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Abstract

In the model of advice complexity for online problems, an online algorithm is amended by an
advice tape prepared by an oracle that knows the whole input in advance, and it is measured
how many bits from this tape an online algorithm has to read in order to reach a certain solution
quality. This model was introduced and successfully applied as a means for an improved analysis
of the hardness of online problems. It was shown that it has strong connections to randomized
computations, e. g., lower bounds on the advice complexity can be used to prove lower bounds
also on randomized algorithms.

In this paper, we complement these known results with a method for constructing randomized
online algorithms from online algorithms with advice. More precisely, we consider task systems,
which model many well-known online problems such as paging, k-server, ski rental, etc. For these
problems, we show how to transform any online algorithm using a small amount of advice into a
randomized algorithm with almost the same competitive ratio. We achieve this by using methods
from algorithmic learning theory. Using this result, we furthermore show how to translate lower
bounds on randomized online computations into lower bounds for the advice complexity.

1 Introduction
Online problems are an important class of computational problems in many application areas like
scheduling or planning. Here, the complete input is not available to the algorithm from the beginning
of the computation, but it arrives gradually in discrete time steps. In each time step, an online
algorithm has to irrevocably produce a part of the output based only on the input parts seen so far.
Due to the lack of information about the future parts of the input, the solution computed in an
online fashion usually cannot be guaranteed to be optimal, independent of the computing power
of the online algorithm. The well-established tool to evaluate the quality of an online algorithm is
the so-called competitive analysis, where one compares the output quality of an online algorithm
to that of an offline algorithm that knows the whole input in advance and computes an optimal
solution for it. In this paper, we only study online minimization problems, i. e., online problems
∗Supported in part by SNF grant 200021-146372.
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where the objective is to minimize a given cost function. Here, the competitive ratio measures the
ratio between the cost of the solution computed online and an optimal solution.

Although competitive analysis is widely used to measure the hardness of online problems, it
sometimes only gives a rough estimate. For a more fine-grained analysis, the concept of the information
content of online problems has been introduced [14,25,27, 36], where one tries to measure how much
information any online algorithm needs about the yet unrevealed parts of the input to compute an
optimal or near-optimal solution. To this end, the online algorithm is amended by an unbounded
tape of advice bits which is prepared by an all-knowing oracle before the start of the computation.
The advice complexity of an online algorithm then measures the number of advice bits accessed by
the algorithm. The advice complexity was introduced using a slightly different model by Dobrev et
al. [25]. Then this model was refined by Emek et al. [27], Hromkovič et al. [36], and Böckenhauer et
al. [14]. We will use the model of the latter two publications in this paper. Online algorithms with
advice were studied for a large number of online problems such as job shop scheduling [14,38,53,54],
the k-server problem [13, 32, 49], metrical task systems [27], disjoint path allocation [3, 14, 30],
buffer management [22], online set cover [40], graph exploration [24, 39], online independent set [23],
online knapsack [15], online makespan scheduling [26,50], online bin packing [17,50], online Steiner
tree [2] and spanning tree [4], list update [19], sleep state management [10], and online graph
coloring [5, 6, 29, 51]; furthermore, generic online problems have been studied to allow computing
lower bounds using a certain type of reduction [12,18,27].

Several connections between advice and randomization have been observed [13, 27, 38]. Since
online algorithms with advice are an inherently nondeterministic model of computation, especially
lower bounds on the advice complexity can be used to prove lower bounds also for randomized
computations [13].

In this paper, we will explore the opposite direction. That is, we want to transform online
algorithms with advice into randomized online algorithms, thus using algorithms with advice as a
design method for the construction of randomized algorithms. To this end, we use the concept of
online learning algorithms. In online learning, we are given a fixed set of different (deterministic or
randomized) online algorithms, called experts, for some problem at hand, and our goal is to choose
one of the experts for each request that computes the respective answer. We say that an online
learning algorithm has the no-regret property if, on every instance, it asymptotically reaches the
same quality as the best of the experts.

An online algorithm with advice that reads b advice bits can be interpreted as a set of 2b
deterministic algorithms from which the oracle chooses the best one for any concrete input instance.
These deterministic algorithms can now be chosen as the experts of an online learning algorithm.
We build on results from Geulen et al. [31] showing that, for a specific class of online problems, there
exists an online learning algorithm that has the no-regret property. Since the best of the experts
in our case corresponds to the best choice of one of the deterministic strategies by the oracle, this
means that the learning algorithm is asymptotically almost as good as the advice algorithm. This
result in turn also implies that any lower bound for randomized online algorithms for this specific
class of problems can be turned into a similar lower bound for the advice complexity. Please note
that a very similar result for transferring lower bounds from randomization to advice was obtained
by Mikkelsen [47] very recently and independent of our work.

In this paper, we consider mainly a special class of online cost minimization problems, the
so-called task systems as introduced by Borodin et al. [20]. In a task system, the considered instance
of an online cost-minimization problem is in each time step in some state. The cost of a solution is
measured by two cost functions: (1) costs for changing the state and (2) costs for processing the
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given request in the current state. This allows us to separate clearly between these two types of costs.
Many online cost minimization problems can be modeled intuitively by a task system, including the
ski-rental problem [41,42], the paging problem [52], the list accessing problem [52], the file allocation
problem [48], and the k-server problem [46]. In fact, each online cost minimization problem can
be modeled by a task system using only one state. Besides being a task system, a problem has to
satisfy some more properties in order for our transformation to be applicable: We assume that the
processing costs are normalized to lie between 0 and 1. Switching from one expert to the other might
require to change the state, these switching costs have to be bounded by a constant. Moreover, the
overall costs have to grow not too slowly with growing input length.

This paper is organized as follows: In Section 2, we fix our notation and present the necessary
definitions to formulate our results. In Section 3, we present the learning algorithm, formulate and
prove its no-regret property and apply it to transform online algorithms with constant-size advice
into randomized algorithms. Section 4 gives two applications of this result to the paging problem
and the list accessing problem. In Section 5, we generalize the transformation to online algorithms
using a not too large, but unbounded number of advice bits. We conclude the paper by using our
technique to prove a lower bound on the advice complexity of the file allocation problem in Section 6.

2 Preliminaries
In this section, we fix our notation and give the basic definitions needed to formulate our results.
We start with the definition of an online optimization problem where we use a similar notation as
used in the context of request-answer games [7].

Definition 1 (Online Minimization Problems). An online cost minimization P = (R,A, fT )
consists of a set of possible requests R, a set of possible answers A, and a sequence of cost functions
fT : RT × AT → R≥0 ∪ {⊥} for all T ∈ N. Let P = (R,A, fT ) be an online cost minimization
problem. An instance of P is a request sequence δ = (r1, r2, . . . , rT ) of length T with rt ∈ R for all
t ∈ {1, . . . , T}. A solution for P is a tuple ψ = (A1, A2, . . . , AT ) with At ∈ A for all t ∈ {1, . . . , T}.
A solution ψ = (A1, A2, . . . , AT ) is feasible for an instance δ = (r1, r2, . . . , rT ) of P if fT (δ, ψ) 6= ⊥.
The total cost of a feasible solution ψ = (A1, A2, . . . , AT ) for an instance δ = (r1, r2, . . . , rT ) of P is
fT (δ, ψ).

Note that, in the definition of online cost minimization problems, we do not make any restrictions
on the sets R and A. So, they can be both finite or infinite. Furthermore, note that our definition
of an online optimization problem does not guarantee that an algorithm which computes a solution
for a given instance is indeed an online algorithm. As already mentioned, in competitive analysis,
we will compare the solution computed by an online algorithm to an optimal solution computed by
an offline algorithm.

A task system consists of a set of requests, a set of states, a set of answers, an initial state, and
two cost functions. The input (requests) of the task system is given piecewise to an online algorithm.
The online algorithm has to process the given request immediately, based only on the input it has
seen so far. For this, the online algorithm can first change the current state. Afterwards, it has
to output an answer. This output cannot be changed later. In the following two definitions, we
introduce the notation, as used in the context of task systems, of an instance, of a solution, of a
feasible solution for an instance, and of the cost of a feasible solution for an instance.
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Definition 2 (Task Systems). A task system T = (R,A,S, s0, d, p) consists of a set of possible
requests R, a set of possible answers A, a set of possible states S, an initial state s0, a transition
cost function d : S × S → R≥0 ∪ {⊥}, and a processing cost function p : R × S × A → R≥0 ∪
{⊥}. Let T = (R,A,S, s0, d, p) be a task system. An instance of T is a request sequence δ =
(r1, r2, . . . , rT ) of length T with rt ∈ R for all t ∈ {1, . . . , T}. A solution for T is a tuple ψ =
(S0, S1, A1, S2, A2, . . . , ST , AT ) with St ∈ S for all t ∈ {0, . . . , T} and At ∈ A for all t ∈ {1, . . . , T}.
A state change from si ∈ S to sj ∈ S is feasible if d(si, sj) 6= ⊥. An answer a ∈ A is feasible for a
request r ∈ R and a state s ∈ S if p(r, s, a) 6= ⊥. A solution ψ = (S0, S1, A1, S2, A2, . . . , ST , AT ) is
feasible for an instance δ = (r1, r2, . . . , rT ) of T if

• S0 is the initial state, i. e., S0 = s0,

• for t ∈ {1, . . . , T}, the state change from St−1 to St is feasible, and

• for t ∈ {1, . . . , T}, the answer At for request rt in state St is feasible.

Similarly to Definition 1, we do not make any restrictions on the sets R, S, and A. Thus, they
can also be both finite or infinite. Furthermore, the definition of a task system again does not
guarantee that an algorithm which computes a solution for a given instance is indeed an online
algorithm.

