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Abstract: 

 

Traditional jigsaw-type scripts create strong knowledge interdependence by 

distributing information on core concepts between learners. However, previous 

research indicates that such knowledge interdependence may hinder interactive 

knowledge co-construction by reducing learners’ common ground on core 

concepts. In an experiment with undergraduates (n= 78) in three-person-groups, 

we contrasted two rationales for distributing information: (1) establishing strong 

knowledge interdependence by distributing knowledge on core concepts as in a 

traditional jigsaw-type script, and (2) establishing weak knowledge 

interdependence by distributing only contextual information in a modified jigsaw-

type script. Weak knowledge interdependence particularly benefitted low prior 

knowledge learners’ transfer performance. Furthermore, it supported learners’ 

interactive knowledge co-construction during collaboration, and this interactive 

co-construction mediated the effects of knowledge interdependence on individual 

learning. This study illustrates how collaborative and individual learning activities 

interrelate, and that a slightly modified jigsaw-type script makes a valuable 

addition to an instructor’s toolbox. 

 

Keywords: 

• Collaborative learning 

• Collaboration scripts 

• Jigsaw method 

• Interactive learning activities  
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1. Introduction 

Collaborative learning is a powerful asset in an instructors’ toolbox. Its overall effectiveness 

has been demonstrated in reviews and meta-analyses (Hattie, 2009; Johnson & Johnson, 2009; 

Slavin, Hurley, & Chamberlain, 2003). In effective collaborative learning, peers co-construct 

new knowledge that goes beyond what any of them knew before (Chi, 2009; Deiglmayr & 

Spada, 2010), for example by integrating diverging perspectives and ideas (Jucks & Paus, 

2013; Schwartz, 1995), or resolving socio-cognitive conflicts (Buchs, Butera, & Mugny, 

2004). Nevertheless, effective collaboration does not occur automatically. Instructors 

therefore scaffold collaboration by prescribing and sequencing learning activities, distributing 

roles and responsibilities, and providing coordination support in the form of collaboration 

scripts (Fischer, Kollar, Stegmann, & Wecker, 2013). However, when designing such 

scaffolding, instructors face difficult decisions. 

One important decision concerns whether and how information on core concepts 

should be distributed between learners. We use the term core concept to refer to models, 

principles, or procedures needed for understanding and solving problems in a given domain 

(e.g., the principles needed to solve a specific mathematical problem; or the concepts needed 

to understand a class of medical diseases). On the one hand, distributing information on core 

concepts motivates collaboration by creating specialization, that is, by establishing strong 

knowledge interdependence among learners (Molinari, Sangin, Dillenbourg, & Nüssli, 2009). 

This strategy is, for example, employed in the widely-used jigsaw method (Aronson & 

Patnoe, 1997). On the other hand, providing information on core concepts to all learners from 

the start has the advantage that each learner can develop a first understanding of the to-be-

learned concepts on which she can build during collaboration, and on which collaborators can 

ground their communication (Baker, Hansen, Joiner, & Traum, 1999).  
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What constitutes core concepts, and what contextual information, depends of course 

on the learning goals in a given learning situation. In mathematics, for example, students 

might learn from worked examples that embed mathematical principles (core concepts) in 

different story problems (context). In biology, students might learn the features distinguishing 

invertebrates from vertebrates (core concepts), exemplified by specific species (context). In 

educational psychology, students might study different sources of learning motivation (core 

concepts) by analyzing a set of authentic cases (context). 

In the following, we argue that the strong knowledge interdependence that is created 

by traditional jigsaw-type collaboration scripts by distributing core concepts among learners 

might be suboptimal. We propose a modified jigsaw-type collaboration script in which weak, 

rather than strong, knowledge interdependence is created by distributing only contextual 

information. Our focal claim is that learners, in particular low prior knowledge learners, 

benefit more when only contextual information is distributed, while knowledge on core 

concepts is shared. As an important mediating mechanism, we assume that such weak 

knowledge interdependence will better prepare learners to participate in interactive knowledge 

construction during collaboration. 

 

1.1 Interactive learning activities  

In a recent review, Chi and Wiley (2014) argue that interactive learning activities are the most 

beneficial for increasing individual learning outcomes. Interactive learning activities are 

defined by their collaborative, co-constructive nature. Examples include the co-construction 

of solutions, arguments, or explanations in peer discussions. Interactive learning activities, 

which can only be enacted in collaboration with a learning partner, are hypothesized to be 

more effective for fostering individual learning than constructive learning activities, which are 

the most effective kinds of learning activities a learner can engage in the absence of a learning 
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partner. Chi and Wylie define constructive learning activities as activities in which the learner 

goes beyond the information given, and engages deeply with core concepts of the learning 

domain (e.g., by self-explaining, elaborating, comparing, inferring, or integrating 

information). Interactive learning activities are supposed to be superior to constructive 

learning activities because the learner is constructive and, at the same time, takes up and 

builds upon contributions of collaborators. Thus, a learner benefits from learning partners 

because they provide additional knowledge resources, different perspectives, new ideas, or 

feedback (Chi & Wylie, 2014). Other researchers have likewise emphasized the crucial role of 

learners’ participation in such co-constructive, or transactive discourse (e.g., Berkowitz & 

Gibbs, 1983; Deiglmayr & Spada, 2011; Fischer et al., 2013; van Boxtel, van der Linden, & 

Kanselaar, 2001). 

The presumed benefit of interactive over constructive engagement is likely to depend 

on an individual’s relevant prior knowledge. High prior knowledge learners benefit from a 

collaborative setting even if they take over the sole responsibility for the group`s task (e.g., by 

engaging with the task, generating self-directed explanations, and producing a solution), that 

is, by being constructive rather than interactive. For example, high prior knowledge learners 

often dominate the discussion, and also show the greatest learning gains (Salomon & 

Globerson, 1989). At the same time, high prior knowledge learners also benefit from being 

interactive, either by engaging in mutual knowledge co-construction with equally capable 

peers, or by tutoring less knowledgeable peers (Ploetzner, Dillenbourg, Praier, & Traum, 

1999). Low prior knowledge learners, on the other hand, typically lack the necessary 

prerequisites to solve the task on their own in a constructive fashion, but profit from the 

explanations of more knowledgeable peers (Webb & Palincsar, 1996), or from the opportunity 

to mutually co-construct new insights (Chi & Wiley, 2014). Thus, interactive engagement in 

collaboration may be particularly beneficial for low prior knowledge learners. They depend 
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more than high prior knowledge learners on the scaffolding, feedback, and additional insights 

that they may gain from interacting with others.  

