Advanced Tools and Framework for Digital Film Restoration

Author(s):
Croci, Simone; Tunç, Aydın; Stefanoski, Nikolce; Gross, Markus; Smolic, Aljoscha

Publication Date:
2015

Permanent Link:
https://doi.org/10.3929/ethz-a-010558797

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
Advanced Tools and Framework for Digital Film Restoration

S. Croci1,2, T. Aydin2, N. Stefanoski2, M. Gross1,2 A. Smolic2,

1ETH Zurich, Switzerland
2Disney Research Zurich, Switzerland

Abstract

Digital restoration of film content that has historical value is crucial for the preservation of cultural heritage. Also, digital restoration is not only a relevant application area of various video processing technologies that have been developed in computer graphics literature, but also involves a multitude of unresolved research challenges. Currently, the digital restoration workflow is highly labor intensive and often heavily relies on expert knowledge. In this paper, we revisit some key steps of this workflow and propose novel, semi-automatic methods for performing them. To do that we build upon state-of-the-art video processing techniques by adding the components necessary for enabling (i) restoration of chemically degraded colors of the film stock, (ii) removal of excessive film grain through spatiotemporal filtering, and (iii) contrast recovery by transferring contrast from the negative film stock to the positive. We show that, when applied individually our tools produce compelling results, and when applied in concert significantly improves the degraded input content. Building on a conceptual framework of film restoration ensures best possible combination of tools and use of available materials.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—I.4.3 [Image Processing and Computer Vision]: Filtering

1. Introduction

Until the relatively recent transition to digital media, film has been the primary medium for storing visual content for a long time. Some of this content is being preserved in archives due to their historical or artistic value, or their importance for other reasons. In fact, in some countries the film content is perceived as a part of the cultural heritage, and therefore significant investments have been made for film archival. Another related effort is the digital restoration of the legacy content, such that it can be transferred and viewed in current hardware and therefore becomes available to a wider audience.

The digital restoration process involves scanning the film stock and accounting for various types of chemical and physical degradations without modifying the original artistic intent of the content. All these steps require specialized tools and knowledge, and as such the digital restoration process is often quite time consuming and labor intensive. Therefore, only a small percentage of the legacy content can be processed per year. While in some rare cases a title’s commercial value can justify its restoration costs (e.g. Disney’s recently re-released Lion King), other less popular but nevertheless culturally significant titles may become irreversibly destroyed before they are ever restored.

Interestingly, a number of research problems that are relevant to many of the challenges in digital film restoration have been investigated in computer graphics literature for decades. The restoration of chemically degraded film colors (due to humidity, heat, etc.) is closely related to the body of work in color transfer. The removal of excessive film grain is essentially a specialized instance of denoising and video filtering. Similarly, restoration of the contrast of the positive film stock from the negative stock can be viewed as a special form of contrast enhancement through joint filtering. Despite the resemblances, however, we found that the off-the-shelf computer graphics methods still require overcoming a multitude of research problems in order to be applicable to digital film restoration.

The goal of this interdisciplinary work is to present a set of semi-automatic key components for digital restoration with the hope of removing the barriers to a more practical restoration process. To that end, we start from the state-of-the-art in the computer graphics literature and make multiple novel contributions to enable their use for the purposes of digital
film restoration. Specifically, we make the following contributions:

- We present practical digital film restoration tools for restoration of chemically degraded colors, excessive grain removal, and contrast transfer from negative stock, all by building upon the state-of-the-art in the computer graphics literature by adding novel components.
- We demonstrate the usefulness of our techniques on a multitude of case studies by restoring degraded film content.

We base our discussions on a conceptual framework of film restoration outlined in section 3, which sets the foundation for optimum use of tools and available film materials. In the next section, we first start with a brief summary of the related work.

2. Related Work

Film Restoration For an overview on the fundamentals of film restoration we refer the reader to Read and Meyer [RM00]. The digital restoration is further investigated in Kokaram [Kok07]. Other related work discussed common degradations such as grain noise, dirt and sparkle, shake, and flicker, while also proposing a Bayesian approach for their removal. Rosenthaler and Gschwind [RG02] presents a model of film color degradation as well as a method for removal of scratches, dust and other defects. Schallauer et al. [SPH99] presents automatic algorithms for combating problems such as dust, dirt, image stabilization, flicker and mold. Finally, Werberget al. [WPUB11] presents an optical flow guided framework for interpolation and noise removal for television content.

