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Abstract Since its formulation in the late 1940s, the Feynman–Kac formula has
proven to be an effective tool for both theoretical reformulations and practical simu-
lations of differential equations. The link it establishes between such equations and
stochastic processes can be exploited to develop Monte Carlo sampling methods that
are effective, especially in high dimensions. There exist many techniques of improv-
ing standard Monte Carlo sampling methods, a relatively new development being the
so-called Multilevel Monte Carlo method. This paper investigates the applicability of
multilevel ideas to the stochastic representation of partial differential equations by the
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Feynman–Kac formula, using the Walk on Spheres algorithm to generate the required
random paths. We focus on the Laplace equation, the simplest elliptic PDE, while
mentioning some extension possibilities.

Keywords Multilevel Monte Carlo · Feynman–Kac · Walk on Spheres ·
Laplace equation

Mathematics Subject Classification 60H30 · 65C05 · 65N99

1 Introduction

The Monte Carlo (MC) error normally converges like 1/
√
M , where M is the number

of samples. If all samples are equally expensive, the error versuswork convergence rate
is 1/

√
W ,whereW is the totalwork.Note that for a large class of problems the accuracy

of theMCmethod is not only determined by the number of samples used, but also by the
bias accepted in the computation of each sample. A small bias, using e.g. the Walk on
Spheres (WoS ) algorithm [15], comeswith larger computation costs per sample.Hence
the error versus work convergence rate falls short of 1/

√
W . If applicable, Multilevel

Monte Carlo (MLMC) methods may reach this optimal 1/
√
W convergence rate. This

motivated us to evaluate the Feynman–Kac formula with MLMC methods instead of
MC methods.

In this paper we present a procedure to evaluate the Feynman–Kac formula with
MLMC using the WoSmethod. As amodel problemwe consider the Laplace equation,
which is solved in high dimensions for instance for option pricing [12, Chap. 8] or in
particle accelerator simulations [1]. We compute the MC convergence rate and show
that it is suboptimal by a factor of log(W ). We prove that for the MLMC method, the
error versus work converges with the optimal 1/

√
W convergence rate. Our MLMC

simulations, executed with an MPI parallel implementation, were up to twice as fast
compared to the standard MC implementation.

First, in Sect. 2 we introduce the Feynman–Kac formula, using the WoSalgorithm,
and compute the error versus work convergence rate when using MC. Then, we derive
a method to use MLMC in this setting, and evaluate its error versus work convergence
rate in Sect. 3. In Sect. 4 we present numerical results, which quantify the advantage
of using MLMC. Finally, we draw our conclusions in Sect. 5.

2 Standard walk on spheres (WoS )

2.1 Brownian motion

ABrownian motion [7] denoted by Xt , started at a point in a certain connected domain
D, has several characteristic quantities. These include the first exit time and the first
exit point, two important concepts in the application of the Feynman–Kac formula.
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Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation 1127

Definition 2.1 (First exit time) The time at which a realization of a Brownian motion
Xt , started at some point x ∈ D ⊂ Rd , first hits the domain boundary ∂D is called
the first exit time τ := inf{t > 0 : Xt ∈ ∂D}.
Definition 2.2 (First exit point) The point at which a realization of a Brownianmotion
Xt , started at some point x ∈ D ⊂ Rd , first hits the domain boundary ∂D is called
the first exit point Xτ .

Of great importance for the derivation of the WoS algorithm is the distribution of
first exit points of a Brownian motion in a ball Bx (R) of radius R centered at the point
x . If the starting point of the Brownian motion is the center of the ball, this distribution
is uniform on its surface, independent of the dimension [19, Theorem 3].

In evaluating functionals of stochastic processes, one is often interested in their
expectations and variances. Throughout this paper, the L2-norm over the sample space

� is defined as the expectation ‖X‖L2(�) := E
[|X |2] 1

2 .

2.2 Feynman–Kac formula for the Laplace equation

The Feynman–Kac formula, developed by Richard Feynman andMarkKac [13], gives
a probabilistic representation of the solution to certain PDEs at a single fixed evaluation
point x . The Feynman–Kac formula allows us to write the solution of a very general
elliptic PDE

Lu = 1

2
�u +

d∑

i=1

bi (x)∂i u + c(x)u = −g(x), in D ⊂ Rd ,

u(x) = f (x), on ∂D,

as an expectation over a stochastic process Xt beginning at the point x . This requires
that b, c and g are smooth and satisfy a Lipshitz growth condition [6]. This process
satisfies the stochastic differential equation dXt = b(x) dt + dW , where dW is a
Brownian increment, and is stopped as soon as it hits the boundary. Denoting the
first exit time by τ and the condition that X0 = x by the subscript x in Ex , the
Feynman–Kac formula can be written as

u(x) = Ex

[
f (Xτ ) exp

(∫ τ

0
c(Xs) ds

)
+

∫ τ

0
g(Xt ) exp

(∫ t

0
c(Xs) ds

)
dt

]
.