Next, we define the cost of a solution in some time step as the sum of the cost for the state
change and the cost for the answer in this time step. Furthermore, we denote by the accumulated
cost the sum over the costs until some time step and by the total cost for the whole instance the
sum over the costs of all time steps.

Definition 3 (Cost of a Solution). Let ψ = (S0, S1, A1, S2, A2, . . . , ST , AT ) be a feasible solution
for an instance δ = (r1, r2, . . . , rT ) of a task system T = (R,A,S, s0, d, p). The transition cost of
ψ for δ in time step t is ctψ,trans(δ) = d(St−1, St). The processing cost of ψ for δ in time step t is
ctψ,process(δ) = p(rt, St, At). The cost of ψ for δ in time step t is ctψ(δ) = ctψ,trans(δ) + ctψ,process(δ).
The accumulated cost of ψ for δ until time step t is Ctψ(δ) =

∑t
i=1 c

i
ψ(δ). The total cost of ψ for δ

is CTψ (δ).

As in the definition of the accumulated and total cost, we define the accumulated and total
transition/processing cost (Ctψ,trans(δ), Ctψ,process(δ), CTψ,trans(δ), and CTψ,process(δ)) as the sum over
the transition/processing cost until time step t or T , respectively.

Next, we introduce the definitions of both deterministic and randomized online algorithms for
task systems. Our definition is similar to the definition given by Borodin and El-Yaniv [16] as they
used it in the context of request-answer games [7].

In each time step, an online algorithm for a task system first changes the state and then determines
an answer for the given request. Formally, let T be a task system and let δ = (r1, r2, . . . , rT ) be
an instance of T . An online algorithm A for T is an algorithm that processes the requests in δ
sequentially, i. e., in each time step t, A only knows the requests that arrived up to time step t. Note
that, in general, A does not even know the length T of the instance δ. In other words, A has to
compute a feasible answer AtA for the request rt without knowledge of the requests in the time steps
t + 1 to T . The chosen answer AtA cannot be changed later. For this, for each request rt, A first
performs a feasible state change from state St−1

A to state StA, and then computes a feasible answer AtA.
Next, we give the formal definition of a deterministic online algorithm for a task system and

the solution computed by this algorithm. Note that we can transform each deterministic online
algorithm for a task system to the form given in the definition.
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Definition 4 (Deterministic Online Algorithm). Let T = (R,A,S, s0, d, p) be a task system
and δ = (r1, r2, . . . , rT ) be an instance of T . A deterministic online algorithm A for T is a sequence
of transition functions Dt

A : Rt → S and a sequence of processing functions P tA : Rt → A for all
t ∈ N.1 A deterministic online algorithm A processes the instance δ as follows: In each time step
t, the partial request sequence δ

∣∣
t

= (r1, r2, . . . , rt) is given to A. First, A changes the state to
StA = Dt

A(δ
∣∣
t
). Then, A answers the request rt with AtA = P tA(δ

∣∣
t
). Using this process, A constructs a

solution ψA(δ) = (s0, S
1
A , A

1
A, S

2
A , A

2
A, . . . , S

T
A , A

T
A ) for the instance δ. A deterministic online algorithm

A is feasible if, for each instance δ, the constructed solution ψA(δ) is feasible.

The cost of a deterministic online algorithm (for a given instance) is the cost of the solution that
is produced by this algorithm. Therefore, the following corollary follows directly from Definition 3.

Corollary 1 (Cost of the Solution of a Deterministic Online Algorithm). Let ψA(δ) =
(S0

A , S
1
A , A

1
A, S

2
A , A

2
A, . . . , S

T
A , A

T
A ) be the solution produced by a deterministic online algorithm A for

an instance δ = (r1, r2, . . . , rT ) of a task system T = (R,A,S, s0, d, p). The transition cost of A
for δ in time step t is ctA,trans(δ) = d(St−1

A , StA). The processing cost of A for δ in time step t is
ctA,process(δ) = p(rt, StA, AtA). The cost of A for δ in time step t is ctA(δ) = ctA,trans(δ) + ctA,process(δ).
The accumulated cost of A for δ until time step t is CtA(δ) =

∑t
i=1 c

i
A(δ). The total cost of A for δ

is CTA (δ).

We define the accumulated and total transition/processing cost (CtA,trans(δ), CtA,process(δ), CTA,trans(δ),
and CTA,process(δ)) as the sum over the transition/processing costs until time step t or T , respectively.
Note that in general it is not necessary that an online algorithm knows the transition cost function
or the processing cost function.

To measure the quality of an online algorithm, we frequently use the competitive ratio, which
can be formally defined as follows.

Definition 5 (Competitive Ratio). Let T = (R,A,S, s0, d, p) be a task system, let A be a de-
terministic online algorithm for T , and let Opt be an optimal offline algorithm for T , that is, an
algorithm that computes an optimal solution for each instance of T . The algorithm A is called
c-competitive for T if there exists a non-negative constant α such that, for any instance δ of T ,

CTA (δ) ≤ c · CTOpt(δ) + α .

We also call c the competitive ratio of A on T . If α = 0, we say that A is strictly c-competitive.
Moreover, we call A optimal, if it is strictly 1-competitive.

In an offline setting, one can always exclude a constant number of special input instances from
the analysis by simply preprocessing the solutions and including them into the description of the
algorithm. This is not possible in an online scenario, but the constant α in Definition 5 can be used
for the same purpose. We will make heavy use of this possibility in our analyses.

In many online cost minimization problems, the (expected) total cost of an online algorithm can
be greatly reduced if we allow the usage of randomization. A randomized online algorithm is an
online algorithm that has access to a tape containing random bits. The bits on this tape are chosen
uniformly at random. Note that we can transform the uniform distribution of the random bits to
an arbitrary probability distribution using inverse transform sampling [21]. In each time step, the
1 Although we defined an online algorithm as infinite sequences of transition and processing functions, we assume that
these sequences have a finite description.
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randomized online algorithm can read an arbitrary finite number of bits from this tape. Thus, if
we fix the bits on the tape, the considered randomized online algorithm is, in fact, a deterministic
online algorithm. Using this idea, we model a randomized online algorithm as a deterministic online
algorithm with access to a tape containing bits that were chosen previously uniformly at random. In
the following definition, we introduce the concept of randomized online algorithms for task systems
formally.

Definition 6 (Randomized Online Algorithm). Let T = (R,A,S, s0, d, p) be a task system,
δ = (r1, r2, . . . , rT ) be an instance of T , and A′(x) be a feasible deterministic online algorithm for T
using a (possibly unbounded bit sequence) x as a parameter. A randomized online algorithm A for T
chooses in the first time step a bit sequence x uniformly at random and then uses A′(x) for the whole
instance δ.

For an instance δ of length T given to a randomized online algorithm A, the total cost of the
solution ψA(δ) computed by A is the total cost of the solution of the deterministic online algorithm
A′(x), where x is the parameter chosen by A in the first time step. Thus, the total cost CTA (δ) of A
is the total cost CTA′(x)(δ) of A′(x). But this means that both the solution ψA(δ) and the total cost
CTA (δ) of A are random variables. This is the reason why we usually use the expected total cost
E
[
CTA (δ)

]
in the analysis of randomized online algorithms. Note that the equation for the expected

accumulated cost of A given in the following corollary follows by linearity of expectation.

Corollary 2 (Expected Cost of the Solution of a Randomized Online Algorithm). Let
T = (R,A,S, s0, d, p) be a task system, δ = (r1, r2, . . . , rT ) be an instance of T , A be a randomized
online algorithm for T , and E

[
ctA(δ)

]
be the expected cost of A for δ in time step t. The expected

accumulated cost of A for δ until time step t is E
[
CtA(δ)

]
=
∑t
i=1 E

[
ciA(δ)

]
. The expected total cost

of A for δ is E
[
CTA (δ)

]
.

We define the expected accumulated and expected total transition/processing cost

E
[
CtA,trans(δ)

]
,E
[
CtA,process(δ)

]
,E
[
CTA,trans(δ)

]
, and E

[
CTA,process(δ)

]
as the sum over the expected transition/processing costs until time step t or T , respectively.

The notion of competitive ratio can be extended to randomized online algorithms in a straight-
forward way by just using the expected total cost instead of the (deterministic) total cost in
Definition 5.

We now give a formal definition of online algorithms with advice.

Definition 7 (Online Algorithm with Advice). Let T = (R,A,S, s0, d, p) be a task system,
let δ = (r1, r2, . . . , rT ) be an instance of T . An online algorithm A with advice computes the
output sequence ψφA (δ) = (s0, S

1
A , A

1
A, S

2
A , A

2
A, . . . , S

T
A , A

T
A ) for the instance δ such that SiA and AiA

are computed from φ, r1, . . . , ri, where φ is the content of the advice tape, i. e., an infinite binary
sequence. Let CTA,φ(δ) denote the total cost of A with advice tape φ on the instance δ. The algorithm
A is c-competitive with advice complexity b(T ) if there exists a constant α such that, for every T
and for each input sequence δ of length at most T , there exists some φ such that

CTA,φ(δ) ≤ c · CTOpt(δ) + α

and at most the first b(T ) bits of φ have been accessed during the computation of A with advice φ on
δ. If α = 0, A is called strictly c-competitive.
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Next, we introduce the notation used in the context of online learning algorithms and regret
minimization. Regret minimization for online learning algorithms was first studied by Hannan [35].
A general introduction to online learning algorithms and regret minimization can be found in the
textbook by Blum [8] or the survey by Blum and Mansour [9].

An online learning algorithm for an online cost minimization problem P is a deterministic or
randomized online algorithm that has access to a set E of feasible deterministic or randomized online
algorithms for P. We call E the set of experts and each online algorithm in E an expert. We make
two assumptions about E . First, we assume that the cost of each expert in E in each time step is
between zero and one.

Assumption 1 (Normalized Expert Costs). For each expert in E and each time step, the cost
of this expert in this time step is in the interval [0, 1].

