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I. Abstract

Photochemical and photophysical processes are the basis for the conversion of solar
light into energy forms usable by living organisms on earth. Insight into the elemen-
tary reaction steps requires a detailed understanding of interactions between radiation
and matter, which can be probed on a molecular level with spectroscopic techniques.
Spectroscopy also provides the bridge to theoretical analyses, which are required to
develop concepts about the underlying phenomena as well as strategies for utilizing
them in other contexts. Although the fundamental physical principles needed for this
purpose are known from quantum mechanics, reliable first-principles investigations are
hampered by the complexity of the functional units involved in photosynthesis. Our
knowledge on the basic working principles in biological photoprocesses strongly relies
on the decomposition of these units into molecular or submolecular building blocks. To
choose such entities as the essential ingredients in a quantum chemical framework is
thus a promising route to theoretical spectroscopy of complex systems.

This work describes the development of quantum chemical methods for the purpose of
chromophore-specific spectroscopy. They are designed to focus on relevant substructures
without sacrificing the view on the entire system. This means that interactions of the
constituent fragments must be properly described. Density functional theory provides
a natural framework for such techniques, since its essential quantity, the electron den-
sity, is an observable real-space quantity, which may be decomposed into subsystem
contributions.

The spectroscopic techniques that we are aiming at should be able to provide insight
into photoexcitation processes. Electronic absorption and circular dichroism spectra are
suited for this purpose, and resonance Raman spectroscopy can be utilized to uncover
structural changes after the initial absorption events. For the underlying theoretical
approaches, this necessitates the ability to describe excited electronic states for aggregates
with intricate composition. This can be provided by the extension of density functional
theory to time-dependent phenomena, so that the real-space separability of the electron
density, now as a function of time, is retained.

In the first part of this work, a subsystem electronic-structure method within the context
of density-functional theory is analyzed that employs such a real-space decomposition
for the description of complex aggregates in terms of simple fragments. It is shown
that this partitioning can accurately reproduce electron density distributions, even if
the interactions between the constituent subsystems become rather strong.

In order to utilize density-functional theory for the excited states of extended systems
composed of smaller subunits, it is necessary to understand its advantages, but also its
pitfalls. It is shown that severe problems arise for the description of charge–transfer
states when using conventional methods within time-dependent density-functional theory
for such systems. A physically motivated correction for this problem is introduced, and
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2 I.Abstract

its advantages for interacting molecular subsystems are described. Subsequently, we
describe an efficient partitioning scheme in the density-functional theory framework for
excited states, which results in an embedding of the chromophore to be investigated
in an effective environment. It is explained how this can be exploited to determine
spectroscopic properties for molecules in solvents or in biological environments.
While this approach is chromophore-specific and allows efficient quantum chemical anal-
yses of environmental effects, it fails for phenomena which can only be understood in
terms of a collective response of an aggregate of molecules. Such phenomena occur
in all photosynthetic systems, which are — as mentioned above — far too complex
to be accessible to any standard quantum-chemical method. A general subsystem ap-
proach to time-dependent density functional theory is thus developed that allows one
to go beyond such limitations. Furthermore, it offers the advantage to easily relate to
phenomenological theories, such as excitonic coupling models. This approach actively
includes the reaction of all subsystems to an electromagnetic perturbation, which is
important not only under resonance conditions, but also for collective changes in the
electric or magnetic properties of a functional unit. The corresponding theoretical basis
and an efficient implementation for the investigation of these processes are presented in
this work.
It is demonstrated that quantum chemical studies on natural light-harvesting systems are
feasible with this approach without recourse to system-specific parameters or empirical
corrections, which is hardly feasible with other quantum chemical approaches. The
method allows to extract both site energies of pigments and excitonic splittings and
thus offers a way towards a detailed understanding of photochemical reactions in complex
molecular assemblies.
The more general information about the potential energy surfaces of excited states ac-
cessible from resonance Raman spectroscopy can be used to probe local excited states in
larger molecules. This technique can thus serve as an intrinsically chromophore-specific
method. It is shown that well-known approximations for resonance Raman calculations
can efficiently be used with time-dependent density-functional theory methods to study
photochemical and photophysical processes in large molecules. This is an important
pre-requisite for the understanding of artificial photosynthetic systems. A great advan-
tage of experimental resonance Raman spectroscopy for the investigation of complex
biomolecules is its selectivity. In contrast to that, such systems represent true chal-
lenges to quantum chemical approaches. This problem can be circumvented by using an
intensity-driven approach to resonance Raman spectroscopy that exploits the selectiv-
ity observed in experiment for an iterative determination of the high-intensity features,
which is presented in this work. Its features are demonstrated for molecular biochemical
building blocks.



1. Introduction

1.1 The importance of subsystems in chemistry

Quantum mechanics describes the properties of matter on the basis of fundamental
interactions between elementary particles. For quantum chemistry in the non-relativistic
limit, the elementary particles that have to be considered are electrons and atomic nuclei,
which interact via Coulomb forces. In order to proceed from these fundamental principles
to chemical concepts, many steps of abstraction have to be made. One of the most
essential ones in chemistry is probably the Born–Oppenheimer approximation, which
provides the basis for the concept of a molecular structure [1, p. 17].

To be more precise, the Born–Oppenheimer approximation allows us to decouple the
electronic and the nuclear degrees of freedom. But even then, the underlying theoretical
framework does not provide a unique criterion for identifying the border of a molecule
in a larger aggregate, which we will call the supersystem or supermolecule in the
following. In contrast to that, the concepts of molecules within a larger system, or even
of functional groups within a molecule are essential ideas for our understanding of the
structure, properties, and reactivity of chemical systems.

Although such concepts are not a consequence of fundamental quantum mechanics,
they should be compatible with it, so that we can express the results of quantum
chemical investigations in terms of molecules and functional groups. We can apply
subsystem approaches in quantum chemistry either in an a posteriori or an a priori

way. The former one serves the purpose to identify a subsystem’s contribution to a
certain (super)molecular property obtained in a supermolecular calculation. By studying
its transferability from one system to another, it is often possible to derive classification
schemes for the properties and reactivity of molecules. Several local partitioning schemes
have been defined for this purpose, which often work with a projection to atomic basis
sets [2–5] or with a real-space partitioning of the electron density, either in terms of
disjoint regions [6, 7], or with overlapping atomic densities [8, 9]. No attempt will be
made here to review all these schemes, since detailed accounts of them have been
given elsewhere (see, e.g., Refs. [6, 10–12]). However, it should be mentioned that the
theory of atoms in molecules (AIM) is special among these methods because it uses a
generalization of the quantum mechanical action principle to subsystems. An atom in
a molecule is then identified as an open quantum system that is confined by a surface
of zero flux in the gradient vectors of the electron density [7, p. 29], a definition that
is compatible with fundamental quantum chemical principles.

Subsystem approaches may also be used in an a priori way, so that they allow the
calculation of properties for (super)systems composed of subunits without recourse to
a supersystem calculation. The advantages for the analysis of properties in these ap-
proaches is, of course, preserved, since the subsystem contributions are readily available
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4 1. Introduction

in the calculation. The subsystem approaches described in the following are of this
type.

1.2 Chromophore-specific theoretical spectroscopy

Molecular spectra can be regarded as an interface between experiment and theory.
Spectroscopic properties are prototypical examples for phenomena that are interpreted
in terms of molecular subunits or functional groups. For example, a dye molecule in
solution still shows spectroscopic features that are similar to its gas-phase properties,
although the dye itself constitutes only a very small part of the new supersystem (dye
plus solvent) to which it belongs to. Another example is the absorption of light with
subsequent transfer of excitation energy in photosynthetic units, which is clearly related
to the specific pigment molecules that are contained. Also, characteristic vibrations can
be employed to target functional groups in a larger molecule. The decisive boundary
condition for such a partitioning is a comparatively weak interaction of the fragments —
weak compared to the intra-fragment bonds and interactions. In McWeeny’s words [13, p.
485],

The interactions that we shall consider are “weak” in the sense that the in-

teracting subsystems retain their individuality, at least in good approximation.

Thus water molecules in the liquid phase are still water molecules; naphthalene

molecules in solid naphthalene are still naphthalene molecules; and so on: and

even, say, different CH3 groups in the same molecule are still recognizable as

CH3 groups.

Subsystem approaches offer two important advantages in comparison to conventional
quantum chemical methods for the calculation of structural, energetic, and spectroscopic
properties. The first is that a consistent and accurate description of matter in complex
systems on the basis of quantum mechanics is very difficult, so that quantum chemical
methods are often combined with additional approximations — especially to account
for less important parts of the system. This is done because of their unfavorable scaling
behavior with system size. A natural way out of this problem would be to calculate
energies, properties etc. individually for a set of subsystems and to try to combine the
results in a suitable way in order to obtain results for the supersystem. Increasingly
complex aggregates can then be described in terms of more and more subsystems,
whereas the size of each subsystem may be the same.
The other reason is that subsystem approaches are compatible with chemical intuition
in the sense that all properties will be obtained in terms of subsystem properties, and
effects of interactions can easily be identified. The assignment and interpretation of
spectroscopic signatures to certain substructures of matter will thus be facilitated.
However, there is a caveat: Many such subsystem methods exist in which an active
subsystem is chosen intuitively, and its environment, by construction of the method, has
only indirect effects on the calculated properties. If the active subsystem is not chosen
properly and the desired spectra also actively depend on parts of the environment,
there is usually no way for the algorithm to correct it, since the partitioning cannot
be automatically adjusted. This may concern delocalized excited electronic states that



1.2. Chromophore-specific theoretical spectroscopy 5

artificially exhibit a local character due to a restricted orbital space as well as molecular
vibrations that are confined by the algorithm to a particular functional group, but
would couple to other parts of the system if the active fragment was chosen differently.
These cases are by no means always obvious, and subsystem-based, chromophore-specific
methods are desirable to offer the possibility to correct for these effects.

This work presents new developments of such schemes in the context of theoretical
spectroscopic methods and response properties based on quantum chemistry. Both
electronic-structure theory and the quantum mechanics of nuclear motions in molecules
will be covered. Moreover, the theoretical methods developed and the practical schemes
outlined here are chromophore-specific, since they allow one to focus on those substruc-
tures relevant for certain spectroscopic features.

We use the term “subsystem approach” in a rather general way, and we will apply these
schemes in two different frameworks, which are illustrated in Figure 1.1. The first may
be called “embedding approach”, since the two subsystems are not equivalent for the
phenomenon investigated: There is an active subsystem (solute, adsorbate, functional
group, etc.) embedded in an environment (solvent, surface, protein, etc.). In this
approach, it will often be important to use a more approximate representation of the
environment. The second ansatz treats all subsystems on the same footing, and only
their interactions are described in a more approximate way. This will be referred to as
the “general subsystem approach” and is conceptually comparable to divide-and-conquer
methods.

Figure 1.1: Illustration of the two subsystem approaches. Left: In the embedding approach,
the system (here: acetone in aqueous solution) is divided into an active subsystem (acetone as
a solute) and an environment (water as a solvent); right: in the general subsystem approach,
the system (here: B800 subunit of light-harvesting complex 2 of Rhodopseudomonas acidophila)
can be divided into equivalent subsystems.

equivalent subsystems

active subsystem

environment



6 1. Introduction

1.3 Outline of this work

The organization of this work is as follows: Chapter 2 introduces and analyzes sub-
system and embedding approaches to ground-state electronic-structure theory with a
focus on density functional theory (DFT).1 General methods for excited states and
response properties of complex systems are presented in Chapter 3, with an empha-
sis on time-dependent density functional theory (TDDFT) methods. This chapter also
discusses a possible correction for one of the most severe problems of TDDFT when
applied to extended systems, which is its failure to describe long-range charge-transfer
excitations. Furthermore, an embedding version of TDDFT is presented that allows
to circumvent these problems in particular for solvation phenomena. This embedding
approach is then applied in Chapter 4 to investigate solvent effects on ground- and
excited-state properties. Among the most interesting problems concerning absorption
phenomena and excited-state properties in nature are certainly processes in photosyn-
thetic units. Whereas the TDDFT-embedding approach fails in this context, Chapter 5
introduces a general subsystem theory that is suited for excited-state calculations of
divide-and-conquer type. Subsequently, it is applied to study the photophysical prop-
erties of natural light-harvesting complexes, including the analysis of protein–pigment
and pigment–pigment interactions. Chapter 6 starts with an introduction to methods
that are suited for the calculation of vibrational properties of such systems and their
couplings to electronic excitations. In particular, it describes the resonance Raman effect
as a selective type of scattering phenomenon and demonstrates the great benefit that
is provided by approximate theoretical approaches to resonance Raman spectroscopy.
Chapter 7 then shows that the experimentally observed selectivity of resonance Raman
spectroscopy can also be exploited in the algorithmic structure by iterative methods
that directly target only intense vibrations in calculations of molecular resonance Ra-
man spectra. A general summary and conclusion from this work is given in Chapter 8,
together with an outlook to future work.

1Note that Hartree atomic units (a.u.) are used throughout this work if not explicitly stated
otherwise, i.e., the numerical values of the Planck constant h̄, the elementary charge e, the electron
mass me and of 1/(4πε0) are equal to one.



2. Subsystem-Based Electronic-Structure Theory

2.1 Partitioning of quantum systems

Quantum systems are described by wave functions, which, for the fermionic systems
considered here, must be antisymmetric under pairwise permutation of the particles
(electrons). If a quantum system consists of several distinct subsystems, e.g., systems
A and B, it is should be possible to express its wave function in terms of products of
wave functions for the subsystems [13, p. 485]. In the case of fermionic systems, this
product wavefunction must be antisymmetrized in order to fulfill the Pauli principle,

Ψ(x1,x2, . . . ,xNA+NB
) = ÑÂ [ΨA(x1, . . . ,xNA

)ΨB(xNA+1, . . . ,xNA+NB
)] , (2.1)

where xi is a set of (spatial and spin) coordinates of particle i, NA and NB are the
numbers of fermions (electrons) in systems A and B, ΨA and ΨB are the corresponding
subsystem wavefunctions, Ñ is a normalization factor, and Â is an antisymmetrizer that
ensures the antisymmetry of the total wavefunction Ψ.
In principle, already the Hartree–Fock approach corresponds to such a partitioning, in
which the “parts” are the one-electron functions, i.e., the orbitals. However, this does
not necessarily lead to a spatial partitioning of the wavefunction, which is desirable for
chemical concepts.
There are a number of other ways in order to partition a quantum system into subsys-
tems, and their full discussion is far beyond the limit of this work. Therefore, only a
very brief summary is given here in order to outline the relation of the methods used
in the following to other approaches.
One common strategy is a Hilbert-space partitioning, in which the basis functions
employed to describe the system are assigned to particular subsystems, e.g., in terms of
projection operators [14–16]. The divide-and-conquer strategy by Yang [17] partitions
the electron density in real space into interacting subsystem contributions, but uses a
Hilbert-space partitioning of the Kohn–Sham Hamiltonian in terms of localized basis sets
to calculate the subsystem densities. Recently, a more approximate scheme was proposed
that only considers the electrostatic interactions based on the fragment densities in the
context of density-functional theory [18]. Yang’s divide-and-conquer strategy has been
transfered from the context of density-functional theory to Hartree–Fock [19], second-
order Møller–Plesset (MP2) [20, 21], and coupled cluster theory [22]. A whole class
of partitioning methods is provided by the fragment molecular orbital method [23], in
which the entire system is partitioned into fragments that are described in terms of
their localized fragment orbitals, and their energies and properties are calculated under
the influence of the Coulomb field of the entire system. The total energy is calculated

7



8 2. Subsystem-Based Electronic-Structure Theory

in terms of an incremental scheme that can be defined for different types of quantum
chemical methods. Even covalently bonded fragments are used, and the dangling bonds
arising in this type of fractioning are saturated by an electrostatic capping field [24].
A Hilbert-space partitioning in terms of localized orbitals for a wavefunction-in-DFT
embedding strategy has been presented in Ref. [25]. Other partitioning schemes employ
the Green’s function in order to describe the effect of one subsystem on another [26],
or use a partitioning of the first-order reduced density matrix [27, 28]. Also Mezey
has suggested density-matrix based approaches for the quantum chemical description of
complex systems, see Ref. [29,30] and references therein. Another approach is to start
from molecular fragments and incorporate their interactions in terms of an intermolecular
perturbation theory, notably in the form of symmetry-adapted perturbation theory
[31, 32]. In recent years, this method has successfully been combined with density-
functional methods [33–39].

According to the Hohenberg–Kohn theorem [40], quantum states can equally well be
described in terms of the electron density distribution ρ(r). Since this is an observable
real-space quantity which is additive for subsystems, it is, from a conceptual point
of view, much better suited for a subsystem electronic-structure approach than wave
functions or density matrices [41]. The general idea of subsystem-density functional
theory approaches is a partitioning of the total ground-state electron density ρ(r) into
subsystem contributions according to,

ρ(r) =
∑

I

ρI(r), (2.2)

where the sum runs over all subsystems I. In the following, we will discuss approaches
that use such a density partitioning. Before, however, a brief summary of the key
equations in Kohn–Sham DFT will be presented as a basis for the subsequent sections.

2.2 Summary of Kohn–Sham density functional theory

Within the Kohn–Sham approach to density-functional theory [42], the electronic energy
functional can be expressed as [43],

E[ρ] = Ts[{φi}] + Eext[ρ] + ECoul[ρ] + Exc[ρ], (2.3)

where Ts is the kinetic energy of the non-interacting Kohn–Sham reference system
with the same electron density as the interacting system of electrons under study, that
depends explicitly on the Kohn–Sham orbitals φi. Eext is the interaction energy of the
electron density with the given local external potential vext(r), ECoul is the electron–
electron Coulomb interaction energy, and Exc is the exchange–correlation energy that is
often divided into an exchange part Ex and an correlation part Ec. In typical quantum
chemical applications, the external potential is just the Coulomb potential of the nuclei
with charges ZI at positions RI ,

vext(r) = −
∑

I

ZI

|r −RI |
. (2.4)
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Minimization of E[ρ] w.r.t. the density leads, by a comparison of the Euler–Lagrange
equations of the interacting and non-interacting systems [43], to the Kohn–Sham equa-
tions,

(

−∇
2

2
+ veff [ρ](r)

)

φi(r) = ǫiφi(r), (2.5)

where veff contains the functional derivatives of the energy terms Eext, ECoul, and Exc

w.r.t. the electron density ρ(r),

veff [ρ](r) =
δ

δρ(r)
(Eext[ρ] + ECoul[ρ] + Exc[ρ]) = vext(r) + vCoul[ρ](r) + vxc[ρ](r). (2.6)

This potential depends explicitly on the electron density ρ(r). The Coulomb (vCoul)
and exchange–correlation (vxc) potentials are defined as the functional derivatives of the
corresponding energy terms. In the Kohn–Sham formalism the density is obtained from
the Kohn–Sham orbitals,

ρ(r) =

occ∑

i

|φi(r)|2, (2.7)

and the sum runs over all occupied orbitals φi(r). Exact analytical expressions are
known for Eext and ECoul as explicit functionals of the electron density,

Eext[ρ] =

∫

ρ(r)vext(r)d3r, (2.8)

ECoul[ρ] =
1

2

∫
ρ(r)ρ(r′)

|r − r′| d3r. (2.9)

The exchange–correlation functional is, in the Kohn–Sham formalism, defined as

Exc[ρ] := Eee[ρ]− ECoul[ρ] + T [ρ]− Ts[ρ], (2.10)

where Eee[ρ] is the exact electron–electron interaction energy; T [ρ] and Ts[ρ] are the ki-
netic energies of the interacting and non-interacting systems, respectively. Although no
exact expression for Exc[ρ] in terms of the electron density is known, several approximate
expressions have been developed, which are reasonably accurate. The simplest approx-
imation for the exchange part of Exc is Dirac’s expression derived for a homogeneous
electron gas [44] (note also the earlier work by Bloch [45]),

EDirac
x [ρ] = −Cx

∫

ρ4/3(r)d3r, (2.11)

where

Cx =
3

4

(
3

π

)1/3

≈ 0.7386. (2.12)

Strategies for recent developments of exchange–correlation functionals and comparisons
of their accuracies are discussed, e.g., in Refs. [46–51]. Since the terms Eext, ECoul, and
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Exc[ρ] (at least for non-orbital-dependent exchange–correlation functionals) only depend
on the electron density or its derivatives, they can be calculated in a straightforward way
even if the electron density is provided in terms of subsystem contributions according
to Eq. (2.2).

A problem for the subsystem partitioning of the energy functional arises from the kinetic
energy Ts, which is only known as an implicit functional of the electron density in terms
of the Kohn–Sham orbitals,

Ts[{φi}] = −
occ∑

i

〈φi|∇2/2|φi〉, (2.13)

where the braces indicate the entire set of occupied Kohn–Sham orbitals of the full
system under study and the sum runs over all occupied Kohn–Sham orbitals. What
would be needed for an exact subsystem density functional theory is an expression
for the kinetic energy1 Ts that only employs the electron density (or the one-electron
functions obtained for the subsystems).

2.3 Kinetic energy functionals and potentials

There have been many attempts to apply approximate, orbital-free kinetic energy func-
tionals in DFT. A major challenge in these approaches arises from the fact that the
kinetic energy is, by the virial theorem, of the same order of magnitude as the total
electronic energy, whereas the exchange and correlation energy are typically one or two
orders of magnitude smaller, respectively [43, 52, 53]. Therefore, the relative accuracy
needed for kinetic-energy functionals must be at least one order of magnitude better
than that of approximate exchange–correlation functionals if the same relative error in
the total electronic energy shall be achieved.

The early DFT predecessor method by Thomas and Fermi [54,55] employed the expres-
sion of the kinetic energy of a uniform electron gas, i.e., the local density approximation
for the kinetic energy, which is

TTF[ρ] = CF

∫

ρ5/3(r)d3r, (2.14)

where

CF =
3

10
(3π2)2/3 ≈ 2.8712. (2.15)

If the Thomas–Fermi (TF) model is augmented with the exchange expression from Eq.
(2.11), we arrive at the Thomas–Fermi–Dirac (TFD) model. The total electronic energy
in the TFD model is calculated from the electron density according to

ETFD[ρ] = TTF[ρ] + Eext[ρ] + ECoul[ρ] + EDirac
x [ρ] (2.16)

1Note that we approximate Ts[ρ] and not T [ρ] because of the definition of Exc[ρ] in Kohn–Sham
DFT; otherwise, a redefinition of the exchange–correlation functional would be required.
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However, these attempts were rather unsuccessful for applications in chemistry as de-
scribed for example in Ref. [43, chapter 6]. A correction term depending on the gradient
of the electron density was derived by von Weizsäcker [56],

TW[ρ] =
1

8

∫ |∇ρ(r)|2
ρ(r)

d3r. (2.17)

The total kinetic energy expression used by von Weizsäcker, originally in the framework
of bonding energies within atomic nuclei, is

TTFW[ρ] = TTF + λTW[ρ], (2.18)

with λ = 1. From a systematic gradient expansion of the kinetic energy it can be shown
that λ should be chosen as 1/9, whereas empirically values close to 1/5 seem to offer the
best performance. Details on the derivation of this correction and higher-order terms in
this conventional gradient expansion (CGE), which are known analytically up to sixth
order, can be found in Refs. [43, p. 127 ff.] and [52]. It should also be noted that
TW[ρ] represents the exact kinetic energy in systems that can be described by just one
spatial orbital in Kohn–Sham DFT. Reliable numerical data obtained from variational
TFDW calculations were recently presented in Ref. [57]. The results obtained there for
diatomic molecules are only in qualitative agreement with reference data.

Because of the limited success of the CGE, work on kinetic-energy functionals within the
generalized gradient approximation (GGA) was pursued, similar to the development of
approximate exchange–correlation functionals [48]. In particular, Lee, Lee, and Parr [58]
have outlined and rationalized a conjointness between approximate exchange- and kinetic-
energy functionals, from which kinetic-energy functionals can be constructed according
to

TGGA[ρα, ρβ] = 22/3CF

∑

σ

∫

ρ5/3
σ (r)F (sσ)d3r, (2.19)

where ρσ is the spin density of spin σ = {α, β}, and sσ(r) = |∇ρσ(r)|/(2ρσ(r)kF ) with
the Fermi vector kF = [6πρσ(r)]1/3. Here, the so-called enhancement factor F (s) is
taken from the analogous form of the corresponding approximate exchange functional.
Although quite useful in the construction of GGA-type kinetic energy functionals, it was
shown later that the conjointness conjecture of Ref. [58] is not entirely correct [59]. Since
the local density functionals for exchange and kinetic energy are derived for Hartree–
Fock-like expressions of the first-order reduced density matrix, the conjointness conjecture
may be justified for these local functionals, but not in general for gradient-corrected
functionals [60]. A relationship between kinetic-energy and exchange-energy densities in
terms of non-local generalizations obtained from the Hartree–Fock expressions for the
first-order reduced density matrices was outlined by March and Santamaria [61].

While Lee, Lee, and Parr originally tested the enhancement factor from Becke’s exchange
functional [62], Lembarki and Chermette [63] subsequently obtained a reparameterized
kinetic-energy functional from the Perdew–Wang exchange functional [64]. Other gra-
dient corrected kinetic-energy functionals have been proposed, e.g., by DePristo and
Kress [65], Ou-Yang and Levy [66], Perdew [67], Thakkar [68], Lacks and Gordon [69],
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and by Tran and Wesolowski [70]. One of the most recently developed GGA-type func-
tionals uses a parameterization to the Kohn–Sham forces rather than energies, which
is claimed to be an advantageous strategy for the further development of local kinetic-
energy functionals [59]. Also for these functionals, the success in variational calculations
is limited.

The data given by Wang and Carter for atoms [52] show that for fully variational calcula-
tions, the main problem of the kinetic energy functionals results from the wrong kinetic-
energy potential, which enters the calculation as the functional derivative vkin(r) =
δTs[ρ]/δρ(r). (See Ref. [71] for explicit expressions of such functional derivatives for
gradient-dependent kinetic-energy approximations.) None of the LDA or GGA-type
functionals mentioned above is able to reproduce a shell structure in the density distri-
bution of atoms. This failure is mainly related to the wrong linear response behavior
of the kinetic-energy functionals. Another class of functionals has thus been developed
that enforces the correct linear-response of the free electron gas on the basis of the
so-called average-density approximation [72] and the subsequent weighted density ap-
proximation [73]. A review of this class of functionals is given in Ref. [52]. It has been
demonstrated that these functionals can produce a clear shell structure of the electron
densities in atoms [74]; however, the computational effort increases substantially due to
the fact that these functionals are non-local.

Best results with these models are obtained for metallic systems [75–79], which come
closest to the ideal of a free-electron gas, at least for valence electrons. Problems arise,
however, for non-metallic systems, e.g., metal hydrides [80], although some progress has
been reported recently [81]. Applications of linear-response-type functionals have largely
been restricted to periodic systems because of their particular functional form, although
methods for their evaluation in real space have been developed in the past years [82,83].
For a recent study on the kinetic energies of atomic systems obtained with a family of
linear-response type functionals based on the von Weizsäcker functional, see Ref. [84].

It should be noted that the functional derivative

vTs(r) =
δTs

δρ(r)
, (2.20)

is in principle accessible from the Kohn–Sham potential, since it fulfills the Euler–
Lagrange equation,

vTs(r) + veff(r) = µ, (2.21)

and can thus be reconstructed (up to a constant µ) from the effective Kohn–Sham
potential veff . This relation was used by King and Handy [85, 86] to determine kinetic
potentials that are exact apart from errors introduced in the Kohn–Sham potential by
the approximate exchange–correlation part.

2.4 The Gordon–Kim model and the origins of subsystem DFT

The earliest density partitioning schemes originate from the idea that the interactions
between closed-shell molecules or atoms do not disturb their electron densities very
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much. If we denote the electron density of the isolated subsystem (molecule) I as ρ0
I(r),

the sum,

ρ0(r) =
∑

I

ρ0
I(r) (2.22)

can be regarded as a zeroth-order approximation for the density ρ(r) of the combined
system (supermolecule) [87]. More accurate schemes can be obtained by considering the
change in the density upon formation of the supermolecule, i.e.,

ρ(r) = ρ0(r) + δρ(r), (2.23)

and then including the effect of the density change into the energy expression. Such
methods will be discussed in the following.

2.4.1 The original Gordon–Kim model

Several methods that try to exploit the idea of a density-partitioning in real space have
been proposed during the past decades. In 1970, Gaydaenko and Nikulin [88] presented
calculations of interaction energies for atoms on the basis of the Thomas–Fermi and
Thomas–Fermi–Dirac energy functionals applied to superpositions of unperturbed atomic
electron densities from Hartree–Fock (HF) calculations. HF densities were used in order
to reproduce the shell structure of atoms, which is not possible with self-consistent
TF(D) densities.
A similar model was introduced in 1972 by Gordon and Kim [89], which is based on
three assumptions: (i) There is no rearrangement of the electron densities when the
atoms or molecules are brought together, (ii) the interaction energy can be evaluated
on the basis of a free electron gas approximation for the electron density, and (iii)
the electron densities of the closed-shell systems can be obtained from Hartree–Fock
wavefunctions. In mathematical terms, the density of the system is partitioned into

ρ(r) = ρHF
A (r) + ρHF

B (r), (2.24)

where ρA(r) and ρB(r) are the HF-densities for subsystems A and B. The electronic
energy of the system is then calculated as

EGK[ρ] = TTF[ρ] + ECoul[ρ] + EDirac
x [ρ] + ELDA

c [ρ] +

∫

ρ(r)vext(r)d3r, (2.25)

where the expressions for TTF[ρ], ECoul[ρ], and EDirac
x [ρ] have been defined in Sections 2.1

and 2.3. In contrast to Gaydaenko and Nikulin, the Gordon–Kim model includes a local
density approximation to the correlation energy of the form

ELDA
c [ρ] =

∫

ρ(r)εc[ρ]d3r, (2.26)

where the approximate expressions for the correlation energy density of the free electron
gas, εc[ρ], were taken from Refs. [90,91] for the limits of low and high electron densities,
respectively, and an interpolation was employed for intermediate electron densities.
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The main reasons for the success of this model are that the scheme is not used self-
consistently, thus avoiding the failure of the kinetic-energy potentials to produce the
correct shell structure in atoms, and that only interaction energies are calculated instead
of total energies. Therefore, only differential kinetic energies need to be described by the
Thomas–Fermi expression. The interaction energy in the Gordon–Kim model, including
the nucleus–nucleus repulsion (Vnn), can be expressed as,

Eint
GK = Vnn + EGK[ρ]−EGK[ρa] + EGK[ρb] (2.27)

=
∑

AB

ZAZB

|RA −RB|
+

∫ ∫
ρa(r)ρb(r

′)

|r − r′| d3rd3r′

−
∑

A

ZA

∫
ρb(r)

|r −RA|
d3r −

∑

B

ZB

∫
ρa(r)

|r −RB|
d3r

+

∫

{[ρa(r) + ρb(r)]εTxc[ρ]

−ρa(r)εTxc[ρa]− ρb(r)εTxc[ρb]}d3r, (2.28)

where

εTxc[ρ] = εT [ρ] + εx[ρ] + εc[ρ] (2.29)

= CFρ
2/3(r)− Cxρ

1/3(r) + εc[ρ]. (2.30)

This model thus completely avoids the determination of molecular orbitals for the
supersystem. It proved to be quite successful to study interaction energies between
rare gas atoms [89]. Several questions concerning such a “free electron gas” model for
atoms and molecules were addressed subsequently by Kim and Gordon [92], e.g., the
accuracy of total energies, kinetic and exchange energy densities, one-electron energies
(in comparison to HF), cases of atoms without paired electrons and open-shell atoms
as well as uniform electron gas models with finite numbers of electrons and finite sizes.
It was shown by DePristo [93] that the difference between the kinetic-energy, exchange,
and correlation potentials for the supersystem and the noninteracting constituents (e.g.,
atoms) satisfies a Poisson equation in which the source is the change in the electron
density upon formation of the supersystem. This equation can be solved either self-
consistently in an iterative way, or by means of a perturbation expression for the change
in the density (cf. also the following sections). It gives the correction terms for the
neglect of density relaxation effects in the Gordon–Kim model.

