
ETH Library

Undecidability in binary
tag systems and the post
correspondence problem for five
pairs of words

Conference Paper

Author(s):
Neary, Turlough

Publication date:
2015

Permanent link:
https://doi.org/10.3929/ethz-b-000106301

Rights / license:
Creative Commons Attribution 3.0 Unported

Originally published in:
Leibniz International Proceedings in Informatics (LIPIcs) 30, https://doi.org/10.4230/LIPIcs.STACS.2015.649

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000106301
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.4230/LIPIcs.STACS.2015.649
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Undecidability in Binary Tag Systems and the Post
Correspondence Problem for Five Pairs of Words
Turlough Neary

Institute of Neuroinformatics, University of Zürich and ETH Zürich, Switzerland
tneary@ini.phys.ethz.ch

Abstract
Since Cocke and Minsky proved 2-tag systems universal, they have been extensively used to prove
the universality of numerous computational models. Unfortunately, all known algorithms give
universal 2-tag systems that have a large number of symbols. In this work, tag systems with only
2 symbols (the minimum possible) are proved universal via an intricate construction showing that
they simulate cyclic tag systems. We immediately find applications of our result. We reduce the
halting problem for binary tag systems to the Post correspondence problem for 5 pairs of words.
This improves on 7 pairs, the previous bound for undecidability in this problem. Following our
result, only the cases for 3 and 4 pairs of words remains open, as the problem is known to be
decidable for 2 pairs. In a further application, we apply the reductions of Vesa Halava and others
to show that the matrix mortality problem is undecidable for sets with six 3× 3 matrices and for
sets with two 18× 18 matrices. The previous bounds for the undecidability in this problem was
seven 3× 3 matrices and two 21× 21 matrices.

1998 ACM Subject Classification F.1.2 [Theory of Computation]: Computation by Abstract
Devices—Modes of Computation

Keywords and phrases tag system, Post correspondence problem, undecidability

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.649

1 Introduction

Introduced by Post [17], tag systems have been used to prove Turing universality in numerous
computational models, including some of the simplest known universal systems [6, 10, 11,
14, 19, 20, 21]. Many universality results rely either on direct simulation of tag systems
or on a chain of simulations the leads back to tag systems. Such relationships between
models means that improvements in one model often has applications to many others. The
results in [23] are a case in point, where an exponential improvement in the time efficiency
of tag systems had the domino effect of showing that many of the simplest known models
of computation [6, 10, 11, 14, 19, 20, 21] are in fact polynomial time simulators of Turing
machines. Despite being central to the search for simple universal systems for 50 years, tag
systems have not been the subject of simplification since the sixties.

In 1961, Minsky [13] solved Post’s longstanding open problem by showing that tag sys-
tems, with deletion number 6, are universal. Soon after, Cocke and Minsky [5] proved that
tag systems with deletion number 2 (2-tag systems) are universal. Later, Hao Wang [22]
showed that 2-tag systems with even shorter instructions were universal. The systems of
both Wang, and Cocke and Minsky use large alphabets and so have a large number of rules.
Here we show that tag systems with only 2 symbols, and thus only 2 rules, are universal.
Surprisingly, one of our two rules is trivial. We find immediate applications of our result.
Using Cook’s [6] reduction of tag systems to cyclic tag systems, it is a straightforward matter

© Turlough Neary;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 649–661

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2015.649
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

650 Undecidability in Binary Tag Systems and the Post Correspondence Problem

to give a binary cyclic tag system program that is universal and contains only two 1 sym-
bols. We also use our binary tag system construction to improve the bound for the number
of pairs of words for which the Post correspondence problem [18] is undecidable, and the
bounds for the simplest sets of matrices for which the mortality problem [16] is undecidable.

The search for the minimum number of word pairs for which the Post correspondence
problem is undecidable began in the 1980s [4]. The best result until now was found by
Matiyasevich and Sénizergues, whose impressive 3-rule semi-Thue system [12], along with
a reduction due to Claus [4], showed that the problem is undecidable for 7 pairs of words.
Improving on this undecidability bound of 7 pairs of words seemed like a challenging problem.
In fact, Blondel and Tsitsiklis [2] stated in their survey “The decidability of the intermediate
cases (3 6 n 6 6) is unknown but is likely to be difficult to settle”. We give the first
improvement on the bound of Matiyasevich and Sénizergues in 17 years: We reduce the
halting problem for our binary tag system to the Post correspondence problem for 5 pairs of
words. This leaves open only the cases for 3 and 4 pairs of words, as the problem is known
to be decidable for 2 pairs [7].

A number of authors [1, 3, 8, 9, 16], have used undecidability bounds for the Post corres-
pondence problem to find simple matrix sets for which the mortality problem is undecidable.
The matrix mortality problem is, given a set of d × d integer matrices, decide if the zero
matrix can be expressed as a product of matrices from the set. Halava et al. [9] proved the
mortality problem undecidable for sets with seven 3×3 matrices, and using a reduction due
Cassaigne and Karhumäki [3] they also showed the problem undecidable for sets with two
21× 21 matrices. Applying the reductions used in [3, 8] to our new bound, we find that the
matrix mortality problem is undecidable for sets with six 3 × 3 matrices and for sets with
two 18× 18 matrices.

In the sequel while simulating cyclic tag systems our binary tag system produces garbage
that grows exponentially during the simulation, and this results in an exponential time
simulation overhead.

2 Preliminaries

We write c1 ` c2 if a configuration c2 is obtained from c1 via a single computation step. We
let c1 `t c2 denote a sequence of t computation steps. The length of a word w is denoted |w|,
and ε denotes the empty word. We let 〈v〉 denote the encoding of v, where v is a symbol or
a word. We use the binary modulo operation a = m mod n, where a = m− ny, 0 6 a < n,
and a,m, n, and y are integers.

2.1 Tag Systems
I Definition 1. A tag system consists of a finite alphabet of symbols Σ, a finite set of rules
R : Σ→ Σ∗ and a deletion number β ∈ N, β > 1.