This assumption will ensure that the cost of an expert that was chosen by an online learning
algorithm A has only a limited effect on the (expected) total cost of A for the whole instance. For
each online cost minimization problem P and each set of experts E for P, we can normalize P in
such a way that Assumption 1 holds: Let C∗ be an upper bound on the cost in some time step of
the experts in E that can appear while processing an arbitrary instance of P . We can scale the cost
functions of P by 1/C∗.

An online learning algorithm A uses the decisions of the experts in E in order to compute a
feasible solution for the online cost minimization problem P. For this, A selects an expert in each
time step and follows the decision made by the chosen expert. For a task system, this means that A
goes to the same state as the chosen expert and answers the request with the same answer as the
chosen expert. The cost of A in time step t is composed of both the cost for changing the expert (if
A changed the expert) and the cost of the expert chosen in this time step. Assumption 2 will ensure
that switching between experts has only a limited effect on the (expected) total cost of A for the
whole instance.

Assumption 2 (Bounded Switching Costs). Let T = (R,A,S, s0, d, p) be a task system, E =
{e1, . . . , eN} be a set of experts for T , δ = (r1, r2, . . . , rT ) be an instance of T , and, for i ∈ {1, . . . , N},
ψei(δ) = (s0, S

1
ei
, A1

ei
, S2

ei
, A2

ei
, . . . , STei

, ATei
) be a solution for δ computed by expert ei ∈ E. For all

time steps t ∈ {1, . . . , T − 1} and all experts ei, ej ∈ E, we have d(Stei
, St+1

ej
) ≤ B, where B ∈ R≥0.

If Assumption 2 holds, we say that E has switching cost of at most B. So, a task system with a
set of experts E has switching cost at most B if the transition cost function allows a change of the
chosen expert with cost at most B. For many online cost minimization problems, Assumption 2
holds: For instance, in the paging problem (Definition 13), the switching cost is bounded from above
by the size of the cache. Note that, if E contains randomized online algorithms, Assumption 2 must
hold for all possible solutions of these experts, not only in expectation.

The choice of the expert in time step t is based on the evaluation of the experts (cost of the
experts) until time step t− 1. After each time step, the evaluation of each expert in this time step is
given to A. We explain the evaluation process in detail later in this section.

The goal of the online learning algorithm is to use the decisions of the experts in such a way
that it minimizes its regret, i. e., the (expected) total cost of the online learning algorithm has to be
close to the (expected) total cost of the best expert in E chosen in hindsight for each instance δ of
the online cost minimization problem P.

Next, we give the formal definition of a deterministic online learning algorithm for a task system
and the solution computed by this algorithm.
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Definition 8 (Deterministic Online Learning Algorithm). Let T = (R,A,S, s0, d, p) be a
task system, δ = (r1, r2, . . . , rT ) be an instance of T , and E = {e1, . . . , eN} be a set of deterministic
or randomized online algorithms for T that satisfies both Assumptions 1 and 2. Furthermore, let
Dt
ei

: Rt → S be the set of transition functions and P tei
: Rt → A be the sequence of processing

functions of online algorithm ei ∈ E, for all t ∈ N.2 A deterministic online learning algorithm A
for T equipped with the set E = {e1, . . . , eN} of N experts is a set of expert selection functions
EtA : ([0, 1]t)N → E for all t ∈ N. A deterministic online learning algorithm A processes the instance
δ as follows: In each time step t, the partial request sequence δ

∣∣
t

= (r1, r2, . . . , rt) is given to A. In
time step 1, A selects the expert e1 = E1

A [0, . . . , 0]; in time step t > 1, A selects the expert

et = EtA

[(
0, b1

1(δ
∣∣
1), . . . , bt−1

1 (δ
∣∣
t−1)

)
, . . . ,

(
0, b1

N (δ
∣∣
1), . . . , bt−1

N (δ
∣∣
t−1)

)]
.

Then, A changes the state to StA = Dt
et(δ

∣∣
t
). Afterwards, A answers the request rt with AtA = P tet(δ

∣∣
t
).

Finally, the evaluation vector
(
bt1(δ

∣∣
t
), . . . , btN (δ

∣∣
t
)
)
is revealed to A. Using this process, A constructs

a solution ψA(δ) = (s0, S
1
A , A

1
A, S

2
A , A

2
A, . . . , S

T
A , A

T
A ) for the instance δ. A deterministic online learning

algorithm A is feasible if, for each instance δ, the constructed solution ψA(δ) is feasible.

Note that if an expert is a randomized online algorithm, the results of both its transition and
processing functions are random variables. Using the definition of deterministic online learning
algorithms, we define a randomized online learning algorithm as a deterministic online learning
algorithm with a randomly chosen parameter.

Definition 9 (Randomized Online Learning Algorithm). Let T = (R,A,S, s0, d, p) be a task
system, δ = (r1, r2, . . . , rT ) be an instance of T , and A′(x) be a feasible deterministic online learning
algorithm for T equipped with the set E of experts using a parameter x. A randomized online learning
algorithm A for T equipped with the set E of experts chooses, in the first time step, a bit sequence x
uniformly at random and then uses A′(x) for the whole instance δ.

As in the definition of the cost of a deterministic or randomized online algorithm, the cost of a
deterministic or randomized online learning algorithm is the cost of the solution that is produced
by the online learning algorithm. Therefore, we use Corollaries 1 and 2 also in the context of
online learning algorithms. Furthermore, we define the (expected) accumulated and (expected) total
transition/processing cost (CtA,trans(δ), CtA,process(δ), CTA,trans(δ), and CTA,process(δ)) as the sum over the
considered costs until time step t or T , respectively.

Note that, in the standard setting of online learning algorithms that was studied, for example, in
Hannan [35], Blum [8], and Blum and Mansour [9], the cost for changing the expert is zero. Hence,
the model presented here extends the standard setting by switching costs. The standard setting
corresponds in our model to the setting where all transition costs are set to zero, i. e., where, for all
si, sj ∈ S, d(si, sj) = 0.

The choice of the expert in time step t is done using the expert selection function EtA of the
online learning algorithm A in time step t. The inputs of this function are composed of all evaluation
vectors until time step t− 1. We discuss the evaluation vector in the next definition. Depending on
the considered model, it contains either only the cost of the chosen expert or the cost of all experts.
Nevertheless, the choice of an expert in an online learning algorithm does not depend on the cost in
time step t. We can interpret this selection process as follows: In each time step, the online learning
2 Again, we assume that this infinite sequence has a finite description.
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algorithm chooses an expert. It uses the expert as a black box for answering the request in this
time step. Afterwards, the evaluation (cost) vector is revealed. By this, one might assume that an
adversary chooses the cost for each expert in each time step arbitrarily from [0, 1] after the online
learning algorithm answered the request.

Definition 10 (Information Models). Let T = (R,A,S, s0, d, p) be a task system, let δ = (r1,
r2, . . . , rT ) be an instance of T , A be an online learning algorithm for T , and et be the expert chosen
by A in time step t.

• In the full information model, after A has answered the request rt in time step t, the evaluation
vector

(
bt1(δ

∣∣
t
), . . . , btN (δ

∣∣
t
)
)

=
(
cte1(δ), . . . , cteN

(δ)
)
is revealed to A.

• In the partial information model, after A has answered the request rt in time step t, the
evaluation vector

(
bt1(δ

∣∣
t
), . . . , btN (δ

∣∣
t
)
)

=
(
⊥, . . . ,⊥, ctet(δ),⊥, . . . ,⊥

)
is revealed to A, where ⊥

means undefined.

We will focus on the full information model in what follows. We study online learning algorithms
only in the context of task systems and expert sets with switching cost at most B. By this, each
state change done by an online learning algorithm A is feasible and has cost at most B. Thus, the
solution constructed by A is also always feasible. This means that, in the context of online learning
algorithms, we can split the cost experienced by an online learning algorithm A into two types of
costs.

• Switching costs ctA,switch(δ): These costs are caused by the online learning algorithm. Whenever
the online learning algorithm changes the expert from time step t − 1 to time step t, i. e.,
et 6= et−1, the online learning algorithm has to change the state from St−1

et−1 to Stet . Since we
consider here only task systems and expert sets with switching cost at most B, these costs are

ctA,switch(δ) =
{
ctA,trans(δ) = d(St−1

A , StA) = d(St−1
et−1 , S

t
et) ≤ B if et 6= et−1

0 else
.

• Handling costs ctA,hand(δ): These costs are caused by the chosen expert et in time step t for
answering the request rt given to the online learning algorithm. If the online learning algorithm
changes the expert, i. e., et 6= et−1, the switching costs also include the transition cost for
changing the state. Thus, in this case, the handling costs are given by the processing cost of
et. On the other hand, if et = et−1, the handling costs of the online learning algorithm A are
the costs of the chosen expert et. These costs consist of the transition cost for changing the
state and the processing cost for answering the request in time step t. Thus,

ctA,hand(δ) =



ctA,process(δ) = p(rt, StA, AtA)
= p(rt, Stet , Atet)
≤ d(St−1

et , Stet) + p(rt, Stet , Atet) = ctet(δ) if et 6= et−1

ctA,trans(δ) + ctA,process(δ) = d(St−1
A , StA) + p(rt, StA, AtA)

= d(St−1
et , Stet) + p(rt, Stet , Atet) = ctet(δ) else

.