 

1.2 Knowledge interdependence and interactive learning activities 

Knowledge interdependence means that learners collaborate on the basis of complementary 

expertise (Molinari et al., 2009). Learners have access to information on core concepts only 

via their learning partners, on whom they are thus dependent for their own learning (Buchs et 

al., 2004). Instructors can create strong knowledge interdependence either by having learners 

collaborate on the basis of pre-existing, complementary fields of expertise (Noroozi, Biemans, 

Weinberger, Mulder, & Chizari, 2013; Rummel & Spada, 2005), or by purposefully 

manipulating learners expertise by training each on a specific subset of core concepts prior to 

collaboration (Berger & Hänze, 2009). 

The jigsaw method (Aronson & Patnoe, 1997) is a typical collaboration script 

following the latter approach. Several slightly different implementations of the jigsaw method 

exist. Nevertheless, all of these jigsaw-type collaboration scripts include at least two phases 

(Dillenbourg & Jermann, 2007): In an individual learning phase, learners study a specific 

concept and thus become an “expert” for this concept. Each learner becomes an expert for a 

different core concept, establishing strong knowledge interdependence. In a subsequent 

collaboration phase, learners explain the individually studied concepts to one another, and 

work on joint tasks requiring their complementary expertise. 

 

1.2.1 Benefits of knowledge interdependence  

The main benefit of establishing knowledge interdependence with regard to core concepts is 

motivational (Berger & Hänze, 2009). Knowledge interdependence creates a special form of 

positive social interdependence, which has well-documented, positive motivational effects 
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(Johnson & Johnson, 2009). When learners know that they can solve a joint task and reach 

their own learning goals only by pooling and integrating their complementary knowledge on 

core concepts, this interdependence renders collaboration meaningful and relevant, and thus 

increases individual motivation to participate (Buchs et al., 2004; Johnson & Johnson, 2009; 

Slavin et al., 2003). Additionally, some degree of knowledge interdependence is beneficial for 

fostering interactive knowledge co-construction, as differences in perspectives or opinions 

often lead to fruitful argumentation, elaboration, or mutual explanations (e.g., Jucks & Paus, 

2013; Schwartz, 1995). Particularly positive motivational effects are reached when knowledge 

interdependence is combined with personal accountability, for example when learners expect 

to be tested regarding their individual knowledge about the whole range of core concepts 

(Johnson & Johnson, 2009). 

 

1.2.2 Disadvantages of knowledge interdependence  

When instructors establish strong knowledge interdependence within a group in order to 

motivate collaboration, this implies that each individual learner lacks knowledge on core 

concepts when entering collaboration. Under some circumstances this may be problematic, as 

existing knowledge is an important predictor of future learning (e.g., Schneider & Bullock, 

2009). Thus, to constructively engage with learning materials, learners need basic knowledge 

on all to-be-learned core concepts, on which they can build, for example, by constructing 

principle-based self-explanations (Renkl, 2014), by devising well supported arguments 

(Noroozi, Weinberger, Biemans, Mulder, & Chizari, 2012), or by working out a 

comprehensive problem solution (Rummel & Spada, 2005). Such constructive, individual 

engagement is also the basis for effective interactive knowledge construction (Chi & Wylie, 

2014). 
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If all learners study all core concepts prior to collaboration, this also ensures that 

learners have relevant shared knowledge, or common ground (Clark & Brennan, 1991). 

Common ground is important for efficient communication and coordination between 

collaborators. Thus, it plays an important role for successful collaborative learning 

arrangements (e.g., Baker et al., 1999; Beers, Boshuizen, Kirschner, & Gijselaers, 2005; 

Noroozi et al., 2013). Further, groups tend to focus their discussions on shared knowledge 

(Brodbeck, Kerschreiter, Mojzisch, & Schulz-Hardt, 2007), and have difficulties integrating 

the unique knowledge of individual group members (Deiglmayr & Spada, 2010, 2011). Thus, 

establishing core concepts as shared knowledge in a group, increases the likelihood that group 

members will discuss them. Under conditions of strong knowledge interdependence, however, 

core concepts do not constitute shared knowledge, and cannot serve as common ground.  

Based on these considerations, we assume that strong knowledge interdependence, as 

realized by traditional jigsaw-type scripts, will not optimally prepare learners to profit from 

collaboration. Therefore, we propose a rationale for distributing information that creates a 

weaker form of knowledge interdependence to ensure that learners have sufficient knowledge 

on core concepts. 

 

1.3 Two rationales for distributing information in jigsaw-type collaboration scripts 

The traditional rationale for distributing learning content between students in a jigsaw-type 

collaboration script is to maximize knowledge interdependence in order to create a relevant 

and motivating task (Aronson & Patnoe, 1997; Dillenbourg & Jermann, 2007). For example, a 

mathematics teacher might distribute different mathematical core concepts among the learners 

during the individual learning phase, and later have them exchange and integrate their 

complementary expertise. We term this the strong knowledge interdependence rationale 

because core concepts are distributed between learners prior to collaboration.  