The tag systems we consider are deterministic. The computation of a tag system acts
on a word w = w0w1 . . . w|w|−1 (here wi ∈ Σ) which we call the dataword. The entire
configuration is given by w. In a computation step, the symbols w0w1 . . . wβ−1 are deleted
and we apply the rule for w0, i.e. a rule of the form w0 → w0,1w0,2 . . . w0,e, by appending
the word w0,1w0,2 . . . w0,e (here w0,j ∈ Σ). A dataword (configuration) w′ is obtained from
w via a single computation step as follows:

w0w1 . . . wβ . . . w|w|−1 ` wβ . . . w|w|−1w0,1w0,2 . . . w0,e

T. Neary 651

where w0 → w0,1w0,2 . . . w0,e ∈ R. A tag system halts if |w| < β. We use the term
round to describe the b |w|β c or d |w|β e computation steps that traverse a word w exactly
once. We say a symbol w0 is read if and only if at the start of a computation step it is
the leftmost symbol (i.e. the rule w0 → w0,0w0,1 . . . w0,e is applied), and we say a word
w = w0w1 . . . w|w|−1 is entered with shift z < β if wz is the leftmost symbol that is read
in w. We let w[z] denote the word obtained by removing the leftmost z symbols of w (i.e. w[z] =
wz . . . w|w|−1) and let w[z] denote the sequence of symbols read during a single round on w

[z].
So w[z] = wzwz+βwz+2βwz+3β , . . . , wz+lβ where z+ lβ < |w|. If z < β then w[z] is read when w
is entered with shift z and we call w[z] track z of w. A word w has a shift change of 0 6 s < β

if |w| = yβ − s where y ∈ N and y > 0. The proof of Lemma 2 is left to the reader.

I Lemma 2 (shift change). Given a tag system T with deletion number β and the word
rv ∈ Σ∗, where the word r has a shift change of s and |v| > β, after one round of T on r

entered with shift z the word v is entered with shift (z + s) mod β.

2.2 Cyclic Tag Systems
Cyclic tag systems were introduced and proved universal by Cook [6].

I Definition 3. A cyclic tag system C = α0, . . . , αp−1 is a list of words αi ∈ {0, 1}∗ called
appendants.

A configuration of a cyclic tag system consists of (i) a marker that points to a single ap-
pendant αm in C, and (ii) a word w = w1 . . . w|w| ∈ {0, 1}∗. We call w the dataword.
Intuitively the list C is a program with the marker pointing to instruction αm. In the initial
configuration the marker points to appendant α0 and w is the binary input word.

I Definition 4. A computation step is deterministic and acts on a configuration in one of
two ways:

If w1 = 0 then w1 is deleted and the marker moves to appendant α(m+1 mod p).
If w1 = 1 then w1 is deleted, the word αm is appended onto the right end of w, and the
marker moves to appendant α(m+1 mod p).

A cyclic tag system completes its computation if (i) the dataword is the empty word or (ii)
it enters a repeating sequence of configurations. As an example we give first 5 steps of the
cyclic tag system C = 001, 01, 11 on the input word 101. In each configuration C is given on
the left with the marked appendant highlighted in bold font.

001001001, 01, 11 101 ` 001,010101, 11 01001 ` 001, 01,111111 1001
` 001001001, 01, 11 00111 ` 001,010101, 11 0111 ` 001, 01,111111 111 ` · · ·

3 The Halting Problem for Binary Tag Systems

I Definition 5 (Halting problem for binary tag systems). Given a 2-symbol tag system T with
deletion number β and a dataword w, does T produce a sequence of computation steps of
the form w `∗ w′ where |w′| < β?

I Theorem 6. The halting problem for binary tag systems is undecidable.

The proof of Theorem 6 proceeds in two stages. First we construct a non-halting binary tag
system TC that simulates an arbitrary cyclic tag system C (Sections 3.1 and 3.2). Following
this in Lemma 9 we show how to modify our construction so that when simulating the cyclic
tag system in [15] our system halts if an only if it is simulating a halting Turing machine.

STACS 2015

652 Undecidability in Binary Tag Systems and the Post Correspondence Problem

Table 1 Table defining u. In the middle column is the sequence of symbols (track) read in u when
the object in the left column is entered with shift (β − 4m) mod β, where β = 4p is the deletion
number, αm is a cyclic tag system appendant, and 〈σi〉′ is a binary word where 〈σi〉′ = bbcbb if
σi = 0, and 〈σi〉′ = bbbcb if σi = 1. Also 〈σ1〉

[1]

′ is the word 〈σ1〉′ with its leftmost symbol removed.

Object Track read in u Values for m and αm

u u
[(β−4m) mod β] = cs 0 6 m < p

〈ε〉 = bubbb u
[β−1] = cbbb(bcbbb)p−1cs−5p+1 m = 0

u
[β−4m−1] = cs 0 < m < p

〈0〉 = bbubb u
[β−2] = cbbb(bcbbb)p−1cs−5p+1 m = 0

u
[β−4m−2] = cs 0 < m < p

〈1〉 = bbbub u
[β−3] = cbbb(bcbbb)p−1cs−5p+1 α0 = ε, m = 0

u
[β−3] = 〈σ1〉′

[1]
〈σ2〉′ . . . 〈σv〉′cs−5v+1 α0 = σ1σ2 . . . σv for v > 0, m = 0

u
[β−4m−3] = 〈σ1〉′〈σ2〉′ . . . 〈σv〉′cs−5v αm = σ1σ2 . . . σv for 0 < m < p

3.1 Binary Tag System TC and Its Encoding
Here we give a binary tag system TC that simulates the computation of an arbitrary C =
α0, . . . , αp−1. The deletion number of TC is β = 4p, its alphabet is {b, c}, and its rules are of
the form b→ b and c→ u, where u ∈ {b, c}∗. The binary word u encodes the entire program
of C and is defined by Table 1, where |u| = βs, s > 5(max(p, r)) and r is the length of the
longest appendant in C. See Section 3.3.1 for an example of how Table 1 is used to give u.

