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Research Article

Prediction of colorectal cancer diagnosis based
on circulating plasma proteins
Silvia Surinova1,†, Meena Choi2, Sha Tao3,‡, Peter J Schüffler4, Ching-Yun Chang2, Timothy Clough2,

Kamil Vyslou�zil5, Marta Khoylou6, Josef Srovnal6, Yansheng Liu1, Mariette Matondo1,

Ruth Hüttenhain1, Hendrik Weisser1, Joachim M Buhmann4, Marián Hajdúch6, Hermann Brenner3,7,

Olga Vitek2,8,9,* & Ruedi Aebersold1,10,**

Abstract

Non-invasive detection of colorectal cancer with blood-based
markers is a critical clinical need. Here we describe a phased mass
spectrometry-based approach for the discovery, screening, and
validation of circulating protein biomarkers with diagnostic value.
Initially, we profiled human primary tumor tissue epithelia and
characterized about 300 secreted and cell surface candidate glyco-
proteins. These candidates were then screened in patient systemic
circulation to identify detectable candidates in blood plasma. An
88-plex targeting method was established to systematically moni-
tor these proteins in two large and independent cohorts of plasma
samples, which generated quantitative clinical datasets at an
unprecedented scale. The data were deployed to develop and eval-
uate a five-protein biomarker signature for colorectal cancer
detection.
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Introduction

Sporadic colorectal cancer (CRC) can be effectively cured by surgical

resection if detected at localized disease stages (Booth, 2007). The

current CRC detection procedure typically employs the fecal occult

blood test (FOBT) as a pre-selection test for further colonoscopic

evaluation. FOBT, however, presents a limited accuracy for tumor

detection because it is a nonspecific test for gastrointestinal bleed-

ing. As a result, FOBT does not adequately detect subjects with CRC

and suffers from a limited sensitivity (Bretthauer, 2011). It is desir-

able to develop novel diagnostic tests that can replace or comple-

ment FOBT and lead to more accurate disease detection rates.

Preferably, diagnostic tests should be non-invasive, measurable

in commonly sampled clinical specimens such as blood plasma, and

better separate true from false CRC instances than the FOBT.

Blood plasma and the proteins it contains are an ideal source of

biomarkers, since it represents the snapshot of a subject’s patho-

physiological state at a given time (Anderson & Anderson, 2002).

We hypothesize that the pathological processes of CRC lead to

characteristic changes in the proteins released from the tumor into

the bloodstream, representing a CRC-derived molecular signature

in plasma (see also Surinova et al, 2015).

We have set off to characterize proteins associated with CRC that

are detectable in patient’s systemic circulation and to develop a

protein biomarker signature able to classify CRC and control cases

at risk. We employed a phased mass spectrometry-based approach

for the discovery, screening, and validation of circulating protein

biomarkers with diagnostic value. Initially, we profiled human
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primary tumor tissues and characterized about 300 secreted and cell

surface candidate glycoproteins. These candidates were then

screened in patient’s systemic circulation to identify a refined set of

candidates detectable in blood plasma. An 88-plex targeting method

was established to systematically monitor these proteins in two

large and independent cohorts of plasma samples, which generated

quantitative clinical datasets at an unprecedented scale. The data

were used to develop and evaluate a five-protein biomarker signa-

ture that predicted colorectal cancer with high accuracy.

Results

Phase 1: biomarker candidate discovery in tumor epithelia

To maximize likelihood of identifying colorectal cancer (CRC)

biomarkers in the circulation, a phased biomarker development

pipeline was established (Fig 1A). Human primary tumors together

with adjacent normal mucosa were sampled from 16 subjects with

CRC (Appendix Table S1) as the best suitable source of biomarkers.

Tissue epithelia were manually dissected to enrich for cells of cancer

origin and to obtain samples with maximally homogenous protein

composition (Appendix Fig S1). To further enhance the capture of

circulating proteins and to gain access to the lower abundant frac-

tion of the plasma proteome, we selectively focused on glycopro-

teins which are typically cell surface and extracellular proteins

prone to secretion or shedding and are representative of the vast

majority of currently approved biomarkers (Zhang et al, 2007;

Schiess et al, 2009).

Epithelial lysates derived from 32 paired tumor and normal

samples were therefore subjected to proteolysis, followed by solid-

phase extraction of N-linked glycopeptides (Zhang et al, 2003). Puri-

fied N-glycosite peptides (de-glycosylated forms of peptides that are

glycosylated in the native protein) were analyzed as duplicates or

triplicates (as described in Materials and Methods) by high-resolu-

tion liquid chromatography tandem mass spectrometry (LC-MS/

MS). In total, 74 LC-MS runs were acquired and led to the identifica-

tion of 2,301 glycopeptides and 673 inferred glycoproteins (https://

db.systemsbiology.net/sbeams/cgi/PeptideAtlas/buildDetails?atlas_

build_id=374, or Table EV1). Prediction analysis of secondary

protein structures annotated 73% of these proteins as prone to

secretion, and 53% as containing at least one transmembrane

domain. This is indicative of a strong enrichment for proteins of the

circulatory system (Roth, 2002).

Peptide MS1-level features were quantified across all LC-MS runs

to characterize proteins that were consistently changing in their

abundance between tumor samples and their paired normal coun-

terparts and to assess differential protein abundance across cancer

progression. In total, 303 differentially abundant glycoproteins

(adjusted P < 0.05, log2 FC cutoff � 1.5) showed robust protein

changes in CRC, irrespective of the individual clinical stages,

distinct changes across disease progression, or specific differences

between localized and metastatic CRC (Table EV2).

Phase 2: screening of biomarker candidates in patient plasma

The hypothesis that secreted and cell surface glycoprotein candi-

dates of CRC are destined to reach the circulation was tested in

the screening phase (Fig 1A) of the study. In this phase, the 303

glycoproteins identified as differentially abundant in CRC tissue

were supplemented with 23 additional proteins identified in the

tumor glycoproteome and being associated with cancer in the litera-

ture, as well as five biomarker candidates identified in other ongo-

ing cancer biomarker studies (Table EV2) to test their detection in

plasma.

Targeted mass spectrometry based on selected reaction monitoring

(SRM) was employed to screen for tissue-derived candidates in

N-glycosite samples enriched from plasma from 19 subjects with

CRC. Subjects used in the screening phase partially overlapped with

subjects employed in the discovery phase (Phase 1), as described in

Appendix Table S1. Using the targeted approach, we detected 88

candidate proteins consistently in all plasma samples (Table EV3).

