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Abstract A large-eddy simulation (LES) framework is developed for simulating the dynamics of clouds
and boundary layers with closed water and entropy balances. The framework is based on the anelastic
equations in a formulation that remains accurate for deep convection. As prognostic variables, it uses total
water and entropy, which are conserved in adiabatic and reversible processes, including reversible phase
changes of water. This has numerical advantages for modeling clouds, in which reversible phase changes of
water occur frequently. The equations of motion are discretized using higher-order weighted essentially
nonoscillatory (WENO) discretization schemes with strong stability preserving time stepping. Numerical
tests demonstrate that the WENO schemes yield simulations superior to centered schemes, even when the
WENO schemes are used at coarser resolution. The framework is implemented in a new LES code written in
Python and Cython, which makes the code transparent and easy to use for a wide user group.

1. Introduction

Large-eddy simulation (LES) has a long history in the study of three-dimensional atmospheric turbulence in
boundary layers and in convective clouds [e.g., Deardorff, 1974a,b, 1980]. LES resolves the most energetic,
larger-scale turbulent motions and represents smaller-scale motions through subgrid-scale (SGS) models.
Numerous codes to do so are available [e.g., Raasch and Schr€oter, 2001; Savic-Jovcic and Stevens, 2008; Heus
et al., 2010; Matheou et al., 2011; Savre et al., 2014]. They have been used, for example, to study dry convec-
tive boundary layers [e.g., Schmidt and Schumann, 1989; Sullivan and Patton, 2011], stably stratified bound-
ary layers [e.g., Beare et al., 2006], shallow cumulus convection [e.g., Jiang and Cotton, 2000; Siebesma et al.,
2003], and stratocumulus topped boundary layers [e.g., Stevens et al., 2005]. Increasing computing power
has recently made it possible to conduct LES of deep moist convection [e.g., Khairoutdinov and Randall,
2006; Khairoutdinov et al., 2009], and to conduct LES for sufficiently long times to reach statistically steady
states [e.g., Chung et al., 2012; Blossey et al., 2013; Bretherton et al., 2013]. At the same time, it has allowed
LES domains to increase in size from 104 grid points in the 1970s to �109 grid points today.

It is clear that LES has the potential to help resolve some of the most important and pressing problems in
climate dynamics. In particular, questions about the climate feedback of low clouds continue to be the larg-
est source of uncertainty in climate projections [e.g., Cess et al., 1990, 1996; Bony and Dufresne, 2005; Webb
et al., 2006; Dufresne and Bony, 2008; Vial et al., 2013]. To facilitate addressing such questions, here we pres-
ent a new LES framework, which exploits recent developments in atmosphere dynamics and in numerical
methods and aims to make LES both more reliable and more accessible to a wider user group.

The equations of motion on which the LES framework is based are a variant of the anelastic equations of
atmospheric motion, suitable for a range of applications from boundary layer dynamics to deep moist con-
vection [Batchelor, 1953; Ogura and Phillips, 1962; Dutton and Fichtl, 1969; Lipps and Hemler, 1982; Bannon,
1996; Pauluis, 2008]. The anelastic equations eliminate sound waves from the equations of motion, which
are generally not important for atmospheric dynamics as the Mach number is small. Eliminating sound
waves is desirable to reduce the computational burden that otherwise arises in explicit time integration of
the fully compressible equations of motion, in which resolving sound waves requires short time steps [e.g.,
Satoh et al., 2008; Duarte et al., 2014]. The anelastic equations eliminate sound waves by permitting only
small deviations of the density from a reference state, which can depend on height and traditionally has
been taken to be hydrostatic with constant or at most with a weakly varying dry entropy [Ogura and Phillips,
1962; Lipps and Hemler, 1982; Bannon, 1996]. A problem of traditional formulations of the anelastic

Key Points:
� An anelastic framework for LES with

closed water and entropy balances is
developed
� State-of-the-art numerical techniques

yield superior results to traditional
techniques
� Implementation in Python and

Cython makes the framework easy to
use

Correspondence to:
T. Schneider,
tapio@ethz.ch

Citation:
Pressel, K. G., C. M. Kaul, T. Schneider,
Z. Tan, and S. Mishra (2015), Large-
eddy simulation in an anelastic
framework with closed water and
entropy balances, J. Adv. Model. Earth
Syst., 7, 1425–1456, doi:10.1002/
2015MS000496.

Received 9 JUN 2015

Accepted 20 AUG 2015

Accepted article online 22 AUG 2015

Published online 26 SEP 2015

VC 2015. The Authors.

This is an open access article under the

terms of the Creative Commons Attri-

bution-NonCommercial-NoDerivs

License, which permits use and distri-

bution in any medium, provided the

original work is properly cited, the use

is non-commercial and no modifica-

tions or adaptations are made.

PRESSEL ET AL. LARGE-EDDY SIMULATION FRAMEWORK 1425

Journal of Advances in Modeling Earth Systems

PUBLICATIONS

http://dx.doi.org/10.1002/2015MS000496
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1942-2466/
http://publications.agu.org/


equations is that they generally do not conserve energy when the reference state entropy varies substan-
tially with height [Nance and Durran, 1994]. They become inaccurate, for example, for deep convection,
when deviations from a dry-isentropic reference state can be substantial [Bannon, 1996]. Pauluis [2008] pro-
posed an anelastic approximation that is thermodynamically consistent and remains accurate for deep con-
vection. It uses a reference state that is hydrostatic with constant moist entropy and is most naturally
formulated with moist entropy as a prognostic variable. The LES framework we develop here is based on
this variant of the anelastic approximation and uses total water and moist entropy as prognostic variables.

Using total water and moist entropy as prognostic variables has numerous numerical advantages because
these quantities are conserved in adiabatic and reversible processes. For example, reversible phase changes
of water are common in clouds and can occur on time scales of seconds—within a computational time step
of typical LES. Because total water and moist entropy are conserved in such phase changes, using them as
prognostic variables can allow larger computational time steps [e.g., Deardorff, 1976; Ooyama, 1990, 2001;
Zeng et al., 2005, 2008]. Their conservative nature also makes common SGS models more applicable than
they would be, for example, for temperature: SGS models represent the effects of unresolved turbulent
eddies, typically at scales of tens of centimeters and larger. At those scales, turbulent dynamics can still be
nearly adiabatic and reversible, and conservative variables such as total water and entropy, but generally
not nonconservative variables such as temperature, can mix linearly, as is assumed in many common SGS
models. Additionally, both total water and entropy are extensive variables, making it possible with suitable
discretization to construct a discrete LES code that has closed water and entropy balances.

We use state-of-the-art numerical methods to discretize the equations of motion. LES studies of atmos-
pheric and engineering flows have demonstrated how important the discretization methods are for the
quality of LES solutions [e.g., Ghosal, 1996; Kravchenko and Moin, 1997; Chow and Moin, 2003]. They are
more important for the quality of LES solutions than, for example, the choice of anelastic or fully compressi-
ble equations of motion [Kurowski et al., 2014]. We focus on higher-order weighted essentially nonoscillatory
(WENO) schemes, based on WENO reconstructions from third through 11th order for the transport of scalars
and momentum [Liu et al., 1994; Jiang and Shu, 1996; Balsara and Shu, 2000]. The advantage of WENO
schemes, for example, over central difference schemes is that they do not generate spurious numerical
oscillations, particularly around sharp gradients, and can also be made monotonicity preserving [Balsara
and Shu, 2000]. They also conserve integrals of the density-weighted prognostic variables, up to explicit
sources and sinks.

We have implemented the LES framework in a mixture of Python and Cython [Behnel et al., 2011], high-level
languages that are routinely and successfully used in high-performance computing (HPC) applications [e.g.,
Turk et al., 2009]. Python maximizes readability of code, for example, by determining variable types dynami-
cally at runtime. Cython is a superset for the Python programming language that supports static variable
types and integration of C functions, both features that are necessary to achieve high computing perform-
ance on parallel architectures. Yet Python and Cython lend themselves to scripting applications, for exam-
ple, for postprocessing of simulation output. Our new Python Cloud Large Eddy Simulation code (PyCLES)
allows users to employ a seamless end-to-end Python workflow, instead of the common dichotomy of using
simulation code written in a low-level language with static variable types, such as Fortran or C11, but per-
forming postprocessing in a high-level language with dynamic variable types, such as Matlab or Python
[Rossum, 1995; Lin, 2012]. The resulting code has slight performance loss compared, for example, with native
Fortran or C11 code (at most approximately 20% [Wilbers et al., 2009]). However, the portability across
diverse computing platforms, the readability and ease of use of the resulting code, and the seamlessness of
simulation and postprocessing, in our view, more than make up for this slight performance disadvantage.

This paper describes the LES framework implemented in PyCLES, from the formulation of the equations of
motion to the numerical solution. Section 2 reviews the equations of motion on which PyCLES is based,
including boundary conditions and SGS models. Section 3 develops the underlying thermodynamics of
moist air and discusses situations in which an entropy-based thermodynamic formulation poses special
challenges (e.g., mixed-phase clouds). Section 4 discusses numerical methods, with a focus on how to
implement higher-order WENO schemes for the anelastic equations. Section 5 provides simulation results
for idealized test cases that illustrate numerical properties of WENO schemes and compares their accuracy
and computational cost with traditional centered schemes. Section 6 summarizes the main advances of this
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paper. Application of PyCLES to atmospheric boundary layers and convective clouds will be presented in a
forthcoming paper. The PyCLES code is available at climate-dynamics.org/software.

2. Equations of Motion

The anelastic equations of Pauluis [2008] are based on a linearization of pressure and specific volume fluctu-
ations around a reference state of constant moist entropy. The pressure p0ðx3Þ and specific volume a0ðx3Þ5
q21

0 ðx3Þ in the reference state depend on the height x3 and are in hydrostatic balance,

a0
@p0

@x3
52g: (1)

The specific volume a05a0 s0; qt;0; p0ðx3Þ
� �

is a function of the thermodynamic state variables specific
entropy s0, total water specific humidity qt;0, and pressure p0ðx3Þ in the reference state, indicated by the
subscript 0. (Appendix B contains a list of the symbols used repeatedly in this paper.)

The fluid is moist air, considered to be an ideal mixture of dry air, water vapor, and water in condensed
phases. As is common in hydrodynamics, local thermodynamic equilibrium is assumed to hold on the
microscales, the smallest scales at which the continuum equations of motion are valid, so that local tem-
peratures, entropies etc. can be defined. Water that is not in equilibrium with the surrounding air is not
part of the fluid and will be treated separately. In particular, hydrometeors that are falling so rapidly that
they do not equilibrate with the surrounding air will be treated separately from the water for which a
local thermodynamic equilibrium assumption can be made [cf. Zeng et al., 2008]. Thus, the total water
specific humidity of the fluid is the sum qt5qv1ql1qi of the water vapor (qv), liquid (ql), and ice (qi) spe-
cific humidities of the water phases in local thermodynamic equilibrium. By Gibbs’ phase rule, the local
thermodynamic equilibrium assumption for moist air implies that the specific entropy s, total water spe-
cific humidity qt, and pressure p5p01p0 suffice as state variables from which the partitioning of water
into its phases (qv, ql, and qi) can be uniquely determined. Thus, all thermodynamic-equilibrium variables
needed can be calculated from s, qt, and p5p01p0. As discussed by Pauluis, thermodynamic consistency
of the anelastic equations in this formulation requires that the pressure p in such calculations is approxi-
mated by the reference pressure p0, neglecting the dynamic pressure perturbation p0. The thermody-
namic errors resulting from this approximation are small for typical situations in Earth’s atmosphere
[Kurowski et al., 2014].