The cyclic tag system symbols 0 and 1 are encoded as the binary words 〈0〉 = bbubb and
〈1〉 = bbbub respectively. We refer to 〈0〉 and 〈1〉 as objects.

I Definition 7 (Input to TC). An arbitrary input dataword w1w2 . . . wn ∈ {0, 1}∗ to a cyclic
tag system is encoded as the TC input dataword 〈w1〉〈w2〉 . . . 〈wn〉.

During the simulation we make use of an extra garbage object: the binary word 〈ε〉 =
bubbb. The cyclic tag system configuration (α0, α1 . . . αm−1αmαmαmαm+1 . . . αp−1 w1w2 . . . wl)
is encoded as

〈w1〉
[(β−4m) mod β]

{〈ε〉p, u}∗〈w2〉{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗ (1)

where 〈w1〉
[(β−4m) mod β]

denotes the word given by an object 〈w1〉 ∈ {〈0〉, 〈1〉} with its left-

most [β − 4m) mod β] symbols deleted. This implies that 〈w1〉 is entered with the shift
[(β − 4m) mod β] and this shift value records that the currently marked cyclic tag system
appendant is αm. If a u subword in the dataword of TC does not form part of one of the
three objects 〈0〉, 〈1〉 and 〈ε〉 we will refer to this u subword as a garbage object. So words
of the form {〈ε〉, u}∗ in Equation (1) consist only of garbage objects.

3.2 The Simulation Algorithm
The sequence of symbols that is read in an object is determined by the shift value with which
it is entered (see Section 2.1). So in the simulation the shift value is used for algorithm

T. Neary 653

(i) 〈1〉
[β−4m]

〈a2〉〈a3〉 . . . 〈al〉 `s 〈a2〉
[(β−4(m+1)) mod β]

〈a3〉 . . . 〈al〉〈σ1〉〈σ2〉 . . . 〈σv〉us−5v

(ii) 〈0〉
[β−4m]

〈a2〉〈a3〉 . . . 〈al〉 `s 〈a2〉
[(β−4(m+1)) mod β]

〈a3〉 . . . 〈al〉us

(iii) 〈ε〉
[β−4m]

〈a2〉〈a3〉 . . . 〈al〉 `s 〈a2〉
[(β−4(m+1)) mod β]

〈a3〉 . . . 〈al〉us

(iv) u
[(β−4m) mod β]

〈a2〉〈a3〉 . . . 〈al〉 `s 〈a2〉
[(β−4m) mod β]

〈a3〉 . . . 〈al〉us

Figure 1 Objects 〈1〉, 〈0〉, 〈ε〉 and u being read when entered with shift [β − 4m]. Above `s
denotes the s computation steps that read each object, ai ∈ {u, 〈0〉, 〈1〉, 〈ε〉}, β = 4p is the deletion
number, and p is the length of C’s program. In (i), (ii) and (iii) 0 < m < p and in (iv) 0 6 m < p.
On the left is the dataword before the object is read and on the right is the dataword after the
object has been read. After 〈1〉, 〈0〉 or 〈ε〉 is read the adjacent object 〈a2〉 is entered with shift
[β − 4(m + 1)], and in (iv) after u is read 〈a2〉 is entered with shift [(β − 4m) mod β]. Reading
the objects 〈0〉, 〈ε〉 or u appends us, and reading the object 〈1〉 appends the encoding of cyclic tag
system appendant αm = σ1σ2 . . . σv.

control flow. Figures 1 and 2 give a high level view of reading each of the four objects that
appear in Equation (1) and this view includes the shift change that occurs from reading
each object. Objects 〈1〉, 〈0〉 and 〈ε〉 have length |〈1〉| = |〈0〉| = |〈ε〉| = βs+ 4 and so have a
shift change of β − 4 (see end of Section 2.1). So when these objects are entered with shift
[(β − 4m) mod β] the adjacent object 〈a2〉 is entered with shift [(β − 4(m+ 1)) mod β] (as
shown in Figures 1 and 2). When reading 〈1〉 or 〈0〉 this shift change of β − 4 simulates the
appendant marker moving from appendant αm to α((m+1) mod p). Recall that β = 4p and so
reading p of the 〈0〉 and 〈1〉 objects has a shift change of 0 (since 0 = p(β− 4) mod β). This
shift change of 0 means that the encoding of the marked appendant returns to its original
value after reading p objects, correctly simulating that the appendant marker beginning at
αm has moved through the entire length p circular program of C′ and returned to it original
position of marking αm. The garbage objects 〈ε〉 and u in Equation (1) appear only in
garbage words of the form {〈ε〉p, u}∗ which have a shift change of 0 (since |〈ε〉p| = (1 + ps)β
and |u| = βs) and so have no effect on the shift value when entering subsequent objects
(see Lemma 2). In Figures 1 and 2 we see that reading an 〈1〉 simulates reading a 1 by
appending the encoding of the marked appendant αm = σ1σ2 . . . σv and reading an 〈0〉
simulates reading a 0 by appending a garbage word from {〈ε〉p, u}∗ to simulate that nothing
is appended. In Figures 1 and 2 when the garbage objects 〈ε〉 and u are read they append
garbage words from {〈ε〉p, u}∗ that have no effect on the simulation.