Two rationales for distributing information 

9 
 

Findings on the effectiveness of jigsaw-type scripts for fostering individual learning 

are, however, mixed (e.g., Slavin et al., 2003). These scripts have been shown to increase 

learners’ motivation (Hänze & Berger, 2007; Johnson & Johnson, 2009), and to foster a 

cooperative climate (Aronson & Patnoe, 1997). At the same time, the decreased amount of 

shared knowledge, and thus, common ground, hampers knowledge exchange and integration 

in groups (Buchs et al., 2004; Deiglmayr & Spada, 2010, 2011). After collaboration, learners 

are typically still better informed about their own subset of core concepts than about those of 

their learning partners (Berger & Hänze, 2015; Hänze & Berger, 2007; Souvignier & 

Kronenberger, 2007). Furthermore, jigsaw-groups engage less often in knowledge co-

construction than other collaborative groups (Moreno, 2009). In direct comparisons of jigsaw-

type scripts to other collaborative learning methods establishing lower levels of knowledge 

interdependence (e.g., traditional small group learning), jigsaw learners have been found to 

gain less knowledge about core concepts than learners in the other collaborative condition 

(Berger & Hänze, 2009; Buchs et al., 2004; Moreno, 2009). 

We therefore suggest a modified jigsaw-type script that establishes weak knowledge 

interdependence. Following this rationale for distributing information, information on core 

concepts is realized as shared knowledge between learners; that is, all learners study the same 

core concepts prior to collaboration. At the same time, collaboration is rendered meaningful 

and relevant by having each learner study the concepts in a different context. For example, all 

learners might study the same mathematical concepts, but for each learner, these would be 

embedded in a different context. Thus, this modified jigsaw-type script creates knowledge 

interdependence regarding contextual features only, but not regarding core concepts.  

 

1.4 Hypotheses 
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We aimed to systematically assess whether weak knowledge interdependence is indeed more 

beneficial than strong knowledge interdependence for promoting individual participation in 

interactive knowledge co-construction, and individual learning outcomes. The learning 

domain was introductory probability theory, and the core concepts were three urn models (see 

Materials section for details). Worked examples illustrated the models’ application in different 

contexts. In the strong knowledge interdependence condition, each learner became an expert 

for a different urn model by studying three worked examples that embedded the same model 

in three different contexts. In the weak knowledge interdependence condition, each learner 

became an expert for one context by studying three worked examples that embedded the three 

models in the same context. 

We expected that the shared knowledge on core concepts would better prepare learners 

to participate in knowledge co-construction resulting in more interactive engagement during 

discussion, and in higher individual learning outcomes. As the opportunity to participate in 

interactive knowledge co-construction is particularly important for low-prior knowledge 

learners, we expected the highest gains for this group of learners. In all analyses, learners’ 

pre-existing (i.e. not experimentally manipulated) prior knowledge on core concepts was 

included as a potential moderator. In this way, we could test whether weak knowledge 

interdependence was indeed particularly beneficial for increasing low-prior-knowledge 

learners` interactive engagement and individual learning outcomes. 

Hypothesis 1: Weak knowledge interdependence results in higher individual 

learning and transfer performance compared to strong knowledge 

interdependence, in particular for low prior knowledge learners. 

Further, we expected that the common ground regarding core concepts in the weak knowledge 

interdependence condition would facilitate interactive knowledge co-construction during 

collaboration which, again, would be particularly beneficial for low prior knowledge learners. 
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Hypothesis 2: Weak knowledge interdependence leads to a higher frequency of 

interactive knowledge co-construction activities during collaboration compared to 

strong knowledge interdependence, in particular for low prior knowledge learners. 

Finally, we expected that learners’ participation in interactive learning activities during 

collaboration mediated the effects of knowledge interdependence on individual learning 

and transfer performance.  

Hypothesis 3: The amount of interactive learning activities during collaboration 

mediates the effect of knowledge interdependence on individual learning and 

transfer. 

We tested Hypotheses 2 and 3 based on data from extensive analyses of learners’ discussions 

in the collaborative phase. To analyze the specific role of interactive learning activities, we 

identified both interactive and constructive turns, and ran all analyses for both kinds of 

learning activities. Thus, we could test whether it was indeed the frequency of interactive, 

rather than constructive, learning activities, which mediated the effect of knowledge 

interdependence on individual learning outcomes.  

 

2. Method 

 

2.1 Participants 

In total, 87 Swiss undergraduate university students majoring in various subjects (but not 

mathematics or related subjects) participated for monetary compensation. All students were 

native speakers of German. Pre-studies had indicated that undergraduates generally had 

problems understanding and applying urn models without training (see also Berthold, Eysink, 

& Renkl, 2009). 
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Students were randomly assigned to a three-person-group (triad), and triads were 

randomly assigned to either the weak or the strong knowledge interdependence condition. 

Post-hoc, three triads were excluded from all analyses because at least one of their members 

did not pass the threshold in a basic prior knowledge test on adding and multiplying fractions 

(an essential prerequisite for understanding urn models), or because they did not follow 

instructions. This exclusion left a total of 78 participants (42 female, 36 male) in 26 triads. 

Their age ranged from 18 to 36 years (M=24.4, SD=4.0). Conditions differed neither in the 

proportions of men and women (χ2
(df=1)=.83; p=.36), nor in participants’ age (t(76)=.14; p=.89), 

or final high school grade in Mathematics (t(68)=1.40; p=.17). 

 

2.2 Materials 

The to-be-learned core concepts were mathematical urn models. Urn models are used for 

determining the joint probability of a series of random events, like throwing a dice repeatedly, 

or drawing balls from an urn. We worked with four urn models (M1-M4). These models result 

from crossing two stochastic principles: relevance of order (relevant/irrelevant) and 

replacement (with/without). Model 1 (order relevant & drawing with replacement), Model 2 

(order relevant & drawing without replacement), and Model 3 (order irrelevant & drawing 

with replacement) were trained. Model 4 (order irrelevant & drawing without replacement) 

can be derived from an integrated understanding of the other three models. Problems requiring 

the application of Model 4 were therefore used to assess transfer of learning.  