Note that, in both cases, the handling costs of A are bounded from above by ctet(δ), and since we
assume that ctei

(δ) ∈ [0, 1] for all experts ei ∈ E , instances δ, and time steps t (Assumption 1),
also ctA,hand(δ) ∈ [0, 1] holds.
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So, the cost of an online learning algorithm A for an instance δ in time step t is the sum
of the switching costs and the handling costs, i. e., ctA(δ) = ctA,switch(δ) + ctA,hand(δ). Note that
ctA(δ) is the same as ctet(δ) if A does not change the expert. Otherwise, it is bounded from above
by B + ctet(δ). As in the definition of the (expected) accumulated and (expected) total transi-
tion/processing cost of an online algorithm, we define the (expected) accumulated and (expected)
total handling/switching cost (CtA,hand(δ), CtA,switch(δ), CTA,hand(δ), and CTA,switch(δ)) as the sum over
the (expected) handling/switching costs until time step t or T , respectively. Therefore, the (expected)
total cost of an online learning algorithm A for an instance δ is the sum of the (expected) total
switching costs and the (expected) total handling costs, i. e., CTA (δ) = CTA,switch(δ) + CTA,hand(δ).
Furthermore, note that, in the standard setting of online learning algorithms, all transition costs are
zero. Consequently, ctA(δ) = ctA,hand(δ) = p(rt, StA, AtA) = p(rt, Stet , Atet).

As already mentioned, the goal of the online learning algorithm A is to use the decisions of the
experts in such a way that the (expected) total cost of A is close to the (expected) total cost of the
best expert, i. e., A aims at minimizing its external regret as defined in the following definition.

Definition 11 (Regret Minimization). Let T = (R,A,S, s0, d, p) be a task system and A be an
online learning algorithm for T equipped with the set E = {e1, . . . , eN} of experts. For an instance
δ = (r1, r2, . . . , rT ), we denote by best the best expert in E for the instance δ, i. e., CTbest(δ) ≤ CTei

(δ)
for all ei ∈ E. The (external) regret of A on an instance δ of length T is

RTA (δ) = CTA (δ)− CTbest(δ) .

The online learning algorithm A is a no-regret online learning algorithm if

lim
T→∞

maxδ=(r1,r2,...,rT ) RTA (δ)
T

= 0 .

As a consequence, an online learning algorithm A is a no-regret online learning algorithm if,
for each instance δ of length T , its regret is sublinear in T , i. e., RTA (δ) ∈ o(T ). Note that, in the
definition above, we use the expected total cost if the online learning algorithm or the best expert is
a randomized online algorithm.

3 Randomized Algorithms from Algorithms with Constant Advice
In this section, we describe how we can employ an online learning algorithm to transform an
online algorithm with constant-size advice into a randomized algorithm achieving almost the same
competitive ratio.

We consider the shrinking dartboard algorithm (SD) [31], which is a variant of the well-known
randomized weighted majority algorithm [44]. Given a set E = {1, . . . , N} of N experts, the idea
of the randomized weighted majority algorithm RWM is to maintain, for each expert, a probability
of being chosen, which depends on the accumulated cost that the expert has experienced in the
past. For this, RWM uses a weight wti for each expert i ∈ E in time step t. Initially, we set all
weights to 1 and use the uniform distribution over the experts. Afterwards, the probability qti , that
the chosen expert in time step t is expert i, is controlled by the current weight wti of the expert.
This weight itself depends on the weights wt′i and costs ct′i in the time steps t′ up to t − 1 and a
parameter η ∈ [0, 2/3]. We call η the learning rate of the algorithm. The main improvement of the
shrinking dartboard algorithm is to change the chosen expert only if it causes significant handling
costs. Algorithm 1 specifies how the experts are chosen and introduces the notation. Our algorithm

10



Algorithm 1 (Shrinking Dartboard (SD))
1: w1

i = 1, q1
i = 1

N , for all i ∈ E
2: choose expert e1 at random according to Q1 = (q1

1, . . . , q
1
N )

3: change the state from s0 to S1
e1

4: use answer A1
e1 for request r1

5: for t = 2, . . . , T do
6: wti = wt−1

i (1− η)c
t−1
i , for all i ∈ E

7: qti = wti/
(∑N

j=1w
t
j

)
, for all i ∈ E

8: with probability wtet/w
t−1
et do

9: set et = et−1 (no expert change)
10: else
11: choose et at random according to Qt = (qt1, . . . , qtN )
12: end
13: change the state from St−1

et−1 to Stet

14: use answer Atet for request rt
15: end for

uses a set E = {1, . . . , N} of N experts. Again, we call η the learning rate of the algorithm and
denote the total weight in time step t by W t =

∑N
i=1w

t
i .

In the first time step, Algorithm 1 chooses an expert e1 from the set E uniformly at random
(line 2) and processes the first request as it is done by this expert, i. e., it changes the state to
S1
e1 = D1

e1(δ
∣∣
1) (line 3) and answers the request r1 in state S1

e1 with A1
e1 = P 1

e1(δ
∣∣
1) (line 4). In each

time step t > 1, Algorithm 1 first updates the weights (line 6) and the probabilities of each expert
(line 7). With probability wtet/w

t−1
et = (1− η)c

t−1
i (line 8), the algorithm does not change the expert

(line 9). Otherwise, it chooses an expert et at random according to the probability distribution
Qt = (qt1, . . . , qtN ) (line 11). Afterwards, the algorithm changes the state from St−1

et−1 = Dt−1
et−1(δ

∣∣
t−1)

to Stet = Dt
et(δ

∣∣
t
) (line 13) and answers the request rt in state Stet with Atet = P tet(δ

∣∣
t
) (line 14).

The algorithm is called Shrinking Dartboard (SD) as it can be illustrated in terms of a dartboard
shrinking over time (Figure 1). Initially, the dartboard is a disc divided into N equally sized sectors,
one for each expert (Figure 1a). The total area covered by the disc has size N so that each sector
has size 1. In time step 1, SD chooses an expert by throwing a dart to the dartboard, that is, it picks
a point from the disc uniformly at random and chooses that expert into which sector this point
falls (Figure 1b). Over time, the expert’s sectors shrink as illustrated in Figure 1c. In particular,
the size of the area covered by expert i’s sector in time step t, denoted as the allowed area in time
step t, corresponds to the weight wti as specified in Algorithm 1. In time step t > 1, SD chooses
an expert as follows: If the previously picked point is still in the allowed area, then SD does not
change the expert. This happens with probability wtet/w

t−1
et = (1− η)c

t−1
i and corresponds to line 9

of Algorithm 1. Otherwise, SD throws a new dart, that is, it picks a point uniformly at random from
the area covered by the sectors of all experts and chooses the expert into which sector this point
falls. This happens with probability 1− wtet/w

t−1
et and corresponds to line 11 of Algorithm 1.

The online learning algorithm SD causes costs in line 3, 4, 13, and 14 of Algorithm 1. The costs
in line 3 and 4 are produced only by the first expert e1 chosen by SD. Thus, these costs are handling
costs. Thus, c1

SD = c1
SD,hand = d(s0, S

1
e1) + p(r1, S1

e1 , A1
e1) = c1

e1 . Consider now a time step t > 1. The
costs of this time step are caused by line 13 and 14. If SD does not change the expert, i. e., et = et−1,

11



(a) Initial dartboard (b) Dart thrown (c) Shrinking based on the costs of
the experts

Figure 1. Probability distribution as a dartboard

the costs of SD are only handling costs. These costs are caused by the costs of expert et for handling
the request rt. They consist of the transition cost for changing the state and the processing cost for
answering the request. Thus, the costs of SD are ctSD = ctSD,hand = d(St−1

et , Stet) + p(rt, Stet , Atet) = ctet .
If SD changes the expert, i. e., et 6= et−1, SD has both switching costs and handling costs. Since
we consider a task system and a set of experts with switching cost at most B, the switching
costs are ctSD,switch ≤ B. On the other hand, the handling costs are only the processing costs
of the chosen expert et since the current state is already Stet . So, the handling costs of SD are
ctSD,hand = p(rt, Stet , Atet) ≤ ctet . Therefore, in this case, both costs together are the costs of SD in
time step t, i. e., ctSD = ctSD,switch + ctSD,hand ≤ B + ctet .

We want to estimate the regret of the SD algorithm. To this end, we first compute the probabilities
for choosing the experts.

Lemma 1. The probability for choosing expert i in time step t is Pr
[
et = i

]
= qti , for all i ∈ E and

t ∈ {1, . . . , T}.

Proof. Consider an arbitrary expert i ∈ E . We show the lemma by an induction on t ∈ {1, . . . , T}.
For t = 1, the statement in the lemma follows immediately from the description of the algorithm
(line 1 and 2 of Algorithm 1). Now let t ≥ 2. Algorithm SD chooses expert i in time step t either
because it was selected already in time step t− 1 and the corresponding dart is still in the allowed
area (i.e., the expert is chosen by line 9) or because a new dart is thrown and this dart hits i’s sector
(i.e., the expert is chosen by line 11). Hence,

Pr
[
et = i

]
= Pr

[
et−1 = i

]
· wti
wt−1
i︸ ︷︷ ︸

no expert change

+ qti ·
N∑
j=1

Pr
[
et−1 = j

]
·
(

1−
wtj

wt−1
j

)
︸ ︷︷ ︸

change to expert i

= qt−1
i · wti

wt−1
i

+ qti ·
N∑
j=1

qt−1
j ·

(
1−

wtj

wt−1
j

)

= wt−1
i

W t−1 ·
wti
wt−1
i

+ wti
W t
·
N∑
j=1

wt−1
j

W t−1 ·
wt−1
j − wtj
wt−1
j

= wti
W t−1 + wti

W t
· W

t−1 −W t

W t−1

12



= wti ·
W t +W t−1 −W t

W t ·W t−1 = wti
W t

= qti ,

where we used the induction hypothesis to go from the first line to the second. �

Note that Lemma 1 in particular shows that the probability for choosing an expert i is the same
for SD and RWM.

Let D denote the number of expert changes during the execution of SD. The following lemma
bounds the expected value of D in terms of the total cost of the best expert.