In this paperwe are only interested in theLaplace equation�u = 0 in d dimensions,
D ⊂ Rd . Thus, b = c = g = 0. This simplifies the development of an MLMC
method, which can be used as a basis for more general equations. In this simple case
the Feynman–Kac representation is given as the expectation of the exit point Xτ of
a Brownian motion started at the point x . Denoting the condition X0 = x by the
subscript x in Ex and the boundary value at the exit point Y := f (Xτ ), the solution
is written as [6]

u(x) = Ex [ f (Xτ )] =: Ex [Y ] . (2.1)
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1128 S. Pauli et al.

2.3 Walk on spheres (WoS )

The WoS algorithm [15] can be viewed as an alternative to a conventional detailed
simulation of the drift-free Brownian motion inside the domain D. For a Brownian
path started at the center of a sphere, the exit point distribution is known to be an
uniform distribution on the sphere [19]. This allows to simulate the Brownian motion
using discrete jumps of a given size. Starting at τ = 0 with X0 = x the algorithm
measures the distance from the current position Xt to ∂D and jumps this distance in an
uniformly random direction to the next position Xt+1. The algorithm terminates when
it is ε-close to the boundary ∂D at the point XN . The first exit point is approximated
by the point XN ∈ ∂D that is closest to XN . This WoSalgorithm may be used to solve
the Laplace equation [15]. We recall that E[Y ] = u(x) when Y is computed based on
a processes started at x . Yε := f (XN ) is the estimator based on a WoSprocesses with
the parameter ε.

The MC estimate uses M realizations {Y i
ε }Mi=1 of the random variable Yε obtained

from independent paths of the WoSprocess to approximate the solution E[Y ] ≈
EM [Yε] = 1

M

∑M
i=1 Y

i
ε . The errors associated with this approximation are twofold.

One error results from estimating the expected solution E[Yε] ≈ EM [Yε] with either
MC (see Sect. 2.4.1) or with MLMC (see Sect. 3). This is a purely statistical error,
associated with the uncertainty in estimating the mean E[Yε] with finitely many real-
izations. This error can be reduced by increasing the number of realizations M . The
other error is related to the stopping region of size ε as the individual paths are not
computed exactly, but approximated with a WoSprocess. In fact the WoSpaths stop
prior to hitting the boundary, but at most ε away from it. This introduces a bias of
O(ε) [14] as the stopping point depends on an ε perturbation of the boundary, resulting
in

ebias = ‖E[Y ] − E[Yε]‖L2(�) ≤ O(ε). (2.2)

Intuitively, we solve a different problem (up to the sampling error), with the boundary
position perturbed by at most ε, resulting in the above bias.

Multiple upper bounds on the expected WoSpath length E[N ] are derived in [4].
For problems in dimensions d ≥ 3 the upper bound E[N ] = O(ε4/d−2) holds.
For domains fulfilling certain regularity conditions, tighter upper bounds of E[N ] =
O(logp(ε−1)), d ≥ 2 are proven for p = 1 or p = 2 depending on the domain. These
estimates are relevant for bounding the expected work per sample.

2.4 Monte Carlo

2.4.1 Statistical error

Given M realizations {Y i
ε }Mi=1 of the random variable Yε, the value for E[Yε] can be

approximated by the estimator EM [Yε] = 1
M

∑M
i=1 Y

i
ε . The error of this Monte Carlo

estimator can be written in terms of the random variable Yε as
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Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation 1129

estat = ‖E[Yε] − EM [Yε]‖L2(�) = Var

[
1

M

M∑

i=1

Y i
ε

] 1
2

= 1√
M

√
Var[Yε] ≤ 1√

M
‖Yε‖L2(�), (2.3)

where we use the fact that the samples Y i
ε are independent and identically distributed

(i.i.d.) realizations of Yε.