2.4.2 The Harris functional

Harris introduced a method in which the change in the kinetic energies is obtained from
non-self-consistent Kohn–Sham orbital energies for the supersystem [94], evaluated for
a potential calculated from the density ρ0(r) as defined in Eq. (2.22).
We note that the exact (apart from the usual approximations in the exchange–correlation
functional) electronic energy for the supersystem can be written as,
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E[ρ] =

occ∑

j

ǫj −
∫

ρ(r)

[
1

2
vCoul[ρ](r) + vxc[ρ](r)

]

d3r + Exc[ρ], (2.31)

where the ǫj are the correct (self-consistent) Kohn–Sham orbital energies for the su-
persystem. Moreover, we define a change in the effective potential due to the density
change as,

∆veff(r) = veff [ρ](r)− veff [ρ0](r) (2.32)

= vCoul[ρ](r)− vCoul[ρ
0](r) + vxc[ρ](r)− vxc[ρ

0](r), (2.33)

and assume that both ∆veff(r) and the density change upon formation of the super-
molecule, δρ(r), see Eq. (2.23), are small. The (non-self-consistent) solution of the
Kohn–Sham-like equations,

(

−1

2
∇2 + veff [ρ0](r)

)

φ̃j(r) = ǫ̃jφ̃j(r), (2.34)

leads to the approximate orbitals φ̃j and orbital energies ǫ̃j of the supersystem. The sum
of the correct orbital energies ǫj of the supersystem can, within first-order perturbation
theory, be written as,

occ∑

j

ǫj ≈
occ∑

j

ǫ̃j +

∫

ρ(r)∆veff(r)d3r. (2.35)

We thus get for the total energy,

E[ρ] ≈
occ∑

j

ǫ̃j + Exc[ρ] +

∫

ρ(r)

[

∆vs(r)− 1

2
vCoul[ρ](r)− vxc[ρ](r)

]

d3r (2.36)

=
occ∑

j

ǫ̃j + Exc[ρ] +

∫

ρ(r)

[
1

2
vCoul[ρ](r)− vCoul[ρ

0](r)− vxc[ρ
0](r)

]

d3r. (2.37)

By expanding Exc[ρ] in powers of δρ(r) around ρ0(r) and neglecting all exchange–
correlation and Coulomb energy terms of second order in δρ(r), Eq. (2.37) can be
turned into,

E[ρ] ≈
occ∑

j

ǫ̃j −
∫

ρ0(r)

[
1

2
vCoul[ρ

0](r) + vxc[ρ
0](r)

]

d3r + Exc[ρ
0]. (2.38)

Eq. (2.38) just differs from the exact expression, Eq. (2.31) by the fact that the “or-
bital energies” are determined from the potential veff [ρ0](r) rather than self-consistently
from veff [ρ](r), and that the sum-of-fragment density ρ0(r) is plugged into the energy
expression rather than the exact density ρ. The errors in total energies obtained with
the Harris functional are small compared to Kohn–Sham DFT results for closed-shell
dimers, and may be acceptable even for covalently bonded dimers [94]. However, this
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scheme is correct only to first order in the density change. It will, thus, not be applica-
ble if the changes in the density become larger, so that also second-order contributions
need to be taken into account. For investigations of the formal properties of the Har-
ris functional, see Refs. [95, 96]. Harris has pointed out that his energy expression is
equivalent to the Gordon–Kim model if the eigenvalue sum is approximated by a local
density approximation for the kinetic energy change [94].

2.4.3 Approaches based on density perturbations

On the basis of density functional perturbation theory [97–100], one can derive ex-
pressions for the energy functional of a supersystem in which the interaction of the
systems is treated as the perturbation (see also the analysis given in Ref. [41]). Benoit
et al. expanded the Kohn–Sham energy functional up to second order in the Kohn–
Sham orbitals [101]. The reference orbitals were chosen to be localized orbitals for each
subsystem, which were orthogonalized subsequently. The first-order correction to the
orbitals is accessible by the requirement that their energy functional is stationary w.r.t.
the orbital corrections. Good interaction energies were obtained with this approach for
hydrogen-bonded complexes, ionic systems, and silicon crystals. A very similar scheme
was suggested by Zhu and Trickey [102].
A method based on the response of the subsystems’ densities (δρI , where I labels the
subsystems) was employed by Tabacchi et al. [103], following the approach used in the
chemical potential equalization method by York and Yang [104]. Within this method,
the energy functional is expanded in terms of a change in the external potential and
in the density. For a fixed external potential, the energy expression reads,

E[ρ, vext] = F

[
∑

I

ρ0
I

]

+

∫

ρ(r)vext(r)d3r +
∑

I

∫
δF

δρI(r)
δρI(r)d3r

+
1

2

∑

IJ

∫ ∫

δρI(r)
δ2F

δρI(r)δρJ(r′)
δρJ (r′)d3rd3r′, (2.39)

with

F [ρ] = Ts[ρ] + ECoul[ρ] + Exc[ρ]. (2.40)

The response densities of the subsystems can be obtained by minimizing Eq. (2.39) w.r.t.
the δρI , e.g., after introducing a basis set expansion [103]. The first and second order
response kernels derived from the density functional F [ρ] contain Coulombic, exchange–
correlation, and kinetic energy terms. In their original work, Tabacchi et al. were
aiming at a quantum chemistry-based force field and replaced the exchange–correlation
and kinetic-energy contributions in F [ρ] by an empirical potential. The kinetic-energy
component of the first-order kernel was evaluated by using the TF approximation for the
kinetic-energy functional, whereas the second-order kernels for both exchange–correlation
and kinetic-energy were approximated by a semi-empirical extended Hückel approach.
In a subsequent study, a purely density-functional based approach was applied, where
the local density approximation was used for all exchange–correlation and kinetic-energy
dependent terms [105].
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2.5 Subsystem formulation of DFT

2.5.1 Partitioning of the density

Whereas the preceding approaches introduce certain approximations in an ad hoc manner
or use truncated perturbative schemes, a systematic development of a subsystem-based
density functional theory will be developed in the following. The idea for this scheme
was introduced by Cortona [106] for the special case of atomic subsystems in crystals,
although he already mentions that the approach might be extended to molecular subunits
as well. The general derivation presented here is not restricted to a particular type of
subsystem; its range of applicability will be studied in Section 2.9.
The density of the total system, denoted as the supersystem in the following, is usually
expressed in terms of the Kohn–Sham orbitals φsuper

i of that system, cf. Eq. (2.5),

ρ(r) =
∑

i

|φsuper
i (r)|2. (2.41)

The strategy of the subsystem approach is now as follows: In order to avoid the
calculation of molecular orbitals for the supersystem, we partition the density into
subsystem contributions, see Eq. (2.2),

ρ(r) =
∑

I

ρI(r), (2.42)

where the density of each subsystem I will be expressed in terms of (yet to be determined)
subsystem orbitals φiI ,

ρI(r) =
∑

i

|φiI(r)|2. (2.43)

Similar to the Kohn–Sham strategy to partition the energy expression into large known
(Ts, Eext, ECoul) and a smaller unknown part (Exc), we write the kinetic energy of the
supersystem formally exact as

Ts[{φsuper
i }] =

∑

I

T I
s [{φiI}]

︸ ︷︷ ︸

subsystem kinetic energies

+

[

Ts[{φsuper
i }]−

∑

I

Ts[{φiI}]
]

︸ ︷︷ ︸

non-additive kinetic energy

, (2.44)

where Ts[{φiI}] is the single-particle kinetic energy associated with subsystem I,

Ts[{φiI}] = −
occ∑

i

〈

φiI

∣
∣
∣
∣

1

2
∇2

∣
∣
∣
∣
φiI

〉

. (2.45)

The sum runs over all occupied spin-orbitals φiI in subsystem I. These spin-orbitals
form an orthonormal set of orbitals for each subsystem, but spin-orbitals from different
subsystems are not necessarily orthonormal. We now introduce the exact non-additive
kinetic-energy functional T nadd

s ,
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T nadd
s [{φsuper

i }, {{φiJ}}] =

[

Ts[{φsuper
i }]−

∑

I

Ts[{φiI}]
]

, (2.46)

where the double braces indicate the dependence on the sets of occupied subsystem
orbitals for all subsystems J . The kinetic energy thus turns into,

Ts[{φsuper
i }, {{φiJ}}] =

∑

I

Ts[{φiI}] + T nadd
s [{φsuper

i }, {{φiJ}}]. (2.47)

For weakly interacting subsystems, the non-additive kinetic energy T nadd
s will be small

compared to the sum of the subsystem kinetic energies, and indeed it will vanish in the
limit of non-interacting subsystems. This justifies to introduce an orbital-free, explicitly
density-dependent approximation T nadd

s [{ρJ}],

T nadd
s [{φsuper

i }, {{φiJ}}] ≈ T nadd
s [{ρJ}] = Ts[ρ]−

∑

I

Ts[ρI ]. (2.48)

The subsystem kinetic energies will, however, be calculated exactly on the basis of the
subsystem orbitals. This results in the following expression for the total kinetic energy,

Ts[{ρJ}, {{φiJ}}] =
∑

I

Ts[{φiI}] + T nadd
s [{ρJ}]. (2.49)

Examples for T approx
s [ρ] are discussed in Sec. 2.3. We observe that the resulting expression

does no longer depend on the supersystem orbitals explicitly, so that the bottleneck
of Kohn–Sham DFT calculations for large systems can be avoided, which is the self-
consistent determination of an orthonormal set of orbitals for the supersystem. Note
that the derivation presented here suggests that approximations to T nadd

s [ρ] should
necessarily be decomposable into kinetic energy contributions of the supersystem and of
the subsystems. Another strategy in the development of approximations is, however, to
directly approximate T nadd

s [ρ], leading to non-decomposable non-additive kinetic-energy
functionals (see Ref. [107]).
Cortona applied this method, e.g., to study the cohesive properties of alkali halides [108],
and a similar approach based on spherical atomic electron densities was employed to
model interaction energies in metallic systems [109]. A study that extended Cortona’s
approach to molecular subsystem densities in molecular dynamics simulations was pre-
sented in Ref. [110].

2.5.2 Effective one-particle equations

Effective one-particle equations for the determination of the subsystem orbitals can be
derived from a minimization of the energy functional subject to the condition that the
subsystem electron densities integrate to the correct number of electrons per subsystem.
This requires that each subsystem density corresponds to an integer number of electrons
NJ ,



2.5. Subsystem formulation of DFT 19

∫

d3rρJ(r) = NJ ∀J. (2.50)

In order to enforce these conditions, we construct the Lagrangian

L[{ρJ}] = E[{ρJ}] +
∑

I

µI

(∫

d3rρI(r)−NI

)

. (2.51)

Minimization of the Lagrangian requires that

(
δL[{ρJ}]
δρK

)

ρJ ,J 6=K

= 0 ∀K, (2.52)

where the index on the left-hand side indicates that all other subsystem densities are
kept fixed during the minimization w.r.t. ρI . By writing the total energy in Eq. (2.51)
explicitly as

E[{ρJ}] = Eext[ρ] + ECoul[ρ] + Exc[ρ] +
∑

I

T I
s [{φiI}] + T nadd

s [{ρJ}], (2.53)

=

∫

vext(r)

[
∑

I

ρI(r)

]

d3r +
1

2

∫ ∫
(
∑

I ρI(r′)) · (∑I ρI(r))

|r − r′| d3r′d3r

+Exc[ρ] +
∑

I

T I
s [{φiI}] + T nadd

s [{ρJ}], (2.54)

we obtain for the conditions in Eq. (2.52),

0 = vext(r) +

∫
(
∑

I ρI(r′))

|r − r′| d3r′ +
δExc[ρ]

δρK(r)
+
δTs[{φiK}]
δρK(r)

+
δT nadd

s [{ρJ}]
δρK(r)

+ µK

= vext(r) + vCoul[ρ](r) + vxc[ρ](r) +
δTs[{φiK}]
δρK(r)

+
δT nadd

s [{ρJ}]
δρK(r)

+ µK (2.55)

It should be noted that the functional derivatives of energy terms which only depend
on the total density ρ can be obtained according to the chain rule for functional
differentiation as

δ (Eext[ρ] + ECoul[ρ] + Exc[ρ])

δρK(r)
=

∫
δ (Eext[ρ] + ECoul[ρ] + Exc[ρ])

δρ(r′)

δρ(r′)

δρK(r)
d3r′ (2.56)

=
δ (Eext[ρ] + ECoul[ρ] + Exc[ρ])

δρ(r)
. (2.57)

The last line follows from the fact that

δρ(r′)

δKρ(r)
= δ(r − r′), (2.58)
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since ρ is just the sum of the subsystem densities at each point in space. We furthermore
note that the functional derivative in Eq. (2.57) is nothing but the effective Kohn–Sham
potential for the supersystem, see Eq. (2.6).
The potential term arising from the non-additive kinetic energy in Eq. (2.55) can be
written more explicitly as

δT nadd
s [{ρJ}]
δρK(r)

=
δTs[ρ]

δρ(r)
− δTs[ρI ]

δρK(r)
, (2.59)

where we have again used the chain rule for functional differentiation for the first
term on the right-hand side. If we now assume that the subsystem densities ρJ are
vs-representable (non-interacting v-representable), which also implies that they are non-
negative everywhere in space, we can express them in terms of orbitals according to Eq.
(2.43). The latter point will be analyzed in Section 2.9.4. The orbitals are obtained
from the one-electron equations,

(

−1

2
∇2 + vsub

eff [ρ, ρI ](r)

)

φiI = ǫiIφiI , (2.60)

for all orbitals φiI of all subsystems I, subject to the condition that all subsystem
densities except ρI are fixed. In the equation above, we introduced,

vsub
eff [ρ, ρI ](r) = veff [ρ](r) +

δTs[ρ]

δρ(r)
− δTs[ρI ]

δρI(r)
. (2.61)

The density of the non-interacting system described in terms of these orbitals fulfills
the Euler–Lagrange equation,

vsub
eff [ρ, ρI ](r) +

δTs[{φiI}]
δρI(r)

+ µI = 0, (2.62)

and is thus the sought-after density which fulfills Eq. (2.55). The derivation of such
an effective subsystem potential including the effect of the entire electron density of
the system was introduced by Wesolowski and Warshel [111] in the context of a two-
partitioning of the electron density (see below).
Eq. (2.60) introduces a double self-consistency problem: The orbitals φiI depend on
the potential vsub

eff , which by itself depends on the density calculated from the orbitals.
Furthermore, for the minimization of the total energy, we have to solve Eq. (2.60) for
each subsystem. But in order to solve the equation for the first subsystem, a guess
for all other subsystem densities is needed. When Eq. (2.60) has been solved once for
each subsystem, the effective potential vsub

eff for the first subsystem will have changed
due to the changes in the other subsystem densities. Therefore, the full minimization
of the energy functional requires an iterative update of the other subsystem densities
in vsub

eff . Two different strategies are possible to solve Eq. (2.60) for all subsystems:
Either, they are indeed solved self-consistently for each subsystem, and only after Eq.
(2.60) has been solved for one subsystem an update of the other subsystems’ potentials
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is performed, based on the new subsystem densities. This corresponds to the freeze-
and-thaw strategy pursued in Ref. [112], which will be explained in more detail in
Section 2.6.3. The other is to perform one SCF cycle for each subsystem and then
update all densities, so that all subsystem problems are converged simultaneously, which
is applied in Ref. [110]. The subsystem DFT setup that was partly implemented during
this work in the Amsterdam Density Functional (Adf) package allows both schemes
as well as intermediate approaches, in which the SCF for each subsystem is partly
converged before a density update takes place [113].

2.6 Frozen-density embedding

2.6.1 Effective embedding potential

Eq. (2.60) can be re-written in a slightly different form by separating intra-subsystem and
inter-subsystem contributions to the potential. For this purpose, we explicitly assume
that the external potential in the total system is given by the Coulomb potential due
to the nuclei, which will also be assigned to the different subsystems. I.e., the external
potential due to subsystem I will be written as

vI
ext(r) = −

∑

AI

ZAI

|r −RAI
| . (2.63)

AI labels the atomic nuclei assigned to system I, with nuclear charges ZAI
at posi-

tions RAI
. The total external potential is the sum of the external potentials from all

subsystems,

vext(r) =
∑

J

vJ
ext(r) = vI

ext(r) +
∑

J,J 6=I

vJ
ext(r). (2.64)

Similarly, the total Coulomb potential is the sum of the Coulomb potentials due to the
subsystem densities, since it is linear in the density,

vCoul[ρ](r) =

∫
(
∑

J ρJ (r′))

|r − r′| d3r′ =
∑

J

vCoul[ρJ ](r) (2.65)

= vCoul[ρI ](r) +
∑

J,J 6=I

vCoul[ρJ ](r). (2.66)

The exchange–correlation potential cannot be separated like this, since it is non-linear
in the density. Nevertheless, we can formally write

vxc[ρ](r) = vxc[ρI ](r) + {vxc[ρ](r)− vxc[ρI ](r)} (2.67)

By realizing that the effective Kohn–Sham potential for subsystem I in absence of all
other subsystems would be given by,

veff [ρI ](r) = vI
ext(r) + vCoul[ρI ](r) + vxc[ρI ](r), (2.68)

we can write the effective subsystem potential as
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vsub
eff (r) = veff [ρI ](r) + vemb[ρI , ρ

compl.
I ], (2.69)

where we have introduced the complementary density to ρI ,

ρcompl.
I (r) =

∑

J,J 6=I

ρJ(r) = ρ(r)− ρI(r) (2.70)

and the effective embedding potential

vemb[ρI , ρ
compl.
I ](r) =

∑

J,J 6=I

vext(r) +
∑

J,J 6=I

vCoul[ρJ ](r) + {vxc[ρ](r)− vxc[ρI ](r)} (2.71)

=
∑

J,J 6=I

vext(r) + vCoul[ρ
compl.
I ](r) +

{

vxc[ρI + ρcompl.
I ](r)− vxc[ρI ](r)

}

+
δTs[ρI + ρcompl.

I ]

δ(ρI(r) + ρcompl.
I (r))

− δTs[ρI ]

δρI(r)
. (2.72)

The definition of vsub
eff via Eq. (2.69) and (2.71) has the advantage that it separates the

potential into a term that is also present in the isolated subsystem I and a term that
introduces the effect of the surrounding subsystems in terms of an effective embedding
potential. It also clearly separates ρcompl.

I , the part of the density that is kept fixed
during the solution of Eq. (2.60), from the density ρI that is varied. The alternative
definition in Eq. (2.61) contains the total density instead, which changes whenever ρI

is varied.

2.6.2 Active part and environment

The subsystem approach as introduced in the preceding sections treats all subsystems
on the same footing, which will be the preferred starting point whenever ensembles
of identical or similar molecules shall be described. In many cases, however, scientific
questions are clearly focused on a certain molecule within a larger aggregate, e.g., a
solute in a solvent shell. In 1993, Wesolowski and Warshel [111] introduced a subsystem
DFT approach that is particularly well suited for this type of problem, in which the
entire system is partitioned into two subsystems, the active subsystem with density
ρ1 and the environment with density ρ2. This approach can be identified as a special
example of the subsystem approach outlined in the preceding sections, in which

ρ(r) = ρ1(r) + ρ2(r), ρcompl.
1 (r) = ρ2(r). (2.73)

The effective one-particle equations then become,

(

−1

2
∇2 + veff [ρI ](r) + vemb[ρ1, ρ2]

)

φi1 = ǫi1φi1 , (2.74)

where the explicit form of the embedding potential is,
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vemb[ρ1, ρ2](r) =
∑

A2

− ZA2

|r −RA2
| +

∫
ρ2(r′)

|r′ − r|d
3r′

+
δExc [ρ]

δρ(r)
− δExc [ρ1]

δρ1(r)
+
δTs[ρ]

δρ(r)
− δTs[ρ1]

δρ1(r)
. (2.75)

In the simplest and most efficient version of this approach, an approximation for the
electron density of the environment is constructed at the beginning of the calculation
and then kept frozen. In that way, the self-consistency problem in Eqs. (2.60), which
are called Kohn–Sham equations with constrained electron densities (KSCED), is only
solved once for system 1. This approach is known as frozen-density embedding (FDE)
or frozen density functional theory (FDFT), although the former name is also used for
more advanced variants of this embedding approach. An extension to periodic-boundary
calculations within a plane-wave basis was described in Ref. [71].
The focus of the FDE scheme is clearly on the active subsystem, whereas the envi-
ronment only modulates its properties. Thus, a number of approximations are possible
in the description of the environment that make the calculation more efficient. One
approximation that can be applied is to construct the frozen environmental density itself
as a sum of fragment densities, which may be approximated by the densities of the
isolated fragments, e.g., solvent molecules [114–116].

2.6.3 Freeze-and-thaw cycles; vs-representability

Subsystem density functional theory can be regarded as exact in the limit of exact
functionals for the exchange–correlation and kinetic energy contributions. In view of the
present approximations that are available, in particular for the latter functional, this ideal
is, however, far beyond reach. The formal exactness requires, in addition, the assumption
of vs-representability of the subsystem densities. As discussed by Wesolowski [41], one
can speculate about cases in which the vs-representability condition is not fulfilled for the
supersystem (as required in the Kohn–Sham context), but is fulfilled for the subsystems,
making FDE formally applicable in contrast to KS-DFT.
Also the frozen-density embedding scheme as outlined above can still be regarded as
formally rigorous, as long as the density ρ1(r) to be optimized can indeed lead to the
density complementary to the fixed ρ2(r). The vs-representability condition for ρ1(r) is,
however, more severe in this case, since many choices of ρ2(r) will make it impossible
to express the exact ρexact

1 (r) := ρsuper(r) − ρ2(r) in terms of the density of a non-
interacting reference system system (we denote the density of the supersystem explicitly
as ρsuper here). This holds in particular if ρ2(r) > ρsuper(r) for any point r, since a
vs-representable density ρ1(r) must be non-negative everywhere in space. Especially for
more strongly interacting subsystems, this condition will in general not be fulfilled.
To illustrate this point, the electron density of the H2O· · ·F− system was studied by
means of FDE calculations. Its BP86/TZP optimized structure is shown in Figure 2.1.
The H· · ·F distance in this planar complex is 1.32 Å, the O−H· · ·F angle is 177.9 degrees
and the H−O−H angle is 101.1 degrees. There are two different O−H bond lengths,
O−H1 = 0.97 Å and O−H2 = 1.11 Å. The PW91k functional was employed for the
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T nadd
s in the FDE calculations. Figure 2.2 a) shows the difference density between the

supermolecular density from a Kohn–Sham-DFT calculation on the combined system,
which can be regarded as a reference for the total density ρsuper, and the density ρfrag(F−)
of the frozen fragment, which is the F− ion in this case. As can clearly be seen, the
difference ρsuper(r)− ρ2(r) is not non-negative everywhere, and thus FDE can only give
approximate results.

Figure 2.1: Optimized (BP86/TZP) structure and coordinates in the grid of the H-bonded
system H2O· · ·F−.

O (0.01/−0.29)

F (−0.01/−2.72)
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Figure 2.2: Difference densities ρsuper−ρfrag(F
−) (a), ρsuper−ρemb(F

−) (b) and
ρsuper−ρemb,gh(F

−) (c) for H2O· · ·F−. Contour lines are drawn at ±2, 4, 8 × 10n eÅ−3 with
n = −4,−3,−2,−1, 0 and for 0 eÅ−3 for the difference densities. Positive (including zero) val-
ues and negative values are marked by solid and dashed lines, respectively. Atomic positions
are indicated by dots.
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In order to cure deficiencies in the initial choice of ρ2 in FDE calculations, Wesolowski
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and Weber [117] relaxed the assumption of a fixed electron density ρ2 by introducing
the freeze-and-thaw procedure, as was already mentioned for the general case of many
subsystems in Section 2.6.1. Basically, the density ρ1 resulting from an initial FDE
calculation with a fixed ρ2 is employed as the frozen environmental density in an
FDE calculation, in which ρ2 is now the active subsystem. That results in a new
approximation for the environmental density that is polarized w.r.t. ρ1. In a subsequent
FDE calculation for the optimization of ρ1, the vs-representability condition might be
better fulfilled. This procedure can be iteratively repeated, until no more changes occur
in the resulting densities.

That raises questions concerning the convergence behavior of the freeze-and-thaw cycles.
In principle this can be analyzed in two different ways: (i) One iterative series of
calculations is performed, in which after each cycle the total density is compared to
the total density of the previous cycle. A cycle consists of two calculations, in which
first system 2 and then system 1 is frozen. (ii) Two series of freeze-and-thaw iterations
are performed, of which the first starts with system 2 frozen, whereas the second starts
with system 1 frozen. Here, the total densities of the two series are compared to each
other after each iteration. This second approach has the advantage that it can also
confirm whether or not both series of calculations converge to the same total density, or
if the choice of the initial embedded fragment has an influence on the converged total
density. Results for protocol (i) are given in the Supplementary Material to Ref. [118],
so that we restrict ourselves to the second approach in the following.

In Figure 2.3 a) and b), the difference densities resulting from freeze-and-thaw cycles
starting with a frozen water fragment and from those starting with a frozen fluorine
fragment are shown for three and four freeze-and-thaw cycles. After three cycles, the
differences are in the order of 10−4 eÅ−3 and after four cycles below 10−4 eÅ−3. I.e.,
the densities are very well converged. For calculations including ghost basis functions in
the frozen region (see also Section 2.9.4) typically more cycles are needed. In Figure 2.3
c) to e), the corresponding difference density plots are shown, in which a TZP ghost
basis was included. It can be seen that five cycles are needed to converge the densities
to less than 10−4 eÅ−3. Already after three cycles, the maximal difference is smaller
than 10−2 eÅ−3 and can be regarded as reasonably well converged for most purposes.

The difference density between ρsuper and the converged density of the F− fragment
from the freeze-and-thaw calculation without ghost basis functions in the frozen region,
ρemb(F−), is shown in Figure 2.2 b). It can be seen that the areas in which ρ1, i.e., the
density of the H2O fragment, would have to be negative, are clearly diminished when
compared to the results for ρfrag(F−) in Figure 2.2 a). But even then, the condition
ρsuper − ρ(F−) > 0 is not fulfilled everywhere. The use of a TZP ghost basis leads to a
further improvement in most regions, as can be seen from Figure 2.2 c), but still does
not yield a vs-representable density ρ1.

It should be noted that at the end of a freeze-and-thaw procedure the formal difference
between the active or embedded subsystem and the environmental system vanishes, and
FDE calculations which are fully converged in this respect are equivalent to a subsystem-
DFT approach for the special case of two subsystems. Therefore, the acronym FDE
is usually applied in a broad sense, which means that the exact conditions for the
description of the environment must be provided to clearly define an FDE calculation.
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Figure 2.3: Difference densities obtained from freeze-and-thaw calculations with reversed
order of fragments (freeze-and-thaw cycles starting with frozen fluorine or with frozen water
fragments, respectively) after 3 cycles (a) and after 4 cycles (b) for H2O· · ·F− without ghost
basis, and after 3 (c), 4 (d) and 5 cycles (e) with a TZP ghost basis. Contour lines are
drawn at ±2, 4, 8 × 10−4 eÅ−3. Atomic positions are indicated by dots.
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2.6.4 Electron leak problem

Stefanovich and Truong mentioned the problem of electrons leaking from the embedded
system to the atomic cores in the frozen system in FDE calculations [119]. This was
explained in terms of an unphysical redistribution of the water electron density to the
core region of the fluoride because of the strongly attractive Coulomb attraction. In
supermolecular DFT calculations, this is compensated by the orthogonality requirements
for the molecular orbitals, which has to be modeled in FDE calculations by the non-
additive kinetic energy functional. Obviously, the repulsive effect of the potential term
arising from T nadd

s is not strong enough close to the nuclei. Similar observations were
made in pure electrostatic embedding schemes [120], where they are typically called
electron spill-out. The problem is most pronounced in plane-wave applications, where
the electrons have the variational freedom to fully delocalize, whereas it is naturally
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restricted in (small) localized basis set calculations. In Ref. [120], a pseudopotential-
like approach was used to overcome these artifacts within an electrostatically coupled
quantum mechanics/molecular mechanics (QM/MM) scheme.
Wesolowski et al., however, reported in Ref. [121] that for the systems studied by
Stefanovich and Truong no electron spill-out occurs in FDE calculations, and that flaws
in the numerical implementation of the frozen-density embedding scheme in Ref. [119]
are probable reasons for the observation of electron leaks. They conclude that localized
unoccupied orbitals around the nuclei in the frozen region do not significantly affect
the FDE calculations.
However, in a previous study on induced dipole moments in van der Waals complexes
[122], similar spurious charge leaking effects were observed in cases were the environment
contained atoms with larger nuclear charge numbers (heavier rare-gas atoms or mercury).
Jacob et al. investigated the functional form of the exact embedding potential at the
nuclei of the frozen system in the limit of a large distance to the embedded system,
and found that approximations currently in use fail completely to describe the correct
behavior [123]. They also demonstrated cases in which this can lead to non-Aufbau
solutions or to spuriously low energies for virtual orbitals, which may cause problems
in excitation energy calculations, and proposed a pragmatic long-distance correction to
circumvent these difficulties. As will be shown in Section 2.9, the electron leak problem
can lead to dramatic consequences in cases of transition metal complexes.