While the dynamic range of the plasma proteome spreads over more

than 10 orders of magnitude and poses major challenges to its

comprehensive analysis (Anderson & Anderson, 2002), this study

succeeded in detecting and quantifying candidate proteins covering 6

orders of magnitude in dynamic range. To our knowledge, this

is currently the largest abundance range quantifiable in a single

LC-MS analysis of plasma (Fig 1B). When relating protein concentra-

tions measured by immunoassays in plasma (Haab et al, 2005;

Polanski & Anderson, 2007; Hortin et al, 2008) to plasma protein

abundances determined in this study, it can be seen that the

quantifications based on the two technologies are in a reasonable

agreement. This is supported by the observation that the protein

order sorted by immunoassay concentrations or mass spectrometry

relative abundances was rather constant (Fig 1B). Next, we exam-

ined the coverage of our biomarker candidates by immunoassays in

plasma. From the literature, we know that immunoassays are only

available for a very small portion of the proteome and this is also the

case for the cell surface proteome (Bock et al, 2012). In our study, as

many as half of the protein candidates were previously assayed by

antibody-based technologies in plasma (red dots, Fig 1B). Interest-

ingly, it can be noted that, especially for the lower protein abundance

range, immunoassays are nearly completely absent, and therefore,

targeted mass spectrometry provides the means to quantify those

candidates that could not be previously measured.

Phase 3: development of a diagnostic biomarker signature

The biomarker candidates detected in plasma were then subjected

to clinical evaluation in two independent cohorts of samples

(n = 469) to ascertain biomarker candidates with diagnostic value

(Table 1). In both cohorts, the disease group was comprised of

subjects with CRC and the control group included both subjects with

benign lesions and healthy subjects. The first cohort—the training

cohort—was designed to reflect an underlying population with CRC

or at risk for CRC and was used for the discovery of a biomarker

signature with diagnostic potential. It included healthy subjects

(n = 66) and subjects with benign lesions (n = 34), and subjects

with CRC (n = 100). The disease status of all subjects was

confirmed by colonoscopy. The second cohort—the validation

cohort—was comprised of healthy subjects (n = 50) and subjects

with benign lesions (n = 17), and subjects with CRC (n = 202) at

distinct clinical stages (stage I: n = 43, stage II: n = 58, stage III:

n = 49, stage IV: n = 52). The validation cohort was conceived to

test the discovered protein biomarker signature on independent
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samples and to evaluate the ability of the signature to classify the

disease status with respect to clinical stage. Plasma samples were

subjected to parallel N-glycoprotein extraction in a 96-well format,

followed by targeted quantification of the candidate proteins by

SRM. Candidate proteins, together with two protein standards, were

combined into a 90-plex SRM method and used to profile the

biomarker candidates over the plasma-enriched N-glycosite samples.

The training and the validation cohorts were profiled separately and

independently. Of the 88 biomarker candidates, 70 proteins were

consistently quantified in both cohorts. This constitutes by far the

largest clinical dataset measured by LC-MS to date (Fig 1C).

To develop a diagnostic biomarker signature, we employed

tenfold cross-validation on the training cohort (Fig 2, Step 1).

Within each fold, first a test of differential abundance between the
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Figure 1. Phased proteomic workflow for the development of predictive biomarkers for colorectal cancer detection.

A Biomarker candidates were first characterized in the tumor and normal tissue epithelia by discovery-driven mass spectrometric (MS) profiling of the glycoproteome
and then screened in patient plasma by targeted MS via selected reaction monitoring (SRM). The detectable proteins in plasma were subjected to large-scale
quantification across two clinical cohorts of samples comprised of subjects with CRC, subjects with benign conditions, and healthy subjects. The data were used to
develop and validate a protein biomarker signature.

B The relative abundances of protein biomarker candidates detected and quantified in patient circulation were estimated on a relative scale using linear mixed
modeling. The y-axis on the right side of the plot annotates the proteins with measured concentrations by immunoassays in plasma (Haab et al, 2005; Polanski &
Anderson, 2007; Hortin et al, 2008). The proteins span a concentration range of 5–6 orders of magnitude. Red dots indicate proteins with available immunoassays in
plasma, and blue dots indicate proteins without such immunoassays.

C The generated quantification data are presented for the training and validation datasets, and the disease status of samples is labeled with red for CRC subjects, light
blue for subjects with benign conditions, and dark blue for healthy subjects. Hierarchical clustering with Euclidian distance and Ward linkage was employed to
cluster samples by similarity of protein abundance.
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CRC group and the controls was employed to narrow down the

candidate list to a subset of significant proteins changing in

abundance in CRC (P-value ≤ 0.05, FC cutoff � 1.1) (Appendix

Table S2A). Second, these proteins were used as input for logistic

regression, and the most discriminative proteins were identified by

stepwise selection. Third, their predictive accuracy was evaluated

using the subjects left out in the cross-validation fold, and

summarized with a ROC curve (Appendix Table S2B). The procedure

was repeated 10 times by systematically leaving out different

subjects. A consensus model was formed from proteins that were

selected in at least 5 of the 10 repetitions. The consensus protein

biomarker signature was comprised of ceruloplasmin (CP), serum

paraoxonase/ arylesterase 1 (PON1), serpin peptidase inhibitor,

clade A (SERPINA3), leucine-rich alpha-2-glycoprotein (LRG1), and

tissue inhibitor of metalloproteinases 1 (TIMP1). The parameters

of the consensus model and the standard errors of these

parameters based on the logistic regression model fit are reported

in Appendix Fig S2.