2.4.2 Total error

The total error of an estimation EM [Yε] ofE[Y ] by the WoSalgorithm can be bounded
using the triangle inequality,

‖E[Y ] − EM [Yε]‖L2(�) ≤ ‖E[Y ] − E[Yε]‖L2(�) + ‖E[Yε] − EM [Yε]‖L2(�).

Using (2.2) and (2.3), we can bound the total error by

etot := ‖E[Y ] − EM [Yε]‖L2(�) ≤ O(ε) +
√
Var[Yε]

M
. (2.4)

2.4.3 Error equilibration

Onewayof choosing the sample size is by equilibrating the statistical anddiscretization
errors in (2.4), O(ε) = √

Var[Yε] /M . This yields the relationship

M = O(ε−2), (2.5)

giving a total error behavior of O(ε).

2.5 Error versus expected work

The expected total work E[W ] of a WoS simulation is the number of paths times the
expected length of a path:

E[W ] = M · E[N ] .

Each bound for the expected path length E[N ] shown in Sect. 2.3 is multiplied
with the M in (2.5), and the resulting expected work is solved for ε. Equation (2.6a)
is valid for d ≥ 3, Eq. (2.6b) for well-behaved domains in d ≥ 2 dimensions. To
derive (2.6b) we make use of the LambertW -function,Wlam(·), defined as the inverse
of the map w 	→ w exp(w). It can be approximated with the truncated expansion
Wlam(x) ≈ log(x) − log log(x) [5]. This yields the following relationships:

E[W ] = O(ε4/d−4) etot = O(ε) = O(E[W ]
1
4

d
1−d ) (2.6a)

E[W ] = O(ε−2 log2(ε−1)) etot = O(ε) = O(E[W ]−
1
2 log(E[W ])) (2.6b)
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1130 S. Pauli et al.

The total error is linear in ε by the choice in (2.5). In both cases the WoSalgorithm

performs worse than the optimum possible in a Monte Carlo setting, namely W− 1
2 .

This motivates the formulation of a multilevel version of the WoSalgorithm, with the
hopes of achieving the optimal convergence rate.

3 Multilevel Walk on Spheres (MLWoS )

In this section, a multilevel version of the WoSalgorithm is formulated and its error
behavior analyzed. The main idea is to execute the WoSalgorithm on different “dis-
cretization levels”, meaning for different values of the discretization parameter ε. The
subscript � ∈ {0, . . . , L} is used to denote a certain discretization level, where � = 0
is the coarsest discretization level, corresponding to a WoS simulation with ε0, and
� = L is the finest discretization level.

3.1 Multilevel formulation

On each discretization level � = 0, . . . , L , we define the discretization parameter
ε� := η−�ε0, where η > 1, i.e. the width of the stopping region is divided by η

between successive levels.
In the following definition, a single WoSprocess with ε� is used to define the mul-

tilevel process in order to incorporate the fact that stopping points on higher levels are
continuations of previously stopped processes.

Definition 3.1 (Multilevel Walk on Spheres (MLWoS ) process Given a domain D ⊂
Rd , a point x ∈ D, a discretization parameter ε0 and an η > 1. Consider a WoSprocess
{Xi }N�

i=0 started at x with ε� = η−�ε0 and the pair
(
XN�−1 , XN�

)
obtained by N�−1 =

min{N ∈ N : d∂D(XN ) < ε�−1}, where d∂D(XN ) = minx ′∈∂D |XN − x ′| is the
distance to the boundary ∂D. The MLWoSon the level � is the set of all such pairs.

In the context of multilevel Monte Carlo, we have multiple estimators Yε�
, one for

each discretization level with discretization parameter ε�. These are obtained in the
same way as for the non-multilevel case, e.g. Yε�

= f (XN�
). The expectation of the

estimator YεL is written in multilevel form as

E
[
YεL

] = E
[
Yε0

] +
L∑

�=1

E
[
Yε�

− Yε�−1

]
.

Replacing the expectation with the average over M� realizations on each discretization
level �, we get the MLMC estimate

E
[
YεL

] = EM0

[
Yε0

] +
L∑

�=1

EM�

[
Yε�

− Yε�−1

]
.

The “sample” on level � > 0 is now (Yε�
− Yε�−1), for which it is assumed that the

two values on discretization levels � and � − 1 come from the same WoSpath. The
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Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation 1131

implication is that they should be simulated with the MLWoSprocess from Definition
3.1. The remaining estimator on discretization level 0 is computed with an ordinary
WoS simulation.

Note that the individual Yε�
are estimators on the discretization level �, whereas

Yε�
− Yε�−1 are referred to as estimators on level �.