2.7 Embedded cluster models

One class of typical applications of embedding approaches are studies on molecules
adsorbed on surfaces. A major problem in such investigations is to find an appropriate
balance between the (infinite) periodic electronic structure of the solid and the local
character at the bonding site of the adsorbed molecule. A possible solution to this prob-
lem is the perturbed cluster cluster approach. In this approach, the system under study
is divided into two subsystems: the cluster, i.e., the adsorption site, and the crystalline
environment, i.e., the rest of the crystal. The effect of the crystalline environment is
typically introduced as an effective potential, which suggests to use approaches like the
FDE scheme for such embedded cluster calculations. Several attempts to use DFT-based
embedded cluster methods were made, in which the Coulomb, exchange and correlation
potential of the environment was included on the basis of the environmental density. In
these models, the effective Pauli repulsion was introduced ad hoc, either by employing
small basis sets or by adding repulsive core potentials to the atoms around the embedded
cluster [124, 125]. A relativistic version of this approach was formulated in Ref. [126].
Embedded cluster models using a point charge array to mimic the Madelung field
have proven to be helpful in connection with wavefunction methods to obtain ground-
and excited-state potential-energy surfaces for small molecules on oxide surfaces (see
References in Ref. [127] for cluster-in-cluster embedding methods or “dipped adclus-
ter” embedding). However, this discrete representation of the environmental potential
sometimes causes a distortion in the electron density distribution of the embedded
cluster [128].
Carter and co-workers developed a wavefunction/DFT embedding scheme [129,130], in
which the total electron density is calculated only once at the beginning from a periodic
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DFT calculation and is kept fixed afterwards, which assumes that already the DFT
calculation results in a good approximation to the correct density of the system. An
effective embedding potential is then constructed for which all terms containing the total
electron density ρsuper and also the kinetic energy contribution involving ρ1 are kept
constant during the calculation. All other terms involving ρ1 are updated during the
SCF. Pseudopotentials are applied for the ion–electron part of the interaction potential.
The total energy in this scheme is thus

Etot ≈ Eemb
tot = EWF

I + EDFT
II + EDFT

int , (2.76)

or

Eemb
tot = EDFT

tot + (EWF
I −EDFT

I ), (2.77)

since

EDFT
tot = EDFT

I + EDFT
II + EDFT

int . (2.78)

The embedding can thus be understood as a local wavefunction-based correction to the
total DFT energy in system I. The energy expression in Eq. (2.77) shows a structure
similar to that of QM/MM [131–135], or ONIOM-type approaches [136–138].
From the interaction energy, an expression for the embedding potential is derived that
is closely related to the one of the frozen-density embedding approach. It enters the
wavefunction part of the calculation as an additional term in the Fock operator. For
second-order Møller–Plesset perturbation theory (MP2) calculations, nothing else has
to be done in addition to a normal MP2 calculation. For single-reference CI methods
embedded in DFT, a single transformation step of the one-electron integrals of the
embedding potential has to be carried out at the end of the Hartree–Fock calculation.
For CASSCF calculations, the MO coefficients change in every CI iteration, so that a
transformation of these one-electron integrals has to be performed in each step.
In their initial work [129,130], Carter and co-workers employed a frozen total electron
density ρsuper, whereas in later work this was replaced by a frozen background (environ-
mental) density ρ2 [139]. The latter approach is similar to the FDE approach, where
also the environmental density ρ2 is frozen, whereas in the fully variational FDE scheme
(i.e., using freeze-and-thaw cycles), both ρ1 and ρ2 can vary independently. Huang and
Carter recently demonstrated that their embedded cluster model works very well for the
description of local electronic structures at adsorption sites of adatoms on metallic sur-
faces [140]. A formal theoretical analysis of wavefunction-in-DFT embedding approaches
is given in Ref. [141], while the importance of embedding approaches for simulations of
materials and nanostructures is discussed in Refs. [142, 143].
An approach for the treatment of excited states of clusters described by CI or CASSCF
wavefunctions, embedded in an infinite periodic crystal described in terms of density-
functional theory was proposed in Refs. [144, 145] (see also Refs. [146, 147]). One
problem in the application of this embedding scheme for excited states is that the
embedding potential should, in principle, be state-dependent. In Ref. [145], ground-
state-density-based embedding operators were applied for the excited states as well,
and it was proposed, though not tested, to apply a state-averaged density ρ1 for the
construction of an embedding potential in CASSCF calculations. Also in the later
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work, the embedding potential determined (now self-consistently) for the ground state

was used without further modifications for the excited-state calculations. A similar
approach was used by Visscher and co-workers, though not under periodic boundary
conditions, in which additional simplifications were introduced by employing a fixed
embedding potential in which ρ1 is not updated during the SCF [148].
In Chapters 3 and 5 it will be outlined how excitation energies can be obtained within
the frozen-density embedding scheme or a general subsystem DFT.

2.8 Energetics from frozen density embedding

Many studies on energetics from FDE have been conducted during the past years, which
addressed topics such as solvation free energies, interaction energies in hydrogen-bonded
systems or van der Waals complexes, and metal–ligand interactions.
One of the first applications of FDE was to estimate the solvation free energy difference
of water and methane in water [114]. In this study, the frozen electron density of
the solvent water molecules was approximated by a sum of isolated water fragment
densities for a number of snapshots from a molecular dynamics (MD) trajectory. The
Thomas–Fermi–von Weizsäcker functional TTFW from Eq. (2.18) was applied, in which
the parameter λ was varied from 0 to 1. For λ = 2/3, a very good agreement of
the difference in solvation free energies with experiment was obtained. In subsequent
work [115], it was demonstrated that in principle also proton transfer reactions for
systems of the type F−H· · ·F− can be studied in solution using FDE in combination
with an empirical valence bond (EVB) reference potential. Although the absolute energy
differences between FDE and KS-DFT calculations were as large as 100 kJ/mol, the
shapes of the potential energy curves for proton abstraction, and thus the abstraction
energies, were in much better agreement.
Free energy calculations employing frozen-density embedding techniques were also re-
ported by Warshel and co-workers for the autodissociation of water in aqueous solution
and proton transfer reactions involving methanol [149,150]. For these purposes, the FDE
approach was integrated into a QM/MM framework [149], which was later also used for
studies on the reduction potential of proteins [151]. For the study in Ref. [150], FDE was
applied in order to describe particular valence bond structures, so that diabatic states
could be defined for use in the EVB method [152]. This combined approach was also
applied to study the solvent dependence of the off-diagonal elements of the EVB Hamil-
tonian for SN2 reactions, which was found to be rather small [153]. The mechanism of
the nitrate reduction by nitrate reductase models was studied in Ref. [154], where FDE
was applied to model the protein environment in terms of small peptide fragments. In
particular the relative energies of singlet and triplet states in the molybdenum-containing
active center under influence of the protein were analyzed. FDE was compared to the
ONIOM approach in that study, and only small differences could be detected. This
result is probably due to the fact that FDE or ONIOM were only used to represent the
environment, which was not directly involved in the reaction.
In a study on hydrogen-bonded complexes, Wesolowski found in 1997 [155] that gradient-
corrected kinetic energy functionals, in particular the reparameterized PW91k functional,
give good results for the interaction energies in comparison to KS-DFT reference cal-
culations. In contrast to this, the Thomas–Fermi functional resulted in poor agreement
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with KS calculations. It was concluded that the Thomas–Fermi functional does not
provide a sufficiently good approximation to T nadd

s . Interaction energies obtained with
the PW91k functional agreed typically within less than 1.5 kJ/mol. It is interesting to
note that the non-additive kinetic energy for these hydrogen-bonded dimers contributes
between 20 to 40 kJ/mol around the equilibrium distance of the dimers. For distances
> 4 to 5 Å, where the density overlap is typically small, KS and FDE energies agree
very well for all functionals.

Stefanovich and Truong [119] compared the Thomas–Fermi kinetic energy expression
with the more advanced, gradient-corrected approximation suggested by Thakkar [68].
They studied several small systems composed of two closed-shell molecules, atoms, or
ions. For the He dimer, they found worse agreement than the original Gordon–Kim
calculation, which underlines the role of error cancellation effects in the Gordon–Kim
model. Of particular interest are the systems X− · · ·H2O with X = F, Cl. For the
fluoride system, a strong decrease of the total energy was observed for distances smaller
than 1.5 Å. A similar observation was made for the chloride system. This could be
explained in terms of an unphysical redistribution of the water electron density to
the core region of the fluoride because of the strongly attractive Coulomb attraction.
But as mentioned before, the FDE implementation in Ref. [119] apparently resulted in
numerical instabilities, and the observed effect could not be reproduced with a different
implementation of the FDE scheme [121].

The accuracy of LDA and GGA functionals for exchange–correlation and non-additive
kinetic energy in FDE calculations of interaction energies in hydrogen-bonded complexes
was further investigated in Ref. [60]. In this case, the results were analyzed in comparison
to accurate coupled cluster or symmetry-adapted perturbation theory calculations. For
a test set consisting of different stationary points on the potential energy surface of the
water dimer, seven points with varying angle between the two water molecules, as well
as three other hydrogen bonded complexes, average absolute errors of 3.18 and 1.05
kJ/mol were found for fully variational GGA and LDA calculations, respectively. In
non-variational calculations — which are similar in spirit to the Gordon–Kim model, but
start from KS rather than HF densities and may employ gradient corrected functionals
— the GGA interaction energies turned out to be more accurate than the LDA energies.

In a study on van der Waals complexes, the PW91 kinetic energy functional turned out
to yield reliable results when compared to KS calculations [156]. Good agreement with
experimental and MP2 results were reported for complexes like C6H6·O2 or C6H6·N2.
The contribution of the non-additive kinetic energy at the equilibrium distances was
found to be of the order of 10 to 20 kJ/mol. It turned out that FDE calculations are
less sensitive to basis set effects than supermolecular KS calculations presented for the
same systems before in Ref. [157].

Van der Waals complexes with weakly overlapping densities were studied in Ref. [158].
In that study, LDA or GGA functionals were used consistently for both the exchange–
correlation and the kinetic energy contribution. The accuracy observed for GGA-FDE
interaction energies was higher than that of LDA-FDE calculations when compared to
ab initio data; the average absolute errors found for the test set studied in Ref. [158]
were 1.21 kJ/mol (GGA) and 1.84 kJ/mol (LDA). For complexes with very small density
overlap, however, the LDA interaction energies were superior to GGA-type functionals
for Exc and T nadd

s . As another important result, GGA-FDE calculations agreed better
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with the accurate ab initio data than KS-DFT. This was confirmed in an investigation
of carbazole complexes [159] and in a study on the physisorption behavior of H2 on
polycyclic aromatic hydrocarbons (PAHs) [160]. Another study concerning π-stacking
interactions on the basis of FDE has been presented in Ref. [161]. While it is known that
Kohn–Sham DFT has problems in describing dispersion interactions unless special care
is taken [50, 162–164], it could be shown that FDE provides more accurate interaction
energies for the benzene dimer than MP2 calculations, when taking CCSD(T) data as
a reference [165].

Some progress for the application of FDE to transition metals has been made, with the
final goal of modeling metal-catalyzed reactions. In Ref. [166] it was shown that potential
energy curves for proton abstraction reactions can reliably be modeled. However, the
error of the FDE interaction energy in comparison to KS-DFT depends strongly on the
distance of the broken bond to the border of the two subsystems. The frozen system
in this case was the set of non-reactive ligands, whereas the metal center, the proton-
donating water ligand, and an additional proton-accepting water molecule were chosen
as the active system. For the proton transfer reaction itself, the interaction energies
obtained were in very good agreement with the reference values, but in this case no
bond to an atom at the border of the two subsystems was broken. The results were
considerably worse if the distance between the proton-donating water ligand and the
Zn2+ center was varied. Several different approximations for the ligands’ density ρ2(r)
were tested in that case, e.g., a sum of (individually) prepolarized fragments. It turned
out that typically this prepolarization is only necessary for one point on the potential
energy curve, and the fragment densities thus obtained can be applied for all structures,
at least in cases where there is no structural change involving the frozen ligands.

FDE has also been applied recently to study orbital energy splittings in lanthanide
complexes [167,168]. It was demonstrated that it can serve as a non-empirical alternative
to empirical crystal-field or ligand-field splitting models. In these types of applications
FDE can partly cure the problem of too large covalent contributions or too large
mixing between f orbitals of the cation and ligand orbitals present in conventional
DFT calculations. This particular point was subject of another recent study, in which
the restriction to localized embedded orbitals was lifted [169].

A summary of the results obtained with FDE for interaction energies can thus be given as
follows (see also the discussion in Ref. [170]): FDE employing LDA functionals for both
Exc and T nadd

s leads to very good interaction energies for weakly overlapping densities,
such as in rare gas dimers or the CH4 · · ·CH4 complex. For interactions involving
hydrogen-bonded systems, GGA-type approximations result in closer agreement with
KS-DFT calculations [155], while the study in Ref. [60] showed that the agreement with
ab initio reference data for the systems studied there was better within the local density
approximation. In systems where π-interactions are important, LDA does not lead to
satisfactory results, and GGA-type functionals lead to significant improvements. The
description of metal–ligand interactions is typically considerably more difficult.
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2.9 Comparison of electron densities from Kohn–Sham and sub-
system DFT

2.9.1 Topological analyses of electron densities

As mentioned before, the electron density can be regarded as a fundamental quantity
for the description of matter according to the Hohenberg–Kohn theorem. In addition to
quantitative calculations within density functional theory, recent work also highlights the
role of the density for qualitative analyses of electronic structure and an understanding
of chemical bonding in molecules, see Refs. [7,10,11]. Topological analyses of hydrogen-
bonded systems have been carried out in the recent past to develop criteria for the
detection of hydrogen bonds [171], to investigate the distance dependence of the electron-
density topology [172], or to study the relationship between the topology and energetic
properties of hydrogen bonds [173]. These theoretical approaches also gain increasing
importance in transition metal chemistry; for a review see Ref. [174] as well as the recent
studies in Refs. [175,176] and references therein. One interesting aspect of such analyses
is the attempt to relate properties of a chemical system to those of certain constituents,
e.g., molecules within a supermolecule or functional groups within molecules [177]. That
such a decomposition is essential for chemical concepts is apparent in the discussion
of coordination compounds in terms of an electron acceptor (e.g., a central metal ion)
and electron donating ligands, which becomes manifest in crystal- or ligand-field theory.
The electron density can be employed to study the effect of the ligands on the metal
center, as was done in Refs. [167, 169] on the basis of FDE (see also Section 2.8).

In spite of its pragmatic use as an effective environmental model, FDE should lead to the
exact density of a system if the exact kinetic and exchange–correlation energy functionals
were known and the density to be optimized fulfilled the vs-representability criteria (see
Section 2.5.1). The approximate functionals for the kinetic-energy component that
have to be used in practice, however, limit the applicability of the FDE scheme to
rather weakly interacting systems. More strongly interacting subsystems, e.g., systems
connected by a covalent bond, cannot be appropriately described by the presently
available approximations. However, it has not been explored in detail where the limits
of these approximate functionals are. Most of the previous studies assessed the accuracy
of FDE calculations in an indirect way, e.g., by analyzing their accuracy for properties,
energies, or structures. Brief analyses of the electron density deformation from FDE and
supermolecular calculations were presented for the FH· · ·NCH complex in Ref. [117] and
for the Li+−H2O complex in Ref. [119], although the latter study apparently contained
some numerical flaws [121].

In the following, an analysis of the differences in the topology of electron densities
obtained from FDE calculations and from Kohn–Sham DFT calculations will be carried
out. This is necessary in order to gain a more detailed understanding of factors affecting
the accuracy of embedding calculations. For that purpose, we investigate a set of
molecules with hydrogen-bonding interactions, i.e., the rather strongly bound systems
HOH· · ·F− and F−H−F−, and subsystems connected by coordination bonds. Even
though there are a few applications of FDE to such systems, e.g., for MnF4−

6 [168],
lanthanide complexes [167,169], or zinc complexes [166], subsystems connected by donor–
acceptor bonds represent a big challenge and push the currently available approximations
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for the non-additive kinetic energy to their limits.

After a brief outline of tools for the analysis of electron density distributions in Sec-
tion 2.9.2, different criteria for the assessment of densities for the H2O· · ·F− complex
for a typical setup as employed in practical FDE calculations are compared in Section
2.9.3. Since such calculations involve both numerical approximations as well as more
fundamental approximations concerning the energy functionals employed, the different
factors that determine the performance of FDE separately in terms of their impact on
the electron-density topology are analyzed in Section 2.9.4. The symmetric hydrogen-
bonded system F−H−F− is analyzed in Section 2.9.5. As representative examples of
such cases, we consider the metal complexes TiCl4 and Cr(CO)6 in a subsequent section.

2.9.2 Tools for the analysis of electron densities

Since already the superposition of isolated molecular densities produces a density similar
to that of the interacting complex in many cases, difference (or deformation) densities
as well as the negative Laplacian of the electron density are employed as more sensitive
diagnostic tools. The ability to model the binding region between the subunits in
the FDE calculations is furthermore analyzed by a topological analysis of the electron
density according to the theory of atoms in molecules [7]. It provides detailed insight
into the electronic structure of molecules and solids that has in the past been utilized
for many different purposes [178], such as analyzing the bonding scenario in transition
metal ethylene and acetylene complexes [179,180] and deriving a new concept to describe
agostic interactions in early transition metal complexes [174].

The topology of an electron density distribution can be summarized by a characteristic
set of critical (i.e. stationary) points [7]. The so-called bond critical point (BCP) is
the saddle point found between two bound atoms in a molecule, i.e., it is the minimum
on a line connecting the local maxima of the electron density which correspond to the
atomic positions. A second type of critical point, the ring critical point (RCP), is found
when atoms form a ring structure like in benzene. The values of the electron densities
at these critical points can, together with the values of the negative Laplacian, be
used to characterize a chemical bond. The negative Laplacian of the electron density,
L(r) = −∇2ρ(r), is a measure of the curvature of the electron density at a given point.
These two topological parameters, ρ(r) and L(r) at the critical points allow for a direct
bond characterization. A positive value of L(r), which indicates a local concentration of
the electron density within the bonding region, is found for covalent bonds. Analogous
to ρ(r) stationary points can also be identified and characterized in the topology of
L(r). Of special importance are the local maxima in the positive regions of the negative
Laplacian, the so-called local charge concentrations. In compounds containing only main
group elements two types of local charge concentrations can be identified. The bonding

charge concentrations are found in the valence regions of atoms connected by a covalent
bond, while the non-bonding charge concentrations are observed at the positions where
free electron pairs are located. In the following, we will refer to the latter type of
maxima in short as “charge concentrations”.

The two subunits connected by hydrogen bonds were chosen as the fragments in the
FDE calculations, i.e., the hydrogen bonding region forms the boundary between the
subsystems. Both the density and L(r) are linear, so that their values for a superposition
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of fragment densities can be obtained by adding up the corresponding values for the
subsystems. The densities of the fragments and the supermolecule were obtained on the
same grid for each complex under study. The electron density and the negative Laplacian
L(r) were obtained on a grid of points (step-size 0.01 Å) from a locally modified version
of the Densf-utility program of the Adf package. The search for stationary points in
the electron density was performed with the program Integrity [181]. The isocontour
plots of the difference densities and L(r) were prepared using a Mathematica script
[182,183]. In the following figures, contour lines are drawn at ±2, 4, 8× 10n eÅ−3 with
n = −2,−1, 0, 1, 2, 3 for the densities, with n = −4,−3,−2,−1, 0 and for 0 eÅ−3 for the
difference densities, and at ±2, 4, 8× 10n eÅ−5 with n = −4,−3,−2,−1, 0, 1, 2 for the
negative Laplacians if not explicitly mentioned otherwise. Positive (including zero) values
and negative values are marked by solid and dashed lines, respectively. Coordinates are
given in units of Å. Atomic positions and bond critical points are marked by dots and
open circles, respectively.

2.9.3 Criteria for the accuracy of electron densities

In this section the criteria for assessing the quality of FDE densities will be applied to
the hydrogen-bonded complex of water and a fluoride ion as an example. This complex
was introduced in Section 2.6.3, and its structure is shown in Figure 2.1. Subsystem
densities were obtained using a TZP basis set after three freeze-and-thaw cycles. A
subsystem basis set was employed in each calculation in this section; note that this is
an approximation, since a supermolecular basis set is in principle needed in order to
provide full flexibility for a polarization of a subsystem density by the other subsystem
(see Section 2.9.4). The choice of this type of basis set was motivated by the fact that
actually most practical applications of FDE as an environmental model do, similarly
to QM/MM hybrid methods, not employ basis functions in the environmental region.
The results in this section thus allow an assessment of the densities obtained in such
calculations where FDE is applied as an approximate environmental model. But it must
be kept in mind that they do not allow an assessment of the limitations of this subsystem
approach to reproduce the electron densities from supermolecular KS calculations in

principle, which requires to carefully distinguish between purely technical approximations
(basis sets, convergence of freeze-and-thaw cycles) and fundamental approximations in
the energy functionals applied. These effects will be analyzed in Section 2.9.4. Note
that we will use the term “embedding densities” in the following for the sum of the
two subsystem densities obtained from the FDE calculations. We employed the BP86
functional for the exchange–correlation part of the embedding potential, while for the
non-additive kinetic energy contribution the PW91k functional was chosen as default
(see Appendix B for details). These settings correspond to a standard FDE calculation
that usually gives good results for molecular properties [116, 184, 185]. The effect of
changes to these defaults will be investigated in the subsequent sections.

Probably the most obvious way to compare electron densities is to present them in a
map, e.g. by plotting isodensity values in a plane. This is shown in Figure 2.4 a) for
the density in the molecular plane of H2O· · ·F−, obtained in a KS-DFT calculation of
the supermolecule (ρsuper). This map can then be compared to the densities obtained
by summing up the subsystem densities from the embedding calculation, ρemb, or from
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the isolated fragments’ densities, ρfrag. The fragments in this case are an H2O molecule
and an F− ion. The corresponding plots for ρfrag and ρemb are very similar to ρsuper, and
no differences can be found upon visual inspection. They are therefore not presented
here. Thus, this direct approach does not offer a sensitive criterion for the assessment
of the differences in the density.

Figure 2.4: Density ρsuper (a) and deformation densities ρsuper−ρfrag (b), ρemb−ρfrag (c) and
difference density ρsuper−ρemb (d) for H2O· · ·F−.
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For a more detailed analysis of the FDE electron densities, we considered deformation
densities, i.e. the difference between ρsuper and ρfrag or ρemb and ρfrag. These deformation
densities show changes in the density upon formation of the H· · ·F bond. Additionally,
we also studied the difference densities ρsuper − ρemb. This offers the possibility to
detect subtle deviations between the FDE and supermolecular KS electron densities in
a locally resolved manner. In Figures 2.4 b) to d) deformation and difference densities
are depicted for H2O· · ·F−. In part b) the deformation density upon formation of the
hydrogen bond between the fluoride ion and the water molecule is presented for the
supermolecular KS case. The difference density in the fluorine subsystem is positive in
a ring around the fluorine ion perpendicular to the plotting plane, which originates from
the electron lone pairs. It is also positive in the middle of the H· · ·F connection line,
while the remaining part in this subsystem is negative. In the water subsystem, the
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difference density is negative around hydrogen atom H2 and in a region perpendicular
to the bond axis on the oxygen, but positive elsewhere. In comparison to the two
isolated subsystems, the electron density around the oxygen atom and the fluorine ion
appear to be polarized towards the connecting hydrogen atom in the hydrogen-bonded
complex. The corresponding difference density for the embedding calculation is shown
in Figure 2.4 c). In this case, the two regions of positive difference densities around the
fluorine ion are overlapping and less localized than in the supermolecular calculation.
In particular, the density deformation is less directed towards the hydrogen bonding
region. Nonetheless, the qualitative features of the deformation density plot agree with
the supermolecular case, although it can be recognized from the data points included
in Figure 2.4 that quantitative differences remain.
A direct comparison between ρsuper and ρemb is possible by analyzing their difference
density, which is shown in Figure 2.4 d). The density ρemb in the F· · ·H2−O region is
too low around atom H2, but too high towards the fluorine ion and too high on the
O−H2 bond close to H2. Regarding the changes perpendicular to the bond axis at the
atoms O and F, ρemb is too high around O and too low around F. Upon formation of the
bond, density appears to be shifted from this region to the hydrogen bond. Although
this shift is qualitatively captured by FDE, the detailed structure of the density in the
bonding region is not fully reproduced, since not enough density is transferred from the
region around hydrogen atom 1 towards the hydrogen bond. The embedding calculation
can thus not fully reproduce the polarization of the water molecule and the fluorine
atom upon bond formation.

Figure 2.5: Negative Laplacian Lfrag (a), Lemb (b) and Lsuper (c) for H2O· · ·F−. Contour
lines in addition to those mentioned in Section 2.9.2 are drawn at 0, 70 and 158 eÅ−5.
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A sensitive and locally resolved probe for the differences in electron densities is the
negative Laplacian. In Figure 2.5 the negative Laplacians Lfrag, Lemb and Lsuper are
depicted. In Lfrag, the fluorine fragment appears spherically symmetric. Since the same
geometric structure as in the hydrogen-bonded complex was used for the water molecule,
the two O−H bonds are not equivalent, e.g. the bonding charge concentration on the
O−H2 bond is smaller than on the O−H1 bond. In Lemb, the Laplacian in the region of
hydrogen atom H2, region B in Figure 2.5 c), looks similar to the unperturbed Lfrag, but
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the region of local charge concentration descends steeper and does not extend as far to the
fluorine atom as in Lfrag or Lsuper. In Lsuper, this local charge concentration descends
more symmetrically to both sides of the F· · ·H2−O connection line. Moreover, the
bonding charge concentration on the oxygen atom towards H2, shown by an additional
contour line at 70 eÅ−3 in Figure 2.5 c), region A, is higher than towards H1. Further
maxima of the local charge concentration can be found in region C in Figure 2.5 c),
shown by the contour lines at 158 eÅ−3. In Lemb, this ring is much less pronounced
and the bonding charge concentration in region A is much smaller, but still visible.
Topological parameters at the BCPs (cf. Figure 2.1) are listed in Table 2.1. The most
significant differences can be seen at BCP3, which is located on the hydrogen bond where
the system is divided into subsystems for FDE. The approximate ρemb obtained with
the particular setup used here, i.e., without ghost basis functions in the environmental
system, seems to yield worse results than ρfrag for the topological parameters, as the
coordinates of BCP3 are too close to the hydrogen atom and values of the density and
L(r) show larger deviations from ρsuper than those of ρfrag.

Table 2.1: Coordinates rBCP (in units of Å) of the BCPs and values of ρ(r) in eÅ−3 and L(r)
in eÅ−5 at the BCPs of ρ(H2O· · ·F−) calculated with different approximations (supermolecular
density ρsuper, embedding density ρemb and superposition of the isolated fragment densities
ρfrag).

rx,BCP ry,BCP ρ(rBCP) L(rBCP)
BCP 1 ρsuper −0.72 −0.15 2.32 10.3

ρemb −0.72 −0.15 2.32 10.4
ρfrag −0.73 −0.15 2.33 11.5

BCP 2 ρsuper 0.02 −1.14 1.52 5.20
ρemb 0.02 −1.17 1.52 7.96
ρfrag 0.01 −1.11 1.63 4.94

BCP 3 ρsuper 0.01 −1.77 0.75 −0.68
ρemb 0.01 −1.73 0.55 −2.20
ρfrag 0.01 −1.79 0.72 −1.98

With increasing distance from the hydrogen bond, the differences in the topological
parameters disappear. While at BCP2 the density is virtually the same for ρsuper and
ρemb and only the negative Laplacians differ, at BCP1 both values are nearly identical
for the two approaches. Therefore, we will in further discussions concentrate on BCP2
and BCP3 only. As will be shown in Section 2.9.4, the comparatively bad results of
the FDE scheme for some of the topological parameters are partly due to the use of a
monomer (i.e. subsystem) basis set in these calculations.

2.9.4 Factors affecting the quality of the density

In this section, we briefly analyze different factors which determine the overall accu-
racy of the electron density in frozen-density embedding calculations in comparison to
supermolecular KS calculations. Among the numerical approximations made are the
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number of freeze-and-thaw cycles, which were studied in Section 2.6.3 and will thus not
be considered here, and the basis set. Additionally, we address questions related to the
choice of the kinetic energy functional employed for the embedding potential.

Basis sets

FDE describes the polarization of densities under the influence of an environment, for
which a flexible basis set is needed [186]. For the preceding results in this section,
we only considered monomer (or subsystem) basis sets, in which the molecular orbitals
φi1/2

in systems 1/2 are expanded in terms of basis functions ξ localized within the
respective fragment only, i.e.,

φi1 =
∑

ν1

ci1ν1
ξν1
, (2.79)

φi2 =
∑

ν2

ci1ν2
ξν2
. (2.80)

Here, ν1/2 label the basis functions in systems 1/2, and cinνn are the expansion coefficients.
A remaining problem might therefore be that the basis is not flexible enough in the
region of the frozen subsystem in order to allow for a sufficient transfer of electron
density from one system to the other, so that a supermolecular basis set might be
required for a quantitative modeling. In that case, the molecular orbitals would be
expanded as,

φi1/2
=

∑

ν1

ci1/2ν1
ξν1

+
∑

ν2

ci1/2ν2
ξν2
. (2.81)

Although both sets of basis functions contribute to the total electron density in both
approaches, the expressions for the density in terms of the basis functions differ. In the
supermolecular expansion, Eq. (2.81), we obtain,
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where the sums over i1/2 run over all occupied orbitals of subsystem 1/2. Cross-terms
of the form d · ξν1

ξν2
thus contribute to the density, where d is a product of expansion

coefficients for systems 1 or 2. These terms are missing in the monomer expansion,
where the density is expressed as,
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It is well known that the results of FDE calculations typically depend much more
strongly on the availability of ghost basis functions in the frozen region than on the
particular atomic basis set [118,186]. Therefore, we will only address the second point
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here. Table 2.2 lists the topological parameters at the BCPs for different ghost basis
sets. The densities obtained from such calculations are denoted as ρemb,gh.

