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SUMMARY

The aim of this PhD study was the identification of novel genes as well as natural genetic variance
and its effect on phenotypic variance in quantitative traits in the fungus Zymoseptoria tritici. Z. tritici
is a wheat pathogen found worldwide, able to cause serious vyield losses. Establishing the
connection between genetic variance and phenotypic variance in natural populations is of great
importance within the field evolutionary biology, allowing for better understanding of the potential
of a population to adapt to changing environments. To decipher the genetic architecture of the
traits of interest we used quantitative trait locus (QTL) mapping. This technique had never been
applied to Z. tritici previously. QTL mapping was carried out upon progeny of two crosses obtained
from four parental strains. Parental strains had been collected in naturally infected wheat fields in
1999 in Switzerland. Each of the two crosses provided ~260 progeny, which were genotyped and
phenotyped for all the traits. We focused on five important, yet genetically poorly understood
agricultural and life history traits: colony melanization, growth rate at two different temperatures
(15°C and 22°C), fungicide sensitivity, temperature sensitivity and yeast/hyphae dimorphism.

To genotype the progeny we used restriction site associated DNA sequencing (RADseq).
Through the usage of RADseq, a high-throughput next generation sequencing (NGS) technique,
progeny sequences could be collected at a relative low cost, spanning the majority of the IPO323
reference genome (~90%). RADseq had never been applied to Z tritici previously. This technique
allowed the construction of two highly dense, high quality genetic maps. Parental strain sequences
were obtained through full genome sequencing. To phenotype all progeny and parental strains we
developed a novel Petri dish assay based on digital image analysis. Digital images were analyzed by
applying a novel batch macro, which had been designed during this PhD. The macro allowed high-
throughput yet very precise measurement of size and grey value composition of single spore
colonies growing on axenic cultures.

For three out of the five traits (growth rate, fungicide and temperature sensitivity) their
guantitative nature had been established previously to this study, however their genetic
architecture had either not been investigated so far (growth rate, temperature sensitivity) or was
still poorly understood (fungicides sensitivity). For the traits of melanization and the yeast/hyphae
dimorphism neither their quantitative nature nor their genetic architecture had been studied
previously. Our results confirmed the quantitative nature of the traits of growth rate, fungicide and

temperature sensitivity. We newly showed that also melanization as well as the yeast/hyphae



dimorphism are of a quantitative nature in Z tritici. We could resolve the genetic architecture of all
the quantitative traits as well as elucidate their complexity through the mapping of multiple QTLs
for each trait. On average ~32% of total phenotypic variance was explained by an average of 2.7
significant QTLs per trait. For the trait of melanization we identified a total of 12 unique QTLs over
both crosses, eight containing novel melanization genes. The high marker density of our genetic
maps provided very narrow confidence intervals for four QTLs, with as little as only one candidate
gene in one particular case. The QTL with the highest LOD score (~32) contained the PKS1 gene
beside three other candidate genes. PKS1, a polyketide synthase gene, is known to play a role in the
synthesis of dihydroxynaphthalene (DHN) melanin. We consider this finding as a confirmation of the
functionality of our methods applied. We could show that melanization has a highly complex
genetic architecture in Z. tritici. For fungicide sensitivity we mapped a total of three QTLs. The three
QTLs were positioned on chromosomes that differed from the chromosome containing the target
gene of azole fungicides. Our findings imply that other genes apart from the fungicide target site are
of importance in contributing to fungicide sensitivity in Z. tritici. Additionally our results suggest the
usage of a novel fungicide mixture due to evidence for pleiotropy among melanization and fungicide
sensitivity. QTL mapping of temperature sensitivity provided evidence of the high osmolarity
glycerol (HOG) pathway being important in Z. tritici for thermal adaptation.

Overall we mapped novel genes not previously associated with the studied traits as well as
novel genes not previously associated with natural phenotypic variance for the trait of fungicide
sensitivity. We conclude, that Z. tritici has a high evolutionary potential and thus is able to adapt
rapidly to changing environments trough selection acting upon standing genetic variation. We
believe that this work and the findings made during this PhD are of importance for future control

strategies of Z. tritici but also of other fungal plant, as well as animal and human pathogens.



ZUSAMMENFASSUNG

Das Hauptthema dieser Doktorarbeit war die Identifikation neuer Gene, sowie natirlicher
genetischer Varianz und ihr Effekt auf phanotypische Varianz in quantitativen Merkmalen des Pilzes
Zymoseptoria tritici. Bei Z. tritici handelt es sich um ein global verbreitetes Weizenpathogen,
welches zu erheblichen Ertragsausfallen fiihren kann. Die Verknilipfung zwischen genetischer
Varianz und phanotypischer Varianz in natirlichen Populationen ist von grosser Bedeutung auf dem
Gebiet der Evolutionsbiologie, da sie zu einem besserem Verstdndnis des Adaptionspotentials einer
Population innerhalb wechselnder Umweltbedingungen beitragt. Wir verwendeten Quantitative
Trait Locus (QTL) Mapping, um die genetischen Architektur der Merkmale von Interesse zu
entschlisseln. Diese Technik wurde noch nie an Z. tritici angewendet. QTL Mapping wurde auf die
Nachkommen zweier Kreuzungen von vier Elternstammen, welche im Jahr 1999 in natirlich
infizierten Weizenfeldern in der Schweiz gesammelt wurden, angewendet. Fiir beide Kreuzungen
wurden rund 260 Nachkommen gesammelt, welche genotypisiert, sowie auch bezliglich allen
Merkmalen phéanotypisiert wurden. Insgesamt wurden fiinf wichtige, aber bis anhin genetisch
schlecht  verstandene  landwirtschaftliche  und Life-History = Merkmale  untersucht:
Koloniemelanisierung, Wachstumsrate unter zwei verschiedenen Temperaturen (15°C und 22°C),
Fungizidsensitivitat, Temperatursensitivitat und die Hefe/Hyphe Dimorphie.

Restriction Site Associated DNA Sequencing (RADseq) wurde verwendet um die
Nachkommen zu genotypisieren. Mittels RADseq, ein Hochdurchsatzverfahren von Sequenzierung
der nachsten Generation (NGS), konnten Sequenzdaten der Nachkommen zu tiefen Kosten
gesammelt werden, wobei die Sequenzen den Grossteil (~90%) des Referenzgenoms von IPO323
abdeckten. RADseq wurde nie zuvor auf Z tritici angewendet. Die Methode erlaubte die
Konstruktion von zwei dichten, genetischen Karten von hoher Qualitdt. Sequenzdaten der
Elternstimmen wurde durch das Sequenzieren ihres kompletten Genoms erworben. Fir das
Phanotypisieren aller Nachkommen sowie der Eltern wurde eine neue Petrischalenmethode
entwickelt, basierend auf der Analyse digitaler Bilder. Die digitalen Bilder wurden analysiert mittels
eines Makros, welches mehrere Bilder durch Stapelverarbeitung analysiert und speziell im Rahmen
dieses Doktorates kreiert wurde. Das Makro erlaubte, trotz Hochdurchsatzverfahrens, eine sehr
genaue Messung in Bezug auf Grosse und Grauwerten von Einzelsporkolonien, welche in einem

keimfreien Umfeld wuchsen.



Die quantitative Eigenschaft von drei der funf Merkmale (Wachstumsrate, Fungizid- und
Temperatursensitivitdt) wurde bereits in vorangehenden Studien aufgezeigt, jedoch wurde ihre
genetische Architektur entweder bis anhin nicht erforscht (Wachstumsrate, Temperatursensitivitat)
oder sie war nur teilweise entschlisselt (Fungizidsensitivitat). Weder die quantitative Eigenschaft
noch die genetische Architektur von Melanisierung sowie der Hefe/Hyphe Dimorphie wurde zuvor
untersucht. Unsere Resultate bestatigten die quantitative Eigenschaft der Merkmale
Wachstumsrate, Fungizid- und Temperatursensitivitat. Wir konnten zudem aufzeigen, dass sowohl
Melanisierung wie auch die Hefe/Hyphe Dimorphie Merkmale von quantitativer Natur in Z. tritici
sind. Mittels der Kartierung mehrerer QTLs war es uns moglich die genetische Architektur aller
guantitativen Merkmale zu entschliisseln sowie ihre Komplexitdt aufzuzeigen. Im Durchschnitt
erklarten 2.7 QTLs pro Merkmal ein Mittel von ~32% der gesamten phenotypischen Varianz. Fiir das
Merkmal Melanisierung identifizierten wir (iber beide Kreuzungen insgesamt 12 QTLs, acht davon
enthielten neue Melanisierungsgene. Fir vier QTLs ergab die hohe Markerdichte unserer
genetischen Karten sehr schmale Vertrauensintervalle mit nur einem Kandidatengen in einem der
vier QTLs. Das QTL mit dem hochsten LOD Wert (~32) enthielt das Gen PKS1 nebst drei anderen
Kandidatengene. PKS1, eine Polyketid-Synthase, spielt eine wichtige Rolle in der Synthese von
Dihydroxynaphthalene (DHN) Melanin. Wir betrachteten dieses Ergebnis als Bestatigung der
Funktionalitdt unserer angewendeten Methoden. Wir vermochten zudem aufzuzeigen, dass dem
Merkmal Melanisierung eine komplexe genetische Architektur in Z tritici unterliegt. Fir das
Merkmal Fungizidsensitivitdt wurden drei QTLs identifiziert. Die drei QTLs befanden sich auf
Chromosomen, welche sich vom Chromosom mit dem Zielgen der Azolefungizide unterschieden.
Unsere Ergebnisse zeigen auf, dass auch andere Gene als das Fungizidzielgen einen substanziellen
Beitrag zur Fungizidsensitivitat in Z. tritici beisteuern. Aufgrund eines Pleiotrpienachweises zwischen
Melanisierung und Fungizidsensitivitdit empfehlen wir die Anwendung einer neuartigen
Fungizidmischung. QTL Mapping von Temperatursensitivitdt ergab den Hinweis der Involvierung des
high osmolarity glycerol (HOG) Signalweges in Z. tritici beziiglich thermaler Adaptation.

Insgesamt kartierten wir neue Gene, welche nie zuvor mit dem untersuchten Merkmal
assoziiert wurden, sowie neue Gene, welche nicht zuvor mit natirlicher phanotypischer Varianz von
Fungizidsensitivitdt in Verbindung gebracht wurden. Daraus schlussfolgern wir, dass Z. tritici ein
hohes Evolutionspotential hat und somit in der Lage ist sich schnell an eine verdandernde Umwelt

anzupassen, indem Selektion auf bestehende genetische Variation wirkt. Wir glauben, dass diese



Arbeit und die erzielten Ergebnisse dieses Doktorates wichtig fiir kiinftige Kontrollstrategien von Z.

tritici, aber auch von anderen pilzlichen Pflanzen-, sowie auch Tier- und Humanpathogenen sind.






CHAPTER 1

General Introduction






GENERAL INTRODUCTION

Importance of fungal plant pathogens in modern agriculture

Fungal plant pathogens have been colonizing plants in natural ecosystems since the emergence of
their hosts. Additionally they have been challenging farmers since domestication of the first crop
plants between 2000 to 12000 years BP (BALTER 2007) and are now a big concern for producers of
various crops worldwide, causing substantial yield and quality loss of modern agricultural produce
(Pennist 2010; DeaN et al. 2012). A study from 2012 estimated the yield loss due to fungal and
oomycete diseases upon five major crops (rice, wheat, maize, potato and soybean) to correspond to
the equivalent of an amount able to provide food for up to 4’287 million people per year or 61.2%
of the world’s population (FIsHER et al. 2012).

Fungal plant pathogens are heterotrophic organisms and rely on colonization of host
organisms in order to survive. Over the long evolutionary time period of coexistence with their host,
fungal plant pathogens have developed specific mechanisms for colonization and invasion. For
example appressoria are specialized fungal structures used by different fungal plant pathogens for
host colonization. These structures use mechanical force and/or enzymatic activity to breach the
host cuticle (WiLson and TALBOT 2009). Rust fungi, obligate biotrophs from the order of Pucciniales,
have developed a specialized infection structure known as haustorium. These structures are formed
once within the host plant in order to form a tight bond between the fungus and the host cells. This
bound allows for nutrient uptake from the host, while at the same time excreting molecules into
the host in order to suppress its immune responses (GARNICA et al. 2014).

Host plants on the other hand have developed complex mechanical and biochemical
strategies to defend themselves against fungal plant pathogens. For example they are able to detect
fungal pathogens through resistance genes. These genes, also known as R-genes, encode proteins
that are able to recognize fungal plant pathogens upon their invasion process (JONEsS and DANGL
2006). The recognition of the fungal pathogen triggers complex signaling cascades, which results in
a hypersensitive response (HR) within the host tissue. The HR ultimately leads to programmed plant
cell death (PCD) around the infected cite and hinders the fungal pathogen from further progression
(vAN DER BIEZEN and JoNes 1998; McDoweLL and WOFFENDEN 2003). The understanding of how plants
protect themselves against fungal pathogens helps to improve modern agriculture. For example

breeders have been making use of these R-genes to protect crops against attacks of fungal



pathogens. Over the past 50 years the Green Revolution (GR) had contributed strongly in improving
worldwide crop production due to newly gained scientific knowledge applied upon cultivar breeding
(EvensoN and GoLLIN 2003; PiNGALI 2012). One strategy, beside the breeding of dwarf-cultivars, was
the incorporation of R genes into modern cultivars (PEnnisi 2010).

Additionally to understanding how plants protect themselves from fungal pathogens, it is
also of great importance for agricultural practices to understand the mechanisms of host
colonization of fungal pathogens in more detail. This may help improve future control strategies and
contribute to a more sustainable agriculture. As an example, R-genes have been overcome by fungal
pathogens in the past, rendering the R-genes ineffective and crops more susceptible to the fungal
pathogens. For example in 1998 a strain of Puccinia graminis tritici, the causal fungal agent of stem
rust disease on wheat, was discovered in Uganda. This strain, now commonly known as Ug99,
showed the ability to overcome the major resistance genes of wheat cultivars, which were bred
during the beginning of the GR in the 1950s. Till 1998 these wheat cultivars had shown effective
protection against stem rust. Ug99 as well as new strains, which have derived from Ug99, currently
threat the major wheat producing regions in the world, as 90% of the commercial wheat cultivars
are susceptible to these strains (SINGH et al. 2011).

Many of our major crops today are protected from fungal pathogens through resistance
cultivars using R-genes (PENNIsI 2010). However as seen by examples mentioned earlier, fungal plant
pathogens are able to overcome these host resistance mechanisms or the R-genes only provide
partial resistance. Therefore the usage of antimicrobial compounds in modern agriculture, such as
fungicides, is also important in controlling fungal plant pathogens (PEnNIsI 2010). However even for
antimicrobial compounds history has shown that fungal pathogen populations can evolve rather
quickly and develop resistance mechanisms against these compounds. Various examples of
fungicide resistance emergence has been observed in recent years in different fungal pathogens
populations, with emergence time down to as little as one year (GRIMMER et al. 2014). This is
because modern agriculture and its corresponding practices impose a high selection pressure upon
fungal plant pathogen populations. This high selection pressure for example origins in the usage of
monocultures with only one cultivar growing in the fields or the frequent usage of only one
fungicide containing one active agent. As a result populations evolve quicker in agricultural-
ecosystems (agro-ecosystems) than in natural ecosystems (STaHL and BisHopP 2000; McDONALD and

LINDE 2002; ZHAN et al. 2002b). Therefore understanding mechanisms of fungal plant pathogen
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populations on how they adapt to a changing environment, especially through identification of the
underlying genes involved, may help to deploy improved control strategies in the future. This is of
great importance as future agriculture is challenged by changing climate, increasing human
population and a higher energy demand. These challenges need to be met by increased productivity
of the current agricultural land, while at the same time optimizing resource-efficiency (FoLEy et al.

2011).

The study system
Zymoseptoria tritici (syn. Mpycosphaerella graminicola) is a heterothallic, hemibiotrophic
filamentous ascomycete that causes Septoria tritici blotch (STB) disease on wheat (Triticum
aestivum) leaves. The disease is found in all major wheat growing regions in the world, with more
then 90% of global genetic diversity found within a single wheat field (ZHAN et al. 2003; ZHAN and
McDoNALD 2011). Under favorable conditions an epidemic of STB can significantly damage the host
population and result in yield losses up to 30-50% (EvAL et al. 1987) beside negatively affecting grain
quality (AraBI et al. 2007), both contributing to significant economic losses. This is especially the
case in regions with humid and temperate climates such as Northwestern Europe. It therefore is not
surprising that STB was recently recognized as the most yield reducing disease in European
countries with intensive wheat production (JORGENSEN et al. 2014). Wheat is the third-most-
produced global cereal and is grown on more land area than any other commercial crop in the
world. In 2010 the global production ranged up to 653 million metric tons on a total area of 217
million hectares (FAO 2013). In this context controlling STB is of major importance for sustainable
food production. Control of STB relies mainly on deployment of fungicides and to a lesser extent on
resistant wheat cultivars (GoubpemAND et al. 2013), with annual fungicide costs in Europe ranging up
to more then 400 million euros, while in the USA crowers invest around 275 million dollars each
year in fungicide applications (O’DRriscoLL et al. 2014). Additional control strategies include
integrated pest management approaches, such as crop rotations and the usage of cultivar mixtures.
These strategies however remain less effective or have a more negative impact on yields compared
to the two main control strategies (GigoT et al. 2013).

Different classes of fungicides with different mode of actions (e.g. quinone outside inhibitors
(Qols or commonly referred to as the strobilurins), demethylase inhibitors (DMIs) and succinate

dehydrogenase inhibitors (SDHIs)) can be used to fight STB either singularly or in combination of
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each other (http://www.eurowheat.org). However Z. tritici populations have shown an impressive
capacity to rapidly evolve complete or partial resistance to these fungicides either observed in the
field or mainly found in vitro under laboratory conditions (e.g. SDHI-resistance) (FRAAIE et al. 2005;
Cools et al. 2007; TorRIANI et al. 2009; FRAAIE et al. 2012; ScALLIET et al. 2012; CooLs and FRAALE 2013;
Estep et al. 2014). This has lead to the situation of certain fungicides not being effective in Z. tritici
populations any more or the future usage of currently still effective fungicides being threatened. For
example Qols have been used successfully to fight STB in the UK since 1997. However in 2002 a
mutation in the cytochrome b gene (cyt b), caused by an amino acid change at position 143 from
glycine to alanine (G143A), had emerged, rendering isolates resistant to Qols. This mutation has
rapidly spread till 2004 through UK populations, resulting in a high field frequency (~90%).
Therefore Qols today in the UK are only allowed in mixtures with DMIs, with a maximum of two
applications per season in order to slow down resistance progression and therefore the fixation of
this mutation in field populations. However in some UK populations nowadays resistance to Qols is
so widespread that these fungicides are no longer effective, even in mixtures. The single mode of
action of Qols coupled with the absence of a significant fitness penalty of the G143A mutation as
well as the heavy usage of Qols in agriculture most likely lead to the wide spread of this resistance
in UK populations (FRaalE et al. 2005; TorrIANI et al. 2009). Thus today’s chemical control of STB
relies heavily on the usage of DMlIs, SDHI and protective multi-site inhibitors (e.g. chlorothalonil),
which can be deployed in mixtures (O’DriscoLL et al. 2014). However even some of the main DMls
are currently threatened. For example one of the main groups of DMI fungicides providing sufficient
control, both protective and curative, against STB on wheat refers to the systemic azoles, more
precisely imidazoles and triazoles. These chemical compounds inhibit P450 14a-demethylase, an
enzyme encoded by the gene CYP51/ERG11 and involved in ergosterol in Z. tritici (CooLs and FRAALE
2008). Although the usage of these two azole classes has been widespread and frequently applied in
European agriculture since their introduction in 1970 with a resulting high selection pressure,
development of resistance to imidazoles and triazoles in Z. tritici populations has been seldom and
of rather low impact, even though these fungicides have a single target site mechanism, like the
Qols. This may be explained to some extent based on high costs associated with higher resistance
found in laboratory strains (Coots et al. 2013). Nevertheless in recent years a progression of more
frequent resistant Z tritici field strains has been noticed, threatening the future use of these two

currently important azoles (CooLs et al. 2011). Therefore the reliance on the recently (2003)
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introduced SDHIs is expected to increase in the future. However also for this class of fungicides their
sustainability is already questionable, as they have a single-site mode of action and in vitro studies
have shown that Z tritici populations have the potential to generate resistance to SDHI rather
quickly at low to no fitness cost (FRAANE et al. 2012; ScALLIET et al. 2012). Although substantial
progress has been made in the recent years, the genetic basis as well as natural genetic variance
affecting phenotypic variance of fungicide sensitivity in Z. tritici still remains elusive, especially with
regards to multi-drug-resistance (MDR), (ZwieRrs et al. 2002; STERGIOPOULOS et al. 2003; ZWIERS et al.
2003; ROOHPARVAR et al. 2007; ROOHPARVAR et al. 2008; CooLs and FraalJE 2013; Cools et al. 2013).
Regarding resistance breeding of the host so far up to 18 loci were identified in wheat to provide
STB resistance and have been used in wheat breeding programs (ORTON et al. 2011; GHAFFARY et al.
2012). However Z. tritici has already shown to be able to overcome host resistance rather quickly.
For example Z. tritici populations have evolved to be virulent on the wheat cultivar ‘Gene’ just after
3 years of the introduction of the cultivar (CowaeR et al. 2000).

The high evolutionary potential of Z. tritici is likely due to population characteristics favoring
rapid evolution: Z. tritici undergoes regular cycles of recombination, shows high effective population
sizes as well as high mutation rates and a high amount of gene flow (McDonALD and LiINDE 2002;
ZHAN et al. 2003; ZHAN and McDoNALD 2004; STUKENBROCK and McDoNALD 2008). This potential
coupled with a strong selection pressure imposed upon Z. tritici populations through modern
agricultural practices, as well as the ability of Z. tritici populations to adapt at relatively low or even
no fitness cost, are the main reasons that rendered the two main control methods not sustainable.

Z. tritici is on the verge of becoming a fungal model-organism due to substantial work that
has been carried out in the past within the fields of population dynamics, molecular biology and
evolutionary biology. Z. tritici has therefore recently been considered as one of the top ten fungal
pathogens in molecular plant pathology, which takes into consideration its scientific as well as
economic importance (DeaN et al. 2012). For example the evolutionary history of Z. tritici is one of
the most intensively studied for any fungal pathogen. Earlier studies elucidated the center of
diversity/origin of this pathogen to correspond to the Fertile Crescent, where it followed a host-
tracking model. The center of origin was also the location where two progenitor species
Zymoseptoria pseudotritici and Zymoseptoria ardabiliae were collected from wild grasses. These
show lower levels of infection on domesticated wheat compared to Z. tritici (STUKENBROCK et al.

2007; STukeNBrROcK and McDonALD 2008; STUKENBROCK et al. 2011). Gene flow is high globally,
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resulting in a worldwide panmixia (ZHAN et al. 2003) and the sexual cycle was shown to play an
important role in evolutionary biology, including the production of novel alleles through intragenic
recombination that encoded important phenotypes such as fungicide resistance (BRUNNER et al.
2008). The recently sequenced and annotated 39Mb reference genome, based upon the Dutch
isolate IPO323 and conducted by the Joint Genome Institute (JGI), is amongst the best-assembled
fungal genomes available. It contains a total of ~ 11,000 predicted genes and spans over 21
chromosomes sequenced from telomere to telomere, of which 13 are core chromosomes and eight
are accessory chromosomes (ACs) (GoobwIN et al. 2011). However as this assembled genome still
contains to a rather large extent incomplete gene models (14%), which lack a start and/or stop
codon, recent attempts to improve the JGI annotations were conducted. This was done through the
usage of transcript assemblies based on RNA-Seq data, homology searches and ab initio gene
predictors, which allowed the additional annotation of 1200 not previously predicted gene models
(GRANDAUBERT et al. 2015). The accuracy of predicted gene models is important for any “omics”
analysis, such as for example comparative genomics, transcriptomics and proteomics. Nevertheless
since the appearance of the fully annotated reference genome coupled with the recent emergence
of new molecular tools, such as next generation sequencing (NGS), different studies have been able

to conduct full genome investigations (McDoNALD et al. 2015).

The present study

The aim of this PhD study was the identification of novel genes as well as natural genetic variance
and its effect on phenotypic variance in important agricultural and life history traits in the major
fungal wheat pathogen Z tritici. Establishing the connection between genetic variance and
phenotypic variance in natural populations is of great importance within the field evolutionary
biology, allowing for better understanding of the potential of a population to adapt to changing
environments, as genetic variation is the raw material for selection to act upon and for evolutionary
changes to occur within populations. To do so we used quantitative trait locus (QTL) mapping, a
powerful forward genetics approach, which allows for deciphering of the genetic architecture of an
adaptive, quantitative phenotype (Mackay 2001), a topic which still remains elusive for various
microscopic species, including Z. tritici (ELLIsON et al. 2011). We investigated a total of five important
agricultural and life history traits: colony melanization, growth rate at two different temperatures

(15°C and 22°C), fungicide sensitivity, temperature sensitivity and dimorphism. In nature various
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traits of medical, agricultural and evolutionary relevance are of a quantitative character, due to the
involvement of multiple loci. Examples include blood pressure (MoORRISON et al. 2014), milk
production (OLseEN et al. 2011) and seed number (BROWN et al. 2010). We investigated colony
melanization, as fungal melanization has been associated with pathogen virulence, antimicrobial
resistance and protection against extreme temperatures (LARSSON and TJALVE 1979; BUTLER and Day
1998; NOSANCHUK et al. 2000; IkepA et al. 2003; MoRRIs-JONES et al. 2003; YOUNGCHIM et al. 2004;
MEDNICcK et al. 2005; NosANCHUK and CASADEVALL 2006; TABORDA et al. 2008; NGAMSKULRUNGROJ and
MEYER 2009; Liaw et al. 2010). Growth rate is of importance as it may be directly related to
pathogen fitness and is the basic measurement to establish the two relative traits of fungicide and
temperature sensitivity. Z. tritici till today is mainly controlled by the application of fungicides, more
precisely using azoles, one of the few classes of systemic fungicides still providing adequate control
of STB in Europe (Coots et al. 2007). We therefore used the azole ‘propiconazole’ to investigate the
genetic architecture of fungicide sensitivity in Z. tritici and identify genes other than the well studied
target site (Cyp51) of azole fungicides. Temperature sensitivity is a key component for a pathogen
to expand into new climatic regions as well as to cope with climate change. The trait of dimorphism
was studied, as its ecological importance in the life cycle of Z. tritici is not understood.