Color Manipulation Two fundamental works in the area of film color restoration are by Gschwind and Frey [GF94, FG94]. These papers describe a simple but effective physical model of color degradation occurring in films. In our work, we build upon Oskam et al.’s work [OHSG12] that utilizes a radial basis function interpolation for balancing the colors between images, and was originally developed for virtual reality applications. We also studied other interpolation models that are described in Amidror et al. [Ami02]. Other relevant work in color transfer utilizes a moving least squares approach [HLKK14], performs color transfer in two steps: nonlinear channel-wise mapping followed by cross-channel mapping [FSKT13], relies on statistics in color images [RAGS01,XM06], attempts to preserve the gradients of the source image [XM09], tries to match the color distribution of the target image [PKD05], and performs histogram matching between the source and target images [NN05].

Denoising Denoising has been one of the most fundamental and practically relevant problems in visual computing, and has been studied extensively. For a theoretical treatment for the filtering process involved in denoising, we refer the reader to Milanfar [Mil13]. A popular denoising approach is the non-local-means (NLS) filtering [BCM05a, BCM08], which has been further discussed in comparison to other methods in Buades et al. [BCM05b]. More recently, the performance of the NLS filter has been improved through adaptive manifolds [GO12]. Other work that is applicable to denoising includes the domain transform filter [GO11], the permutohedral lattice [ABD10], the weighted-least-squares filter [FFLS08], the bilateral filter [TM98] and the BM3D filter [DFKE07]. Another relevant line of research to denoising is edge-aware spatiotemporal filtering [LWA*12, ASC*14]. Especially Aydin et al. [ASC*14] demonstrated compelling denoising results for HDR video by relying on simple averaging over motion compensated spatiotemporal video volumes.

Contrast Transfer A more general form of contrast transfer, namely style transfer has been thoroughly investigated in the computer graphics community. Some recent examples include Shi et al. [SPB*14] where they transfer the contrast and various other properties between headshot portraits. Wang et al. [WXY11] transfer tone and color properties of photographs taken with high-end DSLR cameras to photographs taken with cell phone cameras with lower image quality. Another interesting style transfer method based on learning the user’s preferences has been presented by Akyuz et al. [AOA13] specifically for HDR images. In our case, the style transfer occurs from the film negative to the film positive, where both the positive and negative can be chemically and physically degraded at various degrees.

3. Digital Restoration Framework

Analog film has been used since over 125 years to tell stories and to communicate visual information. Although film is almost completely replaced by digital video today, some film makers still choose to produce their movies on film due to its specific visual style. On the other hand, even for content shot on digital media, film is still a viable long-term alternative for archival. Analog film technology from capture to display evolved tremendously over the decades, resulting in a vast amount of different types of film stocks and the processing techniques associated with them. A comprehensive review of historical film technologies with the main focus on color processes is presented by Flueckinger [Flu].

The major steps of a digital restoration workflow are illustrated in Fig. 1. Typically analog film is captured on a negative N_0 with O stands for original. In our simplified model (omitting e.g. interpositives, etc.) the original positives P_0, that are used for projection in cinemas, are created from N_0. Generation of the positives usually involves color grading G_0, which is an artistic process for establishing the final look of the content on screen. As N_0 and P_0 are physical entities, they will undergo deformations over the years and decades resulting from mechanical/physical treatment and chemical processes inside the material. The negative is usually only used to create a few copies and otherwise pre-
served carefully, while a positive may have run thousands of times rough a projector and be exposed to various types of outside influences. A negative is typically in better shape, but does not carry the grading information, which is a historical part of the final visual art. Furthermore, \(N_D \) and \(P_D \) are made of very different materials such that the chemical degradation processes may be completely different depending on the particular type of film stock. We formally express all these effects as two different degradation functions \(f_N \) and \(f_P \), which transform the originals into their degraded versions \(N_D \) and \(P_D \).

\(N_D \) and \(P_D \) are degradations in the physical medium and should be removed. Importantly, the end result of this process should still remain faithful to the restored content’s original state. The restoration may involve mechanical cleaning and repairing of pieces as sometimes only fragments are available. Additionally, often only either \(N_D \) or \(P_D \) can be obtained, and not both. After these initial steps the film stock is digitized by a film scanner, which could introduce slight color shifts due to the scanner’s inaccuracy. Conceptionally we subsume these effects into the degrading functions \(f_N \) and \(f_P \), and assume that \(N_D \) and \(P_D \) are final digitized content.

