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Abstract. We present the results of the first ice sheet model
intercomparison project for higher-order and full-Stokes ice
sheet models. These models are compared and verified in
a series of six experiments of which one has an analytical
solution obtained from a perturbation analysis. The experi-
ments are applied to both 2-D and 3-D geometries; five ex-
periments are steady-state diagnostic, and one has a time-
dependent prognostic solution. All participating models give
results that are in close agreement. A clear distinction can
be made between higher-order models and those that solve
the full system of equations. The full-Stokes models show a
much smaller spread, hence are in better agreement with one
another and with the analytical solution.

Correspondence to:F. Pattyn
(fpattyn@ulb.ac.be)

1 Introduction

According to the recent IPCC report (IPCC, 2007), dynam-
ical ice-flow processes not included in current models but
suggested by recent observations could increase the vulnera-
bility of the ice sheets to warming, increasing future sea level
rise. Understanding of these processes is limited, and there is
no consensus on their magnitude. It was also stressed that a
net ice mass loss could occur if dynamical ice discharge dom-
inates the ice sheet mass balance (IPCC, 2007). Although the
viscous flow of ice is rather well understood on a theoretical
level, confidence in models is low because processes at the
ice base and the seaward margin are poorly understood and
have not been represented in models. Several stress compo-
nents come into play in regions of high variability in basal
topography and/or basal slipperiness.
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Despite the lack of comprehensive predictive ice sheet
modeling, the ice sheet modeling community has evolved
considerably over the last decade. Increasing computational
power has led to the development of more complex ice
sheet models, with varying degrees of approximations to the
Stokes equations. However, progress has been hampered by
the lack of a universal verification framework and in particu-
lar by a lack of full-Stokes analytical solutions. While meth-
ods exist for constructing exact solutions to the Newtonian
full-Stokes equations in the flowline case (e.g.Ladyzhen-
skaya, 1969), obtaining analytical solutions for the 3-D case
is less straightforward. Nevertheless, solutions based on per-
turbation analysis exist (e.g.Gudmundsson, 2003), and were
used for this study. Benchmark validation exercises were car-
ried out on large-scale ice-sheet and ice-shelf models in the
1990s (Huybrechts et al., 1996; MacAyeal et al., 1996; Payne
et al., 2000), but these tests were largely restricted to zero-
order (SIA) models and solutions. Here we present an in-
tercomparison exercise which involves 28 higher-order flow
models of varying complexity. The experiments described
in this paper are designed to evaluate the conditions under
which different higher-order solutions are viable and to de-
termine whether numerical issues affect the result.

During the first and second EISMINT1 model intercom-
parison exercises, a number of benchmarks were proposed
specifically for ice sheet models (Huybrechts et al., 1996,
1998; Payne et al., 2000) and ice shelf models (MacAyeal
et al., 1996). These ice sheet models were based on the
zeroth-ordershallow-ice approximation(SIA; Hutter, 1983),
incorporating only vertical shear stresses in the force bal-
ance. The ISMIP-HOM exercise focuses on so-called higher-
order models, i.e. models that incorporate further mechanical
effects, principally longitudinal stress gradients, as well as
those that solve the full system of equations of the Stokes
problem.

The six experiments which comprise this benchmark exer-
cise are designed to be universally accessible to many differ-
ent types of models, i.e. flowline (2-D), vertically integrated
planform (2.5-D) and full 3-D models. Furthermore, the ex-
periments are defined as well-posed continuum problems so
that their application is not limited to any specific numeri-
cal methodology. The equations have been solved using well
established finite-difference and finite-element methods, in
addition to more esoteric spectral techniques. The latter hold
particular promise for providing high-quality results in the
absence of analytical solutions, but since only one partici-
pant provided spectral model results, they were not isolated
for comparison.

With the exception of Exp. F, all experiments are diag-
nostic; i.e. time evolution is not considered. This means
that for a given ice geometry, a Glen-type flow law, and ap-
propriate boundary conditions, the stress and velocity fields

1EISMINT: European Ice Sheet Model INTercomparison;http:
//homepages.vub.ac.be/∼phuybrec/eismint.html

can be calculated. Exp. F considers the time-dependent re-
sponse (the experiment is run until the free surface and ve-
locity field reach a steady state) for a constant viscosity (lin-
ear flow law). Constant viscosity is assumed because in this
case there exist analytic solutions derived from a first-order
perturbation analysis of flow down an inclined plane (Gud-
mundsson, 2003). In all experiments, thermomechanical ef-
fects are neglected and ice is considered to be isothermal and
isotropic.

2 General model setup

2.1 Model physics, parameters and constants

Higher-order models are ice-sheet or glacier models that in-
corporate effects not present in the shallow-ice approxima-
tion. In most cases this implies the inclusion of longitudi-
nal stress gradients apart from the two horizontal-plane shear
components (Hindmarsh, 2004). Longitudinal stresses have
recently been termed “membrane stresses” when considered
in three dimensions (Hindmarsh, 2006). The suite of models
is based on conservation laws of mass and momentum, i.e.