Table 2.2: Basis set dependence of the coordinates rBCP (in units of Å) of BCP2 and
BCP3 in H2O· · ·F− and of ρ(r) in eÅ−3 and L(r) in eÅ−5 at the BCPs obtained with
different approximations (ρsuper, ρemb, ρemb,gh); ghost basis sets in the boundary region only
are indicated by “(bd)”. Three freeze-and-thaw cycles were used for ρemb and ρemb,gh.

basis rx,BCP ry,BCP ρ(rBCP) L(rBCP)
BCP 2 TZP 0.02 −1.14 1.52 5.20

ρemb TZP 0.02 −1.17 1.52 7.96
ρemb,gh TZP/DZP (bd) 0.02 −1.17 1.47 7.39

TZP/DZP 0.02 −1.17 1.47 7.33
TZP/TZP 0.02 −1.17 1.48 7.33

BCP 3 ρsuper TZP 0.01 −1.77 0.75 −0.68
ρemb TZP 0.01 −1.73 0.55 −2.20
ρemb,gh TZP/DZP (bd) 0.01 −1.73 0.66 −0.86

TZP/DZP 0.01 −1.74 0.66 −0.85
TZP/TZP 0.01 −1.74 0.66 −0.80

Although the precise values of the topological parameters depend on the particular
combination of basis set on the embedded fragment and ghost basis on the frozen
fragment, the calculations employing ghost basis sets typically lead to much better
results than any of the calculations with a monomer basis set. An exception is the
density at BCP2, which is slightly underestimated by the calculations with ghost basis
functions, whereas the results without ghost basis functions are in good agreement with
the KS reference values. The value of the Laplacian at BCP3 is an instructive example:
It changes from −2.20 eÅ−5 (TZP, monomer basis set) to −0.80 eÅ−5 (TZP plus TZP
ghost basis, in the following denoted as TZP/TZP), thus reducing the deviation from
the reference from 1.52 to 0.12 eÅ−5. The results also demonstrate that a DZP ghost
basis is already sufficiently large, since the additional changes when going from a DZP
to a TZP ghost basis are rather small.

To further analyze the effect of the ghost basis set we calculated the difference density
between ρsuper (TZP) and ρemb,gh (TZP/TZP), which is shown in Figure 2.6. Compared
to Figure 2.4 d) it can be seen that the absolute differences in the F· · ·H−O bonding
region are smaller than in the calculation without the ghost basis functions, with the
exception of the maximum of the difference density near H2, which is slightly higher
in ρsuper−ρemb,gh than in ρsuper−ρemb(0.42 eÅ−3 compared to 0.39 eÅ−3). In particular
the size of the region around H2 in which the FDE electron density is too small, is
decreasing, and the absolute values of the difference density are smaller in the region
of negative difference density between H2 and the fluorine atom. Moreover, the density
close to the fluorine ion on the side opposite to the hydrogen bond is apparently better
described. The ghost basis set obviously allows for a better transfer of charge from
the F− to the H2O fragment. Although there are still pronounced differences between
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ρsuper and ρemb,gh, the ghost basis set leads to a significant improvement of the density
obtained in the FDE calculation.

Figure 2.6: Difference density ρsuper−ρemb,gh (a), and deformation density ρemb,gh−ρfrag (b)
for H2O· · ·F−, using a TZP ghost basis and five freeze-and-thaw iterations in the FDE
calculations.
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Providing ghost basis functions on all atoms of the frozen fragment ρ2 counteracts
the advantages of a subsystem formalism, since it increases the basis set size for each
subsystem calculation to that of the supersystem. Since our intention was to increase
the flexibility of the basis to accurately describe the polarization of one subsystem by
another one, it might be sufficient to provide ghost basis functions only in the boundary
region between the two subsystems. We tested this by performing FDE calculations in
which a minimal ghost basis was supplied, i.e., a DZP basis on the atom next to the
boundary between the two subsystems only (F or H2, respectively). The results for
the topological parameters are shown in Table 2.2, denoted as ρemb,gh TZP/DZP (bd);
they are virtually the same as in the case of the full ghost basis. It must of course
be noted that even the “minimal basis” in this case already represents a large part of
the full ghost basis, especially in case of F− as the frozen system. Nevertheless, we can
conclude that the basis set in the frozen region may be of lower quality than the one
in the embedded region.

Choice of the kinetic-energy functional

The choice of the (non-additive) kinetic-energy functional is important for the differences
between KS-DFT and FDE that have to be expected. Several approximate functionals
are available, and we tested the following ones: The PW91k functional as described
above, the Thomas–Fermi functional (TF) [54,55], and a purely electrostatic embedding
(i.e., exchange–correlation and kinetic-energy components of the embedding potential
were switched off), which is denoted as COULOMB. Additional functionals have been
investigated in Ref. [118].
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The results obtained for the topological parameters of H2O· · ·F− are listed in Table 2.3.
For the calculations with supermolecular basis sets we employed a TZP ghost basis and
five freeze-and-thaw cycles, whereas three cycles were applied in calculations without
ghost basis sets. The TF and PW91k data do not differ very much. The coordinates of
the BCPs are virtually the same, the densities agree within 0.01 eÅ−3, and the Laplacian
values are very similar for BCP3. Only at BCP2 the values for L(r) from PW91k and
TF without ghost basis functions differ by about 0.18 eÅ−5, but even that is small
compared to the difference between KS and FDE calculations (about 2.8 eÅ−5 at BCP2
and 1.5 eÅ−5 at BCP3). As was already discussed in Section 2.9.4, the results obtained
with a supermolecular basis are typically much better than those without, which holds
for all kinetic-energy functionals studied here. Only the Laplacian at BCP2 is not very
well reproduced even when including a ghost basis. By comparing the ρemb,gh (PW91k)
data to those in Table 2.2 (TZP/TZP), it can furthermore be seen that the additional
two freeze-and-thaw cycles hardly change the results.

Table 2.3: Coordinates rBCP (in units of Å) of the BCPs in H2O· · ·F− and values of ρ(r)
in eÅ−3 and L(r) in eÅ−5 at BCP2 and BCP3 for the supermolecular density ρsuper, embed-
ding densities obtained with different kinetic energy functionals or electrostatic embedding
(COULOMB) without (ρemb) and with a TZP ghost basis on the frozen subsystem (ρemb,gh).
In calculations without ghost basis, three freeze-and-thaw cycles were used, whereas five cycles
were used in calculations with ghost basis.

rx,BCP ry,BCP ρ(rBCP) L(rBCP)
BCP 2 ρsuper 0.02 −1.14 1.52 5.20

ρemb,gh PW91k 0.02 −1.17 1.47 7.35
ρemb,gh TF 0.02 −1.17 1.47 7.35
ρemb,gh COULOMB 0.06 −1.03 1.72 4.16
ρemb PW91k 0.02 −1.17 1.52 7.96
ρemb TF 0.02 −1.17 1.51 8.14
ρemb COULOMB 0.02 −1.15 1.40 4.40

BCP 3 ρsuper 0.01 −1.77 0.75 −0.68
ρemb,gh PW91k 0.01 −1.74 0.66 −0.79
ρemb,gh TF 0.01 −1.74 0.66 −0.81
ρemb,gh COULOMB 0.02 −1.80 1.21 0.85
ρemb PW91k 0.01 −1.73 0.55 −2.20
ρemb TF 0.01 −1.73 0.54 −2.21
ρemb COULOMB 0.01 −1.75 0.76 −1.06

The data obtained with purely electrostatic embedding must be interpreted with care.
From the data in Table 2.3 it can be seen that the results for the density and the
Laplacian are rather bad if the full supermolecular basis is used. The results at BCP3
are even qualitatively wrong, as the negative Laplacian value has a wrong sign. The
reason for this is that the purely electrostatic embedding is lacking the repulsive non-
additive kinetic-energy contribution close to the nuclei in the frozen system, so that
electron density is transferred into the frozen region (see the discussion of this electron
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leak problem in Section 2.6.4). The data in Table 2.3 also show that the simple
electrostatic embedding benefits from error cancellation effects if ghost basis functions
in the environmental system are neglected. In that case, it leads to a better agreement
with the KS reference calculations than the calculations with a kinetic-energy and
exchange–correlation contribution, both for the density and the Laplacian at BCP3.

2.9.5 Symmetric hydrogen bonds in F−H−F−

Because of the limitations of the available approximate functionals for the non-additive
kinetic-energy component of the potential, the quality of the results from FDE calcu-
lations depends on the molecules under study, in particular the kind (and strength) of
interaction between the subsystems. For this purpose, we compared FDE and super-
molecular KS densities for different interaction types. In preliminary studies on systems
like rare gas dimers, it turned out that almost no differences can be found, and that even
the densities of the isolated fragments are almost indistinguishable from the supermolec-
ular results. Therefore, we concentrated on cases that pose greater challenges to FDE
due to stronger interactions and studied the symmetric hydrogen bond in F−H−F−,
starting from asymmetric fragments. Since this section mainly focuses on the practical
applicability of FDE, we will work with a DZP ghost basis in case of calculations using
supermolecular basis sets and employ three freeze-and-thaw iterations in all calculations.
F−H−F−, which contains two equivalent H−F bonds, is considered to have one of
the strongest hydrogen bonds. A reliable estimate for the dissociation energy D0 into
F− and HF is 44.4 ± 1.6 kcal/mol [187,188]. The experimental estimate for the F−F
distance (2.278 Å) [189] is smaller than the van-der-Waals distance of two fluorine atoms
(2.7 Å). This system has been subject to FDE studies in the context of proton transfer
reactions before, where it was used as a test system for the evaluation of free energy
calculations of chemical reactions in solution [115].

Figure 2.7: Optimized (BP86/TZP) structure and coordinates in the grid of the H-bonded
system F−H−F−.
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The BP86/TZP optimized structure of the molecule is shown in Figure 2.7. The H−F
distance in this linear, symmetric molecule is 1.16 Å, so that the calculated F−F distance
of 2.32 Å is in fair agreement with the experimental value. The density ρsuper of the
F−H−F− ion is symmetric [118]. The H−F bond on which BCP1 is located was divided,
so that a stretched HF and a fluoride ion were obtained as fragments. Consequently, the
superposition of fragment densities is not symmetric, and also ρemb does not show the
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required symmetry. If, however, ghost basis functions are added, the resulting ρemb,gh,
shown in Figure 2.8 a), appears almost symmetric w.r.t. the horizontal mirror plane.
Slight deviations from this symmetry can be detected in the plot of the difference density
between the symmetric supermolecule density and ρemb,gh, Figure 2.8 b). This difference
density plot also reveals that the agreement between ρsuper and ρemb,gh is not perfect,
since alternating regions of positive and negative difference density can be observed. On
an absolute scale, these deviations are rather small, as can be seen from the densities
at the BCPs, where ∆ρ = 0.12 eÅ−3 at BCP1 and ∆ρ = 0.09 eÅ−3 at BCP2.

Table 2.4: Coordinates rBCP (in units of Å) of the BCPs in F−H−F− and values of ρ(r) in
eÅ−3 and L(r) in eÅ−5 at the BCPs for ρsuper, ρemb, ρemb,gh (obtained with a DZP ghost
basis), and ρfrag.

rx,BCP ry,BCP ρ(rBCP) L(rBCP)
BCP1 ρsuper 0.28 0.00 1.14 1.68

ρemb 0.21 0.00 1.07 5.68
ρemb,gh 0.23 0.00 1.02 2.74
ρfrag 0.30 0.00 1.30 3.08

BCP2 ρsuper −0.28 0.00 1.14 1.68
ρemb −0.22 0.00 0.71 −1.92
ρemb,gh −0.23 0.00 1.05 2.80
ρfrag −0.29 0.00 0.96 −1.70

The coordinates of the BCPs in ρemb are symmetrical w.r.t. the hydrogen atom, but the
densities differ considerably (|ρ(BCP1)−ρ(BCP2)| = 0.37 eÅ−3) and the sign of L(r) at
BCP1 is different from that at BCP2, see Table 2.4. FDE without ghost basis functions
is thus qualitatively more similar to the isolated fragments than to the supermolecule for
F−H−F−. This is partly remedied with ghost basis functions, which do not improve the
coordinates of the BCPs much, but considerably reduce the asymmetry in the density
(|ρ(BCP1) − ρ(BCP2)| = 0.03 eÅ−3). Furthermore, L(r) has the same sign at both
BCPs and also the absolute values are comparable. Hence, FDE yields a qualitatively
correct description of this complex even though we started from asymmetric fragments
and the interaction strength is very large.

In Figure 2.8 c) to f) also the plots of the negative Laplacian are shown. Whereas Lfrag,
part c), consists clearly of an independent, spherically symmetric fluorine fragment and
an HF fragment, in Lemb, part d), one can already recognize local charge concentrations
at atom F1 and a shift of charge concentration towards atom F1 at the hydrogen
atom. Lemb,gh in part e) is almost symmetric and already very similar to Lsuper, which
is shown in part f). The negative Laplacian thus allows to quantitatively follow the
improving description of the electron density from the asymmetric fragments via the
fragments from the embedding approach without ghost basis to the FDE fragments
including ghost basis functions, which do already capture the characteristic signatures
of the supermolecule.
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Figure 2.8: Density ρemb,gh (a), difference density ρsuper−ρemb,gh (b), and negative Laplacians
Lfrag (c), Lemb (d), Lemb,gh (e), and Lsuper (f) for F−H−F−. A DZP ghost basis was employed
for ρemb,gh and Lemb,gh; three freeze-and-thaw cycles were carried out in all cases. An additional
contour line at 165 e Å−5 is drawn for the negative Laplacian.
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2.9.6 Coordination compounds

The available kinetic-energy functionals are usually assumed not to be accurate enough
to be applied to covalent bonds, so that a straightforward application of the FDE scheme
would not be possible in these cases. Extensions of the FDE scheme have been proposed
that can handle such situations, e.g., by the introduction of capping groups, which has
been successfully applied to the description of proteins [190].

In the following, the accuracy of the FDE scheme with the currently available approxi-
mate kinetic-energy functionals will be investigated for the case of subsystems connected
by coordination bonds. As representative examples of such cases, we will consider the
metal complexes TiCl4 and Cr(CO)6. For these examples, the supermolecular basis set
expansion [155] was employed in the FDE calculations, with the parameterization of
the gradient-dependent enhancement factor in the PW91k kinetic-energy functional as
given by Lembarki and Chermette (LC94) [63].
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TiCl4

Titaniumtetrachloride is a tetrahedral complex with Td symmetry and strong interactions
between the central metal atom and the ligands. The optimized structure is shown in
Figure 2.9 a). The Ti−Cl distance is 2.19 Å (exp.: 2.18 Å) and the Cl−Ti−Cl angle
is 109.47◦. The reference data were taken from Ref. [191]. For the FDE calculation,
the complex was divided into a negatively charged Cl− and a positively charged TiCl+3
fragment. Initial FDE calculations converged very slowly and the electron density
obtained was unreasonable. If TiCl+3 was treated as the frozen fragment, a spurious
charge transfer from the Cl− fragment to the TiCl+3 fragment took place. The SCF
procedure for the TiCl+3 fragment only converged if one enforced a non-aufbau solution
with one unoccupied orbital with a lower orbital energy than the highest occupied
molecular orbital (HOMO). These difficulties are due to the well-known problem of
the FDE embedding potential at the frozen system, in particular close to the nuclei
(see Section 2.6.4). In earlier examples this incorrect behavior caused a wrong orbital
ordering only at a very large distance between the subsystems.

Figure 2.9: a) BP86/TZP optimized structure of titaniumtetrachloride. The double labeling
of some atoms means that there are two atoms, that differ only in their z-coordinate and
are therefore overlaying in the picture. Note that the color change along the Ti−Cl bond is
arbitrary and thus not related to the partitioning into subsystems. b) Supermolecular density,
c) embedding density, d) difference density ρsuper−ρfrag, e) difference density ρsuper−ρemb. The
orientation of the molecule in the density plots corresponds to the one of the ball-and-stick
model.
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The present example demonstrates that for certain choices of subsystems the embedding
potential fails to produce the correct orbital occupation even at the equilibrium distance.
A practical solution to this problem was suggested in Ref. [123] by applying a position-
dependent correction that enforces the right behavior of the embedding potential at the
frozen subsystem. This long-distance correction resulted in an aufbau solution with the
expected order of orbitals in our case, i.e., the spuriously low-lying orbital was shifted
to higher energies.
Contour plots of the electron density for the supermolecular and the FDE calculation
are shown in Figure 2.9 b) and c). The difference of the supermolecular density and
the superposition of the densities of the isolated fragments is shown in Figure 2.9 d).
Due to the complex formation, electron density is transferred from the Cl− fragment
towards the titanium atom. The most important change occurs in the center of the
TiCl+3 fragment. The difference of the supermolecular density and the density from the
FDE calculation is shown in Figure 2.9 e). Near the titanium atom the electron density
from the FDE calculation is too low, whereas it is too high at Cl1 perpendicular to the
Ti−Cl bond. Also in the center of the Ti−Cl2 bonding region FDE overestimates the
electron density, although the differences are small.

Table 2.5: Coordinates rBCP (in units of Å) of the BCPs and values of ρ(r) in eÅ−3 and
L(r) in eÅ−5 at the bond critical points of titaniumtetrachloride.

rx,BCP ry,BCP ρ(r) L(r)
BCP 1 sup 1.03 0.00 0.65 −1.73

emb 1.00 0.00 0.59 −2.34
diff 0.03 0.00 0.06 0.61

BCP 2 sup −0.34 0.97 0.65 −1.73
emb −0.35 0.97 0.66 −1.68
diff 0.01 0.00 −0.01 −0.05

The values for the electron density and the negative Laplacian are shown in Table 2.5.
At BCP1 near the border of the two subsystems the difference of the supermolecular
density and the electron density from the FDE calculation and the difference of the
negative Laplacians are rather small (∼ 0.06 eÅ−3 and 0.61 eÅ−5, respectively); at
BCP2 these deviations are even smaller. The negative Laplacian has the correct sign
at both BCPs. Also the values of the difference density in titaniumtetrachloride are
relatively small.

Cr(CO)6

The octahedral complex chromium hexacarbonyl is a prototypical example of a metal
complex in which π-backdonation plays an important role, and which thus cannot be
entirely understood in terms of simple ligand field theory. The optimized structure is
shown in Figure 2.10 a). The Cr−C distance is 1.91 Å (exp.: 1.91 Å) and the C−O
distance is 1.16 Å (exp.: 1.14 Å). The reference data were taken from Ref. [192]. The
electronic structure expected for chromium in a strong octahedral ligand field would be
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[Ar](t2g)6. The FDE calculation converged to an aufbau solution with the unexpected
configuration [Ar](a1g)2(eg)4, caused by additional low-lying orbitals centered on the
ligands. Note that the non-additive kinetic energy part of the potential should actually
destabilize such ligand orbitals in the calculation of the Cr fragment in order to mimic
the Pauli repulsion with the occupied orbitals in the (CO)6 fragment. Apparently, this
destabilizing effect is too weak in the present example. This is again related to the
deficiency of the available GGA kinetic-energy functionals. The electron density for
this electronic structure is unreasonable, because it is very similar to the density of the
superposition of the isolated fragments, except in the region around the chromium atom.
The same calculation was performed enforcing the correct occupation, which resulted in a
non-aufbau solution for chromium with the electronic configuration [Ar](a1g)0(t1u)0(t2g)6.

Figure 2.10: a) BP86/TZP optimized structure of chromium hexacarbonyl. Note that the
color change along the Cr−C bond is arbitrary and thus not related to the partitioning
into subsystems. b) Supermolecular density, c) embedding density, d) difference density
ρsuper − ρfrag, e) difference density ρsuper − ρemb. The orientation of the molecule in the
density plots corresponds to the one of the ball-and-stick model.
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By applying the long-distance correction suggested in Ref. [123], the number of unoc-
cupied orbitals that are lower in energy than the HOMO could be reduced. It was,
however, not possible to obtain an aufbau solution with the expected occupation scheme.
A set of three t1u orbitals and one a1g orbital were still found to be lower in energy
than the metal-centered t2g orbital. These orbitals are shown in Figure 2.11 a) and b)
for the calculation without the long-distance correction, and in Figure 2.11 c) and d)
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for the calculation with the correction. The orbitals are located on the carbon atoms
of the carbonyl ligands. The long-distance correction leads to a contraction of these
orbitals by raising the potential in the region of the ligand atoms. The rather sharp
boundary in the isosurface plot can be explained in terms of the distance-dependence
of the long-distance correction.

It should be noted that the destabilizing effect of this correction could be modified by
changing the parameter α in Eq. (34) of Ref. [123], which controls the threshold to
switch on the correction terms. However, it seems unreasonable to further tune this
parameter since the correction enforces a limit that is only correct at large separations
of the subsystems.

Figure 2.11: a) Low-lying a1g orbital from the FDE calculation on Cr(CO)6 without long-
distance correction (contour value = 0.045), b) one of the three low-lying t1u orbitals from
the calculation without the long-distance correction (contour value = 0.05), c) the orbital
corresponding to the one shown in a) from the calculation with the long-distance correction
(contour value = 0.045), d) the orbital corresponding to the one shown in b) from the
calculation with the long-distance correction (contour value = 0.05).
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The supermolecular and the embedding densities are shown in Figure 2.10 b) and c). The
difference density is shown in Figure 2.10 d). In contrast to the other examples studied
here, already the electron densities show significant differences and no sophisticated
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topological analysis is needed in this case to reveal the deficiencies of the subsystem
approach.

2.9.7 Trends in the accuracy of electron densities from FDE

The previous examples demonstrate that FDE is able to reproduce the qualitative
changes in the electron-density topology upon hydrogen bonding of two subsystems.
While the choice of the particular approximation for T nadd

s had only a minor influence
on the results, it turned out that monomer basis sets are often not sufficient to obtain
accurate results for the densities. In case of a simple electrostatic embedding the
restriction to a monomer basis set can lead to seemingly good results due to error
cancellation effects. This changes drastically when a supersystem basis set is used also
in the embedding calculation. In that case, an entirely electrostatic embedding leads
to charge-leaking problems as discussed in Section 2.6.4.

The use of a supermolecular basis certainly limits the applicability of FDE as an effective
model for large environments. However, typically only a few additional basis functions
in the hydrogen-bonding region are sufficient to obtain a significant improvement of
the electron-density description, which is comparable with the one obtained with a full
supermolecular basis set. As will be shown in subsequent chapters, ghost basis sets
in the frozen region typically have a small effect on molecular properties from FDE
calculations on weakly interacting systems.

A quantitative comparison of difference densities and the Laplacian of the densities as
well as the topological parameters at the bond critical points reveals that the electron
densities in the hydrogen-bonding region resulting from FDE do not show the same
directionality as obtained in supermolecular calculations. This could be the reason for
some of the known problems related to FDE and similar approaches, e.g., in molecular
dynamics simulations based on subsystem DFT [110]. A possible way to improve the
FDE scheme for applications in which this directionality plays a major role may be the
inclusion of terms depending on the overlap of the subsystem orbitals in the non-additive
kinetic energy in some approximate manner.

We have furthermore considered cases that pose serious challenges on the embedding
approach due to the fact that covalent contributions to the bonds become important.
For the bonding in TiCl4, we experienced difficulties with the embedding approach for
charged fragments when used in a naive way. We have shown that these problems,
that result in an unphysical charge transfer from Cl− to TiCl+3 , can be overcome in a
pragmatic way by applying the long-distance correction suggested in Ref. [123].

The same approach was helpful in the attempt to employ FDE for chromium hex-
acarbonyl, for which orbital overlap effects play an important role. For this transition
metal complex, however, the correction was only partly successful, since two sets of
low-lying ligand-centered orbitals still remained. A possible explanation for this remain-
ing deviation is the rather large covalent contribution to the Cr−C bond due to the
π-backdonation of the carbonyl ligands.

For the applicability of the FDE method to reproduce electron density distributions we
can thus recognize a clear trend. For the densities of weak van der Waals complexes,
the FDE approach is very successful [118], and it also provides accurate results for
hydrogen bonds. Even for strongly hydrogen-bonded systems like F−H−F− a good
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description can be achieved. Coordination bonds, however, represent borderline cases.
Whereas bonds with strongly ionic character are described reasonably well, FDE fails
for coordination compounds with strong covalent bonding contributions with currently
available approximations for the kinetic-energy component of the embedding potential.
These results indicate some important directions for the development of improved ap-
proximations to the non-additive kinetic energy functional. The examples demonstrate
that the accurate description of the embedding potential at the frozen subsystem, in
particular near the nuclei, is important to obtain a description that is at least qualita-
tively correct, i.e., that gives the correct orbital order. It was shown that the simple
correction proposed in Ref. [123] works into the right direction for the systems con-
sidered here. However, it should be noted that this correction contains terms that are
explicitly position-dependent, while approximations in terms of the density only would
be preferable. The systems studied here will be crucial for the validation of future
developments, like the most recent improved density functional approximation to the
kinetic energy component of the embedding potential [107], which enforces the exact
behavior near the nuclei of the frozen subsystem.



3. Excited States and Response Properties of Com-

plex Systems

3.1 Excited-state methods suited for large systems

The methods discussed in the previous chapter allow to focus a quantum chemical de-
scription onto particular fragments within a larger system and to investigate complex
aggregates by decomposing them into simpler subsystems. However, only ground-state
methods have been discussed so far, whereas spectroscopic phenomena and photoexci-
tation processes in general also involve excited electronic states or the response of a
system to an electromagnetic perturbation.

The characterization of excited electronic states is usually a much more challenging
problem than the calculation of ground-state energies and properties. One difficulty
is that in general no variational principle can be utilized except for special cases in
which the state under consideration is the lowest of a certain irreducible representation,
or if orthogonality to all lower-lying states is enforced. This holds in particular for
density-functional theory, for which no ground-state wavefunction is obtained and thus
no orthogonality requirements can be used directly. Furthermore, the Hohenberg–Kohn
variational principle only gives access to the ground state (see, however, the work by
Görling [193] or Levy and Nagy [194] as well as the discussion of variational density
functional methods by Gaudoin and Burke [195]). Additional problems arise from the fact
that several quantum chemical methods treat the electron correlation problem for ground
and excited states in an unbalanced way, in particular those for which the computational
effort is low enough to be applied to fairly complex systems. Excitation energies from
configuration interaction with single substitutions (CIS) are, for example, typically much
too high, since they employ Hartree–Fock molecular orbitals optimized for the ground
state. Since the virtual orbitals from HF calculations effectively correspond to one-
electron states of the anionic system according to Koopmans’ theorem, singly substituted
HF determinants are not well suited to represent excited states. The correlation energy
introduced by the CI among all singly excited states is thus too small to remedy
this orbital deficiency, so that the excited states are too high in energy compared
to the ground state. Also the time-dependent Hartree–Fock theory or random phase
approximation (see [196–198]) typically overestimates excitation energies by 0.5 to several
eV [199,200]. If doubly substituted configurations are introduced in addition within a
CISD approach, this bias is even larger, since the doubly substituted determinants are
the most important ones for the correlation energy of the ground-state determinant,
whereas the triply substituted determinants would be needed to include the dominant
correlation contributions for singly excited states [200]. Furthermore, the CISD approach
is not size-consistent.

A variety of approaches has been suggested that partly overcome these problems. Fores-
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man et al. re-examined the CIS method and proposed an MP2-type correction to it
(CIS-MP2) [201]. From an analysis and a comparison to CCSD-based excitation en-
ergies, Head-Gordon et al. proposed the so-called CIS(D) approach, which can be
regarded as a second-order perturbation expansion of the CCSD method for excited
states [202]. CIS(D) is size-consistent and shows a O(N5) scaling, and is thus a con-
siderable improvement over the size-inconsistent CIS-MP2 method with its O(N6) scal-
ing. Hirata presented analogous third- and fourth-order corrections, named CIS(3) and
CIS(4) [203]. Several related methods have been proposed in recent years, e.g., the
approximate second-order coupled cluster model CC2 [204]. Such approaches can be
quite efficient in implementations that make use of the resolution-of-the-identity (RI)
technique [205]. For a recent review, see Ref. [206]. Although much progress has been
made with wavefunction-based excited-state methods for systems of increasing size,
e.g. by introducing efficient schemes for so-called spin-component scaled and scaled
opposite-spin CIS(D) variants [207], calculations for larger systems are still very costly.
For a review of single-reference excited-state methods for large molecular systems, see
Ref. [199].

Time-dependent density functional theory is an alternative to these wavefunction-based
approaches that is often competitive in accuracy, in particular for localized valence
excitations, while being applicable to molecular systems with several hundreds of atoms.
However, TDDFT suffers from severe problems for certain types of excitations, e.g.,
Rydberg or long-range charge-transfer transitions. If one is only interested in the
absorption spectra, this does usually not introduce major problems, since these states
are typically of low oscillator strength. Nevertheless, considerable practical problems
in TDDFT calculations on valence excited states may be introduced, as is described
in Sections 3.3 and 3.4. In the following, an outline of the TDDFT formalism and
algorithms suited for large molecular systems are presented. Furthermore, the origins
of the problems in TDDFT calculations are indicated. Subsequently, we will present a
simple diagnostic tool for the charge-transfer character of an excitation and a physically
motivated correction for such states. Finally, an embedding version of TDDFT for use in
solvation studies is described that eliminates problems due to long-range charge-transfer
between different subsystems by construction.

3.2 Time-dependent density functional theory

3.2.1 Theoretical foundations

The theoretical basis for TDDFT is the Runge–Gross theorem [208], which is the
analog of the Hohenberg–Kohn theorem for time-dependent systems. Even before the
formulation of this theorem, some pioneering work on time-dependent density functional
theory was conducted [209–213]. Runge and Gross presented the first general proof for
a one-to-one correspondence between time-dependent external potentials vext(r, t) that
are Taylor expandable about the initial time and the time-dependent electron density,

ρ(r, t) = N

∫

d3r2 . . .