The learning materials comprised a combination of instructional techniques that foster 

constructive engagement: worked examples (e.g., Renkl, 2014), self-explanation prompts 

(e.g., Chi, De Leeuw, Chiu, & Lavancher, 1994), and the possibility to compare and contrast 

the three examples (e.g., Alfieri, Nokes-Malach, & Schunn, 2013). The worked examples 

were adapted from a study by Berthold and Renkl (2009) and instantiated the three models 
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(M1, M2, and M3) within three different context stories (C1, C2, and C3). In the first context 

(C1), the urn models were applied to the random distribution of bike helmets among 

participants in a two-day mountain-bike course. In the second context (C2), the urn models 

were applied to the random distribution of ranks in a ski-jumping competition with two 

rounds of jumps, and in the third context (C3), to the random drawing of unlabeled bottles 

from two cabinets. We generated nine worked examples by combining the three models with 

the three context stories (see Appendix A for examples).  

 

2.3 Procedure 

Before starting the experiment, learners answered a demographic questionnaire. All 

instructions, learning materials, and tests for the experiment were delivered via a computer-

supported collaborative learning (CSCL) environment, programmed in lessonLAMS 

(www.lessonlams.com). Participants sat at their individual PCs in separate cubicles and 

collaborated via a text-based chat. The computer-mediated communication setting allowed us 

to record participants` individual answers, along with the complete discussion that took place 

in the triad.  

In the CSCL-environment, participants began with the pretest. For the subsequent 

learning phase, the environment was designed to establish knowledge interdependence, the 

defining feature of jigsaw-type collaborations (e.g. Dillenbourg & Jermann, 2007), and 

differed slightly from typical whole-classroom implementations of the method. Specifically, 

we did not include a phase in which learners discuss their individual learning materials with 

others who studied the same topic, and did not separate phases of information exchange and 

collaborative problem solving. In our scripts, each triad member first studied a different set of 

three worked examples during an individual learning phase (Figure 1). We prompted learners 

to compare and contrast their set of worked examples, and to type a written explanation of the 

http://www.lessonlams.com/
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similarities and the differences into a text box. Learners could proceed to the collaborative 

learning phase only after spending at least ten minutes on their individual materials, and 

completing the self-explanation task. 

We realized two levels of knowledge interdependence during the individual learning 

phase. In the strong knowledge interdependence condition, each individual learner in a triad 

became an expert for a different model. Their materials comprised three worked examples for 

their model (M1, M2, or M3), each embedded in a different context (i.e., a single model was 

exemplified in three different contexts). In the weak knowledge interdependence condition, in 

contrast, each learner of a triad studied all three models, but these models were embedded in a 

single context. The context differed between learners (C1, C2, or C3). Thus, in a sense, each 

learner in this condition became an expert for a specific context. Note that in both conditions, 

each learner studied exactly three worked examples in the individual learning phase.  

A collaborative learning phase followed the individual learning phase. Instructions and 

tasks in this phase were identical in both conditions (Figure 1). We designed this phase in 

order to give all learners the opportunity to process the entire set of core concepts (i.e. all nine 

model-context combinations), and to prompt information exchange between learners. Triads 

collaborated via chat to agree upon a joint answer to three self-explanation tasks, one for each 

of the three models. The discussion prompts were: 

• Task 1, referring to Model 1: “Discuss and explain: Why are the fractions 

always multiplied, rather than added up in these examples?” 

• Task 2, referring to Model 2: “Discuss and explain: Why is the fractions’ 

denominator decreasing?” 

• Task 3, referring to Model 3: “Discuss and explain: Why does the solution to 

Model 3 require both addition and multiplication?” 

Finally, after finishing the collaboration phase, learners individually completed a post-

test. In total, the experiment lasted about 2.5 hours. 
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2.4 Measures 

2.4.1 Questionnaire  

In the demographic questionnaire participants stated their age, gender, native language, 

subject of study, and final high school grade in Mathematics. 

 

2.4.2 Pretest 

In addition to six basic knowledge questions on adding and multiplying fractions used for 

screening participants, the pretest contained four story problems assessing learners’ prior 

knowledge about Models 1 through 4 (M1-M4). For example, the word problem for Model 3 

was (translated from German): 

You are turning, twice, a fortune wheel that has five equally large sections, each showing 

a different symbol: shamrock, heart, tomato, frog, and mushroom. You win if your two 

turns show the shamrock and the heart (no matter in which order). What is your 

likelihood of winning? Please state both the equation and the final solution.  

We coded learners’ answers as correct if they produced any of the possible mathematically 

equivalents of the correct equation (for the example above, 1/5*1/5+1/5*1/5, which is 

mathematically equivalent, for example, to 2/5*1/5, or 2*1/5^2). The number of correctly 

solved word problems constituted learners` pretest score (M=2.19; SD=.99). The internal 

consistency of this measure was acceptable (ωtotal=.69). 

 

2.4.3 Posttest 

The posttest included application and transfer tasks. The application tasks comprised six word 

problems assessing learners’ ability to apply the three trained models (M1-M3). Three 
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application problems were identical to the M1-M3 problems from the pretest, three used novel 

cover stories. The transfer tasks comprised three word problems. These word problems 

required learners to infer the solution procedure for the untrained Model 4. The transfer 

problem used the context stories that learners were familiar with from the training phase (see 

Appendix B  for an example).  We informed learners that these tasks constituted a new type of 

urn model, but that they would be able to solve them by combining what they had learned 

before.  

 For each problem of the posttest, an answer was scored as correct only if a learner 

produced a mathematical equivalent of the correct equation (e.g., 1/5*1/4+1/5*1/4 for the 

example in Appendix B). We computed two separate post-test scores: the number of correct 

solutions to the six problems assessing Models 1 through 3 (application score; M=4.52; 

SD=1.27), and the number of correct solutions to the three problems assessing Model 4 

(transfer score; M=1.63; SD=1.21). The internal consistencies of these two measures were 

acceptable (application score: ωtotal=.76; transfer score: ωtotal=.83). 

  

2.5 Coding Procedure 

We gathered two types of process data in this experiment: (1) students’ answers to the self-

explanation prompts in the individual learning phase, and (2) the chat communication during 

the collaboration phase. We aimed to identify learning activities, such as explanations, 

arguments, questions, or solution attempts, in which learners referred to relevant principles. 