3.2 Multilevel error bounds

ThemultilevelMonteCarlo error is defined as the differencebetween the expectationof
the exact estimator E[Y ] and the MLMC approximation involving all levels, E

[
YεL

]
,

and is given by [2]

‖E[Y ] − E[YεL ]‖L2(�) ≤ ‖E[Y ] − E
[
YεL

]‖L2(�)

+ M
− 1

2
0 ‖Yε0‖L2(�) +

L∑

�=1

M
− 1

2
� ‖Yε�

− Yε�−1‖L2(�).

3.3 Asymptotic variance convergence rate

We want to bound the variance of the estimator on a level � in the multilevel error
bound. In more exact terms, we want to determine for which functions f and domains
D the relationship

‖Yε�
− Yε�−1‖L2(�) = O(εs�) ∀� > �min (3.1)

holds for some �min > 0, s > 0. This behavior is desired since it allows a good
multilevel performance. It ensures that the variance is small on the fine levels, such
that only few fine-level realizations are required.

Conditioning the expectation on the current position XN�−1 incorporates the fact
that the simulation continues with a given path from level � − 1, not generating a
completely independent one on the finer level �. Using XN�

= XN�−1 + �x yields

‖Yε�
− Yε�−1‖2L2(�)

= E
[
| f (XN�−1 + �x) − f (XN�−1)|2

∣∣
∣ XN�−1

]
.

In order to write this expectation in terms of |�x |, rather than in terms of the process
XN�−1 , we make the following assumption:

Assumption 3.1 (Hölder continuity) There exist C, α > 0 such that

| f (x) − f (y)| ≤ C |x − y|α

for all x, y ∈ ∂D.
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1132 S. Pauli et al.

This assumption implies

E
[
| f (XN�−1 + �x) − f (XN�−1)|2

∣∣
∣ XN�−1

]
≤ C2E

[
|�x |2α

∣∣
∣ XN�−1

]
. (3.2)

The conditioning can be omitted by bounding the right-hand side of (3.2) by the
maximum over XN�−1 .

Splitting the expectation into a converging part where |�x | ≤ R� and a “diverging”
part with R� < |�x | ≤ |D|, where |D| is the diameter of the circumsphere of D, we
get

E
[
|�x |2α

]
≤ P[|�x�| ≤ R�] R

2α
� + P[|�x�| > R�] |D|2α

= (1 − pdiv)R
2α
� + pdiv|D|2α. (3.3)

We denote by pdiv = P
[
XN�+1 /∈ BXN�

(R�)
]
the divergence probability, defined as

the probability that the projected points on two consecutive levels, XN�
and XN�+1 ,

are further than R� apart.
Since |D| in the second term is a domain-dependent constant, we must find a bound

for the divergence probability pdiv in terms of the discretization parameter ε. As shown
below, this is possible with the resulting behavior pdiv ∝ ε�

R�−ε�
.

In order for the expectation to converge with a certain rate in ε, both terms (1 −
pdiv)R2α

� and pdiv should converge. Solving R2α
� = C ε�

R�
results in R� = Cε

1
2α+1
� ,

which inserted in (3.3) yields

E
[
|�x |2α

]
≤ R2α

� + pdiv|D|2α

≤ C2αε
2α

2α+1
� + C ′ ε�

Cε
1

2α+1
� − ε�

|D|2α

= C2αε
2α

2α+1
� + C ′ ε�

ε
1

2α+1
� (C − ε

2α
2α+1 )

|D|2α

= C2αε
2α

2α+1
� + C ′ ε

2α
2α+1
�

C − ε
2α

2α+1

|D|2α

= O(ε
2α

2α+1
� ) (3.4)

and hence

‖Yε�
− Yε�−1‖2L2(�)

= O(ε
2α

2α+1
� ).

For differentiable f , we have α = 1 and thus the convergence rate O(ε
1
3
� ) in (3.1).
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3.3.1 Convergence of divergence probability

Our goal here is to obtain a bound on the divergence probability pdiv on a certain
level � depending on ε�. Divergence here means that the process does not result in an
estimate XN�+1 that is located within a ball BXN�

(R�) of radius R� around the current

projected stopping point XN�
.