To help the reader, in Section 3.3 we define u for a specific example and use this value to
give an example of our algorithm simulating a cyclic tag system computation step. Here we
explain how Table 1 defines u so that when each object is read it appends the appendants
shown in Figures 1 and 2. Recall that a track w[z] is the sequence of symbols read in a word w
when it is entered with shift z (see Section 2.1). Table 1 defines u by giving (in the middle
column) each possible track in u (for detailed example see Section 3.3.1). Each u track is
read when the object in the left column of Table 1 is entered with shift [(β − 4m) mod β].
To see this note that the number of b symbols that proceed the u word in each object
causes a shift change which in turn causes the u track given in middle column of Table 1
to be read. For example the word bbb at the left end of 〈1〉 = bbbub has a shift change
value of β − 3 (see Section 2.1) and thus when 〈1〉 is entered with shift [(β − 4m) mod β]
we enter u with shift [β − 4m − 3]. So when m > 0 and we read an 〈1〉, we see from
row 8 of Table 1 that track u

[β−4m−3] = 〈σ1〉′〈σ2〉′ . . . 〈σv〉′cs−5v is read. Applying the rules

STACS 2015

654 Undecidability in Binary Tag Systems and the Post Correspondence Problem

(i) 〈1〉
[0]
〈a2〉〈a3〉 . . . 〈al〉 `s+1 〈a2〉

[β−4]
〈a3〉 . . . 〈al〉〈σ1〉〈σ2〉 . . . 〈σv〉us−5v+1

(ii) 〈0〉
[0]
〈a2〉〈a3〉 . . . 〈al〉 `s+1 〈a2〉

[β−4]
〈a3〉 . . . 〈al〉〈ε〉pus−5p+1

(iii) 〈ε〉
[0]
〈a2〉〈a3〉 . . . 〈al〉 `s+1 〈a2〉

[β−4]
〈a3〉 . . . 〈al〉〈ε〉pus−5p+1

Figure 2 Objects 〈1〉, 〈0〉 and 〈ε〉 being read when entered with shift 0. Above `s+1 denotes the
s+1 computation steps that read each object when entered with shift 0. Here ai ∈ {u, 〈0〉, 〈1〉, 〈ε〉},
β = 4p is the deletion number, and p is the length of C’s program. On the left is the dataword
before the object is read and on the right is the dataword after the object has been read. After
〈1〉, 〈0〉 or 〈ε〉 is read the adjacent object a2 is entered with shift [β − 4]. Reading the objects 〈0〉
or 〈ε〉 appends 〈ε〉pus−5p+1, and reading the object 〈1〉 appends the encoding of cyclic tag system
appendant α0 = σ1σ2 . . . σv.

b → b and c → u when reading this track appends the appendant 〈σ1〉〈σ2〉 . . . 〈σv〉cs−5v

as shown in Figure 1 (i). For m > 0 the entire sequence of symbol read in 〈1〉, 〈0〉, and
〈ε〉 are respectively given by the u tracks in rows 3, 5 and 8 of Table 1. One can see that
applying the rules b → b and c → u to these tracks appends the correct appendant for
each object read in Figure 1. For m = 0 we have a special case where to get the entire
sequence of symbols read in each object we prepend an extra b to the u tracks given in rows
2, 4, 6 and 7 of Table 1 and now applying the rules b → b and c → u to this sequence
appends the appendants shown in Figure 2. For example, to give the sequence read in 〈1〉
when m = 0, we prepend b to track u

[β−3] = 〈σ1〉′
[1]
〈σ2〉′ . . . 〈σv〉′cs−5v+1 (row 7 of Table 1)

to give the sequence b〈σ1〉′
[1]
〈σ2〉′ . . . 〈σv〉′cs−5v+1 = 〈σ1〉′〈σ2〉′ . . . 〈σv〉′cs−5v+1 which appends

the word 〈σ1〉〈σ2〉 . . . 〈σv〉cs−5v+1 as shown in Figure 2 (i). Finally, in row 1 of Table 1 are
the u tracks that give the sequence of symbols read in u garbage objects for all values of m.

3.2.1 Tag system TC Simulating an Arbitrary Computation Step of C
Equation (2) gives an arbitrary computation step of cyclic tag system C, where w′ = σ1 . . . σv
if w1 = 1 and αm = σ1σ2 . . . σv, and w′ = ε if w1 = 0.

α0, . . .αmαmαmαm+1 . . . αp−1 w1w2 . . . wl ` α0, . . . αmαm+1αm+1αm+1 . . . αp−1 w2 . . . wlw
′ (2)

Lemma 8 essentially states that TC simulates the arbitrary computation step given in Equa-
tion (2). In Lemma 8, Equations (3) and (4) respectively encode the left and right config-
urations in Equation (2) (see Equation (1)).

I Lemma 8 (TC simulates an arbitrary computation step of C). Given a dataword of the form

〈w1〉
[(β−4m) mod β]

{〈ε〉p, u}∗〈w2〉{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗ (3)

where wi ∈ {0, 1}, TC reads the word 〈w1〉
[(β−4m) mod β]

{〈ε〉p, u}∗ to give a dataword of the form

〈w2〉
[(β−4(m+1)) mod β]

{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗〈w′〉{〈ε〉p, u}∗ (4)

where 〈w′〉 = 〈σ1〉〈σ2〉 . . . 〈σv〉 if w1 = 1 and αm = σ1σ2 . . . σv, and 〈w′〉 = ε if w1 = 0.

T. Neary 655

Proof. We use Figures 1 and 2 to verify that given Configuration (3), TC produces Config-
uration (4). Following this we discuss the correctness of Figures 1 and 2.

From (i) and (ii) of Figures 1 and 2 there are 4 possible cases for reading 〈w1〉, where each
case is determined by the value of 〈w1〉 ∈ {〈1〉, 〈0〉} and the shift ([0] or [β− 4m] for m > 0)
with which it is entered. The technique for verifying that TC produces Configuration (4)
from Configuration (3) is similar for all 4 cases and so we will only go through one case.
We choose the case where 〈w1〉 = 〈1〉 and is entered with shift [β − 4m] for m > 0. From
Figure 1 (i) when we read 〈w1〉 = 〈1〉 with shift [β − 4m] in Configuration (3) we get

{〈ε〉p, u}∗
[(β−4(m+1) mod β]

〈w2〉{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗〈σ1〉〈σ2〉 . . . 〈σv〉us−5v (5)

In Configuration (5) the word {〈ε〉p, u}∗ is entered with shift [(β − 4(m + 1) mod β]. Each
〈ε〉 has a shift change of β−4 and each u has a shift change of 0, and so as we read the word
{〈ε〉p, u}∗ the 〈ε〉 and u objects are entered with shifts of the form [(β − 4m′) mod β] where
0 6 m′ < p. So the cases for reading the objects in the word {〈ε〉p, u}∗ are given by (iii) in
Figures 1 and 2 and (iv) in Figure 1. Thus when we read the word {〈ε〉p, u}∗ at the left end
of Configuration (5) we append a word of the form {〈ε〉p, u}∗ as shown in Configuration (6).
Recall that words of the form {〈ε〉p, u}∗ have a shift change of [0] and so when we enter
{〈ε〉p, u}∗ with shift [β − 4(m + 1) mod β] as shown in Configuration (5) we also enter the
adjacent object 〈w2〉 with shift [β − 4(m+ 1) mod β] as shown in Configuration (6).