Lemma 2. For η ∈ [0, 2/3], E[D] ≤ 2ηCTbest + lnN .

Proof. We bound the total weight at the end of the instance W T+1 by both the total cost of the
best expert and the expected number of expert changes D. Note that SD never computes the value
W T+1, but we can compute it by ourselves using line 6 of Algorithm 1 after request T was answered.
Since SD uses the same weights as RWM, we can reuse the lower bound for W T+1 given by the learning
rate η and the total cost of the best expert as proven in [31], namely

W T+1 ≥ (1− η)CT
best . (1)

On the other hand, D is bounded from above by the number of times line 11 of Algorithm 1 is
applied which corresponds to the number of darts that are thrown because the sector of the chosen
expert shrinks. The probability for throwing a new dart in time step t ≥ 2 is

αt =
N∑
j=1

Pr
[
et−1 = j

]
·
(

1−
wtj

wt−1
j

)
= W t−1 −W t

W t−1 , (2)

where the latter equation follows from the calculation in the proof of Lemma 1. Thus,

αtW t−1 = W t−1 −W t ,

which is equivalent to

W t = (1− αt)W t−1 . (3)

Next, we repeatedly use (3) to bound W T+1 from above.

W T+1 = W T (1− αT+1) = W T−1(1− αT )(1− αT+1)

= . . . = W 1
T∏
t=1

(1− αt+1) = N
T∏
t=1

(1− αt+1) , (4)

where the last equality follows from W 1 = N (line 1 of Algorithm 1). By combination of (1) with
(4), we get

(1− η)CT
best ≤ N

T∏
t=1

(1− αt+1) .

Taking logarithms, we have

CTbest ln(1− η) ≤ (lnN) +
T∑
t=1

ln(1− αt+1) ≤ (lnN)−
T∑
t=1

αt+1 ,
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where the second inequality is true since ln(1− z) ≤ −z holds for z ∈ [0, 1), and, according to (2),

αt+1 = W t −W t+1

W t
= 1− W t+1

W t
∈ [0, 1) .

Using ln(1− z) ≥ −2z for z ∈ [0, 2/3], we get

−2ηCTbest ≤ (lnN)−
T∑
t=1

αt+1 .

Thus, the expected number of expert changes D =
∑T
t=1 α

t+1 is bounded from above by

D ≤ 2ηCTbest + lnN . �

Now, we bound the expected total cost of SD depending on the learning rate η (Theorem 1).
Afterwards, we will see how to tune η in such a way that it minimizes the regret of SD.

Theorem 1. For η ∈ [0, 2/3], the expected total cost of SD satisfies

E
[
CTSD

]
≤ (1 + η + 2ηB)CTbest + lnN

η
+B lnN .

Proof. We claim that the expected total cost of SD is

E
[
CTSD

]
= E

[
CTSD,hand

]
+ E

[
CTSD,switch

]
≤

T∑
t=1

ctet +DB .

In words, the expected total cost of SD is bounded from above by the sum over the handling cost
of the chosen experts plus the number of expert changes times the upper bound on the switching
costs. To see this, consider the total cost in a time period beginning with a time step in which a new
expert is chosen and ending with the last time step before the next expert is chosen or the request
sequence ends. The total cost of SD in this period can be split into two contributions.

(1) Handling costs ctSD,hand: These costs are caused by answering the requests in this period by
both SD and the expert. They consist of the transition cost for changing the state (if SD did
not change the expert) and the processing cost for answering the request (line 3, 4, 13 and 14
of Algorithm 1).

(2) Switching costs ctSD,switch: These costs are caused by switching the state at the beginning of
the period (line 13 of Algorithm 1).

The handling cost in (1) in each time step t is bounded from above by ctet . Thus, it is bounded from
above by

∑T
t=1 c

t
et for the whole instance since both SD and the expert are in each time step in the

same state. Since SD changes the expert only at the beginning of a period and each expert change
costs at most B, the switching cost in (2) in a period is at most B. Note that, in the first period, the
switching costs of (2) are zero because both SD and the experts start in the same state s0. This gives
the stated upper bound on E

[
CTSD

]
as the number of periods without counting the first period is D.

Next, we claim that

E
[
T∑
t=1

ctet

]
≤ (1 + η)CTbest + lnN

η
.
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This follows from Lemma 1 showing that the probability that SD chooses expert i in time step t is
equal to the probability that RWM chooses expert i in time step t. So,

∑T
t=1 c

t
et describes the total

handling cost of RWM assuming that the handling costs accounted for the online learning algorithm
in time step t are ctet (as in the standard setting of online learning without switching costs). Thus,
for η ∈ [0, 2/3], we can apply the following well-known bound (see, e. g., [9] for a proof3) on the
expected total handling cost of RWM:

E
[
CTRWM,hand

]
≤ (1 + η)CTbest + lnN

η
. (5)

Together with the bound on the expected value of D in Lemma 2 this yields

E
[
CTSD

]
≤ (1 + η)CTbest + lnN

η
+ 2ηBCTbest +B lnN .

�

Thus, we can bound the expected total costs of SD from above using the learning rate, the upper
bound on the switching costs, the total costs of the best expert, and the number of experts. Next,
we tune the learning rate η. Let C∗ be an upper bound for the total cost of the best expert, i. e.,
CTbest ≤ C∗. Using C∗ we get the following upper bound for the expected total cost of SD.

Corollary 3. For B ≥ 1 and C∗ ≥ max{9 lnN
4B , B lnN}, setting η =

√
(lnN)/BC∗ yields

E
[
CTSD

]
≤ CTbest + 5

√
BC∗ lnN .

Proof. First, note that, for C∗ ≥ 9 lnN
4B , η =

√
(lnN)/BC∗ ∈ [0, 2/3]. So using Theorem 1 and

CTbest ≤ C∗ we can bound the expected total cost of SD from above by

E
[
CTSD

]
≤ CTbest +

√
lnN√
BC∗

CTbest︸ ︷︷ ︸
≤
√
BC∗ lnN

+ 2
√
B lnN√
C∗

CTbest︸ ︷︷ ︸
≤2
√
BC∗ lnN

+
√
BC∗ lnN√

lnN︸ ︷︷ ︸
≤
√
BC∗ lnN

+ B lnN︸ ︷︷ ︸
≤
√
BC∗ lnN

≤ CTbest + 5
√
BC∗ lnN . �

Note that, in Corollary 3, the value C∗ can also be replaced by the length T of the instance.
The regret analysis of the online learning algorithm SD is based on the assumption that the

online learning algorithm knows in advance an upper bound C∗ on the total cost of the best expert
for the considered instance δ, i. e., CTbest ≤ C∗ or at least the length T of δ. If neither of them is
known by the algorithm in advance, one cannot tune the learning rate η in such a way that the
online learning algorithm guarantees the no-regret property.

To overcome this drawback, we consider the well-known guess-and-double approach [9] for the
online learning algorithm SD for the problem of regret minimization for task systems and sets of
experts with switching cost. This approach works as follows: Given an arbitrary online learning
algorithm A, we initially set C∗ to some suitable value. While the total cost of at least one expert
in E is below C∗, we use A with the learning rate η tuned by C∗. As soon as all experts have at
least cost C∗, we double the value of C∗ and restart A with the new value for η tuned by C∗. It
is well-known [9] that, in the standard setting of online learning algorithms, the guess-and-double
approach used with RWM guarantees an expected regret of the same order as the expected regret
3 There, the result is only claimed and proven for η ∈ [0, 1/2], but it can be easily seen that the only estimation used
there which restricts the value of η, namely − ln(1− η) ≤ η + η2, is valid also for η ∈ [0, 2/3].
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Algorithm 2 (Guess and Double (GAD))

1: M = max{9 lnN
4B , B lnN}

2: for k = 0, 1, 2, . . . do
3: C∗k = 2k ·M
4: use online learning algorithm SD with η =

√
lnN
BC∗

k

5: until the first time step t where Cti ≥ C∗k , for all i ∈ E
6: end for

of RWM. We will see that this approach used with SD can also guarantee, for task systems and sets
of experts with switching cost, that its expected regret is, up to constant factors, the same as the
expected regret of SD.

The online learning algorithm Guess and Double (GAD) is given in Algorithm 2. GAD works in
rounds. In round k, it uses the online learning algorithm SD with C∗k (line 4) until the accumulated
cost of each expert up to the current time step t is at least C∗k (line 5). C∗k is set by the following
process. In the first round k = 0, we set C∗0 = max{9 lnN

4B , B lnN} (lines 1 and 3). In round k > 0,
GAD doubles the value of C∗k (line 3). Note that, by this process, we can bound the expected total
cost of SD in each round from above by Corollary 3.

To prove that GAD is a no-regret learning algorithm, we first compute an upper bound K on the
number of rounds GAD will run. This upper bound depends on the total cost of the best expert and
on M .

Lemma 3. For CTbest ≥ max{9 lnN
4B , B lnN}, at the end of an instance δ of length T , GAD is at most

in round

K = blog2C
T
best − log2M + 1c .

Proof. Since GAD goes from round k − 1 to round k if the total costs of each expert is at least
C∗k−1 = 2k−1 ·M , we can bound the round K of GAD at the end of an instance δ of length T from
above by the largest k for that C∗k−1 is still smaller than the total costs of the best expert CTbest. So,
for k ∈ {1, . . . ,K},

C∗k−1 = 2k−1 ·M ≤ CTbest ,

since CTbest ≥M . Taking logarithms, we have

(k − 1) + log2M ≤ log2C
T
best

and thus

k ≤ log2C
T
best − log2M + 1 . �

Next, we bound the expected total cost of GAD for an arbitrary round k ∈ {1, . . . ,K − 1} from
above. We denote by E[CGAD,k] the expected total cost of GAD in round k and by Cbest,k the total
cost of the best expert in round k.