In the derivation we use the so-called harmonic measure. There exist a few equiva-
lent definitions of harmonic measure which are relevant to the current application. The
first defines the harmonic measure as a harmonic function satisfying certain boundary
conditions, the second is instructive in the context of Monte Carlo approximations of
an integral and the third uses a definition relying on the distribution of the first exit
point of a Brownian motion. Consider the closed set D ⊂ Rd with d ≥ 2 and let
B(∂D) denote the σ -algebra of subsets of ∂D and define:

Definition 3.2 (Harmonic measure—Dirichlet solution) The harmonic measure ωD :
D × B(∂D) → [0, 1], viewed as a function ωD(x, E) of x for every fixed D and E ,
is the unique harmonic function that satisfies the boundary condition [10, p. 39]

f (x) =
{
1, if x ∈ E,

0, if x ∈ ∂D\E .

Definition 3.3 (Harmonic measure—integral representation) The harmonic measure
ωD : D × B(∂D) → [0, 1] is the unique function that satisfies [18, sec. 4.3]

(a) for each x ∈ D, E 	→ ωD(x, E) is a probability measure on ∂D
(b) if f : ∂D → R is continuous, the solution of the Laplace equation in D is given

by

u(x) =
∫

∂D
f (x ′) ωD(x, dx ′). (3.5)

Definition 3.4 (Harmonic measure—hitting probability) Let Xx
t denote a Brownian

motion started at x . The harmonic measure ωD : D × B(∂D) → [0, 1] is given by

ωD(x, E) := P
[
Xx

τ ∈ E, τ < ∞]
,

where τ = inf{t ≥ 0 : Xx
t ∈ ∂D} is the first exit time of Xx

t from D. [10, Theorem
F.6.]

By (3.5), we can view the solution u(x) of the Laplace equation as the expectation
value of f (Xτ ) under the distribution of first hitting points with probability measure
given by ωD . This agrees with the Feynman–Kac formula (2.1) applied to the Laplace
equation. Simulating realizations of the stochastic process Xt thus amounts to approx-
imating the integral (3.5) by Monte Carlo integration, i.e. generating realizations of
the exit points distributed according to the harmonic measure.

Often, the harmonic measure in a certain domain can’t be given analytically. Thus,
it is important to be able to bound it from above and below. This can be accomplished
using the general inequalities popularized by Carleman, illustrated in Fig. 1 and often
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1134 S. Pauli et al.

Fig. 1 An illustration of
Carleman’s Principle in two
dimensions. α is the unchanged
part of the boundary, β is
changed to β ′. The extended
domain with boundary α ∪ β ′ is
G′, G is the original one

XN�+1

D

D′

D′′

XN�

S

R�

R� − ε�+1

ε�+1

Fig. 2 Domain D ⊂ R2, with the semicircle S of radius R� −ε�+1 used to bound the harmonic measure of
a point XN�

located at most ε� from the boundary. The shaded region D′ is the intersection of the domain
D with the semicircle S. The path to XN�+1 is “divergent” with respect to XN�

referred to as Carleman’s Principle of Monotonicity or the Principle of Extension of
Domain.

Definition 3.5 (Carleman’s principle) The harmonic measure of x ∈ G and a portion
α of the boundary of G ⊂ Rd increases if the domain G is enlarged to G ′ ⊇ G by
modifying β = ∂G\α:

ωG(x, α) ≤ ωG ′(x, α). (3.6)

SinceωG(x, α)+ωG(x, β) = 1, it follows that the harmonic measure on the extended
portion of the boundary decreases with respect to the new domain: [17, p. 68], [8, p.
131]

ωG(x, β) ≥ ωG ′(x, β ′). (3.7)

We begin by sketching the situation in Fig. 2. Two portions of the domain D are
of relevance: D′, the intersection of D with a semi-ball S of radius R� − ε�+1 > ε�,
and D′′, the portion of the stopping region of D with discretization parameter ε�+1
leading to a divergent path.

Since the two domains D′′ and D′ do not overlap, a MLWoSpath related to a Brown-
ian motion which does not enter D\D′ does not diverge. This bounds the divergence
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Multilevel Monte Carlo for the Feynman–Kac formula for the Laplace equation 1135