We justify the usage of QTL mapping upon these five traits in Z. tritici as follow: 1) NGS
studies conducted so far upon Z. tritici (KELLNER et al. 2014; Rupp et al. 2015) focused strongly on
identification of genes involved in pathogenicity, such as effector genes (JoNES and DaNGL 2006), but
didn’t investigate other important agricultural traits, such as for example fungicide sensitivity.
Further they only used one genotype in their experiments and therefore don’t investigate natural
genetic diversity and its effects on phenotypic diversity within populations. For example Rudd and
colleagues used an extensive deep RNA-Seq experiment, where gene expression profiles of the
reference isolate IPO323 were compared over different time points in planta and in axenic cultures.
They identified 115 putative effectors, which were differentially expressed, with a peak expression
at 9 dpi. Knock-out (KO) studies upon five most likely candidates showed no phenotypic effect upon
pathogenicity, illustrating the high redundancy present in Z tritici (Rubp et al. 2015). 2) Other
studies, which investigated the natural phenotypic variance of virulence as well as other traits in Z
tritici didn’t investigate the genetic architecture underlying these traits. For example Zhan and
colleagues studied natural phenotypic variance of virulence and other important agricultural and

life history traits (e.g. growth rate, fungicide and temperature sensitivity) in ~140 strains. These
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strains were collected from 5 field populations in different parts of the world (Europe, North
America, Western Asia and Australia). In the context of a Qst - Gst experiment they measured
degrees of local adaptation using a set of neutral markers, but the study didn’t allow association of
genetic variance with phenotypic variance (ZHAN et al. 2005; ZHAN and McDonALD 2011). 3) Other
studies investigated the natural genetic variance of loci involved in phenotypic variance, however to
our knowledge this was only done for the trait of fungicide sensitivity with the focus only upon one
locus, namely the target site of DMI fungicides. For example Cools and colleagues studied in
European populations recently emerged, natural genetic variants of CYP51. Through sensitivity tests
of Saccharomyces cerevisiae transformants the effect sizes of these variants could be tested.
However these effect sizes weren’t brought in relation with the overall phenotypic variance of
fungicide sensitivity occurring in natural field populations and no additional loci were investigated
(Coots et al. 2011). 4) Various functional characterization studies using KO approaches on different
genes have been conducted in Z. tritici. These studies found multiple interesting phenotypes even
for traits different than virulence, such as for melanization, dimorphism, fungicide sensitivity and
colony growth. However these studies didn’t investigate natural genetic variance of the studied
genes occurring in field populations and therefore neither investigated natural phenotypic variance
(CousiN et al. 2006; MeHRABI and KEmA 2006; MEHRABI et al. 2006a; MEeHRABI et al. 2006b; MEHRABI et
al. 2009; CHol and GoobwiN 2011a; CHol and GoobwiN 2011b; OrToN et al. 2011; GoHARI et al. 2014).
QTL mapping has advantages, but also disadvantages. Advantages are the following: The
same mapping population, once it has been genotyped, can be investigated for multiple traits.
Contrary to a genome-wide association study (GWAS) no population structure effects are present
and therefore no population corrections are needed. QTL mapping allows mapping of rare alleles,
through the crossing of parental strains with rare phenotypes, where rare alleles are assumed to be
present. Only few markers are needed for a complete genome scan, however marker density is a
crucial factor affecting confidence interval size. Disadvantages of QTL mapping are: QTL mapping
will only detect genetic diversity present amongst the parental strains. Therefore if parents don’t
differ regarding a QTL genetically, no phenotypic association can be made. This makes QTL mapping
highly cross and context specific. Additionally there are limitations in separating pleiotropic effects
versus physically close genes (Kowatski et al. 1994; MorGAN and MAckAY 2006). QTL mapping has
been used extensively in animals (GobbarRD and HAaves 2009), including humans (FLUNT and MAckay

2009) and also plants (HoLLanD 2007), but very few QTL mapping studies have been reported for
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filamentous fungi (FouLoNGNE-ORIOL 2012). QTL mapping has never been applied to Z. tritici. QTL
mapping in Z tritici therefore may set the bases for future investigations in order to answer
guestions such as: How many loci are responsible for phenotypic variation in the trait of interest
within populations and amongst population? What is the degree of additive effects compared to the
degree of epistasis (allele — allele interactions between loci)? Which loci affect multiple traits
(pleiotropic effects)? Which evolutionary forces have shaped a population in the past and how will a

population react in the future upon changing environmental conditions?
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ABSTRACT
Melanin plays an important role in virulence and antimicrobial resistance in several fungal
pathogens. The wheat pathogen Zymoseptoria tritici is important worldwide, but little is known
about the genetic architecture of pathogenicity, including the production of melanin. Because
melanin production can exhibit complex inheritance, we used quantitative trait locus (QTL) mapping
in two crosses to identify the underlying genes. Restriction site associated DNA sequencing
(RADseq) was used to genotype 263 (cross 1) and 261 (cross 2) progeny at ~8500 single nucleotide
polymorphisms (SNP) and construct two dense linkage maps. We measured grey values,
representing degrees of melanization, for single spore colonies growing on Petri dishes using a
novel image processing approach that enabled high-throughput phenotyping. Because melanin
production can be affected by stress, each offspring was grown in two stressful environments and
one control environment. We detected six significant QTLs in cross 1 and nine in cross 2, with three
QTLs shared between the crosses. Different QTLs were identified in different environments and at
different colony ages. By obtaining complete genome sequences for the four parents and analyzing
sequence variation in the QTL confidence intervals, we identified 16 candidate genes likely to affect
melanization. One of these candidates was PKS1, a polyketide synthase gene known to play a role in
the synthesis of dihydroxynaphthalene (DHN) melanin. Three candidate quantitative trait
nucleotides (QTNs) were identified in PKS1. Many of the other candidate genes were not previously

associated with melanization.
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INTRODUCTION

Most fungi produce melanin pigments that are located mainly in their cell walls. Melanins are dark,
often black, biological macromolecules composed of various types of phenolic or indolic monomers
that often form complexes with proteins and carbohydrates. Proposed functions of fungal melanins
include protection against irradiation, enzymatic lysis and extreme temperatures (BUTLER and Day
1998). Melanin also plays an important role in virulence (NosaNcHUK et al. 2000; MORRIS-JONES et al.
2003; YOUNGCHIM et al. 2004; MEebNick et al. 2005; NGAMSKULRUNGROJ and MEYER 2009) and resistance
to antimicrobial compounds (LArRssoN and TiALVE 1979; IKeDA et al. 2003; NoSANCHUK and CASADEVALL
2006; TABORDA et al. 2008; Liaw et al. 2010). Melanin is needed in appressoria to contain the high
turgor pressure formed during penetration of the plant epidermis by fungal pathogens (HowaRrD et
al. 1991). Thus melanization plays an important role in fungal biology and in host-parasite
interactions.

At least four melanins have been identified in fungi, and two of these, dihydroxynaphthalene
(DHN) and dihydroxyphenylalanine (DOPA) melanin, have been subjected to intensive study. DHN
melanin is considered to be the main fungal melanin. It is produced by a wide range of plant
pathogenic fungi and is the best characterized fungal melanin, with a known biosynthetic pathway.
The genetic basis of melanization can differ among fungi and the complexity in known melanin
production pathways suggested that a quantitative trait locus (QTL) mapping approach would be
useful to identify candidate genes (BUTLER and DAy 1998).

Zymoseptoria tritici (syn Mycosphaerella graminicola) is a heterothallic, hemibiotrophic
filamentous ascomycete that causes the foliar disease Septoria tritici blotch on wheat worldwide.
Under favorable conditions, yield losses can reach 30-50% (EvaL et al. 1987), especially in regions
with humid and temperate climates such as north-western Europe. Z. tritici is currently one of the
most important wheat pathogens in Europe (HARDWICK et al. 2001; O’DriscoLL et al. 2014), however
only eight genes involved in melanization have been investigated in Z. tritici. These eight genes
encoded G proteins (MEHRABI et al. 2009), mitogen-activated protein kinases (MAPK) (CousiN et al.
2006; MEeHRABI et al. 2006a; MEHRABI et al. 2006b), a velvet protein (CHol and GoobwIN 2011b) and a
c-type cyclin (CHol and GoobwiIN 2011a). The G proteins and c-type cyclin had been associated with
melanization in other filamentous fungi, but none of the eight genes were associated with a specific
melanin biosynthetic pathway (BuTLer and Day 1998). The effect of each gene on melanin
production was validated using knockout mutants. Seven of the knockout mutants showed reduced

virulence in addition to reduced melanization (CousiN et al. 2006; MEeHRABI et al. 2006a; MEHRABI et
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al. 2006b; MEeHRABI et al. 2009; CHol and GoobpwIN 2011b). The eighth knockout mutant exhibited
increased melanization and reduced virulence (CHol and GoobwIN 2011a). Lower melanization was
correlated with higher sensitivity to azole fungicides in one of the mutants (MeHRABI et al. 2006a),
but in another study a knock-out of a different gene (MEeHRABI et al. 2006b) showed lower
melanization as well as lower sensitivity to phenylpyrrole and dicarboximide fungicides. Hence, the
typical pattern of higher melanization correlating with higher virulence and lower fungicide
sensitivity is not clearly established in Z. tritici.

Melanization is likely a quantitative trait in Z. tritici because several genes were associated
with the trait in other pathogenic fungi (TAKANO et al. 1995; ELIAHU et al. 2007; KARKOWSKA-KULETA et
al. 2009; FuslHARA et al. 2010; IpcHO et al. 2012; LiN et al. 2012; UpADHYAY et al. 2013) and some gene
knockouts caused only reduced melanin production (KiMmURA et al. 2001; PaRrisoT et al. 2002;
SoLoMON et al. 2004; LiN et al. 2006; MEHRABI et al. 2009). We tested this hypothesis by using QTL
mapping to determine the genetic architecture of melanization in Z. tritici. QTL mapping enables the
identification and characterization of the chromosomal segments and corresponding genes that
encode quantitative traits (Mackay 2001). QTL mapping has been used extensively in animals
(GobbarRD and Haves 2009), including humans (FLUNT and Mackay 2009) and also plants (HoLLAND
2007), but very few QTL mapping studies have been reported for filamentous fungi (FOULONGNE-
OrioL 2012). Although fungal melanin biosynthetic pathways were characterized in earlier studies,
additional melanin genes were identified in recent studies (FullHARA et al. 2010; CHol and GOODWIN
2011b; CHol and GoobwiIN 2011a) indicating that melanin biosynthetic pathways may be more
complex than previously thought. QTL mapping was applied to fungal melanization in an earlier
study with Cryptococcus neoformans (LIN et al. 2006), but this is the first QTL analysis of
melanization in a fungal plant pathogen.

We used two mapping populations derived from four unique wild-type strains to identify
QTLs involved in melanization. Because melanin production can be affected by stress (BUTLER and
Day 1998; HensoN et al. 1999; JacoBson 2000), we exposed each offspring to two stressful
environments, cold temperature and sub-lethal fungicide exposure, that could be compared to a
control environment to determine whether temperature or fungicide stress would result in
environment dependent QTLs. We chose a next generation sequencing (NGS) genotyping method
called restriction site associated DNA sequencing (RADseq) to construct two highly dense genetic

maps using single nucleotide polymorphism (SNP) markers covering most of the reference genome.
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Phenotyping was based on high-throughput digital image processing to score the melanization of

single spore colonies grown on solid media.
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MATERIAL AND METHODS

Generation of mapping populations

Two crosses were made between four Z. tritici isolates. Isolate ST99CH3D1 (3D1: SRS383146) was
crossed to ST99CH3D7 (3D7: SRS383147) and ST99CH1A5 (1A5: SRS383142) was crossed to
ST99CH1E4 (1E4: SRS383143). All four parents were collected from naturally infected wheat fields in
1999 in Switzerland. The isolates were previously characterized phenotypically (ZHAN et al. 2002a)
and genetically (ZHAN et al. 2002a; CroLL et al. 2013) and found to differ for virulence and several life
history traits, including melanization. Crosses were performed by co-infecting wheat leaves using an
established protocol (KEma et al. 1996). Ascospores were collected, grown in vitro and stored on
anhydrous silica gel and glycerol at -80°. Cross 3D1 x 3D7 produced 359 progeny and cross 1A5 x
1E4 produced 341 progeny.

Genotyping

We used restriction site associated DNA sequencing (RADseq) (BAIRD et al. 2008) to identify single
nucleotide polymorphism (SNP) markers segregating in the progeny populations. RADseq SNPs in
the parental strains were confirmed using complete parental genome sequences obtained earlier
(CroLL et al. 2013). To construct libraries, spores were lyophilized and DNA was extracted using the
DNeasy plant mini kit (Qiagen Inc., Switzerland). DNA was then quantified and standardized for all
samples. 1.5 ug of genomic DNA per progeny was digested with the restriction enzyme Pstl.
Libraries and pools were constructed following a modified RADseq protocol (ETTER et al. 2011). The
main modification was to use lllumina TrueSeq compatible P2 adapters. Pools containing an average
of 132 progeny were generated, with each pool consisting of 6 different P2 adapters. 22 P1
adapters with distinct inline barcodes were used to distinguish progeny DNA with an identical P2
adapter. Pools were sequenced on an lllumina HiSeq2000 in 100 bp paired-end mode.

Raw sequence reads were quality checked using the tool FastQC (Babraham Bioinformatics;
Cambridge, UK). Reads were then quality trimmed with Trimmomatic v. 0.30 (LoHse et al. 2012) by
using the following settings upon phred + 33 quality scores: trailing = 3, slidingwindow = 20:5 and
minlen = 50. Progeny reads were separated according to the P1 adapter using the FASTX-Toolkit v.
0.13 (Hannon Lab: http://hannonlab.cshl.edu/fastx_toolkit/links.html). Progeny reads were aligned
individually against the IPO323 reference genome (assembly version MG2, Sept 2008) (GoobwiN et
al. 2011) using the short-read aligner Bowtie 2 version 2.0.2 (LANGMEAD and SALZBERG 2012) to create

progeny sequence alignment/map (sam) files. Default settings for a sensitive end-to-end alignment
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were used (-D 15; -R 2; -L 22; -I S, 1,1.15). All four parental genome sequences (CRoLL et al. 2013)
were also aligned to the reference genome using identical trimming and assembly parameters.
Parental and progeny sam files were converted into binary alighment/map files (bam) using
SAMtools version 0.1.18 (Li et al. 2009). RADseq progeny aligned read data is available from the
NCBI Short Read Archive under the BioProject accession numbers PRINA256988 and PRJINA256991.
SNPs were identified using the Genome Analysis Toolkit (GATK) version 2.6-4-g3e5ff60 (DEPRisTO et
al. 2011) and VCFtools version 0.1.10 (http://vcftools.sourceforge.net). Initial SNP calling was
performed in comparison to the reference genome using the GATK UnifiedGenotyper with a
maximum alternative allele setting of 1. The sample-level was set to ploidy of 1 (haploid) using the
sequence alignment/map files of progeny of one of the crosses combined with their respective
parents. The genotype likelihood model was set to the SNP general ploidy model. Marker genotype
SNP filtering was performed using GATK VariantFiltration, by setting the following filters for SNPs to
pass: quality by depth (QD > 5), Fisher’s Exact Test for strand bias (FS < 60), haplotype score
(HaplotypeScore < 10), overall quality score (QUAL > 1000), lower and upper allele frequency
(AFlower > 0.2 and AFupper < 0.8) and total number of alleles within each marker genotype (AN >
60). This filter excluded SNPs only called among the parental genomes. Progeny and parent
genotypes were then filtered further using a phred-scaled genotype quality (GQ) setting of at least
30.

Genetic map construction and quality assessment

The construction of the linkage map was performed using R/qtl version 1.27-10 (AReNDs et al. 2010),
a package of the open-source software R (R_CoRe_Team 2012). A genotype matrix was constructed
containing only progeny with a minimum of 45% of all SNPs genotyped. We further omitted any
markers if less than 70% of the progeny were genotyped. Potential clones in the progeny
populations were excluded by randomly selecting one progeny from a group of potential clones.
Clones were defined as having at least 90% of SNP alleles in common. Adjacent non-recombining
markers were reduced to retain only a single marker for each cluster of non-recombining markers.
We excluded any markers showing significant evidence of non-Mendelian segregation (Chi-square
test: P<0.1), but no progeny genotypes matched the omission criteria for segregation distortion.
Progeny genotypes were further investigated for evidence of genotyping errors (error.prob < 0.01).

Markers with significant evidence for genotyping error in at least one progeny were excluded from
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all progeny. NCBI Short Read Archive accession numbers for the retained progeny within each cross
can be found in Table S1.

The genetic map was constructed by estimating the genetic distance amongst pairs of
neighboring markers and translating recombination frequency into map distance (centiMorgans,
cM). We checked for appropriate linkage group assignment, order and binary status among the
retained markers by inspecting each genetic map for unusual inflation patterns. We constructed a
plot of pairwise marker recombination fractions and LOD scores for tests of r = %4 (heat map). A plot
with a diagonal red line indicates a good assignment with consistent marker order and an absence
of switched alleles. We compared the chromosome coverage of our linkage groups relative to the

reference genome IPO323.

Phenotyping

Melanization was measured using a Petri dish assay combined with digital image analysis. Progeny
of each cross were retrieved from long-term storage and grown on yeast malt sucrose (YMS) agar (4
g/L yeast extract, 4 g/L malt extract, 4 g/L sucrose, 50 mg/L kanamycin). Petri dishes were stored for
approximately 4 days at 18°. 600 ul of sterile water was added to each plate and blastospores were
gently scraped into the solution using a sterile glass slide. 450 ul of the highly concentrated spore
suspension were then transferred into sterile 500 ul Eppendorf tubes and stored for no longer then
3 month at -20°. Spores of each offspring were taken from these tubes and diluted in sterile water
to a concentration of 200 spores per ml using a haemocytometer. 500 pl of the spore suspension
was spread across Petri plates containing potato dextrose agar (PDA, 4 g/L potato starch, 20 g/L
dextrose, 15 g/L agar) using a sterile glass rod. Only single spore colonies were scored. An average
of 20 colonies formed on each plate, but only nine individual colonies were scored on average
because ~50 % of all colonies had fused with a neighboring colony. Each treatment produced the
same average number of colonies.

Each progeny was exposed to two stress environments (cold temperature and sub-lethal
fungicide concentration) and one control environment, with five technical repeats for each
environment. The data point from a technical repeat was the average grey value from an average of
nine colonies scored on one Petri dish. The control environment consisted of PDA plates growing at
22°. The cold-stress environment was PDA plates growing at 15°, while the fungicide-stress
environment was PDA plates containing 0.75 ppm propiconazole (Syngenta, Basel, Switzerland)

growing at 22°.
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Following inoculation, Petri plates were dried for 30 min in a laminar flow cabinet and sealed using
Parafilm. Plates were then randomized in a growth chamber set to a constant temperature with
70% humidity and no light. Plates were photographed at 8, 11 and 14 days post inoculation (dpi) for
image analysis. These time points were chosen because they represented different colony ages and
provided the largest phenotypic variance in preliminary experiments. This experimental design
resulted in nine unique Environment-Colony-Age-Melanization (ECAM) phenotypes for each isolate,
which we will refer to as ECAM phenotypes.

Digital images were captured through the Petri dish lid using standardized camera settings
and lighting environments (see Table S2, Table S3, Figure S1). After images were acquired, Petri
dishes were re-randomized and returned to the growth chamber for further colony growth and
later image acquisition. Images were processed using a batch macro developed in the open-source
software ImageJ (SCHNEIDER et al. 2012), enabling automated image analysis. The macro identified
and scored individual colonies in the images (see File S1). Melanization was measured using average
grey values of individual colonies. Grey values range from 0 to 255, with O representing black and
255 representing white (Figure 1). We used untransformed grey values as phenotypic values
representing different degrees of colony melanization. We calculated broad-sense heritability (H?)
values (BURTON and DEvANE 1953) over means of the five technical repeats for each environment and
colony age using a one-way ANOVA model in R (R_Core_TEAM 2012). The melanization phenotypes

for the retained progeny within each cross can be found in Table S4.

QTL mapping

QTL mapping was performed in R/qtl version 1.27-10 (ARenDs et al. 2010) using single marker
analysis combined with interval mapping, resulting in simple interval mapping (SIM) analysis. The
analysis was based on progeny mean values, calculated over the five technical repeats for each
environment and colony age, so that nine different ECAM phenotypes were generated for each
cross (three environments x three colony ages). Interval mapping improves on the marker
regression method by estimating markers (pseudomarkers) in between true markers. For SIM
analysis we used the EM algorithm. Significance thresholds were determined by permutating the
marker data. We applied genome-wide permutations, with 1000 permutations for each ECAM
phenotype. We considered only QTL peaks with LOD scores that provided P-values lower then 0.05.
We used the reference IPO323 genome to convert cM positions of markers into base pair (bp)

positions on the reference genome. For 95% confidence interval calculations we used Bayesian
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credible intervals from SIM combined with the EM algorithm (MaNicHaikuL et al. 2006). Marker
mean differences and the amount of variance explained by significant markers were calculated
using true markers and not pseudomarkers. We assumed that our marker alleles were additive

because we did not detect any significant epistasis.

Identification of candidate genes within QTL confidence intervals

To identify candidate genes within QTL confidence intervals, we first identified sequence variants
amongst the parents in each cross by comparing their genome sequences, which had been
previously aligned against the IPO323 reference genome. SNPs associated with synonymous and
non-synonymous mutations were called using the GATK UnifiedGenotyper with a maximum
alternative allele setting of 2. Filter settings in the GATK VariantFiltration were as follows: QD 2 5, FS
< 60, HaplotypeScore < 10.0, QUAL > 100, AFlower > 0.2, AFupper < 0.8 and AN > 2. For all other
sequence variants we used default settings of the GATK tools (DEPRisTO et al. 2011). SNP and other
sequence variation annotation results amongst the parental strains within each cross were obtained
using the open-source tools SnpEff and SnpSift version 3.3h (CiNnGOLANI et al. 2012). Synonymous
SNPs were not considered in further analyses. Genes without gene ontology annotations were
described as having unknown functions. Genes were considered as candidate genes within a
confidence interval if they contained at least one sequence variant within the boundaries of the
confidence interval, excluding genes with no sequence variation or with only synonymous SNPs.

A total of 29 genes involved in fungal melanin biosynthesis have been described in the
literature. Orthologs (Table S5) for each of these genes were identified in Z. tritici by performing a
BlastP search in the NCBI non-redundant protein database (http://www.ncbi.nlm.nih.gov) and
conducting phylogenetic analyses of the amino acid sequences using the maximum likelihood
algorithm with default parameters in MEGAS (TAMURA et al. 2011). All QTL confidence intervals were
searched for presence of the identified orthologs, which were considered as candidate melanization
genes.

RNA-Seq data were obtained for parent 3D7 as described earlier (BRUNNER et al. 2013).
Briefly, RNA-Seq data were obtained during an in planta infection time course that included all
major phases of the pathogen life cycle (ie biotrophic, necrotrophic and saprotrophic phases),
including 3 biological repeats at 7, 13, and 56 days post inoculation (dpi). Reads per kilobase per
million (RPKM) per gene values were calculated by normalizing the RNA reads and mapping them

onto the reference genome. Significant differences in transcript abundances were calculated as
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described earlier (BRUNNER et al. 2013). Transcription profiles were obtained for the orthologs to
genes involved in melanin biosynthesis as well as candidate genes identified within QTL confidence

intervals.

Amino acid differences in PKS1 amongst parents 3D1 and 3D7

We identified synonymous and non-synonymous substitutions in the gene PKS1 (ProteinID 96592)
encoding a polyketide synthase that catalyzes the first step of the DHN melanin biosynthetic
pathway. Sequence polymorphism was scored in a Swiss field population of 25 Z. tritici isolates.
Nine of the 25 isolates, including the 4 parental strains, had their genomes sequenced in a previous
study (CroLL et al. 2013), while complete genome sequences of 16 additional isolates (3A2, 3A4,
3A5, 3A6, 3A8, 3A10, 3B2, 3B4, 3C7, 3D3, 3D5, 3F1, 3F3, 3F4, 3G3 and 3H1) were obtained using the
same methods for this study. SNPs amongst the isolates were called and filtered using the GATK
tools (DEPRIsTO et al. 2011) with similar settings as applied for the RADseq dataset. Introns as well as
synonymous and non-synonymous SNPs were manually curated.

A BlastP search in the NCBI non-redundant protein database (http://www.ncbi.nlm.nih.gov)
was performed to investigate sequence conservation amongst ascomycetes. The PKS1 amino acid
sequence of the Z tritici reference genome isolate IPO323 was aligned against 10 ascomycetes,
including Pseudocercospora fijiensis, Cladosporium phlei, Elsinoe fawcettii, Leptosphaeria maculans,
Alternaria alternata, Phaeosphaeria nodorum, Pyrenophora tritici-repentis, Magnaporthe oryzae,
Neurospora crassa and Aspergillus nidulans. The Pfam database was used to identify functional

PKS1 protein domains (FINN et al. 2014).
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RESULTS
Genetic maps
We retained 263 unique progeny and 9745 SNP markers in the 3D1 x 3D7 cross. 96 progeny were
excluded because of missing genotypes (18) or clonality (78). The quality filtered dataset in the 1A5
X 1E4 cross included 261 progeny and 7333 SNP markers. 80 progeny were excluded because of
missing genotypes (14) or clonality (66). Table 1 and Table 2 summarize the results for each genetic
map.

Marker density was high with an average genetic spacing of 0.44 cM, representing an
average physical spacing of ~3600 bp between SNP markers in cross 3D1 x 3D7 and average spacing
of 0.71 cM (~4700 bp) in cross 1A5 x 1E4. On average our genetic maps covered around 90% of the
reference genome over both crosses. Figure 2 shows the genetic maps as well as plots of pairwise
marker recombination fractions and LOD scores for tests of r = 0.5, which indicate a distorted
diagonal red line for chromosome 13 in both crosses, indicating marker order inconsistencies.
Chromosome 13 likely exhibits map inflation in both crosses, indicated by an unusual genetic length
(Table 1, Table 2) and larger gaps on the genetic map (Figure 2).

The 8 smallest chromosomes (14 to 21) in the Z tritici reference genome are accessory
chromosomes (ACs) (GoopwIN et al. 2011) that often exhibit presence/absence polymorphisms
(CroLL et al. 2013). In the 3D1 x 3D7 cross, the parental genome sequences revealed that ACs 14, 15,
18 and 21 were missing in one of the parents, hence only ACs 16, 17, 19 and 20 were mapped. In
the 1A5 x 1E4 cross, AC 17 was missing in one of the parents and therefore only ACs 14, 15, 16, 18,
19, 20 and 21 were mapped.

Melanization is a quantitative trait that shows transgressive segregation
For both crosses over all three environments and all three colony ages, we found that melanization
showed a continuous distribution consistent with a quantitative character (Figure S2, Figure S3).
Many progeny had more extreme phenotypes than the parents, indicating transgressive
segregation. The degree of melanization increased over time for most isolates in most
environments, indicating that melanin concentration increases as colonies age.

Reaction norms over the three colony ages differed among the progeny in each cross,
providing evidence for differential interactions between genotypes and environments over time. To
illustrate this, we compared the two progeny showing the most extreme phenotypes at 14 dpi in

one environment with their corresponding phenotypes in the other two environments (Figure S4,
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Figure S5). In both crosses we found strong evidence for phenotype-by-environment interaction

over all colony ages. Hence, we analyzed each colony age separately in the QTL analyses.

Comparison of mapped QTLs reveals unique and shared QTLs between the two crosses

We found six significant QTLs in cross 3D1 x 3D7 and nine significant QTLs in cross 1A5 x 1E4 (Figure
3, Table 3, Table 4). QTLs were considered to be different if the confidence intervals did not overlap.
This approach was applied across environments and colony ages as well as within crosses and
amongst crosses. Three QTLs were shared between the two crosses. Shared QTLs were further
characterized based on the 3D1 x 3D7 cross. A detailed description of all significant QTLs found in
both crosses is given in Table S6, Table S7, Table S8 and Table S9. No QTLs were found on accessory

chromosomes.

Environment and colony age affect QTL mapping results

In both crosses we found environment-specific QTLs as well as QTLs that were shared across all
environments. In cross 3D1 x 3D7, five QTLs were environment-specific and a QTL on chromosome
11 was found in all environments. In cross 1A5 x 1E4, six QTLs were environment-specific and three
QTLs were found in all environments (Figure 3).

Colony age also affects QTL detection for some environments in both crosses. For example,
in cross 3D1 x 3D7 the chromosome 5 QTL was found in colonies that were 11 and 14 days old,
while the chromosome 8 QTL was found only in colonies that were 11 days old. In the 1A5 x 1E4
cross, the QTLs on chromosomes 5 and 8 were significant in colonies that were 11 and 14 days old,
but the QTLs on chromosomes 6, 7 and 11 were found only in colonies that were 14 days old (Figure

3).

Genetic architecture of melanization in the two crosses

We found differences in the genetic architecture of melanization amongst the two crosses. On
average, cross 3D1 x 3D7 had fewer (1.8) melanization QTLs for each colony age and environment
than cross 1A5 x 1E4 (3.6). But the average total variance explained by the QTLs for each ECAM
phenotype was similar (~¥35%) in both crosses. In cross 3D1 x 3D7 nearly half of the total phenotypic
variance was explained by one QTL on chromosome 11, while in cross 1A5 x 1E4 a similar amount of

variance was explained by six QTLs distributed across several chromosomes, suggesting a more
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complex genetic basis of melanin production in cross 1A5 x 1E4 compared to cross 3D1 x 3D7 (Table

5).

Identification of candidate genes and orthologous genes related to melanization in QTL regions
A summary of the candidate genes found within each confidence interval for cross 3D1 x 3D7 and
1A5 x 1E4 is given in Table S8 and Table S9, respectively. On average we found ~190 candidate
genes per confidence interval, with a minimum of one candidate gene (14 dpi, fungicide
environment, 1A5 x 1E4) and a maximum of 1245 genes (8 dpi, control environment, 1A5 x 1E4).
~32% of the candidate genes found in a confidence interval had no known function and ~42%
showed significant changes in transcript abundance across biotrophic, necrotrophic and
saprotrophic stages in the life cycle. Eleven orthologs of the 29 genes described to be involved in
melanin biosynthesis (Table S5) were identified as candidate genes in four of the 12 cross-specific
QTL confidence intervals (Figure 3). Nine of the 29 orthologs were found in three of the QTLs in
cross 3D1 x 3D7 and two were found in one of the QTLs in cross 1A5 x 1E4 (Table 6). These 11
orthologs encode two (MgS/t2 and MgFus3) mitogen-activated protein kinases (MAPKs), one
(CLAP1) copper-transporting ATPase, two (LAC4 and LACS8) laccases, one (PRF1) prefolding
chaperone, one (PKS1) polyketide synthase, one (MgGpal) G alpha protein, as well as two (PEX6
and PEX13) genes involved in peroxisome biosynthesis and one (AYG2) of an unknown function
(Table S5). Three (MgSIt2, MgFus3 and MgGpal) of these 11 genes were associated with
melanization in Z. tritici in earlier studies (CousIN et al. 2006; MEeHRABI et al. 2006a; MEHRABI et al.
2009), but the other 8 genes have not previously been associated with melanization in Z. tritici.