What follows begins with a brief review of the anelastic equations of motion of Pauluis [2008] and extends
his equations by a discussion of the source and sink terms, SGS closures, and boundary conditions that
complement them.

2.1. Momentum
The anelastic momentum equations in Cartesian geometry are given by

@ui

@t
1

1
q0

@ðq0uiujÞ
@xj

52
@a0p0

@xi
1bdi3

2�ijkdj3f uk2ug;k
� �

2
1
q0

@ðq0sijÞ
@xj

1Ri

(2)

where summation over repeated indices is implied, dij is the Kronecker delta, and �ijk is the antisymmetric
Levi-Civita symbol. The velocity ui is the i-th component of the three-dimensional velocity, and ug;i is a cor-
responding large-scale geostrophic velocity component, in balance with large-scale horizontal pressure gra-
dients, which may be imposed externally. The buoyancy

b5g
a s; qt; p0 x3ð Þ½ �2a0ðx3Þ

a0ðx3Þ
(3)

depends on the specific volume a5a s; qt; p0 x3ð Þ½ �, which, like other thermodynamic variables, is a function
of the state variables specific entropy s, total water specific humidity qt, and reference pressure p0 [Pauluis,
2008]. The tensor sij represents SGS stresses, which include surface stresses at the lower boundary. The term
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Ri is a momentum source that may represent, for example, externally imposed large-scale turbulent
stresses.

2.2. Continuity
The anelastic continuity equation takes the form

@q0ui

@xi
50: (4)

This continuity equation neglects fluctuations q0 of the density about the reference value q0ðx3Þ. It also
neglects changes in the mass of fluid elements resulting from the loss or gain of water, for example, by for-
mation or evaporation of precipitation. This is consistent as long as the material rate of change of total
water specific humidity qt is of similar magnitude or smaller than the material rate of change of the
neglected relative density fluctuations q0=q0. The relative density fluctuations q0=q0 are of order 1022 (corre-
sponding to temperature or virtual temperature fluctuations of several kelvin). By contrast, evaporation or
precipitation lead to material changes of qt through changes in the specific humidity qc of water in con-
densed phases, which is at most of order 1023 in Earth’s atmosphere. Therefore, neglecting mass changes
owing to evaporation or precipitation of condensate is usually an unproblematic approximation. Neglecting
the gain or loss of water in the continuity equation then remains generally justified provided any externally
imposed sources or sinks of water mass also remain small.

By neglecting the density fluctuations, the continuity equation (4) becomes a nondivergence constraint.
Time derivatives of density no longer appear in it, which is how sound waves are eliminated from the equa-
tions of motion: the speed of sound is effectively infinite. As a result, pressure variations that would usually
be communicated by sound waves are communicated instantaneously across the domain. The dynamic
pressure perturbation p0 therefore satisfies an elliptic diagnostic equation, which can be obtained by multi-
plying the momentum equation (2) by q0, taking the divergence, and using the anelastic continuity equa-
tion (4). This yields

@

@xi
q0
@a0p0

@xi
5

@

@xi
q0Ci; (5)

where Ci is the time tendency of velocity component ui owing to all factors other than pressure gradients,

Ci 52
1
q0

@ðq0uiujÞ
@xj

1bdi32�ijkdj3f uk2ug;k
� �

2
1
q0

@ðq0sijÞ
@xj

1Ri:

(6)

The advantage of using the anelastic equations is that sound waves are eliminated, making longer time
steps possible. The price to pay is that a nonlocal Poisson equation (5) must be solved at each time step to
obtain the dynamic pressure perturbation p0.

2.3. Entropy
The balance equation for the specific entropy s is

@s
@t

1
1
q0

@ðq0uisÞ
@xi

5
Q
T

1ðsv2sdÞ
dqv

dt

� �
e
2

1
q0

@ðq0cs;iÞ
@xi

1 _S: (7)

Here Q is a diabatic heating rate, for example, owing to radiative heating or to externally imposed sources
(e.g., convergence of large-scale dry enthalpy fluxes). Externally imposed water vapor sources or sinks (e.g.,
convergence or divergence of large-scale water vapor fluxes) also modify the entropy. The corresponding
source term is the product of the externally imposed tendency ðdqv=dtÞe of the water vapor specific humid-
ity qv and the difference sv2sd between the specific entropies of water vapor and dry air; the apparent
entropy sink 2sdðdqv=dtÞe arises because any imposed tendency ðdqv=dtÞe of the water vapor specific
humidity is compensated by a corresponding tendency of the mass fraction 12qt of dry air:
½dð12qtÞ=dt�e52ðdqv=dtÞe. The flux cs;i is the i-th component of the SGS flux of specific entropy, which at
the lower boundary includes surface fluxes. The term _S subsumes irreversible entropy sources, such as dissi-
pation of kinetic energy and diffusion of water by the SGS closure, evaporation or sublimation of
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precipitation, or autoconversion of suspended cloud condensate to precipitation. How such irreversible
processes contribute to the entropy source will be discussed in section 3.

In the absence of entropy sources and sinks, the anelastic equations conserve the integral
Ð

Vq0s dV over the
fluid volume V. Because the reference density q0 appears here in place of the density q as a result of the
approximation of the continuity equation (4), this is an approximation—the anelastic approximation—of
the second law of thermodynamics for the fluid as a whole. The entropy sources entering the second law
for the fluid as a whole are given by the q0-weighted integral of the right-hand side of the entropy equation
(7).

The continuous entropy equation (7) could equivalently be expressed in terms of an entropy temperature,
g / exp s, which, like the specific entropy s, is materially conserved in adiabatic and reversible processes
[e.g., Hauf and H€oller, 1987; Marquet, 2011]. This would have some advantages for calculating other ther-
modynamic variables; for example, temperature in the case of dry air becomes a linear function of the
entropy temperature (potential temperature) at fixed pressure. However, a disadvantage of using such an
entropy temperature is that it does not become a standard extensive thermodynamic variable when mul-
tiplied by density. It would be difficult to ensure that a discretized form of the entropy equation (7) with
an entropy temperature as a prognostic variable satisfies the second law of thermodynamics for the fluid
as a whole when entropy sources are nonzero. The same is true for approximations of the entropy tem-
perature such as the liquid water potential temperature or ice-liquid potential temperature, which have
been used in LES codes because, under certain approximations, they are also materially conserved in adi-
abatic and reversible processes [e.g., Betts, 1973; Deardorff, 1976; Tripoli and Cotton, 1981; Raymond and
Zeng, 2005; Savic-Jovcic and Stevens, 2008; Heus et al., 2010; Matheou et al., 2011; Marquet, 2011; Savre
et al., 2014]. Not only does using specific entropy itself make the approximations typically made in defin-
ing the potential temperatures unnecessary. Additionally, when multiplied by density it becomes the
standard entropy, an extensive variable, which facilitates satisfying integral conservation laws when the
equations are discretized.

2.4. Water
The anelastic equations for the moist air fluid (including the condensed phases of water in equilibrium) are
completed by the balance equation for the total water specific humidity qt,

@qt

@t
1

1
q0

@ðq0uiqtÞ
@xi

5
dqv

dt

� �
e
2

1
q0

@ðq0cq;iÞ
@xi

1E2P: (8)

Here ðdqv=dtÞe again is the tendency of the water vapor specific humidity qv owing to externally imposed
sources, and cq;i is the i-th component of the SGS flux of total water specific humidity, which includes sur-
face fluxes at the lower boundary. The term E represents all microphysical sources of total water specific
humidity qt owing to evaporation or sublimation of precipitation, and P represents the corresponding sinks
owing to the formation of precipitation.

Like for entropy and other tracers, the anelastic equations conserve the integral
Ð

Vq0qt dV in the absence of
water sources and sinks, which is an approximation of the conservation law for total water mass, in which
the density q would appear in place of the reference density q0.

If water out of local thermodynamic equilibrium is present in moist air (e.g., supersaturated water vapor in
the upper troposphere or supercooled liquid water in mixed-phase clouds), the partitioning of water into its
phases can no longer be uniquely determined from the specific entropy s, total water specific humidity qt,
and pressure p5p01p0. If such out-of-equilibrium water phases in the moist air (as opposed to in precipita-
tion) are to be modeled explicitly, the balance equation for total water can be replaced by separate balance
equations for specific humidities of the phases (e.g., qv, ql, and qi), with explicit conversion terms between
the phases. The thermodynamic formulation discussed in section 3 would have to be adjusted correspond-
ingly: the entropy functional would have to be modified, and a determination of the phase partitioning
would no longer be necessary. While this would allow a detailed treatment of nonequilibrium processes,
what would be lost are some of the advantages accruing from using a conservative variable such as total
water as a prognostic variable. Hence, here we focus on using total water as a prognostic variable, with heu-
ristic generalizations for mixed-phase clouds to be discussed in section 3. Extensions of PyCLES to explicit
modeling of nonequilibrium processes in moist air are left to future work.
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2.5. Precipitation
Precipitation generally is not in equilibrium with the surrounding air and so is not considered part of the
moist-air fluid whose dynamics are represented by the momentum, continuity, water, and thermodynamic
balance equations. It is treated separately from the equilibrium phases of water, which include the conden-
sate suspended in clouds. Precipitation encompasses all hydrometeors, be they rain, snow, or other species
such as graupel or hail. What species need to be considered depends on how the microphysical processes
involved in their formation are parameterized.

Each species of precipitation satisfies its own balance equation, which we write in the generic form

@qp

@t
1

1
q0

@ q0ðui2wpdi3Þqp
� �

@xi
52

1
q0

@ðq0cp;iÞ
@xi

1Hp; (9)

where qp is the specific humidity of the precipitation species p, and wp is its fall velocity (terminal
velocity). The flux cp;i is the i-th component of the SGS flux of the specific humidity qp. The sources
and sinks Hp of precipitation species p include conversion from and to other species, and formation
of precipitation, for example, by autoconversion of suspended equilibrium condensate to precipitating
condensate.

All precipitation ultimately originates with the cloud water that is in equilibrium with the surrounding
air. Therefore, conservation of water demands that the sum of all net sources of precipitation equals
the net sink of equilibrium water associated with the formation and the evaporation or sublimation
of precipitation: X

p

Hp5P2E: (10)

The precise forms of the source terms Hp and of the fall velocities wp depend on the microphysical parame-
terizations employed, which we leave open here. For example, the microphysical parameterizations can
model conversions between species of precipitation in a way that goes beyond the thermodynamics of the
moist-air fluid and the effects (discussed in section 3) that formation and evaporation or sublimation of pre-
cipitation has on it.

2.6. Scalar Transport Equation
For arbitrary other scalars / (e.g., chemical tracers), the transport equation takes the form

@/
@t

1
1
q0

@ðq0ui/Þ
@xi

52
1
q0

@ðq0c/;iÞ
@xi

1 _U (11)

where c/;i is the i-th component of the SGS scalar flux of /, and _U is a source of /.

2.7. Subgrid-Scale Closures
LES is based on the partitioning of the flow into the most energetic larger scales, which are resolved explic-
itly on the computational grid, and less energetic smaller scales, which are modeled through SGS closures
[e.g., Pope, 2004]. The resolved scales are more strongly affected by environmental conditions and are usu-
ally less isotropic than the unresolved subgrid scales, whose effect on the resolved scales one may expect
to be able to represent by universal closures.