Table 1. Characteristics of the study population according to diagnostic subgroup for the training and validation cohorts.
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Phase 3, training cohort: 100 CRC and 100 control subjects

Discovery of a multivariate signature within 10-fold cross-validation
Systematically rotate samples between 10 folds

Select differentially abundant proteins on 9/10 of samples    about 20 proteins per fold
Fit logistic regression models with stepwise protein selection 4-5 proteins per model
Predict the disease status of  1/10 ‘left-out’ samples     AUROC (mean=0.62, SE=0.04)

Generate a consensus logistic regression model with proteins selected in  5 folds: 
ln{Prob (CRC)/(1-Prob(CRC))}= -15.15+0.73xCP-1.06xPON1+0.69xSERPINA3+0.37xLRG1+0.41xTIMP1

Step 1

10x

Step 2 Characterization of selected candidate biomarkers on the full training cohort
Quantify protein fold changes and standard errors

Illustrate the range of protein intensities and their univariate contribution to disease (plot 1) 
Illustrate model-based estimated probability of disease (plot 2)
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Fold change (SE) 1.3 (0.05) 0.9 (0.04) 1.3 (0.06) 1.2 (0.03) 1.2 (0.03)
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Predict CRC and controls on the full validation dataset  AUROC=0.84
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Evaluate the reproducibility of fold changes  and standard errors

Phase 3, validation cohort: 202 CRC and 67 control subjects
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Fold change (SE) 1.6 (0.03) 0.8 (0.03) 1.2 (0.04) 1.5 (0.04) 1.4 (0.04)
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Figure 2. Protein biomarker signature development in phase 3.
Step 1: A training cohort with 200 samples (100 CRC, 100 control subjects) was used to discover a predictive signature using multivariate logistic regression and 10-fold cross-
validation. The parameters of themultivariate logistic regression used to evaluate the predictive ability of the signature are reported for themodel. Step 2: The selected protein
biomarkers were characterized on the full training cohort. Plot 1: For each protein in the signature, subjects were partitioned into 10 equal groups of relative protein
abundance, and the proportion of subjects with CRC was calculated for each group and plotted as a function of relative protein abundance. Loess curves (Cleveland & Shyu,
1992) were fit to the points together with bands indicating 95% pointwise confidence intervals for the curves. Plot 2: model-based probabilities of CRC, estimated with the
multivariate signature on the full training cohort. The probabilities were plotted as a function of relative abundance of CP. The colored lines correspond to probabilities at the
25th or 75th quantiles of relative abundance of LRG1, PON1, and SERPINA3. Dashed lines correspond to LRG1 fixed at the 25th quantile, and solid lines indicate LRG1 fixed
at the 75th quantile of relative abundance. TIMP1 was fixed at the median value of relative abundance. Step 3: An independently acquired validation cohort was
used to evaluate the accuracy of the protein biomarker signature. Step 4: Post-signature characterization of the selected biomarkers was also performed on the validation
cohort in terms of fold change of differential abundance between the CRC and control groups, and the associated standard error. The fold changes and the standard
errors reported in steps 2 and 4 were estimated using a linear mixed effect model (Choi et al, 2014) and transformed to the original scale using Delta method (Agresti, 2012)
(FCoriginal = 2log2FC and SEoriginal = SE log2 scale × ln(2)2log2FC).
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To confirm the reproducibility of the protein biomarker signa-

ture, we repeated the procedure described above anew three times

with different random partitions of the subjects into 10-folds and

three more times with different random partitions of the subjects

into eight-folds. In these repetitions, the proteins selected most

frequently into the consensus models were highly overlapping with

the proteins found above, and the prediction accuracy was also

highly comparable (Appendix Table S3). Moreover, to compare the

results with the optimum predictor on the training dataset, we

enumerated all the protein combinations of up to five proteins in

the training dataset by exhaustive search and evaluated the corre-

sponding logistic regression models by their area under the ROC

curve in 100-fold bootstrapped cross-validation (Efron & Tibshirani,

1993). The best models had a similar cross-validation performance.

The proteins present were ranked by their frequency of occurrence

among these models (Appendix Fig S3), and the top selections

included the proteins in the protein biomarker signature above.

Overall, these results confirm that the markers selected by the origi-

nal procedure are robust to the specific choice of the parameters

and of the folds.

Next, to fully take advantage of this large-scale dataset, we char-

acterized the proteins in the selected biomarker signature above on

the full training cohort. In the univariate analysis, an increase in

protein abundance was associated with CRC for four out of the five

proteins (Fig 2, Step 2, Plot 1, for boxplots, see Appendix Fig S4A).

PON1 showed the opposite trend. To illustrate the multivariate

pattern of the protein biomarker signature, we plotted the predicted

probability of CRC as a function of estimated log-abundance of CP,

while fixing the estimated abundances of the other proteins to their

quantiles (Fig 2, Step 2, Plot 2). The highest probability of disease

can be indeed achieved at the lower abundance quantile of PON1

and at the higher cutoffs of the other four proteins.

Given that the control group included healthy subjects with no

lesions and subjects with benign lesions, the specificity of classifica-

tion was evaluated separately for these two groups. In this analysis,

the subjects were split into five-folds (instead of the original

10-folds) due to smaller-sized subgroups and the pseudomedian

cross-validated performance of the respective subgroups was

assessed. Sixty-two percent of subjects with no lesions and 57% of

subjects with pre-lesions were accurately classified (Appendix Fig

S5A). This shows that both groups were predicted with similar accu-

racy, which is in line with the 60% specificity of the complete

control group. To investigate this important point of control group

specificity further, a new set of advanced adenoma samples

(n = 50) was included in the study at this stage. These samples were

collected and measured as part of the training cohort, appropriately

randomized and normalized to avoid bias. These new samples were

not part of the protein biomarker signature development stage, as

they represent intermediate lesions, and therefore can be viewed as

a separate evaluation cohort. At this point, they were classified with

the protein biomarker signature. Fifty-four percent of the subjects

with advanced pre-lesions were correctly predicted (Appendix Fig

S5B), which is similar but slightly inferior to the specificity seen for

the complete control group. The observed drop in specificity high-

lights that these subjects represent an intermediate state of colorec-

tal transformation.

Finally, the protein biomarker signature was evaluated on the

independent validation cohort. Each signature protein was first
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Figure 3. Evaluation of the protein biomarker signature on the
independent validation cohort in phase 3.

A Detection of the disease status of subjects with CRC (n = 202) and controls
(n = 67) was summarized in an ROC curve.

B Stratified detection by clinical stage. The subjects with CRC were
partitioned according to stage: CRC stage I (n = 43), CRC stage II (n = 58),
CRC stage III (n = 48) and CRC stage IV (n = 52). Each group was
discriminated separately against the controls (n = 67) using the same
multivariate biomarker signature as in (A).