∇ · v = 0 , (1)

ρ
dv
dt

= ∇ · T + ρg , (2)

whereρ is the ice density,g is gravitational acceleration,v
is the velocity vector, andT is the stress tensor. Values for
parameters and constants are given in Table1. Generally,
acceleration terms in Eq. (2) are neglected. Ice incompress-
ibility is more easily described if the stress tensor is split into
a deviatoric part and an isotropic pressureP ,

T = T′
− P I , (3)

whereP=−
1
3tr(T). The constitutive equation for ice then

links deviatoric stresses to strain rates:

T′
= 2η ė , (4)

whereT′ andėare the deviatoric stress and strain-rate tensor,
respectively, andη is the effective viscosity. Both linear and
nonlinear ice rheologies are considered. In the latter case
(Glen’s flow law),η is strain-rate dependent and defined by

η =
1

2
A−1/n ε̇

(1−n)/n
e , (5)

where ε̇e is the effective strain rate. For the case of linear
rheology, Eq. (5) reduces toη=(2A)−1, whereA is spatially
uniform (i.e., the ice is isothermal). Neglecting acceleration
terms, the momentum balance is written as:

div T + ρg = div T′
− gradP + ρg = 0 , (6)
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Table 1. Constants for the numerical model.

Constant Value Units

A Ice-flow parameter 10−16 Pa−n a−1

ρ Ice density 910 kg m−3

g Gravitational constant 9.81 m s−2

n Exponent in Glen’s flow law 3
Seconds per year 31 556 926 s a−1

Since acceleration due to gravity acts only in the vertical, this
leads to

∂τ ′
xx

∂x
−

∂P

∂x
+

∂τ ′
xy

∂y
+

∂τ ′
xz

∂z
= 0 , (7)

∂τ ′
yx

∂x
+

∂τ ′
yy

∂y
−

∂P

∂y
+

∂τ ′
yz

∂z
= 0 , (8)

∂τ ′
zx

∂x
+

∂τ ′
zy

∂y
+

∂τ ′
zz

∂z
−

∂P

∂z
= ρg . (9)

Solving Eqs. (7)–(9) leads to the full-Stokes solution. Sim-
plifications of these equations lead to the various higher-
order approximations discussed below.

2.2 Boundary conditions

In Exps. A, B, E1 and F1 the ice is frozen to the bed (vb=0).
For the other experiments, basal sliding is introduced through
a friction law, characterized by a friction coefficientβ2. This
friction law has the form of

β2t · v = t · (Tnb) = τb , (10)

wherenb is the unit normal vector pointing into the bedrock,
t is the unit tangent vector, andβ2 (Pa a m−1) is a posi-
tive scalar (MacAyeal, 1993). Basal shear stressτb is not
equal to the driving stress but is part of the solution. The
stress is negligible at the upper ice surface, implying that
ns ·(Tns)=Patm≈0.

Kinematic boundary conditions apply at the upper and
lower surfaces of the ice mass, i.e.

∂zi

∂t
+ vx(zi)

∂zi

∂x
+ vy(zi)

∂zi

∂y
− vz(zi) = 0 , (11)

for i=(s, b). Since the vertical velocity field must obey the
incompressibility condition Eq. (1), and the surface accumu-
lation/ablation is zero, the vertical velocity at the surface con-
tains the local imbalance as well and becomes a model out-
put.

2.3 Model domain

For the 3-D experiments the model domain is a square of side
L, and for 2-D experiments the domain is a flowline of length
L in thex−z plane. The minimum number of grid points is
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Fig. 1. Basal topographyzb (m) for Exp. A according to Eq. (13)
for L=80 km. Ice flow is from left to right.

not predefined, and any type of discretization scheme can be
used. The number of grid points in the horizontal and vertical
directions can be chosen freely. The basic parameter for the
experiments is the length scaleL of the domain. Exps. A–D
are carried out forL=160, 80, 40, 20, 10 and 5 km, respec-
tively, which results in aspect ratiosε=H/L varying from
0.006 to 0.2. Periodic boundary conditions are applied in the
horizontal, so that the domain is surrounded by an infinite
number of copies of itself.

3 Experiment description

3.1 Exp. A: Ice flow over a bumpy bed

Exp. A considers a parallel-sided slab of ice with a mean
ice thicknessH=1000 m lying on a sloping bed with a mean
slopeα=0.5◦. This slope is maximum inx and zero iny. The
basal topography is then defined as a series of sinusoidal os-
cillations with an amplitude of 500 m. The surface elevation
is defined as

zs(x, y) = −x · tanα . (12)

The basal topography is then given by

zb(x, y) = zs(x, y) − 1000+ 500 sin(ω x) · sin(ω y) , (13)

wherex ∈ [0, L] andL=160, 80, 40, 20, 10 and 5 km, re-
spectively. The basal bumps have a frequency ofω=2π/L.
The bed topography is shown in Fig.1.
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Fig. 2. Basal friction coefficientβ2 for Exp. C.