∫

d3rNΨ(r, r2, . . . , rN , t)Ψ
∗(r, r2, . . . , rN , t), (3.1)
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where N is the number of electrons and Ψ is the electronic wavefunction of the system
fulfilling the time-dependent Schrödinger equation,

Ĥ(t)Ψ(t) = i
∂

∂t
Ψ(t). (3.2)

The proof of this one-to-one correspondence was generalized by van Leeuwen [214].
Runge and Gross furthermore established an effective one-electron scheme, i.e., a Kohn–
Sham version of TDDFT. The analog of the variational principle for the ground-state
energy in the time-dependent case is a stationarity condition for the action integral,

A[ρ] =

∫ t1

t0

dt〈Ψ(t)[ρ]|i∂/∂t − Ĥ(t)|Ψ(t)[ρ]〉, (3.3)

where Ĥ(t) is the Hamiltonian of the system. This functional is stationary w.r.t. the
density for densities obtained from the solutions of the time-dependent Schrödinger
equation,

δA[ρ]

δρ(r, t)
= 0. (3.4)

By a comparison of the action stationarity principles for an interacting and a non-
interacting system, time-dependent Kohn–Sham (TDKS) equations can be derived as,

(

−1

2
∇2 + veff(r, t)

)

ψi(r, t) = i
∂

∂t
ψi(r, t), (3.5)

where

veff(r, t) = vext(r, t) +

∫
ρ(r′, t)

|r − r′|d
3r′ +

δAxc[ρ]

δρ(r, t)
. (3.6)

The exchange–correlation part of the action functional is defined as

Axc[ρ] =

∫ t1

t0

dt

〈

Ψ(t)[ρ]

∣
∣
∣
∣

1

|r − r′|

∣
∣
∣
∣
Ψ(t)[ρ]

〉

− 1

2

∫ t1

t0

dt

∫

d3r

∫

d3r′
ρ(r, t)ρ(r′, t)

|r − r′|
+S0[ρ]− S1[ρ], (3.7)

where the functional S[ρ] is given by

S[ρ] =

∫ t1

t0

dt〈Ψ(t)[ρ]|i∂/∂t − T̂ |Ψ(t)[ρ]〉, (3.8)

and the indices 0 and 1 indicate that S[ρ] should be evaluated for the wavefunction of
the noninteracting and interacting system, respectively [208]. T̂ is the kinetic-energy
operator. This action functional gives rise to causality problems when calculating re-
sponse functions, which can be circumvented by modified action functionals within the
so-called Keldysh formalism [215–217]. It was argued that the KS-TDDFT scheme is non-
predictive due to a dependence on future densities through a second time-derivative [218],
a criticism that was later disproved by Maitra, van Leeuwen, and Burke [219]. More
information on the formal development and applications of TDDFT can be found in
several reviews [199,216,220–225].
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3.2.2 Linear response TDDFT

In linear response TDDFT we investigate the change in the density of the system under
study due to a time-dependent perturbation δveff(r, t) in the potential.
We start from the unperturbed TDKS equations, Eq. (3.5), in the form,

(

−1

2
∇2 + veff(r)

)

ψ
(0)
i (r, t) = i

∂

∂t
ψ

(0)
i (r, t). (3.9)

Note that we use indices i, j, k, . . . for occupied orbitals, a, b, c, . . . for virtual orbitals,
and r, s, t, . . . for general orbitals. We assume that the solutions for the unperturbed,
time-independent effective KS potential veff(r) are known as,

ψ
(0)
i (r, t) = e−iǫitφi(r), (3.10)

where ǫi is the KS orbital energy of orbital i and φi(r) is a solution of the time-
independent KS equation. We now introduce a small time-dependent perturbation
δveff(r, t) and write the perturbed wavefunction as

ψi(r, t) = ψ
(0)
i (r, t) + δψi(r, t), (3.11)

so that the time-dependent Kohn–Sham equations take the form,

[

−1

2
∇2 + veff(r) + δveff(r, t)

](

ψ
(0)
i (r, t) + δψi(r, t)

)

= i
∂

∂t

(

ψ
(0)
i (r, t) + δψi(r, t)

)

.

(3.12)

After subtraction of the unperturbed Kohn–Sham equation, Eq. (3.9), we arrive at

[

−1

2
∇2 + veff(r) + δveff(r, t)

]

δψi(r, t) + δveff(r, t)ψ
(0)
i (r, t) = i

∂

∂t
δψi(r, t).(3.13)

These equations can formally be solved by expanding δψ(r, t) in the set of unperturbed
orbitals,

δψi(r, t) =
∑

r

cir(t)ψ
(0)
r (r, t), (3.14)

and inserting this expression into Eq. (3.12). This yields a first-order differential equation
in t for the expansion coefficients, which we can solve under the boundary condition
that cir = δir before switching on the perturbation. We assume that the perturbing
potential has the form,1

δveff(r, t) = δvpert
[
eiωt + e−iωt

]
= 2δvpert cos(ωt), (3.15)

1Note that we actually have to introduce a damping function in order to introduce the perturbation
adiabatically [220].
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where δvpert is hermitian and time-independent. We obtain for the expansion coefficients
to first order (see, e.g., [13, 226, 227]),

cis(t) = −1

2

(
e[i(ωsi+ω)]t

(ωsi + ω)
+
e[i(ωsi−ω)]t

(ωsi − ω)

)

〈φs|δvpert|φi〉, (3.16)

where ωsi = ǫs − ǫi.
From these coefficients, we can determine the first-order change in the density (or,
alternatively, in the density matrix, see Ref. [228]),

δρ(r, t) = ρ(r, t)− ρ(0)(r, t) (3.17)

=
∑

r

nr

[
ψ(0)∗

r (r, t)δψr(r, t) + ψ(0)
r (r, t)δψ∗

r(r, t)
]

(3.18)

where nr is the occupation number of orbital ψr. By inserting the ansatz for δψr(r, t)
from Eq. (3.14) and the expression from Eq. (3.16) for crs, we obtain,

δρ(r, t) =
∑

rs

nr

[(
e−iωt

ω − ωsr
− eiωt

ω + ωsr

)

〈φs|δvpert|φr〉φ∗
r(r)φs(r)

+

(
eiωt

ω − ωsr
− e−iωt

ω + ωsr

)

〈φr|δvpert|φs〉φ∗
s(r)φr(r)

]

. (3.19)

We can now identify the two Fourier components of this time-dependent density change
by writing,

δρ(r, t) = δρ(r, ω)eiωt + δρ(r,−ω)e−iωt, (3.20)

and sorting terms that oscillate with eiωt in Eq. (3.19),

δρ(r, ω) =
∑

rs

nr

[〈φr|δvpert|φs〉φ∗
s(r)φr(r)

ω − ωsr
− 〈φs|δvpert|φr〉φ∗

r(r)φs(r)

ω + ωsr

]

, (3.21)

as well as those that oscillate with e−iωt,

δρ(r,−ω) =
∑

rs

nr

[〈φs|δvpert|φr〉φ∗
r(r)φs(r)

ω − ωsr
− 〈φr|δvpert|φs〉φ∗

s(r)φr(r)

ω + ωsr

]

(3.22)

(3.23)

For pure density functionals and real (e.g., electric field-type) perturbations, we can use
the fact that

〈φs|δvpert|φr〉 = δvpert
sr = δvpert

rs . (3.24)

We furthermore note that the unperturbed, time-independent KS orbitals φr(r) may
always be chosen to be real. Since it can easily be shown from Eq. (3.19) that neither
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occupied–occupied nor virtual–virtual pairs contribute to the sum, the expression for
the frequency-dependent density change simplifies to,

δρ(r, ω) =
∑

ia

2Pia(ω)φi(r)φa(r), (3.25)

where

Pia(ω) = χs
ia(ω)δvpert

ia , (3.26)

and2

χs
ia(ω) =

ωia

ω2
ia − ω2

. (3.27)

The perturbation will consist of two different parts, namely (i) the external perturbation
and (ii) the perturbation of the electron–electron interaction potential induced by the
change in the electron density,

δvpert
ia = δvext

ia + δvind
ia , (3.28)

where the induced potential is approximated by the linear response of the Kohn–Sham
potential, veff(r), to a change in the density,

δvind
ia = 〈φi|δvind|φa〉 (3.29)

=

∫

d3r1

{

φ∗
i (r1)

[∫

d3r2
δveff(r1)

δρ(r2)
δρ(r2)

]

φa(r1)

}

(3.30)

=

∫

d3r1

{

φ∗
i (r1)

[∫

d3r2

(
1

|r1 − r2|
+ fxc(r1, r2)

)

δρ(r2)

]

φa(r1)

}

.(3.31)

The above equation already contains a simplification concerning the exchange–correlation
kernel fxc, since its Fourier transform is actually defined as the functional derivative of
the time-dependent effective Kohn–Sham potential, which by itself is obtained as the
functional derivative of the exchange–correlation part of the action functional, Eq. (3.7),

fxc(r, r
′, t, t′) =

δveff(r, t)

δρ(r′, t′)
=

δ2Axc

δρ(r′, t′)δρ(r, t)
. (3.32)

This definition leads to a causality problem [230], since by interchanging the order
of differentiation, we would obtain fxc(r, r

′, t, t′) = fxc(r
′, r, t′, t). Causality requires,

however, that fxc(r, r
′, t, t′) = 0 for t′ > t, because otherwise the potential would depend

on values of the density in the future. A solution to this paradox is the Keldysh formalism
introduced by van Leeuwen [215]. We will, in the following, adopt the so-called adiabatic
approximation, i.e., we assume a time- or frequency-independent, respectively, exchange–
correlation kernel For brevity, we will furthermore skip the coordinate-dependence of
fxc. By insertion of Eq. (3.25) into Eq. (3.31) we obtain,

2Note that in comparison to the notation in Ref. [229] the sign of ωia is reversed in this work.
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δvind
ia =

∫

d3r1

{

φ∗
i (r1)

[
∫

d3r2

(
1

|r1 − r2|
+ fxc

)
∑

jb

2Pjb(ω)φj(r2)φb(r2)

]

φa(r1)

}

.

(3.33)

In terms of the coupling matrix K with elements,

Kia,jb =

∫

d3r1

{

φ∗
i (r1)

[∫

d3r2

(
1

|r1 − r2|
+ fxc(r1, r2)

)

φj(r2)φ
∗
b(r2)

]

φa(r1)

}

, (3.34)

we arrive at

δvind
ia =

∑

jb

2Kia,jbPjb(ω). (3.35)

Insertion into Eq. (3.28) leads to

δvpert
ia = δvext

ia +
∑

jb

2Kia,jbPjb(ω), (3.36)

which can be put into Eq. (3.26),

Pia(ω) =
ωia

ω2
ia − ω2

[

δvext
ia +

∑

jb

2Kia,jbPjb(ω)

]

. (3.37)

This can be re-arranged into

∑

jb




ωjbδijδab − 2Kia,jb
︸ ︷︷ ︸

[A+B]ia,jb

− ω
2

ωjb
δijδab




Pjb(ω) = δvext

ia , (3.38)

where we have identified elements of the sum of the matrices A and B, which commonly
occur in other derivations of the linear response TDDFT equations [199, 220,231,232].
Note, however, that the definitions used for these matrices by different authors may
not always be exactly the same (e.g., they may differ in sign). Furthermore, the
relationship outlined above only holds for pure, i.e., non-hybrid density-functional theory.
By collecting all elements Pjb and vext

ia in the vectors P and vext, respectively, and by
introducing the diagonal matrix S with elements,

Sia,jb =
1

(ǫb − ǫj)
δijδab, (3.39)

we can reformulate Eq. (3.38) in compact matrix notation as
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[
(A + B) + ω2S

]
P(ω) = δvext, (3.40)

S−1/2
[
(A + B) + ω2S

]
S−1/2S1/2
︸ ︷︷ ︸

1

P(ω) = S−1/2δvext. (3.41)

This equation can formally be solved for P in the following way,

P(ω) = S−1/2



S−1/2(A + B)S−1/2

︸ ︷︷ ︸

−Ω

+ω21





−1

S−1/2δvext, (3.42)

P(ω) = S−1/2
[
ω21−Ω

]−1
S−1/2δvext. (3.43)

The elements of the matrix Ω are given as,

Ωia,jb = (ǫa − ǫi)2δijδab + 2
√

(ǫa − ǫi)Kia,jb

√

(ǫb − ǫj). (3.44)

Eq. (3.43) has the form of a linear system of equations of the type y = M−1b, and
the matrix M in this case is of dimension nocc × nvirt, where nocc and nvirt are the
number of occupied and virtual, respectively, orbitals of the system. In typical basis set
representations, a direct inversion of the matrix is thus not possible for medium-sized
to large molecules, so that the equation is recast into the form,

[
Ω− ω21

]
S1/2P(ω)
︸ ︷︷ ︸

F

= −S−1/2δvext, (3.45)

and solved by iterative matrix-vector multiplications as outlined by Feyereisen et al. in
the context of the related time-dependent Hartree–Fock framework [233]. This equation
allows us to compute the change in the density (in terms of P(ω)) from the matrix
elements of the external perturbation, which corresponds to the “forced oscillations” in
the density in the terminology of McWeeny [13]. But we also observe that there are
certain characteristic frequencies at which the inverse of [Ω − ω21] becomes singular,
so that the density change becomes infinitely large even in the case of a vanishingly
small perturbation. These are the resonance frequencies of the system, corresponding
to electronic transitions or the “free oscillations” of McWeeny [13]. We can determine
them by solving the eigenvalue problem that results from setting the perturbation to
zero and using the above definition of the vector F,

[
Ω− ω2

k1
]
Fk = 0. (3.46)

This way to calculate TDDFT excitation energies within a linear response formalism
was derived by Casida [220].
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3.2.3 Approximate solution schemes for excitation energies

A direct diagonalization of Eq. (3.46) would be very demanding for larger systems,
although it is possible for smaller molecules. Hence, the TDDFT eigenvalue problem is
usually solved by subspace iteration methods, most commonly by Davidson-type iterative
solutions for the lowest eigenvalues [234,235]. In these methods, matrix–vector products
of the coupling matrix K with certain test vectors pk

in describing the excitation to be
optimized are calculated [236],

[pk
out]jb =

∑

lc

Kjb,lc[p
k
in]lc. (3.47)

The output vectors can be expressed as,

[pk
out]jb =

∫

φj(r1)φb(r1)δv
ind
k (r1)d

3r1, (3.48)

where

δvind
k (r1) =

∫

d3r2

{[
1

|r1 − r2|
+ fxc

]
∑

lc

[pk
in]lcφl(r2)φc(r2)

}

, (3.49)

is the potential induced by the density change described by the test vector pk
in. The

test vectors actually serve as a basis in which the eigenvectors FI from Eq. (3.46) are
expanded during the Davidson diagonalization. The induced potential is, for efficiency
reasons, calculated in terms of the fitted density,

δρ̃k
in(r2) =

∑

i

aifi(r2) ≈
∑

lc

[pk
in]lcφl(r2)φc(r2), (3.50)

where ai and fi are fit coefficients and functions, respectively (for details, see Ref. [236]).
Such an auxiliary-basis method is discussed already by Casida [220], and was imple-
mented subsequently by Jamorski et al. [237]. Several authors have highlighted the
advantages of using auxiliary-basis methods thereafter [236, 238,239].
A common approximation to the TDDFT eigenvalue problem is the Tamm–Dancoff
approximation (TDA), which is the TDDFT analog of CIS. A CIS-type treatment based
on Kohn–Sham orbitals and orbital energies was first employed by Grimme [240]. In
that work, a CIS-Hamiltonian on the basis of Kohn–Sham orbitals was diagonalized that
contained additional empirical scaling factors and energy shifts to improve the resulting
excitation energies. The Tamm–Dancoff approximation within a TDDFT context was
introduced by Hirata and Head-Gordon in 1999 [241]. It was found that differences
between TDDFT/TDA and normal TDDFT are typically small. A mean deviation of
0.04 eV for Rydberg states was reported, whereas the discrepancies can be somewhat
larger for valence excited states (up to 0.3 eV). Even larger differences were found
in case of hybrid functionals, where TDDFT/TDA typically yields better results since
it avoids certain kinds of triplet near-instabilities. This point was emphasized in the
work by Cordova et al. [242], where also the advantages of the TDA in photochemical
applications were outlined.
Although the solution of the eigenvalue problem in Eq. (3.46) by subspace iteration
methods is currently the most common approach, there are other ways and additional
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technical simplifications to obtain approximate excitation energies from TDDFT. The
(squares) of the orbital energy differences, which enter the diagonal elements of Ω,
usually dominate this matrix. Furthermore, they are the exact excitation energies of
the non-interacting reference system, and can thus be regarded as a zeroth-order guess
for the interacting system of electrons. This is also reflected in the structure of the
eigenvalue equation for excitation energies, Eq. (3.46), which we may write in the
following form,

ΩFk =
[

E
2 + 2E

1/2KE
1/2
]

Fk = ω2
kFk, (3.51)

where E is the diagonal matrix of the orbital energy differences of virtual (labels a, b)
and occupied (labels i, j) orbitals,

Eia,jb = (ǫa − ǫi)δijδab, (3.52)

and K is the coupling matrix introduced in Eq. (3.34).
One approach to improve on this zeroth-order guess for the excitation energies is to apply
a Laurent expansion of the Kohn–Sham response function around the orbital energy
differences [243]. In lowest order, this is now known as the single-pole approximation
(SPA). However, this approach is not very accurate and may miss essential effects
for certain collective excitations [244]. Later, an approximation to Casida’s matrix
formulation [220] was developed that uses a continued-fraction method to obtain the
excitation energies. This approach works in cases of diagonally dominant matrices and
well-separated eigenvalues. The SPA is an approximation to the lowest order (called
small-matrix approximation, SMA) of this method in case of small corrections to the
KS excitation energies [245].
Hirao and co-workers proposed an approximate approach that uses a reduced space of
occupied–virtual pairs in the calculation of excitation energies, in which first a particular
row of the matrix Ω is calculated, i.e., the couplings of one selected orbital transition (ia)
to all other orbital transitions are calculated in a first step [246]. This step corresponds
to one matrix–vector product in a conventional TDDFT calculation. After that, a pre-
screening for the orbital transitions is performed, in which all occupied–virtual-pairs jb
are neglected, for which

∣
∣
∣
∣

Ωia,jb

(ǫb − ǫk)2 − (ǫa − ǫi)2

∣
∣
∣
∣
> θ, (3.53)

where the threshold θ is typically of the order of 10−5. The efficiency of this so-called
state-specific TDDFT was later enhanced by using a combination of different basis sets
and functionals during different steps of the calculation [247], at the cost of additional
errors of between 0.2 to 0.3 eV compared to the reference TDDFT calculations. While
this approach in principle offers a way for additional efficiency enhancement, the analysis
is based on a perturbation expansion of the excitation energies similar to that in Ref. [243]
and the later work by Appel et al. [245]. This analysis is, however, only appropriate
for systems with non-degenerate excitation energies of the non-interacting system, i.e.,
with non-degenerate orbital-energy differences. In the state-specific TDDFT approach,
problems due to degeneracy are avoided since the perturbation expression is only used to
select the reduced subspace (which will always contain all excitations within a degenerate
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set). Another approach that uses a reduced orbital product space in TDDFT calculations
on the basis of the spatial extent of the orbitals was proposed in Ref. [248].

3.3 Assessment of a simple correction for the charge-transfer
problem in time-dependent density-functional theory

3.3.1 Failure of TDDFT for charge-transfer excitations

The growing number of applications to large systems has not only shown the strengths,
but also the weaknesses of TDDFT [199, 222, 249]. One of the major concerns is the
complete failure of most approximate TDDFT schemes to deal with long-range charge-
transfer excitations. This is caused by the approximations made for the exchange–
correlation kernel fxc. Since fxc is usually approximated in a frequency-independent
and local form from an approximate exchange–correlation potential, i.e.,

fxc(r, r
′, ω) ≈ δvapprox

xc (r)

δρ(r′)
δ(r − r′), (3.54)

the coupling matrix elements Kia,jb vanish if the occupied and virtual orbital involved
in a certain orbital transition φi → φa are spatially separated.
In fact, Kia,jb will vanish for all occupied–virtual pairs (j, b) if the product φi(r)φa(r) is
zero for every r. This holds in particular for the adiabatic local density approximation
(ALDA), but also for all kernels derived from other non-hybrid functionals. As a
consequence, long-range charge transfer excitations form a subblock in the matrix Ω
that is simply given by the diagonal matrix

ΩCT
ia,jb = E2

ia,jb (3.55)

and the excitation energies are obtained as the orbital energy differences. For intramolec-
ular charge-transfer transitions, this result is independent of the separation between
donor and acceptor, as long as there is no differential overlap between φi(r) and φa(r).
This leads to a systematic underestimation of excitation energies ωCT of long-range
charge-transfer (CT) excitations, as has been discussed in detail before [250–255].
One way to correct charge-transfer excited states is to include HF exchange in the
XC-kernel, i.e., by applying hybrid functionals in the TDDFT calculation [252,256,257].
If the fraction of HF exchange is smaller than 100 %, only a partial correction is
achieved. Consequently, a hybrid approach was suggested, in which the potential energy
curve for a CT excited state is calculated from a CIS calculation, and is subsequently
vertically shifted to match a ∆SCF-DFT excitation energy at a large donor–acceptor
distance [252]. This approach has successfully been applied to xanthophyll–chlorophyll
dimers [258, 259] and complexes of zincbacteriochlorin and bacteriochlorin as well as
bacteriochlorophyll and spheroidene [260]. There are, however, two drawbacks of this
method: First, three different types of independent calculations are needed to get the
whole set of excitation energies, namely a ∆SCF-DFT calculation for the offset, a CIS
calculation for the CT states, and a TDDFT calculation for the remaining states. In
particular, the user has to select which states should be taken from the CIS calculation,
and which from the TDDFT calculation. Second, if applied rigorously, it would require
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to do one ∆SCF-DFT calculation for each CT state that shall be corrected. This
could be a problem, since the optimization of higher-energy CT states will not be
a trivial task, and might be impossible in many cases. Moreover, the inclusion of
exact exchange makes the calculations significantly more demanding for larger systems,
as no advantage can be taken of efficient density fitting techniques for the induced
potential [236]. This approach might therefore be well suited for cases where a particular
charge-transfer state is of interest in the calculation. If the interest is on the contrary
in a non-CT state which is hidden among a multitude of CT states, as occurs for
solvated chromophores (see Section 3.4), it will not be of much use, since the main
problem in those cases is to automatically detect the CT states. A promising class
of charge-transfer corrections are those that use a range-separated hybrid kernel, i.e.,
they partition the operator 1/|r − r′| in the exact-exchange kernel into a short-range
contribution, for which a local functional is used, and long-range contribution primarily
based on the exact-exchange expression [253,261]. These developments are based on the
corresponding functionals for ground-state calculations [262–266], and have already found
considerable applications [267–273]. Although this allows for an automatic correction
of CT excitations, it still has the disadvantage of requiring computationally expensive
exchange integrals.

In the following, a physically motivated correction to the exchange–correlation kernel is
presented, which has the property to selectively correct the CT excitation energies and
which does not require the calculation of any HF exchange integrals. The corrected
excitation energy depends on the quantity ∆A (sometimes called the derivative discon-
tinuity), which can, in principle, be calculated rigorously. Although this is certainly
necessary to arrive at a high accuracy for the charge-transfer excitation energies, it is
possible to find simple, transition-specific estimates for ∆A, which can automatically be
applied. The main benefit from this simple correction scheme is that low-lying valence
excitations are easily isolated from artificially low CT states in one single calculation at
low computational cost. The same effect can also be achieved by the TDDFT version of
the frozen-density embedding scheme [116,184], as will be demonstrated in Section 3.4.
However, the present exchange–correlation kernel has the advantage that couplings to
orbital transitions in the embedding region are fully incorporated.

In the following, the correction to the exchange–correlation kernel and details relevant
for its implementation are explained. Section 3.3.3 subsequently deals with the proper
choice of the quantities needed in the correction scheme for the simple test case of two
closed-shell atoms at varying distance, before we study intramolecular CT states in the
benchmark system of an ethylene–tetrafluoroethylene complex, where several CT states
are addressed simultaneously (Section 3.3.4). The usefulness of this simple correction
scheme is then demonstrated for a solvated acetone molecule in Section 3.3.5.

3.3.2 Correction for the exchange–correlation kernel

In Ref. [254], a correction for the exchange–correlation kernel was proposed which has
the correct asymptotic limit for CT excitations. An empirical switching function should
guarantee that only long-range CT excitations are corrected, which are characterized
by the fact that the differential overlap φi(r)φa(r) is close to zero. Furthermore, a
simpler approximation for the corrected coupling matrix elements was suggested, which
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also leads to the correct asymptotic limit,

Kia,jb = KALDA
ia,jb + δijδab exp[−(Oia/Oc)

2]

[

−KALDA
ia,ia + ∆A − 1

Ria
+

(∆A − 1/Ria)2

2(ǫa − ǫi)

]

,

(3.56)
where KALDA

ia,jb are the uncorrected coupling matrix elements within the adiabatic local
density approximation for fxc, Oia is the orbital density overlap,

Oia =

∫

φ2
i (r)φ2

a(r)d3r, (3.57)

which measures the magnitude of the differential overlap. Note that a few years after
the first description of this approach a very similar quantity, namely,

Õia =

∫

|φi(r)| · |φa(r)|d3r, (3.58)

was introduced in Ref. [273] as a diagnostic tool for CT excitations, although no attempt
was made to use it for a correction scheme. Oc in Eq. (3.57) is a small empirical
parameter to ensure that the the correction term (in square brackets) is only switched
on if the overlap integral Oia is small, and Ria is the “average distance” between the
orbital densities,

Ria =
√

X2
ia + Y 2

ia + Z2
ia (3.59)

with

Xia =

∫
[
φ2

i (r)− φ2
a(r)

]
xd3r, (3.60)

and the corresponding expressions for Yia and Zia. The quantity ∆A, which is the
correction applied to the excitation energies in the asymptotic limit of an infinite distance
between the electron donor and acceptor in the system, is defined as the difference
between the true CT excitation energy, ωCT, and the TDDFT result in the asymptotic
limit when employing the ALDA, ωALDA

CT , (it also holds for GGA exchange–correlation
kernels). For the lowest-energy CT transition at infinite distance, it is given by

∆A = ωCT − ωALDA
CT ≈ ID − AA − (ǫA − ǫD) = −AA − ǫA (3.61)

where ǫA and ǫD are the acceptor’s lowest unoccupied molecular orbital (LUMO) and
the donor’s HOMO energies, and ID and AA are the ionization energy of the donor
and the electron affinity of the acceptor, respectively [254]. The latter equality holds,
since ID = −ǫD, i.e., the orbital energies of the highest occupied orbitals in Kohn–Sham
theory are strictly equal to vertical ionization potentials [274,275]. For the same reason,
we can write the electron affinity of the acceptor as the negative orbital energy of the
HOMO of the negatively charged acceptor, ǫA− (in case of an initially neutral acceptor),
so that ∆A = −AA − ǫA = ǫA− − ǫA.
In Ref. [254] it was proposed to use ∆A ≈ −ǫA as a first approximation. Since the main
goal of this study is to apply the asymptotic correction scheme to systems with many
charge–transfer excitations hampering a study of intramolecular excitations, we will use
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the rather simplistic guess ∆A ≈ ∆a = −ǫa for transitions to arbitrary affinity levels ǫa
on the acceptor fragment. It is obvious that this simple guess can introduce problems
especially for higher-lying virtual orbitals, and it will be demonstrated in Section 3.3.3
that more advanced guesses can be found. In order to avoid unphysical corrections
for higher-lying virtual orbitals, the asymptotic correction to a certain excitation will
only be applied if ∆a − 1/Ria is a positive quantity. I.e., high-lying charge-transfer
excitations, which are usually out of the energy range of interest in our examples,
will not be corrected. Another consequence of this choice for ∆a is that the corrected
excitation energy in the asymptotic limit is given by

ωALDA+cor
CT,ia = ωALDA

CT,ia + ∆a = −ǫi, (3.62)

so that all CT excitations from a particular donor orbital will have the same excitation
energy at long distances.
As can be seen from Eq. (3.56), our correction scheme interpolates between the ALDA
version and the asymptotically correct version of the exchange–correlation kernel or,
to be more precise, the corresponding coupling matrix elements. This means that we
need to know the individual diagonal elements of the coupling matrix, KALDA

ia,ia , that
shall be corrected. As outlined in Section 3.2.3, these coupling matrix elements are not
directly calculated for efficiency reasons, and the summation in Eq. (3.47) is carried out
implicitly without calculating individual matrix elements Kia,jb. However, by combining
Eqs. (3.56) and (3.47) we see that the expression for the corrected matrix–vector products
still contains particular matrix elements KALDA

ia,ia ,

[pk,cor
out ]ia = [pk,ALDA

out ]ia + [pk
in]ia exp[−(Oia/Oc)

2]

×
[

−KALDA
ia,ia + ∆A − 1

Ria
+

(∆A − 1/Ria)2

2(ǫa − ǫi)

]

, (3.63)

Our correction, thus, puts the additional problem that not only the matrix–vector
products, but also the diagonal elements of the matrix K need to be calculated. A
number of facts can be exploited to reduce the computational effort for this task. The
matrix elements are directly evaluated in molecular orbital basis. In contrast to this,
the fitting of the induced density δρ̃k

in, Eq. (3.50), and the calculation of the matrix
elements of Eq. (3.48) is usually carried out in atomic orbital basis to make use of
linear scaling techniques [236,276]. A second point is that we only want to correct the
coupling matrix elements when KALDA

ia,ia is small due to the vanishing differential overlap.
In that case, also the orbital density overlap will be small. Therefore, we approximate
KALDA

ia,ia ≈ 0 if Oia < Oc/100. Note that Oc should be chosen in such a way that KALDA
ia,ia

is negligible if the correction is fully switched on. This is a basic assumption in the
phenomenological correction scheme applied here. Moreover, the correction will only be
applied if the expression

Tia = exp[−(Oia/Oc)
2]

[

∆A − 1

Ria

+
(∆A − 1/Ria)2

2(ǫa − ǫi)

]

(3.64)

is larger than a certain threshold (1.0E−6 a.u. per default); otherwise, the correction
will not be important anyway. By testing the magnitude of Oia and Tia, we can therefore
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reduce the number of explicitly needed diagonal K-matrix elements significantly. As a
further criterion, we might exploit the fact that mixings with high-energy transitions,
which are not optimized in the Davidson procedure, are typically negligibly small, so
that their diagonal K-matrix elements need not to be corrected.
A problem can occur in calculations for very large systems: Among the n initial guess
vectors for the subspace iteration, there might only be a very small number of non-CT-
transitions. Subsequent iterations will in those cases almost always produce excitations
which are lower in energy than the initial ones, since many of them are shifted by
the kernel correction. The reason for this is that the calculation starts with a very
bad guess for those excitations, since the initial vectors are good guesses for the lowest
n uncorrected excitations. Since there might be many excitations below the corrected
CT excitations which are described by the initial guess vectors, subsequently lower and
lower roots of the Ω matrix may be found. This will result in a rather poor convergence
for the lowest excitation energies. A solution is to determine the orbital transitions for
which guess vectors are created not on the basis of the orbital energy differences, but
to use a corrected guess energy,

∆Eguess
ia =

√
√
√
√(ǫa − ǫi)2 + exp[−(Oia/Oc)2]×

[

2(ǫa − ǫi)
(

∆A − 1

Ria

)

+

(

∆A − 1

Ria

)2
]

(3.65)
which is the correct excitation energy under the assumptions that (i) no off-diagonal
couplings exist for the orbital transition φi → φa, and that (ii) the diagonal elements
of the uncorrected coupling matrix, KALDA

ia,ia , are sufficiently small when the correction
term is significant. Eq. (3.65) should provide a reasonable estimate for the excitation
energies of both CT and non-CT-transitions. For the latter, Eq. (3.65) will reduce to
the normal excitation energy guess, ∆Eguess

ia = ǫa−ǫi. This guess energy should not only
be used to determine which orbital transitions will be the lowest in energy, but also to
set up the preconditioner in the Davidson procedure [234,235]. In the long-range limit,
where Oia ≈ 0, Eq. (3.65) results in the following guess for CT excitation energies,

∆ECT
ia =

√

(ǫa − ǫi)2 + 2(ǫa − ǫi)
(

∆A − 1

Ria

)

+

(

∆A − 1

Ria

)2

(3.66)

= ǫa − ǫi + ∆A − 1

Ria
. (3.67)

If the differential overlap between the orbitals involved is vanishingly small, this guess
energy will be identical to the optimized excitation energy, since the couplings to other
orbital transitions will be small. This suggests that — based on the quantities Oia

— one might arrive at an even simpler scheme (not used here), in which the space
of orbital transitions is restricted to those for which Oia is above a certain threshold.
If it is smaller, the guess energies will be sufficiently close to the optimized excitation
energies, and the corresponding orbital transitions can be considered to build isolated
blocks of the Ω matrix.
To illustrate this further, assume that the distance between the fragments is sufficiently
large. The (uncorrected) coupling matrix will then have the structure depicted in
Figure 3.1. All elements for occupied–virtual orbital pairs located on different fragments
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Figure 3.1: Schematic representation of the (uncorrected) coupling matrix K for a system
consisting of two fragments with a large separation. Left: full coupling matrix in the basis
of all occupied(o1/o2)–virtual(v1/v2) orbital pairs for fragments 1 and 2. Right: coupling
matrix after removal of the orbital pairs corresponding to CT excitations. The white areas
correspond to matrix elements that will be (close to) zero due to a zero differential overlap.

reduced set of occ.−virt. pairs

o1,v1

o1,v2

o2,v1

o2,v2

remove CT transitions

full set of occ.−virt. pairs

will be zero. With that knowledge (based on Oia), we might remove all orbital pairs
corresponding to CT transitions to get to the reduced set of occupied–virtual orbital
pairs. The correction for the CT excitations can be applied directly to the orbital energy
differences. This will reduce the CPU and memory requirements for calculating the
matrix–vector products in the subspace iteration procedure. For intermediate distances,
some of the CT-like orbital pairs might still be included in the basis for the Davidson
diagonalization.