C Stratified detection by tumor size. The subjects with CRC were partitioned
according to tumor size: diameter < 3.5 cm (n = 37), diameter 3.4–6 cm
(n = 88), and diameter ≥ 6 cm (n = 45). Each group was discriminated
separately against the controls (n = 67) using the same multivariate
biomarker signature as in (A).

D Estimated relative protein abundance of the signature proteins in subjects
with CRC, stratified by tumor size. The plotted relative log2 protein
abundance represents a summarized value for each subject obtained from
the linear model. Significant differences in abundance are labeled with
asterisks (***P < 0.001, ****P < 0.0001).

Data information: In all panels, a threshold of 0.386 was used to read
specificity, sensitivity, and accuracy. Accuracy is defined as the proportion of
true results in all the measurements [i.e. accuracy = (true positive + true
negative)/(positive + negative)]. Pairwise tests of equality of means and of
areas under the ROC curves were carried out with the t-test (in D) and using
bootstrap cross-validation repeated 2,000 times to account for the
non-independence of the curves in (B) and (C), respectively.
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examined separately. For the five selected proteins, the fold changes

of abundance between the CRC and the control groups, and the

corresponding standard errors, were very well reproduced on the

validation cohort (Fig 2, Step 4, for boxplots, see Appendix Fig

S4B). Of the five proteins, CP, TIMP1, and LRG1 demonstrated

the highest areas under the ROC curves (Appendix Fig S6).

The prediction of CRC and control subjects with the protein

biomarker signature achieved an accuracy of 72% (Fig 3A).

At this point, we examined whether age, a potential confounder,

had any impact on the predictive ability of the protein biomarker

signature. In the training cohort, the protein selection performed

within 10-fold cross-validation with or without age adjustment of

disease probability found that very similar proteins were selected in

both cases. The difference between the respective AUCs was 2.9%

(bootstrap-based P-value = 0.15). In the validation cohort, the

difference between the model with or without age consideration

was 5.2% (bootstrap-based P-value = 0.004). Although the differ-

ence in AUCs is statistically significant, in both cases similar AUC

values were obtained (Appendix Fig S7).

In addition to the detection of CRC as one disease, we examined

the ability of the protein biomarker signature to distinguish subjects

with distinct stages of CRC from controls. The CRC subjects in the

validation cohort were stratified according to the TNM system

(Sobin, 2003), which represents the invasiveness in terms of tumor

spread across the mucosal membrane. The results did not indicate a

superior predictive ability of the protein biomarker signature for any

particular disease stage (Fig 3B). This showed that the protein

biomarker signature can predict early and advanced CRC equally

well.

Since the TNM-based staging of CRC does not account for the

tumor extent, a smaller but more invasive tumor may be assigned to

a more advanced stage than a larger but less invasive tumor. At the

same time, larger tumors may secrete into circulation larger

amounts of the protein biomarker and may therefore be easier to

diagnose. To investigate the effect of the tumor size on the predic-

tive ability of the protein biomarker signature, we assigned 170 CRC

subjects in the validation cohort with recorded tumor size into three

groups. Group 1 consisted of patients with tumor diameters smaller

than < 3.5 cm (n = 37). Group 2 consisted of patients with tumors

of a diameter between 3.5 and 6 cm (n = 88). Group 3 consisted of

patients with large tumors of diameters equal to or larger than 6 cm

(n = 45). As expected, the protein biomarker signature had a better

predictive ability for subjects with large tumors than for subjects

with smaller tumors (Fig 3C). Univariate analysis showed higher

levels of LRG1 in the circulation of subjects with larger tumors,

pointing toward a specific protein secretion from the tumor (small

versus medium tumors: P = 5.7e-2; medium versus large tumors:

P = 7.7e-4, Fig 3D). At the same time, and as expected from the

differential abundance between disease and control groups (Fig 2),

smaller amounts of PON1 were detected in patients with larger tumors

(small versus medium tumors: P = 1.6e-1; medium versus large

tumors: P = 6.7e-5). In both cases, the trends were especially

pronounced and highly significant when comparing tumors larger

than 6 cm to smaller ones.

Finally, we evaluated the predictive ability of the protein

biomarker signature with respect to the tumor plasma marker carci-

noembryonic antigen (CEA). In many countries, CEA is measured

preoperatively to assist with staging and surgical planning, and also

postoperatively at multiple time points to monitor disease recur-

rence or the response of metastatic disease to systemic therapy

(Locker et al, 2006). First, we examined the performance of the

protein biomarker signature on stratified groups by CEA cutoff to

determine whether we can equally detect subjects with very low

concentrations of CEA with our signature. We employed the protein

biomarker signature for subjects with negative (≤ 5 ng/ml, 68%

patients) or positive (> 5 ng/ml, 32% patients) CEA measured at

diagnosis in the validation cohort. The areas under the ROC curves

for both groups were similar (Fig 4A), demonstrating a disease

detection independent of patients’ CEA levels.

Second, we assessed the performance of CEA as compared to the

protein biomarker signature for diagnosing CRC. Employing the

clinical cutoff, as above, 32% of subjects with CRC were detected by

CEA alone in the validation cohort (Fig 4B). The overall accuracy

was 49%, which was much lower than the 72% accuracy of the

protein biomarker signature presented here. To further investigate

whether CEA had any added impact on CRC detection beyond the

protein signature, a new model including CEA and the protein

biomarker signature was generated within 10-fold cross-validation

on the validation cohort. In accordance with the comparisons

above, the performance obtained for the combination of CEA with

the signature as compared to the signature alone showed that there

is no added benefit of this combination (AUCCEA+SIGN = 0.88 versus

AUCSIGN = 0.87, P = 0.14, Appendix Fig S8).
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Figure 4. Predictive ability of the protein biomarker signature in the
context of CEA in the validation cohort.

A Prediction by the protein biomarker signature stratified by tumor plasma
marker CEA cutoff. The subjects with CRC were partitioned according to
CEA measurement: positive (CEA > 5 ng/ml, n = 62) or negative
(CEA ≤ 5 ng/ml, n = 130). Each group was discriminated separately against
the controls (n = 67) using the protein biomarker signature. A threshold of
0.386 was used to read specificity, sensitivity, and accuracy.