3.2 Exp. B: Ice flow over a rippled bed

The only difference with Exp. A is that the basal topography
does not vary withy, so that the experiment is suitable for
2-D flowline models as well. The basal topography is thus
formed by a series of ripples with an amplitude of 500 m:

zs(x, y) = −x · tanα (14)

zb(x, y) = zs(x, y) − 1000+ 500 sin(ω x) . (15)

3.3 Exp. C: Ice stream flow I

The experiment setup is similar to Exp. A, except that the
bedrock topography is flat, so that the ice thickness is spa-
tially uniform (H=1000 m):

zs(x, y) = −x · tanα (16)

zb(x, y) = zs(x, y) − 1000, (17)

wherex ∈ [0, L] andL=160, 80, 40, 20, 10 and 5 km, re-
spectively, and whereα=0.1◦. The basal friction coefficient
is prescribed as

β2(x, y) = 1000+ 1000 sin(ω x) · sin(ω y) . (18)

The β2-field is shown in Fig.2. The basal friction oscilla-
tions have a frequencyω=2π/L.

3.4 Exp. D: Ice stream flow II

The only difference with Exp. C is that the basal friction co-
efficient does not vary withy, so that the experiment is suited
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Fig. 3. Surface and bedrock profile of Haut Glacier d’Arolla.

for 2-D flowline models as well. The basal friction field is
thus formed by a series of ripples defined as

β2(x, y) = 1000+ 1000 sin(ω x) . (19)

Note that in Exps. C and D the basal friction coefficientβ2

goes to zero within the domain.

3.5 Exp. E: Haut Glacier d’Arolla

Exp. E is a diagnostic experiment along the central flow-
line of a temperate glacier in the European Alps (Haut
Glacier d’Arolla), based on earlier experiments byBlatter
et al. (1998) and Pattyn (2002). Model input consists of
the longitudinal surface and bedrock profiles of Haut Glacier
d’Arolla, Switzerland, according to the Little Ice Age ge-
ometry (Fig.3). The longitudinal profile of this glacier has
a very simple geometry, hence the resulting stress field is
not influenced by geometrical perturbations such as the pres-
ence of a steep ice fall. In a first experiment (E1), a zero
basal velocity is considered (β2

=∞), and the width of the
drainage basin is kept equal to 1 along the entire flowline.
The flow-law rate factorA=10−16 Pa−n a−1 is assumed con-
stant. Upstream and downstream boundary conditions imply
zero ice thickness and velocity. The input file has a resolu-
tion 1x=100 m, but the authors were free to choose any grid
resolution.

A second experiment (E2) considers a narrow zone of zero
traction, similar to the experiment described inBlatter et al.
(1998):

β2
= 0 for 2200≤ x ≤ 2500m

vb = 0 otherwise

The Cryosphere, 2, 95–108, 2008 www.the-cryosphere.net/2/95/2008/
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3.6 Exp. F: Prognostic experiment

Exp. F is a prognostic experiment for which the free surface
is allowed to relax until a steady state is reached for zero
surface mass balance:

lim
t→∞

∂H

∂t
= lim

t→∞

−∇h ·

zs∫
zb

vhdz

 = 0 , (20)

wherevh is the horizontal velocity vector (m a−1). Basic
model setup differs from the setup in Exps. A and C. A slab
of ice with mean ice thicknessH (0)=1000 m is considered,
resting on a sloping bed with a mean slopeα=3.0◦ (Fig. 4).
This slope is maximum inx and zero iny. The bedrock plane
is parallel to the surface plane and is perturbed by a Gaussian
bump. Initial bedrockB(0) and unperturbed surfaceS(0) ele-
vation are thus governed by

S(0)(x, y) = 0 (21)

B(0)(x, y) = −H (0)
+ a0

(
exp

[
−(x2

+ y2)

σ 2

])
, (22)

whereσ=10000m=10H (0) and wherex, y (m) are the hor-
izontal coordinates with respect to the center of the Gaus-
sian bump. The basal perturbation has a maximum height
of one-tenth of the mean ice thickness, i.e.a0=100=0.1H (0)

(Fig. 4). The domain sizeL is taken to be 100H (0) in x and
y. The horizontal coordinates for output are scaled by

x̂ =
x

H (0)
ŷ =

y

H (0)
. (23)

Periodic boundary conditions are applied in the horizontal.
The major difference with the previous experiments is that
n=1 in Eq. (5), so that the effective viscosity is constant
and becomesη=(2A)−1. Therefore, the unperturbed veloc-
ity field at the surface is defined by

U (0)
= AH (0)τ

(0)
b = ρgA

[
H (0)

]2
sinα , (24)

where τ
(0)
b =ρgH (0) sinα is the unperturbed basal

shear stress, andA=2.140373×10−7 Pa−1 a−1, so that
U (0)=100 m a−1.

Experiments are carried out for different values of the slip
ratio c, which determines the relation between the basal ve-
locity and basal drag. The basal velocity is written in terms
of a basal friction coefficientβ2, or

Ub =
τb

β2
. (25)

Following the scalings given byGudmundsson(2003), the
basal friction coefficient is related to the slip ratioc by

β2
=

(
cAH (0)

)−1
. (26)

0

−900

−1000

α

Fig. 4. Tilted coordinate system used for Exp. F.

Table 2. Constants for the model setup according to Exp. F.

