groups,

suggesting niche differentiation among bacteria species. This shows that the presence of

grazers, or more generally speaking food-web structure, can profoundly affect community

structure through multiple pathways with possible effects on ecosystem functioning. It

also indicates that that the species identities of higher trophic levels can affect ecosystem

functioning and should motivate further work investigating how higher trophic levels

affect bacteria mediated ecosystem functions.

Phylogenetic structure

One novel aspect of the first mesocosm experiment (chapter II) was that I investigated

the phylogenetic structure of changes in bacterial abundances in response to a grazer and

the dilution treatment (Fig. 3.7, Table S2). The concept of phylogenetic signal (Blomberg

et al., 2003) investigates the dependence of species traits on phylogenetic relatedness

(Revell et al., 2008) without knowing the exactly which specific species traits are affected.

Phylogenetic signal is a statistical association between species traits and phylogenetic

relatedness. The presence of phylogenetic signal in the response of species to an envi-

ronmental manipulation can suggest niche differentiation among species, though says

little about the evolutionary process underlying such differentiation (Revell et al., 2008).

Numerous studies of larger organism have investigated how phylogenetic relatedness can

help detect how species respond to environmental variation or disturbance (Helmus et al.,

2010). However, it is a relatively new concept for microbial ecology, partly because of the

prevalence of phenotypic plasticity and rapid adaptations (Krause et al., 2014), which might

preclude its usefulness. My results, however, suggest that phylogenetic patterns might

be useful response variables for microbial communities, and might help to understand

community dynamics without knowing very much about trait variation among species.

In other words, phylogenies might serve as a proxy for trait variation among microbial

species. The presence or absence of Daphnia led to very distinct bacterial communities

(Fig. 3.5), and closely related species responded similarly to the Daphnia manipulation

(Fig. 3.7, Table S2). This indicates niche differentiation within the bacterial community,

and suggests that phylogenetic signal in bacterial communities can be detected even when

using the 16S rRNA gene. Such approaches might help ultimately help us to predict
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bacterial community responses to environmental change.

Environmental change and ecosystem functioning

Understanding the relationship between biodiversity and ecosystem functioning (BEF) is

a pressing issue in ecological research, particularly in the era of environmental change

(Cardinale et al., 2012a). It is generally acknowledged that biodiversity loss will decrease

the functioning, stability, and productivity of ecosystems (Hooper et al., 2005), but the

evidence is controversial and varies between ecosystems and organisms (Cardinale et al.,

2012a). Because bacteria are main drivers of biogeochemical cycles (Falkowski et al., 2008),

it is especially important to understand the BEF for bacterial communities. Bacterial

communities are considered metabolically plastic and functionally redundant, but the link

between diversity and functioning is suggested to vary along a continuum, from being

strong to weak, or even absent (Comte et al., 2012). Interestingly though, rates of change in

community composition and functional capacities appear to be correlated (Comte and del

Giorgio, 2010). In a comparative study, they found that large changes in composition were

associated with large changes in a standardized set of ecosystem functions (measured by

Biolog plates).

Moreover, studies of BEF relationship have mostly focussed on single trophic levels, and

have disregarded the importance of trophic interactions for ecosystem functioning and

services (Hooper et al., 2005; Barnes et al., 2014). Meta-community and meta-ecosystem

theory can help investigating the BEF relationship, as they specifically analyze the impor-

tance of spatial structure and, as shown in this thesis, allow for the integration of multiple

trophic levels.

In chapter II, I have measured two ecosystem functions, namely respirations and phos-

phatase activity, and quantified if treatments affected these functional metrics. Phosphatase

activity was not affected by treatment combinations, but respiration responded interactively

to Daphnia and dilution treatments. Understanding the relationship between bacterial

community composition and ecosystem functioning could be improved by analyzing a

larger set of of ecosystem functions, for example by using assays that simultaneously

analyze several enzymes (Sala et al., 2006), by the sequencing of functional genes (Burke

et al., 2011), or transcriptomic analyses (Stewart et al., 2011). The reason why I did not find

an effect of treatment on phosphates activity may be due to the fact that phosphatase is a

very important enzyme, especially at low nutrient concentrations (Chróst and Overbeck,

1987), and therefore commonly distributed across bacterial groups.
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Using mesocosms for studying bacterial communities

Natural ecosystems are highly complex and finding general patterns across ecosystems is

challenging. The development of sequencing techniques allows for much better resolution

of species at lower trophic levels, and phylogenetic analyses have vastly increased our

understanding of such communities. However, as described above, there are numerous

factors controlling community patterns (such as environmental variation, distance between

habitats, and trophic interactions), and we will probably never be able to determine all pa-

rameters governing community composition and functioning within natural environments.

The bacterial community is particularly diverse, and understanding natural patterns of

bacterial community composition (Fig. 5.2) is not trivial.

My results have shown that mesocosm can be a good model system for investigating

community responses to environmental change across multiple trophic levels. Mesocosms

allow for a high degree of replication and the possibility of manipulating specific ecosys-

tem parameters, in near-natural ecosystems. The fact that I found clear responses of the

bacterial community to the imposed treatments is promising and encourages the use of

outdoor mesocosm to study bacterial communities.
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Figure 5.2: Comparison of community composition of the lakes included in the Swiss lake survey. The den-
dogram at the top is constructed from a hierarchical cluster analysis based on the matrix of community
dissimilarities among lakes, using the relative abundances of different sequences. The tree on the left is
constructed using Qiime, and colors denote the relative abundance of each sequence in the lake sample, from
low (white) to, medium abundance (light red), to high abundance (dark red). The circle size is proportional to
the number of bacteria measured with flowcytometry.
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I M P L I C AT I O N S A N D O U T L O O K

My thesis has investigated meta-ecosystem responses to environmental change across

multiple trophic levels. I have highlighted the importance of method selection for analyzing

bacterial communities (chapter I), investigated the importance of spatially structured food-

web interactions and resource heterogeneity for multiple trophic levels (chapters II and

II), and have demonstrated that mesocosms are a good model system for studying how

environmental change affects community responses. To progress our understanding

of how trophic interactions affect bacterial community composition and functioning, I

propose to use even more complex food webs, including for example fish as top predators,

and increase the use of methods for determining functional capacities. My work has

been part of a larger survey of lakes across Switzerland, Austria and Germany (Fig. 5.3),

which is determining community responses across multiple trophic levels. Applying

concepts described in this thesis might help to understand how spatial and environmental

parameters affect natural communities.

Figure 5.3: Lakes sampled across Switzerland, Austria, and Germany.
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Böing, W. J., Wagner, A., Voigt, H., Deppe, T., and Benndorf, J. (1998). Phytoplankton responses to grazing by

Daphnia galeata in the biomanipulated Bautzen reservoir - Springer. Hydrobiologia.
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Langenheder, S., Berga, M., Ostman, O., and Székely, A. J. (2011). Temporal variation of ß-diversity and

assembly mechanisms in a bacterial metacommunity. ISME J, pages 1–8.

Langenheder, S., Bulling, M. T., Solan, M., and Prosser, J. I. (2010). Bacterial Biodiversity-Ecosystem Functioning

Relations Are Modified by Environmental Complexity. PLoS ONE, 5(5):–.

Langenheder, S. and Jürgens, K. (2001). Regulation of Bacterial Biomass and Community Structure by

Metazoan and Protozoan Predation. Limnol Oceanogr, 46(1):121–134.

Langenheder, S. and Ragnarsson, H. (2007). The role of environmental and spatial factors for the composition

of aquatic bacterial communities. Ecology, 88(9):2154–2161.
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