Such principle-based elaborations are a particularly important learning activity in example-

based learning scenarios (cf. Renkl, 2014) like the one we employed in this study.  

Based on previous studies using similar materials (e.g., Berthold & Renkl, 2009), we 

identified three basic stochastic principles to be relevant for the worked examples. Two 

principles identify the specific urn model: (1) relevance of order (relevant/irrelevant) and (2) 
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replacement (with/without). The third, more general principle, concerns the need to (3) 

multiply the probabilities of individual events in order to compute their joint probability. It is 

important to note that the three principles are relevant for explaining each of the worked 

examples, independent of the model it exemplifies, or of the context in which it is embedded. 

That is, in each worked example, the drawing is either with or without replacement, the order 

of events is either relevant or irrelevant, and the problem solution always requires 

multiplication of probabilities.  

We did not expect learners to provide specific labels for the three stochastic principles. 

Instead, we coded whether they gave correct explanations for specific features of the solution 

equation that corresponded with the principles. For example, a learner might have noted that 

the solution of a worked example contained two fractions with identical (or: different) 

denominators. If she explained this fact as resulting from the number of objects remaining 

constant (or: decreasing) from one draw to the next in the example, she received credit for a 

principle-based self-explanation (in this case, referring to the principle of drawing 

with/without replacement). 

 

2.5.1 Individual self-explanations 

For the self-explanations produced in the individual learning phase, participants received one 

point for each of the three stochastic principles that could be identified. Two coders 

independently rated all 78 individual self-explanations. Inter-rater agreement was satisfactory 

(ICCabsolute=.84 [95%-CI: .77; .89]). Disagreements were resolved by discussion. 

 

2.5.2 Chat analyses 

In analyzing the chat protocols (n=1873 turns), we identified principle-based elaborations that 

were either individual contributions that did not build upon previous contributions by others 
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(constructive), or that were part of an interactive process of co-constructing an explanation 

(interactive). We used a two-step coding procedure. 

In a first step, we narrowed down the coding sample by identifying turns in which a 

learner engaged with the learning materials in at least a constructive mode. We termed these 

knowledge-building turns. Examples include learners suggesting a solution, attempting an 

explanation, rephrasing the problem, raising a question, critiquing or elaborating on another 

learner’s contribution, or proving justification. Turns in which learners coordinated their 

collaboration, engaged in social talk, or discussed technical issues were not coded as 

knowledge building turns. To determine inter-rater agreement, a second coder rated ten 

randomly selected chat protocols (n=30 learners). Inter-rater agreement for the number of 

knowledge-building turns per learner was high (ICCabsolute=.97 [95%-CI: .92; .99]). 

Disagreements were resolved by discussion. This first coding step yielded a total of n=499 

knowledge building turns in the whole sample. 

In the second step, we assigned each knowledge building turn two codes. First, we 

coded each knowledge building turn as either principle-based, or not principle-based. To be 

principle-based, a turn had to be relevant with regard to one of the three stochastic principles 

described above. Second, we coded all knowledge building turns as either constructive or 

interactive. Recall that, by our definition, all knowledge building turns were at least 

constructive. We coded a knowledge building turn to be interactive if it built on a previous 

knowledge building turn by a learning partner, for example by referencing, elaborating, or 

rephrasing that contribution, or by providing an answer or a critique (cf. Chi & Wylie, 2014). 

If learners raised a new topic, ignored their partners’ contributions, or elaborated on one of 

their own previous turns, we coded the turn as constructive. Combining both sets of codes, 

two scores resulted for each learner: the number of constructive principle-based turns, and the 

number of interactive principle-based turns.  



Two rationales for distributing information 

19 
 

To determine inter-rater agreement, a second coder rated another set of ten randomly 

selected chat protocols (n=30 learners). Agreement was high for both, constructive principle-

based contributions (ICCabsolute=.95 95%-CI [.89; .98]) and interactive principle-based 

contributions (ICCabsolute=.91 95%-CI [.81; .96]). Disagreements were resolved by discussion. 

The analysis yielded n=144 constructive principle-based turns and n=166 interactive 

principle-based turns in the whole sample. 

 

3. Results 

3.1 Pretest 

There were no relevant differences between experimental conditions in participants’ prior 

knowledge as assessed in the pretest (t(76)=.11; p=.91; see Table 1).  

 

3.2 Individual self-explanations 

There was substantial variance in learners’ self-explanation scores (see Table 1), but it could 

not be explained by systematic differences between conditions (B=.68; SE=.78; Exp(B)=1.98; 

95%-CI [.43; 9.07]; p=.38), learners’ prior knowledge (B=.37; SE=.23; Exp(B)=1.44; 95%-CI 

[.92; 2.27]; p=.11), or the interaction between experimental condition and prior knowledge 

(B=-.07; SE=.30; Exp(B)=.93; 95%-CI [.51; 1.68]; p=.81) in a generalized logistic regression 

analysis. This result is important, because it shows that differences in learning and transfer 

between conditions cannot be fully explained by students’ activities in the individual learning 

phase. 

 

3.3 Learning outcomes 
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Table 1 provides an overview of the proportion of correct responses on the pretest, the 

application test, and the transfer test in both conditions. The intra-class correlations were 

ICCconsistency=- .07 (95%-CI [-.24; .19]; p=.70) for the application score, and ICCconsistency=-.21 

(95%-CI [-.33; 0]; p=.98) for the transfer score, indicating a non-hierarchical data structure. 

Therefore, we conducted the following analyses on the level of individual learners. 