Many closures for SGS fluxes take the form of turbulent diffusion down the gradients of the resolved varia-
bles. For example, the SGS stress tensor is often written as

sij522mtSij; (12)

where mt is an eddy viscosity and

Sij5
1
2

@uj

@xi
1
@ui

@xj

� �
(13)

is the strain rate tensor of the resolved velocities. Analogous formulations hold for scalars such as entropy
and total water specific humidity, with eddy diffusivities Dt in place of the eddy viscosity mt and resolved
tracer gradients in place of the strain-rate term 2Sij .
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As for all diffusive closures, this approach is justifiable if the variable to be diffused is approximately materi-
ally conserved, and if the SGS mixing lengths are small compared with the scale over which gradients of the
variable in question vary [e.g., Corrsin, 1974]. Because specific entropy and total water specific humidity are
materially conserved in adiabatic and reversible processes, even in the presence of phase changes of water,
they lend themselves better to universal SGS closures than, for example, thermodynamic variables such as
temperature or virtual potential temperature: Latent heat release in phase changes of water modifies the
temperature and virtual potential temperature, and phase changes can be triggered by SGS mixing, espe-
cially near cloud boundaries. Such latent heat release should be taken into account in SGS closures in mod-
els that use temperature or virtual potential temperature as prognostic variables. By contrast, specific
entropy and total water are conserved even in phase changes of water, as long as these remain reversible;
thus, they lend themselves more easily to SGS closures. SGS closures in LES that use prognostic variables
such as liquid water potential temperature or ice-liquid potential temperature have similar advantages [e.g.,
Betts, 1973; Deardorff, 1976; Tripoli and Cotton, 1981; Raymond and Zeng, 2005; Savic-Jovcic and Stevens,
2008; Heus et al., 2010; Matheou et al., 2011; Savre et al., 2014]. Using specific entropy and total water as
prognostic variables avoids making the approximations typically made in defining the potential
temperatures.

Several ways of specifying the eddy viscosity mt and the corresponding eddy diffusivities Dt for scalars are
implemented in PyCLES.
2.7.1. Smagorinsky-Lilly Closure
Smagorinsky [1958, 1963] and Lilly [1962] proposed an eddy viscosity mt for momentum of the form

mt5ðcSDÞ2fBjSj (14)

where cS is the nondimensional Smagorinsky coefficient (typical value cS50:17) and jSj5ð2SijSijÞ1=2 is the

magnitude of strain-rate tensor of the resolved velocities. The length scale D5 Dx1Dx2Dx3ð Þ1=3 is the geo-
metric mean of the grid spacings Dxi . In the case of stable stratification, the eddy viscosity is reduced by the
buoyancy factor [Lilly, 1962]

fB5

( 1 for N2 � 0;

max 0; 12N2=ðPrtjSj2Þ
h i1=2

for N2 > 0:
(15)

Here Prt is the turbulent Prandtl number (typical value Prt51=3), and N is a moist buoyancy frequency [Dur-
ran and Klemp, 1982], which takes the reduction of the buoyancy frequency in saturated air into account
and which is calculated with the density temperature described in section 3.4.

The corresponding eddy diffusivities Dt for other quantities are then found by invoking their relationship
implied by the assumed turbulent Prandtl number, Dt5mt=Prt . This gives SGS scalar fluxes of the form

c/;i52Dt
@/
@xi

; (16)

where / stands for any scalar quantity, such as entropy or total water specific humidity.
2.7.2. Turbulence Kinetic Energy Closure
In the turbulence kinetic energy (TKE) closure implemented in PyCLES, the SGS fluxes are likewise modeled
diffusively, but the eddy viscosity is determined by

mt5ck‘e1=2; (17)

where ck is an empirical coefficient (typical value ck50:1) [Moeng and Wyngaard, 1988]. The mixing length ‘
� D depends on the local stability [Deardorff, 1980],

‘5

( D for N2 � 0;

min cNðe=N2Þ1=2;D
h i

for N2 > 0;
(18)

where cN is an empirical constant (typical value cN50:76). The SGS TKE e is found from a prognostic second-
order equation in which third-order terms and dissipation are modeled semiempirically [e.g., Cotton et al.,
2011, chap. 3],
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@ðq0ui eÞ
@xi
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1
q0

@

@xi
2mtq0

@e
@xi

� �
1mtjSj22Dt N22ce

e3=2

‘
(19)

The terms on the right-hand side represent, respectively, the redistribution of TKE by SGS velocity and pres-
sure fluctuations, shear production of TKE, buoyancy production or destruction of TKE, and dissipation of
TKE. The empirical dissipation coefficient ce is given by

ce51:9ck1ð0:9321:9ckÞ
‘

D
: (20)

It takes the value ce50:93 for the typical choice ck50:1 in conditions of neutral or unstable stratification
(‘5D); it is lower in stable stratification (‘ < D).

The eddy diffusivity Dt is computed from the eddy viscosity mt using a stability-dependent turbulent Prandtl
number, as described by Deardorff [1980].

2.8. Boundary Conditions
The lower boundary is taken to be flat for now. Vertical momentum fluxes (surface stresses) at it are mod-
eled with a drag law

s1352CmUbub;1;

s2352CmUbub;2;

s3350;

(21)

where Ub5 u2
b;11u2

b;2

� 	1=2
is the horizontal wind speed at the lowest model level (indicated by a subscript

b). The drag coefficient Cm is determined from Monin-Obukhov similarity theory, as described in Byun
[1990]. It depends on the roughness length z0 for momentum exchange and on the local stability, measured
by the bulk Richardson number

Ri5
N2

bz2
b

U2
b

; (22)

where zb is the height of the lowest model level, and Nb is the buoyancy frequency obtained from the den-
sity potential temperature difference between the lowest model level and the ground. The surface stress
(21) provides the lower boundary condition for the SGS stress tensor sij. At the upper boundary, the surface
stresses are taken to vanish. However, a sponge layer may be included near the top of the domain, in which,
for example, velocity fluctuations about the domain mean are linearly damped toward the domain mean
through an appropriate momentum source Ri.

Similarly, for thermodynamic variables and tracers, the boundary conditions at the top are insulating and
impenetrable. If the thermodynamic fluxes at the lower boundary are obtained through coupling with a
water surface, they can likewise be modeled through exchange laws,

cq;352CqUb qt;b2q�v;g
� 	

; (23)

cs;352CsUb sb2s�g
� 	

; (24)

where cq;3 is the surface flux of specific humidity owing to evaporation, and cs;3 is the surface flux of specific
entropy. We take the exchange coefficients Cq and Cs to be equal, again determined from Monin-Obukhov
similarity theory, as described in Byun [1990]. The surface fluxes depend on the surface values of the satura-
tion specific humidity q�v;g and the saturation specific entropy s�g, where the subscript g indicates surface
(ground) quantities and the asterisk saturation values. The saturation specific entropy at the ground is the
sum of the dry-air and the water vapor components and can be expressed as

s�g5ð12q�v;gÞs�d;g1q�v;gs�v;g; (25)

where s�d;g5s�d;gðTgÞ is the specific entropy of the dry component of air that is saturated with water vapor at
the surface with temperature Tg, and s�v;g5s�v;gðTgÞ is the corresponding specific entropy of the water vapor
component, both to be discussed in greater detail in section 3. That is, a microscopic water vapor layer is
assumed to cover the surface and to be in thermodynamic equilibrium with it, so that qt;g5q�v;g. This layer
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acts as a source of water vapor to the above-lying atmosphere if the atmospheric specific humidity is lower;
if the atmospheric specific humidity is higher, condensation onto the ground (dew or frost) occurs. The
entropy flux at the surface includes contributions from a dry entropy flux and a water vapor flux. The result-
ing surface fluxes (23) and (24) provide the lower boundary conditions for the SGS fluxes cq;i and cs;i of total
water specific humidity and specific entropy. Over land surfaces, suitable generalizations of these exchange
laws, for example, with limited evaporation over dry surfaces, may be employed. (Note that the entropy
source resulting from formulating a surface exchange law that is linear in an entropy difference is not identi-
cal to the implied entropy source when exchange laws are formulated for dry enthalpy (sensible heat) and
water vapor separately, even if all exchange coefficients are equal. In the latter case, an irreversible entropy
source arises from the diffusion of sensible heat from the surface into the atmosphere [Raymond, 2013]. The
magnitude of this irreversible entropy source is typically �1% of the magnitude of the surface entropy
source. Similar comments apply to the SGS flux of specific entropy, which differs from the entropy
source associated with separate diffusion of dry enthalpy and water by an irreversible entropy source term.
The irreversible source terms ultimately arise because specific entropy is a nonlinear function of
temperature.)

In LES, the surface fluxes of water and entropy (or equivalent thermodynamic variables) are often pre-
scribed, instead of being determined from exchange laws that couple the atmosphere to an underlying sur-
face reservoir. For example, the surface flux of specific entropy cs;3 can be related to the commonly
prescribed surface sensible heat flux FT and latent heat flux Fq per unit area through [cf. Raymond, 2013]

cs;35
1

q0;b

FT

Tb
1

Fq

Lv
sv;b2sd;b
� �
 �

: (26)

The first term represents the entropy source owing to deposition of the sensible heat flux FT in the lowest
model level with temperature Tb, and the second the specific entropy source owing to the addition of
water vapor with specific entropy sv;b to the lowest model level. As for the externally imposed water vapor
source in the entropy equation (7), an apparent dry entropy sink proportional to sd;b arises because any
increase in specific humidity qt is compensated by a corresponding decrease in dry air mass fraction
12qt .

3. Moist Thermodynamics

Moist thermodynamics with total water and entropy as prognostic variables poses special challenges. For
example, temperature and the phase partitioning of water need to be calculated diagnostically to deter-
mine the buoyancy or to model microphysical processes in clouds, and entropy sources and sinks need to
be specified. Moreover, situations when local thermodynamic equilibrium may not apply, such as may occur
in mixed-phase clouds, need to be considered. The groundwork for such a moist thermodynamics has been
laid, among others, by Ooyama [1990, 2001] and Raymond [2013]. Here we develop it further into a coher-
ent framework consistent with the anelastic equations of motion we use, with heuristic generalizations for
mixed-phase clouds.

3.1. Specific Humidities and Entropies
The moist-air fluid is an ideal mixture of dry air, water vapor, liquid water, and ice, all assumed to be in local
thermodynamic equilibrium. That is, the total water specific humidity qt is the sum of the specific humidities
of water vapor (qv), liquid water (ql), and ice (qi), so that

qt5qv1ql1qi : (27)

We can define a mass fraction qd of the dry-air component analogously to the specific humidities by

qd512qt: (28)

The composition of a moist air mass is uniquely characterized by the mass fractions qd, qv, ql, and qi of its
mixture components.

The specific entropy of moist air is the weighted sum of the entropies of the mixture components,
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s5 qd sd1qv sv1qlsl1qi si

5 ð12qtÞsd1qt sv2ql sv2slð Þ2qi sv2sið Þ;
(29)

where sd, sv, sl, and si are the specific entropies of dry air, water vapor, liquid water, and ice. We take the gas-
eous components (dry air and water vapor) to be ideal gases, so that their specific entropies can be written
as

sd5~sd1cpd log
T
~T

� �
2Rd log

pd

~p

� �
; (30a)

sv5~sv1cpv log
T
~T

� �
2Rv log

pv

~p

� �
; (30b)

where pd and pv are the partial pressures of dry air and water vapor, cpd and cpv are the specific heat capaci-
ties at constant pressure, and Rd and Rv are the specific gas constants. Tildes indicate constants under ther-
modynamic standard conditions, which we choose to be the standard conditions conventional in
chemistry, with ~T 5298:15 K and ~p51000 hPa. The specific heat capacities cpd and cpv vary by less than 1%
over typical atmospheric conditions, and we take them to be constant, as is common practice. The thermo-
dynamic constants used in PyCLES are listed in Table 1.