Constant Value

A Ice-flow parameter 2.140373×10−7 Pa−1 a−1

n Flow law exponent 1
α Mean surface slope 3◦

a0 Amplitude Gaussian bump 100 m
σ Width Gaussian bump 10 000 m

Experiments are run for slip ratiosc=0 and 1 (F1 and F2,
respectively). It is easily demonstrated thatU

(0)
b =cU (0). Ta-

ble 2 lists the main constants used for Exp. F. Using these
settings, the model should run until a steady state of the free
surface is reached.

4 Model classification

A total of 27 numerical models and one analytical model
from 20 contributors participated in the intercomparison ex-
ercise. Table3 summarizes model characteristics and con-
tributions. The different Stokes approximants extend the
shallow-ice approximation in various ways (Hutter, 1983;
Hindmarsh, 2004). We will follow here the classification
scheme for higher-order models byHindmarsh(2004), who
gives a detailed description of the different “longitudinal
stress schemes” widely used in ice sheet modeling. The
most common longitudinal stress approximations introduce
the two horizontal velocity components as field variables.
This leads to an elliptic system with two rather than four
variables of the full system at points in three-dimensional
space (Pattyn, 2003; Hindmarsh, 2004), and the resulting lin-
ear systems are generally better conditioned than those re-
sulting from the numerical analysis of the full system (Hind-
marsh, 2004). These models are termed “multilayer models”.
A number of these models solve an elliptic system at one

www.the-cryosphere.net/2/95/2008/ The Cryosphere, 2, 95–108, 2008



100 F. Pattyn et al.: Benchmarks for higher-order and full-Stokes ice sheet models

Table 3. List with the 28 participating models. Model: model acronym based on the initials of each author; Type: the model type (see text
for description); Dims: model dimensions; Method: numerical method (FE = finite elements, FD = finite differences, Sp = spectral method,
FV = finite volume, An = analytical); A–F participation in the different experiments is marked with an x.

Model Type Dims Method A B C D E F Reference

aas1 full-Stokes 2-D FE x x x unpublished
aas2 full-Stokes 3-D FE x x xa x unpublished
ahu1 LMLa 3-D FD xa xa xa xa x Hubbard et al.(1998); Nienow et al.(2005)
ahu2 LMLa 2-D FD x xc Hubbard et al.(1998); Nienow et al.(2005)
bds1 LMLa 2-D FE x x x unpublished
cma1 full-Stokes 3-D FE x x x x x x Martin et al.(2003)
cma2 LMLa 3-D FE x x x x x unpublished
dpo1 L1L2 2-D FD x x Pollard and DeConto(2007)
fpa1 LMLa 3-D FD x x x x x x Pattyn(2003)
fpa2 full-Stokes 3-D FD xc xb Pattyn(2008)
fsa1 LMLa 3-D FD x x x x based onPattyn(2003); Colinge and Rappaz(1999)
ghg1 full-Stokes 3-D An xd Gudmundsson(2003)
jvj1 full-Stokes 3-D FE xb x Johnson and Staiger(2007)
lpe1 L1L1 2-D FD x based onMacAyeal(1989); Pattyn(2003)
mbr1 LMLa 3-D FD xb xb xc xc x x Breuer et al.(2006)
mmr1 full-Stokes 3-D FE x x x x unpublished
mtk1 LTSML 3-D FD x x xa x based onPattyn(2003); Hindmarsh(2004)
oga1 full-Stokes 3-D FE x x x x x x Zwinger et al.(2007); Gagliardini and Zwinger(2008)
oso1 SIA’ 3-D xa xa unpublished
rhi1 full-Stokes 3-D Sp x x x x Hindmarsh(2004)
rhi2 LMLa 3-D Sp x x x x Hindmarsh(2004)
rhi3 full-Stokes 3-D Sp x x x x Hindmarsh(2004)
rhi4 L1L2 3-D Sp xa xa x x Hindmarsh(2004)
rhi5 L1L1 3-D Sp x x x x Hindmarsh(2004)
spr1 full-Stokes 2-D FV xa xd Price et al.(2007)
ssu1 full-Stokes 2-D FE x x x Sugiyama et al.(2003)
tpa1 LMLa 3-D FD x x x x x based onPattyn(2003); Hindmarsh(2004)
yko1 full-Stokes 3-D FD x xd unpublished

a not forL=5 km
b not forL=5 and 10 km
c not forL=5, 10 and 20 km
d only no-sliding case

elevation only (generally the upper surface), giving a com-
putationally two-dimensional problem. These higher-order
approximations are labeled L1L1, L1L2, LMLa and LTSML
(Hindmarsh, 2004).

The L1L1 approximation is a one-layer longitudinal stress
scheme usingτ ′

xx at the surface computed by solving ellip-
tic equations and is identical to the approximation used by
MacAyeal(1989). An alternative approximation is the L1L2
approach, or one-layer longitudinal stress scheme, usingε̇xx

at the surface computed by solving elliptical equations with
a vertical correction ofτ ′

xx . Here, the surface velocities used
in computing the non-horizontal plane stresses are computed
using the vertical shear stresses in the shear strain relation-
ship and in the sliding relationship.