To narrow the search for candidate genes affecting melanization, we focused on major QTLs
(LOD > 7.5) containing < 30 candidate genes in their confidence intervals. We identified two
confidence intervals meeting these criteria in each cross (Table 7). For cross 3D1 x 3D7, the QTL on
chromosome 10 for the 11 dpi cold environment had 12 candidate genes and the QTL on
chromosome 11 for the 8 dpi control environment had four candidate genes (Table S10, Figure 4).
For cross 1A5 x 1E4, the QTL on chromosome 4 for the 14 dpi fungicide environment had one
candidate gene and the QTL on chromosome 8 for the 11 dpi cold environment had 22 candidate
genes (Table S11, Figure 4). Taking into account all of the available information (gene ontology, the
predicted impact of observed sequence variation, the position of the QTL peak, gene expression) as

shown in Table S10 and Table S11, we further narrowed the list down to eight high-priority
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candidate genes in the 3D1 x 3D7 cross and eight high-priority candidate genes in the 1A5 x 1E4

cross, resulting in a total of 16 high-priority candidate genes over both crosses.
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DISCUSSION

Genetic maps

The two genetic maps have very high marker density compared to other reported genetic maps in
filamentous fungi (FOuLONGNE-ORIOL 2012). The high marker density reflects the high degree of
recombination in the mapping populations as well as the large number of markers provided by our
genotyping method. Earlier genetic maps based on the genome reference isolate IPO323 (KEmA et
al. 2002; WITTENBERG et al. 2009) were ~72% smaller than our genetic maps. We hypothesize that
our maps are larger due to higher recombination resulting from larger numbers of offspring and
more extensive chromosome coverage resulting from larger numbers of genetic markers. Our maps
covered ~90% of the reference genome on average. Incomplete coverage can be explained by
missing restriction sites or low quality mapping reads toward one or both telomeres of each
chromosome. Other explanations include a lack of recombining polymorphic markers or lower
polymorphism towards the telomeres. The ratio of physical distance to genetic distance was ~7.5
kb/cM for both crosses, comparable to the ratio of 8.1 kb/cM described in Aspergillus nidulans
(CHRISTIANS et al. 2011).

The unusual genetic length (Table 1, Table 2) and larger gaps on the genetic map of
chromosome 13 (Figure 2) are consistent with map inflation resulting from incorrect marker order,
most likely due to inappropriate alignment of our illumina reads onto the reference genome. We
hypothesize that this could be due to the presence of the mating type idiomorphs (WaaLwiik et al.
2002) on this chromosome, the occurrence of transposable elements or because of incorrect
reference genome assembly. As chromosome 13 coverage was good (88% in cross 3D1 x 3D7 and
90% for cross 1A5 x 1E4) and no QTLs were found on this chromosome for either cross, this issue

was not investigated further.

Melanization is a quantitative trait that is affected by environment and colony age

The finding that all ECAM phenotypes showed a continuous distribution (Figure S2, Figure S3) and
high broad-sense heritability (74-95%; Figure S4 and Figure S5) in both crosses indicates that several
genes are likely to contribute to the melanization phenotype in Z tritici. We found 15 significant
QTLs in total, with more than one significant QTL identified for 13 out of 18 ECAM phenotypes
(Table 5). On average, a QTL contributed ~15% of the phenotypic variance observed in each cross.
The pattern of transgressive segregation is also consistent with the hypothesis that melanization is a

guantitative trait. Our findings stand in contrast to an earlier melanization mapping study (LiN et al.
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2006) that identified only one significant QTL associated with several melanin phenotypes in a
mapping population.

Our experimental design allowed us to investigate the effects of both colony age and
environment on the melanization phenotype. We were able to demonstrate both colony age and
environmental effects, as reflected by unique QTLs, within both mapping populations. These
findings are consistent with the hypothesis that genes affecting melanization are differentially

regulated in different environments and at different stages of colony development.

Unique QTLs and shared QTLs were identified by comparing QTLs of the two crosses

We identified three shared QTLs and nine QTLs that were unique to one of the crosses. For the
three shared QTLs (found on chromosomes 1, 5 and 11), we compared the candidate genes found in
the corresponding confidence intervals and found that more than 40% of the candidate genes in
these confidence intervals were shared amongst the two crosses, suggesting that the shared QTLs
are likely to be due to same source of genetic variance in each cross. Among the 15 identified QTLs,
we postulate that the six QTLs in Table 8 are the most likely to be replicated in other QTL mapping
studies, based on having a combination of high LOD scores (> 7) and being found at least twice over

different colony ages and/or environments.

Identification of orthologs to genes involved in melanin biosynthesis within QTL intervals

All the previously identified orthologs of genes involved in melanin biosynthesis (Table S5) were
expressed (= 2 RPKM), hence all of the orthologs could affect melanization in Z. tritici. Eleven of the
29 orthologs were found within four of the twelve cross-specific QTL confidence intervals (Table 6,
Figure 3) identified in our analyses. We postulate that several of these known genes contributed to
the melanization phenotypes in our crosses. Among the 11 orthologous candidates, three (MgS/t2
(MEeHRABI et al. 2006a), MgGpal (SoLomoN et al. 2004; MEeHRABI et al. 2009) and MgFus3 (CousIN et al.
2006)) were functionally validated in Z tritici but none of these have been investigated as
contributing to a quantitative character. The other 8 candidates have not yet been analyzed in Z
tritici, but our QTL analyses indicate that these genes may also affect melanization in Z. tritici.
Following gene disruption, 8 of these 11 orthologous candidates exhibited a measurable change in
mycelial melanization in vitro, and three (PEX6, LAC4 and LAC8) affected melanization of

appressoria but not mycelia in Colletotrichum spp (Kimura et al. 2001; LiN et al. 2012). None of the

44



18 remaining orthologs were found as candidate genes in the 12 cross-specific QTL confidence

intervals.

QTL confidence intervals contain both novel and known candidate genes affecting melanization
Three of the 16 high-priority candidate genes carried no GO annotation and thus have no known
function. These candidates could represent novel transcription factors, enzymes or structural
proteins that affect the melanization phenotype. The remaining 13 genes had gene ontology
annotations. Seven of the 16 high-priority candidate genes showed significant changes in transcript
abundance across biotrophic, necrotrophic and saprotrophic stages of the life cycle, consistent with
expected changes in melanin production across the pathogen life cycle. Melanin production is
expected to increase during the development of the black pycnidia that form early in the
saprotrophic stage of the life cycle (EvaL et al. 1987).

Within three of the four major-effect QTL confidence intervals, none of the candidate genes
is an ortholog of genes known to be involved in melanin biosynthesis, thus these represent novel
candidates for genes affecting fungal melanization. Gene 92291 encodes a transcription factor and
was the only candidate gene within the QTL confidence interval on chromosome 4. We hypothesize
that this transcription factor regulates genes under fungicide stress because this QTL was found
only in the fungicide environment.

The major-effect QTL on chromosome 11 contains three high-priority candidate genes and
had the highest LOD score (32.2) amongst the 12 cross specific QTLs over both crosses (Table 3,
Table 4). Two of the 3 genes were orthologous to genes known to be involved in melanin
biosynthesis (Table S5), namely PRF1 (Protein ID: 96591) and PKS1 (Protein ID: 96592). The third
gene (96588) is involved in zinc binding and was also considered a high-priority candidate because
the melanin biosynthesis ortholog CMR1 (ELiaHU et al. 2007) (Table S5) encodes a transcription
factor with a zinc finger (Tsusl et al. 2000) and is located 28 kb upstream from 96588. We
hypothesize that gene 96588 is involved in zinc homeostasis of CMR1 and ultimately affects melanin
biosynthesis. But our analyses of sequence diversity led us to conclude that PKS1 is the major

contributor to the phenotypic variance explained by the large effect QTL on chromosome 11.

Identification of a candidate QTN in PKS1
PKS1 is the polyketide synthase enzyme catalyzing the first step of DHN melanin synthesis through

head-to-tail joining and cyclization of acetate molecules (TAkANO et al. 1995; BuTLER and DAy 1998) in
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the DHN melanin biosynthetic pathway. PKS1 carries three non-synonymous mutations amongst
parents 3D1 and 3D7 while PRF1 and 96588 contain 1 and O non-synonymous mutations,
respectively (Table S10). The region on chromosome 11 containing PKS1 comprises the main DHN
melanin biosynthetic gene cluster. We interpret this finding as a validation of our QTL mapping
approach to identify genes affecting melanization. DHN melanin, which is the best characterized
melanin in fungi (BuTLER and DAy 1998), has so far not been studied in Z tritici (Table S5). The
identification of PKS1 as a highly probable candidate gene within the QTL having the largest LOD
score amongst the 12 cross-specific QTLs suggests that DHN melanin plays a major role in
melanization in Z. tritici.

Three non-synonymous substitutions at amino acid positions 155, 884 and 1783 were found
in PKS1 amongst parents 3D1 and 3D7, but positions 884 and 1783 (Figure 5) were considered as
more likely candidates to explain differences in melanization because position 155 was not in a
functional domain and the alternative amino acids did not differ for polarity, acidity (TAvLOR 1986) or
hydropathy index (KyTe and DoouTTLE 1982). Fifteen of the 25 field isolates had an alanine at
position 884 while 10 isolates carried a valine at that position. At position 1783, only the 3D7 parent
had a threonine residue while the other 24 isolates had a proline (Figure 5). Position 1783 was more
conserved amongst ascoymcetes than site 884, but neither site was located within an annotated
functional domain of PKS1 (Figure 5). The amino acid property changes were most striking for site
1783, because proline is nonpolar while threonine is polar. In addition, proline is uniqgue among the
20 proteinogenic amino acids because its side group links to the amino group, often resulting in
strong effects on protein secondary structure.

Based on these analyses of PKS1 sequence polymorphism, we postulate that the non-
synonymous mutation found at amino acid 1783 explains most of the phenotypic variance
associated with the large-effect QTL on chromosome 11. If this is confirmed, then the associated
SNP represents a quantitative trait nucleotide (QTN) (FRIDMAN et al. 2004) that explains the majority
of the phenotypic variance in this cross. Functional validation will be needed to confirm this

hypothesis.
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Table 1 Genetic map summary for the cross between Zymoseptoria tritici isolates 3D1 and 3D7.

Genetic Physical Percentage
length length Ratio of physical  of reference
Average covered by covered by distance to genome
No. of marker markers markers genetic distance  covered by
Chromosome markers spacing (cM)  (cM) (kb) (kb/cM) markers (%)
1 1906 0.299 569.3 5885 10.34 97
2 1129 0.338 381.7 3755 9.84 97
3 987 0.364 358.6 3409 9.51 97
4 811 0.355 287.9 2816 9.78 98
5 553 0.775 427.8 2730 6.38 95
6 775 0.357 276.1 2533 9.17 95
7 429 0.555 237.6 2574 10.83 97
8 836 0.317 264.5 2347 8.87 96
9 543 0.465 252.1 2075 8.23 97
10 149 1.386 205.2 1487 7.24 88
11 252 0.759 190.4 1522 7.99 94
12 365 0.55 200.2 1361 6.8 93
13 400 0.723 288.5 1044 3.62 88
16 48 0.792 37.2 455 12.24 75
17 192 0.501 95.8 439 4.59 75
19 173 0.48 82.5 470 5.69 85
20 197 0.51 99.9 429 4.29 91
Total 9745 0.437 4255.4 35331 Average 7.97 Average 92
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Table 2 Genetic map summary for the cross between Zymoseptoria tritici isolates 1A5 and 1E4.

Genetic Physical Percentage of
length length Ratio of physical reference
Average covered by covered by distance to genome
No. of marker markers markers genetic distance covered by
Chromosome markers spacing (cM)  (cM) (kb) (kb/cM) markers (%)
1 1336 0.612 817.5 5813 7.11 95
2 743 0.59 437.8 3712 8.48 96
3 695 0.738 512.5 3419 6.67 98
4 494 0.796 392.5 2806 7.15 97
5 504 0.753 378.7 2657 7.02 93
6 468 0.769 359.2 2495 6.95 93
7 522 0.725 377.7 2574 6.82 97
8 528 0.591 311.6 2329 7.47 95
9 421 0.699 293.7 2056 7.00 96
10 366 0.711 259.4 1634 6.30 97
11 212 0.975 205.7 1521 7.40 94
12 95 0.743 69.8 515 7.38 35
13 263 1.038 272 1069 3.93 90
14 55 1.314 71 620 8.74 80
15 160 0.797 126.7 509 4.01 80
16 29 1.297 36.3 434 11.96 71
18 43 1.348 56.6 492 8.70 86
19 113 0.877 98.2 494 5.03 90
20 106 0.76 79.8 398 4.99 84
21 180 0.192 344 279 8.10 68
Total 7333 0.708 5191.3 35827 Average 7.06 Average 87
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Table 5 Phenotypic contributions and distribution of all significant QTLs.
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3D1x3D7° Cold 8 10, 12 3D1(2) 22.8 2
3D1x3D7° Cold 11 8,10,11 3D1(2), 3D7(1) 30.1 3
3D1 x 3D7 Control 8 11 3D1(1) 39.2 1
3D1x3D7° Control 11 5,11 3D1(1), 3D7(1) 45.7 2
3D1x3D7° Control 14 5,11 3D1(1), 3D7(1) 36.5 2
3D1x 3D7 Fungicide 8 11 3D1(1) 45.8 1
3D1 x 3D7 Fungicide 11 11 3D1(1) 30.4 1
3D1x3D7° Fungicide 14 1,2 3D1(1), 3D7(1) 335 2
Average: Average:
35.5 1.8
1A5 x 1E4 ° Cold 8 1,2,3 1A5(1), 1E4(2) 354 3
1A5 x 1E4 ° Cold 11 1,2,5,8 1A5(3), 1E4(1) 43.6 4
1A5 x 1E4 ° Cold 14 1,3,5,7,8 1A5(4), 1E4(1) 45.9 5
1A5 x 1E4 ° Control 8 1,2 1A5(2) 18.1 2
1A5 x 1E4 Control 11 1 1E4(1) 10.9 1
1A5 x 1E4 ° Control 14 1,3,4,5,11 1A5(1), 1E4(4) 42.4 5
1A5 x 1E4 ° Fungicide 8 2,4 1A5(1), 1E4(1) 25.2 2
1A5 x 1E4 ° Fungicide 11 1,2,3,4 1A5(1), 1E4(3) 40.6 4
1A5 x 1E4 ° Fungicide 14 1,2,3,4,6,11 1A5(3), 1E4(3) 55.5 6
Average: Average:
35.3 3.6

® A ° refers to ECAM phenotypes with at least two significant QTLs, while no ° refers to ECAM phenotypes with
only one significant QTL.
b 3D7/1E4 indicates that the parental 3D7/1E4 allele provided the higher phenotypic mean contribution then the
parental 3D1/1A5 allele, while 3D1/1A5 indicates that the parental 3D1/1A5 allele provided the higher
phenotypic mean contribution then the parental 3D7/1E4 allele. The number within brackets following the
parental allele indicates the number of significant QTLs.
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Table 6 Genes associated with melanization that were identified as candidate genes within the 6 cross-specific QTLs in each

cross.
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3D1x 3D7 Cold 8 4.85 12 143 29 305
3D1x 3D7 Cold 11 4.07 8 1251 897 2228 /
3D1x 3D7 Cold 11 9.55 10 649 634 673 /
3D1x 3D7 Control 8 32.2 11 581 560 603 PRF1, PKS1
3D1x 3D7 Control 11 4.38 5 871 449 2799 PEX13, LAC4, LAC8
3D1x 3D7 Fungicide 14 3.64 1 1740 1063 4267 MgsSlt2, CLAP1,
MgGpal, PEX6
1A5 x 1E4 Cold 8 8.52 3 1301 869 1749 /
1A5 x 1E4 Cold 11 7.65 8 430 348 446 /
1A5 x 1E4 Cold 14 4.01 7 841 428 1893 /
1A5 x 1E4 Cold 8 10 2 1699 1646 1819 /
1A5 x 1E4 Fungicide 14 9.47 4 420 417 426 /
1A5 x 1E4 Fungicide 14 3.56 6 2299 1166 2438 MgFus3, AYG2

®Markers flanking Bayes confidence interval.
b Orthologs to genes involved in melanin biosynthesis found as candidate genes in Bayes confidence interval.
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Table 7 Large-effect QTL intervals containing < 30 candidate genes.

Percentage of total sequence
variation affected genes with
unknown function (%) b

Number of sequence variation
affected genes with unknown
function ®

Percentage of total genes affected
- b
by sequence variations (%)

Number of genes affected by
sequence variations b

Number of genes b

- b
Number of sequence variations

Bayes confidence interval length (kb)

Estimated position of distal marker
flanking (kb) ®

Estimated position of proximal
marker (kb) °

P-value

LOD score at peak

Estimated position of peaking marker,
(kb)

Chromosome

Colony age (dpi)

Environment

Cross

17

11 10 649 9.55 <0.001 634 673 39 59 15 12 80

Cold

3D1x 3D7

14 29

8 11 581 32.2 <0.001 560 603 43

Control

3D1x 3D7

50

9.47 <0.001 417 426

420

14

Fungicide

1AS5 x 1E4

41

7.65 <0.001 348 446 99 132 27 22 81

430

11

Cold

1AS5 x 1E4

Markers flanking Bayes confidence interval.

a
b

Numbers refer to within Bayes confidence interval.
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Table 8 Most reproducible QTLs in the two crosses.
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3D1 x 3D7 Cold 11 10 9.55 <0.001 2
3D1 x 3D7 Control 8 11 32.2 <0.001 7
1A5 x 1E4 Cold 8 3 8.52 <0.001 5
1A5 x 1E4 Cold 11 8 7.65 <0.001 2
1A5 x 1E4 Cold 8 2 10 <0.001 6
1A5 x 1E4 Fungicide 14 4 9.47 <0.001 4

62



Progeny C101 B431 C71  C#11 B312 C72 A442 B421 D91

Grey value 41 51 64 76 90 103 116 126 132

13 25 38 51 64 76 89 102 115

Grey scale | 166 179 191 204 217 229 242 255

Figure 1 Colony melanization was measured by digital image analyses of grey scale values ranging from 0 (black) to 255
(white). Images from the control environment at 14 dpi for representative progeny from the cross 1A5 x 1E4 are
positioned onto the scale to illustrate the different degrees of melanization observed in the crosses. Each image is
labeled with the corresponding progeny name (top) and the corresponding grey value (bottom) as measured in the
images. The grey values shown represent the full phenotypic variance found under the control environment at 14 dpi in

the progeny from the cross 1A5 x 1E4.
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Figure 2 (A, B) Genetic maps and (C, D) pairwise linkage comparisons of markers for each cross (Top: 3D1 x 3D7; Bottom:
1A5 x 1E4). (C, D) Within the pairwise linkage comparison plot marker-pairwise recombination fractions are shown in
the upper left triangle and LOD scores for tests of r = % are shown in the lower right triangle. Red corresponds to a large
LOD or a small recombination fraction, while blue is the reverse. Thus red indicates linkage, whilst blue indicates no

linkage.
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Figure 3 QTL peaks (red dots) and associated confidence intervals for all significant QTLs detected in the experiment.
Cross 3D1 x 3D7 is shown in the upper half and cross 1A5 x 1E4 is shown in the lower half of the figure. Environments
are color-coded: green = fungicide stress environment; orange = control environment; purple = cold stress environment.
Colony age increases within each environment from the bottom up. The different sizes of red dots represent the relative
size of the associated LOD scores. The 12 cross-specific QTLs are marked with a green triangle. Orthologs involved in
melanin biosynthesis found within 12 cross-specific QTL confidence intervals as candidate genes are indicated with

names in blue positioned above the corresponding chromosome. Chromosome sizes are presented in mega base pairs

(Mb).
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Figure 4 LOD plots from the single marker interval mapping (SIM) analysis over all chromosomes for the phenotypes

that provided the peaks with confidence interval containing the smallest number (< 30) of candidate genes. The

horizontal dashed red line in the LOD plots represents the significance threshold (p = 0.05) obtained by 1000 genome-

wide permutations. Below each LOD plot is the confidence interval (grey line) for the peak with the fewest candidate

genes (gene bars), which are positioned within the confidence interval. The genes are color coded according to the

predicted impact by SnpEff of the observed sequence variation (white = modifier, light grey = low (no case within the

confidence interval shown), grey = moderate, black= high) and labeled with their protein ID just above the gene bars.

Below the gene bars are vertical lines, representing the position of each sequence variant within a gene. The asterisk

symbol represents the position of the peaking marker within the confidence interval. Orthologs to genes involved in

melanin biosynthesis found as candidate genes within the confidence interval are represented by their name in blue,

just above the corresponding protein ID. High-priority candidate genes are colored in red.
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Parent 3D1 amino acid Alanine (A) Proline (P)

Polarity / hydropathy index / acidity nonpolar / 1.8 / neutral nonpolar /- 1.6 / neutral
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Figure 5 PKS1 amino acid alterations between parent 3D1 and 3D7 and a schematic diagram of the entire PKS1 gene
(2175 amino acids). The two investigated amino acid alterations at position 884 and 1783 are indicated on the gene,
showing their positions relative to the predicted functional domain sites. The lower panel shows polymorphisms

present among 11 ascomycetes as well as 25 genetically distinct Z. tritici field isolates from Switzerland.
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ABSTRACT
A major problem associated with the intensification of agriculture is the emergence of fungicide
resistance. Azoles are ergosterol biosynthesis inhibitors that have been widely used in agriculture
and medicine since the 1970s, leading to emergence of increasingly resistant fungal populations.
The known genetic mechanisms underlying lower azole sensitivity include mutations affecting the
CYP51 gene that encodes the target protein, but in many cases azole resistance is a more complex
trait with an unknown genetic basis. We used quantitative trait locus (QTL) mapping to identify
genes affecting azole sensitivity in two crosses of Zymoseptoria tritici, the most damaging wheat
pathogen in Europe. Restriction site associated DNA sequencing (RADseq) was used to genotype
263 (cross 1) and 261 (cross 2) progeny at ~8500 single nucleotide polymorphisms (SNP) and
construct two dense linkage maps. Azole sensitivity was assessed using high-throughput digital
image analysis of colonies growing on Petri dishes with or without the fungicide propiconazole. We
identified three QTLs for azole sensitivity, including two that contained novel fungicide sensitivity
genes. One of these two QTLs contained only 16 candidate genes, among which four most likely
candidates were identified. The third QTL contained ERG6, encoding another protein involved in
ergosterol biosynthesis. Known genes in QTLs affecting colony growth included CYP51 and PKS1, a
gene affecting melanization in Z tritici. PKS1 showed compelling evidence for pleiotropy, with a rare
segregating allele that increased melanization while decreasing growth rate and propiconazole
sensitivity. This study resolved the genetic architecture of an important agricultural trait and led to
identification of novel genes that are likely to affect azole sensitivity in Z. tritici. 1t also provided
insight into fitness costs associated with lowered azole sensitivity and suggests a novel fungicide

mixture strategy.
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INTRODUCTION

One consequence of intensification of agriculture is an increase in fungicide use worldwide.
Concomitant with increased fungicide use has been the often-rapid emergence of resistance against
most classes of fungicides used in agricultural ecosystems. In some cases, entire fungicide classes
are no longer effective as a result of resistance evolution (ANDERSON 2005; BRENT and HOLLOMON
2007; DEISING et al. 2008). The genetic basis of resistance is well known for some fungicide classes
(BReNT and HoLLomoN 2007) but for other fungicides, including the ergosterol biosynthesis inhibitors
commonly used in both agriculture and medicine, resistance generally has a complex genetic
architecture that is poorly understood (CooLs and Fraaie 2013; Coots et al. 2013).

The imidazole and triazole fungicides inhibit P450 14a-demethylase, a key enzyme involved
in ergosterol biosynthesis and encoded by CYP51/ERG11 (CooLs and FRAALE 2008). Known
mechanisms for resistance to azole fungicides include 1) sterol biosynthesis alterations (JOSEPHHORNE
et al. 1995), 2) mutations and 3) elevated expression of the CYP51 gene that encodes the targeted
protein (CooLs et al. 2011; CooLs et al. 2012) as well as 4) reduction of fungicide concentration in the
fungal cell due to increased active efflux, due to increased expression of genes encoding membrane
transporters, such as ATP-binding cassette (ABC) transporters and major facilitators (Zwiers et al.
2002; STERGIOPOULOS et al. 2003; ZwiIERs et al. 2003; ROOHPARVAR et al. 2007). These mechanisms can
act alone or in combination to produce resistant strains (HigGINs 2007; Coots et al. 2013). Azole
sensitivity appears to be a polygenic trait in many fungi (CooLs et al. 2013).

QTL mapping enables the identification and characterization of chromosomal segments
affecting quantitative traits, leading ultimately to the genes and quantitative trait nucleotides
(QTNs) encoding these traits (Mackay 2001). QTL mapping provides a powerful and unbiased
forward genetic approach to determine the genetic architecture of fungicide sensitivity and identify
novel mechanisms contributing to fungicide resistance. Because the known azole sensitivity
mechanisms and underlying genes are unable to fully explain the phenotypic variance observed in
natural field populations of plant pathogens (Zwiers et al. 2002; STERGIOPOULOS et al. 2003; ZWIERS et
al. 2003; Cools et al. 2007; CooLs and FraallE 2013; Cools et al. 2013), we used QTL mapping to seek
novel genes involved in azole sensitivity. To our knowledge this is the first study to use QTL mapping
to identify molecular determinants of fungicide sensitivity in a filamentous ascomycete.

Zymoseptoria tritici is a globally distributed pathogen that causes Septoria tritici blotch (STB)

on wheat. It is the most damaging wheat pathogen in Europe (JORGENSEN et al. 2014). Z. tritici has
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shown an impressive capacity to rapidly evolve resistance to fungicides (FRAAIE et al. 2005; CooLs et
al. 2007; TorriaNI et al. 2009; CooLs and FraalJE 2013; Estep et al. 2014). This high evolutionary
potential is likely due to the regular cycles of recombination, high effective population sizes and
high gene flow associated with field populations of this pathogen (McDoNALD and LINDE 2002; ZHAN
et al. 2003; ZHAN and McDoNALD 2004; STuKENBROCK and McDonALD 2008). Control relies mainly on
deployment of fungicides and resistant wheat cultivars. However, a lack of commercially viable STB-
resistant wheat cultivars has led to a heavy reliance on fungicides in Europe. The azoles are one of
the few classes of systemic fungicides still providing adequate control of STB in Europe (CooLs et al.
2007). Although azoles have been widely and intensively used in European agriculture since their
introduction in 1970, resistance to imidazoles and triazoles was slow to develop and was not
considered important in Z tritici until recently. The slow emergence of resistance may reflect high
fitness costs associated with lower azole sensitivity (CooLs et al. 2013). The current strategy to
manage azole resistance is to mix azoles with succinate dehydrogenase inhibitors and/or multisite
inhibitors (O’DRriscoLL et al. 2014).

We used two mapping populations derived from four Swiss wild-type strains to identify QTLs
involved in azole sensitivity. Candidate genes and candidate QTNs within 95% QTL confidence
intervals were identified based on complete genome sequences available for all four parents. We
coupled restriction site associated DNA sequencing (RADseq) with high-throughput digital image
analysis to identify QTLs affecting growth and fungicide sensitivity in both crosses. We showed that
fungicide sensitivity in Z. tritici is a quantitative trait affected by several genes in addition to the
CYP51 gene that encodes the azole target site, which until now has been the primary explanation
for the quantitative nature of this trait (CooLs and FraalJE 2013; CooLls et al. 2013). We also gained

novel insight into pathogen fitness costs associated with resistance.
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MATERIAL AND METHODS

Mapping populations, genotyping, genetic maps, gene expression

Methods used for mapping and gene expression were described earlier (BRUNNER et al. 2013;
LENDENMANN et al. 2014). Briefly, two crosses were made between four Z tritici isolates. Isolate
ST99CH3D1 (3D1: SRS383146) was crossed to ST99CH3D7 (3D7: SRS383147) and ST99CH1A5 (1A5:
SRS383142) was crossed to ST99CH1E4 (1E4: SRS383143). Cross 3D1 x 3D7 produced 359 progeny
and cross 1A5 x 1E4 produced 341 progeny. We used restriction site associated DNA sequencing
(RADseq) (BAIRD et al. 2008) to identify segregating single nucleotide polymorphism (SNP) markers.
RADseq SNPs in the parental strains were confirmed using parental genome sequences (CroLL et al.
2013). The linkage map was constructed using R/qtl version 1.27-10 (ARenDs et al. 2010). RNA-Seq
data were obtained for parent 3D7 as described earlier (BRUNNER et al. 2013). Transcription profiles
were obtained for all genes associated with azole sensitivity as well as candidate genes identified
within QTL confidence intervals. NCBI Short Read Archive accession numbers for the retained

progeny within each cross can be found in Table S1.