Fig. 3 The boundary of the domain D is split into two disjoint portions, the “convergent” boundary 
c
and the “divergent” boundary 
d . The portion of the semicircle boundary ∂S inside of D is denoted by 
′

d
and the base of the semicircle is 
b

probability pdiv of a MLWoSpath by the harmonic measure pdiv ≤ ωD′(XN�
, 
′

d),
where 
′

d is the portion of the semicircle boundary ∂S inside of D (see Fig. 3).
In Fig. 3, the boundaries are split up such that Carleman’s method can be applied

to the harmonic measure ωD′(XN�
, 
′

d).
We keep the portion 
′

d fixed and extend the remaining portion 
c of the boundary
of D′ to the semicircle boundary ∂D\
′

d . This lets us use the first inequality (3.6),
where 
′

d corresponds to α and 
c corresponds to β in the definition, yielding

ωD′(x, 
′
d) ≤ ωS(x, 


′
d) ≤ ωS(x, ∂S\
b),

where the second inequality comes from adding ωS(x, ∂S\(
′
d ∪ 
b)), the harmonic

measure of the remaining portion of the arc, and using ωS(x, ∂S) = 1. Fortunately,
ωS(x, 
b) can be calculated analytically for any point x ∈ D′, giving us a bound for
ωD(x, 
d).

Define f (x) := 2θx
π

− 1, where θx is the angle at some point x when viewing the
two end-points of the diameter of S, see Fig. 4. For points on the base 
b of S, θ = π

and f (x) = 1. On the arc, the value for θ is always π
2 , yielding f (x) = 0. One can

also show by inserting θx = arctan
(
R−x
y

)
+ arctan

(
R+x
y

)
that f is harmonic. Since

by (3.2) this function is unique, it must be the harmonic measure:

ωS(x, 
b) = 2θx
π

− 1. (3.8)

We now make the assumption that x lies on the plane perpendicular to the base
of the hemisphere going through the midpoint of its base, as in Fig. 5. This allows
the simplification θ = 2 arctan((R� − ε�+1)/d(x, 
b)). By the construction of the
WoSprocess, we know that x = XN�

is the stopping point on level � and is at most
ε� away from the boundary point XN�

, which corresponds to the midpoint of the base
of the hemisphere. Thus, we bound d(x, 
b) ≤ ε�, leading to θ ≥ 2 arctan((R� −
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x

θx

Γb

S

ωS(x,Γb) = 1

ωS(x,Γb) = 0

Fig. 4 A semicircle containing a point x with opening angle θx that determines the harmonic measure
ωS(x, 
b). It assumes the value 0 on the arc and 1 on 
b

Fig. 5 More detailed illustration of the situation from Fig. 2

ε�+1)/ε�) by monotonicity and obtain the result

1 − ωS(XN�
, 
b) = 2

(
1 − θ

π

)
≤ 2

(
1 − 2

π
arctan

(
R� − ε�+1

ε�

))
.

Remembering that R� − ε�+1 � ε� we can use a series expansion of arctan(ξ) around
ξ = ∞, resulting in a final bound for the divergence probability in terms of ε�

pdiv ≤ 4C

π

ε�

R� − ε�+1
≤ 4C

π

ε�

R� − ε�

, (3.9)

for some constant C due to discarding the nonlinear terms of the series.

3.3.2 Optimal number of samples

To simplify notation, we define the estimator Y� to be

Y� :=
{
Yε0 , if � = 0,

Yε�
− Yε�−1 , if � > 0,

and w� the expected work performed to compute a sample on level �.
Following [16], the optimization problem to solve is then

minE[Wtot] = min
L∑

�=0

M�w� s.t. εL =
√√√√

L∑

�=0

Var[Y�]

M�

,
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hence minimizing the expected work, while maintaining a sampling error proportional
to the discretization error (O(εL)). [16] provides the optimal number of samples per
level

M� = 1

ε2L

√
Var[Y�]

w�

L∑

�=0

√
Var[Y�]w�. (3.10)

3.4 Error versus work

The following basic relations will be used in the sequel.

Refinement of ε� ε� = η−�ε0 = ηL−�εL

Scaling of work w� =
{
O(ε

−γ

� )

O(logp(ε−1
� )) = O(�

p
)

Scaling of variance Var[Y�] = O(ε2s� )

Determining M� (3.10) based on the estimates of variance and work leads to

M� =
⎧
⎨

⎩
ε−2
L

√
ε
2s+γ

�

∑L
�=0

√
ε
2s−γ

�

ε−2
L

√
ε2s� · �−p

∑L
�=0

√
ε2s� · �p

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε−2
L

√
ε
2s+γ

�

√
ε
2s−γ
0

L∑

�=0

√
η(γ−2s)�

︸ ︷︷ ︸
≤C, ∀2s>γ

ε−2
L

√
ε2s� · �−p

√
ε20s

L∑

�=0

√
η−2s� · �p

︸ ︷︷ ︸
≤C

(3.11)

The remaining summands can be bounded by a convergent geometric sequence.
Thus, by the comparison test the infinite series (L → ∞) converges to a constant, in
the first case provided 2s > γ .