Since the posttest data originally consisted of a series of binary (incorrect or correct) 

responses, we calculated generalized logistic regression models (using SPSS’s GENLIN 

procedure, with a logit link function) rather than ANOVAs as our primary method of analysis 

(Jaeger, 2008). We included prior knowledge (number of pretest problems solved correctly), 

and the interaction term of prior knowledge and condition as predictors in all regression 

models. Condition was dummy coded, with parameter estimates referring to the effect of 

being in the weak knowledge interdependence condition. For performance on the application 

tasks, prior knowledge was the only statistically significant predictor (B=.99; SE=.21; 

Exp(B)=2.71; 95%-CI [1.78; 4.13]; p<.001). The two experimental conditions did not differ 

significantly with regard to the application score (B=.70; SE=.56; Exp(B)=2.02; 95%-CI [.68; 

6.01]; p=.21), and there also was no statistically significant interaction of condition and prior 

knowledge (B=-.36; SE=.28; Exp(B)=.70; 95%-CI [.40; 1.22]; p=.21). Thus, for students’ 

ability to apply the three trained models, Hypothesis 1 received no support: Independent of 

learners` prior knowledge, both conditions were equally effective. 

For performance on the transfer tasks, experimental condition, prior knowledge, and 

their interaction were statistically significant predictors. All parameter estimates from the 

generalized logistic regression can be found in Table 2 (Regression Model 1). To further 

probe the interaction effect, and confirm it with a different technique, we performed a median 

split for prior knowledge (Median=0.5), and compared learners with low and high levels of 

prior knowledge in both conditions (Figure 2). Learners with high prior knowledge obtained 

high transfer scores regardless of condition (t(23)=.81; p=.43). However, learners with low 
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prior knowledge benefitted more from the weak compared to the strong knowledge 

interdependence condition (t(51)=2.89; p=.01). The findings regarding transfer performance are 

thus in line with Hypothesis 1. 

 

3.4 Chat analyses: Principle-based turns 

Table 3 gives an overview of the mean numbers of constructive and interactive principle-

based turns that individual learners produced in both conditions. The number of constructive 

turns produced by one triad member was not influenced by the number of constructive turns 

produced by the other triad members (ICCconsistency=-.19; 95%-CI [-.32; .02]; p=.96). This 

independence was expected given the definition of constructive turns as non-interactive (Chi 

& Wiley, 2014). For the number of interactive turns, on the other hand, our analysis points 

towards a positive dynamic, in that two members of the same triad show significantly higher 

similarity regarding their interactive engagement than any two randomly chosen learners 

(ICCconsistency=.31; 95%-CI [.07; .57]; p=.01). 

As the numbers of constructive and interactive principle-based turns in the chat 

constitute count data, we calculated generalized linear regression models assuming a Poisson 

distribution and a logistic link function, again using SPSS’s GENLIN procedure. To assess 

whether the number of learners’ constructive and interactive principle-based contributions to 

the chat mediated the effects of experimental condition, we followed the approach suggested 

by Baron and Kenny (1986). This approach can handle input from different kinds of 

generalized linear regression models, such as the combination of logistic and Poisson 

regression used in the present analysis. In our analysis, the numbers of constructive/interactive 

principle-based turns served as the potential mediators, and prior knowledge was included as a 

potential moderator. 
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3.4.1 Constructive principle-based turns  

Figure 3a shows the mean number of constructive principle based turns produced by learners 

with low versus high levels of prior knowledge in both conditions (note that prior knowledge 

served as a continuous predictor in the regression analyses). The Poisson regression yielded 

non-significant effects for experimental condition (B=.25; SE=.43; Exp(B)=1.29; 95%-CI [.55; 

2.99]; p=.56), and for the interaction between experimental condition and learners’ prior 

knowledge (B=-.14; SE=.16; Exp(B)=.87; 95%-CI [.64; 1.20]; p=.40). The only statistically 

significant predictor was prior knowledge (B=.32; SE=.12; Exp(B)=1.38; 95%-CI [1.10; 1.73]; 

p=.01).  

Because it could not be regressed on experimental condition, the number of 

constructive principle-based turns did not qualify as a potential mediator to explain the effect 

of experimental condition on individual transfer performance. Also, even though the number 

of constructive principle-based turns showed a moderate correlation with learners’ application 

score from the post-test (r=.36; p=.01), it did not correlate with students’ transfer score 

(r=.17; p=.15). 

 

3.4.2 Interactive principle-based turns  

Figure 3b shows the mean number of interactive principle-based turns produced by learners 

with low and high levels of prior knowledge in both conditions. Visual inspection suggests an 

interaction, with low prior knowledge learners being more interactive in the weak knowledge 

interdependence condition, and high prior knowledge learners being more interactive in the 

strong knowledge interdependence condition. In fact, the Poisson regression yielded 

significant effects for experimental condition, prior knowledge, and their interaction (see 

Table 2, Regression Model 2). To further probe the interaction effect, we again compared 

learners below and above the median prior knowledge score in both conditions. Learners with 
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high prior knowledge did not produce more interactive principle-based turns under weak, 

compared to strong knowledge interdependence (t(23)= -1.81 p=.08). Low prior knowledge 

learners, however, produced more interactive principle-based turns under weak, compared to 

strong knowledge interdependence (t(37.98)=2.34; p=.03). The results are thus in line with 

Hypothesis 2. 

In the next analytic step, we included the number of interactive principle-based turns 

as an additional predictor in Regression Model 3. The number of interactive principle-based 

turns significantly predicted the transfer score, even when controlling for experimental 

condition, prior knowledge, and their interaction (Table 2, Regression Model 3). Further, 

including interactive principle-based turns reduced the explanatory power of the other three 

predictors; that is, their Exp(B)s (Odds Ratios) were closer to 1 in Regression Model 3 

compared to Regression Model 1. However, the effect of experimental condition was still 

statistically significant, yielding support only for partial mediation, and thus, partial support 

for Hypothesis 3. 

 

4. Discussion 

In the present study, we contrasted two rationales for distributing information between 

learners. The first rationale, implemented in traditional jigsaw-type collaboration scripts (e.g., 

Aronson & Patnoe, 1997), is to design for strong knowledge interdependence. Accordingly, 

information on core concepts is distributed between learners prior to collaboration. The 

second rationale is to design for weak knowledge interdependence, as in the modified jigsaw-

type script developed for the present research. Accordingly, a common ground regarding core 

concepts is established among learners, and only contextual features are distributed between 

learners prior to collaboration. 