Lemma 4. For B ≥ 1, the expected total cost of GAD in round k ∈ {1, . . . ,K − 1} satisfies

E[CGAD,k] ≤ 2k−1 ·M + 5
√

2kMB lnN .
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Proof. At the beginning of round k ∈ {1, . . . ,K − 1}, the accumulated cost of each expert is,
according to line 5 of Algorithm 2, at least C∗k−1 = 2k−1 ·M . On the other hand, at the end of round
k ∈ {1, . . . ,K − 1}, the accumulated cost of each expert is at least C∗k = 2k ·M . So, the cost of the
best expert in this round is at most Cbest,k ≤ C∗k − C∗k−1 = 2k−1 ·M .

Since B ≥ 1 and C∗k = 2k ·M ≥M = max{9 lnN
4B , B lnN}, we can use Corollary 3 to bound the

expected total cost of GAD in this round from above using the expected total cost of SD in this round
by

E[CGAD,k] ≤ Cbest,k + 5
√
C∗kB lnN

≤ 2k−1 ·M + 5
√

2kMB lnN . �

Now, we combine the results from Lemma 3 and Lemma 4 to bound the expected total cost of
GAD for B ≥ 1.

Theorem 2. For B ≥ 1 and CTbest ≥ max{9 lnN
4B , B lnN, 256B2}, the expected total cost of GAD

satisfies

E
[
CTGAD

]
≤ CTbest + 29

√
BCTbest lnN .

Proof. Since CTbest ≥ max{9 lnN
4B , B lnN}, we can use the upper bound on the number of rounds

from Lemma 3. So, K = blog2C
T
best − log2M + 1c. Note that K ≥ 1.

Furthermore, since B ≥ 1, for each round k ∈ {1, . . . ,K − 1}, we can use the upper bound on
the expected total cost of GAD in round k given in Lemma 4. So,

E[CGAD,k] ≤ 2k−1 ·M + 5
√

2kMB lnN ,

for all k ∈ {1, . . . ,K − 1}. Note that we can prove similarly to Lemma 4 the bounds

E[CGAD,0] ≤ M + 5
√
MB lnN

for round k = 0 and

E[CGAD,K ] ≤ Cbest,K + 5
√

2KMB lnN

for round k = K. Let CTbest,K be the cost of the best expert for the whole instance in round k = K.
Since the best expert in round K has cost Cbest,K , we have Cbest,K ≤ CTbest,K . Furthermore, note
that CTbest,K + 2K−1 ·M ≤ CTbest since, in round k = K, the cost of each expert is at least 2K−1 ·M .
So,

E[CGAD,K ] ≤
(
CTbest − 2K−1 ·M

)
+ 5
√

2KMB lnN .

At the beginning of each round, we restart the online learning algorithm SD. So, for each round
except the first one, GAD has switching costs at most B that are not considered in the regret analysis
of SD. Since GAD uses K + 1 rounds, the switching costs are at most BK.

So, the expected total cost of GAD is

E
[
CTGAD

]
≤ E[CGAD,0]︸ ︷︷ ︸

round 0

+
K−1∑
k=1

E[CGAD,k]︸ ︷︷ ︸
round 1 to K − 1

+ E[CGAD,K ]︸ ︷︷ ︸
round K

+ BK︸︷︷︸
switching costs
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≤
[
M + 5

√
MB lnN

]
+
[
K−1∑
k=1

(
2k−1 ·M + 5

√
2kMB lnN

)]

+
[(
CTbest − 2K−1 ·M

)
+ 5
√

2KMB lnN
]

+
[
BK

]

= CTbest +M +BK +
K−1∑
k=1

2k−1 ·M − 2K−1 ·M +
K∑
k=0

5
√

2kMB lnN

= CTbest +M +BK +
K−2∑
k=0

2k ·M − 2K−1 ·M + 5
√
MB lnN ·

K∑
k=0

2k/2

≤ CTbest +M +BK + 2K−1 ·M − 2K−1 ·M + 5
√
MB lnN · 2(K+1)/2 − 1√

2− 1

≤ CTbest +M +BK + 5√
2− 1

√
MB lnN · 2(K+1)/2

≤ CTbest +M +B · (log2C
T
best + 1) + 5√

2− 1
√
MB lnN · 2(log2 C

T
best−log2 M+2)/2

≤ CTbest +M +B +B log2C
T
best + 10√

2− 1

√
BCTbest lnN ,

where we used in the third inequality the sum of the first terms of a geometric series and in the fifth
inequality that K = blog2C

T
best − log2M + 1c.

For the rest of the proof, we assume that N ≥ 2. Note that, for N = 1, E
[
CTGAD

]
= CTbest. Since

B ≥ 1 and M = max{9 lnN
4B , B lnN}, we have M ≤ 9

4B lnN . Furthermore, since CTbest ≥ B lnN
and 1 ≤ 3

2 lnN , we have B ≤ 3
2

√
BCTbest lnN and M ≤ 9

4

√
BCTbest lnN .

Finally, we show that B log2C
T
best ≤

√
BCTbest lnN for CTbest ≥ 256B2. Since we assume that

N ≥ 2, we have 4
5 ≤

√
lnN . So, we show

√
B log2C

T
best ≤ 4

5

√
CTbest for CTbest ≥ 256B2. First

consider the case CTbest = 256B2. Here, we have
√
B log2 256B2 = 8

√
B + 2

√
B log2B ≤ 10B ≤ 4

5 · 16B = 4
5
√

256B2

since log2B ≤
√
B. Since B is a constant, the inequality holds for CTbest = 256B2, and log2C

T
best ≤√

CTbest, the inequality holds for all CTbest ≥ 256B2. So,

E
[
CTGAD

]
≤ CTbest +

(9
4 + 3

2 + 1 + 10√
2− 1

)√
BCTbest lnN

≤ CTbest + 29
√
BCTbest lnN . �

It directly follows that the expected regret of GAD on an instance δ of length T is RTGAD(δ) =
29
√
BCTbest lnN if B ≥ 1. Since CTbest ≤ T , we can summarize our results in the following theorem.

Theorem 3. For B ≥ 1 and CTbest ≥ max{9 lnN
4B , B lnN, 256B2}, the expected total cost of GAD

satisfies

E
[
CTGAD

]
≤ CTbest + 29

√
BCTbest lnN . �
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We are now ready to show a method that converts an online algorithm with advice for a task
system into a randomized online algorithm. We interpret an online algorithm with advice as a set of
deterministic online algorithms where, for each instance, the oracle chooses one of these algorithms.
We construct the randomized online algorithm based on the online learning algorithm Guess and
Double (GAD) given in Algorithm 2. The set of experts used by GAD corresponds to the set of online
algorithms that the online algorithm with advice uses. Since GAD has the no-regret property, if the
set of deterministic strategies used by the online algorithm with advice satisfies both Assumption 1
(normalized expert costs) and Assumption 2 (bounded switching costs), the expected total cost
of GAD is almost the same as the (expected) total cost of the best online algorithm used by the
online algorithm with advice for all instances. So, if the online algorithm with advice reaches some
competitive ratio for all instances, then the constructed randomized online algorithm has almost the
same competitive ratio.

More formally, let T = (R,A,S, s0, d, p) be a task system. An online algorithm with advice A
for T with advice complexity ρ(T ) reads, for each instance δ of length T , at most ρ(T ) bits from an
advice tape. The bits on the advice tape are computed by an oracle O for T that knows the whole
instance δ in advance. Using δ, it computes an arbitrary function of δ. Note that we can represent
2ρ(T ) different numbers with a bit string of length ρ(T ). Using this idea, we can interpret the usage
of the ρ(T ) advice bits by the following process: Assume that A knows the length T of the instance
δ. Then, in the first time step, A asks the advice oracle O for the first ρ(T ) advice bits. A uses these
advice bits to select one of at most 2ρ(T ) deterministic online algorithms. Afterwards, it uses the
selected online algorithm for the whole instance without usage of the advice oracle O.

We first consider the special case of online algorithms with advice that have bounded advice
complexity. We say that an online algorithm with advice has bounded advice complexity ρ∗ ∈ N if
the online algorithm uses, for each instance, at most ρ∗ advice bits. For many online optimization
problems, online algorithms with advice are known that use only a bounded number of advice bits,
e. g., the ski rental problem [25], paging [14], or the list accessing problem [19].

If an online algorithm with advice A has bounded advice complexity ρ∗, we can interpret it as a
fixed set of at most 2ρ∗ deterministic or randomized online algorithms used by A. We call this set
the associated set of online algorithms of A and denote it by A.

Definition 12 (Associated Set of Online Algorithms). Let T = (R,A,S, s0, d, p) be a task
system and A be an online algorithm with advice for T that has bounded advice complexity ρ∗ and
uses an advice oracle O. The associated set of online algorithms used by A is

A =
{

A[xi] | i ∈ {0, . . . , 2ρ
∗ − 1}, xi = binρ∗(i), ∃ instance δ s.t. the output of O is xi

}
,

where binρ∗(i) is the bit string of length ρ∗ corresponding to the binary representation of the integer
i and A[xi] is the online algorithm used by A if the advice is xi.

In the next theorem, we show that we can convert an online algorithm with bounded advice
complexity into a randomized online algorithm using the online learning algorithm Guess and Double
(GAD) given in Algorithm 2. The idea of the proof is that if, for an online algorithm with advice,
the associated set of online algorithms A satisfies both Assumption 1 (normalized expert costs)
and Assumption 2 (bounded switching costs), we can use A as the set of experts of the online
learning algorithm GAD. Since GAD has the no-regret property, its expected total cost is almost the
same as the (expected) total cost of the best online algorithm in the set of experts. Thus, if the
online algorithm with advice is γ-competitive, then, for each instance, there is a γ-competitive online
algorithm in the set of experts and GAD has almost the same competitive ratio.
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Theorem 4. Let T = (R,A,S, s0, d, p) be a task system, A be a γ-competitive online algorithm with
bounded advice complexity ρ∗ for T , and A be the associated set of online algorithms used by A.