Inserting (3.11) into the formula W tot
L = ∑L

�=0 M�w�, we can write the work as a
function of εL , which scales linearly with etot

W tot
L ≤

⎧
⎨

⎩
Cε−2

L

√
ε
2s−γ
0

∑L
�=0

√
ε
2s−γ

�

(3.11)≤ C2ε−2
L ε

2s−γ
0 , 2s > γ,

Cε−2
L

√
ε2s0

∑L
�=0

√
ε2s� · �p

(3.11)≤ C2ε−2
L ε2s0 ,

= O(ε−2
L ).

Thus, we obtain the optimal convergence rate

etot ∝ (W tot
L )−

1
2 ,
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for the case w� = O(ε
−γ

� ) provided 2s > γ .

3.5 Measured values

The second approach to determining M� is based on estimating the work w� and the
varianceVar[Y�] on the different levels, rather than using their asymptotic convergence
rates as in (3.11). In the absence of alternatives we still use the asymptotic convergence
rate of the discretization error O(εL). As in [15] the required estimates are computed
using the same samples already involved in the MLMC estimator.

A certain minimum number of samples (so-called warm-up samples) are needed
on every level to provide an accurate estimate. Performance disadvantages arise if the
number of required warm-up samples exceeds the optimal number of samples (3.10).
This often happens for the finest level L . However, (3.11) proves that in this case,
the optimal number of samples grows asymptotically, which implies that for small
εL the required warm-up samples do not exceed the optimal number of samples.
This technique complicates the implementation slightly, but does not increase the
computational work for this application.

4 Numerical results

4.1 Model problems

In this sectionwe formulatemodel problems on different domains to test our algorithm.

4.1.1 Hypercube

High dimensional problems suffer from the “curse of dimensionality” [3] when they
are solved with standard deterministic methods, such as finite element or finite vol-
ume methods. The “curse of dimensionality” refers to the fact that the number of
gridpoints in a d-dimensional hypercube when using a discretization with n points in
each dimension grows like nd , i.e. exponentially in the dimension.

Here, we consider a ten-dimensional hypercube D� := [0, 1]10 with the boundary
conditions given by

f (x) =

⎧
⎪⎨

⎪⎩

4(x1 − 1
2 )

2, if x1 ≤ 1
2

4(x1 − 3
2 )

2, if x1 ≥ 3
2 ,

0, otherwise.

(4.1)

4.1.2 Hemisphere

A three-dimensional problem to consider is the Laplace equation on a hemisphere
, as illustrated in Fig. 6. The boundary conditions of

the Laplace equation are chosen such that the analytical solution is given by u(xx) =
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Fig. 6 Hemisphere domain
in three dimensions

[
x21 + x22 + (x3 + 1)2

]− 1
2 , as stated in [14]. This leads to the following formulation

with Hölder exponent α = 1:

The initial point was chosen to be x0 := (0.2, 0.3, 0.1).

4.2 Implementation

A generic C++ implementation for both the conventional and the multilevel version
of the WoSalgorithm was created. The M� are either determined analytically or based
on measurements during the simulation. The code uses MPI to generate samples in
parallel, such that larger problems can be solved. The code was tested with up to 1,000
cores. Further information on the implementation is found in [9].

4.3 Measurement methodology

Monte Carlo methods are based on the approximation of an expectation by a sample
mean. The resulting estimator is itself a random variable—thus, the total error is given
by

‖E[Y ] − E[YεL ]‖L2(�) = E
[
‖E[Y ] − E[YεL ]‖2

] 1
2
.

This outer expectation can again be approximated by a sample mean, corresponding
to a repeated call of the corresponding algorithm. Thus, for a certain set of parameters
one must call the implementation with different random number seeds and compute
the sample mean over the resulting realizations. An estimate for a confidence interval
can also be computed using the results of these repeated calls.
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Fig. 7 D� Convergence of the
variance as the discretization
parameter ε� is reduced for the
hypercube domain D� with
α = 1 using η = 2

4.4 Measured variance convergence rate

As stated in (3.1), the variance of the estimate on a level � is assumed to converge
like O(εs�). In (3.4), it was shown that s is bounded by α

2α+1 , α being the exponent of
Hölder continuity of the boundary condition. The results presented here are empirical
measurements showing the convergence of the variance of the estimator. The mea-
surements were averaged over ten calls for the hypercube domain D�. In Fig. 7 the
theoretical and the measured exponent s are shown.