Two rationales for distributing information 

24 
 

In line with Hypothesis 1, we found that low prior knowledge learners, in particular, 

learned better under conditions of weak, rather than strong knowledge interdependence, 

whereas high prior knowledge learners profited equally in both condition. This effect was, 

however, only found for the transfer test. This test assessed learners’ ability to derive the 

application of a fourth, untrained stochastic model from their knowledge about the three 

trained models, and thus, required a deep understanding of the trained models. Low prior 

knowledge learners engaged more actively in collaborative knowledge construction under 

conditions of weak, compared to strong knowledge interdependence, as indicated by a higher 

number of interactive principle-based turns (supporting Hypothesis 2). In line with Hypothesis 

3, higher interactive engagement partially mediated the beneficial effects of weak knowledge 

interdependence on transfer performance.  

The crucial experimental manipulation in our study concerned the ways in which 

information was distributed between learners, and thus the kinds of materials that learners 

studied prior to collaboration. In the strong knowledge interdependence condition, learners 

compared three worked examples illustrating a single mathematical concept embedded in 

three different contexts. In the weak knowledge interdependence condition, in contrast, 

learners studied three worked examples illustrating three different mathematical concepts 

within the same context. In our study, the number of worked examples and the time for 

studying was held constant across conditions to ensure comparability beyond this crucial 

difference. 

An alternative attempt to explain our findings might posit that the differential effects 

of weak versus strong knowledge interdependence arose solely from learners’ engagement 

with the different types of learning materials during the individual learning phase. This 

explanation, however, is insufficient to account for the full range of findings. First, the 

analyses showed no substantial differences regarding the number of principle-based 

explanations that learners’ produced during the individual learning phase. Thus, learners in 
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both conditions engaged in principle-based, constructive learning activities to a comparable 

extent during the individual learning phase. Second, the chat analyses confirmed that both 

kinds of knowledge interdependence had differential effects on learners’ engagement with 

core concepts during collaboration. Thus, the individual learning materials in the weak 

knowledge interdependence condition did make a difference, but they did so by better 

preparing low prior knowledge learners for participating in, and learning from interactive 

engagement in collaboration. 

 

4.1 The role of interactive learning activities 

Important parts of our argumentation are in line with the recent review by Chi and Wylie 

(2014). They argue that interactive learning activities, such as the co-construction of 

explanations, are superior to constructive learning activities, such as individual generation of 

self-explanations. However, all evidence presented by Chi and Wylie (2014) comes from 

studies that compared the effectiveness of collaborative versus individual learning settings, 

thus equating collaborative learning settings with interactive learning activities, and specific 

forms of individual learning settings with constructive learning activities. Nevertheless, while 

collaborative learning is certainly unique in affording interactive learning activities, a 

collaborative learning setting alone does not guarantee that learners will, in fact, engage in 

interactive learning activities. Consequentially, studies employing detailed analyses of the 

actually occurring learning activities, using process data, are needed. With the present study, 

we have provided such an analysis. Complementing Chi and Wylie’s (2014) reasoning, we 

found that interactive, but not constructive learning activities (partially) mediated between the 

degree of knowledge interdependence and individual learning outcomes in a collaborative 

learning setting. 
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4.2 Limitations 

Our findings indicate that low prior knowledge learners benefit more from weak knowledge 

interdependence than high prior knowledge learners. It would be highly interesting to conduct 

more fine-grained analyses of how group composition with regard to prior knowledge 

influences the occurrence and effectiveness of interactive learning activities. Unfortunately, 

such analyses were beyond the scope of the present study. However, future studies comparing 

intentionally created homogeneously and heterogeneously composed groups may contribute 

to a better understanding. In addition, as our study showed that members of the same triad 

tended to be more similar in their level of interactive engagement, it would be highly 

interesting to further study the links between the general level of interactive engagement 

within a group, an individuals` active participation in interactive knowledge construction, and 

individual learning outcomes. Such analyses would, however, require much larger samples 

sizes allowing for hierarchical data modelling. 

Further, while we could demonstrate a relevant benefit of weak over strong knowledge 

interdependence for individual learning outcomes, it would also be interesting to study 

alternatives outcomes such as learners` motivation, interpersonal relations, or social skills. 

Further research is needed to investigate whether different degrees of knowledge 

interdependence influence these kinds of outcomes.  

Finally, limitations of the present study`s ecological validity arise from the laboratory 

setting and the computer-mediated communication. Thus, a valuable next step would be to 

implement the two rationales on distributing information in more natural learning settings, to 

check the robustness and practical relevance of the present findings.  

 

4.3 Conclusion  
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Strong knowledge interdependence is easy to implement, because instructors only have to 

distribute core content among learners that would anyways be studied, for example, by 

distributing chapters in a textbook that describe different core concepts. Designing for weak 

knowledge interdependence requires more work: The instructor has to develop a variety of 

different contexts for embedding or applying the core concepts. Existing learning resources, 

such as textbooks, are typically not structured in this way. However, our results show that this 

extra work might be worth the effort.  
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Figure 1: Overview of the two learning phases in both experimental conditions.  

Note: In the individual learning phase, each learner processed distinct sets of three worked 

examples and, thus, became expert for a specific stochastic model in the strong knowledge 

interdependence condition, or expert for a specific context in the weak knowledge 

interdependence condition. Worked examples are represented as greyscale rectangles with 

M1-M3 representing the three statistical models, and the greyscales representing the three 

different contexts. In the subsequent collaborative learning phase (identical for both 

conditions), the triads of learners solved three consecutive tasks. 
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Figure 2: Transfer scores (Ms and SEs) of low and high prior knowledge learners in 

both experimental conditions (KI= knowledge interdependence). 
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Figure 3: Constructive and interactive principle-based turns (Ms and SEs) contributed by low and high prior knowledge learners in both 

experimental conditions (KI= knowledge interdependence). 

 

Figure 3a: Constructive principle-based turns Figure 3b: Interactive principle-based turns 
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Table 1: Mean proportions correct (standard deviations) of pre- and post-test scores in 

both experimental conditions. 