Phenotyping

Fungicide sensitivity was measured using a growth rate assay on Petri plates. Methods used to
produce spores and spore suspensions and to inoculate plates were described earlier (LENDENMANN
et al. 2014). Growth rates of all isolates (progeny and parents) were measured on potato dextrose
agar (PDA, 4 g/L potato starch, 20 g/L dextrose, 15 g/L agar) plates either amended or without a
fungicide. The amended plates contained 0.75 mg/L (= 0.75 ppm) propiconazole (Syngenta, Basel,
Switzerland). After inoculation, plates were sealed with Parafilm and randomized in a growth
chamber set to 22°C with 70% humidity and no light. Plates were photographed at 8, 11 and 14 days
post inoculation (dpi) for digital image analysis. Images were captured through the Petri dish lid
using standardized camera settings and lighting environments described earlier (LENDENMANN et al.
2014). After image capture, Petri dishes were re-randomized and returned to the growth chamber
for further incubation and later image acquisition. Digital images were processed using a batch
macro developed in the open-source software Imagel (ScHNEIDER et al. 2012). Image analysis
identified and scored individual colonies in the images, avoiding any fused colonies. Individual
colonies were measured for area (mm?) as well as grey values, which represent degrees of

melanization (LENDENMANN et al. 2014).
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Five technical repeats (= five Petri plates) were conducted for each isolate. The data point
from a technical repeat was the average colony area or grey value from an average of nine single
spore colonies scored per Petri dish and colony age. The average colony area of the five technical
repeats was calculated for each treatment and colony age. We calculated broad-sense heritability
(H?) (BurRTON and DEVANE 1953) based on area means of the five technical repeats for both
treatments at each colony age using a one-way ANOVA model in R (R_Core_Team 2012). Based on
previous studies of filamentous fungi that showed a linear increase of colony radius over time
(TrRiINCI 1969; TrincI 1971; FEDOROVA et al. 2008), we used a linear model to calculate the radial
growth rate for each isolate in both treatments. The average colony radius for each isolate and
colony age was calculated by dividing the average colony area by mt and taking the square root. The
radial growth rate (mm day™) for each isolate was measured by plotting the colony radius over time
and applying a general linear model using Pearson’s correlation coefficient in R. The slope of the
regression line is the radial growth rate. The average fit (r?) of the model was higher than 99%
across both crosses and treatments, indicating that the linear model was appropriate to calculate
radial growth rate (Figure S1). Fungicide sensitivity was calculated by dividing the radial growth rate
measured on the fungicide-amended media by the radial growth rate measured for the fungicide-
free control. This experimental design resulted in two traits based on absolute values (radial growth
rate in the presence and absence of fungicide) and one trait based on a relative value (relative
growth rate coefficient = fungicide sensitivity). All three traits were used in the QTL analysis. The
absolute and relative phenotypes for the retained progeny within each cross can be found in Table

S2.

QTL mapping

QTL mapping was based on simple interval mapping (SIM) analysis. Significant logarithm of odds
(LOD) values were calculated by applying 1000 genome-wide permutations. Only significant QTL
peaks with LOD scores that provided P-values lower then 0.05 were considered in further analyses.
The reference IPO323 genome (GoobwiIN et al. 2011) was used to convert cM positions of markers
into base pair (bp) positions on the reference genome. 95% confidence intervals were calculated
using Bayesian credible intervals (MaNIicHAIKUL et al. 2006). A more detailed description of QTL

mapping methods was provided earlier (LENDENMANN et al. 2014).
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Our experimental design included both radial growth rate and colony melanization
(LENDENMANN et al. 2014). Since melanization was associated with resistance to antimicrobial
compounds (LARssoN and TIALVE 1979; ButLerR and DAy 1998; IKEDA et al. 2003; NOSANCHUK and
CAasADEVALL 2006; TABORDA et al. 2008; Liaw et al. 2010), pleiotropy amongst the traits growth rate,
fungicide sensitivity and melanization was investigated by overlapping full SIM genome scans and
conducting linear regressions amongst these traits using a general linear model in R with Pearson’s
correlation coefficient. Marker allele effects were calculated using R/qtl to confirm the linear

regressions.

Sterol 14a-demethylase CYP51 gene characterization

The azole propiconazole inhibits sterol 14a-demethylase, an enzyme essential for the biosynthesis
of mycosterols. This enzyme is encoded by CYP51 (Protein ID: 110231, Joint Genome Institute),
which is also called CYP74 and ERG11. Current knowledge on azole resistance in Z. tritici (CooLs et al.
2013) indicates that resistance mechanisms are due mainly to amino acid alterations within Cyp51
(CooLs and FraalE 2013) or insertions within the CYP51 promoter that lead to overexpression (CooLs
et al. 2012). CYP51 sequence polymorphisms amongst the parents were identified using parental
Illumina resequencing reads (CRoLL et al. 2013). Reads were aligned to the reference genome using
the short-read aligner Bowtie 2 version 2.0.2 (LANGMEAD and SaLzBERG 2012). Sequence variants were
identified using the Genome Analysis Toolkit (GATK) version 2.6-4-g3e5ff60 (DePRrisTO et al. 2011).
SNPs associated with synonymous and non-synonymous mutations were called using the GATK
UnifiedGenotyper with a maximum alternative allele setting of two. Filter settings in the GATK
VariantFiltration were as follows: QD = 5, FS < 60, HaplotypeScore < 10.0, QUAL > 100, AFlower 2
0.2, AFupper < 0.8 and AN > 2. For all other sequence variants we used default settings of the GATK
tools. Sequence variants were annotated using the open-source tools SnpEff and SnpSift (Version
3.3h) (CinGoLaNl et al. 2012). The CYP51 promoter region as well as codon deletions were
investigated using a de novo assembly for each parent that was aligned to the reference genome
(TorriaNI et al. 2011).

We used ARMS-PCR (YE et al. 2001) to differentiate parental CYP51 alleles in the progeny of
cross 3D1 x 3D7 using the following primers: 3D7_SNP_Forward: 5’-CTCGGAGTCTTGCAGTTGC-3’;
3D1_SNP_Reverse: 5’-GTCATGGCCACTAACAGGC-3’; 3D7_GENE_Reverse: 5’-
TCTTGGAGGAGTTCGTCTTG-3’; 3D1_GENE_Forward: 5-GGAAAACTGAAGGACGTCAA-3’. PCR
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conditions were as follows: 10 min at 96°C for initial denaturation followed by 36 cycles of 45 s
denaturation at 96°C, 30 s annealing at 57°C and 45 s extension at 72°C. The final extension step
was set for 10 min at 72°C. Primers were designed to generate either a 360 bp or a 635 bp amplicon
depending on which parental allele was present in the offspring. This allowed identification of a SNP
positioned at 950 bp within the CYP51 gene. The PCR products were loaded onto 1% agarose gels,
stained with ethidium bromide and scored visually. We used a one-way ANOVA model to calculate
the phenotypic variance explained by this marker, as well as a Wilcoxon rank-sum test to address

significant mean differences between the marker alleles in R (R_Core_Team 2012).

Identification of candidate genes within QTL confidence intervals

Methods used to identify candidate genes within QTL confidence intervals were described earlier
(LENDENMANN et al. 2014). All QTL confidence intervals were screened for 24 genes already
associated with azole sensitivity (Table S3). These known genes included genes encoding the
ergosterol biosynthesis pathway in Z. tritici (CooLs et al. 2007; CooLs et al. 2012; CooLs and FRAAIE
2013), as well as genes associated with transmembrane transport, respiration and transcriptional
regulation. These genes were identified based on differences in gene expression amongst strains
differing in fungicide sensitivity, up-regulation of transcriptional activity in the presence of fungicide
(STErRGIOPOULOS et al. 2003; Cools et al. 2007) or validated by yeast transformation or knock-out (KO)
studies (ZwWIERs et al. 2002; ROOHPARVAR et al. 2007).

In addition to the 24 known genes we scanned QTL confidence intervals for novel candidate
genes associated with hypothesized fungicide sensitivity functions, including sterol biosynthesis,
respiration, drug resistance, ABC transporters, drug transporters, drug efflux, major facilitators and
transcription factors. These candidates were identified using corresponding search terms in the
reference IPO323 genome (GoobwiIN et al. 2011). We searched for genes associated with ABC
transporters and major facilitators as these genes are known to be involved in fungicide sensitivity
in other fungi (PEREA et al. 2001; TENREIRO et al. 2002; TENREIRO et al. 2005), as well as azole sensitivity
in Z. tritici (ZWIERS et al. 2002; Zwiers et al. 2003; ROOHPARVAR et al. 2007). Genes associated with
respiration were also taken into account. Although the effect of azoles on mitochondrial functions
has not yet been clearly established, an association was made between ergosterol biosynthesis and

mitochondrial respiration (Daum et al. 1998).
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Phenotypic comparisons of important allele combinations

We compared fungicide sensitivity phenotypes among progeny of the 3D1 x 3D7 cross according to
the four allele combinations found for the ARMS-PCR marker located within CYP51 and the PKS1
marker (RADseq marker 11 _535446). The four allelic combinations were as follows: CYP51LS-
PKS1LS, CYP51LS-PKS1HS, CYP51HS-PKSI1LS and CYP51HS-PKS1HS, where LS was the allele
associated with lower mean sensitivity and HS was the allele associated with higher mean
sensitivity. Among the 263 progeny, 64 were CYP51LS-PKSILS, 56 were CYP51LS-PKS1HS, 55 were
CYP51HS-PKS1LS and 45 were CYP51HS-PKSIHS. 43 progeny were not included in this analysis
because of missing data. We used a Kruskal-Wallis rank sum test to model the overall effects of the
different allele combinations. To investigate significant mean differences (p < 0.05) amongst groups
of allele combinations, we conducted pairwise comparisons of the different allele combinations

using Tukey’s honest significant differences test.
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RESULTS
The genetic architecture of azole sensitivity
Broad-sense heritability (H?) for the colony average area was high (>70%) for both crosses and
treatments, indicating low environmental variance amongst the 5 technical repeats (Figure S1). For
both crosses we found that all three traits showed a continuous distribution consistent with a
guantitative character. Many progeny had more extreme phenotypes than the parents, consistent
with transgressive segregation (Figure S2).

QTLs were considered different if their confidence intervals did not overlap. For the
fungicide sensitivity trait, we identified one significant QTL in cross 3D1 x 3D7 and two QTLs in cross
1A5 x 1E4, with each QTL located on a different chromosome (Figure 1, Figure 2, Table 1 and Table
2). For growth rate in the presence or absence of propiconazole, we identified three QTLs in cross
3D1 x 3D7 and three QTLs in cross 1A5 x 1E4 (Table 1 and Table 2). The confidence intervals
overlapped for a QTL on chromosome 2 in both crosses (Table S4 and Table S5), suggesting that one
QTL may be shared in the two crosses. No QTLs were found on accessory chromosomes. The
variance for each trait explained by the significant QTLs averaged ~24% in both crosses (Table 3). A

detailed description of all significant QTLs is presented in Tables S4, S5, S6 and S7.

Identification and characterization of candidate genes within QTL confidence intervals

We investigated all annotated genes within each QTL 95% confidence interval, excluding all genes
that lacked sequence variation or with only synonymous SNPs. A summary of the number of
candidate genes found for cross 3D1 x 3D7 is given in Table S6. Table S7 summarizes the number of
candidate genes found in cross 1A5 x 1E4. On average we found ~170 candidate genes per
confidence interval, with a minimum of 16 candidate genes (chromosome 8, fungicide sensitivity,
cross 1A5 x 1E4, Table 4) and a maximum of 327 genes (chromosome 4, growth rate fungicide
present, 1A5 x 1E4). On average ~40% of the candidate genes had no known function (Table S6 and
Table S7).

In cross 3D1 x 3D7 (Figure 1, Table 1) we found two candidate genes (Table 5) among the 24
genes already associated with azole sensitivity (Table S3). These two genes encode the Erg6 and
Cyp51 proteins involved in the ergosterol biosynthesis pathway. ERG6 (Protein ID 70113) encodes a
sterol C-24 methyltransferase catalyzing the conversion of zymosterol to fecosterol. CYP51 (Protein

ID 110231) encodes a sterol 14a-demethylase converting lanosterol to 4,4"-dimethyl cholesta-
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8,14,24-triene-3-beta-ol (Coots et al. 2007). Cyp51 is a known target enzyme of the triazole class of
fungicides, including propiconazole. None of the 24 azole sensitivity-associated genes were found in
the five QTLs mapped in cross 1A5 x 1E4 (Figure 2, Table 2), but each QTL confidence interval
contained other candidate genes potentially associated with fungicide sensitivity (Table 5).

To further narrow the search for candidate genes having a large effect on fungicide
sensitivity we focused on major QTLs (LOD > 7.0) containing < 30 candidate genes in their
confidence intervals. We identified one confidence interval associated with the fungicide sensitivity
trait on chromosome 8 in cross 1A5 x 1E4. This QTL contains a total of 16 candidate genes (Table
S7), none of which has been previously associated with azole sensitivity in Z. tritici (Table 5). This

QTL was therefore subjected to more detailed investigation (Table 4, Figure 3).

Identification of CYP51 as a candidate gene within the chromosome 7 QTL confidence interval

Among the 24 genes associated with azole sensitivity (Table S3), CYP51 (Protein ID 110231) is the
only gene which has been extensively studied to determine the effects of sequence variants in Z
tritici (CooLs and FraalJE 2013). Because CYP51 emerged as a candidate gene in a mapped QTL
confidence interval (chromosome 7, growth rate fungicide present) in cross 3D1 x 3D7 (Table 5), we
intensively investigated sequence variants amongst the parents for this gene. The 3D7 parent
carried an amino acid substitution (V136A) previously associated with decreased azole sensitivity
(LEroux et al. 2007; CooLs et al. 2011). The 3D1 parent carried two amino acid substitutions (L50S
and N513K) hypothesized to decrease azole sensitivity, though no clear effect was established in Z
tritici (CooLs and FraalE 2013) (Table 6). A recent study (CooLs et al. 2012) showed that a 120 bp
insertion within the predicted CYP51 promoter region, which starts at 83 bp upstream from the
start codon, reduced azole sensitivity. In the region 450 bp upstream from the start of CYP51 we
found a 1 bp insertion at 72 bp upstream in 3D7 and an 8 bp insertion at 89 bp upstream in 3D1.
The corresponding sequences of the 1A5 x 1E4 parents were identical to the reference genome
isolate IPO323. Based on these findings, we hypothesized that the quantitative trait nucleotide
(QTN) at amino acid position 136 found amongst the parents 3D1 and 3D7 is the main source of
phenotypic variance mapped on chromosome 7. V136A without the presence of AY459/G460 codon
deletions was shown to be lethal (CooLs and FrRaAlE 2013; Cools et al. 2013). The AY459/G460
deletions are common in modern Z. tritici populations, associated with lower azole sensitivity

(BRUNNER et al. 2008; Cools et al. 2010), and were found in all four parents (Table 6).
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Because none of the RADseq markers fell directly within the CYP51 gene, we used an ARMS-
PCR SNP marker positioned within CYP51 at 257 kb from the peaking marker of the QTL confidence
interval on chromosome 7 and 543 bp from the non-synonymous SNP causing the V136A mutation
(Table 1) to model all three traits in the 3D1 x 3D7 cross. Among the 263 assayed progeny, we found
113 alleles from 3D1 and 148 alleles from 3D7, with insufficient amplification from two offspring.
The CYP51 SNP marker explained 6% (p < 0.01) of the phenotypic variance in growth rate on media
with fungicide, but <2% of the variance for growth rate on media without fungicide (p < 0.05) or the

fungicide sensitivity trait (p > 0.05) (Table 7).

Evidence for pleiotropy on chromosome 11 in cross 3D1 x 3D7

Because melanization has been associated with fungicide resistance (BuTLER and Day 1998;
NosaNcHUK and CASADEVALL 2006; TABORDA et al. 2008), we sought evidence for pleiotropy by
comparing genome scans as well as conducting correlation analysis amongst traits. Based on our
earlier finding that the PKS1 gene (Protein ID 96592) is the most likely candidate explaining the
melanization QTL in cross 3D1 x 3D7 on chromosome 11 (LENDENMANN et al. 2014), we hypothesized
a pleiotropic effect with the fungicide sensitivity trait. We compared melanization at 11 dpi in the
presence or absence of fungicide to growth rate in the presence or absence of fungicide as well as
fungicide sensitivity (Figure 4). 11 dpi was chosen for the melanization trait over the other two
colony ages (8 and 14 dpi) because it had the highest LOD scores per QTL, indicating the lowest
environmental variance at this colony age. The RADseq marker 11 535446, positioned on
chromosome 11 at base pair position 535446, is closest to the PKS1 gene, which carried a putative
QTN at amino acid position 1783 (LENDENMANN et al. 2014). Thus the 11_535446 marker was used to
model for allele effects (Figure 4, Table 8). We found QTL peak overlaps on chromosome 11
including the 11_535446 marker for all traits, accounting for 25.3% of phenotypic variance (Table 8)
as well as significant allelic correlations in cross 3D1 x 3D7. Neither significant linear correlation nor
QTL peak overlaps were found amongst the traits in cross 1A5 x 1E4, indicating that other

melanization QTLs did not affect fungicide sensitivity (Figure 4).

Phenotypic comparisons of CYP51 and PKS1 allele combinations

The four possible combinations of the CYP51 and PKS1 alleles explained 6% of the total phenotypic

variance of the fungicide sensitivity trait, with the factor ‘allele combinations’ significant at p = 0.01.
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The LS-LS allele combination had the highest mean phenotype, the HS-HS combination had the
lowest mean and the LS-HS combinations were intermediate for the fungicide sensitivity trait. Mean
differences between the two extreme allele combinations (LS-LS vs. HS-HS) were significant (p =

0.02) (Figure S3).
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DISCUSSION
We used QTL mapping to show that azole sensitivity in Z tritici is a complex trait. Genes not
previously associated with azole sensitivity were identified and showed a larger contribution to
azole sensitivity than known mutations in CYP51. We also found compelling evidence for pleiotropy
between azole sensitivity and melanization.

QTLs associated with radial growth rate in the absence of fungicide likely represent genes
affecting overall growth of filamentous fungi, including genes involved in respiration, cell wall and
membrane synthesis and integrity, hyphal elongation, nutrient uptake and turn-over, biosynthesis
of essential amino acids and cell homeostasis. Because we used sublethal fungicide concentrations,
QTLs associated with radial growth rate in the presence of fungicide likely include these genes
affecting overall growth as well as genes that are activated under fungicide stress (e.g. stress
signaling pathways (HAYEs et al. 2014)) and genes which compensate for the toxic effects associated
with the fungicide, by interfering with binding of the fungicide to its target or by activating
alternative biosynthetic pathways). Propiconazole is known to inhibit the 14a-demethylase enzyme
encoded by CYP51, thus impairing ergosterol biosynthesis, affecting membrane integrity and
slowing hyphal growth. Any genes encoding substances that mitigate the effects associated with
inhibiting the Cyp51 protein could lie within the fungicide-related QTLs identified in our crosses.
Earlier studies (Zwiers et al. 2002; STERGIOPOULOS et al. 2003; Zwiers et al. 2003; ROOHPARVAR et al.
2007; Cools et al. 2011; CooLs et al. 2012; CooLs and FrRAAIE 2013) indicated that mutations affecting
Cyp51 structure and expression or increased efflux by membrane transporters are the main
mechanisms of resistance against imidazoles and triazoles in Z. tritici. Increased efflux is effective
for many fungicides and may lead to multidrug resistance (MDR). These mechanisms may also act in
combination (HigGgINs 2007; Cools et al. 2013). We hypothesize that each of these mechanisms
affect not only fungicide sensitivity, but also cell membrane integrity and cross-membrane transport
of inorganic ions, sugars, amino acids, proteins and complex polysaccharides. Hence, these
mechanisms affect cell homeostasis (HiGGINs 2001; HiGcGINs 2007) and may ultimately explain the
phenotypic variance in our mapping populations for growth in both the presence and absence of
fungicide.

Comparisons of the genome scans in both mapping populations revealed that all fungicide
sensitivity QTLs are associated with QTLs affecting colony growth in the absence of fungicide (Figure

1, Figure 2). This pattern suggests that genes affecting growth rates have a significant impact on
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fungicide sensitivity, with faster growth associated with greater sensitivity, indicating a trade-off
between growth rate and fungicide sensitivity. Costs associated with fungicide resistance have been
widely reported (Anderson, 2005), including in Z. tritici (CooLs et al. 2013). We hypothesize that
slower growth leads to lower ergosterol demand per unit of time, allowing slower growing isolates
to be less affected by a sublethal azole dose then faster growing isolates. Other QTLs were uniquely
associated with growth in the presence of fungicide, including the QTLs on chromosome 7 in cross
3D1 x 3D7 and on chromosome 10 in cross 1A5 x 1E4. These patterns are consistent with an
increase in phenotypic variance amongst the progeny in the mapping populations triggered by the
presence of the fungicide. Thus these QTLs may represent genes involved in stress signaling
pathways activated by the presence of toxic compounds (HAYEs et al. 2014) or genes that are
differentially regulated in the presence of toxins (HAwkIns et al. 2014). However neither of these

QTLs were significantly associated with fungicide sensitivity in either cross.

Unique QTLs and shared QTLs were identified by comparing QTLs of the two crosses

We identified one QTL shared amongst the two crosses and seven QTLs that were unique to one of
the crosses. For the shared QTL found on chromosome 2 (Table 1, Table 2), we compared the
candidate genes found in the corresponding confidence intervals and found that more than 55% of
the candidate genes in these confidence intervals were shared, suggesting that the shared QTL
could be due to the same gene(s) in each cross. None of the 24 genes associated with azole
sensitivity (Table S3) were found within this shared QTL (Table 5). However five genes hypothesized
to function in fungicide sensitivity were shared within this QTL (Table 9). We hypothesized that the
phenotypic variance mapped to this QTL was due to at least one of these five genes, potentially
resulting from shared genetic variation in the two crosses. This hypothesis was supported by the
observation that the chromosome 2 QTL behaved the same way in both crosses, with the QTL found
for both of the growth rate traits, but not for the fungicide sensitivity trait. We tested this
hypothesis by searching for non-synonymous mutations shared amongst the two crosses within
these five genes. Two (Protein ID: 84542 and 55137) of the five genes had only non-synonymous
mutations that were unique to one cross and were not investigated further, but ~60% of the non-
synonymous mutations found in the other three genes (Protein ID: 68128, 108045 and 36282) were
shared in both crosses. After taking into account the allele effects associated with the peaking

markers in each cross (Table 1, Table 2), only gene 108045 carried shared non-synonymous
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mutations consistent with the allele effects shown in both crosses. We thus postulated that gene
108045 is responsible for the chromosome 2 QTL mapped in both crosses.

Gene 108045 encodes a putative ATP-binding cassette (ABC) transporter. ABC transporters
are membrane-bound and regulate uptake or efflux of specific compounds by ATP hydrolysis. They
exhibit a wide range of substrate specificities (HicGINs 2001), with known substrates including
fungicides, plant metabolites, antibiotics and mycotoxins in Z. tritici (Zwiers et al. 2003). ABC
transporters are associated with multidrug resistance (MDR) in prokaryotes as well as eukaryotes,
including fungi (HiGGINs 2007). Transmembrane transport was shown to be a major source of azole
resistance in Candida albicans associated with up-regulation of multidrug efflux transporters,
including ABC transporters (PErRea et al. 2001). ABC transporters were also associated with
membrane integrity in Saccharomyces cerevisiae (MAHE et al. 1996) and were proposed to play a
role in membrane integrity of Z. tritici (Zwiers et al. 2003). We hypothesize that gene 108045 is
involved mainly in membrane integrity in our crosses because it was not associated with a fungicide
sensitivity QTL, suggesting it does not directly impact fungicide sensitivity. This hypothesis is
supported by findings of an earlier study which found that complementation of S. cerevisiae with
the ABC transporter MgAtr5 from Z. tritici did not increase resistance to propiconazole, while other
ABC transporters did, indicating that some ABC transporters do not affect drug resistance (Zwiers et
al. 2003). The RPKM mean value associated with gene 108045 was low and constant (1.0 at 13 dpi;
Table 9), suggesting that this is a housekeeping gene expressed at a constant low level throughout

the fungal life cycle.

Identification and characterization of candidate genes within QTL confidence intervals

We found only two (Protein ID: 70113 and 110231) of the 24 genes already associated with azole
sensitivity (Table S3) within the identified QTL confidence intervals as candidate genes (Table 5). We
postulate that both of these genes contributed to the QTLs mapped on the two chromosomes, but
each confidence interval contained more then 100 candidate genes and it was not possible to
exclude the possibility that other genes in these QTLs contributed to the traits. However, because
one of these genes was CYP51, encoding a well known target of propiconazole, and because one of
the parents carried a mutation (V136A) known to affect azole sensitivity (Table 6), we consider it
likely that this gene is the main source of phenotypic variance mapped on chromosome 7 in cross

3D1 x 3D7. Neither of the fungicide sensitivity QTLs mapped in cross 1A5 x 1E4 contained any of the
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24 known genes (Table S3), indicating these QTLs contained completely novel fungicide sensitivity
genes.

Two QTL confidence intervals on chromosomes 8 and 11 were less than 160 kb in length and
contained fewer than 40 candidate genes. We postulate that PKS1 (Protein ID: 96592), a polyketide
synthase involved in synthesis of dihydroxynaphthalene (DHN) melanin, is the gene responsible for
the QTL on chromosome 11 in cross 3D1 x 3D7. In this case we have evidence for pleiotropy
because PKS1 was also implicated in a QTL associated with melanization in a previous study
(LENDENMANN et al. 2014). The chromosome 8 QTL involved in fungicide sensitivity in cross 1A5 x 1E4
had a narrow 95% confidence interval of 88 kb containing only 16 candidate genes, among which
we identified four high-priority candidates (Table 4).

The four high-priority candidate genes on chromosome 8 (Table 4) were chosen based on
the following criteria: Gene 27012 encodes a protein involved in membrane-bound phospholipid
biosynthesis and could represent an alternative pathway that compensates for lost ergosterol
production under azole stress, reestablishing membrane integrity. Genes 110344 and 110349 both
contain frame shift mutations in one of the parents, with a high resulting impact on their encoded
proteins suggested by SnpEff. Gene 74444 contains 10 non-synonymous mutations, representing
the highest number of non-synonymous mutations among the 16 candidate genes. Future
functional validation, e.g. using knockouts and allele swaps, will be needed to determine if any of

these candidate genes explains this QTL.

Identification of CYP51 as a candidate gene within the chromosome 7 QTL confidence interval

We have several lines of evidence indicating that CYP51 is responsible for the chromosome 7 QTL
affecting growth rate in the presence of fungicide in cross 3D1 x 3D7. 1) CYP51 is a known target of
azoles and plays a key role in biosynthesis of ergosterol (CooLs et al. 2007). 2) The 3D7 parent
carries the V136A substitution known to decrease azole sensitivity (LERoux et al. 2007; CooLs et al.
2011). 3) Progeny carrying the alanine at position 136 show lower average propiconazole sensitivity
then progeny carrying a valine. 4) The ARMS-PCR marker lying within CYP51 explained a large
fraction of the phenotypic variance for all three traits (Table 7). Taken together, these findings
indicate that the V136A substitution in CYP51 is a likely QTN responsible for the mapped QTL on
chromosome 7 in cross 3D1 x 3D7. Though the genome scan revealed a visible peak at the same

position for the growth rate in absence of the fungicide (Figure 1), this peak did not reach the
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significance threshold. But the ARMS-PCR assay detected a significant effect associated with fungal
growth in both the presence and absence of fungicide (Table 7). These findings suggest that the
V136A substitution affects growth rates in the presence or absence of fungicides, with more
pronounced growth differences in the presence of fungicide. Surprisingly, the alanine variant was
associated with faster growth in both presence and absence of the fungicide, suggesting that there
was no fitness cost associated with the V136A mutation in our mapping population. Although it is
often found that drug resistance mutations impose a fitness cost (ANDERSON 2005), our findings
suggest that the V136A mutation, which is lethal in the absence of a AY459/G460 deletion (CooLs
and FraaiE 2013), shows an opposite pattern. The absence of a fitness cost associated with azole
resistance was documented earlier (COWEN et al. 2001; ANDERSON et al. 2003), but we are not aware
of other examples where the resistance mutations accelerated growth in the absence of the
fungicide. However we recognize that in planta growth rates may differ compared to what we
observed on PDA.