B CRC and control subjects with CEA measurements were classified either by
CEA or by the protein biomarker signature.
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Discussion

The present study proposes a multi-protein biomarker signature for

CRC diagnosis. We used an innovative strategy to characterize

proteins that play a role in or are regulated as a result of CRC,

screen for them in the circulation, and select a subset of proteins

with a high predictive ability. To identify disease-associated proteins,

we profiled CRC-driven perturbations reflected in the proteome of

the tumor epithelia. We acknowledged that tumor-derived proteins

in the bloodstream preferentially belong to the class of proteins that

are secreted, transported, or enzymatically released into the circula-

tion. We therefore selectively focused on the subproteome of

N-glycosylated proteins that are destined to reach the extracellular

environment. This approach proved successful at detecting

biomarker candidates in the systemic circulation and offered a

non-invasive readout of patient CRC alterations. The diagnostic

potential of the proteins quantified in plasma was assessed in two

independent clinical cohorts and led to the prioritization of five

proteins, which as a panel proved more predictive than any single

protein in isolation.

CRC is a heterogeneous solid malignancy that exhibits genomic

differences between patients (Cancer Genome Atlas, 2012) and

where multiple cancer modalities (Hanahan & Weinberg, 2011)

contribute to its systemic demonstration that can be monitored in the

blood circulation (Surinova et al, 2015). Given the complex charac-

teristics of CRC, it is unlikely that a single protein marker would be

powerful enough to capture this disease across a large set of patients.

The most discriminating protein predictors that capture the different

aspects of CRC as compared to healthy and benign controls in the

circulation were therefore selected into a multivariate signature.

The proteins comprising the diagnostic signature have been

previously linked to cancer and play different functional roles. CP

and SERPINA3 both belong to the acute-phase reactant proteins and

have been associated with systemic inflammation (Bode et al,

2012). TIMP1 is involved in the extracellular matrix remodeling as it

is the natural inhibitor of the matrix metalloproteinases (MMPs), a

group of peptidases involved in degradation of the extracellular

matrix (Hadler-Olsen et al, 2013). In addition, it has also been

proposed that TIMP1 promotes cell proliferation and possesses anti-

apoptotic effects (Li et al, 1999). PON1 is a known free radical scav-

enger belonging to the family of serum paraoxonases, possesses

antioxidant activities, and was proposed to play a role in carcino-

genesis and metastasis status in CRC (Balci et al, 2012). The func-

tion of LRG1 has been unknown until recently when Wang et al

reported that it promotes angiogenesis (Wang et al, 2013).

All five proteins have been further associated with CRC, and their

abundance trends in the plasma of CRC patients and controls are in

accordance with the previous reports (Walker & Gray, 1983; Holten-

Andersen et al, 2002; Balci et al, 2012; Ladd et al, 2012; Bujanda

et al, 2013). Regarding predictive ability for CRC diagnosis, LRG1,

PON1, and TIMP1 were previously assessed independently. LRG1

was assayed by ELISA and reported to have an increased fold

change and predictive ability for CRC detection in a cohort of 58

subjects with CRC and 58 control subjects, and also in a pre-

diagnosis cohort of 32 female subjects with CRC and 32 female

control subjects (Ladd et al, 2012). The extent of differential abun-

dance of a protein between the groups and its predictive ability were

in strong accordance with our results. PON1 was examined in the

context of the serum oxidative imbalance association with an

increased risk of CRC in a cohort of 40 subjects with CRC and 39

controls. Similar to our results, lower serum PON1 levels were

found in CRC patients (Bulbuller et al, 2013). TIMP1 was assayed

by ELISA in blood samples of 179 CRC patients and 225 neoplasm-

free participants and was found to have elevated levels in CRC. Its

predictive ability to discriminate between these groups was slightly

lower to the one found in our cohort (Tao et al, 2012). Interestingly,

on top of the five proteins in the signature, the exhaustive search

procedure highlighted additional proteins as highly ranked

(Appendix Fig S3). These proteins can be regarded as “back-up”

proteins in case a future assay for a protein within the diagnostic

signature will not fulfill the required analytical criteria.

The reported protein biomarker signature accurately predicts

subjects with CRC. We have shown that it can detect disease in a

stage-independent manner. Tumor size, on the other hand, proved

to play an important role in the accuracy of detection, where

subjects with larger tumors were detected more readily. This is in

agreement with our hypothesis that larger tumors secrete more

biomarker into the circulation. In particular, LRG1 and PON1

showed stronger abundance differences in larger tumors.

In the present study, sensitivity of the protein biomarker signa-

ture was addressed extensively on two independent cohorts of CRC

and control subjects. The second main characteristic of a protein

signature is its specificity for the disease in question. The cancer-

associated proteins within our signature contain both tumor-derived

and systemic response proteins. SERPINA3 and CP can be upregu-

lated in cancerous or non-cancerous inflammatory conditions. It can

only be speculated that the tumor-derived inflammation captured

with these two proteins may represent a stable upregulation across

CRC patients, and this is why SERPINA3 and CP were prioritized

into the signature. The differences in inflammation between CRC

and non-cancerous conditions such as inflammatory bowel disease

(IBD) are not well understood, and a direct assessment of these and

other proteins across large enough respective groups is required to

gain further insight into the differences between diseases sharing

common modalities. The specificity of the signature for CRC is

significantly mediated by TIMP1, PON1, and LRG1—the three

proteins previously associated with CRC more directly and based on

our observation that the abundance of PON1 and LRG1 in the circu-

lation correlated with the tumor size in these patients, pointing

toward tumor-specific markers. TIMP1 was previously reported to

yield diagnostic value for CRC detection in large cohorts (Holten-

Andersen et al, 2002). In this study, TIMP1 levels were also moni-

tored for subjects with IBD and no significant differences in plasma

TIMP1 levels between healthy and IBD subjects were detected.

Here we report a multivariate signature capturing the most signif-

icant CRC demonstrations in the circulation of a large set of cohorts.

The claim that a biomarker is specific for the detection of CRC

requires an extensive study of the predictive ability of the signature

against various types of disease. The study should be performed on

samples where clinical data clearly define each homogeneous

patient subgroup. The study should employ statistical analysis of

the acquired data that is different from the present work, in that it

would not only differentiate between CRC and controls, but also

show the absence of the signal in other disease subgroups. Since

this work utilized a control group that represents the general

population of the subjects at risk, and without any additional
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comorbidities, we cannot claim that the proposed protein biomarker

signature is exclusively specific to CRC. We can only hypothesize

about the specificity of the signature proteins based on previous

reports of their biological roles.