The goal of digital film restoration is then the faithful reconstruction of the original visual information from the degraded content \(N_D \) and \(P_D \). Conceptionally this can be defined as estimation of inverse degrading functions, i.e. reconstruction functions \(f_N^{-1} \) and \(f_P^{-1} \) that would create estimates of the original inputs \(N_0 \) and \(P_0 \). From this we can estimate of the original color grading function \(f_G^0 \).

The goal of our research was to improve film restoration for two practically relevant scenarios. The first scenario assumes that the positive stock is available, but the negative stock is either not available or is somewhat degraded because of not being well preserved. For this scenario, we present three novel methods for performing the improvements conceptualized by the reconstruction functions \(f_N^{-1} \) and \(f_P^{-1} \).

Specifically, we address the restoration of degraded colors, removal of excessive film grain, and (in case the negative stock is available) the contrast transfer from the negative to the positive.

In the second scenario, we assume that both positive and negative stocks are available, and the negative stock is in a good condition. In this case, we use the scans of the positive and negative films to estimate the color grading function \(f_G^0 \) using the same color restoration method applied in the first scenario (Section 4.1). Then, we simply apply the color grading function to the negative \(N_0^* \) in order to obtain a positive \(P_0^* \) that has a similar level quality to the negative, but also is faithful to the artistic vision estimated from the positive.

While the aforementioned scenarios are common in practice, every film restoration project is a unique exercise and can impose novel challenges. That said, the methods presented in the reminder of this paper are useful additions to the currently available set of restoration tools, and can be used in tandem with others to facilitate the digital restoration process under various circumstances.

4. Advanced Tools

In our conceptual framework, any restoration method can be a part of the reconstruction functions \(f_N^{-1} \) and \(f_P^{-1} \). In this section we present three such tools which build upon the state-of-the-art in visual computing. In order to obtain the results presented in Section 5, we applied these methods in the presented order. That said, they can be used in any order, standalone, or in combination with any other restoration tools and software (e.g. scratch removal, stabilization, etc.).

4.1. Color Restoration

Color degradation is caused by chemical processes inside the film stock (Fig. 2 shows an example). These processes vary largely for different types of film stock and often even affect the color components differently. For instance sometimes the blue component fades faster than others, causing a characteristic color shift. In some cases for certain types of film stock it is possible to model the chemical degradation process and to derive corresponding algorithms for inversion as described in [GP94] and [FG94]. However, such approaches require physical measurements of the film stock to derive appropriate model parameters and in the end still require interactive correction and finishing.

In our approach we rather rely on color transfer algorithms that have proven high quality and flexibility in other application domains [OHSG12]. We make the assumption that the color degradation is a global transformation, which means that the degradation only depends on the colors of the original film and not on the position of the colors in the frame.
4.1.1. Color Restoration Pipeline

The pipeline of our approach for color restoration is illustrated in Fig. 2. The key is a color model which is used to transform the degraded film. This model is generated in an interactive process controlled by the conservator, where the conservator provides several restored keyframes to our system. The number and spacing of keyframes depends on the length of a sequence and the amount of change. In our results we mostly used just one keyframe for sequences of several seconds. Rarely a second keyframe was used. The conservator restores the keyframes using traditional grading tools. Then our system will estimate a color model of that particular grading by comparing the restored keyframe to the input as described below (indicated by red lines in Fig. 2). This color model is then applied to the whole sequence to create the final restored output.

![Image](826x4979 to 1378x5324)

Figure 2: Color restoration by color model estimation.

4.1.2. Estimation of Color Models

The estimation of the color model that was used to manually restore a keyframe follows the approach of Oskam et al. [OHS12]. The task is to compute model parameters according to some optimality criteria. Let’s assume that the equation \(c' = f(c, p) \) defines the model \(f \) that takes as input a faded color \(c \) and computes as output the corresponding original color \(c' \). \(f \) depends on \(p \) which represents the parameters that must be computed before using the model to correct other frames. For the computation of the parameters \(p \) we use a least squares criterion defined as:

\[
\arg\min_p \sum_{i=1}^{N} \| c'_i - f(c_i, p) \|^2
\]

where \(\{c_i, c'_i\} (i = 1, \ldots, N) \) are color correspondences, i.e. pairs of restored and corresponding faded colors (Fig. 2). The least squares criterion simply minimizes the sum of the squared model errors for the given color correspondences, and is computed by an appropriate solver. The color correspondences needed for model training can be obtained manually or automatically as outlined in the next sub-section.