We hypothesize that CYP51 did not generate a significant QTL for the fungicide sensitivity
trait because other QTLs (namely, the chromosome 3 and 11 QTLs) made a larger contribution to
the overall phenotypic variance in this cross. Overall we interpret the identification of a QTN in
CYP51 as a validation of our QTL mapping strategy, increasing our confidence that the other QTLs
identified in these crosses also contain genes likely to significantly affect growth rate and/or

fungicide sensitivity.

Indication for pleiotropy on chromosome 11 in cross 3D1 x 3D7

Our analyses indicate that PKS1, in particular the postulated QTN at amino acid position 1783
(LENDENMANN et al. 2014), is the source of phenotypic variance in the chromosome 11 QTL for four
traits, including melanization, growth rate in the presence or absence of fungicide, and fungicide
sensitivity (Figure 4, Table 8). This is consistent with a pleiotropic effect as follows: the 3D7 PKS1
allele increases melanization, leads to slower growth in both the presence and absence of fungicide,
but decreases fungicide sensitivity (Figure 5), indicating a fungicide resistance trade-off (ANDERSON et
al. 2003). This pattern follows the general paradigm that fungal isolates with greater melanization
are less sensitive to fungicides (BUTLER and DAy 1998; NosancHUK and CASADEVALL 2006; TABORDA et al.
2008), with the underlying mechanism thought to be direct binding of melanin to the fungicide

(NosancHUK and CasADEVALL 2006). Although the involvement of PKS1 in DHN melanin biosynthesis
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and the association between melanin and fungicide resistance was already established (BUTLER and
Day 1998; Hu et al. 2012), we are not aware of previous work finding a direct association between
PKS1 and fungicide resistance in a filamentous ascomycete. We postulate that mutations in PKS1
may explain the emergence of azole resistance in other ascomycete fungi. This finding also suggests
a novel disease control strategy for Z. tritici and other fungi, namely deployment of fungicide
mixtures containing both azoles and DHN melanin inhibitors (e.g. tricyclazole and pyroquilon). In
this mixture strategy, the function of the melanin inhibitor is not fungicidal, but rather to reduce
melanin production and thus lessen the amount of melanin available to inhibit the activity of the
azole component of the mixture. For fungi like Z tritici that show significant variation in
melanization among field populations (D. Croll, B.A. McDonald, unpublished), we expect that this

mixture would be most effective in populations producing high levels of DHN melanin.

Genetic architecture of fungicide sensitivity

The finding that all three traits (radial growth rate in the presence and absence of fungicide and
fungicide sensitivity) showed a continuous distribution and exhibited transgressive segregation in
both crosses indicates that several genes are likely contributing to each trait. We identified a total
of 9 significant QTLs distributed across 7 different chromosomes, with more than one significant
QTL identified for all traits except fungicide sensitivity in cross 3D1 x 3D7 (Table 3). On average,
each QTL explained 9.8% of the trait variance, with the largest additive effect being 34.5% of the
total phenotypic variance explained by the three QTLs affecting growth rate in the absence of
fungicide (Table 3). The genome scans revealed several additional peaks that were below the
significance threshold (Figure 1 and Figure 2). This leads us to predict that additional QTLs will be
revealed in future studies that include a greater number of markers and a larger number of
offspring.

In cross 3D1 x 3D7 we found that approximately half of the progeny grew faster on PDA
amended with fungicide compared to PDA without fungicide (Figure S2). This phenomenon was
observed in previous studies using sublethal fungicide concentrations (TouBIARAHME et al. 1995;
KENYON et al. 1997; RAMIREZ et al. 2004) but it could not be explained. We hypothesized that this
pattern reflected additive effects of independently assorting alleles that neutralized the effects of
propiconazole at the low concentration used in the experiment. We tested this hypothesis by

focusing on the large effect alleles at the CYP51 and PKS1 loci associated with growth rate QTLs in
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the presence of propiconazole. We found that progeny carrying the V136A low sensitivity (LS) allele
of CYP51 and the P1783T LS allele of PKS1 grew, on average, significantly faster in the presence of
propiconazole than progeny carrying the alternative high sensitivity (HS) alleles. LS:HS offspring had,
on average, intermediate growth rates, though their mean growth rates suggest that the PKS1
contribution was greater than the CYP51 contribution (Figure S3). The overall pattern is consistent
with an additive effect for these loci whereby one contributing LS allele was sufficient to mostly
neutralize the effect of propiconazole and two LS alleles were sufficient to completely neutralize its
toxic properties at the tested concentration. We propose that earlier observations of strains that
grow faster in the presence of sublethal fungicide concentrations also reflect additive effects among
loci that neutralize the toxicity of the fungicide.

For the trait fungicide sensitivity, we compared the mean differences and the amount of
phenotypic variance explained by the three QTLs mapped on chromosomes 2, 3 and 8 in both
crosses (Figure 1, Figure 2, Table 1 and Table 2) versus the mean differences and the amount of
variance explained by CYP51 and PKS1 (Table 7 and Table 8). This comparison revealed an overall
larger contribution, reflected as larger mean differences and higher amounts of variance explained
(Table 1, Table 2, Table 7 and Table 8), for the three mapped QTLs than for CYP51 or PKS1. This
comparison suggests that these significant QTLs are worthy of additional investigation to determine

how they affect azole sensitivity.

Study limitations

We recognize that interpretations of our results are limited by the study design. The QTLs were
identified in an in vitro context using a single environment. Other QTLs and allele effects might be
identified in planta, in different growth media or at different fungicide concentrations. We did not
directly quantify the relevant gene products, such as ergosterol or melanin, to validate our
hypotheses. Additional studies will be needed to differentiate among competing hypotheses and
determine if mixtures of azoles and inhibitors of melanin biosynthesis can be effective in practice. In
spite of these limitations, we consider our findings to be robust and a good illustration of the

potential for QTL mapping to identify the genetic determinants of quantitative traits in fungi.
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Table 3 Genetic architecture of each trait for both crosses.

o g
= = ] 0O
T o = —~+
3 2 o g T 2 258
; o 3 s F5 f:7 o
S o ° x 3
2 =i % g3 =% %32 3§
o 3. - =] =
s 8 53 ge g 23
= © ~ 0 — o
> =0 »n I8
Q —
Growth rate fungicide 2,7, 11 3D1(1), 307(2) 30.1 3 Yes
present
G th rate fungicid
rowth rate ungiciae 2,3, 11 3D1(1), 307(2) 34.5 3 Yes w
absent =
x
w
Fungicide sensitivity 3 3D1(1) 8.6 1 No N
Average Average
24.4 2.3
G th rate fungicid
rowth rate fungicide 2, 4,10 1A5(2), 1E4(1) 24.4 3 Yes
present
Growth rate fungicide 2,4,8 1A5(1), 1E4(2) 27.7 3 Yes o
absent G
x
[35Y
Fungicide sensitivity 2,8 1A5(2) 18.6 2 No ®
Average Average
23.6 2.6

® 3D7/1E4 indicates that the parental 3D7/1E4 allele provided the higher phenotypic mean contribution then the
parental 3D1/1A5 allele, while 3D1/1A5 indicates that the parental 3D1/1A5 allele provided the higher phenotypic
mean contribution then the parental 3D7/1E4 allele. The number within brackets following the parental allele
indicates the number of significant QTLs.
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Table 6 Cyp51 (Protein ID: 110231) variation amongst the parents of each cross.

) ) Amino acid alteration and position
Parents and wild-type (wt) isolates

L50s" v136A? AY459/G460”  N513KY
301" S Vv A K
307" L A A N
1A5” L Vv A N
1£4” L Vv A N
IPO323 (wt) L Vv Y459/G460 N

No clear effect on Z. tritici isolate azole sensitivity (CooLs and FRAAE 2013).

Common in modern Z. tritici populations and clearly associated with contrasting effects on azole sensitivity.
Found in combination with changes at Y459 — Y461 (CooLs and FRAAIJE 2013).

Common in modern Z tritici populations. Decreased azole sensitivity when expressed in Saccharomyces
cerevisiae (CooLs and FRAAIIE 2013).

Additional sequence variations found amongst parents 3D1 and 3D7: 1 downstream and 2 upstream.

No additional sequence variations found amongst parents 1A5 and 1E4.
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Table 7 Summary of CYP51 ARMS-PCR marker modeling for the three traits in cross 3D1 x 3D7.
Mean 3D1 allele Mean 3D7 allele Percer.1tage
of variance
. (growth (growth Mean Allele .
Trait . . . a explained P-value
rate/fungicide rate/fungicide difference effect by PCR
sensitivity) sensitivity) marker (%)
Growth rate fungicide 0.38 0.42 0.04 3D7 6.2 <0.01
present
Growth rate fungicide 0.39 0.42 0.03 3D7 1.9 0.01-0.05
absent
Fungicide sensitivity 0.98 1.00 0.02 3D7 1.2 >0.05
®3D1 indicates that the 3D1 parent allele provided a higher phenotypic mean then the 3D7 parent allele. 3D7 indicates that the 3D7

parent allele provided a higher phenotypic mean then the 3D1 parent allele.
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Table 8 Summary of allele effects for RADseq marker 11_535446 in cross 3D1 x 3D7.

3z ol .
>3 F> < °8
S w S w ™ b LS
@ O @ O £ o 28
5 = a X o 3
= g B Q. o o ® o3
3 o & o — = ® o
~ oo oz ) = < S
6o ® o o 8 85
z. 0-? a 0'? g ch l__| g
2= = 3 —_
< g S g ’ €3
23 23 e
Melanization fungicide 96.826 75.054 21.772 3D1 32.6
present
Melanization fungicid
elanization fungicide 93.697 69.233 24.464 3D1 39.9
absent
Growth rate fungicide 0.428 0.375 0.053 3D1 12.1
present
Growth rate fungicid
rowth rate fungicide 0452 0.376 0.076 3D1 18.4
absent
Fungicide sensitivity 0.956 1.015 0.059 3D7 5.3

? 3D1 indicates that the 3D1 parent allele provided a higher phenotypic mean then the 3D7 parent
allele. 3D7 indicates that the 3D7 parent allele provided a higher phenotypic mean then the 3D1
parent allele.
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Figure 1 LOD plots from single marker interval mapping (SIM) analysis over all chromosomes for growth rate with and
without fungicide and fungicide sensitivity for cross 3D1 x 3D7. The dashed horizontal red line represents the

significance threshold (p = 0.05) obtained using 1000 genome-wide permutations.
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Figure 2 LOD plots from single marker interval mapping (SIM) analysis over all chromosomes for growth rate with and
without fungicide and fungicide sensitivity for cross 1A5 x 1E4. The dashed horizontal red line represents the

significance threshold (p = 0.05) obtained using 1000 genome-wide permutations.
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Figure 3 LOD plot from the single marker interval mapping (SIM) analysis over all chromosomes for the fungicide

sensitivity QTL with a 95% confidence interval containing the smallest number (< 30) of candidate genes. The horizontal
dashed red line shows the significance threshold (p = 0.05) obtained by 1000 genome-wide permutations. The relative
positions of the candidate genes in the 95% confidence interval of the Chromosome 8 QTL are shown below the LOD
plot. The genes are color coded according to the predicted impact by SnpEff of the observed sequence variation (white
= modifier, grey = moderate, black= high) and labeled with their protein ID. Below the gene bars are vertical lines
showing the position of each sequence variant within each gene. The asterisk symbol represents the position of the

peaking marker within the confidence interval. Highest likelihood candidate genes are colored in red.
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Figure 4 Evidence for pleiotropy among melanization, growth rate, and fungicide sensitivity for the chromosome 11 QTL
in cross 3D1 x 3D7. Melanization is represented by grey values (LENDENMANN et al. 2014). The 3D7 allele that increases
melanization also slows growth in the presence (Panel A) or absence (Panel B) of fungicide and decreases azole
sensitivity (Panel C). No pleiotropic effect was observed in cross 1A5 x 1E4 (Panel D). Each panel shows a full genome
scan LOD overlap plot based on single marker interval mapping (SIM) analysis, with traits separated by colors (red =
melanization trait, blue = growth rate/fungicide sensitivity trait). Horizontal lines in the LOD plots represent the color-
coded significance thresholds (p = 0.05) obtained with 1000 genome-wide permutations. Each panel includes the
corresponding linear correlation plot amongst the two traits. The name above each QTL peak indicates which parental

allele provided the higher phenotypic mean. Arrows point to the QTL peaks of interest.
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Figure 5 lllustration of the PKS1 allele effects using two progeny (60.2 and 167.1) from cross 3D1 x 3D7. Progeny 60.2
(3D7 parent PKS1 allele) shows increased melanization, slower growth in both the presence and absence of fungicide,

and decreased fungicide sensitivity compared to the progeny 167.1 (3D1 parent PKS1 allele).
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SUPPORTING MATERIAL
All supplementary files for this chapter are available online. Please refer to:

www.sciencedirect.com/science/article/pii/S1087184515000973
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CHAPTER 4

QTL Mapping of Temperature Sensitivity Reveals Candidate Genes for Thermal Adaptation and

Growth Morphology in the Plant Pathogenic Fungus Zymoseptoria tritici

Mark H. Lendenmann, Daniel Croll, Javier Palma-Guerrero, Ethan L. Stewart and Bruce A. McDonald

Manuscript in preparation
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ABSTRACT
Different thermal environments impose strong, differential selection on populations, leading to
local adaptation, but the genetic basis of thermal adaptation is poorly understood. We used
guantitative trait locus (QTL) mapping in the fungal wheat pathogen Zymoseptoria tritici to study
the genetic architecture of thermal adaptation and identify candidate genes. Four wild-type strains
originating from the same thermal environment were crossed to generate two mapping populations
with 263 (cross 3D1 x 3D7) and 261 (cross 1A5 x 1E4) progeny. Restriction site associated DNA
sequencing (RADseq) was used to genotype 9745 (cross 3D1 x 3D7) and 7333 (cross 1A5 x 1E4)
single nucleotide polymorphism (SNP) markers segregating within the mapping population.
Temperature sensitivity was assessed using digital image analysis of colonies growing at two
different temperatures. We identified four QTLs for temperature sensitivity, with unique QTLs
found in each cross. One QTL had a LOD score >11 and contained only six candidate genes, including
PBS2, encoding a mitogen-activated protein kinase kinase associated with low temperature
tolerance in Saccharomyces cerevisiae. This and other QTLs showed evidence for pleiotropy
amongst growth rate, melanization and growth morphology, suggesting that many traits can be
correlated with thermal adaptation in fungi. Our findings show that thermal adaptation has a
complex genetic architecture and that populations of Z. tritici harbor standing genetic variation for
thermal adaptation. We therefore conclude that Z. tritici populations have a potential to rapidly

adapt to climatic changes as well as expand into new climatic regions.
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INTRODUCTION

Temperature has a strong effect on many life history traits, including growth, development and
reproduction ( ANGILLETTA et al. 2006; DE JONG and VAN DER HAVE 2009). This is especially true for
ectotherms, such as fungi, whose internal temperature directly reflects the surrounding
environment (ANGILLETTA JR et al. 2002). Many species show a broad geographical distribution that
includes a wide array of thermal environments where mean annual temperatures can differ by
more than 10°C (e.g. (BuwALDA et al. 1998; RODRIGUES et al. 2008; ZHAN and McDonALD 2011;
STEFANSSON et al. 2013)). Most organisms also require the capacity to tolerate local temperature
environments that can fluctuate greatly on an hourly, daily, seasonal, and yearly basis. Two general
strategies for adapting to different thermal environments are phenotypic plasticity and genetic
differentiation (DyBDAHL and KANE 2005; KNIEs et al. 2006; Yamori et al. 2010). Phenotypic plasticity is
an individual-based response that refers to the ability of the same genotype to produce different
phenotypes in different environments (DE JONG and VAN DER HAave 2009). For example, most
organisms grow faster with increasing temperature up to an organism-specific optimal growth
temperature (Hu et al. 2012). Over generations, selection pressure for different temperature
optima and growth rates can lead to changes in the genetic architecture of temperature adaptation.
For example, non-synonymous substitutions can generate protein isoforms that differ for thermal
stability and/or optimized function at different temperatures (ScHovILLE et al. 2012). In a population,
genetic diversity for thermal adaptation can be maintained by antagonistic pleiotropy (genetic
trade-offs), in which an allele that has optimal function at one temperature exhibits maladaptation
at a different temperature (FiELDs 2001). A better understanding of the genetic basis of thermal
adaptation is likely to provide insight into the ability of species to adapt to global climate change
(AusTIN 2007).

Various pathogenic fungi are globally distributed and adapted to a wide range of thermal
environments (FISHER et al. 2012). For mammalian fungal pathogens, a key adaptation to cause
disease is the ability to grow at the host’s body temperature (often exceeding 35°C; (ROBERT et al.
2015). For Saccharomyces cerevisiae, an opportunistic fungal pathogen, the ability to grow at high
temperatures allows clinical strains to grow in immunodeficient humans (McCusker et al. 1994). The
psychrophilic fungus Pseudogymnoascus destructans, causal agent of bat white nose syndrome,
infects bats only during hibernation when their body temperature is low (BLEHERT et al. 2009; HovT

et al. 2015). The pathogenic fungus Metarhizium robertsii is widely used as a biological control
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agent for insect pests in agriculture, but because M. robertsii is not well adapted to high
temperatures, some insects can resist infection by elevating their body temperature or basking in
sunlight (pe CrRecy et al. 2009).

Thermal adaptation is also important for plant pathogenic fungi. Before 2000, the wheat
stripe rust pathogen Puccinia striiformis f. sp. tritici caused epidemics only in cooler wheat growing
regions. After 2000, two new clonal lineages of the pathogen able to cause epidemics in warmer
climates emerged, allowing the pathogen to expand into previously unfavorable environments
(MiLus et al. 2009; MBoup et al. 2012). In the globally distributed barley pathogen Rhynchosporium
commune, there was evidence for local adaptation to grow at higher temperatures (22°C), a key
adaptation that may have enabled the global emergence of a pathogen that originated in the cold
climate of Scandinavia (ZAFFARANO et al. 2006; LINDE et al. 2009; STEFANSSON et al. 2013). The
virulence of a fungal population can be affected by an interaction between temperature and the
host/parasite genotypes (LAINE 2008; BRYNER and RIGLING 2011).

In some cases the fungi grow saprophytically as filamentous hyphae outside their host, then
undergo a morphological transformation to yeast-like growth after infecting their host. This is
mainly the case for pathogens of mammals and insects such as Blastomyces dermatitidis and
Metarhizium robertsii. These morphological switches enhance pathogenicity by facilitating dispersal
within the host and enabling evasion of host immune responses (NADAL et al. 2008; GAUTHIER 2015).
In other cases the switch is in the opposite direction, which is mainly the case for plant pathogens
(e.g. Ustilago maydis), where yeast-like growth is observed outside the host and filamentous growth
is observed within the host. For several fungal pathogens (eg. Talaromyces marneffei (Boyce and
ANDRIANOPOULOS 2013)), a change in temperature triggers a switch in growth morphology (GAUTHIER
2015).

Fungi use several mechanisms to cope with changing temperatures, including the induction
or upregulation of proteins related to thermal-stress (i.e. heat shock proteins (HSPs) (FEDER and
HormANN 1999)), changes in cellular composition (i.e. activation of the high-osmolarity glycerol
(HOG) pathway resulting in glycerol accumulation in cells (PANADERO et al. 2006)) and adjustments in
membrane fluidity (i.e. lipid saturation in cell membranes (LEacH and CoweN 2014)). Little is known
regarding the genetic basis of how fungi tolerate different temperatures. The majority of research
upon this topic has been conducted in yeasts and is oriented around the regulation of HSPs (FEDER

and HormaAnNN 1999; LeacH and CoweN 2014). HSPs are regulated through the heat shock
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transcription factor (Hsfl1), which has been extensively studied in S. cerevisiae (SORGER and PELHAM
1988; NicHoLLs et al. 2009). QTL mapping of high-temperature growth (Htg) in the progeny of a cross
between a heat tolerant clinical strain of S. cerevisiae and a heat sensitive strain isolated from a
rotting fig identified four linked genes involved in Htg, but none of these genes had a function
known to affect thermal adaptation (STEINMETZ et al. 2002; SINHA et al. 2008). A bulk segregant
analysis applied to yeast populations (EHRENREICH et al. 2010) identified 21 QTLs associated with Htg
in a cross of a heat tolerant North American oak tree strain and a heat sensitive West African palm
wine strain (PARTS et al. 2011). A transcriptome analysis of 48 Neurospora crassa isolates from
subtropical and tropical environments identified two genes involved in thermal adaptation,
including an MRH4-like RNA helicase (ELLISON et al. 2011). Despite the progress illustrated by these
studies, many gaps remain in our understanding of the genetic mechanisms underlying thermal
adaptation in fungi (ROBERT et al. 2015).

Zymoseptoria tritici (syn Mycosphaerella graminicola) is the fungal pathogen causing
Septoria tritici blotch (STB), currently the most damaging wheat disease in Europe (JORGENSEN et al.
2014; O’DriscoLL et al. 2014). Z. tritici is a dimorphic fungus than can grow either as filamentous
hyphae or yeast-like budding cells when grown in vitro (NADAL et al. 2008). The pathogen is found in
wheat-growing areas worldwide covering a wide range of temperature regimes (EvaL et al. 1987;
JORGENSEN et al. 2014; O’DriscoLL et al. 2014); (ZHAN and McDonNALD 2011)). An earlier study that
included 138 Z. tritici strains sampled from diverse thermal environments on three continents found
evidence for thermal adaptation and concluded that most of the thermal adaptation was due to
genetic differentiation rather then phenotypic plasticity (ZHAN and McDoNaLD 2011). Here we sought
to determine the genetic architecture of thermal adaptation and identify candidate genes based on
QTL mapping of temperature sensitivity in wild-type strains sampled from the same thermal
environment. This approach allowed us to identify and characterize genetic polymorphisms
segregating within populations (FRANKS and HOFFMANN 2012; ROBERT et al. 2015). Knowledge about
co-occurring genetic variants conferring different levels of thermal adaptation allows us to predict
how a population will be able to adapt to climate change. To determine the genetic architecture of
thermal adaptation in Z. tritici, we used restriction site associated DNA sequencing (RADseq) for
genotyping, coupled with high-throughput digital image analysis to measure growth rates under
two temperatures (15°C and 22°C). We used QTL mapping to determine the genetic architecture of

natural variation for temperature sensitivity and identify QTLs and their associated chromosomal
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segments. Comparisons of complete genome sequences of parental isolates allowed us to identify

polymorphism in candidate genes within the QTLs that affect thermal adaptation.
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MATERIAL AND METHODS

Mapping population, genotyping, genetic mapping, gene expression

Methods used for genetic mapping and gene expression were described earlier (BRUNNER et al. 2013;
LENDENMANN et al. 2014; LENDENMANN et al. 2015). Briefly, four Swiss wild-type strains were used to
create two mapping populations, following an established protocol (KEmA et al. 1996). The mapping
populations were composed of 263 [ST99CH3D1 (3D1: SRS383146) X ST99CH3D7 (3D7: SRS383147)]
and 261 [ST99CH1A5 (1A5: SRS383142) X ST99CH1E4 (1E4: SRS383143)] retained progeny. Table S1
contains the NCBI Short Read Archive accession numbers for the retained progeny of each cross.
Restriction site associated DNA sequencing (RADseq) (BAIRD et al. 2008) generated more than 7000
single nucleotide polymorphism (SNP) markers for each cross. Resequencing of all four parents
(CroLL et al. 2013) allowed identification of the retained RADseq SNPs in the parents and candidate
genes responsible for the observed QTLs. R/qgtl version 1.27-10 (ARenDs et al. 2010) was used to
construct two dense genetic maps (LENDENMANN et al. 2014). Candidate genes within QTL confidence
intervals were characterized for their transcriptional profile, using RNA-Seq data from an in planta

virulence time course assay (BRUNNER et al. 2013).

Phenotyping
Radial growth rates (mm day) (TRINCI 1971; LENDENMANN et al. 2015) of single spore colonies grown
at two temperatures (15°C and 22°C) and observed over three time points (8, 11 and 14 days post
inoculation (dpi)) were used to calculate temperature sensitivity. Plate inoculation procedures and
digital image analyses in Imagel (SCHNEIDER et al. 2012) were described earlier (LENDENMANN et al.
2014). Isolates were grown in Petri plates on potato dextrose agar (PDA, 4 g/L potato starch, 20 g/L
dextrose, 15 g/L agar) and placed at constant 15°C or 22°C with 70% humidity in the dark.
Temperature sensitivity for each isolate was calculated as the radial growth rate at 22°C divided by
the radial growth rate at 15°C. Two absolute value traits (radial growth rate at 15°C and 22°C) and
one relative value trait (relative growth rate coefficient = temperature sensitivity) were calculated
for each isolate and used for QTL analysis. The 22°C growth rate trait of this study was called growth
rate (fungicide absent) in an earlier investigation mapping QTLs involved in fungicide sensitivity
(LENDENMANN et al. 2015).

In addition to growth rate, two growth morphologies were scored for each strain. Though Z

tritici is considered a filamentous fungus that grows mainly as hyphae, a yeast-like morphology is
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often observed in culture on rich media, suggesting that Z. tritici is dimorphic (MeHRABI and KEMA
2006; MEHRABI et al. 2006b; NADAL et al. 2008). To determine if the yeast/hyphae dimorphism can be
mapped, we conducted a visual inspection of the digital images to classify the colonies of each
isolate as either hyphal or yeast-like. Three people (ML, JP, ES) independently classified each isolate
using all five technical replicates at 11 dpi for both temperatures. 11 dpi was chosen because the
colonies were too small to make an accurate visual scoring at 8 dpi, while classifications at 14 dpi
gave the same result. Progeny that exhibited only yeast-like colonies were scored as ‘0’, whereas
progeny exhibiting at least two hyphal colonies on a Petri dish were scored as ‘1’ (Figure S1). Only
progeny with identical classifications from all three scorers were included in this analysis. At 15°C,
>98% of the progeny with a consensus score in cross 1A5 x 1E4 grew with a yeast-like morphology
(binary value ‘0’: 247 progeny / binary value ‘1’: 3 progeny), hence this treatment was not included
in the analysis. The binary counts were as follows: cross 3D1 x 3D7 at 22°C binary value ‘0": 111
progeny / binary value ‘1’: 90 progeny; at 15°C binary value ‘0’: 186 progeny / binary value ‘1’: 52
progeny; cross 1A5 x 1E4 at 22°C binary value ‘0’: 104 progeny / binary value ‘1’: 33 progeny. Table
S2 shows the absolute and relative phenotypes as well as the yeast/hyphae scores for the retained

progeny of each cross.

QTL mapping
Simple interval mapping (SIM) was used for QTL analysis performed in R/qtl version 1.27-10 (ARENDS
et al. 2010) using R (R_Core_Team 2012). A binary model was applied for the yeast/hyphae
dimorphism phenotype. 1000 genome-wide permutations were used to calculate the significant
logarithm of odds (LOD) threshold. In addition to SIM, a multiple QTL model combined with interval
mapping was used to evaluate two QTLs present on the same chromosome. Further analyses
considered only QTLs that showed P-values lower then 0.05. Bayesian credible intervals
(ManIcHAIKUL et al. 2006) were used to calculate 95% confidence intervals for each QTL. Genetic
positions (centiMorgans, cM) of markers were converted into physical positions (base pair, bp) by
using the reference IPO323 genome (GoobwiN et al. 2011). QTLs were assumed to be different if
their confidence intervals did not overlap. More detailed information on methods used for QTL
mapping were described earlier (LENDENMANN et al. 2014).

Single spore colonies were also scored for their degree of melanization (LENDENMANN et al.