The most common approximation is the LMLa or multi-
layer longitudinal stress scheme. This is the classic longitu-

dinal stress scheme used byBlatter(1995) andPattyn(2003).
Compared with L1L2, the longitudinal stresses use the veloc-
ity at the corresponding elevations rather than at the surface,
and the stress-invariant calculations are self-consistent rather
than using the SIA stress (Hindmarsh, 2004). Finally, there is
the LTSML or multilayer longitudinal stresses scheme with
horizontal shear stress gradients approximated by SIA. Here,
horizontal gradients of the vertical velocity are neglected.
Horizontal plane shear stresses, when needed to calculate the
horizontal gradient of such shear stresses, are approximated
by SIA values. This approach is similar to LMLa, but with
inclusion of the vertical resistive stress, as inVan der Veen
and Whillans(1989).

The Cryosphere, 2, 95–108, 2008 www.the-cryosphere.net/2/95/2008/
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Fig. 5. Results for Exp. A: norm of the surface velocity across the bump aty=L/4 for different length scalesL. The mean value and
standard deviation are shown for both types of models.

Fig. 6. Results for Exp. B: norm of the surface velocity for different length scalesL. The mean value and standard deviation are shown for
both types of models.

5 Results

A graphical representation of all the results for each of the
contributing authors as well as the submitted data files are
found in the supplemental fileshttp://www.the-cryosphere.
net/2/95/2008/tc-2-95-2008-supplement.zip. The detailed

description of the experimental setup is given inhttp://www.
the-cryosphere.net/2/95/2008/tc-2-95-2008-supplement.zip.
An analysis on the CPU performance of each of the experi-
ments is presented in an accompanying paper (Gagliardini
and Zwinger, 2008).
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Fig. 7. Surface velocity profiles alongy=L/4 according to the an-
alytical SIA solution for Exps. A–D, based on Eqs. (27) and (28).
Results are independent ofL.

The numerical results are displayed in both numerical and
graphical format. A distinction is made between full-Stokes
(FS) and non-full-Stokes (NFS) models, such as LMLa,
LTSML, L1L2 and L1L1. All parameters refer to horizon-
tal surface velocities, which are determined as the norm of
the horizontal components of the velocity field, defined by

||vs||=

√
v2
x+v2

y . Velocities are displayed along a section

y=L/4 for Exps. A and C and along a central liney=L/2
for Exp. F. For the 2-D experiments we show results along the
flowline. The graphs show the mean velocity and its standard
deviation along each section or flowline for both FS and NFS
models. The tables present two parameters for each flowline
or section: the maximum value of the norm of the surface
velocity and the mean value of the velocity. For both param-
eters the mean and standard deviations are given for both FS
and NFS models.

5.1 Experiments A and B

The results for Exps. A and B are shown in Figs.5 and6,
respectively, and the numerical results are given in Tables4
and5. Each graph displays the norm of the surface veloc-
ity across the bumps aty=L/4 (for Exp. A) and along the
central flowline (for Exp. B), for the different length scales
and model groups (FS and NFS). The experiments were set
up such that for this longitudinal profile the SIA gives a solu-
tion independent ofL, which is not the case for higher-order
models. The surface velocity according to the SIA is given
by

vx(zs) = vx(zb) +
2A

n + 1
(ρg tanα)n H n+1 , (27)

wherevx(zb)=0 is the basal velocity (Fig.7). The maximum
surface velocity according to the SIA remains constant for
all length scales (119.69 m a−1). However, whenever topo-
graphic differences occur, longitudinal stress gradients must

develop which tend to smooth out the velocity field. For high
aspect ratiosε=H/L (hence low values ofL) this leads to a
more or less constant surface velocity field as the ice sheet
does not “feel” the individual bedrock undulations. Rather,
it feels the fast sequence of large bed undulations as a vis-
cous drag. The aspect ratioε determines the amplitude of
the horizontal surface velocity field, and the surface velocity
decreases from∼100 to∼10 m a−1.

Full-Stokes models closely agree with each other when
calculating the velocity field for different length scales, com-
pared to the larger spread of solutions for the higher-order
approximations (Tables4 and5). Several factors could be
responsible for the larger spread among NFS models: (i)
More models are participating; (ii) These models are solving
different continuum equations (LMLa, LTSML, L1L1, and
L1L2); (iii) At the highest aspect ratios, the different approx-
imations are not valid, so that the full-stress model needs to
be solved; and (iv) There are numerical errors relative to the
unknown exact solutions of the continuum equations. The
FS results are only subject to a spread from the latter cause.
For the smallest length scales the standard deviation for the
full-Stokes models reduces to<0.2 m a−1 (Tables4 and5).
The coarsest grid used by the participating models had di-
mensions 40×40, leading to a numerical mismatch of the or-
der of 2.5%, which is far smaller than the standard deviation
shown in Fig.5 for the higher-order models. It is therefore
very likely that the large spread associated with the higher-
order models is due to the invalidity of the approximations
compared to the full-Stokes solution.