〈w2〉
[(β−4(m+1) mod β]

{〈ε〉p, u}∗〈w3〉 . . . {〈ε〉p, u}∗〈wl〉{〈ε〉p, u}∗〈σ1〉 . . . 〈σv〉us−5v{〈ε〉p, u}∗ (6)

Configuration (6) is of the form of Configuration (4) for the case where 〈w1〉 = 〈1〉 and
is entered with shift [(β − 4m) mod β] for m > 0. So for this case we have shown using
Figures 1 and 2 that given Configuration (3) TC produces Configuration (4). The correctness
of Figures 1 and 2 can be verified by showing that on each line of these figures, reading the
leftmost object in the configuration on the left produces the configuration on the right. This
is achieved by showing that when we enter the adjacent object 〈a2〉 with the correct shift
and also that the correct word gets appended at the end of the dataword. The shift value
with which 〈a2〉 is entered follows immediately from Lemma 2 and the length of the object
being read. We direct the reader to paragraph 2 of Section 3.2 where we explain how Table 1
defines u so that when each object is read it appends the appendants shown in Figures 1
and 2. J

Our first main Theorem (Theorem 6) follows from Lemma 9. For tag system T ′C in
Lemma 9 we restrict the type of input allowed as this lets us simulate T ′C in Theorem 11
when proving the Post correspondence problem undecidable for 5 pairs of words.

I Lemma 9. Let T ′C be an arbitrary binary tag system with deletion number β, alphabet
{b, c} and rules of the form b→ b and c→ u0u1 . . . ulb (ui ∈ {b, c}). The halting problem is
undecidable for tag systems of the form of T ′C when given uβ−1uβ . . . ulb as input.

Proof. In [15] the cyclic tag system C simulates the computation of an arbitrary Turing
machine and appends an appendant (which we will call αh) encoding the Turing machine
halt state if and only if the simulated Turing machine halts. So given the cyclic tag system
C, its input w1w2 . . . wn, and an appendant αh, we construct a binary tag system T ′C that
takes uβ−1uβ . . . ulb as input and simulates C on input w halting if an only if C appends αh.
It then follows that halting problem is undecidable for tag systems of the form of T ′C when
given uβ−1uβ . . . ulb as input.

STACS 2015

656 Undecidability in Binary Tag Systems and the Post Correspondence Problem

Table 2 Table defining u for tag system in Lemma 9. In the middle column is the sequence of
symbols (or track) read in u when the object in the left column is entered with shift [(β − 10m +
1) mod β], where β = 10p is the deletion number, αm is a cyclic tag system appendant, 〈ε〉′ = b4cb6,
and 〈σi〉′ = b6cb4 if σi = 0, and 〈σi〉′ = b8cb2 if σi = 1. Also 〈ε〉

[1]

′ and 〈σ1〉
[1]

′ are the words 〈ε〉′ and

〈σ1〉′ with their leftmost symbol removed.

Object Track read in u Values for m and αm
input track u

[β−1] = bβ−2〈w′1〉 . . . 〈w′n〉us−11(n+p)−β+2(〈ε〉′)p

u u
[(β−10m+1) mod β] = cs 0 6 m < p

〈ε〉 = b4ub6 u
[β−3] = 〈ε〉

[1]

′(〈ε〉′)p−1cs−11p+1 m = 0

u
[β−10m−3] = (〈ε〉′)pcs−11p 0 < m < p

〈0〉 = b6ub4 u
[β−5] = 〈ε〉

[1]

′(〈ε〉′)p−1cs−11p+1 m = 0

u
[β−10m−5] = (〈ε〉′)pcs−11p 0 < m < p

〈1〉 = b8ub2 u
[β−7] = 〈σ1〉′

[1]
〈σ2〉′ . . . 〈σv〉′cs−11v+1 α0 = σ1 . . . σv, m = 0

u
[β−10m−7] = 〈σ1〉′〈σ2〉′ . . . 〈σv〉′cs−11v αm = σ1 . . . σv, 0 < m < p, m 6= h

u
[β−10h−7] = bus−1

halting tracks u
[2i] = bs i = {0, 1, 2, 3, . . . β−2

2 }

We obtain T ′C by modifying tag system TC from Section 3.1. In T ′C , u is defined by Table 2
and we have 〈0〉 = b6ub4, 〈ε〉 = b4ub6, 〈1〉 = b8ub2. The deletion number is now β = 10p, and
|u| = βs with s = 11(max(p+n+β−2, r)). On input uβ−1uβ . . . ulb tag system T ′C reads track
u

[β−1] and from row 1 of Table 2 this appends bβ−2〈w1〉〈w2〉 . . . 〈wn〉us−11(n+p)−β+2(〈ε〉)p.
So T ′C begins its computation by appending the encoding of the input to C. Reading
uβ−1uβ . . . ulb, which has a shift change of β − 1, causes us to enter the encoded data-
word with a shift of β − 1 and this means that we can enter u garbage objects with shift
β − 1 and read the track that appends the encoded input. To avoid this we append the
word bβ−2 to the left of 〈w1〉 and since bβ−2 has a shift change of 2 the encoded input is
entered with shift [1] (instead of [β − 1]). After reading this bβ−2 T ′C begins the simulation
of C on input w, making use of the same algorithm as TC . Since we enter the encoding
of the input word w with shift [1] and objects 〈0〉 = b6ub4 and 〈1〉 = b8ub2 now have a
shift change of β − 10, T ′C enters objects with shifts of the form [(β − 10m + 1)) mod β].
This means that when reading garbage object u and objects 〈ε〉, 〈0〉, and 〈1〉, we enter u
with shifts of [(β − 10m+ 1)) mod β], [(β − 10m− 3)) mod β], [(β − 10m− 5)) mod β] and
[(β − 10m − 7)) mod β] respectively. This gives the shift values for the tracks in Table 2.
By comparing the tracks in Tables 1 and 2 we can see that the when objects in T ′C are read
they append similar sequences of objects to those in TC . So the computation of T ′C proceeds
in the same manner as the computation of TC . However, if C appends αh then we enter 〈1〉
with shift [β − 6h] and track u