Using the ideal-gas law, we can express the partial pressures pd and pv in the gas-phase specific entropies
(30) in terms of given specific humidities qt and qv and pressure p0 as

pd5p0
12qt

12qt1e21
v qv

; (31a)

pv5p0
e21

v qv

12qt1e21
v qv

; (31b)

where ev5Rd=Rv is the ratio of the specific gas constants for dry air and water vapor, or the inverse ratio of
their mean molecular weights [Emanuel, 1994, chap. 4]. Here we have used qd512qt and have neglected
the specific volume (but not the mass) of the condensed phases relative to the gas phases; we have also
replaced the pressure p by the reference pressure p0ðx3Þ for consistency with the thermodynamics of the
anelastic approximation [Pauluis, 2008]. Given the thermodynamic state variables qt and p0 and once the
water vapor specific humidity qv and temperature T are known, the partial pressures (31) and with them the
gas-phase specific entropies (30) can be calculated.

Various choices are possible for defining the specific entropies of the condensed phases. They may be
approximated as explicit functions of temperature. For example, sl / cl log ðT=~T Þ (specific heat of liquid
water cl) would be an approximation for the entropy of a liquid that ignores effects of surface tension [e.g.,
Raymond, 2013]. Or they may be defined relative to the gas phase specific entropies, using the relations
between specific entropy differences and the specific latent heats of phase changes. For example, at ther-
modynamic equilibrium, when the temperatures and chemical potentials of water vapor and any con-
densed water are equal, we have

Table 1. Thermodynamic Constants Used in PyCLESa

Parameter Value

Gas constant, dry air Rd5287:1 J kg21 K21

Gas constant, water vapor Rv5461:5 J kg21 K21

Specific heat, dry air cpd51004 J kg21 K21

Specific heat, water vapor cpv51859 J kg21 K21

Temperature freezing point Tf 5273:15 K
Temperature triple point Tt5273:16 K
Standard temperature ~T 5298:15 K
Standard pressure ~p5105 Pa
Vapor pressure triple point p�;tv 5611:7 Pa
Standard entropy, dry air ~sd56864:8 J kg21 K21

Standard entropy, water vapor ~sv 510513:6 J kg21 K21

aThe standard entropy value for dry air is computed based on the reference data given in Lemmon et al. [2000], and the standard
entropy value for water vapor is based on the reference data given in Chase [1998].
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sv2sl 5 Lv=T ;

sv2si 5 Ls=T ;
(32)

where Lv and Ls are the specific latent heats of vaporization and sublimation, respectively. We choose
this latter route, as it allows us to use empirical approximations for the temperature dependence of the
latent heats Lv and Ls in a thermodynamically consistent manner. Therefore, we take Lv5LvðTÞ and Ls5Ls

ðTÞ as given, leaving their functional forms unspecified for now, and define the specific entropy differen-
ces between water vapor and the condensed phases through the relations (32). The total specific
entropy (29) of moist air in thermodynamic equilibrium then becomes [e.g., Marquet, 2011; Raymond,
2013]

s5ð12qtÞsd1qt sv2
ql Lv1qiLs

T
: (33)

It is to be kept in mind that this expression for the specific entropy holds only in local thermodynamic equi-
librium, that is, either when the air is unsaturated and no condensed phase is present, or when water vapor
is at saturation relative to any condensed phase that is present.

3.2. Temperature and Water Phase Partitioning
From the thermodynamic state variables s, qt, and p0, all other thermodynamic variables, such as the tem-
perature and the phase partitioning of water, can be computed.

To calculate the temperature T and the partial specific humidities qv, ql, and qi, one has to invert the
expression for the specific entropy (33) subject to the local thermodynamic equilibrium constraint, which
fixes the partitioning of water into its phases. This proceeds in two steps [cf. Ooyama, 1990, 2001]. First,
the temperature T 5 T1 that corresponds to unsaturated conditions, without any condensate, is calcu-
lated. Second, if that temperature T1 implies supersaturation, it and the water phase partitioning are itera-
tively adjusted until expression (33) is satisfied for the given specific entropy s and total specific humidity
qt5qv1ql1qi .

The first step exploits that in unsaturated conditions, local thermodynamic equilibrium demands
ql5qi50, so that qv 5 qt. Therefore, the terms involving ql and qi in the specific entropy (33) drop out, the
temperature T appears only in the logarithms in the gas-phase entropies (30), and the temperature T1 can
be directly calculated from the given specific entropy s and total water specific humidity qt 5 qv by expo-
nentiating the expression (33) for the specific entropy, using expressions (30) for the gas phase specific
entropies and the relations (31) between the partial pressures and the given total specific humidity
qt 5 qv.

The second step is only needed if the specific humidity qt exceeds the saturation specific humidity q�vðT1Þ.
For now, we assume that heterogenous nucleation of ice crystals occurs at temperatures below the freezing
point Tf and no supercooled liquid water is present, so that the saturation specific humidity q�vðTÞ is the sat-
uration specific humidity q�;lv over liquid water above the freezing point, and the saturation specific humid-
ity q�;iv over ice below it,

q�vðTÞ5
(

q�;lv for T > Tf ;

q�;iv for T � Tf :
(34)

If there is supersaturation, the temperature T is iteratively adjusted while keeping the specific humidity at
saturation, qv5q�vðTÞ. Any saturation excess,

r5ðqt2q�vÞHðqt2q�vÞ; (35)

is apportioned to the relevant specific humidity ql (for T > Tf ) or qi (for T � Tf ), until expression (33) is satis-
fied. Here H is the Heaviside step function, which is included to ensure that the saturation excess r is posi-
tive semidefinite.

The needed saturation specific humidities over liquid and ice are obtained from the Clausius-Clapeyron rela-
tions that are consistent with the latent heats of vaporization and sublimation,
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dlog ðp�;lv Þ
dT

5
Lv

Rv T 2
;

dlog ðp�;iv Þ
dT

5
Ls

Rv T 2
:

(36)

Here p�;lv is the saturation vapor pressure over liquid water, and p�;iv is that over ice. These forms of the
Clausius-Clapeyron relation neglect the specific volume of the condensed phases relative to that of the
vapor, as is common; they make no other approximations beyond those we have already made in the ther-
modynamics. Given the latent heats LvðTÞ and LsðTÞ, the saturation vapor pressures can be computed by
integrating the Clausius-Clapeyron relations, with the vapor pressure p�;lv ðTtÞ5p�;iv ðTtÞ5p�;tv at the triple point
temperature Tt of water as the integration constant (see Table 1). The corresponding saturation specific
humidities q�v are obtained using the inverse of the relation (31b) between vapor pressure pv and specific
humidities,

q�v5
evð12qtÞp�v

p02p�v
; (37)

where p�v is the saturation vapor pressure over liquid water for T > Tf , or that over ice for T � Tf . Standard
relations between vapor pressure and specific humidity equate qt and q�v and therefore differ slightly from
(37) [cf. Emanuel, 1994, chap. 4]. Consistent with using the total specific humidity qt as a prognostic variable,
relation (37) takes qt and by implication the dry air fraction 12qt as given, which is justifiable as long as the
air is saturated, so that the contribution of the water vapor to the total specific humidity qt is the saturation
specific humidity q�v . Equation (37) is needed only in that case, for the computation of the saturation excess r.

3.3. Generalizations for Mixed-Phase Clouds
In mixed-phase clouds, metastable supercooled liquid water can coexist with ice at temperatures below the
freezing point Tf. The supercooled liquid water freezes spontaneously below the homogeneous nucleation
temperature Ti � 233 K. At temperatures between Ti and Tf, water vapor and the mixture of supercooled liq-
uid and ice are not in local thermodynamic equilibrium. For example, the ice-liquid partitioning in a fluid
element does not depend on thermodynamic state variables alone, but also on the history of the fluid ele-
ment (e.g., supercooled liquid can freeze spontaneously when a fluid element cools, but it does not form
spontaneously when it warms). Therefore, the local thermodynamic equilibrium assumption strictly cannot
be made for supercooled liquid in mixed-phase clouds, and it would be more accurate, for example, to
introduce separate balance equations for the individual phases of water, with explicit transitions between
them (see section 2.4).

Nonetheless, one can represent supercooled liquid water at temperatures between Ti and Tf in an equilib-
rium framework heuristically, by introducing an empirical phase partitioning function kðTÞ that increases
monotonically with temperature and indicates what proportion of the condensed water is in the liquid
phase. That is, any saturation excess r > 0 is apportioned into ice and liquid according to [e.g., Squires and
Turner, 1962; Lord et al., 1984; Tao et al., 1989]

ql 5 kðTÞr;

qi 5 12kðTÞ½ �r;
(38)

where

kðTÞ5

(
0 for T < Ti;

kðTÞ; 0 � kðTÞ � 1 for Ti � T � Tf ;

1 for Tf < T

(39)

is the liquid fraction. Such an empirical phase partitioning that only depends on temperature ignores, e.g.,
the history of fluid elements. It effectively treats freezing of supercooled liquid as a reversible phase trans-
formation, which in reality it is not.

To make a temperature-dependent phase partitioning of the condensed phases thermodynamically consist-
ent, a saturation specific humidity q�v over the ice-liquid mixture in the intermediate temperature range Ti
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� T � Tf needs to be defined, so that the saturation excess (35) is thermodynamically consistent with the
partitioning. With the phase partitioning (38), the expression (33) for the specific entropy can be rewritten
as

s5ð12qtÞsd1qt sv2
rL
T
; (40)

where

L5kLv1ð12kÞLs (41)

is an effective specific latent heat, which can be related to the difference between the water vapor specific
entropy sv and an effective condensate specific entropy ksl1ð12kÞsi analogously to equation (32):

L=T5sv2 ksl1ð12kÞsi½ �: (42)

For thermodynamic consistency, the same entropy difference or latent heat needs to appear in the
Clausius-Clapeyron relation, which therefore becomes

dlog ðp�vÞ
dT

5
L

Rv T 2
: (43)

Integration of this Clausius-Clapeyron relation gives the saturation vapor pressure p�v , from which the satura-
tion specific humidity q�v can be computed via equation (37). In the special case of Ti 5 Tf, the phase parti-
tioning function kðTÞ becomes a step function, and the relations (38)–(43) reduce to the case of pure liquid
or pure ice clouds.

For general phase partitioning functions kðTÞ, neither the saturation vapor pressure p�v nor the satu-
ration specific humidity q�v are simple weighted means of the corresponding quantities over liquid
water and ice, as they are in some other ways of treating mixed-phase clouds [e.g., Grabowski, 1998;
Khairoutdinov and Randall, 2003]. Rather, the effective latent heat L is such a weighted mean, and
the saturation vapor pressure and saturation specific humidity need to be computed consistently
with it, to account for the implied entropy difference between water vapor and the effective con-
densate. This implies in particular that even at temperatures T < Ti , the saturation vapor pressure
over ice is modified because it needs to be computed by an integration of the Clausius-Clapeyron
relation (43) across the intermediate temperature range Ti � T � Tf with effective latent heat L [cf.
Ooyama, 1990]. For example, for a phase partitioning function with all liquid (k 5 1) above Tf 525

�
C,

all ice (k 5 0) below Ti5220
�
C, and a linearly varying k at temperatures in between [cf. Grabowski,

1998], the saturation vapor pressure p�v at low temperatures T < Ti is about 13% higher than the
actual saturation vapor pressure over ice. This bias of the saturation vapor pressure at low tempera-
tures is an unrealistic aspect of this formulation. It arises from heuristically forcing nonequilibrium
processes into a thermodynamic equilibrium framework.