\(f \) in equation 1 can be considered an interpolation function that creates the restored output images from degraded input images, depending on a parameter set \(p \) as computed from the color correspondences of the keyframe. We experimented with several types of interpolation functions (polynomial, radial basis functions, thin-plate splines, tetrahedral) and found that radial basis functions are one of the models that work best for our purpose. Formally,

\[
c'(c, p) := c + v(c, p) \quad \text{where} \quad v(c, p) = \sum_{i=1}^{N} \phi(||c - c_i||, \xi_i)w_i
\]

and \(p := (w_1, \ldots, w_N, \xi_1, \ldots, \xi_N) \) is the parameter vector of the model. In the previous equation \(\phi \) is a radial basis function which can be chosen from the following functions:

\[
\begin{align*}
\phi(r, \xi) &= (1 + r^2)^{-\frac{\alpha}{2}} \quad \text{(Normalized Shepard)} \\
\phi(r, \xi) &= e^{-\frac{r^2}{\xi^2}} \quad \text{(Gaussian)} \\
\phi(r, \xi, \alpha) &= \frac{1}{1+\frac{\alpha}{\xi r^2}} + \alpha \quad \text{(Inverse Quadric)}
\end{align*}
\]

In our experiments we used the Normalized Shepard radial basis function.

4.1.3. Color Correspondences Extraction Methods

For selection of the correspondences needed to compute the parameters of the color reconstruction function, we developed an interactive and an automatic method. The interactive approach provides full control to the conservator and follows Oskam et al. [OHS12]. Here the user selects a first pair of correspondences by clicking into the input image, typically inside a characteristically colored region. The system then solves the equations above and creates a first restored version, which is usually still very far off. Then the user continues to add correspondences in selected image regions and the process is repeated until convergence and satisfaction of the user. This is typically the case after about a ten iterations depending on the complexity of the content.

Our automatic approach is based on clustering of random correspondences. The method randomly selects a predefined number of correspondences distributed over the image. We used 10,000 points for the results reported in this paper. This step reduces the number of samples to be considered, while still providing a representative set of the color distribution. Next, the set is further reduced to a number of typically 30 color clusters using a k-means algorithm in 3D color space, to make the problem computationally feasible, while still providing a good representation. Finally, for each cluster we select the correspondence, which is closest to the centroid as representative, and these representatives are used to solve for the color restoration model.

For most of our results reported in this paper and the video, we used the automatic approach. For a few cases we
decided to fall back to the interactive approach when the material was too degraded. This limitation can always be handled in the anyway interactive restoration workflow, where the automatic method serves as additional tool, which in most cases increases efficiency.

4.2. Denoising/Degraining

Denoising is one of the most studied areas in image/video processing research. We extend a recently proposed edge-aware spatio-temporal filtering method based on permeability-guided filtering (PGF) [ASC*14]. Here we present a specific improvement for the application to film restoration.

4.2.1. Grain Noise Characteristics

Exposed film always contains characteristic grain noise which creates the specific look that is considered as part of piece of art. However, old degraded film usually exhibits a significant increase of film grain which is not desired, i.e. it is an artifact (Fig. 3). A major difficulty in film restoration is therefore to find the right amount of reduction to an approximately original level and nature of noise. The conservator has to find this balance with the help of a powerful tool, as ours as described in the following, which also allows to keep texture and contrast of the content as unaffected as possible.

![Figure 3: Original film scan showing film grain in the sky and face region.](image1)

To characterize the grain properties of degraded film, we analyzed a patch of the sky region of the original image content shown in Fig. 3, which appears to show a uniformly colored region distorted with strong grain noise. The colored artifacts indicate that grain noise degraded differently in the color channels. A look at the energy spectral density of the luma channel of this patch (Fig. 4) shows that the spectral energy is isotropically distributed in the low and mid range of frequencies. The isotropic distribution indicates that grain noise has no direction of preference, while the lack of high frequency energy reveals that grain noise is locally correlated i.e. it is smooth to a certain degree. A closer look at the distribution of absolute x- and y-derivatives shows that they are concentrated in a small domain in comparison to the original image domain with values up to 255. Hence, we characterize non-structured image regions with grain noise as having isotropically distributed noise and small x- and y-derivatives.