The flowline experiments (Exp. B) show similar results
compared to the 3-D experiments (Exp. A). There are dif-
ferences, however, associated with the absence of transverse
stress gradients. A peculiarity is observed in the surface hor-
izontal velocity for the smallest length scaleL=5 km. The
surface velocity according toall full-Stokes models is larger
over the bump than over the trough, hence anti-correlated
with ice thickness (Fig.6). All the other approximations
(LMLa, LTSML, L1L2 and L1L1) predict that ice velocity
and thickness are positively correlated for all length scales.
The marked difference can be attributed to mass conserva-
tion, as at such high aspect ratios the horizontal ice flux can-
not be balanced by the vertical flux at the free surface since
the vertical velocity would be too large for the given depth.
The horizontal ice flux is therefore more or less constant,
inducing larger velocities for smaller depth and vice versa.
This behavior is noticeable only for the flowline experiments,
because in 3-D the ice can flow around the bumps. The flow
inversion is an artifact stemming from the diagnostic nature
of the experiments and would disappear if the free surface
were allowed to respond to the applied stress field. Higher-
order models fail to produce the velocity inversion, since the
stress field is determined solely from horizontal strain rate
components and vertical velocities are an a posteriori model
result (e.g.Pattyn, 2003).
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Table 4. Mean values (µ), standard deviation (σ ) and number of participating models (n) of the maximum horizontal ice velocity at the
surface in the direction of the flow. Results are listed for Exp. A–D and for each length scale. Units are m a−1.

L (km) 5 10 20 40 80 160
µ ( σ ) n µ ( σ ) n µ ( σ ) n µ ( σ ) n µ ( σ ) n µ ( σ ) n

Exp. A
NFS 15.33 (1.76) 7 26.04 (4.26) 10 41.03 (3.92) 11 64.73 (4.83) 11 88.33 ( 5.15 ) 11 104.77 ( 4.99 ) 11
FS 14.56 (0.19) 6 24.36 (0.47) 6 39.73 (1.30) 7 63.89 (2.35) 8 87.10 ( 4.04 ) 8 102.63 ( 6.51 ) 8
Exp. B
NFS 10.87 (1.40) 8 23.51 (4.29) 12 47.85 (4.14) 13 74.88 (5.13) 13 96.43 ( 5.76 ) 13 109.36 ( 4.52 ) 13
FS 11.76 (0.20) 9 22.82 (0.72) 10 46.91 (0.91) 10 73.77 (0.89) 10 95.12 ( 0.89 ) 10 108.33 ( 0.75 ) 10
Exp. C
NFS 12.14 (5.23) 9 15.39 (1.50) 11 18.31 (1.02) 11 28.48 (1.77) 11 60.99 ( 6.05 ) 11 141.38 (22.40) 12
FS 16.00 (0.01) 5 16.53 (0.31) 6 19.05 (0.57) 7 29.32 (1.09) 7 60.15 ( 2.25 ) 7 143.75 (11.81) 7
Exp. D
NFS 12.86 (4.88) 9 16.55 (1.08) 10 21.48 (2.14) 10 41.30 (4.29) 11 103.77 (28.82) 12 244.97 (31.18) 12
FS 16.48 (0.16) 8 17.11 (0.30) 8 21.33 (0.56) 8 41.51 (0.94) 8 97.64 ( 1.50 ) 8 238.44 ( 1.21 ) 8

Table 5. Mean values (µ), standard deviation (σ ) and number of participating models (n) of the mean horizontal ice velocity at the surface
in the direction of the flow. Results are listed for Exp. A–D and for each length scale. Units are m a−1.

L (km) 5 10 20 40 80 160
µ ( σ ) n µ ( σ ) n µ ( σ ) n µ ( σ ) n µ ( σ ) n µ ( σ ) n

Exp. A
NFS 14.61 (1.79) 7 20.62 (3.23) 10 24.93 (2.20) 11 31.99 (2.07) 11 37.54 (1.58) 11 40.36 (1.07) 11
FS 14.20 (0.18) 6 20.02 (0.36) 6 24.74 (0.79) 7 31.89 (1.07) 8 37.31 (1.30) 8 39.98 (1.52) 8
Exp. B
NFS 10.54 (1.36) 8 18.24 (2.67) 12 27.80 (2.08) 13 35.55 (1.86) 13 39.76 (1.38) 13 41.38 (0.76) 13
FS 11.04 (0.17) 9 19.09 (0.56) 10 28.28 (0.60) 10 35.75 (0.48) 10 39.76 (0.28) 10 41.40 (0.24) 10
Exp. C
NFS 12.12 (5.22) 9 15.19 (1.46) 11 16.36 (0.94) 11 19.25 (0.95) 11 27.24 (1.44) 11 40.83 (3.79) 12
FS 15.99 (0.00) 5 16.24 (0.16) 6 16.84 (0.24) 7 19.76 (0.38) 7 27.38 (0.55) 7 41.68 (1.83) 7
Exp. D
NFS 12.85 (4.88) 9 16.28 (0.97) 10 18.33 (1.13) 10 24.20 (1.09) 11 38.46 (6.48) 12 58.30 (4.86) 12
FS 16.43 (0.16) 8 16.81 (0.18) 8 18.40 (0.24) 8 24.63 (0.29) 8 37.00 (0.33) 8 57.17 (0.35) 8