Appendix A outlines a general saturation adjustment scheme that uses the secant method to determine the
temperature T and the specific humidities qv, ql, and qi that are consistent with a given specific entropy s
and total water specific humidity qt and with given functions kðTÞ; LvðTÞ, and LsðTÞ. This scheme, along
with several common choices for the temperature dependence of the latent heats of vaporization LvðTÞ
and sublimation LsðTÞ and for the liquid fraction kðTÞ, are implemented in PyCLES. PyCLES precomputes the
saturation vapor pressure p�v by integration of the Clausius-Clapeyron relations (43) for the given functions
kðTÞ; LvðTÞ, and LsðTÞ, and uses linear interpolation in look-up tables to determine the saturation vapor
pressure at LES runtime.

3.4. Specific Volume and Density Temperature
Once the temperature and the water phase partitioning are known, the specific volume on which the buoy-
ancy depends can be calculated. We again neglect the specific volume of the condensed phases relative to
that of the gas phases, as we already did in the relations (31) between partial pressures and specific humid-
ities and in the Clausius-Clapeyron relations (36) and (43); however, we do take the effect of condensate
mass on the specific volume into account [cf. Emanuel, 1994, chap. 4]. Using the ideal-gas law, the specific
volume then becomes
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a5
ðqd Rd1qv RvÞT

p0
5

RdT
p0
ð12qt1e21

v qvÞ; (44)

where, again, the reference pressure p0ðx3Þ was substituted for the pressure p for consistency with the ane-
lastic approximation. That is, as is well known, the presence of water vapor increases the specific volume
and hence the buoyancy of fluid elements (because 12qt1e21

v qv5ðe21
v 21Þqv2ql2qi and

e21
v 21 � 0:61 > 0); by contrast, the presence of condensate (ql > 0 or qi > 0) reduces the specific volume

and buoyancy of fluid elements. Since the total water specific humidity qt includes only water phases in
thermodynamic equilibrium, the effect of precipitation on the buoyancy is not included. However, the ther-
modynamic effects of precipitation formation and evaporation/sublimation on the buoyancy, which are
generally more significant [e.g., Cotton et al., 2011, chap. 7], are accounted for through the entropy sources
described in section 3.6.1.

The density temperature and potential temperature that take the density effects of water vapor and con-
densate into account can be defined in the usual way [Emanuel, 1994], as

Tq5Tð12qt1e21
v qvÞ (45)

and

hq5Tq
~p

p0ðx3Þ

� �j

; (46)

with adiabatic exponent j5Rd=cpd (i.e., ignoring the small effect of water loading on the adiabatic exponent
of moist air). From these, the buoyancy frequencies required by the SGS closures can be calculated [Durran
and Klemp, 1982].

Because the temperature, phase partitioning, and derived thermodynamic variables such as the specific vol-
ume depend nonlinearly on the prognostic state variables specific entropy s and total water specific humid-
ity qt, SGS fluctuations in the prognostic state variables can have a nonzero mean effect on the grid-scale
temperature, phase partitioning, etc. That is, SGS fluctuations can lead to deviations from local thermody-
namic equilibrium on the grid scale of the LES. Therefore, just like the nonlinear terms in the prognostic
equations, the nonlinear aspects of the thermodynamics require a SGS closure. This can be accomplished
by assuming a probability density function (e.g., Gaussian) for the SGS fluctuations of the prognostic varia-
bles, and using the assumed probability density function to calculate the mean effect of the SGS fluctua-
tions on grid-scale variables [e.g., Sommeria and Deardorff, 1977; Larson et al., 2001; Tompkins, 2002; Cotton
et al., 2011]. Adaptation of such a procedure to our context will be described in a forthcoming publication.

3.5. Entropy Temperature
Because it is common in the atmospheric sciences to express entropies in units of temperature, one may
define an entropy temperature that reduces to the standard dry potential temperature in the absence of
water and is materially conserved to the extent specific entropy and total water specific humidity are simul-
taneously conserved. Various choices of such entropy temperatures are available [e.g., Hauf and H€oller,
1987; Romps and Kuang, 2010; Marquet, 2011]. A simple choice, in its essence proposed by Marquet [1993],
is

hs5~T exp
s2ð12qtÞ~sd2qt~sv

cpm

� �
; (47)

where cpm5ð12qtÞcpd1qt cpv is the specific heat of moist air at constant pressure. It is clear that this entropy
temperature is materially conserved if s and qt are: all other quantities in (47) are constants. From the defini-
tion of specific entropy (29)–(33), it can be seen that the entropy temperature hs is related to the tempera-
ture T and other thermodynamic variables through

hs5T
~p

pd

� �ð12qtÞRd=cpm ~p
pv

� �qt Rv=cpm

exp 2
Lr

cpmT

� �
: (48)

For dry air (qt 5 0, cpm 5 cpd, pd5p0ðx3Þ), this reduces to the standard dry potential temperature with refer-
ence pressure ~p. For small total water specific humidity qt, it has the same conservation properties as the
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ice-liquid water potential temperature of Tripoli and Cotton [1981], in the sense that both are materially con-
served in reversible processes if qt is conserved. We use this entropy temperature to illustrate the results of
the numerical test cases in section 5.

3.6. Irreversible Entropy Sources
The irreversible entropy source _S consists of several parts, associated with precipitation processes and SGS
dynamics. Raymond [2013] discusses these entropy sources in detail, for equations of motion that use dry
air as the fluid, with mixing ratios as moisture variables. We draw on his work in what follows and adapt it
to our setting, which uses moist air as the fluid, with specific humidities as moisture variables. This leads to
some differences in the entropy source _S, principally because of the relation qd512qt between dry air
mass fraction qd and total water specific humidity qt: Changes in qt imply compensating changes in qd,
which lead to apparent sinks of dry entropy sd that do not occur when dry air is taken to be the fluid.
3.6.1. Precipitation Processes
Precipitation processes give rise to entropy sources and sinks for the moist-air fluid, for example, when pre-
cipitation forms, when hydrometeors evaporate or sublimate, or when heat is transferred from the air to
precipitating hydrometeors.

1. When precipitation forms, the air loses water at the precipitation formation rate P52ðdqt=dtÞP > 0. We
assume that the associated entropy changes are only due to the mass transfer out of the fluid of con-
densed water with specific entropy sc5s�v2LðTÞ=T , i.e., we assume local thermodynamic equilibrium for
the condensate from which the precipitation forms. Then, differentiation of the specific humidities in the
specific entropy (40) and using P52ðdqt=dtÞP52ðdqc=dtÞP5ðdqd=dtÞP , where qc is the specific humidity
of the condensate that becomes precipitation, yields the entropy source

_SP5 sdðTÞ2s�vðTÞ1
LðTÞ

T

� �
P: (49)

The first term is the apparent entropy source owing to the changes in qd that compensate the changes
in qt. The second and third term can be interpreted as the entropy sink owing to the loss of water vapor
at saturation from the fluid (2s�v P < 0), and the entropy source owing to latent heat release during con-
densation or deposition of that water vapor (LP=T > 0).

2. Conversely, when precipitating hydrometeors evaporate or sublimate, the air gains water at the evapora-
tion/sublimation rate E5 dqt=dtð ÞE > 0. The precipitating condensate is not in equilibrium with the sur-
rounding air at temperature T; instead, its temperature can be approximated by the wet-bulb
temperature Tw � T (with equality at saturation). The specific entropy of the precipitation can therefore
be approximated as sp5s�vðTwÞ2LðTwÞ=Tw , which assumes that the hydrometeors are in equilibrium with
an adjacent microscopic layer that is saturated with water vapor at the wet-bulb temperature. Thus, the
entropy source owing to the mass transfer into the fluid associated with the evaporation/sublimation of
hydrometeors is

SE5 s�vðTwÞ2
LðTwÞ

Tw
2sdðTÞ

� �
E; (50)

where the term 2sdðTÞE represents the apparent entropy sink arising because ðdqd=dtÞE52E.

3. From the saturated microscopic layer adjacent to evaporating/sublimating hydrometeors, water vapor
diffuses into the surrounding air, and heat is conducted from the surrounding air toward the hydrome-
teors to balance their cooling by evaporation/sublimation. Raymond [2013] showed that both processes
combined give rise to a diffusive entropy source

SD5E 2Rv log
pv

p�vðTÞ

� �
1cpv log

T
Tw

� �
 �
; (51)

which is positive semidefinite because pv � p�vðTÞ and Tw � T .

4. As hydrometeors fall into warmer air, heat is transferred from the surrounding air to the hydrometeors to
keep them at the wet-bulb temperature Tw and, if falling ice melts at or near the freezing level, to supply
the latent heat of fusion (assumed to be transferred instantaneously). This results in a (usually negative)
heat source for the moist-air fluid,

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000496

PRESSEL ET AL. LARGE-EDDY SIMULATION FRAMEWORK 1439



Qp5qpðu32wpÞ 2cc
@Tw

@x3
1Lf dðx32zf Þ


 �
(52)

where cc is the specific heat of the falling precipitation species, Lf is the specific latent heat of fusion, dð�Þ is
the Dirac delta function, and zf is the freezing level where Tw 5 Tf. This assumes that the freezing level is
well defined, that is, ice and liquid water do not coexist over a wider temperature range. The heat source
acts on the surrounding air at temperature T, so that the associated entropy source is

_SQ5
Qp

T
: (53)

(Raymond [2013] uses the wet-bulb temperature Tw instead of the local air temperature T in the source term
(53), which corresponds to assuming that the heat is transferred at the wet bulb temperature to a microscopic
vapor layer surrounding and in equilibrium with a hydrometeor. A separate diffusive entropy generation term
owing to diffusion from this microscopic layer to the surrounding air would then have to be included.)

5. The gravitational acceleration of hydrometeors that fall at their terminal velocity is balanced by the aero-
dynamic drag on them, and the drag implies frictional dissipation of kinetic energy in the microscopic
shear zones surrounding the hydrometeors [Pauluis et al., 2000; Pauluis and Held, 2002a,b]. This implies a
heat and thus an entropy source for the surrounding air, which can be written as

_SW 5
gqpwp

T
: (54)

3.6.2. SGS Dynamics
The representation of SGS dynamics in LES also gives rise to entropy sources:

1. The SGS stresses imply dissipation of kinetic energy, which is converted into heat and implies an entropy
source

_Ss5
mtjSj2

T
(55)

for eddy viscosity closures of the form (12).

2. The SGS diffusion of water implies a material tendency dqt=dt of total water specific humidity and a com-
pensating material tendency 2dqd=dt of dry-air mass fraction, associated with an entropy source that is
analogous to other entropy sources associated with specific humidity changes:

_Sc52
sw2sd

q0

@ðq0cq;iÞ
@xi

: (56)

Here sw5sv2ðr=qtÞL=T is the specific entropy of the water component of the moist air, including vapor and
condensate representing a fraction r=qt of the total water mass.

Each of these entropy sources is discussed in greater detail in Raymond [2013]. The total irreversible entropy
source is the sum of the sources (49)–(56) and is taken into account in PyCLES. In models with SGS diffusion
of dry enthalpy, an additional irreversible entropy source would appear (see note after equation (25)). But it
does not appear here because dry enthalpy does not diffuse separately from entropy, and we ignore molec-
ular diffusion and conduction.