![Figure 4: Energy spectral density of a patch of the sky region of Fig. 3.](image2)

![Figure 5: Distribution of absolute derivatives.](image3)

4.2.2. Grain Reduction

We reduce the grain noise by using PGF [ASC*14], which we extend by employing permeability weights that take the characteristics of grain noise into account. The weights are computed adaptively from the available noisy image content to enable a strong spatial diffusion in areas with isotropic image content and small partial derivatives in x- and y-direction, while in areas deviating from this assumptions the level of diffusion is gradually reduced.

PGF is conducted by filtering with an 1-dimensional filter in a separable way along image rows, image columns, and in time along optical flow trajectories. First all image rows are filtered which gives image $J^{(1)}$ and then all image columns of image $J^{(1)}$ are filtered and image $J^{(2)}$ is obtained. We continue alternating between filtering image rows and image columns until we obtain a converging filtering result.
We observed that in practice for natural images after 10 iterations we obtain already a very good approximation. In the end, we filter with the same filtering approach once in time direction along optical flow trajectories.

We denote in the following a sequence of values of one color channel along an image row, image column, or optical flow trajectory as I_1, \ldots, I_N. We filter this sequence according to

$$j_i^{(k+1)} = \frac{I_i + \sum_{j=1, j \neq i}^{N} \pi_{ij} j_j^{(k)}}{\sum_{j=1}^{N} \pi_{ij}}, \quad j_i^{(0)} := I_i$$

where I_i is the original noisy image, $j_i^{(k)}$ is the filtering result after k iterations, $\pi_{ij} \in [0, 1]$ is a permeability weight indicating the level of diffusion or permeability between pixels i and j ($\pi_{ij} \approx 1$ is interpreted as high permeability). The permeability between two non-neighboring pixels i and j is computed as the product of permeabilities between neighboring pixels that lie on the interval between these pixels, i.e.

$$\pi_{ij} := \begin{cases} 1 & : i = j \\ \prod_{l=1}^{i-1} \pi_{l, r+i} & : i < j \\ \prod_{l=1}^{j-1} \pi_{r+l, j} & : i > j \end{cases}$$

Notice that a small permeability between neighboring pixels along the way from pixel i to pixel j will lead to a low overall permeability π_{ij} and a low diffusion of pixel $j_i^{(k)}$ into $j_i^{(k+1)}$ (cp. Eq. 5). This property is exploited for reducing or even stopping diffusion between certain pixels.

In our adaptive extension of the PGF filter (APGF), we compute the permeability between neighboring pixels π_{r+i} based on a variant of the Lorentzian stopping function which takes into account the grain noise characteristics. We essentially allow a stronger diffusion between neighboring pixels which create small magnitude differences and are located in an image area with isotropic structure. Diffusion is gradually reduced in areas which deviate from this assumption. Hence, we compute the permeability between neighboring pixels according to

$$\pi_{r+i} := \left(1 + \frac{|I_r - I_{r+i}|}{\rho_r \gamma} \right)^{-1}$$

where I_r indicates the gray value of I, α is a shape parameter, and γ is a scaling parameter. Note that partial derivatives of magnitudes greater than γ are mapped to permeability weights π_{r+i} that are smaller than 0.5 (for $\rho_r = 1$). In addition, the content-adaptive weight factor $\rho_r \in [0, 1]$ reduces the permeability if the local image neighborhood is anisotropic. This is achieved by penalizing the deviation between the standard deviations in x and y direction, which are computed locally around pixel r, according to

$$\rho_r := e^{-\lambda |\sigma_x(r) - \sigma_y(r)|},$$

where the parameter λ is used to adjust the sensitivity of the weight factor ρ_r to the level of deviation between the standard deviations σ_x and σ_y. The parameter ρ_r is computed according to Eq. 8 only if image rows or columns are filtered. In the case of filtering in time direction, we use $\rho_r = 1$.

Hence, the permeability weights are computed in such a way that a strong spatial diffusion is only achieved if partial derivatives have a magnitude smaller than γ and the local image neighborhood is isotropic.