5.2 Experiments C and D

In this series of experiments, variations in basal conditions
(slipperiness) determine where longitudinal stress gradients
must develop. Due to the importance of basal sliding, the
ice behaves as in an ice stream, in which vertical shearing is
present, though minimal. Ice flow in this experiment can be
considered as ice shelf flow with minimal basal traction. The
invalidity of the SIA solution is shown in Fig.7, where the
analytical SIA solution is plotted for a simplified basal slid-
ing relationship in which the basal shear stress is supposed
to balance the driving stress without longitudinal stress gra-
dients, so that

vx(zb) = (ρgH tanα) β−2 , (28)

in Eq. (27). However, a singularity in the velocity occurs in
Eq. (28) for β2

=0. Not all velocities are therefore plotted in
Fig.7. As for Exps. A and B, the SIA solution is independent
of L. Again, full-Stokes models show a smaller spread than
the higher-order approximations (Figs.8–9 and Table4). The
SIA is definitely not suited for simulating this type of ice
flow where longitudinal stresses dominate over vertical shear
stresses (compare with Fig.7). As in Exps. A–B, the ampli-
tude of the surface velocity field decreases with increasing
aspect ratioε. At the smallest length scales the surface veloc-
ity field is almost constant as the transition between high and
low friction regions is smoothed out by longitudinal stress
transmission. Similar to Exp. B, a surface velocity field anti-
correlated to basal friction is observed for full-Stokes models
at L=5 km (Exp. D). For the other higher-order approxima-
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Table 6. Mean values (µ), standard deviation (σ ) and number of
participating models (n) of the maximum and mean horizontal ice
velocity at the surface in the direction of the flow for Exp. E. Units
are m a−1.

Sliding No sliding
µ ( σ ) n µ ( σ ) n

Maximum velocity
NFS 67.01 (3.03) 6 122.44 (41.90) 5
FS 65.95 (0.63) 5 110.62 (32.86) 5
Mean velocity
NFS 32.00 (0.94) 6 47.15 ( 9.24 ) 5
FS 32.21 (0.13) 5 44.61 ( 8.98 ) 5

tions this is not observed (but due to the larger disparity in
solutions, this effect is unnoticeable in Fig.9).

In general, the spread in results of the modeled velocity
field is higher than for the experiments over the bedrock
bumps. The smallest spread is obtained with full-Stokes
models, and this spread reduces with increasingε, contrary
to the results from Exps. A–B. L1L1 and L1L2 models have
larger spreads than the LMLa models, despite the fact that
they were designed for coping with such type of ice flow in
the first place.

5.3 Experiment E: Haut Glacier d’Arolla

Although the input file lists the bedrock and surface data
along the flowline of Haut Glacier d’Arolla with a fixed grid
spacing of1x=100 m, most participants interpolated this
dataset at a higher resolution (Fig.10). The effect of subsam-
pling is captured in Fig.11, where the oscillations in the basal
shear stress along the flowline are either jagged when under-
sampled or smoother when a sufficiently small grid size is
chosen. Again, the spread in surface velocity for full-Stokes
models is smaller than for the other approximants, albeit that
for the no-slip case, the standard deviation is small for all
models.

Inclusion of a sliding zone (an area of zero basal friction)
leads to larger differences among the different participating
models. Also the full-Stokes models show a much larger
spread of solutions. Here, increasing resolution results in
other complexities compared to the no-sliding case, such as
the occurrence of oscillations in the basal shear stress. The
slip/no-slip boundaries are very sensitive to model resolu-
tion, as they can be regarded as singularities where the fric-
tion parameterβ2 suddenly jumps from zero to infinity and
vice versa. In particular, the linear interpolation leads to
break points in basal and surface topography that influence
the result. The results of the sliding experiment underline the
difficulty of simulating end-member behavior in basal sliding
(slip/no-slip).

Table 7. Mean values (µ), standard deviation (σ ) and number of
participating models (n) of the maximum and mean horizontal ice
velocity at the surface in the direction of the flow for Exp. F. Units
are m a−1.

Sliding No sliding
µ ( σ ) n µ ( σ ) n

Maximum velocity
NFS 98.14 (0.35) 5 197.55 (0.48) 5
FS 98.64 (0.16) 2 197.85 (0.01) 2
Mean velocity
NFS 96.11 (0.40) 5 193.05 (1.16) 5
FS 96.42 (0.05) 2 194.67 (0.04) 2

5.4 Experiment F: prognostic run

Benchmarking of numerical ice sheet models is possible
when analytical solutions exist for a particular problem. The
analytical solutions used here are derived from first-order
perturbation analysis of flow down a uniformly inclined
plane (Gudmundsson, 2003). It is inherent in this type of
analysis that the resulting flow perturbations are linear func-
tions of basal amplitudes. Numerical solutions are usually
not limited by this assumption and can therefore, for any
finite amplitude perturbation in basal properties, be better
approximations to the Stokes equations than the analytical
solutions given byGudmundsson(2003). For an accurate
comparison with the analytical solutions, numerical solutions
must be calculated for a number of different amplitudes and
then scaled by forming the ratio between each solution and
the respective basal amplitude. If this ratio is found to be
independent of amplitude for small amplitudes, the scaled
numerical solutions can be compared to the analytical ones.
This kind of test was done byRaymond and Gudmundsson
(2005). The exact error estimate depends on wavelength, am-
plitude, and slip ratio. (The reader is referred toRaymond
and Gudmundsson(2005) and Gudmundsson(2008) for a
detailed discussion.) For example, the analytical solutions
were found to be generally accurate to within∼1% for sinu-
soidal pertubations with wavelength larger than∼10H and
amplitudes less than∼0.1H . For Exp. F, we expect a simi-
lar degree of agreement between the analytical solutions and
exact Stokes solvers.