4. Numerical Approximations

We seek a discrete approximation of the prognostic equations that conserves first moments (e.g., total water,
entropy) to the same degree the continuous anelastic equations do and is accurate at high order. We consider
the domain x5ðx1; x2; x3Þ 2 ½X1;l; X1;r �3½X2;l; X2;r �3½X3;l; X3;r �. Defining superscript indices i, j, k such that
0 � i � Nx1 ; 0 � j � Nx2 ; 0 � k � Nx3 , we construct uniformly spaced coordinate grid points

xi
15iDx1; xj

25jDx2, and xk
35kDx3, as well as coordinate-grid half points x

i11
2

1 5iDx110:5Dx1; x
j11

2
2 5jDx210:5Dx2,

and x
k11

2
3 5kDx310:5Dx3. The domain is partitioned into a collection of grid cells Ci;j;k5 xi

1; xi11
1

� �
3 xj

2; xj11
2

h 	
3

xk
3; xk11

3

� �
that are centered on the half points xi11=2

1 ; xj11=2
2 ; xk11=2

3

� 	
.
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The discrete equations are solved on a staggered grid to avoid the pressure-velocity decoupling that arises
when one discretizes the anelastic continuity equation on a collocated grid. In the staggered-grid arrange-

ment, the prognostic scalar variables are located at the centers of the grid cells Ci;j;k , and the velocity com-
ponents are located at the centers of the grid cell faces. In particular, the u1 velocity component is located

at xi
1; xj11=2

2 ; xk11=2
3

� 	
, the u2 velocity component at xi11=2

1 ; xj
2; xk11=2

3

� 	
, and the u3 velocity component at

xi11=2
1 ; xj11=2

2 ; xk
3

� 	
. This grid configuration is known as the Arakawa-C grid [Arakawa and Lamb, 1977].

The prognostic equations for momentum and scalar variables can be written in semidiscrete form with
respect to each grid cell Ci;j;k in terms of the state vector

Ti;j;k5

u
i;j11

2;k11
2

1

u
i11

2;j;k11
2

2

u
i11

2;j1
1
2;k

3

/i11
2;j1

1
2;k11

2

2
66666664

3
77777775
; (57)

with scalar prognostic variables represented by / 2 fs; qp; qtg, a reference density vector

q0
i;j;k5

q
k11

2
0

q
k11

2
0

qk
0

q
k11

2
0

2
66666664

3
77777775
; (58)

and a source vector containing all nonpressure and nontransport terms

_T
i;j;k

5

_u
i;j11

2;k11
2

1

_u
i11

2;j;k11
2

2

_u
i11

2;j1
1
2;k

3

_/
i11

2;j1
1
2;k11

2

2
66666664

3
77777775
: (59)

In terms of these quantities, the prognostic equations become

dT
dti;j;k

5 2
1

q0
i;j;k

Ui;j;k2Ui21;j;k

Dx1
2

1
q0

i;j;k

Vi;j;k2Vi;j21;k

Dx2

2
1

q0
i;j;k

Wi;j;k2Wi;j;k21

Dx3
1 _T

i;j;k
:

(60)

The first three terms on the right-hand side denote the divergence of the combined advective and SGS
fluxes in the x1, x2, and x3 directions. They are given by

Ui;j;k 5

ðq0~u1~u11q0~s11Þi1
1
2;j1

1
2;k11

2

ðq0~u1~u21q0~s21Þi11;j;k11
2

ðq0~u1~u31q0~s31Þi11;j11
2;k

ðq0u1
~/1q0~c/;1Þi11;j11

2;k11
2

2
6666664

3
7777775
; (61)

Vi;j;k 5

ðq0~u2~u11q0~s12Þi;j11;k11
2

ðq0~u2~u21q0~s22Þi1
1
2;j1

1
2;k11

2

ðq0~u2~u31q0~s32Þi1
1
2;j11;k

ðq0u2
~/1q0~c/;2Þi1

1
2;j11;k11

2

2
6666664

3
7777775
; (62)
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Wi;j;k 5

ðq0~u3~u11q0~s13Þi;j1
1
2;k11

ðq0~u3~u21q0~s23Þi1
1
2;j;k11

ðq0~u3~u31q0~s33Þi1
1
2;j1

1
2;k11

2

ðq0u3
~/1q0~c/;3Þi1

1
2;j1

1
2;k11

2
6666664

3
7777775
: (63)

The staggered variable arrangement prevents direct computation of the advective fluxes, which instead must
be reconstructed by interpolation. The form of the reconstruction required depends on whether the advected
variable is a scalar quantity or a momentum component. Scalar fluxes are computed at the location of the
advecting velocities, so that no reconstruction of the velocity field is necessary. However, for the momentum
fluxes, both the momentum component and the advecting velocity need to be reconstructed. The terms
requiring reconstruction are marked by tildes ð~�Þ in the fluxes (61)–(63). The reference density q0 can be deter-
mined to arbitrary precision at initialization; it is horizontally homogeneous and fixed in time. Therefore, the
value of the reference density is assumed to be known everywhere; no reconstruction is needed.

4.1. Transport Schemes
Numerical properties of the transport schemes can be varied by modifying the way in which reconstruc-
tions are performed. To simplify the discussion, we will explicitly consider the approximation of only two of
the fluxes appearing in (61)–(63), namely,

ðq0u1
~/Þi11

5ðq0u1
~/Þi11;j11

2;k11
2 (64)

and

q0~u1~u1ð Þi1
1
25 q0~u1~u1ð Þi1

1
2;j1

1
2;k11

2; (65)

where we suppressed the j and k grid indices, which remain unchanged throughout the following discus-
sion. The computation of all other fluxes proceeds analogously to these two.

Because / is located at the x
i11

2
1 grid half point, reconstruction is required to compute its flux at xi11

1 . Like-
wise, since u1 is located at the xi

1 grid point, reconstruction must be performed to obtain its flux at x
i11

2
1 . The

numerical schemes we consider are based on polynomial interpolations to reconstruct these values.

An interpolation of / at xi11
1 to r-th order accuracy requires knowledge of / at r other spatial locations. For

r 	 2, there are r candidate interpolation stencils that contain the point xi11
1 . We define two collections of

such stencils, for an interpolation of r-th order at a spatial location xi11
1 . One is upwind biased for positive

advecting velocities u1,

Sr;1
k� ðx

i11
1 Þ5 x

i13
22r1k�

1 ; . . . ; x
i11

21k�

1

n o
: (66)

The other is upwind biased for negative advecting velocities u1,

Sr;2
k� ðx

i11
1 Þ5 x

i13
22k�

1 ; . . . ; x
i11

21r2k�

1

n o
: (67)

Here k�50; 1; . . . ; r21 denotes the shift of the stencil relative to the grid index under consideration (not to
be confused with the grid index k in the x3 direction), and superscripts 1 and – are used to denote upwind
biasing for positive and negative advecting velocities, respectively. Analogous positively and negatively
biased collections of stencils can be defined for the interpolation of u1 to x

i11
2

1 . The upwind biased stencil for
positive velocities u1 is

Sr;1
k� ðx

i11
2

1 Þ5fxi112r1k�
1 ; . . . ; xi1k�

1 g; (68)

and the upwind biased stencil for negative velocities u1 is

Sr;2
k� ðx

i11
2

1 Þ5fxi112k�
1 ; . . . ; xi1r2k�

1 g: (69)

For conciseness, we focus on the reconstruction from the upwind biased stencils for positive velocities. The
reconstruction from the upwind biased stencils for negative velocities follows analogously, given that the
reconstruction is symmetric about the reconstruction point.
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For each candidate stencil, polynomial reconstructions of order r for scalars and velocities can be expressed as

~/
i11;1

5qr;1
k� /i13

22r1k� ; . . . ;/i11
21k�

� 	
(70)

and

~u
i11

2;1
1 5qr;1

k� ui112r1k�
1 ; . . . ; ui1k�

1

� �
; (71)

where

qr;1
k� g0; . . . ; gr21ð Þ5

Xr21

l50

gla
r
k�;l (72)

is the k�-th Lagrange interpolating polynomial with

ar
k�;l5

Xr

m5l11

Xr

j?50;j? 6¼m

Yr

q50;q 6¼m;j?
r2k�2qð Þ

Yr

j?50;j? 6¼m

m2j?ð Þ
; (73)

as described in Shu [1998]. (The Lagrange interpolating polynomial qr;1
k? should not be confused with spe-

cific humidities such as qt.)

Various numerical approximations can be formed based on these interpolations. For example, using an
even-order accuracy interpolation with stencils centered on the reconstruction location provides a centered
approximation to the flux divergences (60). Convex combinations of interpolating polynomials serve as the
basis for WENO schemes.
4.1.1. Centered Schemes
4.1.1.1. Second-Order Schemes
A second-order centered approximation to the scalar advective flux is obtained by using the reconstruction
(70) with r 5 2 and k�51, leading to the scalar

~/
i11

5
1
2

/i11
21/i13

2

� 	
: (74)

With the advecting velocity ui11
1 , the advective flux is given by

ðq0u1
~/Þi11

5
q0ui11

1

2
/i11

21/i13
2

� 	
: (75)

The corresponding second-order centered approximation to the momentum flux is obtained by using the
reconstruction (71) with r 5 2 and k�51, leading to the velocity

~u
i11

2
1 5

1
2

ui
11ui11

1

� �
(76)

and advective momentum flux

q0~u1~u1ð Þi1
1
25

q0

4
ui

11ui11
1

� �
ui

11ui11
1

� �
: (77)

This second-order centered scheme is commonly referred to as the Harlow and Welch [1965] scheme and has
been widely used in LES. Because it is based on a discretization of fluxes (61)–(63), it conserves first moments of
momentum and scalars such as total water and entropy. It also conserves kinetic energy (a second moment).
4.1.1.2. Fourth and Sixth-Order Schemes
Higher-order centered difference schemes can be constructed in a similar way. For example, for a fourth-
order scheme, one chooses r 5 4 and k�52 in the polynomial reconstructions (70) and (71). For a sixth-
order scheme, one chooses r 5 6 and k�53. The resulting schemes are the fourth and sixth-order centered
schemes described in Wicker and Skamarock [2002]. They are used in the Weather Research and Forecasting
Model (WRF) [Skamarock and Klemp, 2008] and in the Dutch Atmospheric Large Eddy Simulation (DALES)
code [Heus et al., 2010]. They are also implemented in PyCLES. Schemes of yet higher order can be con-
structed using other values of r and k� . Such schemes still conserve first moments of momentum and scalars
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such as total water and entropy. However, like all centered schemes of higher than second order, they gen-
erally do not conserve second moments such as kinetic energy [e.g., Morinishi et al., 1998].
4.1.1.3. Shortcomings
Centered schemes have even-order accuracy and symmetric stencil weights. Consequently, the leading-
order term in the resulting discrete equations is dispersive, leading to short-wavelength oscillations in
the numerical solutions [e.g., Wicker and Skamarock, 2002; Ghosh and Baeder, 2012]. As a means of con-
trolling the short-wavelength oscillations, Wicker and Skamarock [2002] propose third- and fifth-order
schemes formed by adding higher-order dissipative terms to their fourth- and sixth-order schemes.
While Wicker and Skamarock [2002] sought to reduce dispersive numerical error by incorporating dissi-
pation in the numerical scheme itself, others have relied upon artificial viscosity/diffusion or the SGS clo-
sures to supply additional dissipation. However, in the LES context, relying on the SGS closures to
control dispersive numerical error obscures the physical motivation behind many of the commonly used
SGS closures.
4.1.2. Weighted Essentially Nonoscillatory Schemes
WENO schemes were proposed to remedy the shortcomings of centered schemes. They achieve arbitrarily
high order of accuracy while maintaining nearly oscillation-free solutions, even in inviscid flows, by combin-
ing multiple interpolation stencils [Jiang and Shu, 1996; Balsara and Shu, 2000]. WENO reconstructions are
computed as convex combinations of the interpolation polynomials from all possible interpolation stencils,
with the largest weights placed on the stencils over which the advected field varies most smoothly. In
smooth flow regions, the optimally weighted convex combination of all candidate interpolating polyno-
mials of order r achieves ð2r11Þ-th order accurate interpolation. Hence, WENO schemes combine a high
order of accuracy with (essentially) oscillation-free stability.