Shown only for the hypercube domain, but observed for all described domains, the
variance convergence rate is around 0.5, which is better than the value 1

3 obtained
from the analytical derivation assuming continuity of the boundary condition. This
is not a contradiction since the derivation yields an upper bound. However, using the
analytical upper bound will very likely result in suboptimal results, since obviously
one can get away with fewer samples on the fine levels.

4.5 Measured convergence rate

In this section we compare the error versus work of the proposed multilevel
WoSalgorithm with the plain WoSalgorithm. For the multilevel WoSalgorithm we
distinguish between two strategies, one with analytically derived M�, w� andVar[Y�]
(MLWOS) and the other withM� based onmeasuredw� andVar[Y�] (MEAS) accord-
ing to Sect. 3.5.

Measurements performed on the domain D� are shown in Fig. 8. We performed
measurements with η = 8 and η = 16. The measured values for the average error and
the average work are shown, together with the 1σ confidence interval, for different
algorithms. Sampling was performed until the confidence interval was very small. In
all cases the multilevel WoSwith analytically derived M� (MLWOS) performs poorly
compared to the plainWoSalgorithm. TheMLWOSperformance improves for η = 16,
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(a) (b)

Fig. 8 Convergence of error versus work for the problem posed on D�, for various values of the refinement
parameter η

Fig. 9 Convergence of the error
versus work for the problem
posed on , using η = 16

but an improvement over the plain WoSalgorithm is not measured. The multilevel
WoSwith M� using measured values (MEAS) always performs better than the plain
WoSalgorithm, especially for η = 16 where the computation is up to two times faster.

The analytically derived M� are based on the Var[Y�]. As observed in Sect. 4.4,
Var[Y�] converges faster than predicted in our theory. Hence it is not surprising that
themultilevelWoSalgorithmwith analytically derivedM� performs suboptimally. The
multilevel WoSalgorithm with M� based on measurements does not suffer from this
problem, therefore we observe a better performance.

The parameter η does not influence the convergence rate of the multilevel scheme,
but a clever choice may asymptotically reduce the work by a constant. Therefore
it is expected that the performance of the multilevel WoSalgorithm depends on η.
For certain problems (see e.g. [11]), this parameter is optimized analytically. Here,
various values are tried on the domain D� in order to empirically find good values.
We observed that η = 16 is a better choice than the other tested value η = 8.

Figure 9 showsmeasurements for the domain for η = 16. The results are similar
to the ones seen for the domain D�. The multilevel WoSwith analytically derived M�

(MLWOS) performs poorly, where as the multilevel WoSwith M� using measured
values (MEAS) is up to two times better than the plain WoSalgorithm.
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5 Conclusions and outlook

In this work, a first application of theMultilevel Monte Carlo method to the Feynman–
Kac formula was developed. A novel version of the Walk on Spheres process, the
Multilevel Walk on Spheres was formulated and central quantities were derived. It
was proven that the rate of convergence of the error versus the work of the Multilevel
Walk on Spheres algorithm is optimal.

In order to measure the actual performance gain of the proposed method, an imple-
mentation of both the conventional and the multilevel version of the Walk on Spheres
algorithmwas created. By parallelizing the generation of samples, more thorough con-
vergence results could be obtained. Additionally, a version of the multilevel method
that chooses the number of samples based on measurements was implemented.

In order to test a variety of different situations, multiple domains and boundary con-
ditions were implemented. The convergence rate of the error with respect to the work
was measured, along with many other relevant quantities. Using the new Multilevel
Walk on Spheres method, a reduction of the work by up to a factor 2 was achieved.

Using tighter bounds, it would perhaps be possible to find an upper bound for the
variance convergence rate that better fits the measured behavior. This would hopefully
allow to analytically determine the number of samples per level.

It would be beneficial to generalize the Multilevel Walk on Spheres to other elliptic
equations, for example the Poisson equation with nonconstant right-hand side. This
equation has applications in many fields, such as particle accelerator modeling or bio-
chemical electrostatics in which a Multilevel Walk on Spheres formulation may be of
use. This would require the formulation of a process that contains multiple discretiza-
tion levels along the path, i.e., with level dependentmaximal sphere radius. Thiswould
increase the expected work especially for fine discretizations and presumably increase
the benefit of Multilevel Walk on Spheres over Walk on Spheres.
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