2014). Because melanin has been associated with protection against extreme temperatures as well
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as fungicide resistance (BUTLER and DAy 1998; NosANCHUK and CASADEVALL 2006; TABORDA et al. 2008),
we investigated pleiotropy amongst the traits growth rate, temperature sensitivity and melanization
(11dpi), but also looked for evidence of pleiotropic effects amongst temperature and fungicide
sensitivity. This analysis was conducted by overlapping full SIM genome scans and using linear
regression amongst the traits based on a general linear model in R with Pearson’s correlation
coefficient. Regression analysis between the yeast/hyphae dimorphism and growth rate at each
temperature was conducted using a one-way ANOVA to calculate the phenotypic variance explained
by the yeast/hyphae dimorphism phenotypes upon growth rate. A t-test was used to compare
mean differences between the two morphologies in R. Marker allele effects were calculated using

R/qgtl to confirm the linear regressions.

Identification of candidate genes within QTL confidence intervals

Resequenced parents of each cross were aligned against the IPO323 reference genome and
sequence variants were called and annotated using the open-source tools SnpEff and SNpSift
version 3.3h (CINGOLANI et al. 2012). Synonymous SNPs were omitted from any further investigation.
A gene was considered a candidate for explaining the QTL if it contained at least one sequence
variant within the boundaries of the 95% confidence interval. More details regarding methods used
to identify candidate genes within QTL confidence intervals were provided earlier (LENDENMANN et al.
2014). Because heat shock proteins play an important role in maintaining cellular functions under
thermal stress (FEDER and HoFrmANN 1999), a hypergeometric test was used to determine whether
there was a significant enrichment of proteins with an InterPro domain classified as heat-shock
proteins (HSPs) within the QTL 95% confidence intervals (Table 1 and Table 2). The QTL confidence

intervals (Table 1 and Table 2) were also investigated for the presence of HSPs as candidate genes.
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RESULTS

Genetic architecture of temperature sensitivity

The general linear model of growth rate based on radial development of colonies over time
provided an average fit (r’) higher than 98% across both crosses and treatments (Figure S2),
justifying the method used to measure growth rate for each isolate. The growth rate and
temperature sensitivity phenotypes showed a continuous distribution consistent with a quantitative
trait in both crosses. Transgressive segregation was found for all traits, with many progeny showing
more extreme phenotypes than their parents (Figure S3). The high broad-sense heritability
(H?>80%) found for average colony area indicates a low environmental variance amongst the 5
technical repeats (Figure S2).

For the temperature sensitivity phenotype, one significant QTL was found in cross 3D1 x 3D7
and three were found in cross 1A5 x 1E4. These four QTLs were on chromosomes 1, 2, 4 and 10 with
LOD values ranging from 4.3 to 11.8 (Figure 1, Figure 2, Table 1 and Table 2). For the absolute value
phenotypes, cross 3D1 x 3D7 had four growth rate QTLs on chromosomes 2, 3, 7 and 11 and cross
1A5 x 1E4 had two growth rate QTLs on chromosomes 5 and 8 (Table 1 and Table 2). There was a
confidence interval overlap between the two crosses for the QTLs on chromosome 2, suggesting a
shared QTL. This QTL overlap was already described in a previous study (LENDENMANN et al. 2015).
On average, ~30% of total variance was explained by the significant QTLs for each trait in both

crosses (Table 3). No significant QTLs were mapped on the accessory chromosomes.

QTLs associated with the yeast/hyphae dimorphism

For the yeast/hyphae dimorphism phenotype we considered QTLs to be different if their confidence
intervals did not overlap. In cross 3D1 x 3D7 we mapped five significant QTLs distributed on
chromosomes 1, 3, 7 and 11 (Figure S4, Table S3 and Table S4), with two QTLs on chromosome 3
(Table S3). In cross 1A5 x 1E4 two significant QTLs were identified on chromosomes 7 and 11 (Figure
S5, Table S5 and Table S6). Both of these QTLs overlapped with QTLs of cross 3D1 x 3D7, suggesting

these QTLs were shared in the two crosses (Table S3 and Table S5).
Identification and characterization of candidate genes within QTL confidence intervals

All annotated genes within each QTL 95% confidence interval were investigated to identify

candidate genes affecting each trait. We excluded from consideration all genes that lacked
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sequence variation or that possessed only synonymous SNPs. For cross 3D1 x 3D7 a summary of the
candidate genes for each trait is shown in Table S7 and Table S4. Table S8 and Table S6 summarize
the candidate genes for cross 1A5 x 1E4.

On average, we found ~200 candidate genes per confidence interval, with a minimum of six
candidate genes (chromosome 10, temperature sensitivity, cross 3D1 x 3D7) and a maximum of
1382 candidate genes (chromosome 1, growth rate (15°C), cross 1A5 x 1E4). On average ~40% of
the candidate genes had no known function (Table S7, Table S8, Table S4 and Table S6). There was
no evidence for enrichment of HSPs in the QTL confidence intervals relative to the rest of the
genome. But some HSPs were among the candidate genes found within the QTL confidence
intervals (Table 1 and Table 2).

A more detailed investigation was conducted on the three major QTLs (LOD 2 4.5) containing
< 30 candidate genes in narrow confidence intervals (< 85 kb). The chromosome 10 QTL associated
with temperature sensitivity in cross 3D1 x 3D7 had a LOD score of 11.8 and contained only six
candidate genes (Table S7). The chromosome 1 and 3 QTLs associated with the yeast/hyphae
dimorphism at 15°C in cross 3D1 x 3D7 contained 15 candidate genes each (Table S4) with LOD
scores of 4.5 and 10.2, respectively. The lists of candidate genes associated with each QTL are

summarized in Table 4, Table S9, Table S10, Figure 3 and Figure 4.

Evidence for pleiotropy

In a previous study (LENDENMANN et al. 2015), we described a shared QTL on chromosome 11 for
melanization at 22°C, growth rate at 22°C and fungicide sensitivity in cross 3D1 x 3D7. We
hypothesized that a rare mutation in PKS1 (Protein ID 96592) found in the 3D7 parent was
responsible for this pleiotropy (LENDENMANN et al. 2014). In this study we found evidence for
pleiotropy between melanization and growth at 15°C following the same pattern described earlier
(LENDENMANN et al. 2015), namely the PKS1 allele that increases melanization also slows growth at
15°C. But there was no evidence for pleiotropy between melanization and temperature sensitivity
associated with the chromosome 11 QTL in cross 3D1 x 3D7 (Figure 5). On the other hand, we found
strong evidence for pleiotropy amongst melanization at 15°C, growth at 15°C and temperature
sensitivity based on a shared chromosome 10 QTL in cross 3D1 x 3D7. This QTL displayed the
following pattern: the 3D7 allele that increases melanization also accelerates growth at 15°C and

decreases temperature sensitivity. There was some evidence for pleiotropy amongst melanization
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and temperature sensitivity in cross 1A5 x 1E4 due to a shared chromosome 2 QTL and there were
significant correlations between melanization and growth at 15°C for QTLs on chromosomes 5 and 8
(Figure 5). In both crosses we found no evidence for pleiotropy amongst temperature sensitivity and
fungicide sensitivity (Figure S6).

The QTL peaks for the yeast/hyphae dimorphism overlapped with growth rate QTLs on
chromosomes 3, 7, 10 and 11, providing evidence for pleiotropy in both crosses. There also was a
strong correlation between growth rate and the yeast/hyphae dimorphism. In both crosses the
allele associated with faster growth was also associated with filamentous growth (Table S11, Table
S3, Table S5, Table S12, Figure S7 and Figure S8), with >17% of the total growth rate variance
explained by the yeast/hyphae dimorphism and significant (P < 0.001) mean differences between
the growth rates of the two morphologies (Figure S7 and Figure S8). On the other hand, QTLs on
chromosomes 1, 2, 4 and 8 did not overlap between the yeast/hyphae dimorphism and growth rate,
indicating that growth morphology is not the sole determinant of growth rate (Figure S7 and Figure
S8). For example, in cross 3D1 x 3D7 there is a significant QTL for the yeast/hyphae dimorphism at
15°C on chromosome 1, but there is no growth rate QTL at this position, whereas there is a
significant QTL for growth rate at 15°C on chromosome 2, but no corresponding QTL for the

yeast/hyphae dimorphism (Figure S7, Panel B).
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DISCUSSION

Genetic architecture of temperature sensitivity

The temperature sensitivity (TS) phenotype we used to measure thermal adaptation reflects
differences in growth rates at two temperatures. Strains with a TS = 1 are “generalists” that grow at
the same rate at both temperatures. Strains with TS > 1 grow faster at the higher temperature and
strains with TS < 1 grow faster at the lower temperature. Strains that grow quickly at both
temperatures (i.e. high growth rates and TS =~ 1) exhibit the greatest degree of thermal tolerance.
Although the temperature sensitivity phenotypes of the parental strains used in both crosses were
similar, the progeny from these parents exhibited a variance in temperature sensitivity comparable
to the variance measured in natural field populations from around the world (ZHAN and McDONALD
2011), indicating that the parents carried a high degree of genetic diversity for this trait. This finding
also illustrates the potential for recombination to generate novel combinations of alleles that can
affect thermal adaptation, providing a mechanism for a rapid evolutionary response to change in
temperature. The presence of several visible but non-significant peaks on the genome scans,
coupled with the finding that <50% of the total phenotypic variance was explained by the significant
QTLs leads us to predict that additional QTLs will be revealed in future studies that include a greater
number of markers and a larger number of offspring.

All four TS QTLs had allele means >1, indicating faster growth at 22°C than at 15°C. An earlier
analysis of Swiss populations of Z. tritici found many isolates with a TS < 1, consistent with
adaptation to growth at lower temperatures (ZHAN and McDoNALD 2011). These findings suggest
that genes involved in adaptation to cooler temperatures were not variable in the four Swiss
parents. Among the six additional mapped growth rate QTLs, the four on chromosomes 2, 3, 8 and
11 exhibit phenotypic plasticity, with parental alleles showing different growth rate mean values at
15°C and 22°C. These QTLs could harbor alleles involved in adaptation to local environments (e.g.
specifically adapted to warmer or colder climates), as Z. tritici populations have the ability to adapt
to local conditions (ZHAN and McDoNALD 2011). On the other hand the QTLs mapped for
temperature sensitivity carry alleles involved in adaptation to temperature fluctuations (e.g. diurnal
and seasonal) that will occur across a broad array of environments. This could be tested through
additional experiments such as a genome wide association studies (GWAS) upon populations from
different climates or QTL mapping upon a mapping population derived from parents of different

climates. We found no evidence for antagonistic pleiotropy (genetic trade-offs), but we postulate
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that testing our mapping population under more extreme temperatures (>22°C and <15°) could
reveal such effects.

The finding of different TS QTLs in the two crosses likely reflects differences in the alleles
found in the parents and suggests either a defective pathway, the same pathway or different
pathways. These findings may also reflect different selective processes underlying thermal
adaptation. In cross 3D1 x 3D7, the TS QTL on chromosome 10 was due mainly to a significant
growth QTL exhibited in the 15°C environment. This may represent an adaptation to cooler
temperatures that could ultimately contribute to greater success in sexual reproduction because
the sexual cycle occurs mainly during the cooler seasons of Spring and Fall (PONOMARENKO et al.
2011). In cross 1A5 x 1E4 the significant TS QTLs on chromosomes 2 and 4 were due mainly to
growth QTLs exhibited in the 22°C environment. Pathogen strains that grow faster at warmer
temperatures are likely to favored during the asexual phase of reproduction that occurs during the
Summer (PONOMARENKO et al. 2011), as in vitro growth could be positively correlated with in planta
growth and pathogen fitness (e.g. reproductive fitness and/or spore output). Hence, the genes
affecting growth rate can have a significant impact on temperature sensitivity, with both slower
growth (cross 3D1 x 3D7) and faster growth (cross 1A5 x 1E4) associated with greater temperature
sensitivity, as shown by the allele effects. The finding of temperature-specific QTLs within the same
cross suggest that proteins of different allele variants are better adapted to one temperature and
maladapted to another temperature or that genes are differentially regulated at the two

temperatures, a known mechanism for thermal tolerance (ScHoviLLE et al. 2012).

QTLs associated with the yeast/hyphae dimorphism

Several fungal pathogens of mammals, insects and plants are known to possess a yeast/hyphae
dimorphism that can be triggered by a variety of environmental signals, increasing adaptation of the
pathogen to their local environment. Temperature is a major trigger for mammalian dimorphic
fungal pathogens, whereas exposure to hemolymph triggers the switch from hyphal to yeast growth
for dimorphic insect pathogens. Yeast-like growth in animal hosts is associated with many factors
that increase pathogenicity, including dispersal within the host, altered cell wall composition that
may affect recognition by host immune systems and production of proteins or toxins that alter host
behavior (GauTHIER 2015). However the switch from filamentous to yeast-like growth isn’t

necessarily a mechanism for thermal adaptation. Knock-out (KO) studies of the dimorphism-
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regulating kinase 1 (DRK1) in Blastomyces dermatitidis and Histoplasma capsulatum illustrated that
these pathogens were still able to grow at the elevated temperature of the mammalian host, but
only as filamentous hyphae, rendering the pathogens avirulent (NeEmecek et al. 2006). In the
dimorphic insect pathogen Metarhizium robertsii deletion of the MADI1 gene reduced the
production of yeast-like cells, resulting in lower virulence (WANG and ST. LEGER 2007).

We identified 7 QTLs associated with the yeast/hyphae dimorphism, with 2 of these QTLs
shared between the crosses. On average, ~35% of the overall variation in growth morphology was
explained by these QTLs. These findings indicate that the yeast/hyphae dimorphism is inherited as a
guantitative trait in Z. tritici. The yeast/hyphae dimorphism QTLs correlate with the growth QTLs,
indicating pleiotropic effects. QTL alleles associated with faster growth were also associated with
filamentous growth in both crosses. We assume morphology being the causality for the observed
correlation, however the situation could also be the other way around. For example morphology
could be a threshold trait, which is triggered through growth. Our results further indicate that
growth rate is not determined solely by the colony morphology, as we found three growth QTLs
that were not associated with the dimorphism phenotype. In Z tritici the switch between
morphologies can be induced in vitro by changing from a nutrient-rich medium, which favors yeast-
like growth, to a poor medium that favors hyphal growth (MeHrABI and KEmA 2006; MEHRABI et al.
2006b). We found that temperature significantly affected dimorphism in our mapping populations,
with more progeny exhibiting hyphal growth at 22°C compared to 15°C. The finding that higher
temperatures favor hyphal growth in Z. tritici was described previously in gene KO studies using the
genome reference isolate IPO323 (MeHRABI and KEma 2006). While diverse environmental signals can
affect dimorphism, the main signaling pathways appear well conserved, with the cAMP-dependent
protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) pathways (NADAL et al. 2008)
playing major roles. In Z tritici both of these pathways were shown to affect the dimorphism
phenotype (Cousin et al. 2006; MeHRABI and KEmA 2006; MEHRABI et al. 2006a; MEHRABI et al. 2006b;
GOHARI et al. 2014). It is not known if the yeast-like morphology plays any role in the natural history
of Z. tritici. Filamentous growth is obvious during all phases of its life cycle, including biotrophic,
necrotrophic and saprophytic phases of growth and development, but a yeast-like morphology has
never been reported in planta. Z. tritici forms filamentous germ tubes on the leaf surface in order to
penetrate leaf stomata and then grows as hyphae among the host mesophyll cells (MEHRABI and

KEmA 2006; NADAL et al. 2008). While it is not clear why lower temperatures would favor a yeast-like
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morphology, we speculate that yeast-like growth may offer an advantage during competition with
other microbes in rotting plant material during the winter, but it is equally plausible that this
morphology has no adaptive function and is simply a relic of ancestors that exhibited yeast-like
growth as part of their natural history. In the dimorphic basidiomycete Ustilago maydis that causes
corn smut, haploid yeast cells excrete pheromones that allow recognition of the opposite mating
type, leading to induction of the filamentous stage that enables fusion (plasmogamy) of two haploid
isolates. This fusion leads to the formation of an infectious filamentous dikaryon that penetrates the
plant cuticle and invades the host tissue (NADAL et al. 2008). Irregardless of the purpose of the yeast
phase in Z. tritici, our findings illustrate that Z tritici offers a new model for elucidating the

mechanisms responsible for the yeast/hyphal dimorphism in fungi.

Identification and characterization of candidate genes within QTL confidence intervals

After taking into account gene ontology, the predicted impact of observed sequence variation, the
position of the QTL peak, and gene expression, we narrowed the six candidate genes in the 3D1 x
3D7 chromosome 10 TS QTL down to two high-priority candidates (Protein ID: 76249 and 101408).
The mitogen-activated protein kinase kinase (MAPKK, Gene 76249) and transmembrane transporter
(Gene 101408) were selected based on proximity to the peaking marker, as well as observed
seqguence variation and its predicted impact.

Earlier gene disruption studies in the IPO323 reference strain identified 10 genes (MgTpk2,
MgGpal, MgGpa3, MgGpbl, MCC1, MVE1, MgSIt2, MgHogl, MgFus3 and ZtWor1) that affected
the yeast/hyphae growth morphology (CousiN et al. 2006; MeHRABI and KEMA 2006; MEHRABI et al.
2006a; MEHRABI et al. 2006b; MEeHRABI et al. 2009; CHol and GoobwiIN 2011a; CHol and GOODWIN
2011b; GoHARI et al. 2014). We did not find any of these genes in the 95% confidence intervals of
the dimorphism QTLs identified in our study, indicating that our QTL mapping approach identified
novel gene candidates associated with the yeast/hyphae dimorphism in Z. tritici.

Among the 15 candidate genes found in the 3D7 x 3D1 chromosome 1 QTL for the
yeast/hyphae dimorphism at 15°C, we identified three high-priority candidate genes (Protein ID:
32213, 88642 and 88644). Gene 32213, encoding an ABC transporter, was selected due to its
proximity to the peaking marker. Gene 88642, with unknown function, contains a sequence variant
predicted to have a high impact. Gene 88644 encodes a Ca2+/calmodulin-dependent protein kinase

(CaMK), part of a kinase family involved in various signaling cascades. This candidate was selected
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due to its cellular function, but also based on the 13 non-synonymous substitutions found amongst
the parents, as well as a splice site acceptor sequence variant that is predicted to have a high impact
on protein function. In the dimorphic ascomycete Sporothrix schenckii, CaMKs were shown to be
involved in the dimorphism (VALLE-AvVILES et al. 2007). Hence we consider gene 88644 as the most
likely candidate to explain this chromosome 1 QTL.

The 3D7 x 3D1 chromosome 3 QTL for the yeast/hyphae (15°C) dimorphism contained three
high priority candidate genes (Protein ID: 38371, 56742 and 79974). Gene 38371 encodes a
peptidase that was selected based on its proximity to the peaking marker. Gene 79974 was chosen
because it contained a frame shift mutation expected to have a high impact. Gene 56742 encodes a
guanine nucleotide exchange factor (GEF), a family of proteins involved in various intracellular
signaling pathways. Among these, we consider the GEF as the most likely candidate because a GEF
was shown to be involved in dimorphism in Ustilago maydis (MULLER et al. 2003). This gene contains
a downstream modifier in the 3’ UTR region. The role of the UTR regions on the regulation of mRNA
translation is well known, and mutations on these regions can affect protein translation rates
(WIiLKIE et al. 2003). According to this, the SNP at the 3’ UTR of 56742 could affect its translation,

altering the levels of this protein and ultimately its activity, affecting the morphological switch.

Evidence for pleiotropy

The MAPKK candidate gene (JGI ID: 76249 (MgPbs2)) in the chromosome 10 TS QTL of cross 3D1 x
3D7 is the ortholog of the S. cerevisiae gene PBS2. Pbs2 phosphorylates the Hogl protein (a
mitogen-activated protein kinase (MAPK)) in S. cerevisiae as well as Aspergillus nidulans (PANADERO
et al. 2006; DURAN et al. 2010), hence we postulate that MgPbs2 phosphorylates the Hogl ortholog
in Z. tritici. HOG1 is part of the high osmolarity glycerol (HOG) pathway that is induced upon
osmotic stress. Recent studies indicate that other stress responses, including thermal and acid
stress, are also governed by the HOG pathway (PANADERO et al. 2006). We conclude that the
chromosome 10 TS QTL reflects the HOG pathway and that MgPbs2 is responsible for the
chromosome 10 TS QTL observed in the 3D1 x 3D7 cross, indicating that natural sequence variation
in genes involved in signaling can play a major role in thermal adaptation in fungal populations. This
is based on earlier findings. A mutant study (MEeHRABI et al. 2006b) of the Z. tritici ortholog HOG1,
MgHog1 (JGI ID: 76502), found higher melanization associated with greater hyphal growth as well as

larger colony sizes and suggests the same phenotypic pattern as the allele effects identified in the
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chromosome 10 TS QTL. The HOG pathway provides a mechanism for thermal adaptation that is
activated under cold stress in S. cerevisiae, which accumulates glycerol that contributes to
protection against freezing (PANADERO et al. 2006). In Aspergillus fumigatus the HOG pathway is also
thought to affect the fluidity of plasma membranes providing protection under thermal stress (Ji et
al. 2012). Changes in cell membrane fluidity are considered to be a common mechanism for
microorganisms to adapt to changing temperatures (LEAcH and CowenN 2014). Many of the
chromosome 10 QTL pleiotropic effects in this study were observed at 15°C but not at 22°C. This
suggests that PBS2, and the HOG pathway, may be induced at lower temperatures in Z. tritici,
providing a plausible mechanism to explain phenotypic plasticity.

Pleiotropy also explains the shared QTL peak on chromosome 11 in cross 3D1 x 3D7 for
melanization (11 dpi), growth rate and the yeast/hyphae dimorphism for both temperatures
(LENDENMANN et al. 2014). In this case we hypothesize that PKS1, in particular the postulated
guantitative trait nucleotide (QTN) at amino acid position 1783 (LENDENMANN et al. 2014) is the
source of the observed trait variance. This hypothesis is supported by analyses showing that the

RADseq marker closest to the PKS1 gene explains >7% of the variance for each of these traits.

Conclusions

We elucidated the genetic architecture of thermal adaptation in a pathogenic fungus and identified
multiple QTLs as well as candidate genes underlying this trait. To our knowledge this is the first
study to use QTL mapping to identify genes involved in thermal adaptation in a plant pathogen. Our
findings suggest that thermal adaptation in Z. tritici involves not only changes in growth rate, but
also morphological adaptations, including degree of melanization and changes in growth
morphology. This suggests that Z. tritici has evolved many strategies for thermal adaptation, in part
explaining its global distribution across a wide temperature range and leading us to predict that it
will adapt rapidly to global warming. Future investigations aiming to functionally validate the
candidate genes responsible for the mapped QTLs are underway. Additional population genetic
diversity studies are needed to analyze the variation for these genes found in global populations
and may further elucidate the potential of Z. tritici to adapt to changes in temperature. These
studies may form the foundation for understanding the potential response of fungal pathogens to

global warming.
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Table 3 Genetic architecture of each trait for both crosses.
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Table 5 Summary of allele effects for RADseq marker 11_535446 (PKS1) in cross 3D1 x 3D7 modeled

upon growth rate, melanization and the yeast/hyphae dimorphism.
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Melanization (22°C) 93.697 69.233 24.464 3D1 39.9
Melanization (15°C) 113.281 102.192 11.089 3D1 7.4
Growth rate (22°C) 0.452 0.376 0.076 3D1 18.4
Growth rate (15°C) 0.355 0.301 0.054 3D1 12.6
Yeast/hyphae (22°C) 0.721 0.228 0.493 3D1 22
Yeast/hyphae (15°C) 0.357 0.103 0.254 3D1 8.8

® Melanization values are from 11 dpi scores.

® 3D1 indicates that the 3D1 parent allele provided a higher phenotypic mean then the 3D7 parent
allele. 3D7 indicates that the 3D7 parent allele provided a higher phenotypic mean then the 3D1
parent allele.
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Figure 1 LOD plots from single marker interval mapping (SIM) analysis over all chromosomes for growth rate at 15°C and
22°C as well as temperature sensitivity for cross 3D1 x 3D7. The dashed horizontal red line represents the significance

threshold (p = 0.05) obtained using 1000 genome-wide permutations.
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Figure 2 LOD plots from single marker interval mapping (SIM) analysis over all chromosomes for growth rate at 15°C and
22°C as well as temperature sensitivity for cross 1A5 x 1E4. The dashed horizontal red line represents the significance

threshold (p = 0.05) obtained using 1000 genome-wide permutations.
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Figure 3 LOD plot from the single marker interval mapping (SIM) analysis over all chromosomes for the temperature

sensitivity QTL with a 95% confidence interval containing the smallest number (< 30) of candidate genes. The horizontal
dashed red line shows the significance threshold (p = 0.05) obtained by 1000 genome-wide permutations. The relative
positions of the candidate genes in the 95% Bayes confidence interval of the Chromosome 10 QTL are shown below the
LOD plot. The genes are color coded according to the predicted impact by SnpEff of the observed sequence variation
(grey = moderate) and labeled with their protein ID. Below the gene bars are vertical lines showing the position of each
sequence variant within each gene. The asterisk symbol represents the position of the peaking marker within the
confidence interval. Highest likelihood candidate genes are colored in red (76249: a mitogen-activated protein kinase

kinase (MAPKK), 101408: a transmembrane transporter).
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Cross 3D1 x 3D7
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Figure 4 LOD plot from the single marker interval mapping (SIM) analysis over all chromosomes for the yeast/hyphae
(15°C) dimorphism QTL with a 95% confidence interval containing the smallest number (< 30) of candidate genes. The
horizontal dashed red line shows the significance threshold (p = 0.05) obtained by 1000 genome-wide permutations.
The relative positions of the candidate genes in the 95% Bayes confidence interval of the Chromosome 1 and 3 QTLs are
shown below the LOD plot. The genes are color-coded according to the predicted impact by SnpEff of the observed
sequence variation (grey = moderate) and labeled with their protein ID. Below the gene bars are vertical lines showing
the position of each sequence variant within each gene. The asterisk symbol represents the position of the peaking
marker within the confidence interval. Highest likelihood candidate genes are colored in red (32213: an ABC
transporter, 88642: unknown function, 88644: Ca2+/calmodulin-dependent protein kinase (CaMK), 38371: peptidase,

56742: guanine nucleotide exchange factor (GEF), 79974: unknown function).
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Growth rate versus melanization (15°C)
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Figure 5 Evidence for pleiotropy amongst melanization, growth rate at 15°C, and temperature sensitivity for the

chromosome 10 QTL in cross 3D1 x 3D7. Melanization is represented by grey values (11 dpi), with lower values

indicating higher melanization (LENDENMANN et al. 2014). The 3D7 allele that increases melanization also accelerates

growth at 15°C (Panel A) and decreases temperature sensitivity (Panel C). Contrary to cross 3D1 x 3D7, panel B and D,

which show corresponding full genome scan overlaps to panel A and C for cross 1A5 x 1E4, indicate no clear pleitortopy

amongst the three traits melanization, growth rate, and temperature sensitivity in cross 1A5 x 1E4. Each panel shows a

full genome scan LOD overlap plot based on single marker interval mapping (SIM) analysis, with traits separated by

colors (red = melanization trait, green = growth rate at 15°C/temperature sensitivity trait). Horizontal lines in the LOD

plots represent the color-coded significance thresholds (p = 0.05) obtained with 1000 genome-wide permutations. Each

panel includes the corresponding linear correlation plot amongst the two traits. The name above each QTL peak

indicates which parental allele provided the higher phenotypic mean. Arrows point to the QTL peaks that could explain

the observed positive or negative correlation amongst the two traits.



SUPPORTING MATERIAL

The supplementary information is provided in the appendix section starting from page 171.
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CHAPTER 5

General Conclusions and Outlook
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GENERAL CONCLUSIONS AND OUTLOOK

Depicting the quantitative nature of traits of interest by showing different degrees of phenotypes
within natural populations is an important premise for QTL mapping, as only these traits can be
mapped. Previous studies upon Z. tritici had shown for some of our traits of interest, that these are
of a quantitative nature within natural field populations. This was the case for the traits of growth
rate, temperature sensitivity (ZHAN and McDoNALD 2011) as well as fungicide sensitivity upon azole
fungicides (ZHAN et al. 2005; Cools et al. 2011; CooLs and FrRAAIE 2013). However for growth rate and
temperature sensitivity the genetic architecture in Z. tritici had never been investigated before and
for fungicide sensitivity the genetic architecture was still poorly understood (Zwiers et al. 2002;
STERGIOPOULOS et al. 2003; ZwIeRs et al. 2003; CooLs et al. 2007; CooLs and FrRAALE 2013; Cools et al.
2013). Melanization and the yeast/hyphae dimorphism had not been previously shown to be of a
guantitative nature in Z. tritici populations. As QTL mapping can be highly cross dependent, we used
two mapping populations in order to provide a higher resolution of the genetic architecture of the
traits. Overall we mapped for each of the investigated traits multiple significant QTL. Over both
crosses and all traits on average ~32% of total phenotypic variance was explained by an average of
2.7 significant QTLs per trait, with a maximum of 55% of total phenotypic variance explained
through 6 QTLs for the melanization trait. We found a continuous distribution of phenotypes as well
as trangressive segregation, a phenomenon of progeny showing more extreme phenotypes than the
parental strains, in all our traits. Overall these findings confirm that all our investigated traits are of
a quantitative nature in Z tritici populations with a complex genetic architecture. We therefore
conclude, that Z tritici populations are unlikely to be genetically limited to adapt to changing
environments.