If A satisfies both Assumption 1 (normalized expert costs) and Assumption 2 (bounded switching
costs), then there is a randomized online algorithm A′ with expected total cost

E
[
CTA′(δ)

]
≤

1 + 25
√
Bρ∗√

γCTopt(δ)

γ · CTopt(δ) + β , (6)

for some constant β.

Proof. For the proof, we assume without loss of generality that B ≥ 1. If B ∈ [0, 1], we round B up
to 1. Since A is a set of online algorithms for T that satisfies both Assumption 1 (normalized expert
costs) Assumption 2 (bounded switching costs), we can use the online learning algorithm GAD with
set of experts E = A. Let N be the size of A. We have N ≤ 2ρ∗ . Furthermore, assume that

CTA (δ) = CTbest(δ) ≥ max
{9 lnN

4B , B lnN, 256B2
}
.

Since B ≥ 1, we can use Theorem 3 to bound the expected total cost of GAD from above by

E
[
CTGAD(δ)

]
≤ CTbest(δ) + 29

√
BCTbest(δ) lnN

= CTA (δ) + 29
√
BCTA (δ) lnN

≤ γ · CTopt(δ) + α + 29
√
B(γCTopt(δ) + α) ln 2ρ∗

≤ γ · CTopt(δ) + α + 25
√
BγCTopt(δ)ρ∗ +Bαρ∗

≤ γ · CTopt(δ) + α + 25
√
BγCTopt(δ)ρ∗ + 25

√
Bαρ∗

=

1 + 25
√
Bρ∗√

γCTopt(δ)

γ · CTopt(δ) + α′ ,

for some constant α′. In order to deal with instances where the (expected) total cost CTA (δ) =
CTbest(δ) < max{9 lnN

4B , B lnN, 256B2}, we increase the constant α′ to an appropriate constant β to
bound the expected total cost also in this case. Note that β is indeed a constant since GAD has only
costs if the chosen expert has costs and both B and N are constants. GAD is a randomized online
learning algorithm. Consequently, the constructed online algorithm A′ is randomized, too. �

Note that the term in parentheses in (6) contains the constants B, ρ∗, and γ. Thus, given a
γ-competitive online algorithm A with bounded advice complexity, for each ε > 0, we can find a
constant β such that the randomized online algorithm A′ has competitive ratio (1+ε)γ. Furthermore,
for CTopt(δ)→∞, the randomized online algorithm A′ has almost the same competitive ratio as A.

4 Two Applications
In this section, we consider two applications of Theorem 4 for paging and list accessing.
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4.1 Paging

Modern computer architectures use hierarchically structured memory systems. One of the challenges
in these systems is to determine which data units to store in which memory without knowledge of
the future access patterns. In the paging problem, we consider a simplified system with two types of
memory: a slow memory that stores a fixed set P = {p1, . . . , pn} of n fixed-size data units (pages)
and a fast memory that stores, in each time step, at most k < n pages. Given a request for a page pi,
the system checks whether pi is in the fast memory. If pi is not in the fast memory, the system has
to replace one of the pages in the fast memory by pi. Each copy operation (page fault) has cost one.
The goal of a page replacement algorithm is to replace the pages in such a way that it minimizes the
total number of page faults. Next, we show how we can model the paging problem as a task system.

Definition 13 (Paging Problem). We can model the paging problem as a task system Tpaging =
(R,A,S, {}, d, p) with R = {p1, . . . , pn}, A = {a}, and S = { {px1 , . . . , pxl

} | 0 ≤ l ≤ k, 1 ≤ xi <
xj ≤ n with i 6= j}. The transition cost function is

d(s, s′) =
∣∣{ pi ∈ s′ | pi 6∈ s }∣∣

and the processing cost function is

p(pi, s, a) =
{

0 if pi ∈ s
∞ else

.

As already mentioned, the transition cost of each online algorithm for the paging problem in each
time step is at most k. Hence, the switching cost B of each set of online algorithms is also at most
k. A general introduction to page replacement algorithms and known results on the competitiveness
of these algorithms is given by Borodin and El-Yaniv [16].

The following theorem of Böckenhauer et al. [14] introduces a (3 log2 k)-competitive online
algorithm with bounded advice complexity log2 k for the paging problem (see also Komm and
Královič [38], who observed that the analysis of this algorithm actually allows for a barely random
algorithm).

Theorem 5 (Böckenhauer et al. [14]). Let k be the size of the fast memory and c < k be a
power of 2. There is an online algorithm with advice complexity log2 c for the paging problem with
competitive ratio at most

3 log2 c+ 2(k + 1)
c

+ 1 .

Therefore, if we set c to the largest number c < k that is a power of 2, the online algorithm
with advice of Theorem 5 has bounded advice complexity log2 k and its competitive ratio is at most
3 log2 k + 9 since c ≥ k/2.

The associated set of online algorithms of the online algorithm with advice of Theorem 5 consists
of c deterministic marking algorithms. A marking algorithm maintains a mark for each page. Initially,
all pages are unmarked. If a page is requested, the page is marked and, if it is currently not in the
fast memory, it is copied to it. If the fast memory is full and there is at least one unmarked page in
it, then one of the unmarked pages in the fast memory is replace by the requested page. If the fast
memory is full, and all pages in it are marked, then all pages are unmarked and one of the pages in
the fast memory is replace by the requested page.
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Marking algorithms are demand paging algorithms, i. e., they replace a page in the fast memory
only if a page is requested that is currently not in it and there are already k pages in the fast memory.
Thus, these online algorithms have, in each time step, either cost zero (if the requested page is in
the fast memory) or cost one (if the requested page is not in the fast memory).

Next, we use the method studied in Section 3 to show that the online algorithm with advice of
Theorem 5 can be converted to a randomized online algorithm with almost the same competitive
ratio.

Theorem 6. Let k be the size of the fast memory. For each ε > 0, there is a randomized online
algorithm for the paging problem with competitive ratio at most (1 + ε) · (3 log2 k + 9).

Proof. The associated set of online algorithms A of the online algorithm with advice of Theorem 5
satisfies Assumption 1 (normalized expert costs) since all online algorithms in A are marking
algorithms and, thus, have either cost zero or one in each time step. Furthermore, A satisfies
Assumption 2 (bounded switching costs) with B = k since the switching cost of each set of online
algorithms is at most k for the paging problem. So, we can apply Theorem 4 to the (3 log2 k + 9)-
competitive online algorithm of Theorem 5 that has bounded advice complexity log2 k to construct
a randomized online algorithm with competitive ratio at most1 + 25

√
k log2 k√

(3 log2 k + 9)CTopt(δ)

 · (3 log2 k + 9) .

Note that, for each ε > 0, there is an additive constant β such that the constructed randomized
online algorithm has indeed a competitive ratio of at most (1 + ε) · (3 log2 k + 9). �

4.2 List Accessing

The storage of data objects can be done in many different ways in modern computer architectures.
One way is the usage of a linked list. A linked list contains a sequence of data objects. Given
an initial list, an instance of the list accessing problem consists of a sequence of objects accessed
over time. The cost for accessing an object is proportional to its distance from the head of the
list. We assume here that accessing the object at position i costs i. An algorithm that manages
the list can reorder it at any time. There are two types of reorderings: free transpositions and
paid transpositions. When the object at position i is accessed, it can be moved anywhere ahead of
the current position for cost 0 (free transposition). Furthermore, the algorithm can swap any two
items in the list for cost 1 (paid transposition). Next, we show how we can model the list accessing
problem as a task system.

Definition 14 (List Accessing Problem). We can model the list accessing problem with initial
list (o1, . . . , ok) as a task system Tlist = (R,A,S, ((o1, . . . , ok), 0), d, p) with set of requests R =
{o1, . . . , ok}, set of answers A = {a}, and set of states S = { ((ox1 , . . . , oxk

), l) | 1 ≤ xi, l ≤ k, xi 6=
xj for i 6= j}. The transition cost function is

d((s, l), (s′, l′)) = minimal number of transpositions to transform s to s′ where
all transpositions moving object l closer to the front are free

and the processing cost function is

p(oi, ((ox1 , . . . , oxk
), l), a) =

{
j with i = xj if l = i

∞ else
.
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Note that free transpositions are done after answering the current request in the list accessing
problem. Thus, by adding the current request to the state space, we use the transition cost function
to do free transpositions in the next time step after the current request was answered.

Albers et al. [1] presented the 1.6-competitive online algorithm COMB for the list accessing problem.
This algorithm chooses, according to a fixed probability distribution, initially one of two online
algorithms for the list accessing problem (BIT or TIMESTAMP). Afterwards, it uses the chosen online
algorithm for the whole instance. We can transform COMB to an online algorithm with advice by
replacing the initial choice of the online algorithm using the probability distribution by one advice
bit indicating which online algorithm has lower costs (see also Boyar et al. [19]).

Both online algorithms BIT and TIMESTAMP use only free transpositions. Furthermore, the costs
of state changes are bounded from above by k2. So, if we scale all costs by 1/k, we can use the
method studied in Section 3 to show that this online algorithm with advice can be converted to a
randomized online algorithm with almost the same competitive ratio.

Theorem 7. For each ε > 0, there is a randomized online algorithm for the list accessing problem
with competitive ratio at most 1.6 · (1 + ε).

Proof. The associated set of online algorithms A of the online algorithm with advice satisfies
Assumption 1 (normalized expert costs) since all online algorithms in A use only free transpositions
and, thus, their scaled costs are between zero and one in each time step. Furthermore, A satisfies
Assumption 2 (bounded switching costs) with B = k since by scaling all state changes can be done
by costs of at most k. So, we can apply Theorem 4 to the 1.6-competitive online algorithm with
advice that uses one advice bit to construct a randomized online algorithm with competitive ratio at
most

1.6 ·

1 + 25
√
k√

1.6 · CTopt(δ)

 .