Only a few models participated in this experiment, since
not all of them treat an evolving free surface. The objective of
the test was to run the models forward in time until a steady
state was reached. The definition of steady state was left to
the interpretation of each participant. The resulting steady-
state surface elevation and velocity are shown in Figs.12–13.

We present the analytical solution here for the case without
basal sliding. The two full-Stokes models show a very good
agreement with the analytical solution. Higher-order model
solutions also fit also well but show a slightly larger vari-

The Cryosphere, 2, 95–108, 2008 www.the-cryosphere.net/2/95/2008/



F. Pattyn et al.: Benchmarks for higher-order and full-Stokes ice sheet models 105

Fig. 8. Results for Exp. C: norm of the surface velocity aty=L/4 for different length scalesL. The mean value and standard deviation are
shown for both types of models.

Fig. 9. Results for Exp. D: norm of the surface velocity for different length scalesL. The mean value and standard deviation are shown for
both types of models.

ability, especially for the velocity. This variability increases
when basal sliding is introduced. As mentioned before, the
intercomparison exercise is based on numerical solutions of
shallow and less-shallow continuum approximations of full-
Stokes and numerical solutions of the full-Stokes problem it-

self, compared with an asymptotic analysis of the full-Stokes
system. The full-Stokes model solutions for the surface ele-
vation lie closer to the analytical solution than do the higher-
order solutions, suggesting that the analytical model and the
numerical full-Stokes models are both adequate descriptions
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Fig. 10. Surface velocity in the direction of the ice flow for Exp. E
for the no-sliding (top) and sliding (bottom) experiment.

of the full-Stokes equations. However, the analytical solu-
tion for the velocity is well away from the tightly-clustered
FS numerical results. Here, the FS solution might be more
accurate, as the analytical solution remains a solution based
on a perturbation expansion and therefore is an approximate
method for solving the full-Stokes equations.

6 Conclusions

In this paper we present the results of the first intercompari-
son exercise of higher-order and full-Stokes ice sheet models.
A total of 27 different numerical models participated in this
benchmarking effort. Six experiments were designed to eval-
uate complex ice flow with high spatial variability in basal
topography and slipperiness. All experiments were designed
in such a way that the Shallow-Ice Approximation (SIA) is
not valid, especially at high aspect ratios. Although the SIA
is valid for large parts of ice sheets, higher-order models are
necessary for describing ice flow in areas of high basal topo-
graphic variability and slipperiness, which are generally the
most dynamic regions of ice sheets.

Compared to previous benchmark experiments (Huy-
brechts et al., 1996; MacAyeal et al., 1996; Payne et al.,
2000), a significantly higher number of ice sheet models par-
ticipated in this benchmark. Despite the greater complexity

Fig. 11.Basal shear stress in the direction of the ice flow for Exp. E
for the no-sliding (top) and sliding (bottom) experiment.

of the problem, all models produce results that are in approx-
imate agreement, even for high aspect ratios. This shows that
numerical ice sheet models have improved considerably dur-
ing the past decade, and are capable of simulating ice flow in
regions where longitudinal stress gradients are important.

Full-Stokes models produce reliable results in the sense
that (i) their spread of results is very low (<0.2 m a−1) and
(ii) they give a result in concordance with analytical solu-
tions based on perturbation theory. Results of the higher-
order approximants show a significant larger spread that
cannot be attributed solely to numerical issues, such as
the discretization error. The greatest spread is found for
high aspect ratios where all stress components (not only
membrane/longitudinal stresses) are equally important, and
higher-order approximations are insufficient. Also, coding
errors could be present, since all higher-order models are
coded by the authors (which is less true for the full-Stokes
models).

Only a limited number of L1L1 and L1L2 models partici-
pated. They show the same spread in solutions for basal topo-
graphic perturbations (Exps. A and B) as the LMLa models.
However, they produce a larger spread for the ice stream sim-
ulations at relatively low aspect ratios (Exps. C and D) com-
pared to LMLa models, although they were designed for such
flows. The LMLa results differ from the full-Stokes results
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Fig. 12.Steady state surface elevation along the central flowline for
Exp. F for the no sliding (top) and sliding (bottom) experiment. The
black line indicates the analytical solution.

for high aspect ratios and in regions of variable basal sliding.
All models (including full-Stokes) agree poorly when sud-
den variations in basal friction are considered, such as the
slip/no-slip jumps in Exp.E.

Finally, the full-Stokes models give the most consistent re-
sults. Results from different models show a very small spread
and are in good agreement with the analytical solution based
on perturbation theory. For most experiments a clear distinc-
tion can be made between results from full-Stokes models
and from higher-order approximants.

Future model intercomparisons should definitely focus on
transient problems, as preliminarily explored in Exp. F, and
slip/no-slip boundary problems, such as Exp. E. Analytical
solutions to specific (simplified) problems are something to
look into as well, which would lead to more reliable bench-
marks and verification.
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