To be more specific, the convex combinations of interpolating polynomials for the positively biased recon-
structions of ~/

i11;1
and ~u

i11
2;1

1 are given by

~/
i11;1

5
Xr21

k�50

wr
k�qr;1

k� /i13
22r1k� ; . . . ;/i11

21k�
� 	

(78)

and

~u
i11

2;1
1 5

Xr21

k�50

wr
k�qr;1

k� ui112r1k�
1 ; . . . ; ui1k�

1

� �
: (79)

The WENO weights wr
k� are given by

wr
k�5

ar
k�

ar
01 . . . 1ar

r21
; (80)

where

ar
k�5

Cr
k�

e1Sr
k�

� �p ; (81)

with optimal weights Cr
k� , smoothness measures Sr

k� , regularization parameter e510210 to prevent division
by zero, and exponent p 5 2 as in Balsara and Shu [2000]. The values of Cr

k� and smoothness measures Sr
k�

for third and fifth-order WENO reconstructions are given in Jiang and Shu [1996], and those for 7th through
11th-order reconstructions in Balsara and Shu [2000].

From the reconstructed scalars ~/
i11;1

and ~/
i11;2

, the upwinded flux is computed by

ðq0u1
~/Þi11

5
q0

2
ui11

1 1jui11
1 j

� �
~/

i11;2
1

q0

2
ui11

1 2jui11
1 j

� �
~/

i11;1
: (82)

To compute the upwinded momentum flux, the advecting velocity must be reconstructed at the flux loca-
tion. We follow the method described in Ghosh and Baeder [2012] and use an ðm21Þ-th order symmetric
polynomial interpolation (71) to approximate the advecting velocity u

i11
2

1 for a WENO scheme of order m.
The upwinded momentum flux is then computed by
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q0~u1~u1ð Þi1
1
25

q0

2
~u

i11
2

1 1j~ui11
2

1 j
� 	

~u
i11

2;2
1 1

q0

2
~u

i11
2

1 2j~ui11
2

1 j
� 	

~u
i11

2;1
1 : (83)

Although it is unclear whether the resulting WENO schemes are indeed of m-th order, we will still refer to
them as m-th order WENO schemes.

Like higher-order centered schemes that discretize the fluxes (61)–(63), WENO schemes conserve first
moments of momentum and scalars such as total water and entropy; however, they do not conserve kinetic
energy.
4.1.3. SGS Fluxes
The SGS fluxes in the combined fluxes (61)–(63) also require reconstruction to the correct flux locations. As
the SGS closures are generally functions of gradients of the velocity and scalar fields, it is natural to com-
pute the eddy viscosity and diffusivity at the grid cell centers. Second-order interpolation is used to interpo-
late the eddy viscosity and diffusivity when their values are needed on grid cell faces.

4.2. Pressure Solver
PyCLES does not directly solve the Poisson equation (5) for the dynamic pressure perturbation p0 that enfor-
ces the continuity equation. Rather, it uses a projection method that offers advantages when solving the
Poisson equation discretely and that can be derived as follows [e.g., Chorin, 1968; Kim and Moin, 1985].

Multiplying the momentum equation (2) by q0 and taking the divergence, but not using the continuity
equation (4) to eliminate the time derivative, gives

@

@t
@

@xi
q0ui5

@

@xi
q0

_C i2
@

@xi
q0
@a0p0

@xi
: (84)

Writing the above equation in semidiscrete form and integrating the time derivative from time n to n 1 1
using a forward Euler time step dtn, we obtain

@

@xi
q0ui

� �n11

2
@

@xi
q0ui

� �n

5

dtn @

@xi
q0

_C
n
i 2

@

@xi
q0
@a0p0

@xi

� �
:

(85)

Setting the first term on the left-hand side to zero and rearranging gives

@

@xi
q0
@p00

@xi

� �n

5
@

@xi
q0 uið Þn1 _C

n
i dtn

h i
; (86)

where p005a0p0dtn. This is a Poisson equation for p00. Determining the dynamic pressure perturbation in this
way removes any divergent component of the anelastic mass flux q0ui , which may arise through initial con-
ditions or numerical error. By contrast, using the Poisson equation (5) directly may not remove such diver-
gent components.

In PyCLES, the Poisson equation (86) is solved subject to the boundary conditions of periodicity in the horizon-
tal directions and zero normal pressure gradients at the upper and lower boundaries. The zero normal pres-
sure gradient boundary condition is implicitly applied by enforcing a no-penetration boundary condition on
the velocity field at the upper and lower boundaries [e.g., Kim and Moin, 1985]. The right-hand side of (86) is
discretized using second-order central differences, and the horizontal periodicity of the domain is exploited to
take the two-dimensional horizontal Fourier transform of the equation with discretized right-hand side, as
is often done in atmospheric LES codes [e.g., Heus et al., 2010; Sullivan and Patton, 2011]. The horizontal deriv-
atives of the pressure p00 are evaluated spectrally, using the modified wavenumber representation of a
second-order central difference scheme [e.g., Moin, 2010]. The vertical derivatives are approximated using a
second-order central difference scheme. The resulting tridiagonal system of linear equations for the horizon-
tally Fourier transformed pressure variable p̂00 is solved with standard methods [Press et al., 1992]. Inverse Fou-
rier transformation of p̂ 00 yields the desired solution p00. This approach gives an exact solution to the
discretized Poisson equation. It requires a fixed, known number of floating point operations, which has advan-
tages over iterative solution methods, whose operation count is problem-dependent and hence a priori
unknown.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000496

PRESSEL ET AL. LARGE-EDDY SIMULATION FRAMEWORK 1445



4.3. Time Stepping
PyCLES uses strong stability preserving Runge-Kutta Schemes (SSP-RK) schemes to integrate the prognostic
equations forward in time [Gottlieb, 2005]. A predictor-corrector method uses p00 as determined by the Pois-
son solver to ensure that the mass flux q0ui following each Runge-Kutta stage remains approximately diver-
gence free. To simplify the notation in what follows, we will drop inessential grid indices i, j, and k;
superscripts n again denote the time step.
4.3.1. Second-Order, Two-Stage SSP-RK Scheme
The second-order, two-stage SSP-RK scheme given in Shu and Osher [1988] is implemented in PyCLES as

T �5Tn1dtn dTn

dt

T�5T ?1P�

T ��5T�1dtn dT�

dt

T��5T ��1P��

Tn115
1
2

Tn1T��ð Þ

(87)

where T � and T �� are predicted state vectors in the first and second Runge-Kutta stages, T� and T�� are
corrected state vectors with divergence-free mass fluxes, and dtn is the time step at time n. The corrector
vectors P� and P�� are obtained from

Pi;j;k5

2
@p00

@x1

� �i;j11
2;k11

2

2
@p00

@x2

� �i11
2;j;k11

2

2
@p00

@x3

� �i11
2;j1

1
2;k

0

2
66666666666664

3
77777777777775
; (88)

where p00 is taken at the first Runge-Kutta stage for P� and at the second Runge-Kutta stage for P��. The par-
tial derivatives in the corrector vector (88) are computed using second-order central differences.
4.3.2. Third and Fourth-Order SSP-RK Schemes
The predictor-corrector method along with higher-order time stepping schemes can be implemented simi-
larly to the second-order scheme described above. In PyCLES, included as options for higher-order time
stepping are the widely used three-stage, third-order SSP-RK scheme known as the Shu and Osher [1988]
method, and the fourth-order, five-stage SSP-RK scheme described in Ruuth [2005].

5. Numerical Tests and Discussion

To illustrate the numerical properties of the transport schemes discussed above, we consider two test cases,
which track the evolution of two-dimensional thermodynamic perturbations (‘‘bubble’’). They are relevant
to the buoyancy-driven flows typically encountered in the atmosphere. For each test case, we perform sim-
ulations at a range of resolutions using the following four schemes for transport of momentum and scalars:

1. fourth-order centered scheme
2. sixth-order centered scheme
3. fifth-order WENO scheme
4. 11th-order WENO scheme

All simulations use the third-order SSP-RK scheme for time integration. The time step is dynamically
adjusted to ensure that the Courant number remains near 0.3.

5.1. Negatively Buoyant Bubble
The first test case is the benchmark problem proposed by Straka et al. [1993]. It involves a two-dimensional
negatively buoyant dry bubble, which has been widely used as a test of atmospheric LES codes [e.g.,
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Skamarock and Klemp, 1993; Wicker and Skamarock, 2002; Ooyama, 2001; Schroeder et al., 2006]. The flow
exhibits dynamic Kelvin-Helmholtz instabilities, which quickly generate small scales. Uniform viscosities and
diffusivities of 75 m2 s21 are added to ensure that simulations converge numerically at moderate resolution,
so that lower-resolution simulations can be compared to a converged high-resolution simulation.

We use the benchmark problem described in Straka et al. [1993] with periodic horizontal boundary condi-
tions, rather than the no-flux boundary conditions originally proposed. Nonetheless, the symmetry of the

Figure 1. Entropy temperature (47) in simulations of a two-dimensional negatively buoyant dry bubble in a viscous fluid at 900 s. The simulations are performed at four resolutions
(rows, resolution increasing from top to bottom) using four different schemes for the transport of scalars and momentum (columns). (The same schemes are used for both scalars and
momentum.) The contour interval is 0:5 K.
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initial condition and subsequent flow evolution mean that the periodic boundary conditions very well
approximate no-flux boundary conditions. The domain is 51:2 km wide (x1) and 6:4 km high (x3).

Figure 1 shows the entropy temperature (or potential temperature in this dry case) at t5900 s for resolu-
tions ranging from ð400 mÞ2 (128 3 16 grid points) to ð50 mÞ2 (1024 3 128 grid points). Because the numer-
ical solutions are nearly horizontally symmetric about the center of the domain, only the right half of the
bubble is shown. Based on the figure, we make the following observations:

1. The numerical solutions are essentially converged for all schemes at 50 m resolution.
2. At resolutions coarser than 100 m, the centered schemes produce small-scale oscillations associated with

dispersive numerical error. The oscillations adversely affect even large-scale flow features. The dispersive
error attenuates when the resolution reaches 100 m or finer. By contrast, the WENO schemes do not
exhibit any spurious oscillations, even at coarse resolutions.

3. At resolutions coarser than 100 m, the fifth-order WENO scheme is visibly more dissipative than the 11th-
order WENO scheme. Nevertheless, both schemes capture the large-scale flow features well.

In this example, using WENO schemes only for the thermodynamic scalars, but not for momentum, yields
similar results (not shown), as the 2D advecting velocity fields are smoother than the scalar fields.