Further development of the protein biomarker signature can lead

to a fit-for-purpose clinical grade assay (Carr et al, 2014) and to an

improvement of its current accuracy. This can be accomplished on

both technological and clinical levels. On the measurement level, to

reach a high accuracy of CRC detection, further work is needed to

improve the assay’s characteristics by: (i) employing a 5-plex SRM

assay method with longer acquisition times than the ones used in the

88-plex method to enhance signal-to-noise ratios; (ii) performing

absolute quantification with precisely quantified internal standards

for the five proteins; and possibly also by (iii) using orthogonal

measurements with ELISAs for the signature proteins. On the clinical

level, one option is to identify homogeneous subpopulations of

subjects where the biomarker signature is particularly effective. This

would require studies of a larger size and with more clinical charac-

teristics. Another option is to combine the signature with an existing

(e.g. FOBT) or new biomarker to obtain more accurate discrimination

from the combination. Finally, performing serial measurements to

monitor signature proteins over time, for example, annually or bian-

nually, as is often done for FOBT, is likely to enhance its accuracy.

The current clinical procedures for CRC diagnosis can certainly

be improved. Regarding screening, the most commonly employed

non-invasive test is the FOBT. Although the test generally shows

good specificity, the traditional guaiac-based test does not detect

CRC effectively and the detection is particularly poor for early-stage

cancers (Booth, 2007; Bretthauer, 2011). Although higher sensitivity

and compliance can be achieved with immunochemical fecal occult

blood test (Kapidzic et al, 2014), a non-invasive blood-based test

could represent a more convenient test and thereby enhance compli-

ance further. Further clinical evaluation is necessary to directly

compare the performance of our signature with FOBT and other

candidate screening tests on the same cohort to assess their relative

predictive abilities and to explore a benefit of their combination.

Ideally, such evaluation should be performed in a true screening

setting, for example, among participants of screening colonoscopy.

Materials and Methods

Clinical cohorts

Three independent cohorts were used in this study. The first cohort

was designed to be shared between the discovery and the screening

phase to increase the likelihood of candidates identified in the tissue

and their subsequent detection in the circulation of the same

subjects. The subjects were recruited for the purpose of this study at

the University Hospital Olomouc in the Czech Republic and were

included consecutively as diagnosed. For the validation phase, two

large independent cohorts, that is, training and validation cohorts,

were designed. The training cohort was comprised of two groups of

equal size that include subjects with colorectal cancer (CRC) and

subjects representing a control population at risk. Subjects were

selected from two ongoing German clinical studies, that is, a

prospective screening study (BLiTz) (Hundt et al, 2009; Brenner

et al, 2010) and a case–control study examining the role of

colonoscopy in CRC prevention (DACHS+) (Brenner et al, 2006,

2007), and their status was colonoscopy-confirmed. The validation

cohort included subjects selected consecutively at the University

Hospital Olomouc. The control group was comprised of clinically

healthy blood donors and subjects with various non-malignant

gastrointestinal tract (GIT) conditions such as adenoma, benign

condition, diverticular disease, dysplastic polyps, and Crohn’s

disease. The CRC group was designed to contain approximately

equally sized subgroups of clinical stages. For the validation

purpose, tumor diameter was reported for CRC subjects and CEA

concentration at diagnosis for all subjects. This study was approved

by the ethics committees of the Medical Faculty at the University of

Heidelberg, of the Medical Chambers of Baden-Württemberg and

Rhineland-Palatinate, and of the University Hospital Olomouc and

Faculty of Medicine and Dentistry, Palacky University, Olomouc.

Written informed consent was obtained from each participant.

Collection and preparation of tissue epithelia

Tumor and adjacent normal mucosa tissues were surgically resected

based on standard oncological procedures. Frozen tissue was further

processed in a pre-cooled cryostat (�20°C). Sections of 7 lm were

fixed with 4% formalin and stained with hematoxylin–eosin, and

adjacent 40-lm sections were manually dissected and placed in lysis

buffer (50% PBS liquid, pH 7.4 (GIBCO, Invitrogen) and 50% 2,2,2-

trifluoroethanol (Fluka, 99.9% purity)) until 50 mg of dissected

epithelium was obtained per sample.

Protein extraction and peptide isolation

Tissue epithelia were homogenized in a Microdismembrator S

(Sartorius), subjected to protein extraction in lysis buffer (as above),

and solubilized with 1% Rapigest (Waters) in 250 mM ammonium

bicarbonate. Ultra sonication in a vial-tweeter ultrasonicator

(Hielscher) at 4°C was used to further disintegrate the homogenized

tissue. Proteins were denatured at 60°C for 2 h, reduced with 5 mM

dithiothreitol (DTT) at 60°C for 30 min, and alkylated with 25 mM

iodoacetamide (IAA) at 25°C for 45 min in the dark. Samples were

diluted to 15% TFE in 100 mM ammonium bicarbonate and proteo-

lyzed with sequencing grade porcine trypsin (Promega) at a

protease to substrate ratio of 1:100 at 37°C for 15 h. Peptide

mixtures were desalted with Sep-Pak tC18 cartridges (Waters,

Milford, MA, USA), eluted with 50% acetonitrile/0.1% formic acid,

evaporated to dryness, and resolubilized in 100 ll 20 mM sodium

acetate and 100 mM sodium chloride, pH 5.

Glycopeptide enrichment

Glycopeptides were isolated as described previously (Zhang

et al, 2003). N-linked glycosylated peptides were released with

N-glycosidase F (PNGase F; Roche and New England Biolabs).

Formerly glycosylated peptides were desalted as above and resolubi-

lized in 100 ll HPLC grade water/2% acetonitrile/0.1% formic acid.