 

 strong knowledge 

interdependence (n=39) 

weak knowledge 

interdependence (n=39) 

Pretest  .55 (.24) .54 (.26) 

Self-explanation .21 (.19) .31 (.29) 

Posttest:   

 application  .75 (.23) .76 (.19) 

 transfer  .46 (.44) .62 (.35) 
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Table 2: Overview of the three regression models for testing the mediating effect of interactive principle-based turns. 

 Regression Model 1 Regression Model 2 Regression Model 3 

outcome transfer score interactive principle-based turns transfer score 

generalized linear regression 

model 

binomial distribution (events-in-

trials data); logit link 

Poisson distribution (count data); 

log link 

binomial distribution (events-in-

trials data); logit link 

predictors: B (logit) 

 
SE Exp(B)      

[95%-CI] 

B (log) 

 
SE Exp(B)      

[95%-CI] 

B (logit) 

 
SE Exp(B)      

[95%-CI] 

 experimental condition  2.44*** 

 
.76 11.52*** 

[2.59; 51.24] 
1.78*** 

 
.42 5.90*** 

[2.59; 13.48] 
1.92* 

 
.79 6.83* 

[1.43; 32.62] 
 prior knowledge 

 

1.21*** 

 
.26 3.34*** 

[2.01; 5.55] 
.61*** 

 
.11 1.83*** 

[1.47; 2.28] 
1.02*** 

 
.27 2.77*** 

[1.62; 4.73] 
 

 

prior knowledge x  

experimental condition 

(moderation) 

-.79* 

 
.33 .45* 

[.24; .87] 
-.67*** 

 
.16 .51*** 

[.38; .69] 
-.57 .35 .56 

[.28; 1.11] 

 interactive principle-based 

turns (mediator) 

      .17* 

 
.08 1.19* 

[1.02; 1.38] 

 

Note: For experimental condition, regression parameters refer to the effect of being in the weak knowledge interdependence condition. 

*p<.05; **p<.01; ***p<.001 
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Table 3: Mean number (standard deviations) of constructive and interactive principle-

based turns per learner in both conditions. 

 

 strong knowledge 

interdependence 

(n=39) 

weak knowledge 

interdependence 

(n=39) 

constructive  1.92 (1.71) 1.77 (1.33) 

interactive  2.00 (1.97) 2.26 (2.51) 
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Appendix A 
 
Example learning materials from the individual learning phase (translated from German; M denotes the stochastic model, C denotes the context in which a model is embedded) 
Appendix A.1 
 
The three worked examples compared and contrasted by the Model-2-expert (strong knowledge interdependence condition) 
 

M2-C1 M2-C2 M2-C3 
 
You and a friend are in a two-day mountain bike 
course. Each morning your instructor hands out five 
bicycle helmets (orange, green, black, red, and 
yellow) in random order. You are always the first to 
receive a helmet and your friend the second.  
 
 
What is the probability that you will receive the red 
and your friend will receive the yellow helmet on the 
first day of the course? 
 

 
The four ski jumpers Adam, Beat, Christoph, and 
Daniel have often competed on the old Engelberg 
ski-jumping hill. They are all equally good. Thus, 
who jumps the furthest depends only on random 
factors (e.g., wind). Today, they test a new ski-
jumping hill for the first time. 
 
What is the probability that Adam will land on the 
first place, and Beat on the second place after the 
first round of jumps? 

 
A chemist keeps noble gases in two cabinets. There 
are three bottles in each cabinet, one containing 
Argon, one containing Krypton, and one containing 
Xenon. Unfortunately, the chemist forgot to label the 
bottles properly and now has to pick them at random. 
For her experiment she needs two different gases. 
 
The chemist consecutively takes two bottles out of 
the first cabinet. What is the probability that the first 
bottle contains Argon and the second bottle contains 
Xenon? 
 

Approach: 
1
5
∗

1
4

 
 

Solution: 

=  
1

20
 

Approach: 
1
4
∗

1
3

 
 

Solution: 

=  
1

12
 

Approach: 
1
3
∗

1
2

 
 

Solution: 

=  
1
6
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Appendix A.2 
 

 
The three worked examples compared and contrasted by the Context-1-expert (weak knowledge interdependence condition) 
 

M1-C1 M2-C2 M3-C1 
 
You and a friend are in a two-day mountain bike 
course. Each morning your instructor hands out five 
bicycle helmets (orange, green, black, red, and 
yellow) in random order. You are always the first to 
receive a helmet and your friend the second.  
 
What is the probability that you will receive the red 
helmet on the first day and the yellow helmet on the 
second day? 

 
You and a friend are in a two-day mountain bike 
course. Each morning your instructor hands out five 
bicycle helmets (orange, green, black, red, and 
yellow) in random order. You are always the first to 
receive a helmet and your friend the second.  
 
What is the probability that you will receive the red 
helmet and your friend will receive the yellow 
helmet on the first day of the course? 
 

 
You and a friend are in a two-day mountain bike 
course. Each morning your instructor hands out five 
bicycle helmets (orange, green, black, red, and 
yellow) in random order. You are always the first to 
receive a helmet and your friend the second.  
 
What is the probability that you will receive both a 
red and a yellow helmet over the two-day course? 
 
Hint: There are two possible orders: 

1) first day red, second day yellow 
2) first day yellow, second day red  

 
Approach: 

1
5
∗

1
5

 
 

Solution: 

=  
1

25
 

Approach: 
1
5
∗

1
4

 
 

Solution: 

=  
1

20
 

Approach: 
1
5
∗ 1
5
 + 1

5
∗ 1
5
 

 

Solution: 

=  
2

25
 



Two rationales for distributing information 

42 
 

Appendix B 
 
 
Example transfer task (translated from German) 
 
You and a friend are in a two-day mountain bike course. Each morning your instructor hands 
out five bicycle helmets (orange, green, black, red, and yellow) in random order. You are 
always the first to receive a helmet, and your friend the second.  
What is the probability that, today, you and your friend will receive the red and the yellow 
helmet (it doesn`t matter who receives which)? Please state both the equation and the final 
solution. 
 
 