Note that, for each ε > 0, there is an additive constant β such that the constructed randomized
online algorithm has indeed a competitive ratio of at most 1.6 · (1 + ε). �

5 Generalization to Unbounded Advice
In this section, we generalize the results of Section 3 to online algorithms with advice that have an
unbounded, but not too large advice complexity.

The idea of our proof is roughly based on the guess-and-double approach that was already used
to construct the online learning algorithm Guess and Double (GAD) in Section 3. Let A be an online
algorithm with advice that has advice complexity ρ(T ). We reuse the idea of the construction of the
randomized online algorithm A′ in Section 3 for the special case of online algorithms with bounded
advice complexity. For this, we use the online learning algorithm GAD initially with the associated
set of online algorithms corresponding to ρ∗ = ρ(1). While ρ(t) = ρ(t− 1), we continue using this
instance of GAD. Whenever ρ(t) > ρ(t− 1) for some time step t ∈ {1, . . . , T}, we restart GAD with
the associated set of online algorithms corresponding to ρ∗ = ρ(t). By this, GAD is restarted at most
ρ(T ) times. Furthermore, we have to assume that the cost of an optimal solution for an instance δ is
not too low, i. e., CTopt(δ) ∈ ω

(
ρ(T )3). In order to prove that the restarts of GAD do not affect the

competitive ratio much, we first extend Definition 12 of the associated set A of online algorithms
used by an online algorithm with advice A as follows.
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Definition 15 (Associated Set of Online Algorithms). Let T = (R,A,S, s0, d, p) be a task
system and A be an online algorithm with advice for T that has advice complexity ρ(T ) and uses an
advice oracle O.

The associated set of online algorithms of instances of length T used by A is

A(T ) =
{

A[xi] | i ∈ {0, . . . , 2ρ(T ) − 1}, xi = binρ(T )(i), ∃ δ s.t. the output of O is xi
}
,

where binρ(T )(i) is the bit string of length ρ(T ) corresponding to the binary representation of the
integer i and A[xi] is the online algorithm used by A if the advice is xi.

The next theorem shows that we can construct a randomized online algorithm using an online
algorithm with advice complexity ρ(T ) whose associated set A(T ) of online algorithms of instances
of length T satisfies both Assumption 1 (normalized expert costs) and Assumption 2 (bounded
switching costs).

Theorem 8. Let T = (R,A,S, s0, d, p) be a task system, A be a γ-competitive online algorithm with
advice complexity ρ(T ) for T , and A(T ) be the associated set of online algorithms of instances of
length T used by A. If A(T ) satisfies both Assumption 1 (normalized expert costs) and Assumption 2
(bounded switching costs) for all T ∈ N, then there is a randomized online algorithm A′ with expected
total cost

E
[
CTA′(δ)

]
≤

1 + 25
√
Bρ(T )3√

γCTopt(δ)
+ 25

√
Bαρ(T )3

γ · CTopt(δ)

γ · CTopt(δ) + β ,

for some constant β.

Proof. We divide the instance δ of length T given to the online algorithm into rounds. The first
round starts with the first request in δ. A new round starts whenever ρ(t) > ρ(t− 1). We denote
by K the number of rounds and by tk the time step that started round k. Similarly to the proof
of Theorem 4, we assume without loss of generality that B ≥ 1. If B ∈ [0, 1], we round B up to 1.
Since all sets A(tk) are sets of online algorithms for T that satisfy both Assumption 1 (normalized
expert costs) and Assumption 2 (bounded switching costs) for all k ∈ {1, . . . ,K}, we can use in each
round k the online learning algorithm GAD with set of experts E = A(tk). Let CA,k be the cost of A
in round k, Cbest,k be the cost of the best expert in round k, and Nk be the size of A(tk). We have
Nk ≤ 2ρ(tk). Furthermore, assume that, for each k ∈ {1, . . . ,K},

Cbest,k ≥ max
{9 lnN

4B , B lnN, 256B2
}
.

So, since CA,k ≥ Cbest,k and we assume that B ≥ 1, we can use Theorem 3 to bound the expected
total cost of the constructed randomized online algorithm A′ from above by

E
[
CTA′(δ)

]
≤

K∑
k=1

(
Cbest,k + 29

√
BCbest,k lnNk

)

≤
K∑
k=1

(
CA,k + 29

√
BCA,k lnNk

)

≤
K∑
k=1

CA,k + 29
√
B ·

K∑
k=1

√
CA,k ln 2ρ(tk)

24



≤
K∑
k=1

CA,k + 29
√
B ·

K∑
k=1

√
CA,k ln 2ρ(T )

≤ CTA (δ) + 25K
√
BCTA (δ)ρ(T )

≤ γ · CTopt(δ) + α + 25ρ(T )
√
B(γCTopt(δ) + α)ρ(T )

≤ γ · CTopt(δ) + α + 25
√
BγCTopt(δ)ρ(T )3 + 25

√
Bαρ(T )3

=

1 + 25
√
Bρ(T )3√

γCTopt(δ)
+ 25

√
Bαρ(T )3

γ · CTopt(δ)

γ · CTopt(δ) + α ,

where the fifth inequality follows from
∑K
k=1

√
CA,k ≤

∑K
k=1

√
CTA (δ) = K ·

√
CTA (δ). �

6 Lower Bounds on the Advice Complexity
In this section, we show how we can use the methods studied in Section 3 and Section 5 to derive
lower bounds on the advice complexity of online problems. For this, we consider the file allocation
problem [48].

In the file allocation problem, we are given a set of data objects and a network of processors
that have to access these objects. Our goal is to minimize the communication in the network by
storing the objects on processors that use them frequently or that are close to them. Formally, we
are given a weighted undirected graph G = (V,E), where each node represents a processor, each
edge represents a communication link between processors, and the weight of an edge is its bandwidth.
We denote by b(e) the bandwidth of edge e ∈ E and by X the set of data objects. An instance of
the file allocation problem consists of a sequence of read and write requests to the data objects in X.
For x ∈ X, we denote by R(x) ⊆ V the set of nodes that have currently a copy of data object x.

The cost of a request directly corresponds to the bandwidth required to serve the request: If
a node u ∈ V performs a read request on some object x ∈ X and it has already a copy of x, i. e.,
u ∈ R(x), then the required bandwidth is 0. Otherwise, it has to allocate a path through the network
to some node v ∈ R(x). This increases the load of each edge e on the path by 1/b(e). If a node
u ∈ V performs a write request on some object x ∈ X, it has to update all copies of x in the network.
For this, it has to compute a Steiner tree and send the update to all nodes in R(x). By this, it
increases the load of each edge e on the Steiner tree by 1/b(e).

An online algorithm that manages the network can reallocate the data objects in the network
after each request. In order to reallocate some object x ∈ X, it chooses a tree whose root is a node
in R(x) and copies x to an arbitrary subset of the nodes of the chosen tree. By this, it increases the
load of each edge e on the tree by 1/b(e), where D(x) ≥ 1.

In [45], a lower bound on the competitive ratio of Ω(log2 n/d) for randomized online algorithms
was presented for the file allocation problem on graphs that are d-dimensional meshes with n nodes.
Note that we can model the file allocation problem as a task system: The set of requests consists of
all read and write requests of all nodes to all data objects; the set of answers consists of all subsets
of edges of the graph for all data objects; the set of states consists of all assignments of data objects
to nodes. In order to ensure that reallocations are done after answering a request, we can use the
same trick as in Section 4 for the list update problem. If we scale all costs by 1/|E|, we can use the
method studied in Section 5 to give a lower bound on the advice complexity of each online algorithm
with advice that has a competitive ratio smaller than Ω(log2 n/d).
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Theorem 9. Each online algorithm with advice for the file allocation problem on graphs that are
d-dimensional meshes with n nodes and with a competitive ratio smaller than Ω(log2 n/d) has an
advice complexity larger than ρ(T ) = log2 T .

Proof. Assume that there is an online algorithm with advice A for this file allocation problem with
a competitive ratio smaller than c · (log2 n/d) that has an advice complexity of ρ(T ) = log2 T .
For all T ∈ N, the associated set of online algorithms A(T ) of each feasible online algorithm with
advice satisfies Assumption 1 (normalized expert costs) since by scaling all feasible online algorithms
have costs between zero and one in each time step. Furthermore, for all T ∈ N, A(T ) satisfies
Assumption 2 (bounded switching costs) with B = |X| since by scaling all state changes can be done
with costs of at most |X|. Consider an instance δ of length T with CTopt(δ) ∈ ω

(
ρ(T ) · log2

2 ρ(T )
)

=

ω
(
log2 T · log2

2 log2 T
)
. Note that

70 log2 ρ(T )
√
Bρ(T )√

γCTopt(δ)
+ 70 log2 ρ(T )

√
Bαρ(T )

γCTopt(δ)

= 70 log2 log2 T
√
B log2 T√

γCTopt(δ)
+ 70 log2 log2 T

√
Bα log2 T

γCTopt(δ)

∈ o(1) .

Therefore, we can apply Theorem 8 to the online algorithm with advice A to construct a
randomized online algorithm A′ with competitive ratio smaller than

c · (log2 n/d) ·

1 + 70 log2 log2 T
√
B log2 T√

γCTopt(δ)
+ 70 log2 log2 T

√
Bα log2 T

γCTopt(δ)


and, for each ε > 0, we can find a constant β such that the randomized online algorithm A′ has a
competitive ratio smaller than c · (log2 n/d) · (1 + ε). However, this is a contradiction to the lower
bound on the competitive ratio given in [45]. �
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