Discovery-driven LC-MS of tissue N-glycosites

LC-MS/MS analyses were carried out on a hybrid LTQ-FT-ICR mass

spectrometer (Thermo Electron) interfaced to a nanoelectrospray
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ion source (Thermo Electron) coupled to a Tempo NanoLC system

(ABI/MDS Sciex). Two microliters of N-glycosite samples was

loaded from a cooled (4°C) autosampler (ABI/MDS Sciex) and

separated on a 15-cm fused silica emitter, 75 lm diameter, packed

in-house with Magic C18 AQ 3 lm resin (Michrom BioResources)

using a linear gradient from 5 to 35% acetonitrile/0.1% formic acid

over 60 (for samples from patients 1, 3, 5, 6, and 7) or 90 min (for

samples from patients 8, 10–14, 16, 17, 19, 22, and 24), at a flow

rate of 300 nl/min. In data-dependent analysis (DDA) mode, each

MS1 survey scan acquired in the ICR cell with an overall cycle time

of approximately 1 s, exceeding 150 counts, was followed by

collision-induced dissociation (CID) acquired in the LTQ of the three

most abundant precursor ions with a dynamic exclusion of 30 s. For

MS1, 106 ions were accumulated in the ICR cell over a maximum

time of 500 ms and scanned at a resolution of 100,000 full-width at

half-maximum nominal resolution settings. MS2 spectra were

acquired using the normal scan mode, a target setting of 104 ions,

and an accumulation time of maximally 250 ms. Charge state

screening was used to select ions with at least two charges and to

reject ions with unassigned charge state. Normalized collision

energy was set to 32%, and one microscan was acquired for each

spectrum. Samples were acquired in triplicates (for samples from

patients 1, 3, 5, 6, and 7) or duplicates (for samples from patients 8,

10–14, 16, 17, 19, 22, and 24).

Protein identification and CRC N-glycosite
PeptideAtlas compilation

Raw data files were centroided and converted to the mzXML format

with ReAdW (http://tools.proteomecenter.org/wiki/index.php?title=

Software:ReAdW). MS/MS spectra were searched using the

SORCERER-SEQUEST search tool against a semitryptic human UniProt

protein database downloaded on 12 October 2010 (http://www.uni-

prot.org). The search criteria were set to cleavage after lysine or argi-

nine, unless followed by proline; at least at one tryptic terminus;

maximally one missed cleavage allowed; cysteine carbamidomethyla-

tion set as fixed modification; methionine oxidation and asparagine

deamidation set as variable modifications; monoisotopic parent and

fragment ion masses; and precursor ion mass tolerance of 50 ppm.

The database search results were further validated with the Trans-

Proteomic Pipeline (TPP), with a false positive rate set to 1% on both

the peptide and protein level, as determined by PeptideProphet (Keller

et al, 2002) and ProteinProphet (Nesvizhskii et al, 2003), respectively.

Data and search results were uploaded to the PeptideAtlas and can be

accessed at https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/

buildDetails?atlas_build_id=374.

Protein topology prediction

Prediction of secondary protein structure was performed from the

amino acid sequence with Phobius (http://phobius.sbc.su.se/).

Relative quantification and statistical testing of CRC
tissue N-glycosites

Peptides were filtered for the glycosylation motif. Raw data

were converted to a profile mzXML format as above. Label-free

quantification of all 74 runs together with their search results was

performed by OpenMS 1.7 (Sturm et al, 2008) as described else-

where (Weisser et al, 2013). Quantitative features annotated with

peptide sequences were exported, the abundance values were log2-

transformed, and a scale-normalization procedure (Smyth & Speed,

2003) was applied. Features missing in more than five-sixths of the

runs or in an entire experimental group were removed from the

dataset. Protein quantification was performed with MSstats (v1.0)

(Choi et al, 2014). Comparisons of mean protein abundance

between conditions were carried out with MSstats with restricted

scope of conclusions for biological replication, and P-values were

adjusted to control for the false discovery rate using the Benjamini–

Hochberg procedure (Benjamini & Hochberg, 1995).

Blood collection and plasma preparation

Blood was drawn prior to surgery from the cubital vein and

collected into tubes processed with EDTA. In the discovery and vali-

dation cohort, blood was directly centrifuged at 6,067× g for 3 min

at 4°C. Plasma was collected into a new tube, frozen at �20°C, and

stored at �80°C. In the training cohort, blood was drawn before

bowel preparation for colonoscopy or prior to large bowel surgery

and centrifuged at 2,123× g for 10 min.

Glycoprotein enrichment from plasma

Glycoproteins were isolated as described previously (Zhang et al,

2003) and above, starting with 50 ll of plasma. Prior to the enrich-

ment, bovine standard N-glycoproteins (fetuin and alpha-1-acid

glycoprotein) were spiked into samples at equal concentration

(10 pmol/protein) to control experimental variation. Counter to

above, glycoproteins were first oxidized, immobilized on resin; non-

bound proteins were thoroughly washed away with urea buffer

(8 M urea, 100 mM ammonium bicarbonate, 0.1% SDS, 5 mM

EDTA) and then proteolyzed at 2 M urea, and N-linked glycosylated

peptides were enzymatically released as above. The protocol was

adapted to a Sirocco 96-well plate (Waters) where Affi-gel hydrazine

resin (Bio-Rad) was used. Formerly glycosylated peptides were

desalted as above in 96-well MacroSpin column plates filled with

Vydac C18 silica (The Nest Group Inc.) and resolubilized in 100 ll
HPLC grade water/2% acetonitrile/0.1% formic acid. Special focus

was given to sample processing of the training and validation

cohorts. Samples were block-randomized according to their clinical

features and processed in a blinded way to prevent the introduction

of experimental bias.

Targeted LC-SRM analysis of plasma N-glycosites

Samples from the screening and validation cohorts were analyzed

on a hybrid triple quadrupole/ion trap (4000 QTrap, ABI/MDS

Sciex) equipped with a nanoelectrospray ion source and a Tempo

NanoLC system (ABI/MDS Sciex) coupled to a 15-cm fused silica

emitter, 75 lm diameter, packed in-house with a Magic C18 AQ

5 lm resin (Michrom BioResources). Samples were loaded from a

cooled (4°C) autosampler (ABI/MDS Sciex) and separated over a

linear gradient from 5 to 35% acetonitrile/0.1% formic acid over

35 min, at a flow rate of 300 nl/min. The instrument was operated

in scheduled SRM mode (retention time window of 300 s, target

scan time of 3 s), at a unit resolution (0.7 m/z half-maximum peak
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width) of both Q1 and Q3 analyzers. Samples from the training

cohort were analyzed on TSQ Vantage (Thermo Fischer Scientific)

equipped with a nanoelectrospray ion source. Chromatographic

separation of peptides was carried out on a nano-LC system

(Eksigent). In each injection, peptides were loaded onto a 75-lm
diameter and 10.5-cm-long fused silica microcapillary reverse-

phase column, in-house packed with Magic C18 AQ material

(200 Å pore, 5 lm diameter; Michrom BioResources). For peptide

separation, a linear 40-min gradient from 2 to 40% solvent B

(solvent A: 98% water, 2% acetonitrile, 0.1% formic acid; solvent

B: 98% acetonitrile, 2% water, 0.1% formic acid) at a 300 nl/min

flow rate was applied. The mass spectrometer was operated in the

positive ion mode using ESI with a capillary temperature of 270°C,

a spray voltage of +1,350 V, and a collision gas pressure of

1.5 mTorr. SRM transitions were monitored with a mass window

of 0.7 half-maximum peak width (unit resolution) in Q1 and Q3.