The calculations presented in the following are carried out using a modified version
of the program package Adf [277, 278], in which the the asymptotic correction to the
coupling matrix, Eq. (3.56), was implemented.

3.3.3 Test system: He· · ·Be

As a simple test, we use the He· · ·Be system, for which an initial study was already
presented in Ref. [254].

In Figure 3.2 we show the excitation energies for the 1s(He)→ 2pπ(Be) transition of the
He· · ·Be system as a function of the internuclear distance, obtained with SAOP/TZ2P
calculations and different estimates for the quantity ∆A. Based on some initial tests,
the switching parameter Oc was set to 0.0001 a.u. in these calculations. Additionally,
the CISD reference values from Ref. [254] are plotted. As mentioned before, we use
∆a ≈ −ǫa as first approximation for the kernel correction ∆A. For the excitation under
study here, this means that in the asymptotic limit the excitations will be shifted by
−ǫ2pπ(Be) = 4.52 eV as calculated with SAOP/TZ2P.
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Figure 3.2: Excitation energies for the system He· · ·Be as a function of the internuclear
distance R from SAOP/TZ2P calculations; fcorr: fxc corrected according to Eq. (3.56). CISD
data from Ref. [254] are given for comparison.
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Already with this simple correction, we observe a qualitatively correct Coulombic be-
havior in the asymptotic limit, although the difference with respect to the CISD curve
is still in the order of 4.5 eV at distances larger than 4 Å. The asymptotically corrected
excitation energies presented in Ref. [254] showed a much better agreement with the
CISD values, which has two reasons: First, a more sophisticated guess was used for
the asymptotic shift, ∆a = ∆Be ≈ 0.23 eV −ǫacc2pπ(Be) = 6.18 eV. Here, ǫacc2pπ(Be) = −5.95
eV is the orbital energy from an accurate KS solution for the Be atom. The electron
affinity ABe = −0.23 eV is taken from Ref. [279]. As can be seen from Figure 3.2, this
corrects the former results towards the CISD reference, but there are still differences
of ≈ 3 eV for long distances. Second, the curve in Ref. [254] was corrected for the
fact that — with the particular Kohn–Sham potential used — already the zero-order
approximation (the orbital energy difference ǫ2pπ(Be)−ǫ1s(He)) is too small for the system
under study. Instead of the SAOP/TZ2P result for this difference in the long-range
limit (16.08 eV), the “ideal” orbital energy difference was estimated from the ionization
energy of He and the value of ǫacc2pπ(Be), which results to 18.64 eV. The fourth curve in

Fig. 3.2 was therefore obtained by applying a vertical shift of 2.56 eV (which is the
difference between these zero-order guesses) to the results obtained with SAOP/TZ2P
and ∆a = 6.18 eV in the correction to the exchange–correlation kernel. This curve
closely follows the CISD data, not only in the asymptotic limit, but also close to the
minimum excitation energy.
It should be emphasized that the latter correction is necessary only because of the
shortcomings of the exchange–correlation potential for the current system, and not due
to deficiencies of the correction scheme for the exchange–correlation kernel.

3.3.4 Simultaneous correction of several states

A second benchmark system for the problem of charge-transfer excitations in TDDFT is
the complex of ethylene and tetrafluoroethylene. It was shown in Ref. [252] that typical
exchange–correlation potentials, even asymptotically correct ones, show a large error
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for the low-lying charge–transfer states of this system. A partial correction could be
observed for hybrid functionals, but the correct asymptotic behavior was only recovered
when including the full Hartree–Fock exchange in the exchange–correlation kernel, i.e.,
in a CIS calculation. Isosurface plots of some of the most important orbitals around
the HOMO–LUMO gap are depicted in Figure 3.3.

Figure 3.3: Isosurface plots of orbitals around the HOMO–LUMO gap involved in some of
the low-lying CT excitations of the ethylene−tetrafluoroethylene complex (ascending orbital
energies from left to right).

9b1 10b1 7b212a111a1

HOMO LUMO

In Figures 3.4 and 3.5 we show the excited-state potential energy curves for irreducible
representations (irreps) A1 and B1 of the C2v complex along the intermolecular separation
coordinate calculated using SAOP/TZP with and without the kernel correction. There
are no low-lying (below 8.5 eV) states in irrep A2, and the excitations in irrep B2 are
not given here, since no particular additional information about the performance of the
correction scheme is contained in that figure. In contrast to the He−Be system, where
the pure excitation energies were shown (for comparability to the CISD reference), we
show here the usual energy curves by adding to the excitation energies in this case the
change in ground-state energies along the distance coordinate. The ground-state energy
for a separation of 10 Å was set to zero.

Figure 3.4 contains the lowest adiabatic potential energy curves for irrep A1 and will
be discussed in some more detail, since there are less states in the interesting energy
region than for the other irreps. In the diagram showing the uncorrected curves, all
potential energy curves are very flat and show only very small variations with increasing
distance. While this is expected for the intramolecular valence transitions, 11a1 → 13a1

(tetrafluoroethylene) and 12a1 → 14a1 (ethylene), the intermolecular charge-transfer
excitations, 11a1 → 14a1 (tetrafluoroethylene → ethylene) and 12a1 → 13a1 (ethylene
→ tetrafluoroethylene) are also almost independent of the distance.
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Figure 3.4: Adiabatic excited-state potential energy curves (solid lines) for irrep A1 of the
ethylene–tetrafluoroethylene complex (SAOP/TZP; zero-point: ground-state energy at 10 Å).
Left: no kernel correction; right: kernel correction applied. Labels correspond to the character
of the excitation at a distance of 10 Å; the character of the excitations may change due to
avoided crossings. In the lower diagram, also a pure −1/R-like curve for the 12a1 → 13a1

state (dotted line; shifted by +0.05 eV for clarity of presentation) as well as “intuitive”
diabatic states are shown, connecting data points of states with similar character (dashed
lines; shifted by −0.05 eV for clarity of presentation).
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Figure 3.5: Adiabatic excited-state potential energy curves for irrep B1 of the ethylene–
tetrafluoroethylene complex (SAOP/TZP; zero-point: ground-state energy at 10 Å). Left: no
kernel correction; right: kernel correction applied. Labels correspond to the character of the
excitation at a distance of 10 Å; the character of the excitations may change due to avoided
crossings.
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In the second diagram in Figure 3.4 it can be seen that the corrected curves agree with
the uncorrected results up to a distance of ≈ 5 Å. Between 5 and 6 Å, however, the
correction is switched on and pushes the charge-transfer excitations to higher energies,
so that avoided crossings occur. To guide the eye through these avoided crossings,
we also draw “intuitive” diabatic potential energy curves, connecting data points of
states with similar character (dashed lines). From these lines it becomes apparent that
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the valence transitions remain at low energies, while the charge-transfer excitations are
selectively increased in energy. Although the position of the avoided crossings depends
on the choice of our switching parameter Oc, it is obvious that the long-range behavior
of the excited-state energies properly has Coulomb shape, as is demonstrated by the
additional −1/R-like curve depicted in that figure.

When comparing to the results obtained with the TDDFT-CIS hybrid approach in
Ref. [252], it becomes apparent that the corrected CT state shown in that work basically
has a −1/R-like behavior over the full R-range between 4 and 10 Å. In our case, the
CT-like states show many avoided crossings and interactions with other states, so that
the Coulombic shape of the excited-state potential energy curve, even in the “intuitive”
diabatic picture, gets lost at short distances. In order to assess whether our correction
scheme leads to unphysical results at short distances, we carried out coupled-cluster
calculations for the singlet excitations of A1 symmetry using the CC2 model [204,280]
and Ahlrichs’ basis set of valence triple-ζ quality with one set of polarization functions
(TZVP) [281,282]. The (linear response) CC2 calculations for ground and excited states
were carried out using the program package Dalton [283]. The 8 lowest-energy orbitals,
i.e., the 1s orbitals of carbon and fluorine atoms, were kept frozen in the coupled cluster
calculations.

The resulting potential energy curves are shown in Figure 3.6. It can be seen that
the CC2 excitation energies are, in general, larger than the DFT excitation energies.
However, it should be mentioned that initial tests with basis sets of double-ζ quality
indicated that the CC2 excitation energies are rather sensitive to the quality of the
basis set used, where larger basis sets lead to a decrease in excitation energies. Since
the aim of this calculation is only to provide a basis for qualitative comparison, and
since the memory requirements for larger calculations are quite demanding, we refrain
from using even larger basis sets for these coupled-cluster calculations. Figure 3.6 also
contains an “intuitive” diabatic curve, connecting data points with the same character
as the lowest CT state (identified by its Coulombic shape in the long-range limit) as
well as a −1/R-like curve. It can be seen that also these ab initio calculations predict
strong deviations from the Coulombic behavior at short and medium distances (up to
≈ 5 Å). At short distances, the character of the CT state spreads over the lowest three
excitations, demonstrating that interactions between different excited states play a role.
Similar to the results obtained with our correction scheme, the CT state is of lower
energy than the −1/R-like curve for intermediate distances (4 to 6 Å). The TDDFT
results with the default switching function show this deviation from the Coulombic curve
at somewhat larger distances (6 to 7 Å), which suggests that the correction sets in at
too low orbital density overlaps. Indeed, a better switching function might be obtained
by fitting to such ab initio reference calculations. For this work, we restrict ourselves
to the default parameterization, which ensures that the asymptotic correction to the
exchange–correlation kernel is applied in a “safe” manner, i.e., it is only switched on if
the transition under consideration is, without any doubt, of charge-transfer type.

Similar observations as found for the A1 states can be made for the other two irre-
ducible representations shown: In irrep B1, only 3 out of the lowest 7 excitations are
of intramolecular valence type for large separations (11a1 → 11b1, 12a1 → 10b1, and
11a1 → 9b1), while all other excitations are pushed to energies > 9 eV, including the
three lowest excitations in the uncorrected case (note that no “diabatic” representations
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Figure 3.6: Adiabatic excited-state potential energy curves (solid lines) for irrep A1 of the
ethylene–tetrafluoroethylene complex (CC2/TZVP; zero-point: ground-state energy at 10 Å).
We also show a pure −1/R-like curve for the CT state (dotted line; shifted by +0.05 eV
for clarity of presentation) as well as the “intuitive” diabatic potential energy curve for the
lowest CT-like transition (dashed lines; shifted by −0.05 eV for clarity of presentation). For
short distances, the character of this excitation spreads over the three lowest excitations in
this irrep (indicated by additional dashed lines).
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are given in this case for clarity of presentation). Note that the 10a1 → 10b1 excitation
is not a CT excitation. It is only included in the diagram since it is among the lowest
eight excitations at long distances (but not at short distances due to avoided crossings).

The correction is typically switched on in an intermediate region of 4 to 6 Å, depending
on the exact nature of the transition. For larger distances, the asymptotic correction fully
replaces the ALDA kernel for long-range CT excitations, so that characteristic Coulombic
potential energy curves are obtained, while the energies of the intramolecular valence
excitations are not affected and are independent of the intermolecular separation. In
both irreps discussed above, a multitude of avoided crossings occurs due to that fact
that the CT-like excitations have low excitation energies at short distances, where the
correction function is not applied due to the larger orbital density overlap. Although it is
clearly necessary to find more suitable guesses for ∆a to determine the excitation energies
for the long-range CT states quantitatively, already the simple guess applied here is
useful to separate the lowest valence excitations from the artificially low charge-transfer
excitations. The latter are selectively and automatically shifted to higher energies, and
the shapes of the potential energy curves have the correct behavior. This is an important
prerequisite for a practically applicable charge-transfer correction.

A problem can be recognized in Figure 3.5: The lowest two curves in irrep B1 correspond
to the 11a1 → 10b1 and 12a1 → 9b1 transitions in the long-range limit. When the
correction is applied, these transitions remain uncorrected up to a distance of 6 Å. The
reason for this rather strange-looking behavior is that there is a substantial delocalization
of the virtual orbitals between the different subsystems for intermediate distances. The
π∗ orbitals of ethylene and tetrafluoroethylene mix at intermediate distances (around 5
Å), so that the molecular orbitals extend over both fragments, and the orbital-density
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overlap is not small enough to switch on the correction. It should be noted that this
is not primarily a parameterization problem, since the orbital overlap is comparable to
other orbital pairs localized on one of the fragments only, so that the physical conditions
for fully applying the asymptotic correction are clearly not valid in this example. A
possible way to correct for such problems could be an intermediate localization step, in
particular in cases of purely symmetry-driven delocalization. It has recently been shown
that TDDFT methods fail for these systems even if no net charge transfer occurs in
the delocalized picture [284–286].

Figure 3.7: Excitation energies obtained for different numbers of optimized states in irrep B1

of the ethylene–tetrafluoroethylene complex. Left: default guess (orbital energy differences)
used to construct guesses for the lowest excitations; right: corrected guess, Eq. (3.65), applied.
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If we are interested in the lowest valence transitions only, there is another point to
take care of: The computational cost increases with the number of excitations to be
determined, so that we usually want to keep the number of states small. On the other
hand, that increases the chance of missing a low-lying state, especially if the guess for
this excitation is bad. In particular in cases of symmetric molecules, there might only
be a few excited states optimized per irrep, so that in each irrep there is a danger
of missing important low-lying excitations. The construction of the guess vectors is
usually based on the zero-order guess for the excitation energies, i.e., the orbital energy
differences between occupied and unoccupied orbitals. For the excitations in irrep B1 at
an intermolecular distance of 10 Å, this is demonstrated in Figure 3.7. Shown are the
excitation energies obtained when calculating 1, 3, or 6 excited states in that irrep, either
with the default zero-order guess, or with the corrected guess according to Eq. (3.65).
With the normal orbital energy difference guess, we get the 12a1 → 9b1 excitation if
only one root is requested, since this is the excitation with the lowest orbital energy
difference (5.58 eV). However, the asymptotic correction shifts this excitation to 9.49
eV due to its CT nature. With the corrected guess energy, we obtain a much lower B1

excitation at 7.85 eV, which is the 12a1 → 10b1 transition. Also this is not the lowest
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excitation, a problem that can occur in subspace iteration methods for the highest
among the optimized roots. But the problem is much more severe when using the
wrong guess. Only when the lowest six excitations in this irrep are calculated, we get
the same excitations with both types of guesses.

3.3.5 Application to solvated acetone

The main goal of this section is to investigate the utility of the kernel correction scheme
for solvated molecules. In such systems, many spuriously low charge-transfer excitations
can occur, so that even a qualitative correction can be of great value if it can selectively
correct CT states. As an example, we study acetone surrounded by several water
molecules. The test system, which consists of one acetone and 20 water molecules,
is depicted in Figure 3.8. It is a finite substructure of a snapshot from the CPMD
simulation which forms the basis for the study of the frozen-density embedding TDDFT
approach for solvation phenomena in Section 3.4.

19 spuriously low excitations could be found for this system below the first valence
(n → π∗) transition of acetone, many of which are transitions from the water-oxygen
lone-pairs to the π∗ orbital of the carbonyl group. Table 3.1 contains the excitation
energies for all excitations up to the one which is identified as the n → π∗ valence
excitation of acetone according to the transition density overlap criterion defined in
Ref. [116]. A characterization of the molecular orbitals involved is given in Table 3.2.
In case of the conventional TDDFT calculation, there are many low-lying excitations of
charge-transfer type. In particular, transitions from Owater lone pairs to the acetone π∗

(e.g., no. 4, 5, or 10) and transitions from Owater lone pairs to a Rydberg-type orbital
involving hydrogen atoms on a different water fragment (e.g., no. 1, 2, or 3) can be
recognized. All of these transitions are shifted upwards when applying the asymptotic
correction. The only exception is excitation number 16, a transition from an Owater

lone pair to a Hwater Rydberg-type orbital on a neighboring water molecule. Since this
Rydberg-type orbital is quite diffuse, the orbital density overlap is still 5 times larger
than the parameter Oc, and no significant correction is applied to this transition.

The identification of acetone valence transitions is less easy, since there is no molecular
orbital of the cluster that can clearly be identified with the Oacetone lone pairs. Instead,
these lone pairs mix with Owater lone pairs to form the orbitals 110a to 113a, where
orbitals 111a and 113a have the largest contribution from the Oacetone lone pairs. One of
these orbitals (111a), which are delocalized into the solvent region, is shown in Figure 3.8.
Transitions from all these four orbitals with partial Oacetone lone pair character to the
acetone π∗ (118a) orbital are basically unaffected by the asymptotic correction with the
default switching parameter.

Using the transition density overlap criterion defined in Ref. [116], we find that the
excitation at 4.71 eV has the largest overlap with the n→ π∗ excitation of the isolated
acetone molecule. This is in quite close agreement with the frozen-density embedding
calculation on this cluster (see Section 3.4), which resulted in a n → π∗ excitation
energy for acetone of 4.78 eV. By construction, no long-range charge-transfer problem
can occur in these frozen-density embedding calculations.
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Table 3.1: Excitation energies (SAOP/TZP/DZ; in units of eV) of the lowest transitions
of the acetone–water cluster shown in Figure 3.8 from a conventional TDDFT calculation
(“conv.”) and calculations with the asymptotic correction. In the latter case, we either used
the default switching parameter Oc = 0.0001, or a larger value of Oc = 0.0005. Also given are
the oscillator strengths (in a.u.) from the conventional calculation and the dominant orbital
contributions; the orbitals are characterized in Table 3.2.

n orbitals f conv. Oc = 0.0001 Oc = 0.0005
1 116a→ 117a 0.00003 3.4344
2 115a→ 117a 0.00002 3.5271
3 114a→ 117a 0.00012 3.8155
4 116a→ 118a 0.00034 3.8657
5 115a→ 118a 0.00094 3.9600
6 113a→ 117a 0.00116 3.9747
7 112a→ 117a 0.00025 3.9873
8 111a→ 117a 0.00059 4.1768
9 110a→ 117a 0.00020 4.2072

10 114a→ 118a 0.00040 4.2471
11 109a→ 117a 0.00011 4.3690
12 112a→ 118a 0.00105 4.4218 4.4218 4.7863
13 116a→ 119a 0.00012 4.4366
14 115a→ 119a 0.00125 4.5343
15 113a→ 118a 0.01066 4.5417 4.5414 4.5167
16 108a→ 117a 0.00698 4.5980 4.5981
17 107a→ 117a 0.00203 4.6313
18 110a→ 118a 0.00034 4.6325 4.6329
19 116a→ 120a 0.00016 4.6668
20 111a→ 118a 0.00422 4.7112 4.7106 4.6875

Table 3.2: Characterization of the orbitals (SAOP/TZP/DZ) of the acetone–water cluster
shown in Figure 3.8.

orbitals description occ./virt.
107a . . . 109a Owater lone pairs occ.
110a . . . 113a Oacetone lone pairs + Owater lone pairs occ.
114a . . . 116a Owater lone pairs occ.
117a Hwater Rydberg virt.
118a acetone π∗ virt.
119a, 120a Hwater Rydberg virt.
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Figure 3.8: Structure of the acetone–water cluster and isosurface plot of one of the orbitals
with partial Oacetone lone pair character (111a).

In order to study the influence of the switching parameter, which was determined for the
He· · ·Be system, on such excitations with mixed character, we increased Oc to 0.0005
in a second calculation. The effect is that the CT excitation to the Rydberg-type
orbital is shifted out of this energy range, and also transitions no. 12 and 18 are shifted
considerably, since the occupied orbitals for these transitions have only a small orbital
density overlap with the acetone π∗ orbital. However, the overlap is larger for orbital
112a, and the corresponding correction is smaller, so that transition 12 is still close
in energy to the other two orbital transitions with partial n → π∗ valence excitation
character. No significant corrections result for the orbital transitions 113a→ 118a and
111a→ 118a, but their excitation energies still change a bit because of couplings with
each other and with the 112a→ 118a transition.

Simulated spectra resulting from the uncorrected calculation as well as from the two
calculations with different switching parameters for the asymptotic correction are shown
in Figure 3.9. The spectra are represented with a Gaussian broadening of half-width 0.50
eV (dotted curves) and 0.05 eV (solid curves). The former broadening is often applied
to achieve a better comparability with structureless experimental spectra, especially in
solution, while the latter allows to distinguish the different contributing excitations.
Two important conclusions can be drawn from this picture. First, the default switching
parameter does not affect the oscillator strengths of the transitions with the highest
intensities in this energy range very much (all transitions have rather low oscillator
strengths on an absolute scale), although most of the low-lying transitions are shifted
away. If the switching parameter is increased, also excitations with relatively high
intensities are shifted away, and the intensity pattern of the individual transitions
changes significantly. Also the total intensity decreases. However, in all three cases
the maximum of the “broad” curve, i.e., the one with a half-width of 0.50 eV applied
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to each transition, is relatively stable at 4.67 ± 0.03 eV. The default parameter of
Oc = 0.0001 a.u. is thus a safe choice which will not lead to the correction of excitations
that cannot unambiguously be identified as charge-transfer transitions.

Figure 3.9: Spectra (SAOP/TZP/DZ) of the acetone·20 H2O cluster shown in Figure 3.8
from a conventional TDDFT calculation (“no correction”) as well as from two calculations
using the asymptotic correction to the coupling matrix with different values of the switching
parameter Oc. The spectra are modeled by applying a Gaussian broadening of 0.50 eV
(dotted lines) and 0.05 eV (solid lines). For the spectra with a halfwidth of 0.50 eV, also
the positions of the maxima are indicated.
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The present correction scheme is computationally simple and can be applied to rather
large systems. In particular, calculations for molecules in solution will benefit from
this correction, which automatically distinguishes between CT and non-CT transitions
on the basis of the orbital density overlap. The example for acetone surrounded by
water demonstrates that the resulting spectrum is only moderately affected by applying
the asymptotic correction, while it is cleaned from many unphysically low excitations.
The default choice of the parameter Oc and the switching function used in this study
correspond to a “safe” type of correction, since excitations are only corrected if they are
definitely of CT type. In doubtful cases, e.g., involving transitions to delocalized virtual
orbitals, the conventional ALDA-TDDFT results are obtained, so that the correction
scheme never makes the results accidentally worse than before.

The possibility to identify CT excitations according to the orbital density overlap of
the occupied and virtual orbitals involved also opens up the way to an even simpler
computational scheme, in which the corresponding orbital pairs are removed from the
basis in which the matrix Ω is diagonalized, as was already mentioned in Section 3.3.2.
Since all couplings with other orbital transitions disappear due to the zero differential
overlap, their excitation energies can be calculated directly from the orbital energy
differences and the simple diagonal correction applied here.
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3.4 Frozen-density embedding response theory for solvatochro-
mic effects

3.4.1 Models for solvent effects on excitation energies

Solvatochromism denotes the shift of absorption or emission bands of solutes in solvents
of different polarity [287–289]. These shifts are caused by a different stabilization
of ground and excited state by the solvent within the Franck–Condon region, i.e.,
without a re-orientation of the solvent molecules upon absorption or emission. In
recent time, several attempts have been made to model the solvatochromic shifts of
simple compounds like acetone [290,291], triazines or tetrazines [292–294], solvatochromic
organic dyes [295–297], or transition metal compounds [298–301] with different explicit
or implicit models for the solvent.

While implicit models, i.e., continuum solvation models, are quite successful to describe
non-specific effects, like dielectric medium effects [302–304], explicit models are needed
for describing specific solvent effects, e.g., hydrogen bonding. An efficient example for
explicit models are quantum mechanics/molecular mechanics (QM/MM) Car–Parrinello
molecular dynamics (CPMD) schemes [305] in combination with TDDFT or restricted
open-shell Kohn–Sham (ROKS) calculations as presented in Refs. [291, 297]. A fully
quantum mechanical treatment of the solvent is in principle possible using CPMD3, with
a subsequent TDDFT calculation of excitation energies for snapshots of the simulation,
as has been demonstrated for s-tetrazine [292] or acetone [256,257]. In these calculations,
however, the problem of spurious or artificially too low charge-transfer excitations at
low energies within TDDFT makes it cumbersome to determine the actual excitations
of interest [292], although at least the problem of solute → solvent excitations could
be partially removed by including Hartree–Fock exchange in the exchange–correlation
potential [257,306]. The general problem and a simple correction scheme were presented
in Section 3.3. As will be explicitly demonstrated in this section, the problem becomes
the more severe the more solvent molecules are involved, making supermolecular TDDFT
calculations practically impossible. Even in those cases where supermolecule calculations
are still feasible, it may be very difficult to extract the properties of the solvated
molecule [307].

The orbital-free embedding formalism [111] outlined in Section 2.6, and its time-
dependent response generalization [308] can be of great value in this context: No (or
only a few) solvent molecules are explicitly considered in terms of their orbitals, so that
no (or only a few) spuriously low excitations occur. Still, the full effect of the solvent
molecules’ density on the potential is included. Therefore, FDE offers the possibility
to describe both specific solvent effects, since the structure of the solvent is explicitly
modeled, and general, non-specific solvent effects since its efficiency allows to include a
large number of solvent molecules. Its ability to model hydrogen-bonding induced shifts
of excitation energies has recently been demonstrated for nucleic acid base pairs [309].
An alternative method is used in Ref. [248,310], which explicitly takes the full system
into account during the SCF steps, but restricts the orbital space in the TDDFT step to
those orbitals important for the solute. Our method uses the frozen density embedding

3Strictly speaking, the dynamics in this scheme is still classical, although no classical force-field
potentials are applied.
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during the SCF procedure, enabling very large environments to be treated, see below.
We would like to note that also the TDDFT extension of the fragment molecular or-
bital method [311,312] can be regarded as a related approach, in which, however, more
pragmatic capping strategies are applied for the description of the fragment–fragment
interactions than in the FDE scheme (see also Section 2.1).
The aim of this section is to elucidate the advantages and disadvantages of replacing the
explicit treatment of solvent molecules in supermolecule calculations by the frozen density
approach in FDE, and to develop practical schemes to efficiently model solvatochromic
shifts by performing TDDFT calculations for systems with many solvent molecules for
many configurations. As an example, the solvent shift of the n → π∗ excitation of
acetone in water was chosen, since it represents a benchmark for methods to model
solvatochromic shifts. Many experimental [313–317] and theoretical studies [257,290,291]
for this system have been carried out, so that reliable reference data are available. This
solvent shift has been calculated in Ref. [290] using dielectric continuum models and
explicit, polarizable molecular solvent models in a QM/MM scheme. In that work, a
solvent shift of +0.23 ± 0.04 eV in water was calculated using the latter, while the
continuum models led to much worse results. The experimental shift is between 0.19
and 0.21 eV [313–317]. A recent QM/MM simulation [291] using the restricted open-
shell Kohn–Sham approach for the QM part led to a solvent shift of +0.25 eV in water.
An entirely quantum mechanical CPMD simulation [257] with a small periodic box of
one acetone molecule and 14 water molecules resulted in an approximate solvent shift
of 0.206 eV.

3.4.2 Frozen-density embedding for excited states

The ground-state version of the FDE method is described in detail in Section 2.6.
Here, we just repeat the explicit form of the embedding potential for the particular
case of a partitioning into two subsystems, i.e., ρ(r) = ρ1(r) + ρ2(r). In Eq. (2.75) of
Section 2.6.2, the expression for the embedding potential was obtained as

vemb[ρ1, ρ2](r) =
∑

A2

− ZA2

|r −RA2
| +

∫
ρ2(r′)

|r′ − r|d
3r′

+
δExc [ρ]

δρ(r)
− δExc [ρ1]

δρ1(r)
+
δTs[ρ]

δρ(r)
− δTs[ρ1]

δρ1(r)
. (3.68)

The time-dependent response formulation of the FDE scheme was given in Ref. [308]
in terms of an effective environmental response function. For practical applications
involving large environments, the calculation of this response function is neither feasible
nor desired. Consequently, a simplification of this expression for local excited states
within the active subsystem was proposed in the supplementary material to Ref. [309],
which is available in Adf. Basically, the induced potential needed in the linear response
TDDFT formalism, see Eq. (3.30), is now evaluated for the active subsystem, so that
the change in the potential for system 1 is approximated as

δvind
1 (r) ≈

∫

d3r′
δvsub

eff [ρ1, ρ2](r)

δρ1(r′)
δρ1(r

′) =

∫

d3r′f 1
xck(r, r′)δρ1(r′). (3.69)
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This means that the FDE-TDDFT linear response calculations can just be carried
out by using the orbitals and eigenvalues from the ground-state FDE calculation and
replacing the exchange–correlation kernel fxc for the active system 1 by an effective
kernel f 1

xck, which now also contains a kinetic-energy component. A test of the relative
magnitude of the two effects (i.e., orbital embedding and additional kernel contribution)
can be found in Ref. [185]. Also the kinetic-energy component of the kernel is, just like
the exchange–correlation component, approximated on the basis of the corresponding
ground-state functional,

f 1
xck(r, r′) =

δExc[ρ]

δρ(r)δρ(r′)
− δExc[ρ1]

δρ1(r)δρ1(r′)
+

δTs[ρ]

δρ(r)δρ(r′)
− δTs[ρ1]

δρ1(r)δρ1(r′)
. (3.70)

For consistency with the ALDA approach applied in Adf, the kinetic-energy component
of this response kernel is calculated with the Thomas–Fermi expression for Ts[ρ].
Below, we will compare the TDDFT-FDE calculations of the excitation energies of a
solute molecule employing the frozen density representation of the solvent environment
to supermolecule calculations.