4.2.3. Results

Our APGF method has three parameters: α, γ, and λ. In all filtering results shown in this paper, we use $\alpha = 0.5$ and $\lambda = 0.5$. We select the scaling parameter γ by inspecting the distribution of partial derivatives in an image patch that contains a uniformly colored background (like the sky in Fig. 3), and visually test the impact of different γ parameters on the visual quality by selecting them from the range of the largest partial derivatives.

In Fig. 6, we show grain reduction results achieved with PGF and APGF, where both methods use the same α and γ parameters. Note that PGF does not use a content-adaptive weight factor ρ_r, which is equivalent to using APGM with $\lambda = 0$. We observe, that APGM provides a better image fidelity in anisotropic low gradient regions, like the mountains and flowers of 6-a and the texture of the scarf and the settlement in the background of Fig. 6-d.

4.3. Contrast enhancement

Contrast enhancement is another basic image/video processing operation and as such also widely explored already. However, as there is typically no reference or original image information, tuning of these algorithms becomes an arbitrary operation. In film restoration however, given our framework, a reference might be available. This is in cases where both, a positive and a negative are available, and the conservator could decide to combine information from both sources. The positive may have lost contrast due to degradation, while still comprising the intended color grading information. The negative might be better preserved in terms of contrast, while lacking color grading.

In such a case, contrast transfer could be applied from the negative to the positive as illustrated in Fig. 7. A contrast detail layer is extracted from the luminance channel of the negative. These contrast details are then used to enhance the luminance channel of the positive. We use a weighting parameter β to control the amount of contrast transfer as a weighted sum. Fig. 8 shows results of contrast transfer for varying β.

Two non-trivial tasks have to be solved to perform such contrast transfer, i.e. registration and detail extraction. Registration is challenging as negative and positive are by nature very different images (see Fig. 7). Further, in a restora-
Degraded Negative	Degraded Positive	Restored Positive	Enhanced Positive

Registation

Degraded Negative | Restored Negative | Detail Layer

Figure 7: Contrast transfer pipeline.

Degradation scenario both have been affected by different degradations that even after initial restoration lead to different image characteristics. One of these differences, on contrast, is in fact the one that we want to explore here. Finally, both sequences were scanned from different film reels. Effects like shrinking may have affected both reels in different ways. Therefore scanned historical film material is often temporally very unstable, i.e. jerky, warped, etc. Some of our examples exhibit such degradations. Stable alignment of two such different and very differently imperfect sequences is thus a challenging task. We experimented with various alignment approaches. SURF features [BETT08] combined with a robust estimator [TZ00] assuming an affine model turned out to provide very good results in most of our experiments. For some images (1 out of 50 on average) interactive correction was necessary, as for contrast transfer as shown in Fig. 7 almost perfect alignment is essential.

For extraction of the detail layer we build on the very recent work by Aydin et al. [ASC14] on temporally consistent video tone mapping. As part of their framework, they describe an algorithm for temporally coherent separation of a video sequence into a low-contrast base layer and a detail layer that captures all high contrast information. The core of that approach is the same PGF algorithm that we also use for denoising (see section 4.2). For contrast extraction we also use our adaptive extension APGF. All results reported in this paper and video were generated by automatic detail layer extraction using this algorithm.

5. Results

Our algorithms were developed and tested in the context of a real film restoration project in cooperation with a film archive, a national broadcaster and a post-production house. We selected sequences from two historical films Heidi and Kummerbuben. For all test sequences we had mechanically/physically restored and scanned versions of negative and positive available as files (observations N_D and P_D).

Heidi is a production from 1978 on Kodak Eastman film stock in 16 mm. As such it was produced for TV broadcast...
Presents selected results of our restoration pipeline (green line close to left CAS compares examples available in the supplemental material (see [CAS*]). The positive of WalkingLadies exhibits severe degradations towards the end of the sequence, as shown in the last two examples in Fig. 10 (green line close to left border in 3rd image, destruction across whole 4th image). It would be very cumbersome to repair these degradations. The negative on the other hand is not affected by these destructions and can therefore be much easier restored. Further, the positive is temporally very unstable for this example, whereas the negative does not need much stabilization. These examples illustrate that film restoration is unique for every project. Especially for very old historical material it is interactive work similar to other types of art restoration. Awareness of the framework paired with powerful related tools will lead to best possible results.