[β−6h−4] = bcs−1 is read appending the word bus−1. When
bus−1 is read during the next traversal of the dataword the single b in this word causes a
shift change of β − 1 which means that all u subwords in the dataword of T ′C will now be
entered with an even valued shift. From row 10 of Table 1 all even valued tracks in u append
only b symbols and so after one further traversal the dataword consists entirely of b symbols.
After this the rule b→ b, which appends one b and deletes β symbols, is repeated until the
number of symbols is < β and the computation halts. J

T. Neary 657

Table 3 Table defining u for the cyclic tag system C = 10, 0. In the middle column is the sequence
of symbols (track) read in u when the object in the left column is entered with shift (8− 4m) mod 8,
where αm is a cyclic tag system appendant, 〈1〉′ = bbbcb, 〈0〉′ = bbcbb and 〈0〉

[1]

′ = bcbb.

Object Track read in u Values for m and αm

u u
[(8−4m) mod 8] = c10 0 6 m < 2

〈ε〉 = bubbb u
[7] = cbbb(bcbbb)c m = 0

u
[3] = c10 m = 1

〈0〉 = bbubb u
[6] = cbbb(bcbbb)c m = 0

u
[2] = c10 m = 1

〈1〉 = bbbub u
[5] = 〈0〉

[1]

′c6 α0 = 0

u
[1] = 〈0〉′〈1〉′ α1 = 01

3.3 Example Simulation for TC

3.3.1 Using Table 1 to define u

To help explain how Table 1 is used to define u, we take the example of defining u for the
cyclic tag system program C = 0, 01. The value for u is given in Equation (7), where to
improve readability, we have split u into two equal length subwords u′ and u′′ with a space
between every fourth symbol.

u = u′u′′ (7)
u′ = cbcc cbcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb

u′′ = cbcc cccc cbcc ccbb cbcc ccbb cccc ccbb cbcc cccc

From Section 3.1 when C = 0, 01 we have p = 2, s > 10, β = 8, |u| = 80, α0 = 0 and
α1 = 01. By substituting these values into Table 1 we get Table 3 which defines u for our
tag system that simulates C = 0, 01. Table 3 defines the word u as a series of tracks. Recall
from Section 2.1 that a track w[z] = wzwz+βwz+2β , . . . , wz+lβ in a word w is the sequence of
symbol read in that word when it is entered with shift z. Here β = 8 and so for m = 0, row
1 of Table 3 defines track u

[0] = u0u8u16 . . . u72 = c10, which is shown in bold below.

u′ = cccbcc cbcc cccbcc ccbb cccccc cbbb cccbcc cbbb cccbcc ccbb
u′′ = cccbcc cccc cccbcc ccbb cccbcc ccbb cccccc ccbb cccbcc cccc

Taking row 2 of Table 3 gives u[7] = u7u15u23 . . . u79 = cbbb(bcbbb)c which again is given in
bold immediately below.

u′ = cbcc cbcccc cbcc ccbbbb cccc cbbbbb cbcc cbbbbb cbcc ccbbbb
u′′ = cbcc cccccc cbcc ccbbbb cbcc ccbbbb cccc ccbbbb cbcc cccccc

Rows 3 to 7 of Table 3 give the tracks that complete the definition of u for our tag system
that simulates the cyclic tag system C = 10, 0.

STACS 2015

658 Undecidability in Binary Tag Systems and the Post Correspondence Problem

3.3.2 Simulating a Computation Step with TC.
In this section we give the low level details of our simulation algorithm for TC by simulating
the first computation step (000, 01 11 ` 0,010101 10) of cyclic tag system C = 0, 01 on
the input dataword 11. The input dataword 11 to C is encoded via Definition 7 as the tag
system dataword 〈1〉〈1〉 and using 〈1〉 = bbbub and Equation (7) this can be rewritten as

〈1〉︷ ︸︸ ︷
bbb cbcc cbcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb︸ ︷︷ ︸

u′

u′′b 〈1〉 (8)

Because the dataword is quite long we only give the left end of the dataword as b and c

symbols and use higher level objects on the right. In configuration (8) the leftmost symbol
is b and so we apply the rule b→ b by appending b and deleting the leftmost 8 symbols from
the dataword to give

` bcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb︸ ︷︷ ︸
u
[5]
′

u′′b 〈1〉 b (9)

Above u is entered with shift 5 and so we begin reading track u
[5] from Table 3. We apply

the rules b→ b and c→ u of TC to give the next four computation steps

` cbb cccc cbbb cbcc cbbb cbcc ccbb u′′b 〈1〉 bb
` bbb cbcc cbbb cbcc ccbb u′′b 〈1〉 bbu
` bbb cbcc ccbb u′′b 〈1〉 bbub
` cbb u′′b 〈1〉 bbubb︸ ︷︷ ︸

〈0〉

During the first 5 computation steps the word 〈0〉 = bbubb was appended to the dataword.
Below we give a rewritten form of the configuration immediately above where bbubb is re-
placed with 〈0〉 and u′′ is replaced with its value from Equation (7). We also give the next
5 computation steps

cbb cbcc cccc cbcc ccbb cbcc ccbb cccc ccbb cbcc cccc︸ ︷︷ ︸
u′′

b 〈1〉〈0〉

`5 ccc b 〈1〉〈0〉 u5

Below we have rewritten the configuration given immediately above and given the last
configuration in this simulated computation step.

ccc b

〈1〉︷ ︸︸ ︷
bbb cbcc cbcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb︸ ︷︷ ︸

u′

u′′b 〈0〉u5 (10)