3.4.3 Construction of the frozen environment density

Since a realistic modeling of solvent effects requires that a large number of surround-
ing water molecules is taken into account, we wish to perform the calculation of the
frozen environment density as simply as possible. For this purpose, we tested different
construction methods for the solvent density for two different systems. The first test
system is an energy-minimized cluster of acetone with two water molecules, while the
second is a much larger cluster of acetone with 52 water molecules, which was obtained
as an arbitrary snapshot from a classical MD simulation. Note that in the following all
water molecules are included in the frozen environment system, if not explicitly stated
otherwise, in order to establish well-defined conditions for the calculation.
For both systems we employed different constructions of the solvent electron density.
A fully consistent calculation would require to use the SAOP potential, which we use
to calculate the vertical excitation energies of the embedded molecule, also for the
construction of the solvent density. For comparison, we also tested the much simpler
local density approximation in this preparation step. As a further parameter, we tested
different values for the SCF convergence parameter sconv in the construction of the
frozen density. In our study, convergence is considered reached if the maximum element
of the commutator of the Fock matrix with the density matrix used to construct this
Fock matrix falls below sconv and the norm of the matrix below 10 × s. Besides the
default value of sconv = 1E−6, we also tested larger values of up to sconv = 0.5 for
both systems. We note that an ”exact” FDE calculation, including for instance basis
functions in the full environment system to describe any change of ρ2 towards ρ in this
region, ought to correct automatically for differences in the frozen ρ2 density. Since
our FDE calculations are not exact, the different construction methods imply slightly
different approximations, the effect of which we are testing in Table 3.3.
Excitation energies are given in Table 3.3 for two valence excitations of acetone, the
experimentally known n→ π∗ excitation and a σ → π∗ excitation with very low oscillator
strength, which is not known from experiment. The latter is included because it shows
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a large shift in the calculations, and is therefore instructive for the comparison of Kohn–
Sham supermolecule and the frozen density embedding calculations in Section 3.4.4.

Table 3.3: Excitation energies (SAOP/TZP; in units of eV) of the n→ π∗ and σ → π∗ valence
excitations of acetone in water using the QM/QM embedding scheme for clusters with 2 water
molecules (optimized structure) or 52 water molecules (structure from arbitrary snapshot of
a CPMD simulation). (N.B.: Due to the different structures, the 2 H2O and 52 H2O results
are not comparable.) For the preparation of the frozen densities, either SAOP/TZP and
LDA/TZP (2 water molecules) or SAOP/DZ and LDA/DZ (52 water molecules) were applied
in combination with different SCF convergence parameters sconv (see text for explanation).
Additionally, approximate densities from superpositions of molecular fragments (“mol. frags.”),
either taking the sum of the fragment densities (“sumf.”), or the density obtained after one
diagonalization of the Fock matrix based on these fragment densities (“diag.”) are employed.

2 H2O 52 H2O
sconv SAOP LDA SAOP LDA

n→ π∗ 1.0E−6 4.7841 4.7873 4.8263 4.8215
1.0E−3 4.7841 4.7873 4.8263 4.8215
1.0E−1 4.7841 4.7870 4.8274 4.8222
2.0E−1 4.7841 4.7878 4.8274 4.8222
5.0E−1 4.7739 4.7705 4.8300 4.8227
mol. frags. (sumf.) — 4.7943 — 4.8171
mol. frags. (diag.) — 4.7837 — 4.8249

σ → π∗ 1.0E−6 7.2819 7.2906 7.2118 7.2196
1.0E−3 7.2819 7.2907 7.2118 7.2196
1.0E−1 7.2815 7.2909 7.2082 7.2174
2.0E−1 7.2815 7.2904 7.2082 7.2174
5.0E−1 7.2948 7.3157 7.2029 7.2182
mol. frags. (sumf.) — 7.2822 — 7.2363
mol. frags. (diag.) — 7.2944 — 7.2141

The results of Table 3.3 show that differences between SAOP and LDA densities for
the environment are almost negligible: They are between 0.003 to 0.005 eV for a given
SCF convergence parameter. Furthermore, it can be seen that even the lowest tested
convergence parameter still leads to acceptable results in the FDE–TDDFT calculation.
For the determination of the solvent shifts of acetone presented in Section 3.4.5, and the
study of the effect of the number of water molecules on the spectrum in Section 3.4.4 we
chose a parameter of sconv = 0.1, which resulted in deviations not larger than 0.007 eV
for all our tests. This is much smaller than the expected solvent shift. The calculated
oscillator strengths are in similarly good agreement.
In another test (“mol. frags.” in Table 3.3) we used the density obtained from a
superposition of densities of individual solvent molecules as a guess for the density
of the full system of solvent molecules. First, for each solvent molecule (which all
may have different O−H bond lengths and H−O−H angles) an SCF calculation is
performed to obtain the density. Taking just the sum of these fragment densities as



3.4. Frozen-density embedding response theory for solvatochromic effects 81

the frozen environment density is labeled “sumf.” in Table 3.3. We also used this
superposition to construct the Coulomb and exchange-correlation potentials of the KS
operator, constructed a Fock matrix for the full environment system with these operators,
and performed one diagonalization to obtain approximate orbitals and the density of
the full frozen system (“diag.” in Table 3.3). The latter is the default for the following
discussions. Note that these calculations are not carried out with the SAOP potential,
since this potential always requires an intermediate step to construct the orbitals and
the density of the system before setting up the potential and the Fock matrix.

The results employing molecular fragment densities are very encouraging with errors
smaller than 0.006 eV for the density after one Fock matrix diagonalization, and slightly
higher errors for the simple sum of fragment densities (about 0.008 eV for the n→ π∗

transition, and about twice as much for the σ → π∗ transition). This is particularly
important since the bottleneck in the calculation of excitation energies within the FDE
approach for very large frozen systems is the SCF to prepare the frozen density. This
shows the usual N3 DFT scaling behavior with the system size N , unless the environment
system becomes so large that one enters the linear scaling regime [276]. The use of
molecular fragments results in a scaling behavior proportional to N with a very small
prefactor in the preparation of the density, since one small SCF calculation for each
solvent molecule is required (plus the superposition step). Using a “rigid molecule”
approach (see Section 3.4.4), in which the density is calculated only for a limited number
of different solvent molecule structures, of which copies are then used to construct the
density of outer solvation shells, the preparation of the frozen density requires a constant
computational effort, irrespectively of the number of solvent molecules (not considering
the superposition step).

3.4.4 Convergence with the size of the solvation shell

The CPMD method will be used in Section 3.4.5 to model the solvent shift by a statistics
using many solvent configurations from a CPMD run. For the TDDFT calculations using
these snapshot configurations within the QM/QM embedding scheme we have to use
a cluster ansatz, since our TDDFT implementation does not allow to use periodic
boundary conditions.

In order to investigate the convergence of the excitation energies of acetone with respect
to the size of the solvation shell, we calculated the lowest excitations for acetone and
acetone embedded in clusters of water molecules of increasing size. All structures
employed here are substructures of a particular snapshot from a CPMD simulation as
explained in Section 3.4.5. Calculations were performed for the isolated acetone molecule
in the structure from the snapshot, and for acetone in structures with 2, 5, 10, 20, 57,
and 88 water molecules. For the largest system with 88 water molecules (274 atoms,
including acetone; shown in Figure 3.10), we used a simplified density obtained as a
superposition of molecular densities as explained in Section 3.4.3 (scheme “diag.”). In
order to estimate the effect of this approximation for the current snapshot, we used
this simplified method also in an additional calculation on the cluster with 57 water
molecules, and similar to the observations in Section 3.4.3, this hardly affects the results.

For each of these clusters, excitation energies were calculated in three different ways:
(A) A TDDFT supermolecule calculation for the whole system was performed, (B) a
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TDDFT calculation for the acetone molecule and the two nearest water molecules, which
are bound via hydrogen bonds to the carbonyl-oxygen, is carried out, whereas the effect
of the additional water molecules is included via the frozen density embedding, and (C)
a TDDFT calculation for the acetone molecule only is performed in which the effect
of all water molecules is included via the frozen density embedding. For the largest
clusters with 57 or 88 water molecules, we only present calculations of type B and C,
since supermolecule TDDFT calculations for such large systems are hardly feasible, and
more important, the long-range CT problem of TDDFT would introduce an enormously
large number of artificially low excitations as will be shown below. We used the local
density approximation (LDA) and a DZ basis set as implemented in ADF [277] to
obtain the frozen density of the solvent molecules. Results are given for the n → π∗

and σ → π∗ excitations of acetone in Table 3.4. For the smaller clusters, scheme C
seems to overestimate the shift in excitation energies for the n→ π∗ transition, although
the trend with increasing number of water molecules is reproduced. The agreement is
usually quite good for the σ → π∗ excitation. With scheme B, the results improve
considerably in most cases.

Table 3.4: Excitation energies (SAOP/TZP, LDA/DZ for the frozen part; energies in units
of eV) of the n→ π∗ and σ → π∗ valence excitations of acetone in water using the QM/QM
embedding scheme for a snapshot from a CPMD simulation, from which subsystems with
different numbers n of water molecules have been extracted. Scheme A: supermolecule
calculations; scheme B: the two nearest water molecules are included in the embedded system,
the other n − 2 water molecules are frozen; scheme C: all water molecules are frozen. For
the largest cluster with n = 88, the frozen density was constructed as a superposition of
molecular densities, see text. For the cluster with n = 57, both methods to construct the
density are compared.

n n→ π∗ σ → π∗

A B C A B C
0 4.45 — — 7.40 — —
2 4.57 4.57 4.69 7.09 7.09 7.15
5 4.50 4.54 4.68 7.16 7.15 7.22
10 4.60 4.66 4.74 7.20 7.13 7.22
20 4.71 4.68 4.78 7.19 7.20 7.25
57 — 4.72 4.78 — 7.14 7.24
57 (mol. frags, diag.) — 4.72 4.79 — 7.15 7.24
88 (mol. frags, diag.) — 4.71 4.78 — 7.26 7.28

Note that the “valence excitations” in scheme A given for comparison could only be
identified on the basis of the overlap of (modified) transition densities as defined in the
diabatization scheme in Refs. [318,319] because of spurious mixings with charge-transfer-
like states. This problem becomes more obvious from the graphical representation of all
excitation energies for the water clusters shown in Figures 3.11 (scheme A), 3.12 (scheme
B), and 3.13 (scheme C). While scheme C only produces the interesting intra-solute
excitations, so that the two valence excitations under study here are always among the
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lowest four excitations, scheme B already incorporates some excitations from solvent
orbitals at low energies, but still the two excitations of interest (n→ π∗ and σ → π∗) can
always be found among the lowest ten excitations. The additional low-lying excitations
found here concern mainly excitations from oxygen lone-pairs of the non-frozen water
molecules to orbitals of acetone, e.g., n(OH2)→ π∗ excitations. The two additional
excitations for the isolated molecule below 7.5 eV (Figure 3.13) are of Rydberg type;
they are pushed to higher energies by interaction with the solvent molecules. In scheme
A, it gets more and more complicated, with increasing number of water molecules, to
identify the interesting excitations: For the largest cluster considered in a supermolecule
calculation (20 water molecules), the second valence transition cannot be found among
the lowest 150 excitations.

Figure 3.10: Example structure of acetone and its 88 nearest water molecules as obtained
from a CPMD simulation, substructures of which have been used for a comparison of (partly)
frozen density embedding and supermolecule calculations.
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The data in Table 3.4 also allow to draw some conclusions about the appropriate size of
the solvation shell necessary to converge the shifts in the excitation energies with respect
to the number of solvent molecules, and to determine the importance of different factors
on these shifts. We restrict ourselves to a discussion of the calculations of scheme C
here, since supermolecule calculations of excitation energies for the larger clusters could
not be carried out; the calculations according to scheme B with two non-frozen water
molecules show the same general trend as the calculations with full embedding, but in
some cases, e.g., the σ → π∗ excitation for the n = 20 cluster, they show strong mixings
with excitations of CT type.
The first two water molecules that are considered in the calculation are bound to the
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Figure 3.11: Excited states (SAOP/TZP) of acetone–water complexes with different numbers
of water molecules. All water molecules have been explicitly taken into account in the TDDFT
calculation (scheme A). The longer, dashed lines correspond to the n→ π∗ and σ → π∗ valence
transitions.
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Figure 3.12: Excited states (SAOP/TZP) of acetone–water complexes with different numbers
of water molecules. Two water molecules have been explicitly taken into account in the
TDDFT calculation (except for the isolated molecule calculation), while all additional water
molecules are included via the QM/QM embedding scheme (scheme B). The longer, dashed
lines correspond to the n→ π∗ and σ → π∗ valence transitions.
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Figure 3.13: Excited states (SAOP/TZP) of acetone–water complexes with different numbers
of water molecules. All water molecules are included via the QM/QM embedding scheme in
the TDDFT calculation (scheme C). The longer, dashed lines correspond to the n→ π∗ and
σ → π∗ valence transitions.
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carbonyl oxygen atom by hydrogen bonds. They have an important effect through their
specific interactions: The energy for the n→ π∗ excitation increases by 0.24 eV, while
for the σ → π∗ transition it decreases by 0.25 eV. Further water molecules again cause a
blueshift in the excitation energies for both transitions by approximately 0.1 eV. While
the excitation energies vary a lot for small numbers of water molecules, the results do
not show considerable deviations between the calculations with 20 or 57 water molecules.
The latter structure was obtained by cutting a spherical box with a radius of 8.0 Å
from the smaller but periodic box of the simulation; this approach was used for all
subsequent calculations in the statistical sampling. The additional test with the more
approximate density and 88 water molecules shows no change at all for the n → π∗

excitation, while a slight increase of less than 0.04 eV can be observed for the σ → π∗

excitation, which is very sensitive to solvent effects anyway.
Even larger numbers of molecules can be treated by this method if, as an additional
approximation, the same frozen electron density is used for each water fragment, which
appears to be reasonable in particular for those molecules which are further away from
the solute. A test for the cluster with 88 water molecules described above, in which
such a “rigid molecule approach” for the outer 68 water molecules was used, while the
snapshot water structures were employed for the 20 nearest water molecules, resulted
in changes lower than 0.003 eV for the valence transitions investigated here. With this
approach, and using a simple sum-of-fragments density for the frozen part, we were
able to extend the number of solvent molecules to 250. The Adf implementation of
the FDE scheme developed during this work furthermore enhances the efficiency of
the calculations by making use of linear scaling techniques [276, 320] and restricting
the numerical grid to the embedded system only. The latter improvement can also be
applied in the context of a general subsystem-TDDFT approach and will be discussed
in Section 5.3.2.
The excitation energies as a function of the number of water molecules are shown in
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Figure 3.14: Excitation energies (SAOP/TZP, LDA/DZ for the frozen part; energies in
units of eV) of the n → π∗ valence excitations of acetone in water using the QM/QM
embedding scheme for a snapshot from a CPMD simulation, from which subsystems with
different numbers n of water molecules have been extracted (for the largest clusters, also
acetone molecules from neighboring cells of the CPMD simulation are included in this value).
The frozen density in all cases was constructed as a sum of densities of water fragments.
For clusters with more than 100 water molecules, rigid water molecules where assumed for
all but the 20 water molecules nearest to the embedded acetone. For the largest clusters,
the number n also includes some acetone molecules from neighboring cells of the CPMD
simulation.
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Figure 3.14; the rigid molecule approach for the outer water molecules as described above
was used for all structures with more than 100 water molecules. These structures were
obtained from the same CPMD snapshot, which means that for the largest clusters also
acetone molecules in neighboring cells are included in the frozen density. The maximum
number of atoms in this calculation is 802. Again, it can be seen that already with
20 water molecules a plateau is reached, and the changes with increasing numbers of
water molecules are very modest, i.e., in the order of 0.01 to 0.02 eV.

This discussion shows that the embedding calculations have great advantages compared
to normal Kohn–Sham calculations in the context of solvent effects: (i) The excitation
energies are not affected by mixings with spuriously too low CT excitations from solvent
to solute (or vice versa), (ii) the calculations are much more efficient, so that larger
numbers of water molecules can be described on a quantum chemical footing, and
(iii) the interpretation of the results is much easier, since only excitations within the
embedded system are obtained.

3.4.5 Simulating absorption spectra in solution

The purpose of the calculations presented in Section 3.4.4 was a comparison of the
frozen density approach to supersystem calculations, demonstrating the problem of the
identification of certain valence transitions among spuriously too low charge transfer
excitations in the latter with increasing numbers of water molecules in the calculation.
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In order to describe the solvatochromic shifts, however, it is necessary to work with a
larger ensemble of solvent configurations for a statistical analysis. We thus performed
CPMD and classical MD simulations of acetone in water; while snapshots taken from
the CPMD simulations may be more representative in terms of the structures obtained,
the classical MD simulations allow to use much larger periodic box sizes to model the
solvation, which is certainly necessary if this method shall be applied to larger solvated
molecules. Details can be found in Appendix B.
For all following calculations, only the acetone molecule was explicitly considered, while
the density of all surrounding water molecules was frozen (scheme C). Considering all
water molecules within a sphere of radius r = 8 Å as explained in Section 3.4.4, we
obtained systems with between 50 and 61 water molecules from the (CP)MD snapshots,
for which we calculated vertical excitation energies using the SAOP potential. A TZP
basis set was used for acetone, while a DZ basis set was used for the water molecules in
the calculation of the solvent density, which was obtained within the local density ap-
proximation (LDA). On average, about 175 atoms are included in the QM/QM TDDFT
calculations.
The optical spectrum f(ω) of acetone was calculated through [306],

f(ω) =
1

Nc

nmax∑

i=1

Nc∑

j=1

f j
i δ(ω

j
i − ω), (3.71)

where Nc is the number of solvent configuration snapshots taken into account, nmax is
the number of excitations considered for each configuration, ωj

i is the vertical excitation
frequency for a particular state and configuration, and f j

i is the corresponding oscillator
strength.
There are different ways to extract the solvent shift from the calculation, which are
more or less well suited in the present case. The simplest way is just to calculate the
difference between average transition energies Eavg for the gas phase and for the solvated
molecule (so averaging over the snapshot configurations without any weighting). Another
possibility is to use approximate mean transition frequencies (or the corresponding mean
transition energies Emte) for a particular excitation i, in which the vertical transition
energies of the snapshots are weighed with the oscillator strengths (cf. Ref. [257]),

〈ωi〉 ≈
∑Nc

j=1 f
j
i ω

j
i

∑Nc

j=1 f
j
i

. (3.72)

These values are probably more appropriate, because they emphasize those parts of the
spectrum with higher intensities. Experimentally, the solvent shifts are extracted by
taking the positions of maximum intensity in the spectrum, Emax, which can of course
also be extracted from the spectrum simulation. In contrast to Emte, these values do
not directly depend on the shape of an absorption band; symmetric and non-symmetric
band shapes may still have the same maximum position. However, taking the position
of maximum intensity in the simulated spectrum is problematic as long as the number
of configurations is small, since single solvent configurations accidentally leading to
high oscillator strengths can easily shift the maximum position considerably. It was
recently observed [310] that several thousand configurations might be necessary to model
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a complete absorption band shape correctly. Therefore, the Emax values are not very
reliable if it is not feasible to sample such a large number of configurations, and it seems
more appropriate in such a case to extract the maximum position of a Gaussian fit to
the simulated spectrum, Emax,fit. Hence, we consider this last way the most appropriate
choice in our study for a comparison of our simulated data with the results extracted
from experiment.

Table 3.5: Estimations of the n → π∗ solvent shift of acetone in water (compared to the
vapor spectrum) using different ways to estimate the peak maxima. All energies given in
units of eV. Also given is the number of configurations nconf. used to extract the values. The
labels have the following meanings: mte: mean transition energy; avg: average transition
energy; max: peak maximum in simulated spectrum; max, fit: peak maximum in Gaussian
fit to simulated spectrum (recommended).

structure ρH2O nconf. Emte Eavg Emax Emax,fit

vapor
CPMD — 300 4.4601 4.4740 4.4560 4.4746

exp. [313–315] 4.48 to 4.49

solution
CPMD frozen (sconv = 0.1) 44 4.7094 4.6890 4.6940 4.7221

shift 0.2493 0.2150 0.2380 0.2475

CPMD frozen (mol. frags., sumf.) 44 4.6925 4.6735 4.6700 4.7131

shift 0.2324 0.1995 0.2140 0.2385

CPMD frozen (mol. frags., diag.) 44 4.7020 4.6818 4.6940 4.7149

shift 0.2419 0.2078 0.2380 0.2403

CPMD frozen (sconv = 0.1), relaxed 44 4.7686 4.7449 4.8480 4.7832

shift 0.3085 0.2709 0.3920 0.3086

MD frozen (sconv = 0.1) 25 4.6793 4.6793 4.7240 4.6963

shift 0.2192 0.2053 0.2680 0.2217

CPMD frozen (sconv = 0.1) 220 4.7184 4.7000 4.6740 4.6791

shift 0.2583 0.2260 0.2180 0.2045

CPMD frozen (sconv = 0.1) 219 4.6883 4.6978 4.6740 4.6791

shift 0.2282 0.2238 0.2180 0.2045

exp. [313–317] 4.68 to 4.69
shift 0.19 to 0.21

We carried out general analyses with a small number of snapshots for different ways to
describe the solvent density. For each of these approaches, we present the calculated
energies and solvent shifts extracted with all four different methods described above
in Table 3.5. A gas phase CPMD simulation for isolated acetone at 300 K resulted
in a value for Emax,fit of 4.4746 eV obtained from 300 snapshots of a 12 ps simulation
time (compared to a vertical excitation energy of 4.58 eV for the optimized structure
of acetone), and all other ways to estimate the band maximum agree within 0.019 eV.
This is in very good agreement with the experimental value of 4.48 [313, 315] to 4.49
eV [314]. Note that in the gas phase it is not possible to use a conventional thermostat,
so the temperature in this CPMD simulation was kept constant by applying a very
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small negative friction to the atoms.

As a starting point for the solvation models, we used 44 solvent structures from the
CPMD simulation as described above. We first applied the default scheme to obtain
the frozen density, i.e., all water molecules were frozen, and the density was obtained
in an SCF calculation on the full set of water molecules with a convergence criterion
sconv = 0.1 (see Section 3.4.3). This results in solvent shifts between 0.2150 (based on
Eavg) and 0.2493 eV (based on Emte), so that all shifts agree within 0.034 eV. In order
to show that the frozen density can also be constructed by a superposition of molecular
densities as described in Section 3.4.3, we calculated the solvent shifts for the same set of
structures using this approach for the density of the environment. The changes are very
slight if one explicit Fock-matrix diagonalization is carried out (“diag.” in Table 3.5),
with solvent shifts between 0.2078 and 0.2419 eV. The deviations are slightly larger,
but still acceptably small, with solvent shifts between 0.1995 and 0.2324, if a simple
superposition of water densities is performed (“sumf.” in Table 3.5). As a next test for
the same set of structures, we first calculated the density of the acetone molecule for
each structure, which was then frozen to calculate a relaxed density of the surrounding
solvent. This relaxed solvent density was then employed in an embedding calculation
for the acetone. The relaxed environment leads to solvent shifts that are a bit higher,
typically in a quite systematic way by about 0.06 eV. This is a case where the maximum
in the simulated spectrum is ”accidentally” too high, leading to an anomalously large
shift of 0.3920. The other shifts are around 0.30 eV, and agree to within 0.038 eV.
These results are somewhat out of line, although we expect a significant effect (i.e.,
a decrease by about 0.04 eV) of using an extended set of solvent configurations (see
below).

In an additional test, which is not shown in Table 3.5, we included the two nearest
water molecules explicitly in the embedded system, again using the same 44 snapshots.
Compared to the first simulation, this typically reduces the solvent shift by about 0.04
eV, leading to values between 0.1739 eV (based on Eavg) and 0.2255 eV (based on
Emax,fit). The value based on Emax again is an exception; with 0.3240 eV it is much
higher than all other shifts based on this model for the solvation. This test suffers,
however, from the mixings with CT-like excitations mentioned in earlier sections of
this work: For practically every snapshot, more or less strong mixings with n(OH2)→
π∗(acetone) excitations could be observed. In many cases, the identification of the
n → π∗ excitation was only possible based on the transition density overlap criterion
defined in Refs. [318,319]; some snapshots gave rise to two excitations with competing
n→ π∗ contributions, which shows that the resulting statistics is not very reliable.

A last comparison was made with 25 structures obtained from a classical MD simulation.
The solvent shifts are between 0.2053 (based on Eavg) and 0.2217 (based on Emax,fit);
also here, the Emax value is somewhat of an outlier with 0.2680, which demonstrates
again that it is a less reliable measure of the shift. No large discrepancies are observed
in comparison to the CPMD simulation. However, the structures from two of the
snapshots led to severe convergence problems in the SCF calculation for the solvent
because of near-degenerate orbitals at the HOMO-LUMO gap, and subsequently to
unreliable TDDFT results. This seems to be purely a problem of the SCF procedure,
caused by an unrealistic structure of the solvent: If only the superposition of the
solvent fragment densities is used (scheme “diag.”), the resulting excitation energies
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and oscillator strengths are within the normal range. Therefore, we have to conclude
that the classical MD occasionally leads to structures which can induce SCF problems,
so that the resulting densities are not in all cases reliable approximations. In other
studies, such problems with classical MD simulations were circumvented by performing
a small CPMD relaxation after a QM/MM CPMD study [291].

The final spectrum was simulated using 220 solvent configurations from the CPMD
simulation, in which the total water environment density was frozen and unrelaxed;
the density was obtained from an SCF calculation with a convergence threshold of
sconv = 0.1. The band of the n→ π∗ transition is shown in Figure 3.15, together with
the simulation of gas-phase acetone. The solvent shift extracted from the Gaussian
fit to the band is 0.2045 eV. This is 0.0430 eV lower than for the smaller set of 44
snapshots, and in excellent agreement with the experimental values of 0.19 to 0.21 eV
and with former theoretical studies mentioned in the introduction. Also the maximum
position of the spectrum and the average transition energies confirm this value, differing
by less then 0.02 eV in the calculated shift. Only the mean transition energy results in a
somewhat higher shift of 0.2583 eV, which can still be considered a good estimate for the
experimental value. This somewhat too high value can exclusively be attributed to one
outlier in our data set: we obtained one configuration with an excitation energy of 5.16,
which has a very high oscillator strength and is therefore responsible for the peak at the
high-frequency border of this band. If we neglect this one outlier, the shift computed
by mean transition energies decreases to 0.2282 eV, in much better agreement with
the other values. The maximum position of the spectrum does not change at all, the
average transition energy changes only very little, and also the changes in the maximum
of the fit are negligible. This latter point is due to the fact that we use a symmetric
Gaussian function to fit our data, so that a better description of the outlier in the fit
would dramatically decrease the quality of the fit in the low-frequency regime of this
band. It therefore does not affect this fit very much. We would like to note that not
only the solvent shift, but also the estimated band maximum of 4.6791 eV obtained in
this way is in very good agreement with the experimental values of 4.68 [314] to 4.69
eV [313,315–317].

Our tests with relaxed frozen densities showed that relaxation typically leads to an
increase of the excitation energies of about 0.06 eV, which was quite systematic for the
structures investigated. Therefore, we expect that relaxation would also increase the
solvent shift for the large set of 220 snapshots to about 0.26 eV. The solvent shifts
obtained with different ways to construct the frozen density can therefore be estimated
to lie in the range of 0.20 to 0.26 eV.

There is another interesting point about our simulation: In the experimental spectra
in Refs. [313, 314], it can be seen that the structureless vapor absorption band of the
n → π∗ transition is a bit broader than the spectrum in aqueous solution. Although
it is difficult to extract exact values, the half-widths can be estimated to roughly 7000
cm−1 (0.87 eV, vapor) and 6000 cm−1 (0.74 eV, solution). The Gaussian fits to our final
simulated absorption bands qualitatively agree with this observation: While the fitted
gas-phase spectrum has a half-width of 0.51 eV, the solution spectrum has a reduced
half-width of only 0.40 eV. But in terms of absolute values, these half-widths are still
too low, and a much larger statistics might be necessary to draw definite conclusions
about the full shape of the absorption band. The calculated absorption intensities are
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Figure 3.15: Simulated (SAOP/TZP/DZ) absorption spectrum of acetone in water. Excitation
energies have been calculated for snapshots from a CPMD simulation for acetone vapor (dashed
line) or acetone in water (solid line), respectively; all water molecules within a radius of 8
Å from the acetone molecule have been considered in the latter calculations, and have been
treated in a frozen density fashion. In total, 300 (vapor) or 220 (solution) configurations
have been sampled. A Gaussian smearing of 0.05 eV has been applied to the peaks in the
spectrum. Additionally, the curves of a Gaussian fit to the simulated absorption bands are
shown for the gas-phase (dotted line) or solvated (dashed–dotted line) molecule, respectively.
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less reliable; the basis set requirements for converging them are usually much larger than
for the excitation energies. Moreover, the confinement of the response to the embedded
system may make the electron density of the embedded system less polarizable. We
therefore refrain from an interpretation of changes in the intensities in terms of physical
effects in this work.

The calculations in this section clearly show the potential of the frozen density embedding
in the calculation of excitation energies for solvated systems. In the first place, this
embedding approach implies a restriction to the interesting intra-subsystem excitations,
where the embedded system can be defined by the user. Other excitations, which might
be real or spuriously shifted to the energy range investigated by failures of the (TD)DFT
approach, are not obtained. This has a number of important consequences for studies on
solvated systems: (i) Embedding calculations are inherently less demanding, especially
for TDDFT calculations with many solvent molecules. (ii) In contrast to supermolecule
calculations on systems like the one studied here, the number of low-lying excitations
is constant, which makes embedding calculations even more advantageous when large
solvent shells are included. (iii) The interpretation of the results is much easier, and
the excitations are not affected by mixings with spuriously low CT excitations.