The advantage of using higher-order WENO schemes becomes evident when considering the computational
cost of each scheme. The wall-clock times for integration of the test case from 100 s to 200 s are given in Table
2 for each of the configurations shown in Figure 1. The timings shown are for simulations using the third-order
Runge-Kutta scheme with time step dynamically adjusted so that the simulations maintain Courant numbers
of approximately 0.3, rather than the theoretical maximum Courant number for stability for each of the trans-
port schemes. In practice, we have found that the maximum stable Courant number is relatively insensitive to
the order of the transport scheme. The times reported in the table are normalized by the time for the 11th-
order WENO scheme at 200 m resolution. The computational cost of higher-order WENO schemes is greater
than that of the centered schemes by an O(1) factor that is approximately resolution-independent (e.g., the
11th-order WENO scheme requires about a factor 3.8 more compute time than the sixth-order centered
scheme). The parallelization overhead of higher-order WENO schemes is also comparable to that of centered
schemes of a similar order. By contrast, the computational cost of all schemes increases roughly like D23 in 2D
(or like D24 in 3-D) as the grid spacing D decreases. (There are deviations from this scaling for coarse resolu-
tions, probably because we do not exactly use a 2D domain but our standard code with a 3-D domain with
one homogeneous horizontal direction with 6 grid points, corresponding to the maximum number of ghost
points required by an 11th-order WENO scheme.) Hence, a WENO scheme at a coarser resolution can be con-
siderably faster than a centered scheme at finer resolution, yet produces solutions of comparable or better
quality. For example, for the negatively buoyant bubble in Figure 1, the large-scale flow features are well cap-
tured and are free of spurious oscillations at 200 m resolution using the 11th-order WENO scheme. By contrast,
the centered schemes remain oscillatory at 200 m resolution, and even still to some degree at 100 m resolu-
tion. Yet the 11th-order WENO scheme at 200 m resolution is about a factor 2 faster than a sixth-order centered
scheme at 100 m resolution, which produces solutions of comparable or still slightly inferior quality.

5.2. Saturated Buoyant Bubble
The second test case is similar to the benchmark problem proposed by Bryan and Fritsch [2002]. It involves
the vertical ascent of a two-dimensional buoyant bubble in a saturated moist environment (qt 	 q�v ), with
reversible equilibrium thermodynamics (i.e., without precipitation). Bryan and Fritsch [2002] initialize the
simulation as a perturbation to a neutrally stratified background state characterized by uniform equivalent

Table 2. Wall-Clock Times for Integration From 100 s to 200 s of Simulation Time for the Two-Dimensional Negatively Buoyant Dry Bub-
ble Test Casea

Resolution Centered Fourth Centered Sixth WENO Fifth WENO 11th

400 m 0.04 0.05 0.06 0.21
200 m 0.21 0.28 0.37 1.0
100 m 1.59 1.92 2.60 7.22
50 m 10.64 14.91 20.43 54.67

aThe LES are performed on 16 cores within one compute node, using third-order SSP-RK time stepping with a dynamical time step
that maintains a Courant number of approximately 0.3. Times are normalized relative to the simulation with 200 m resolution using the
11th-order WENO scheme.
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potential temperature. We take a slightly different approach [cf. Kurowski et al., 2014], seeking to ensure
that the background has uniform moist specific entropy consistent with the thermodynamic formulation in
PyCLES. This is achieved by initializing the bubble as a perturbation to a uniform entropy temperature field,
hs5320 K, with uniform total water specific humidity qt50:0196 kg=kg. The initial perturbation follows the
same functional form of that given in Bryan and Fritsch [2002] for their dry case, with a peak amplitude of
2 K. Aside from the use of hs in specifying the initial conditions, the simulations are configured to follow
Bryan and Fritsch [2002], except that we set the horizontal boundary conditions to be periodic. The domain
is 20 km wide (x1) and 10 km high (x3).

Figures 2 and 3 show the entropy temperature hs and fluctuations of liquid-water specific humidity ql

around the horizontal mean for resolutions ranging from ð400 mÞ2 (50 3 25 grid points) to ð50 mÞ2 (400 3

200 grid points). Several important features are apparent:

1. Simulations using centered schemes are adversely affected by dispersive numerical error at all resolutions.
2. Simulations using 5th and 11th-order WENO schemes are essentially converged at 50 m resolution.
3. Spurious fluctuations in liquid-water specific humidity ql seen in Figure 3 arise solely from the effects of

dispersive numerical errors on the specific entropy s field, because the total-water specific humidity qt

remains constant everywhere.

Figure 2. Entropy potential temperature (47) in simulations of a two-dimensional positively buoyant saturated bubble at 1000 s. As in Figure 1, the simulations are performed at four res-
olutions (rows, resolution increasing from top to bottom) using four different schemes for the transport of scalars and momentum (columns). The contour interval is 0:1 K.
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As for the dry bubble, the moist bubble test case strongly suggests that WENO schemes can produce simu-
lations at relatively coarse resolution that are comparable with or superior to solutions obtained with cen-
tered schemes at finer resolution.

6. Conclusion

We have described a new framework for LES of atmospheric flows. It is the first to use the anelastic equa-
tions with total water and moist entropy as prognostic variables, which has numerical advantages especially
in the simulation of clouds, because both are conserved in the adiabatic and reversible phase changes of
water that frequently occur in clouds. Additionally, both are extensive variables, which makes it possible to
obtain closed water and entropy balances for discrete forms of the equations.

The developments of this paper provide several advances:

1. We have extended existing formulations of entropy-based thermodynamics of moist air [e.g., Ooyama,
1990, 2001; Raymond, 2013] into a coherent framework appropriate for the anelastic equations, with heu-
ristic generalizations that allow a thermodynamically consistent representation of mixed-phase clouds.

2. We have shown how to solve the resulting dynamic and thermodynamic equations numerically, in a way
that preserves closed water and entropy balances of the discretized equations and that allows the use of

Figure 3. Liquid-water specific humidity ql in the simulations of a two-dimensional positively buoyant saturated bubble at 1000 s shown in Figure 2. The liquid water specific humidity
fluctuations about the mean at each vertical level are plotted, with a contour interval of 231025 kg/kg.
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higher-order WENO schemes on the staggered grids that are commonly used to discretize the anelastic
equations.

3. Numerical tests have demonstrated that higher-order WENO schemes yield numerically converged solu-
tions at significantly lower resolution than centered schemes, making WENO schemes attractive even
from the point of view of computational cost.

We have implemented the methods described in this paper in code (PyCLES) written in Python and Cython,
which is publicly available and makes the LES framework accessible to a wide user group.

Some numerical questions have remained open. For example, it remains to be shown what the exact order
of accuracy of a WENO scheme for the momentum equations with m-th order reconstruction of variables
on a staggered grid is. This is subject of ongoing research. Tests of PyCLES with realistic atmospheric bound-
ary layers and convective clouds will appear in a forthcoming paper.

Appendix A: Saturation Adjustment Scheme

Given the thermodynamic state variables specific entropy s, total water specific humidity qt, and reference
pressure p0ðx3Þ, the saturation adjustment scheme calculates the temperature T and specific humidities qv, ql,
and qi (with qv1ql1qi5qt) that are consistent with the local thermodynamic equilibrium assumption.
When iteration is necessary, it uses the secant method to calculate the temperature and phase partitioning.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000496

PRESSEL ET AL. LARGE-EDDY SIMULATION FRAMEWORK 1451



Here DT is the trial temperature increment that corresponds to warming of the moist air by the release of
the latent heat when the initial saturation excess r1 condenses/deposits. Given the accuracy of the thermo-
dynamic approximations made, a convergence tolerance of dT � 1023 K is reasonable. The scheme typically
converges within three iterations.

Appendix B: List of Symbols

Unless otherwise noted, subscripts 0 indicate reference state variables, subscripts g indicate surface
(ground) values, subscripts b values at the lowest model level, superscript asterisks ð�Þ� saturation values,
and superscript tildes ð~�Þ constants at thermodynamic standard conditions.

Notation

a Specific volume.
a0 Reference state specific volume.
c/;i SGS flux of scalar /.

cp;i SGS flux of precipitation specific humidity qp.

cq;i SGS flux of total water specific humidity qt.

cs;i SGS flux of specific entropy s.

Ci Velocity tendency without pressure gradients.
dij Kronecker delta.
dð�Þ Dirac delta function.
Dxi Grid spacing in xi direction.
D Grid scale D5 Dx1Dx2Dx3ð Þ1=3.
ev Ratio of gas constants ev5Rd=Rv .
�ijk Antisymmetric Levi-Civita symbol.
h Potential temperature.
hs Entropy temperature.
hq Density potential temperature.
j Adiabatic exponent.
k Liquid fraction.
mt Eddy viscosity.
/ Arbitrary scalar field.
_U Source of scalar /.

q Density.
q0 Reference density.
r Saturation excess r5qt2q�v .
Ri Specific momentum source.
sij SGS stress.
b Buoyancy.
cc Specific heat of condensate (liquid or ice).
ck, cN, ce Coefficients in TKE SGS closure.
cpd Specific heat of dry air at constant pressure.
cpm Specific heat of moist air at constant pressure.
cpv Specific heat of water vapor at constant pressure.

Ci;j;k
Grid cell centered at x

i11
2

1 ; x
j11

2
2 ; x

i11
2

1 .
cS Smagorinsky coefficient.
Cm Surface drag coefficient for momentum.
Cq, Cs Surface exchange coefficients for qt and s.
Dt Eddy diffusivity.
e SGS turbulence kinetic energy.
E Precipitation evaporation/sublimation rate.
f Coriolis parameter.
fB Buoyancy factor in Smagorinsky-Lilly model.
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Fq, FT Surface fluxes of latent heat and sensible heat.
g Gravitational acceleration.
Hp Source of precipitation qp.
‘ Mixing length in TKE SGS closure.
L Effective specific latent heat.
Lf, Ls, Lv Specific latent heats (fusion, sublimation, vaporization).
N Buoyancy frequency in moist air.
Nxi Number of grid cells in xi direction.
p Pressure.
p0 Dynamic pressure perturbation around p0.
pd Partial pressure of dry air.
pv Partial pressure of water vapor.
p0 Hydrostatic reference pressure.
P Precipitation formation rate.
Prt Turbulent Prandtl number.
qc Specific humidity of condensate (liquid or ice).
qd Dry-air mass fraction.
ql; qi; qv Specific humidities (liquid, ice, vapor).
qp Specific humidity of precipitation.
qt Total water specific humidity.
Q Diabatic heating rate.
Rd Specific gas constant for dry air.
Rv Specific gas constant for water vapor.
s Specific entropy of moist air.
sc Specific entropy of condensate (liquid or ice).
sd Specific entropy of dry air.
sl, si, sv Specific entropies (liquid, ice, vapor).
sp Specific entropy of precipitation.
s0 Reference state specific entropy.
Sij Strain rate of resolved velocities.
jSj Magnitude of strain rate.
_S Irreversible specific entropy source.

T Temperature.
Tf Freezing point temperature.
Ti Homogeneous ice nucleation temperature.
Tt Triple point temperature of water.
Tq Density temperature.
Tw Wet-bulb temperature.
sij SGS stress.
ui i-th component of velocity.
ug;i i-th component of geostrophic velocity.
Ub Wind speed at lowest model level.
wp Fall velocity of precipitation.
xi Cartesian coordinates.
Xi;l Domain lower spatial bound in coordinate xi.
Xi;r Domain upper spatial bound in coordinate xi.
z0 Roughness length.
zf Freezing level.
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