An additional goal to mapping significant QTLs was the identification of candidate genes as
well as candidate quantitative trait nucleotides (QTNs). High-throughput genotyping, using
restriction site associated DNA sequencing (RADseq), was applied to the progeny of both mapping
populations, in order to obtain recombining, single nucleotide polymorphism (SNP) markers.
RADseq is a time and cost efficient next generation sequencing (NGS) technique, providing less
coverage then full genome sequencing but at a lower cost per individual (BAIRD et al. 2008). RADseq
had never been applied to Z tritici before, but had already been successfully used in other
filamentous ascomycetes, such as Neurospora crassa (BarD et al. 2008). We could show that this

molecular approach was feasible within Z. tritici through the adaptation of an existing protocol
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(ETTER et al. 2011). We postulate that our adapted protocol could be further used in studies upon Z
tritici for example within the field of population genetics or GWAS (PeTERSON et al. 2012). In our
study we coupled RADseq with high quality SNP filtering, which allowed the construction of a high
quality, highly dense genetic map for both mapping populations. The two genetic maps in our study
have very high marker density compared to other reported genetic maps in filamentous fungi
(FOULONGNE-ORIOL 2012). This high marker density is due to large numbers of progeny as well as high
genome coverage. Earlier genetic maps based on the genome reference isolate IPO323 (Kema et al.
2002; WITTENBERG et al. 2009) were ~72% smaller than our genetic maps. We conclude that our
maps are larger due to extensive chromosome coverage of the RADseq markers. Additionally we
developed a high-throughput yet very precise measurement of size and grey value composition of
single spore colonies grown on Petri dishes. This was achieved through the development of a macro
in the open-source software Imagel) (SCHNEIDER et al. 2012), which runs in batch mode and thus
enables automated analysis of multiple digital images in one go (LENDENMANN et al. 2014). This
macro, due to its precise and reproducible measurements at a high-throughput level, could be of
great important for future in vitro studies upon Z. tritici but also other pathogens. The macro had
already been successfully applied without any further adaptations to another plant pathogen in our
lab, namely the barley pathogen Rhynchosporium commune. The highly dense genetic maps
coupled with precise phenotypic measurements resulted for some of our mapped QTLs in very
narrow confidence intervals and therefore low amount of candidate genes. Over all traits
investigated a total of eight significant QTLs contained < 30 candidate genes within their confidence
intervals, with as little as one candidate gene found in a specific case (LENDENMANN et al. 2014). Two
of these confidence intervals contained a candidate gene providing high evidence of being the
source of phenotypic variance mapped, due to the involvement of their orthologs in the traits in
other filamentous fungi. The five other QTLs contained novel genes, not previously associated with
the traits. The novel candidates provide the basis for future functional validation studies, e.g. using
knockouts and allele swaps.

For the trait of melanization we identified a total of 12 unique QTLs over both crosses. Eight
of these 12 QTLs contained novel genes not previously associated with melanization in fungi. Four
melanization QTLs had confidence intervals containing < 22 candidate genes. In one particular case
the confidence interval stretched over only 9 kb with only one, novel candidate gene. Another of

these four QTLs had a very high LOD score (~32) and contained the PKS1 gene beside three other
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candidate genes. PKS1, a polyketide synthase gene, is known to play a role in the synthesis of
dihydroxynaphthalene (DHN) melanin. Through inter- and intra-species analysis of the PKS1 gene,
we gained evidence of a non-synonymous mutation representing the QTN within the mapped QTL.
We consider the mapping of PKS1 as a confirmation of the functionality of our methods and could
show that melanization has a highly complex genetic architecture in Z tritici. For fungicide
sensitivity the majority of previous Z. tritici studies haven been focusing on the phenotypic effects
of natural genetic diversity of the target gene (CYP51) of azole fungicides. We mapped a total of
three QTLs for this trait. The three QTLs were positioned on chromosomes that differed from the
chromosome containing the target gene. Two of these three QTLs covered novel fungicide
sensitivity candidate genes, with one of them containing only 16 candidate genes. Our findings
imply that other genes apart from the fungicide target site are of importance in contributing to the
guantitative trait of fungicide sensitivity in Z tritici. We also found compelling evidence for
pleiotropy among melanization and fungicide sensitivity, with higher degrees of melanization
associated with lesser fungicide sensitivity. As melanin appears to be a fungicide resistant factor, we
suggest a novel disease control strategy to control Z tritici in the field, namely deployment of
fungicide mixtures containing both fungicides and melanin inhibitors (e.g. tricyclazole and
pyroquilon). These mixtures could counteract the ability of melanin to inhibit the activity of
fungicides. QTL mapping of temperature sensitivity provided a strong peak with a high LOD score
(~12) containing six candidate genes. One of these candidate genes was PBS2, encoding a mitogen-
activated protein kinase kinase and associated with low temperature tolerance in Saccharomyces
cerevisiae as a part of the high osmolarity glycerol (HOG) pathway (PANADERO et al. 2006). Our
results suggest that the HOG pathway is important in Z. tritici for thermal adaptation. Our results
further show a complex genetic architecture of growth and temperature sensitivity in Z. tritici. We
therefore conclude for thermal adaptation that distribution of this species is most likely not
genetically limited and evolution under changing climate can occur rapidly. The trait of dimorphism
has received very little attention in Z. tritici so far. We could show that this trait is of a quantitative
nature in Z tritici, with QTLs correlating strongly with growth QTLs, potentially suggesting that the
dimorphism trait may be a threshold trait, which is triggered by growth.

We found no significant QTLs on the accessory chromosomes (ACs, chromosomes 14 to 21),
which were present within both parental strains. These chromosomes are also considered as

dispensable chromosomes, as they have been shown to be lost in certain individuals, with no
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obvious phenotypic effect. The Z tritici ACs represent the biggest number of ACs known in
filamentous fungi and span a size of ~4.6Mb (MEHRABI et al. 2007; GoobwiIN et al. 2011). Unlike in
other fungal species, such as Nectria haematococca or Fusarium oxysporum f. sp. lycopersici, where
pathogenicity factors have been attributed to the ACs (Miao et al. 1991; CoLEMAN et al. 2009; Ma et
al. 2010), their function in Z. tritici is till today of an unknown nature. However earlier studies show
evidence in ACs harboring virulence genes due to the finding of genes being under accelerated
evolution, containing protein patterns associated with a role in pathogenicity and showing
differential expression between in planta and axenic culture (STUKENBROCK et al. 2010; GOoDWwIN et al.
2011; KELLNER et al. 2014). Possible explanations for not mapping any QTLs on the ACs in this study
are the following: 1. Genes on the ACs are not involved in any of the studied phenotypes. 2.
Parental strains are monomorph regarding accessory chromosome genes. 3. The allele effect sizes
are too small to be detected under the current statistical power of the study.

In addition to simple interval mapping (SIM) we used a multiple QTL model combined with
interval mapping to evaluate the presence of at least two QTLs on the same chromosome (data not
shown here nor in any of the previous chapters). This was done for peaks, which showed a visible
double peak behavior in the SIM full genome scans. All the peaks investigated showed evidence for
at least two QTLs present on the same chromosome. These findings suggest more QTLs to be at
state in both crosses than initially detected using SIM and may explain to a certain extent, why the
majority (>85%) of the SIM QTLs, that underwent double-peak investigation, have a rather large
confidence interval (>1000 kb), as two QTLs on the same chromosome unavoidably stretch the
confidence interval. We postulate that this additional analysis could further help in narrowing down
candidate genes due to obtaining more narrow confidence intervals under the multiple QTL model
compared to SIM confidence intervals. However the confidence intervals obtained through the
multiple QTL model need to be viewed with some caution, as their performance in the context of
multiple QTLs on the same chromosome is not well understood (ARENDS et al. 2010).

Overall we would like to conclude that QTL mapping has been successfully applied for the
first time upon Z. tritici. To our knowledge this PhD represents the first forward genetics study
applied upon Z tritici associating natural genetic variance with phenotypic variance for all
investigated traits. We were able to resolve the genetic architecture for different traits, important
in agriculture but also in the life history of the wheat pathogen Z. tritici. Our findings show that all

investigated traits have a complex genetic architecture and that populations of Z. tritici harbor
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standing genetic variation for selection to act upon. We therefor conclude that Z. tritici populations
have a potential to rapidly adapt to environmental changes. The identified QTLs confirm genes but
also identified novel genes not previously associated with the studied traits. This work sets the
fundament for future QTL mapping studies in Z tritici, where fine-mapping could be performed
through the incorporation of additional progeny or the current mapping populations could be used
to investigate additional phenotypes. We believe that this work and the findings made during this
PhD are of importance for future control strategies of Z. tritici but also of other fungal plant, as well

as animal and human pathogens.
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APPENDIX

The appendix contains the supplementary information for the chapter 4, as this chapter isn’t

published yet.
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Table S1 BioProject and sample accession numbers for the quality filtered retained progeny used in the

QTL analysis for each of the two crosses.

Cross Retained proge.ny for NCBI BioP.roject NCBI SRA §ample
QTL analysis accession accession
3D1 x 3D7 1.1 PRINA256988 SRS670337
3D1 x 3D7 1.2 PRINA256988 SRS670339
3D1 x 3D7 10.1 PRINA256988 SRS670338
3D1 x 3D7 100.1 PRINA256988 SRS670340
3D1 x 3D7 100.2 PRINA256988 SRS670342
3D1 x 3D7 101.2 PRINA256988 SRS670344
3D1 x 3D7 102.1 PRINA256988 SRS670345
3D1 x 3D7 102.2 PRINA256988 SRS670346
3D1 x 3D7 103.1 PRINA256988 SRS670347
3D1 x 3D7 104.1 PRINA256988 SRS670349
3D1 x 3D7 104.2 PRINA256988 SRS670350
3D1 x 3D7 105.1 PRINA256988 SRS670351
3D1 x 3D7 105.2 PRINA256988 SRS670352
3D1 x 3D7 106.1 PRINA256988 SRS670353
3D1 x 3D7 106.2 PRINA256988 SRS670355
3D1 x 3D7 107.1 PRINA256988 SRS670354
3D1 x 3D7 108.1 PRINA256988 SRS670356
3D1 x 3D7 108.2 PRINA256988 SRS670358
3D1 x 3D7 109.1 PRINA256988 SRS670359
3D1 x 3D7 109.2 PRINA256988 SRS670360
3D1 x 3D7 111 PRINA256988 SRS670361
3D1 x 3D7 11.2 PRINA256988 SRS670362
3D1 x 3D7 110.1 PRINA256988 SRS670363
3D1 x 3D7 110.2 PRINA256988 SRS670365
3D1 x 3D7 111.2 PRINA256988 SRS670367
3D1 x 3D7 112.1 PRINA256988 SRS670366
3D1 x 3D7 113.1 PRINA256988 SRS670369
3D1 x 3D7 113.2 PRINA256988 SRS670370
3D1 x 3D7 114.1 PRINA256988 SRS670371
3D1 x 3D7 114.2 PRINA256988 SRS670372
3D1 x 3D7 115.1 PRINA256988 SRS670373
3D1 x 3D7 116.1 PRINA256988 SRS670375
3D1 x 3D7 116.2 PRINA256988 SRS670376
3D1 x 3D7 117.1 PRINA256988 SRS670378
3D1 x 3D7 117.2 PRINA256988 SRS670377
3D1 x 3D7 118.1 PRINA256988 SRS670380
3D1 x 3D7 118.2 PRINA256988 SRS670379
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129.2
13.1
130.1
1311
133.1
134.1
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139.2
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1411
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146.1
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PRINA256988
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991

179

SRS670660
SRS670661
SRS670662
SRS670663
SRS670664
SRS670668
SRS670669
SRS670672
SRS670674
SRS670673
SRS670675
SRS670677
SRS670679
SRS670680
SRS670682
SRS670683
SRS670685
SRS670684
SRS670686
SRS670687
SRS670688
SRS670689
SRS670690
SRS670691
SRS670693
SRS670694
SRS670696
SRS670697
SRS670699
SRS670700
SRS670701
SRS670702
SRS670704
SRS670705
SRS670706
SRS670707
SRS670708
SRS670709
SRS670711
SRS670712



1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

Al9.1
A2.2
A21.1
A21.2
A22.1
A22.2
A23.1
A23.2
A24.1
A24.2
A25.1
A25.2
A26.1
A26.2
A28.1
A29.1
A3.1
A3.2
A30.1
A30.2
A31.1
A32.1
A33.1
A33.2
A35.2
A36.1
A37.1
A38.1
A39.1
A39.2
Ad4.1
A40.1
A40.2
A41.1
A42.1
A42.2
A43.1
A43.2
Ad44.1
A44.2

PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991

180

SRS670713
SRS670716
SRS670717
SRS670718
SRS670720
SRS670719
SRS670722
SRS670721
SRS670723
SRS670724
SRS670725
SRS670726
SRS670727
SRS670728
SRS670729
SRS670731
SRS670733
SRS670734
SRS670735
SRS670736
SRS670738
SRS670739
SRS670741
SRS670742
SRS670744
SRS670745
SRS670747
SRS670749
SRS670751
SRS670752
SRS670753
SRS670755
SRS670756
SRS670757
SRS670760
SRS670759
SRS670762
SRS670761
SRS670763
SRS670765



1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

A45.1
A45.2
A46.1
A46.2
A47.1
A47.2
A48.1
A49.1
A5.1
A50.2
A51.2
A53.2
A54.1
A54.2
A55.1
A55.2
A57.1
A59.1
A59.2
A6.1
A60.1
A60.2
A62.1
A62.2
A63.1
A63.2
A64.1
A66.1
A66.2
A8.1
A9.1
A9.2
B1.1
B1.3
B10.1
B10.2
B11.1
B12.1
B13.2
B14.1

PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991

181

SRS670766
SRS670764
SRS670767
SRS670768
SRS670769
SRS670770
SRS670771
SRS670773
SRS670775
SRS670778
SRS670779
SRS670781
SRS670780
SRS670782
SRS670783
SRS670784
SRS670785
SRS670787
SRS670788
SRS670789
SRS670791
SRS670792
SRS670793
SRS670794
SRS670795
SRS670796
SRS670797
SRS670799
SRS670800
SRS670801
SRS670803
SRS670804
SRS670805
SRS670807
SRS670808
SRS670809
SRS670811
SRS670812
SRS670815
SRS670816



1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

B15.1
B16.1
B16.2
B17.1
B17.2
B18.1
B18.2
B19.1
B19.2
B20.1
B20.2
B21.1
B22.1
B22.2
B23.1
B24.1
B24.2
B25.1
B26.1
B27.1
B28.1
B28.2
B29.1
B3.1
B30.1
B31.1
B31.2
B32.1
B32.2
B33.1
B33.2
B34.2
B35.1
B35.2
B37.1
B37.3
B38.1
B39.1
B39.2
B4.1

PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991

182

SRS670818
SRS670821
SRS670820
SRS670823
SRS670824
SRS670822
SRS670826
SRS670827
SRS670825
SRS670828
SRS670829
SRS670830
SRS670831
SRS670832
SRS670833
SRS670835
SRS670836
SRS670837
SRS670839
SRS670840
SRS670842
SRS670843
SRS670844
SRS670846
SRS670847
SRS670849
SRS670850
SRS670852
SRS670851
SRS670853
SRS670854
SRS670857
SRS670856
SRS670858
SRS670859
SRS670861
SRS670862
SRS670864
SRS670865
SRS670867



1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

B4.2
B40.2
B41.1
B42.1
B42.2
B42.3
B43.1
B44.1
B45.1
B45.2
B46.1
B46.2
B48.1
B48.2
B49.1
B50.1
B50.2
B51.1

B7.1

B9.1

B9.2

Ci1

C1.2
C10.1
C111
C12.1
C12.2
C13.1
C14.1
Cle.1
Cl16.2
Cl16.3
C17.1
C19.1

C21

C2.2
C20.1
C20.2
C21.1
C21.2

PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991

183

SRS670868
SRS670869
SRS670870
SRS670871
SRS670872
SRS670873
SRS670874
SRS670876
SRS670878
SRS670879
SRS670880
SRS670881
SRS670883
SRS670884
SRS670885
SRS670886
SRS670888
SRS670890
SRS670891
SRS670895
SRS670896
SRS670897
SRS670898
SRS670899
SRS670901
SRS670903
SRS670904
SRS670905
SRS670907
SRS670908
SRS670910
SRS670911
SRS670912
SRS670914
SRS670917
SRS670919
SRS670918
SRS670920
SRS670921
SRS670922



1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

C22.1
C22.2
C23.1
C23.2
C24.1
C24.2
C25.1
C26.1
C27.1
C27.2
C28.1
C28.2
C29.2
31
3.2
C30.1
C30.2
C31.1
C32.1
C32.2
C33.1
C33.2
C34.1
C34.2
C35.1
C36.1
C38.1
C38.2
C41
C4.2
C41.1
C41.2
C42.1
C42.2
C44.1
C44.2
C45.1
C45.2
C48.1
C48.2

PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991

184

SRS670923
SRS670924
SRS670925
SRS670926
SRS670927
SRS670929
SRS670928
SRS670931
SRS670933
SRS670934
SRS670935
SRS670936
SRS670938
SRS670939
SRS670940
SRS670941
SRS670942
SRS670943
SRS670946
SRS670947
SRS670948
SRS670949
SRS670950
SRS670951
SRS670952
SRS670954
SRS670956
SRS670957
SRS670958
SRS670959
SRS670960
SRS670961
SRS670962
SRS670963
SRS670964
SRS670965
SRS670966
SRS670967
SRS670968
SRS670969



1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

c49.1
5.1
C5.2
C51.1
C51.2
c52.1
C53.1
C54.1
C55.1
C55.2
C56.1
C56.2
c57.1
C57.2
€59.2
6.1
C60.1
C60.2
c61.1
C61.2
c62.1
C62.2
C63.1
c7.1
7.2
8.1
CR4_A1.1
CR4_A2.1
CR4_A2.2
CR4_A3.1
CR4_A3.2
CR4_A4.1
D1.1
D1.2
D1.3
D10.1
D11.1
D2.1
D3.1
D3.2

PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991

185

SRS670970
SRS670972
SRS670973
SRS670974
SRS670975
SRS670976
SRS670977
SRS670979
SRS670981
SRS670982
SRS670983
SRS670985
SRS670986
SRS670987
SRS670989
SRS670990
SRS670992
SRS670993
SRS670994
SRS670995
SRS670996
SRS670997
SRS670998
SRS671000
SRS671001
SRS671002
SRS671004
SRS671006
SRS671007
SRS671010
SRS671012
SRS671015
SRS671014
SRS671016
SRS671018
SRS671019
SRS671021
SRS671023
SRS671026
SRS671025



1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

D4.1
D5.1
D7.1
D7.2
D7.3
D9.1
D9.2

PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991
PRINA256991

SRS671027
SRS671029
SRS671031
SRS671032
SRS671033
SRS671035
SRS671038

186



Table S2 Growth rate (mm day'l), temperature sensitivity and yeast/hyphae dimorphism phenotypes for the

quality filtered retained progeny used in the QTL analysis for each of the two crosses.

Cross pf;gtzg;efdor Grcz\;vthCr)ate Grcz\iv5t51cr)ate Tizwn[:;(iatri?;:yre Yea(szté Tg)pahae Yea(slté Tg)pahae
QTL analysis
3D1 x 3D7 1.1 NA NA NA NA 0
3D1 x 3D7 1.2 0.406644517 0.342815475 1.186190667 0 0
3D1 x 3D7 10.1 NA NA NA 1 0
3D1 x 3D7 100.1 0.29786234  0.260616992 1.142912201 0 0
3D1 x 3D7 100.2 0.606077056 NA NA NA NA
3D1 x 3D7 101.2 0.495770046 0.429458094 1.154408434 NA 0
3D1 x 3D7 102.1 0.250641969 0.207132414 1.210056716 0 NA
3D1 x 3D7 102.2 0.566641122 0.522758076 1.083945228 1 1
3D1 x 3D7 103.1 0.328973769 0.364346247  0.90291521 0 NA
3D1 x 3D7 104.1 0.340847502 0.280874791 1.213521159 0 0
3D1 x 3D7 104.2 0.45552374  0.406642765 1.120206184 1 NA
3D1 x 3D7 105.1 0.364083821 0.274134415 1.328121542 0 0
3D1 x 3D7 105.2 0.444067669 0.379905118 1.168890988 1 1
3D1 x 3D7 106.1 0.259157593 0.233931289 1.107836381 0 0
3D1 x 3D7 106.2 0.340098695 0.284518845 1.195346816 NA 0
3D1 x 3D7 107.1 0.32595047  0.202800106 1.607249996 0 0
3D1 x 3D7 108.1 0.308000507 0.243801121 1.263326868 0 0
3D1 x 3D7 108.2 0.488546101 0.387245709 1.261592033 1 0
3D1 x 3D7 109.1 0.361715249 0.208861372  1.73184369 NA 0
3D1 x 3D7 109.2 0.38989845 0.274274703 1.421561835 NA 0
3D1 x 3D7 111 0.5239504  0.504987383 1.037551468 1 1
3D1 x 3D7 11.2 NA NA NA 1 1
3D1 x 3D7 110.1 0.339995279 0.280525729 1.211993211 0 0
3D1 x 3D7 110.2 0.52884388 NA NA 0 NA
3D1 x 3D7 111.2 0.372288755 0.226514091 1.643556714 0 0
3D1 x 3D7 112.1 0.357436718 0.316434035 1.129577349 NA 0
3D1 x 3D7 113.1 0.430400224 0.342025272 1.258387199 0 0
3D1 x 3D7 113.2 0.466656427 0.447454306  1.04291415 1 1
3D1 x 3D7 114.1 0.410256356  0.26417328  1.552982028 0 0
3D1 x 3D7 114.2 0.444697808 0.391397185 1.136180396 NA NA
3D1 x 3D7 115.1 0.299606432 0.288486203 1.038546832 0 0
3D1 x 3D7 116.1 0.509011395 0.393522115 1.293475959 NA 0
3D1 x 3D7 116.2 0.340402836 0.237047467  1.43601128 0 0
3D1 x 3D7 117.1 0.330188699 0.264572657 1.248007646 0 0
3D1 x 3D7 117.2 0.347679013 0.354870972 0.979733592 0 0
3D1 x 3D7 118.1 0.456702817 0.32687023  1.397199177 1 0

187



3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7

118.2
119.1
119.2
12.1
120.1
120.2
121.2
122.1
1231
125.1
126.1
127.1
127.2
128.1
128.2
129.2
13.1
130.1
1311
1331
134.1
135.2
136.1
137.1
137.2
138.1
139.2
14.1
1411
142.1
142.2
143.1
144.1
145.1
145.2
146.1
146.2
147.1
148.1
149.1

0.524602341
0.606711258
0.462039474
0.298433179
0.452352341
0.418083163
0.323708547
0.457641653
NA
0.292661762
0.269348948
0.573611429
0.471723531
NA
0.38828956
0.514236366
0.389389071
0.382400475
0.456644412
0.378417727
0.55729434
0.463539975
0.399781063
0.36404594
0.542699856
0.402082665
0.443585084
NA
0.29981085
0.45079568
0.505579728
0.417849179
0.300439613
0.37493814
0.336924835
0.397909751
0.514117368
0.492488864
0.544643725
0.478869194

0.319505549
0.447955528
0.377863365
0.273393755
0.40480887
0.320159453
0.292921084
0.403288656
NA
0.246035061
0.160871669
0.453019335
0.375874391
NA
0.387854072
0.443327188
0.238466474
0.249735584
0.265639749
0.230840863
0.292038333
0.398253883
0.280973872
0.346982358
0.44994951
0.401958453
0.325454957
NA
0.311424921
0.392984466
0.381804835
0.404679963
0.225098347
0.24631371
0.367469128
0.340124368
0.343216703
0.418090438
0.316428663
0.317597415

188

1.641919342
1.354400648
1.222768643
1.091587405
1.117446715
1.305859187
1.105104976
1.134774425
NA
1.189512423
1.674309401
1.266196352
1.255003115
NA
1.001122815
1.15994773
1.632888116
1.531221418
1.719036449
1.6393013
1.908291746
1.163930838
1.422840711
1.04917709
1.206135009
1.000309017
1.362969203
NA
0.962706675
1.14710814
1.324183672
1.032542299
1.334703771
1.522197609
0.916879294
1.169894863
1.497938076
1.177948167
1.721221209
1.507786815

[ = T = O =

NA
NA

NA
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3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7

149.2
15.1
15.2

150.1

150.2

151.1

152.1

152.2

154.1

154.2

155.1

156.1

157.1

158.1

158.2

159.1
16.1

160.1

160.2

161.1

161.2

162.1

162.2

163.1

164.1

164.2

165.1

165.2

166.1

167.1

167.2

168.1

169.1

169.2
17.2

170.1

170.2

1711

172.1

173.1

0.445530117

NA

NA
0.420168626

0.36945829
0.401683888
0.50348707

0.390889258
0.341536595
0.317276337
0.419943575
0.392132136
0.342072739
0.439130851
0.349774377
0.324485777
0.501428726
0.410992991
0.402491167
0.372262374
0.557502419
0.234813598
0.516904668
0.326962517
0.252619433
0.464501593
0.452274844
0.303539309
0.323551442
0.632405527
0.230964725
0.296120964
0.461010853
0.478700544

NA
0.311915878
0.228623499
0.489495978
0.420417823
0.510624002

0.347673434
NA
NA
0.33014696
0.372301759
0.379418657
0.307305778
0.26811763
0.277166026
0.215340454
0.333178901
0.367396126
0.312471726
0.346797335
0.249856232
0.28152323
0.369386691
0.375123316
0.351833769
0.350407531
0.388159351
0.21080024
0.413822062
0.31019746
0.182542799
0.357423508
0.363316304
0.221802989
0.223621402
0.497366929
0.18979445
0.286592334
0.386032459
0.270222792
NA
0.286876946
0.228467631
0.408890607
0.425409667
0.420750968

189

1.28146149
NA
NA
1.272671498
0.992362462
1.05868249
1.638391163
1.457902111
1.232245526
1.473370804
1.260414669
1.067327901
1.094731813
1.266246325
1.399902556
1.152607466
1.357462894
1.095621023
1.143981057
1.062369787
1.436272033
1.113915231
1.249098867
1.054046403
1.38389153
1.299583218
1.244851493
1.36850865
1.446871541
1.27150699
1.216920332
1.033248028
1.194228212
1.77150321
NA
1.087281087
1.000682229
1.197131874
0.988265796
1.213601492
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3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7

174.1
174.2
175.1
176.2
177.2
178.1
179.1
179.2
18.1
18.2
180.1
180.2
181.1
181.2
182.1
183.1
184.1
185.1
19.1
19.2
2.1
20.1
20.2
21.1
21.2
22.1
22.2
23.1
23.2
24.1
24.2
25.1
26.1
26.2
27.1
28.1
29.1
3.1
3.2
30.1

0.359584739
0.566778268
0.458540584
0.498283034
0.500602604
NA
0.39837918
0.406659707
NA
NA
0.521776118
0.605638557
0.633997443
0.466035015
0.400685768
NA
NA
NA
0.448973569
NA
0.323729135
0.483606233
NA
0.324920257
0.220737637
0.411199919
0.4649716
0.43730722
0.292720682
0.520438964
0.407494963
0.425862163
0.414454989
0.402324791
0.525247795
0.282121185
0.49051787
0.379653696
NA
0.330363488

NA
0.378334798
0.288761238
0.230816373
0.391623548

NA
0.275893796
0.328415037

NA

NA
0.388084283
0.436937405
0.391148877
0.314369461
0.243544763

NA

NA

NA
0.341086443

NA
0.303010055
0.309355881
0.345200266
0.375530001
0.188915932
0.359527571

0.28988254
0.307137713
0.347818282
0.344110852

0.36013896
0.356688256
0.233158913
0.331981523
0.334705691
0.231898436
0.391356335
0.478695055

NA
0.232745396

190

NA
1.498086538
1.587957539
2.158785477
1.278275035

NA
1.443958458
1.238249354

NA

NA
1.344491754
1.386099132
1.620859681
1.482443664
1.645224325

NA

NA

NA
1.316304352

NA
1.068377533

1.56326827

NA
0.865231156
1.168443735
1.143722907
1.604000022
1.423814796
0.841590845
1.512416595
1.131493696
1.193933793
1.777564423
1.211889106
1.569282533
1.216572178
1.253379147
0.793101355