`

〈1〉
[4]︷ ︸︸ ︷

bcc cbcc cbcc ccbb cccc cbbb cbcc cbbb cbcc ccbb︸ ︷︷ ︸
u
[1]
′

u′′b 〈0〉u6 (11)

T. Neary 659

In Equation (11) above we have finished reading the leftmost 〈1〉 in the dataword and
completed our simulation of the computation step (000, 01 11 ` 0,010101 10). The word 〈0〉u6

was appended simulating appendant α0 = 0 from the program C = 0, 01 was appended.
From Section 3.1 the u subwords in u6 are considered garbage objects and these u subwords
have no effect on the computation (see first paragraph of Section 3.2). Also, in Equation (11)
we see that the next 〈1〉 is entered with shift 4 which encodes that second appendant α1 = 01
in the program C = 0, 01 is now marked. To see this recall that entering an object with a
shift of (β − 4m) mod β encodes that appendant αm is marked and since β = 8 we get a
shift of 4 when m = 1 meaning α1 is marked. The dataword in Equation (11) is of the form
given in Equation (1) and is ready to begin simulation of the next computations step.

4 The Post Correspondence Problem for 5 Pairs of Words

In Theorem 11 we reduce the halting problem for the binary tag system given in Lemma 9
to the Post correspondence problem for 5 pairs of words.

I Definition 10 (Post correspondence problem). Given a set of pairs of words {(ri, vi)|ri, vi ∈
Σ∗, i ∈ {0, 1, 2 . . . , n}} where Σ is a finite alphabet, determine whether or not there exists a
non-empty sequence i1, i2, . . . il,∈ {0, 1, 2 . . . , n} such that ri1ri2 . . . ril = vi1vi2 . . . vil .

I Theorem 11. The Post correspondence problem is undecidable for 5 pairs of words.

Proof. We reduce the halting problem for the binary tag systems T ′C in Lemma 9 to the
Post correspondence problem instance given by the 5 pairs of words

P = {(1, 1〈u0〉〈u1〉 . . . 〈ul〉10), (10β1, 110), (10β1, 0), (1, 0), (10β1111, 1111)}

where ε is the empty word and ui ∈ {b, c}. The symbols b and c in T ′C are encoded as 〈b〉 =
10β1 and 〈c〉 = 1 respectively, where β is the deletion number of T ′C . Let r = ri1ri2 . . . ril
and v = vi1vi2 . . . vil , where each (ri, vi) ∈ P and r is a prefix of v. We will call the pair
(r, v) a configuration of P. An arbitrary dataword x0x1 . . . xqb ∈ {b, c}∗b is encoded by a P
configuration of the form

(r, v) = (r, r〈x0〉〈x1〉 . . . 〈xq〉10β) (12)

In each configuration (r, v), the unmatched part of v (i.e. 〈x0〉〈x1〉 . . . 〈xq〉10β) encodes the
current dataword of T ′C .

Starting from the pair (1, 1〈u0〉〈u1〉 . . . 〈ul〉10), if u0 = c we add the pair (1, 0) and this
matches 〈c〉 = 1 simulating the deletion of u0. If, on the other hand, u0 = b we add the
pair (10β1, 0) and this matches 〈b〉 = 10β1 simulating the deletion of u0. So after matching
〈u0〉 we have (1〈u0〉, 1〈u0〉〈u1〉 . . . 〈ul〉100). We match β − 1 encoded T ′C symbols in this
way to give (r, v) = (1〈u0〉 . . . 〈uβ−2〉, 1〈u1〉〈u2〉 . . . 〈ul〉10β). The configuration is now of the
form given in Equation (12) and the unmatched sequence 〈uβ−1〉 . . . 〈ul〉10β in v encodes
the input dataword to T ′C in Lemma 9.

A step of T ′C on an arbitrary dataword x0x1 . . . xqb is of one the two forms:

cx1 . . . xqb ` xβ−1 . . . xqbu1 . . . ulb (13)
bx1 . . . xqb ` xβ−1 . . . xqbb (14)

These computation steps are simulated as follows: In Equation (12), if x0 = c then 〈x0〉 = 1
and we add the pair (1, 1〈u0〉〈u1〉 . . . 〈ul〉10) to simulate the T ′C rule c → u0 . . . ulb, and

STACS 2015

660 Undecidability in Binary Tag Systems and the Post Correspondence Problem

this gives (r1, r1〈x1〉 . . . 〈xq〉10β1〈u0〉〈u1〉 . . . 〈ul〉10). In Equation (12), if x0 = b then
〈x0〉 = 10β1 and we add the pair (10β1, 110) to simulate the T ′C rule b → b, giving
(r10β1, r10β1〈x1〉 . . . 〈xq〉10β110). In both cases we simulate the deletion of a further β− 1
tag system symbols as we did in the previous paragraph to complete the simulated computa-
tion step. So if x0 = c this gives (r1〈x1〉 . . . 〈xβ−1〉, r1〈x1〉 . . . 〈xq〉10β1〈u0〉〈u1〉 . . . 〈ul〉10β),
with the unmatched part in this pair encoding the new dataword on the right of Equa-
tion (13). Or, if x0 = b we get (r10β1〈x1〉 . . . 〈xβ−1〉, r10β1〈x1〉 . . . 〈xq〉10β110β), with the
unmatched part in this pair encoding the new dataword on the right of Equation (14). The
simulated computation step for both cases is now complete.

Now we show that P simulates T ′C halting with a matching pair of words. Recall that
|u| = sβ where we can choose s to be any natural number greater than some constant (see
Section 3.1). We choose s to be of the form s = x(β − 1) + 1 and so the input dataword
uβ−1 . . . ulb to T ′C has length xβ(β−1)+1 and the rules either increase its length by xβ(β−1)
(rule c → u0 . . . ulb) or decrease it by β − 1 (rule b → b), which means all datawords of T ′C
have length y(β − 1) + 1, where y ∈ N. From Lemma 9, T ′C halts when the length of its
dataword (which has the form b∗) is less than the deletion number β. So, when T ′C halts we
have y(β − 1) + 1 < β which means the dataword is a single b. From Equation (12), this
is encoded as the configuration (r, v) = (r, r10β). By appending the pair (10β1111, 1111) to
(r, v), we get the matching pair (r10β1111, r10β1111) when T ′C halts.