Fig. 8: Results of contrast transfer for increasing β only and not for theatrical release. It features a diverse variety of shots, including landscapes, dialogs, closeups, etc. with very cinematic camera work. The positive exhibits severe degradations in various classical ways (color fading, noise, loss of contrast, temporal instability, scratches, dirt, etc.). The negative is generally in better condition.

Kummerbuben is a production from 1968 also on Kodak Eastman, but in 35 mm for theatrical release. The available material is in better condition compared to Heidi, while still exhibiting all classical degradations. We selected a shot from Kummerbuben to illustrate the variety of different input material one is confronted with in film restoration, which contains significant camera and object motion.

Fig. 9 presents selected results of our restoration pipeline for the positive ($f_P^{−1}$). The corresponding video results are available in the supplemental material (see [CAS*]). Severe color degradations were corrected using our efficient approach based on keyframes and color model estimation. Next, APGF was used for denoising, preserving image textures/details/structures and film look, while reducing extensive noise and grain. Finally, contrast was enhanced transferring details from the available negatives. We did deliberately not apply tools for scratch or dirt removal or other classical restoration tools, in order to show only the effect of our advanced tools. We also decided not to crop the results to better illustrate the difficulties for alignment with such material, see esp. the sequence with the two ladies walking uphill (WalkingLadies). The final results provide a decent quality, sufficient for reuse, while retaining the vintage character of the footage. Finally, it is the task of the conservator to create faithful and appealing output, using best available tools in an appropriate way. As our tools apply and extend the latest state-of-the-art in visual computing, they certainly expand possibilities and reduce manual efforts.

In a second set of experiments we illustrate the framework idea (Fig. 1). If the negative N_D is available and in better condition, it makes more sense to apply the tools on that material ($f_N^{−1}$). The positive P_D may only be restored for a couple of keyframes, mainly focusing on color. The algorithm from section 4.1 can then be used to get estimates for color grading $f_D^∗$ per keyframe for associated sequences. These estimates can then be used to re-grade a new positive sequence $P^∗_D$ from the restored negative sequence $N^∗_D$. The advantage of such an approach is that only selected keyframes from P_D are necessary only as color reference. Heavily degraded images can be avoided. Fig. 10 compares examples of this approach to results of the positive pipeline. Corresponding videos are available in the supplemental material (see [CAS*]). The positive of WalkingLadies exhibits severe degradations towards the end of the sequence, as shown in the last two examples in Fig. 10 (green line close to left border in 3rd image, destruction across whole 4th image). It would be very cumbersome to repair these degradations. The negative on the other hand is not affected by these destructions and can therefore be much easier restored. Further, the positive is temporally very unstable for this example, whereas the negative does not need much stabilization. These examples illustrate that film restoration is unique for every project. Especially for very old historical material it is interactive work similar to other types of art restoration. Awareness of the framework paired with powerful related tools will lead to best possible results.

6. Conclusions

In this paper we have addressed the problem of digital film restoration, which we model as an estimation process given noisy and incomplete observations. We have presented three different restoration tools that tackle specific imperfections of historical film material. First, we adapted a color transform approach for our specific needs and extended it by an automatic correspondence selection method, which in most cases reduces user interaction significantly. Next, we extended a very recent and very powerful noise reduction algorithm for our specific application by adding an adaptive component (APGF) tailored to noise grain in historic film. Finally, a novel contrast transfer method was introduced that extends a very recent spatio-temporal filtering algorithm to enhance the contrast of a positive using information from a corresponding negative. All three algorithms extend recent advances in visual computing and adapt them for specific tasks in digital film restoration. As such they expand the toolbox of a conservator to chose from to handle a given restoration project at hand. Our results illustrate the power and quality of the tools on realistic examples from film restoration projects. We also illustrated the power of frame-
Figure 9: Results after different steps of the pipeline for positive film restoration.

work aspects in examples combining information from both, positive and negative, to create optimum final results.

In the end film restoration will remain a very interactive art, where experience and intuition of the conservator play a decisive role, especially for very old and heavily degraded material. Improvements of tools may continue as long as progress in visual computing continues. The digital film restoration framework remains as reference for involved processes and components.
Figure 10: Comparison of the results of the positive and the negative restoration pipeline.

References

[PKD05] PITTE F., KOKARAM A., DAHYOT R.: N-dimensional probability density function transfer and its application to color transfer. RCCV (2005), 1434–1439. 2