All of the measurements were performed in scheduled mode,

applying a retention time window of 3 min and a cycle time of

2 s. SRM assays were retrieved from the N-glycosite SRM atlas

(http://www.srmatlas.org/) (Bujanda et al, 2013), reanalyzed to

select the best transitions for endogenous detection in plasma, split

to multiple SRM methods, or used to optimize a single SRM

method. Internal standard peptides labeled with heavy isotopes at

the C-terminal lysine or arginine, +8 or +10 Da, respectively

(Thermo Scientific, Sigma-Aldrich, or JPT Peptide Technology),

were used to validate peptide identity by analogy of chromato-

graphic and fragmentation properties to the reference. Similar to

above, efforts were made to prevent bias during measurements of

the training and validation cohorts. A data collection sequence

was generated by block randomization of experimental groups,

and data were acquired in a blinded way. Raw data and SRM tran-

sition files can be accessed, queried, and downloaded via PASSEL

(Farrah et al, 2012) of the SRMAtlas by selecting the respective

datasets from the drop-down menu of SRM experiments (https://

db.systemsbiology.net/sbeams/cgi/PeptideAtlas/GetSELTransitions?

SBEAMSentrycode=Crcpass2013).

Relative quantification and statistical analysis of
plasma N-glycosites

Raw data files from the screening and validation cohorts were

uploaded to MultiQuant 1.2 (Applied Biosystems) and files from

the training cohort to Skyline (MacLean et al, 2010) to perform

automatic SRM peak integration. Normalization was applied to

logarithm base 2-transformed peak areas, separately for each

cohort. The normalization relied on: (i) internal stable isotope-

labeled standard reference peptides for each targeted endogenous

peptide, to account for systematic shifts in the signal during data

acquisition, and (ii) internal standard bovine proteins across

runs, to account for batch effects and other potential artifacts

that could have occurred prior to data acquisition. First, protein-

level constant normalization was applied, which equalized the

median reference intensities for each protein across all runs and

shifted all the endogenous intensities in a run by the same

amount. Second, the individual peptide intensities of standard

proteins were modeled to obtain a single summary value that

quantifies the abundance of the proteins in each sample on a

relative scale. These quantities were correlated with the median

of the total intensities of plasma samples by Pearson’s correla-

tion. Bovine fetuin had a correlation of > 0.6, was considered

stable, and was used for data normalization in both cohorts. All

the endogenous plasma intensities in a run were shifted by the

sample value constant to make the median of sample representa-

tive intensities of the standard protein across all runs equal in

order to remove the systematic bias created during sample

preparation. Comparisons of mean protein abundance between

groups were carried out with MSstats (v2.3.5) (Choi et al, 2014)

at expanded scope of conclusions for technical replication and at

restricted scope of conclusions for biological replication. P-values

were adjusted as above. Normalized data were also used to esti-

mate model-based estimation of sample quantification for indi-

vidual proteins. Specifically, the relative protein abundances

were summarized across all peptide intensities for each subject

using MSstats.

Predictive analysis

To make the intensities comparable for the purpose of predictive

analysis, the median normalized log2-relative quantifications of

the validation cohort were equalized with the median normalized

log2-relative quantifications of the training cohort. Missing relative

quantifications were imputed for a given protein with a minimal

relative quantification observed for that protein across all runs in

the same cohort, representing its limit of detection. Unsupervised

hierarchical clustering with Euclidean distance and Ward linkage

was employed to cluster samples by similarity of normalized

relative protein abundance, and visualized in a heatmap. For

prediction analysis, proteins for which more than 40% of the

subjects had missing relative quantifications were filtered out.

Tenfold cross-validation was used to find the protein biomarker

signature in the training cohort. For each fold, proteins were

tested for differential abundance between CRC and controls using

the nine-tenths of the subjects (FDR < 0.05 and fold change cutoff

� 1.1). The relative abundances of the proteins with significant

tests were used as input to logistic regression. The subset of

proteins was further reduced by stepwise selection [i.e. by repeti-

tively adding or dropping proteins until minimizing the Akaike

information criterion (AIC)]. The predictive accuracy of the

selected model was evaluated on the remaining one-tenth of the

subjects in the training cohort and summarized with an ROC

curve. The process was repeated ten times, by systematically

rotating the one-tenth of the left-out subjects. The final predictive

model was comprised of proteins which were selected more than

five times among the tenfolds. The performance of the final

model was assessed on the validation dataset. The threshold was

determined based on the best accuracy in the training dataset. To

evaluate the stability of the final model, the procedure was

repeated an additional three times on differently partitioned

subjects within 10-fold cross-validation. Moreover, eightfold

cross-validation was also employed. Identical methodology to the

10-fold procedure was applied, except that the final consensus

model comprised proteins selected more than four times among

the eightfolds. The pROC package in R was used to draw ROC

curves, calculate areas under the curves, and perform the

inference. Inference for the AUCs was done using bootstrap with

B = 2,000 bootstrap samples.
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Exhaustive search of protein predictors

All possible combinations of one to five proteins were systematically

collected by brute force search to form logistic regression models.

Every logistic regression model was validated on the training dataset

with 100-fold bootstrapped cross-validation (Efron & Tibshirani,

1993). Validated models were ranked according to their median

AUC. Proteins in a set of high-performing models that have an iden-

tical cross-validation performance were ranked according to their

frequency among models.

Expanded View for this article is available online:

http://embomolmed.embopress.org
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data. http://www.uniprot.org/

SRMAtlas, a compendium of targeted proteomics assays for the detection and

quantification of proteins in complex proteome digests by mass spectrometry.

http://www.srmatlas.org/

PASSEL, the PeptideAtlas SRM Experiment Library for the submission, dissemi-
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