To complete our proof we show that choices that do not follow the simulation as described
above leads to a mismatch. We must have (1, 1〈u0〉〈u1〉 . . . 〈ul〉10) as the leftmost pair as
putting any other pair from P on the left will not give a match. Now recall that the pair
(1, 1〈u0〉〈u1〉 . . . 〈ul〉10) encodes the initial configuration (or input) for T ′C . So now we show
that given the encoding of an arbitrary configuration any choice that does not follow the
simulation leads to a mismatch. From Equation (12) an arbitrary configuration has the
form (r, r〈x0〉〈x1〉 . . . 〈xq〉10β). If x0 = b then 〈x0〉 = 10β1 and we cannot choose either of
the pairs (1, 1〈u0〉〈u1〉 . . . 〈ul〉10) or (1, 0) as they will allow no further matches, the pair
(10β1111, 1111) cannot be chosen as four consecutive 1s do not appear in the encoding (this
is because in u we cannot have 2 encoded c symbols (〈c〉 = 1) next to each other). The pair
(10β1, 0) appends a 0 onto the right sequence to give 10β+1 which cannot be matched as it
is only possible to match 0 sequences of the from 10β1. Similar arguments are used for the
case of x0 = c and so we do not repeat them. After we have matched 〈x0〉 our simulation
algorithm requires that we simulate the deletion of a further β − 1 symbols. If we deviate
from the simulation either we find almost immediately that no more matches are possible
or we end up with a sequence of zeros that does not have the form 10β1 and so cannot be
matched. After simulating the deletion of β − 1 symbols we have completed the simulation
of an arbitrary computation step and arrived at an encoded configuration of the form given
by Equation (12). So it is not possible to find a match in P if we do not follow the simulation
described above. Therefore, P has a matching sequence if and only if T ′C halts. J

By applying the reductions in [8] and [3] to P in Theorem 11 we get Corollary 12.

I Corollary 12. The matrix mortality problem is undecidable for sets with six 3×3 matrices
and for sets with two 18× 18 matrices.

Acknowledgements: This work is supported by Swiss National Science Foundation grant
number 200021-141029. I would like to thank Matthew Cook, Damien Woods, Vesa Halava,
and Mika Hirvensalo for their comments and discussions.

T. Neary 661

References
1 Vincent D. Blondel and John N. Tsitsiklis. When is a pair of matrices mortal? Information

Processing Letters, 63(5):283–286, 1997.
2 Vincent D. Blondel and John N. Tsitsiklis. A survey of computational complexity results

in systems and control. Automatica, 36(9):1249–1274, 2000.
3 Julien Cassaigne and Juhani Karhumäki. Examples of undecidable problems for 2-generator

matrix semigroup. TCS, 204(1-2):29–34, 1998.
4 Volker Claus. Some remarks on PCP(k) and related problems. Bull. EATCS, 12:54–61,

1980.
5 John Cocke and Marvin Minsky. Universality of tag systems with P = 2. Journal of the

ACM, 11(1):15–20, 1964.
6 Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15(1):1–

40, 2004.
7 Andrzej Ehrenfeucht, Juhani Karhumäki, and Grzegorz Rozenberg. The (generalized) Post

correspondence problem with lists consisting of two words is decidable. TCS, 21(2):119–144,
1982.

8 Vesa Halava and Tero Harju. Mortality in matrix semigroups. American Mathematical
Monthly, 108(7):649–653, 2001.

9 Vesa Halava, Tero Harju, and Mika Hirvensalo. Undecidability bounds for integer matrices
using Claus instances. IJFCS, 18(5):931–948, 2007.

10 Tero Harju and Maurice Margenstern. Splicing systems for universal Turing machines. In
DNA 10, volume 3384 of LNCS, pages 149–158. Springer, 2005.

11 Kristian Lindgren and Mats G. Nordahl. Universal computation in simple one-dimensional
cellular automata. Complex Systems, 4(3):299–318, 1990.

12 Yuri Matiyasevich and Géraud Sénizergues. Decision problems for semi-Thue systems with
a few rules. TCS, 330(1):145–169. (An earlier version appeared in “11th Annual IEEE
Symposium on Logic in Computer Science, LICS 1996".), 2005.

13 Marvin Minsky. Recursive unsolvability of Post’s problem of “tag" and other topics in
theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961.

14 Marvin Minsky. Size and structure of universal Turing machines using tag systems. In
Recursive Function Theory: Proceedings, Symposium in Pure Mathematics, volume 5, pages
229–238, Provelence, 1962. AMS.

15 Turlough Neary and Damien Woods. P-completeness of cellular automaton Rule 110. In
ICALP 2006, Part I, volume 4051 of LNCS, pages 132–143. Springer, 2006.

16 Michael S. Paterson. Unsolvability in 3 × 3 matrices. Studies in Applied Mathematics,
49(1):105–107, 1970.

17 Emil L. Post. Formal reductions of the general combinatorial decision problem. American
Journal of Mathematics, 65(2):197–215, 1943.

18 Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of The American
Mathematical Society, 52:264–268, 1946.

19 Raphael M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones Mathematicae, 12(3):177–209, 1971.

20 Yurii Rogozhin. Small universal Turing machines. TCS, 168(2):215–240, 1996.
21 Paul Rothemund. A DNA and restriction enzyme implementation of Turing machines. In

DNA Based Computers, volume 27 of DIMACS, pages 75–119. AMS, 1996.
22 Hao Wang. Tag systems and lag systems. Mathematical Annals, 152:65–74, 1963.
23 Damien Woods and Turlough Neary. On the time complexity of 2-tag systems and small

universal Turing machines. In 47th Annual IEEE Symposium on Foundations of Computer
Science, pages 439–448, 2006.

STACS 2015