NA
1.419420082
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3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7

31.1
32.1
33.1
34.1
34.2
35.1
35.2
36.1
37.1
37.2
38.1
39.1
4.1
4.2
40.1
40.2
41.1
41.2
42.1
42.2
43.1
44.1
45.1
46.1
46.2
47.1
48.1
48.2
49.1
49.2
5.1
5.2
50.1
51.1
51.2
52.1
52.2
53.2
54.1
55.1

0.482113656
0.327301581
0.510899625
0.416797179
0.406725654
0.236371387
0.324775929
0.539581899
0.348147056
0.50140067

NA

NA

NA

NA
0.527011741
0.452305431
0.394472665
0.336747816
0.554500272
0.475028221
0.327386276
0.360627207
0.533359091
0.535870106
0.251300151
0.145446529

0.38319508

0.292327592
0.298642355
0.515587431

NA
0.452670527
0.461541964
0.441699394
0.353472475
0.431236575
0.458100357
0.267015077
0.516776827
0.338883955

0.427593969
0.183961052
0.429981354
0.400684511
0.216411009
0.196335113
0.351439888
0.389996105
0.203572278
0.432774062

NA

NA

NA

NA
0.381769104
0.337057779
0.276371985
0.254940184
0.323001945
0.372252405

0.21704424

0.266495761
0.359497044
0.262310296
0.262407828

NA
0.241028648
0.332509396
0.291964741
0.326761446

NA
0.310266849
0.389908373
0.358920766

0.20854781

0.386476183
0.292560986
0.196034633
0.429688039
0.187674613

191

1.127503405
1.779189553
1.188190186
1.040212855
1.879412952
1.203918054
0.924129389
1.383557148
1.710188932
1.158573756

NA

NA

NA

NA
1.380446285

1.34192254

1.427325078
1.320889513
1.716708771
1.276091744
1.508385002
1.353219301
1.483625805
2.042886285
0.957670175

NA
1.589832092
0.879155886
1.022871302
1.577871066

NA
1.458971619
1.183719037
1.230632041

1.69492298

1.115816691
1.565828592
1.362081144
1.202679107
1.805699506

NA

m O O KR -

NA

NA
NA

NA
NA
NA
NA
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3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7

55.2
56.1
56.2
57.1
57.2
58.1
59.1
59.2
6.1
60.2
61.1
62.1
62.2
63.1
64.1
65.1
66.1
67.1
68.1
68.2
69.1
69.2
7.1
70.1
71.2
72.1
72.2
73.1
74.1
75.1
75.2
76.1
76.2
77.1
78.1
79.1
8.1
8.2
80.1
80.2

0.429475487
0.313012901
0.395890911
0.371810819
0.445229372
0.31933781
0.469265825
0.363362527
NA
0.394385875
0.340059685
0.352628244
0.46409886
0.438383552
NA
0.520553769
0.447594316
0.418501206
0.492871441
0.50673246
NA
0.420895126
0.444960771
0.379138117
0.329035701
0.385410857
0.310388837
0.407503132
0.383385003
0.442886601
0.392807786
0.591228755
0.369238216
0.313762406
0.356733652
0.507723794
0.293148767
0.299961444
0.394595351
0.530960152

0.348423643
0.347115499
0.28434248
0.366245543
0.428570178
0.224384226
0.284508588
0.383066965
NA
0.253313644
0.366973558
0.368123644
0.372266194
0.38494502
NA
0.415134454
0.359417613
0.301241879
0.348524668
0.277951241
NA
0.246159948
0.31849397
0.316716484
0.227016042
0.365579346
0.343601136
0.406195464
0.295135431
0.445510323
0.379281016
0.405218454
0.244982351
0.213807134
0.236059554
0.393345845
0.25462542
0.174344507
0.37769029
0.461636073

192

1.23262441
0.901754321
1.39230308
1.015195477
1.038871567
1.423174061
1.649390724
0.948561375
NA
1.556907353
0.926659911
0.957907076
1.246685482
1.138821205
NA
1.253940171
1.245332169
1.389253074
1.414165155
1.823098393
NA
1.709844068
1.397077537
1.197089939
1.449394055
1.054246806
0.903340544
1.003219308
1.299013815
0.99411075
1.035664243
1.459037093
1.507203333
1.467502042
1.511201926
1.290782148
1.151294192
1.72050986
1.044759057
1.150170413
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3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
3D1x3D7
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

82.1
82.2
83.1
83.2
84.1
84.2
86.2
87.1
88.1
89.1
89.2
9.1
90.1
91.2
92.1
93.1
93.2
94.1
94.2
95.1
95.2
96.1
96.2
97.1
97.2
98.1
99.1
Al1l
Al0.1
All.1l
Al1.2
Al12.2
Al3.1
Al13.2
Al4.1
Al4.2
Al6.1
Al6.2
Al7.1
Al18.1

0.37657596
0.395523841
0.350670914
0.423959566
0.521050504
0.336655296

0.43245547
0.293915788
0.312445461
0.346032565
0.549858735
0.436563192
0.374246936

0.46762853
0.351174146
0.478761314
0.362509414
0.240089826
0.498089158
0.338469132
0.363433326
0.284897498
0.399124867
0.383566078
0.445346525
0.410501087

NA

0.42389102
0.251383477
0.456332919

0.3443407
0.282652913
0.318291461
0.312691124
0.239268195

0.4588759
0.334646057
0.462861083
0.228721452
0.257661548

0.372044616
0.366631265
0.328280394
NA
0.503536267
0.184431285
0.415938885
0.369674375
0.236081097
0.302494317
0.405568809
0.356605977
0.352849316
0.351999125
0.200017638
0.368785074
0.245028668
0.250571754
0.4220134
0.202023438
0.321335391
0.248544758
0.391593134
0.291771714
0.404457045
0.309094449
NA
0.362679384
0.183959058
0.279851799
0.327693596
0.179943033
0.327758192
0.302783274
0.258293588
0.328438145
0.352733612
0.398041289
0.208630269
0.257869525

193

1.012179571
1.078805546
1.068205474
NA
1.034782474
1.825369784
1.039709162
0.795066706
1.323466663
1.143930795
1.355771754
1.224217261
1.060642374
1.328493446
1.755715896
1.298212284
1.479457145
0.958167957
1.180268584
1.675395368
1.131009332
1.146262345
1.019233568
1.314610225
1.101097213
1.328076542
NA
1.168776167
1.366518616
1.630623497
1.050800822
1.57079109
0.97111672
1.032722581
0.926341984
1.397145573
0.948721769
1.16284691
1.096300419
0.999193476

NA

NA
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1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

A18.2
Al9.1
A2.2
A21.1
A21.2
A22.1
A22.2
A23.1
A23.2
A24.1
A24.2
A25.1
A25.2
A26.1
A26.2
A28.1
A29.1
A3.1
A3.2
A30.1
A30.2
A31.1
A32.1
A33.1
A33.2
A35.2
A36.1
A37.1
A38.1
A39.1
A39.2
A4.1
A40.1
A40.2
A41.1
A42.1
A42.2
A43.1
A43.2
Ad44.1

0.400244089
0.26885972
0.474580194
0.28550263
0.337762075
0.578550091
0.351458987
0.32636556
0.592127275
0.474633636
0.624202482
0.376754777
0.540761332
0.33383661
0.504684095
0.321306248
0.370382131
0.569628261
0.277788834
0.381461862
0.457597209
0.537490737
0.446382216
0.40494721
0.44402163
0.345610907
0.256052511
0.318231319
0.33849767
0.511806618
0.417616084
0.431195691
0.280969577
0.504500444
0.385487078
NA
0.457016201
0.318726494
0.259209405
0.40872099

0.302516865
0.270806248
0.379367549
0.347168069
0.283994745
0.464638031
0.236786563
0.281869657
0.380808897
0.3809867
0.429039318
0.263400093
0.371150378
0.386013637
0.318201176
0.259833168
0.330691157
0.364670425
0.181500923
0.251773789
0.254733303
0.4026851
0.328601498
0.385933783
0.320713135
0.330039708
0.234887894
0.3315264
0.266598792
0.38336475
0.371170791
0.319703339
0.264935371
0.37735608
0.288406395
NA
0.335194616
0.391831478
0.342717159
0.228628237

194

1.32304719
0.992812101
1.250977303
0.822375833
1.189325089
1.245163015
1.484286027
1.157859856
1.554919751
1.245801064
1.454884102
1.430351723

1.45698715
0.864831129
1.586053521
1.236586732
1.120024299
1.562035807
1.530509211
1.515097593
1.796377636
1.334766886
1.358430255
1.049266034

1.38448221
1.047179774
1.090105187
0.959897368
1.269689436
1.335038286
1.125131863
1.348736901
1.060521198
1.336934718
1.336610715

NA
1.363435387
0.813427485
0.756336233
1.787710019

N = =)

NA
NA
NA

NA

NA
NA

OO O O O O O O O o o o o o o o o o o o o o o o



1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

A44.2
A45.1
A45.2
A46.1
A46.2
A47.1
A47.2
A48.1
A49.1
A5.1
A50.2
A51.2
A53.2
A54.1
A54.2
A55.1
A55.2
A57.1
A59.1
A59.2
A6.1
A60.1
A60.2
A62.1
A62.2
A63.1
A63.2
A64.1
A66.1
A66.2
A8.1
Ad.1
A9.2
B1.1
B1.3
B10.1
B10.2
B11.1
B12.1
B13.2

0.414877958
0.602933111
0.421024899
0.308664405
0.445130553
0.386154201
0.491748226
0.4915612
0.640315675
0.359255724
0.46978444
0.268945067
0.420112865
0.412382635
0.366687537
0.431830196
0.367024744
0.483546888
0.378523459
0.428648387
0.402862687
0.575805037
0.49104263
NA
0.312016293
0.400394609
0.26900977
0.388969681
0.271517302
0.517962094
0.256349924
0.265145977
0.415770034
0.382522386
0.358521271
0.271242062
0.293431417
0.432230038
0.27141752
0.387599256

0.369619206
0.393350364
0.328114268
0.370911048
0.382209501
0.395634374
0.320508995
0.391750641
0.336143926
0.304913553
0.375527977
0.295571832
0.362926534
0.375899568
0.270159256
0.391754045
0.28450597
0.421572487
0.34101273
0.171422502
0.379133611
0.377215786
0.338474017
NA
0.344734171
0.393268339
0.292865377
0.397761976
0.23173355
0.463963489
0.256257293
0.308949364
0.392218776
0.384274759
0.320393704
0.33574517
0.269139867
0.331801146
0.313468997
0.330680813

195

1.122446969
1.532814421
1.283165469
0.832179054
1.16462451
0.976038046
1.534272778
1.254780845
1.904885454
1.178221564
1.250997179
0.909914403
1.157569992
1.097055357
1.357301404
1.102299267
1.290042327
1.1470077
1.109998032
2.500537453
1.062587636
1.526460607
1.450754285
NA
0.905092442
1.018120631
0.918544117
0.977895589
1.171678859
1.116385464
1.000361476
0.858218232
1.060046228
0.995439792
1.119002237
0.807880758
1.090256232
1.302677954
0.865851241
1.172125027
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1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

B14.1
B15.1
B16.1
B16.2
B17.1
B17.2
B18.1
B18.2
B19.1
B19.2
B20.1
B20.2
B21.1
B22.1
B22.2
B23.1
B24.1
B24.2
B25.1
B26.1
B27.1
B28.1
B28.2
B29.1
B3.1
B30.1
B31.1
B31.2
B32.1
B32.2
B33.1
B33.2
B34.2
B35.1
B35.2
B37.1
B37.3
B38.1
B39.1
B39.2

0.349722777
NA
0.260482077
0.611946556
0.382237907
0.592456126
0.439584788
0.351547603
0.324356735
0.432476583
0.591483261
0.666984271
0.694985784
0.387514339
0.334861109
0.362692561
0.223173795
0.303117617
0.35564852
0.45685148
0.284334081
0.395353817
0.517595122
0.559914624
0.42809976
0.3942933
0.420706749
0.387475193
0.387798733
0.426645331
0.278427219
0.455820644
0.289778891
0.38660161
0.357964155
0.410030766
0.541580364
0.495741013
0.272078076
0.302679961

0.339727873
NA
0.225712536
0.400098582
0.33036539
0.378874678
0.23950511
0.29085979
0.314407681
0.30964872
0.367000496
0.37426189
NA
0.342375112
0.213731349
0.279636018
0.218324026
0.255241353
0.283558939
0.403835509
0.354464702
0.343159723
0.389041921
0.380592513
0.364536883
0.390471175
0.394610374
0.308753939
0.351296067
0.292572626
0.261253254
0.426092443
0.273289097
0.336327987
0.252442084
0.38026785
0.400935258
0.411513586
0.271040304
0.215693998

196

1.029420323
NA
1.154043464
1.529489442
1.157015589
1.563725845
1.835387931
1.208649717
1.031643802
1.396668401
1.611668832
1.782132482
NA
1.131841437
1.566738391
1.297016612
1.022213629
1.187572521
1.254231383
1.131281104
0.802150622
1.152098544
1.330435345
1.471165627
1.174366108
1.009788495
1.066132003
1.254964375
1.103908553
1.458254443
1.065736844
1.069769371
1.060338277
1.149477964
1.418005067
1.078268292
1.35079256
1.204677149
1.003828848
1.403284112

NA
NA

NA

NA
NA

NA
NA
NA
NA

NA
NA
NA

NA
NA
NA
NA
NA

NA
NA

NA
NA

NA

NA
NA
NA
NA
NA
NA
NA
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1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

B4.1
B4.2
B40.2
B41.1
B42.1
B42.2
B42.3
B43.1
B44.1
B45.1
B45.2
B46.1
B46.2
B48.1
B48.2
B49.1
B50.1
B50.2
B51.1
B7.1
B9.1
B9.2
Ci1
C1.2
C10.1
C111
C12.1
C12.2
C13.1
Ci14.1
Cle.1
Cl16.2
Cl16.3
C17.1
C19.1
C21
C2.2
C20.1
C20.2
C21.1

0.319435216
0.379751744
0.409757481
0.446220986
0.687387663
0.215998931
0.461921337
0.378550568
0.320554276
0.335350916
0.504787709
0.310822876
0.229986552
0.29264465
0.318880289
0.375098915
0.372543261
0.356871334
0.2865592
0.441524194
0.388076879
0.3356923
0.432597317
0.46463921
0.253193442
0.570766355
NA
NA
0.405008922
0.403262522
0.390116101
0.294618519
0.329717866
0.307872943
0.213914607
0.379828995
0.321288213
0.245802458
0.346505576
0.247097394

0.233008276
0.426901168
0.370582418
NA
0.44944767
0.267457314
0.498389503
0.311443699
NA
0.2648959
0.467384804
0.275243398
0.233814064
0.316896989
0.31156541
0.274101126
0.308098732
0.309730636
0.263306044
0.310778284
0.327660156
0.214551335
0.351288601
0.415818806
0.275350523
0.430379908
0.371032301
NA
0.332558047
0.276885674
0.344992121
0.289426727
0.369853357
0.303365507
0.238220212
0.326815482
0.351534742
0.231775234
0.333519589
0.239383171

197

1.370917899
0.889554239
1.105712146
NA
1.529405332
0.807601511
0.926827982
1.215470306
NA
1.265972465
1.080025932
1.129265509
0.983630104
0.923469329
1.023477828
1.368469078
1.209168435
1.152199017
1.088312275
1.420704779
1.184388375
1.564624614
1.231458453
1.117407878
0.919531365
1.326191918
NA
NA
1.217859337
1.456422486
1.130797132
1.017938191
0.89148269
1.0148581
0.897970014
1.162212367
0.913958637
1.060520805
1.038936203
1.032225417

NA

NA
NA
NA
NA

NA

NA

NA
NA
NA

NA
NA
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1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

C21.2
C22.1
C22.2
C23.1
C23.2
C24.1
C24.2
C25.1
C26.1
C27.1
C27.2
C28.1
C28.2
C29.2
c31
3.2
C30.1
C30.2
C31.1
C32.1
C32.2
C33.1
C33.2
C34.1
C34.2
C35.1
C36.1
C38.1
C38.2
C4.1
C4.2
C41.1
C41.2
C42.1
C42.2
C44.1
C44.2
C45.1
C45.2
C48.1

0.284299515
0.319873715
0.490701018
0.272671233
0.287086826
0.402372242
0.576562203
0.364605001
0.380704312
0.298382347
0.318402863
0.334834761
0.393579236
0.263373246
0.450342755
0.479869527
0.298591256
0.489414965
0.641071887
0.385113527
0.442475151
0.461942042
0.445796042
0.379336104
0.374423532
0.345372987
0.380475944
0.608329291
0.357069125
0.485477118
0.476445811
0.408065693
0.321687218
0.513820959
0.353700643
0.297223713
0.434520491
0.384032004
0.542947948
0.415893986

0.366426949
0.294155419
0.397504829
0.255494537
0.300653547
0.426437014
0.409959746
0.325801625
0.233686764
0.359416908
0.276751135
0.366761219
0.37551746
0.308524497
0.360190148
0.377916795
0.219368861
0.348960397
0.397009264
0.251060085
0.384068587
0.316552873
0.366630297
0.265420384
0.36203636
0.235666089
0.398623462
0.325955147
0.380880439
0.324838513
0.321821066
0.363733647
0.252873232
0.413692893
0.261138686
0.285722869
0.332774729
0.360932591
0.472436761
0.35882016

198

0.775869558
1.087430979
1.234452974
1.067229211
0.9548759
0.943567816
1.406387357
1.119101235
1.629122272
0.830184502
1.150502468
0.912950289
1.048098365
0.853654244
1.250291707
1.269775604
1.361137831
1.402494291
1.614752969
1.533949643
1.152073264
1.459288735
1.215927994
1.429189798
1.034215269
1.465518389
0.954474537
1.866297547
0.937483496
1.494518348
1.480468067
1.12188052
1.272128393
1.242034776
1.354455168
1.040251744
1.305749666
1.063999245
1.14925
1.159059698

NA

NA
NA

NA
NA

NA
NA
NA
NA
NA

NA
NA

NA
NA
NA
NA
NA

NA

NA

NA

NA

NA

NA

NA
NA
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1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

C48.2
c49.1
5.1
C5.2
C51.1
C51.2
c52.1
C53.1
C54.1
C55.1
C55.2
C56.1
C56.2
c57.1
C57.2
€59.2
6.1
C60.1
C60.2
c61.1
C61.2
c62.1
C62.2
C63.1
c7.1
c7.2
8.1
CR4_A1.1
CR4_A2.1
CR4_A2.2
CR4_A3.1
CR4_A3.2
CR4_A4.1
D1.1
D1.2
D1.3
D10.1
D11.1
D2.1
D3.1

0.382822785
NA
0.545894135
0.216355801
0.279214673
0.654413053
0.41038619
0.585122504
0.592299004
0.288298353
0.341476136
0.455979148
0.277264886
0.315168619
0.236857646
0.339492565
0.31267625
0.282001689
0.362149298
0.320097108
NA
0.519775835
0.343364504
0.306490213
0.387162566
0.492069977
0.272404406
0.207601154
0.331058545
0.453603857
0.495287112
0.436238914
0.373954122
0.26972111
0.436173951
0.359702963
0.420091693
0.488915673
0.360484584
0.309732762

0.39279022
0.234822998
0.42484691
0.226209962
0.300993547
NA
0.278175267
0.458321239
0.387549916
0.187989901
0.366796677
0.383264187
0.284182511
0.372526377
0.243307182
0.265109892
0.323470384
0.231195167
0.386195534
0.388496566
0.427193126
0.432244467
0.253285485
0.252376028
0.352736429
0.361661979
NA
0.185565937
0.351216309
0.348886809
0.391407362
0.356938954
0.292714892
0.350891486
0.328811139
0.246712935
0.271009922
0.37717436
0.332175316
0.225744091

199

0.974624023
NA
1.284919632
0.95643799
0.927643387
NA
1.475279217
1.276664607
1.528316688
1.533584265
0.930968455
1.189725427
0.97565781
0.846030344
0.973492211
1.280572982
0.966630226
1.219755986
0.937735591
0.823938064
NA
1.202504311
1.355642248
1.214418881
1.097597338
1.360579784
NA
1.118746021
0.942605843
1.300146194
1.265400604
1.22216673
1.277537059
0.768673851
1.326518174
1.457981778
1.550097096
1.296259039
1.085223876
1.372052582
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1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4
1A5 x 1E4

D3.2
D4.1
D5.1
D7.1
D7.2
D7.3
D9.1
D9.2

0.333057061
0.29938525
0.427181204
0.570777621
0.214350928
0.364082728
0.603564131
0.32088736

0.269678045
0.290278097
0.394776861
0.437198746
0.240356491
0.384653042
0.433779699
0.363785951

1.235017335
1.031373891
1.082082682
1.305533525
0.891804199
0.94652242
1.391407049
0.882077385

0
NA

0
0
1
1

o O O o o o o o

® The yeast/hyphae dimorphism phenotype was scored as a binary phenotype, with a value of ‘0’ representing
yeast-like growth and a value of ‘1’ representing hyphal growth.
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Bayes confidence interval length
(kb)

Estimated position of distal
marker (kb) b
Estimated position of proximal
marker (kb) b
Percentage of variance explained
by QTL (%)

Allele effect ®
Mean difference
Mean 3D7 allele (growth
rate/temperature sensitivity)
Mean 3D1 allele (growth
rate/temperature sensitivity)
P-value
LOD score at peak
Estimated position of peaking
marker (kb)
Estimated position of peaking
marker (cM)
Chromosome
Trait
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b

b
b

b

Percentage of total sequence
variation affected genes with
unknown function (%) b
Number of sequence variation
affected genes with unknown
function
Percentage of total genes affected by
sequence variations (%) b
Number of genes affected by
sequence variations
Number of genes
Number of sequence variations
Bayes confidence interval length (kb)
Estimated position of distal marker
(kb) °
Estimated position of proximal
marker (kb) ®
P-value
LOD score at peak
Estimated position of peaking marker
(kb)

Chromosome
Trait
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Table S5 Positions and effects of all QTLs associated with the yeast/hyphae dimorphism in cross 1A5 x 1E4.

Bayes confidence interval length
(kb)

Estimated position of distal
marker (kb) b

Estimated position of proximal
marker (kb) b

Percentage of variance explained
by QTL (%)

Allele effect ®

Mean difference

Mean 1E4 allele (growth
rate/temperature sensitivity)

Mean 1A5 allele (growth
rate/temperature sensitivity)

P-value

LOD score at peak

Estimated position of peaking
marker (kb)

Estimated position of peaking
marker (cM)

Chromosome

Trait

714

1138

971 4.24 0.005 0.095 0.413 0.318 1E4 13.3 424

196.28

7

Yeast/hyphae (22°C)

196

606

410

1A5 14.9

0.446 0.099 0.347

524 4.79 0.001

66.72

11

Yeast/hyphae (22°C)

1AS5 indicates that the 1A5 parent allele provided a higher phenotypic mean then the 1E4 parent allele. 1E4 indicates that the 1E4 parent allele provided a higher phenotypic

mean then the 1A5 parent allele.

a
b

Markers flanking the 95% Bayes confidence interval of the associated QTL.
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Table S6 Summary of genes affected by sequence variation within each Bayes confidence interval for the cross 1A5 x 1E4 QTLs associated with the yeast/hyphae dimorphism,

excluding all genes containing no sequence variation or with only synonymous SNPs.

Percentage of total sequence
variation affected genes with
unknown function (%) b

Number of sequence variation
affected genes with unknown
function °

Percentage of total genes affected by
sequence variations (%) b

Number of genes affected by
sequence variations b

Number of genes b

L b
Number of sequence variations

Bayes confidence interval length (kb)

Estimated position of distal marker
(kb) °

Estimated position of proximal
marker (kb) ®

P-value

LOD score at peak

Estimated position of peaking marker
(kb)

Chromosome

Trait

69 44

76

897 206 157

424 1138 714

0.005

4.24

971

7

Yeast/hyphae (22°C)

74 18 38

65 48

410 606 196 240

0.001

4.79

524

11

Yeast/hyphae (22°C)

Markers flanking the 95% Bayes confidence interval of the associated QTL.

a
b

Numbers refer to within the 95% Bayes confidence interval of the associated QTL.
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b

b
b

b

Percentage of total sequence
variation affected genes with
unknown function (%) b
Number of sequence variation
affected genes with unknown

function
Percentage of total genes affected by
sequence variations (%) b
Number of genes affected by
sequence variations
Number of genes
Number of sequence variations
Bayes confidence interval length (kb)
Estimated position of distal marker
(kb) °
Estimated position of proximal
marker (kb) *
P-value
LOD score at peak
Estimated position of peaking marker
(kb)
Chromosome
Trait
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b

b
b

b

variation affected genes with
unknown function (%) b
function
sequence variations (%) b
Number of genes affected by
sequence variations
Number of genes
(kb)
Chromosome
Trait

Percentage of total sequence

Number of sequence variation

affected genes with unknown
Percentage of total genes affected by

Number of sequence variations
Bayes confidence interval length (kb)

Estimated position of distal marker
(kb) °
Estimated position of proximal
marker (kb) ®
P-value
LOD score at peak

Estimated position of peaking marker
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15°C
Progeny 111.2 Progeny 144.1

Yeast growth

Progeny 11.1 Progeny 113.2

Hyphal (filamentous) growth

11
Colony age (dpi)

Figure S1 Examples of yeast-like growth morphology and hyphal (filamentous) growth morphology among progeny

from cross 3D1 x 3D7 at 15°C and 11 dpi.
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22°C 15°C

TH(%) 94 92 88|89 94 04

o & R-squared (%) = 99.7 & R-squared (%) = 99.8

HA%) 91 91 89|84 88 88

Colony radius (mm)

& R-squared (%) = 99.6 @ R-squared (%) = 98.2

1 I
8 1 14 8 11 14
Colony age (dpi)
Figure S2 Norms of reaction for both crosses across the two treatments (22°C and 15°C). Broad-sense heritability (Hz)

. . . 2
values for colony average area are indicated for each colony age and treatment. Average linear model R squared (r°)

values are shown for each treatment.
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Figure S3 The distributions of growth rate and temperature sensitivity in both crosses. Positions of the parental

Growth rate (15°C)

Temperature sensitivity
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phenotypes within each distribution are indicated by white dashed lines with corresponding parental names above

their phenotypes.
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Chromosome

Figure S4 LOD plots from single marker interval mapping (SIM) analysis over all chromosomes for the yeast/hyphae
dimorphism phenotype at 15°C and 22°C for cross 3D1 x 3D7. The dashed horizontal red line represents the

significance threshold (p = 0.05) obtained using 1000 genome-wide permutations.
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Chromosome
Figure S5 LOD plots from single marker interval mapping (SIM) analysis over all chromosomes for the binary

yeast/hyphae dimorphism phenotype at 15°C and 22°C for cross 1A5 x 1E4. The dashed horizontal red line represents

the significance threshold (p = 0.05) obtained using 1000 genome-wide permutations.
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Growth rate versus yeast / hyphae (22°C)

¥ - - — — Growth rate (22°C)
Q0 - ; — Yeast/ hyphae (22°C)
6 - % 0.5 I
g 04 |
£ 03| R
5 PO S
<_3> 02 Var. Exp (%)=17.6 1 A5
& P < 0.001 1E4
4 Yeast Hy

Yeast / hyphae (28C)

LOD

1 2 3 4 5 6 7 8 9 10 12 14 1619 21
11 13 1518 20
Chromosome

Figure S8 Evidence for pleiotropy amongst the yeast/hyphae dimorphism and growth rate
phenotypes at 22°C for the chromosome 7 and 11 QTL in cross 1A5 x 1E4. The figure shows a full
genome scan LOD overlap plot based on single marker interval mapping (SIM) analysis, with traits
separated by colors (green = growth rate at 15°C/22°C, purple = yeast/hyphae dimorphism trait).
Horizontal lines in the LOD plots represent the color-coded significance thresholds (p = 0.05)
obtained with 1000 genome-wide permutations. In the box plot for the two traits, mean growth
rate values are presented either above or below the median line. The name above each QTL peak
indicates which parental allele provided the higher phenotypic mean. Allele effects for non-
significant, but visible pleiotropic peaks for either of the phenotypes were obtained by modeling
the peaking marker of the significant peak for either of the phenotypes upon the corresponding
opposite phenotype. For each pleiotropic peak the allele providing faster growth also contributes

to a more hyphal phenotype.
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