As demonstrated above, the excitation energies obtained from the embedding scheme are
not very sensitive to approximations made in the construction of the frozen density. Of
particular interest is the possibility to use superpositions of molecular densities, which
replaces a calculation on a system with N molecules by N calculations on systems of
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just one individual molecule; we will elaborate on this point in Section 4.3.
This gain in efficiency is decisive for the calculation of the solvatochromism for the
n → π∗ excitation of acetone in water on the basis of the CPMD trajectory. The
estimated shift of 0.20 eV is in perfect agreement with the experimental shifts of 0.19
to 0.21 eV [313–317]. However, the study of density relaxation of the solvent system,
which increased the calculated solvent shift by about 0.06 eV, indicates that this very
good agreement is partially due to error cancellation effects. Possible error sources here
could be the non-additive kinetic energy functional, the basis set limited to the embedded
system, and the limited statistics of only 44 snapshots for the polarized frozen-densities.
In view of the variety of factors influencing the simulation of solvatochromic shifts, these
results are still very encouraging.



4. Environmental Effects on Molecular Properties

and Valence Excited States

Subsystem approaches to DFT have initially been developed to enable efficient quan-
tum chemical calculations of (interaction) energies in complex systems as outlined in
Section 2.8. A variety of other schemes have been proposed and applied in the past for
this purpose, and some of them were discussed already in Section 3.4.1. As particular
examples, we mention continuum solvation models [302,304,321,322], effective potential
methods [323,324], including the so-called ab initio model potentials, which are directly
based on the electron densities of the environment [325,326], QM/MM schemes [131–135],
or general multi-layer approaches such as the ONIOM model [136, 137].

One of the advantages of subsystem DFT methods is the fact that not only a so-called
“mechanical embedding” is achieved, in which the effect of the environment is only
included in terms of interaction energies, but also an embedding in terms of an ef-
fective local potential as introduced by Wesolowski and Warshel [111] arises naturally.
Interaction potentials with a similar aim can, of course, also be integrated into other
approaches [120,327], but usually these potentials contain empirical, system-dependent
terms or do not account for all types of interactions. In contrast to that, FDE incor-
porates both electrostatic as well as non-classical effects in a non-empirical way (apart
from the usual parameterization of the density functionals employed). This allows to
extract properties depending on the electron density or the orbitals of the embedded
system. Furthermore, we have seen in Section 3.4.2 that the calculation of response
densities and excitation energies is possible within the generalization of the FDE method
for excited states [308, 309].

In this chapter, we will first review previous calculations of molecular properties with
FDE and related methods. Subsequently, practical schemes for the use of FDE as
an explicit solvent model will be presented for calculations of electron spin resonance
(ESR) hyperfine coupling constants as well as absorption spectra. In Section 4.4, it will
be investigated whether induced circular dichroism phenomena, which are mediated by
specific interactions between two subsystems, can be studied on the basis of FDE.

4.1 A review of subsystem-DFT based molecular property cal-
culations

4.1.1 Structures, dynamics, and vibrational properties

The structure optimization of molecular complexes on the basis of subsystem DFT
requires the availability of analytical energy gradients, except for very simple, highly
symmetric molecules or partial optimizations, in which only a limited number of nuclear
degrees of freedom has to be considered [165]. Such gradients also give direct access to
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the forces on the nuclei as required in molecular dynamics simulations on the basis of
subsystem DFT schemes. Furthermore, they allow to calculate vibrational frequencies
by numerical differentiation in cases where analytical second derivatives are not available
[328].

An analytical gradient implementation for the FDE scheme was described by Weso lowski
et al. [329]. The accuracy of the structures obtained within this approach was recently
investigated [170]. The largest deviations for intermolecular distances found between
structures from subsystem DFT within the local density approximation and accurate
wavefunction-based calculations were 0.13 Å for hydrogen-bonded complexes, 0.19 Å for
dipole-bound complexes, 0.23 Å for complexes with π-interactions and 0.32 Å for rare
gas dimers. GGA-type approaches resulted in worse intermolecular distances for almost
all complexes studied.

Warshel and co-workers presented a QM/MM dynamics study on the autodissociation
of water in aqueous solution, in which a constrained DFT treatment was tested in
order to enlarge the quantum region during the calculation [149]. They constructed
a frozen environment from a set of individual water molecules surrounding the ac-
tive subsystem. Only the interactions between the active subsystem and each water
molecule in the environment individually were treated in with the (freeze-and-thaw)
frozen-density embedding approach, whereas all interactions between all frozen water
molecules were evaluated classically. Barker and Sprik [330] performed a molecular
dynamics study essentially based on the Gordon–Kim approach, i.e., with completely
frozen electron densities. For computational simplicity, they used several pseudo-density
models, in which the charge density of the valence electrons was fitted to the results
of Hartree–Fock calculations. The frozen pseudo-densities were empirically modified
to vary the molecular dipole moments, and the resulting potential energy curves were
compared to classical force field models. Evidence for a second solvation shell, as is
found in experiment, could be observed in the O−O radial distribution function only
with molecular densities corresponding to a high dipole moment (2.95 D). Hutter and
co-workers [110] proposed a molecular dynamics scheme based on a subsystem DFT
approach as outlined in Section 2.5, in which the subsystem orbitals for all molecular
fragments are optimized simultaneously, and tested it in a simulation of liquid water.
It turned out that the water molecules in solution were not fully polarized. Although
the first solvation shell was reasonably described, the subsystem DFT approach did not
lead to the characteristics of a second solvation shell (in contrast to experiment and
Kohn–Sham DFT simulations). Variation of the kinetic energy functional had a small
effect on the position and peak height for the band corresponding to the first solvation
shell in the O−O radial distribution function, but no functional gave rise to a second
peak. This problem might be related to the lack of directionality in the deformation
densities observed for the hydrogen-bonded complexes in Section 2.9.

Recently, Hodak et al. have presented a method very similar to the above approaches, in
which an orbital-free DFT scheme was used to perform a molecular dynamics calculation
of liquid water [331]. They used fixed electron densities for the water molecules described
by three atom-centered Gaussian functions per water molecule, i.e., one function per
atom. The parameters for the Gaussian functions were chosen in such a way that the
molecular charge and dipole moment are reproduced, and the exponents were used as
free parameters to fit the experimental radial distribution functions. This approach was
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then combined with a Kohn–Sham treatment of an active subsystem. It can thus be
regarded as a simplified version of the frozen-density embedding approach with a sum-
of-fragment density for the environment (see Section 3.4.3 and Refs. [116, 184, 332]),
in which the solvent molecules’ charge density is represented in a “minimal basis”,
employing empirical parameters for optimizing the results.

Vibrational frequencies based on analytical gradients have been studied for complexes
of the type Me+CO (Me = K, Na, Li) adsorbed in zeolite ZSM5 [329]. Supermolecular
KS-DFT results could be reproduced for a series of small to medium-sized model clusters
for the zeolite environment, some of which were augmented by several thousand point
charges to model outer coordination spheres. Also the experimental observation of
a decrease in the blueshift of the CO stretching frequency upon adsorption of the
Me+CO could be observed. Another study was performed on the vibrational properties
of MnF4+

6 [168], in which the local vibrational modes of this complex were studied in
cubic fluoroperovskites.

4.1.2 Electric and magnetic properties, excited states

There are rather few studies on electric and magnetic properties from FDE, although
their number is increasing in the past years. Among the first properties studied were
molecular dipole moments, which are, in a certain sense, an integral measure for the
accuracy of the electron density. In Ref. [114], the dipole moment of a water molecule
in aqueous solution was studied and found to increase by about 0.2 D compared to
the isolated molecule. This is considerably smaller than the experimental estimates or
results from other quantum chemical simulations (see Refs. [327,333,334] and references
therein). The authors argued that this small increase might be caused by the small basis
set employed in their study. A later FDE calculation on water in water employing large
diffuse basis sets, which did, however, not sample different snapshots from a trajectory,
resulted in a change of the dipole moment from 1.80 D for the isolated molecule to
2.45 D for unpolarized surrounding electron densities, and to 2.71 D for partially relaxed
environments [185]. The latter study also reported quadrupole moments calculated from
FDE, which are found to be in good agreement with a discrete, polarizable classical
model for the environmental effect in QM/MM-type calculations.

The dipole moments of several hydrogen-bonded dimers were studied in Ref. [155]
as a function of the intermolecular distance. By comparison to supermolecular KS
calculations on the dimers, it was found that changes in the dipole moments upon
complex formation could be reproduced quite accurately. Even at short distances, about
70 % of the dipole moment increase could be recovered with FDE, although the results
for the HCl dimer were less satisfactory. It is interesting to note that the accuracy
hardly depended on the kinetic-energy functional chosen for T nadd

s and its functional
derivative, respectively (in contrast to the interaction energies).

Induced dipole moments in CO· · ·X van der Waals complexes were analyzed in Ref. [122],
where X denotes either a rare gas atom or mercury. Whereas experimental dipole
moments could be reproduced within 5% for Ar, Kr, and Xe, the results for the lighter
rare gas atoms were underestimated. In case of mercury, FDE leads to an overestimation
of about 20%. These discrepancies were mainly attributed to the non-additive kinetic-
energy functional.
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A first study on polarizabilities within the FDE linear response framework outlined in
Section 3.4.2 was presented in Ref. [185], which was already mentioned above in the
context of dipole moment calculations. However, it turned out that the polarizability of a
water molecule in a water cluster from FDE differed qualitatively from the corresponding
result of the polarizable classical model. This could be traced back to the missing
response of the environment by comparison with finite-field calculations. In Section 5.2
we will present cases for which FDE calculations with a response restricted to the
embedded subsystem fail even more badly, and we will show how this problem can be
cured.

A generalization of the FDE scheme for nuclear magnetic resonance (NMR) shieldings
was recently derived by Jacob and Visscher [335] under the assumption that also the
current density of the total system can be partitioned into subsystem contributions.
Solvent-induced shifts on NMR shielding constants were modeled for acetonitrile in
complexes with solvent molecules. The FDE results agreed with reference calculations
from Kohn–Sham DFT within about 2 ppm, which is sufficiently good for solvents like
water, where shifts of the order of 17 ppm were found. However, this absolute error
remained the same even in solvents for which the shifts in the shielding constants were
much smaller, i.e., solvent shift and FDE error are approximately of the same magnitude
in those cases. The study of NMR solvent shifts on acetonitrile was later extended by
Bulo et al. by employing large sets of snapshots from classical force-field MD and
CPMD simulations [336]. A semi-quantitative agreement with experimental data could
be observed, although the results obtained with the classical force-field method and the
CPMD simulation showed a significant difference.

Frozen-density embedding can easily be generalized for spin-polarized cases [337]. Under
these circumstances, the embedding potential becomes spin-dependent as well. By means
of freeze-and-thaw calculations, it is in principle possible to model spin-polarization
effects (see also Section 4.2). This formalism was applied in Ref. [337] to study isotropic
electron spin resonance (ESR) hyperfine coupling constants for Mg+ embedded in neon
and argon matrices modeled by small clusters of 8 rare gas atoms. Although the absolute
values for these hyperfine coupling constants showed a strong dependence on the basis
set used, the differences for the two different matrices were in very good agreement with
the experimental reference. Relaxation of the frozen environmental density resulted only
in very small changes in comparison with the unrelaxed FDE calculations.

Previous to the first study on solvatochromic shifts based on FDE-TDDFT, which is
described in Section 3.4, Wesolowski investigated the effect of hydrogen bonding on the
excited states of adenine–thymine and guanine–cytosine complexes. In these calculations,
one of the nucleic acid bases was considered as the embedded system, while the other one
represented the frozen environment. It was found that the hydrogen-bonding induced
shifts, which varied between −0.17 and +0.67 eV in KS reference calculations, could
be reproduced within ∼ 0.05 eV by FDE. Polarization of the environmental densities
resulted in only minor changes of the excitation energies for most excitations studied.
An exception was the oxygen n → π∗ transition in cytosine, for which this additional
polarization changed the hydrogen-bond induced shift by 0.17 eV.

Simplified FDE studies on excited electronic states were also conducted in terms of
ligand-field models by investigating the splitting in the f -orbital energies of elpasolite
crystals [167,169]. The splitting energies thus obtained showed a good agreement with
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experimental data for the whole series of lanthanide ions.
The following sections describe our own investigations on environmental effects on phe-
nomena like ESR hyperfine coupling constants, absorption spectra, and induced circular
dichroism.

4.2 Solvation effects on ESR hyperfine coupling constants

Quantum chemical calculations of electron spin resonance (ESR) parameters have become
a routinely applicable task during the past years (for an excellent overview, see the book
by Kaupp, Bühl, and Malkin [338]). Particularly density functional methods are widely
used to study g tensors and hyperfine splittings, and their performance was investigated
in recent studies (see, e.g., Refs. [339–341]). For many systems, these parameters depend
strongly on the environment.
Isotropic hyperfine coupling constants (hfcc) are very sensitive to solvent effects in two
respects. First, they often show a strong dependence on the structure of the molecule,
and the solvent may have a great influence on certain structural parameters. Second,
also for a given distribution of structures, solvation can change the value of the hfcc
significantly. Therefore, accurate calculations of these quantities must account for both
structural changes between gas phase and solvent as well as for solvent effects at a given
structure [342].
Among the best studied radicals are (organic) π-radicals, e.g., nitroxides, semiquinones,
or phenoxyls. They have been subject to numerous theoretical investigations, and many
aspects of solvent effects on their ESR parameters have been analyzed. [343–350]. One
prototype system for the family of nitroxides is the H2NO radical, which shows a strong
dependence of the hfcc on the out-of-plane bending angle θ of the NO group from
the H−N−H plane. The singly occupied molecular orbital (SOMO) in this case is a
π∗-type orbital perpendicular to the molecular plane. An isosurface plot of the SOMO
is shown in Figure 4.1. For θ = 0, the direct contribution of the SOMO to the hyperfine
coupling constants vanishes for all atoms, since there is no contribution of s-type atomic
orbitals to the SOMO for symmetry reasons. It is an ideal example molecule, since
many experimental studies in the gas phase [351], argon matrix [352], water [353] and
methanol [354] have been carried out. Earlier theoretical studies concerning the solvent
effects on this molecule employed mixed classical and quantum chemical approaches:
Takase and Kikuchi used snapshots generated from classical Monte Carlo simulations,
in which only the angle θ was freely varied. Hyperfine coupling constants were obtained
for these structures by restricted open-shell Hartree–Fock-(ROHF-) type calculations, in
which a classical point-charge model was used to include the effect of the solvent [355].
In this way, only electrostatic effects of the solvent are covered. Later, Barone et

al. studied environmental effects by combining static hybrid density functional theory
calculations of the hyperfine coupling constants with classical polarizable continuum
solvent models [356]. Although the dependence of the hyperfine coupling constants on
the angle θ was investigated in that study, the vibrational effect on the average ESR
parameters was not explicitly given. It was, however, mentioned that in a related study
on H2NO in vacuo [356] the vibrational averaging effect for the out-of-plane vibration
on this radical was small.
Studies on other nitroxide radicals showed that a more sophisticated treatment might be
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Figure 4.1: Isosurface plot of the H2NO SOMO.

necessary in some cases, where dynamical fluctuations of hydrogen bonded systems have
to be described [350]. A CPMD approach was used in Ref. [350] to sample the space
of accessible configurations for the solvated system, since earlier studies [348] showed
that the angular distribution around the NO group might not be reliably reproduced
by studies based on classical force fields as presented in Ref. [349]. For the calculation
of hyperfine coupling constants, different methods combining explicit (quantum) water
molecules, classical water models, and continuum models were applied for 100 snapshots
of the CPMD simulation to simulate bulk solvent effects in Ref. [350].

In this section, we are going to apply a sequential scheme of first-principles based
CPMD or Monte Carlo simulations for the structure generation with the frozen-density
embedding scheme [111] to model solvent effects on the hyperfine coupling constants.
This study goes beyond earlier studies in many respects and combines the advan-
tages of several solvent models: (i) Dynamical effects in both gas phase and solution
are considered on the basis of first-principles electronic structure methods without re-
striction of the averaging process to certain degrees of freedom, (ii) problems in the
gas-phase simulation due to the weak coupling between different vibrational modes
are circumvented by a Monte Carlo scheme, (iii) both short-range electronic (or mi-
crosolvation) and bulk solvent effects can be studied by this efficient explicit solvent
model, (vi) frozen-density embedding includes not only electrostatic effects, but also
non-electrostatic effects (exchange–correlation contributions, non-additive kinetic energy
effects) and (v) no empirical information enters the calculation of the hyperfine coupling
constants in the presence of the solute — apart from the usual parameterization in the
density functionals. A direct comparison to experimental data obtained in different
media is therefore possible by this approach, which considers both the electronic and
the structural changes in the solute upon solvation. We would like to note that the
“gas-phase” calculations in our case have to be understood as calculations for an isolated
molecule, which we assume to be a simple model for the situation in the gas phase.

4.2.1 Validation of the solvent model

The validation of the frozen-density embedding as a solvent model involves (i) an
assessment of its accuracy for short-range or microsolvation effects, and (ii) a test on
the convergence of the hfcc with the size of the solvent shell, to ensure a proper modeling
of bulk solvent effects.
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Figure 4.2: Optimized structures (BP86/ZORA-QZ4P, no symmetry constraints) of two small
H2NO–water clusters.

Short-range solvation effects on the hfcc of nitrogen and hydrogen, such as hydrogen
bonding, are assessed by comparing supermolecule and frozen-density embedding calcula-
tions for small H2NO−water clusters, which are shown in Figure 4.2. In Table 4.1 results
are shown for supermolecule and frozen-density calculations on these structures. Fully
converged SCF densities of the embedding (H2O)2 and (H2O)4 clusters are employed
for the frozen-density calculations; simpler sum-of-molecular-densities superpositions are
tested below. If a polarized frozen density is used, i.e., if one freeze-and-thaw cycle [357]
is performed — in which the density of the water molecules is calculated in the presence
of a frozen H2NO radical density — the results for the H2NO · 2H2O cluster agree almost
perfectly with the supermolecule calculations: The hfcc for hydrogen and nitrogen are
−34.75 and 13.97 MHz (polarized frozen-density embedding) compared to −34.73 and
13.98 MHz (supermolecule calculation). Further freeze-and-thaw cycles change the hfcc
values by less then 0.02 MHz. If the water molecules are completely omitted for this
structure, we obtain values of −32.69 and 12.49 MHz for a(1H) and a(14N), respectively.
As can be seen, already the non-polarized frozen-density calculation yields most of the
effect of the water molecules with hyperfine splittings of −34.34 (1H) and 13.69 MHz
(14N). For the cluster with 4 water molecules, there is a slightly larger deviation between
supermolecule and embedding calculations, but also here the embedding captures most
of the effect. This can be expected, especially for the hydrogen hfcc, since the border
between the frozen and non-frozen region is much closer to the hydrogen atoms for the
H2NO · (H2O)4 cluster than for the H2NO · (H2O)2 cluster.

We would also like to note that spin polarization of the environment can, in principle,
be modeled by the frozen-density embedding. This effect can be included by using
freeze-and-thaw cycles in combination with spin-unrestricted frozen-density preparation
calculations. By comparing freeze-and-thaw cycles with spin-restricted frozen densities
for the water molecules to those with spin-unrestricted frozen solvent densities for a
small H2NO−water cluster, we found that the spin polarization of the solvent molecules
is low, leading to changes in the hyperfine coupling constants which are smaller than
those of the density relaxation (ca. 0.1 to 0.3 MHz).
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Table 4.1: Isotropic hfcc a (MHz) for H2NO · 2H2O and H2NO · 4H2O from unrestricted,
scalar relativistic BP86/ZORA-QZ4P supermolecule and frozen-density embedding calcula-
tions. Water molecules in parenthesis denote calculations in which structures were taken
from optimizations including the water molecules, while the water molecules were not con-
sidered in the ESR calculations. For all structures, we give the out-of-plane bending angle θ
(degrees).

H2NO · 2H2O H2NO (· 2H2O) H2NO · 4H2O H2NO (· 4H2O)
supermolecule

θ 10.1 10.1 1.2 1.2
a(14N) 13.98 12.49 12.78 10.26
a(1H) -34.73 -32.69 -38.75 -36.21

embedding in frozen (H2O)n clusters
a(14N) 13.69 11.85
a(1H) -34.34 -38.69

embedding in polarized frozen (H2O)n clusters
a(14N) 13.97 12.32
a(1H) -34.75 -39.24

Table 4.2: Isotropic hfcc a (MHz) for H2NO + 2 H2O from unrestricted, scalar relativistic
BP86/ZORA-QZ4P embedding calculations with different basis sets for the frozen system.
Additionally, results are given for a sum-of-fragments calculation of the frozen density, in
which LDA/ZORA-TZP was used to generate the water fragments.

QZ4P TZP DZP DZ LDA/TZP,
sum-of-fragments

a(14N) 13.69 13.82 13.88 13.93 13.90
a(1H) −34.34 −34.53 −34.60 −34.56 −34.62

In Table 4.2, we compare the results of frozen-density calculations with different basis
sets for BP86/ZORA calculations. The inclusion of scalar-relativistic effects in the frozen
density does not have a significant influence on the results and is only done for internal
consistency. We observe that the basis set effect for the frozen density is relatively small
with variations of 0.13 to 0.26 MHz compared to the largest basis set.
While frozen densities from fully converged BP86 calculations were used in the above
tests, such calculations are quite inefficient and can suffer from convergence problems for
very large (H2O)n clusters. In Section 3.4.3, it was shown that the simpler local density
approximation (LDA) may be used for the frozen part, and that it can be advantageous
to calculate the frozen density from a superposition of molecular densities. We tested
this method for the small H2NO · 2H2O cluster (see Table 4.2). As might be expected
for these weakly interacting water molecules, the effect of the sum-of-fragment approach
in combination with the simple LDA has only a minor effect on the hfcc: a(1H) changes
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by 0.08 MHz (from 13.82 to 13.90 MHz), and a(14N) by 0.09 MHz (from −34.53 to
−34.62 MHz) for the TZP basis set.

4.2.2 Statistical analysis of snapshots

A statistical analysis of the ESR parameters was performed for snapshots from a first-

principles based MC simulation for the gas-phase and a CPMD simulation for the
aqueous solution (see Appendix B for for details). Two effects must be considered and
accurately be described in these calculations in order to produce a reliable solvent shift
for the hyperfine coupling constants. First, the electronic effect of the solvent at a
given solute structure must be taken into account, and second, the effect of the solvent
on the probability distribution of structural parameters. Since it is known that other
radicals, like OH, can form hemibonded structures (i.e., structures with an oxygen–
oxygen interaction forming a three-electron bond) in water [358], which appears to be
overemphasized by the standard DFT functionals, we took a particular look at this
effect for H2NO also. However, no such hemibond is formed for this radical, since the
orbital energy of the unpaired electron is too high. Otherwise, such a structure could
have a significant impact on the ESR parameters.

As mentioned before, the most important structural parameter in our case is the out-of-
plane bending angle θ. The probability distribution for this angle naturally depends on
the potential energy curve along this internal coordinate. We calculated the potential
energies along this angle using BP86/ZORA-QZ4P, where all other internal coordinates
were optimized for a given out-of-plane angle. The results are shown in Figure 4.3, where
we also give energies calculated (post-SCF) with the BLYP and B3LYP functionals as
an internal consistency check. The lowest energy structure in this scan with steps of
10 degrees is obtained for θ = 20 degrees (the angle for the fully optimized structure
is 17.6 degrees). The inversion barriers are very low with 0.2 (BP86) to 0.3 (BLYP,
B3LYP) kJ/mol, and they are in good agreement with the B3LYP and UQCISD[T] data
from Ref. [359]. The corresponding minimum-energy out-of-plane angles found there are
16.90 (UQCISD[T]) and 16.6 degrees (B3LYP), which is — in view of the very shallow
potential energy surface — in good agreement with our structure. Experimentally, there
is some evidence for the planarity of the H2NO radical, but it has been suggested that
this is due to a double-minimum potential for the out-of-plane vibration with a very low
barrier [351]. This is in perfect agreement with the KS-DFT and UQCISD[T] results.

Also for the energies, we observe strong discrepancies between the results presented above
and the ROHF results from Ref. [355]. ROHF leads to a minimum-energy structure
with θ = 36.5 degrees and an inversion barrier of 3.6 kJ/mol, while the energy increase
for angles > 40 degrees is less steep than in our calculation. Obviously, the probability
distribution resulting from the ROHF energy profile along θ cannot be considered reliable.
This is important to note, since the probability distribution has a large impact on the
averaged hyperfine coupling constants.

From all structures generated in the simulations, we determined the probabilities of
finding particular out-of-plane bending angles θ. The results are shown in Figure 4.4.
Both probability distributions are still rather noisy, but it can be recognized without
doubt that the distributions in gas-phase and solution are quite similar. The maxima
in the probability distributions occur at small angles (close to planarity), and the
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Figure 4.3: Potential energy variation along the out-of-plane bending angle θ. All other
internal coordinates were optimized (BP86/ZORA-QZ4P). For comparison, results are shown
for BP86, BLYP, and B3LYP (post-SCF energy calculations using a BP86/ZORA-QZ4P
density). All energies are given in units of kJ/mol with respect to the structure with θ = 20
degrees.
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distributions are quite broad up to angles of about 25 to 30 degrees. Angles larger than
40 degrees are not very probable. This confirms the energy profile in Figure 4.3. The
average out-of-plane bending angle is 16.8 degrees in the gas phase, and 16.7 degrees in
solution. The difference in the average angles is thus much smaller than the standard
error in the average angle (1.7 degrees for the gas phase). This is in contrast to the
classical Monte Carlo study in Ref. [355] (30.7 degrees/gas phase, 19.9 degrees/solution),
which used a force field fitted to ROHF energies. The potential energy minimum in
that case corresponds to a much too large θ angle of 36.5 degrees. It was suggested in
Ref. [355] that the inversion barrier almost completely vanishes in solution, which is in
agreement with our study. But in our calculation, the barrier is also very small in the
gas-phase calculation.

From the trajectories of the simulations, we calculated hyperfine coupling constants for
every fifth structure of the first 1000 structures in solution and of the 6559 structures
obtained from the MC simulation. Using every structure for the hfcc calculation would
not add new significant information, since subsequent structures, especially in the MC
simulation, often show a considerable correlation. This means that 200 snapshots were
calculated in solution, while 1311 snapshots were considered for the gas-phase. We
used the frozen-density embedding approach as described above to model the effect of
the water molecules in these calculations. The average values and the maxima of the
distributions are shown in Table 4.3. The probabilities for different values of the hfcc
are shown in Figure 4.5 for the gas-phase and for aqueous solution. These plots now
show the combined effect of structural and electronic changes of the hyperfine coupling
constants. First, it can be seen that the maximum positions of the probabilities shift
as expected from the experimental values: For a(14N), the maximum shifts by 4.0 MHz
from 10.5 (gas) to 14.5 MHz (water), and for a(1H), it shifts by −2.0 MHz from −36.5
(gas) to −38.5 MHz (water). The shifts in the average values of the hyperfine coupling
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Figure 4.4: Probability of finding a particular out-of-plane bending angle θ in the CPMD
simulation of the H2NO radical. The results shown are based on 1457 and 6559 snapshots
for the trajectories in solution (solid line) and in the “gas phase” (isolated molecule; dashed
line). The probabilities are given in intervals of 3 degrees, i.e., in units of 1/(3 degrees).
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constants are qualitatively the same, but they differ in magnitude. The average of
a(14N) shifts by +1.8 from 19.8 MHz (gas) to 21.6 MHz (water), and the average of
a(1H) shifts by −5.9 from −22.6 to −28.5. The experimental shifts are 8.8 (14N) and
−6.4 MHz (1H) if the values from the microwave study in Ref. [351] are used for the
gas-phase. Also the results of 30.3 MHz (14N) and −33.1 MHz (1H) from Ref. [352]
are sometimes assumed as “gas-phase” values, and in combination with the results
for aqueous solution from Ref. [353] they would yield solvents shift of 5.6 (14N) and
−2.8 MHz (1H). These values, however, were obtained in a xenon matrix at a much
lower temperature (77 K) than used in our simulation, and a rather strong temperature
dependence of the hfcc for H2NO in vacuo was found in Ref. [356]. We note that the
B3LYP/PCM study in Ref. [359] has even larger problems with the shift for nitrogen
(0.6 MHz), and overestimates the (absolute value of the) shift for hydrogen (−10.6
MHz).

As can be seen from Figure 4.5, there is no large change in the distribution of the
hyperfine coupling constants in gas phase and solution. In the gas phase, the distributions
look slightly broader than in solution, but the effect is not large in view of the noise
still present for this rather small number of snapshots (the classical MC simulation in
Ref. [355] used two million steps for the averaging).

To investigate the electronic effect of the solvent at a given angle θ in gas phase and
solution, we plot the hfcc observed in our simulations as a function of θ in Figure 4.6
(only every twentieth snapshot has been used for the gas-phase simulation in that plot
for clarity of presentation). Also shown are quadratic fits to these curves, the coefficients
of which are collected in Table 4.4. As can be seen, the quadratic coefficients are rather
similar, so that the fitted curves run almost parallel. Only for larger angles (θ > 20
degrees) in case of nitrogen this is no longer well fulfilled. The offsets in the fitted
curves for small angles (θ ≈ 0) are 4.1 MHz for 14N (solution minus gas), and −3.4
MHz for 1H, and these values can be regarded as estimates for the average electronic
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Table 4.3: Isotropic hfcc a (MHz) for structures from a first-principles based MC (gas)
or CPMD (solution) simulation, averaged over 1311 (gas) or 200 (solution) configurations.
Besides the average values, we also give the maxima of the hfcc distributions as shown in
Figure 4.5. The values for the optimized isolated structures of C2v and Cs symmetry are
included for comparison. Additionally, experimental values and results from a continuum
solvation model are shown. Note that the signs of the hyperfine coupling constants are not
determined in Ref. [353]. They have been inferred from the study in Ref. [351] and from our
calculations.

a(14N) a(H)
optimized molecule
C2v 10.0 −36.5
Cs 17.8 −25.3
gas phase simulation (1311 conf.)
average 19.8 −22.6
max. 10.5 −36.5
exp. (Ref. [351]) 27.10 −29.51
simulation aqueous solution (200 conf.)
average 21.6 −28.5
max. 14.5 −38.5
exp. (Ref. [353]) 35.9 −35.9
shift
average 1.8 −5.9
max. 4.0 −2.0
B3LYP/PCM/EPR-3 (Ref. [359]) 0.6 −10.6
exp. (Refs. [351, 353]) 8.8 −6.4

Figure 4.5: Distribution of the isotropic hyperfine coupling constants a from 1311 snapshots
of a first-principles based Monte Carlo simulation of H2NO in the gas phase (left) and in
water (right). Probabilities are given for intervals of 1 MHz.
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Figure 4.6: Isotropic hfcc a for 1H and 14N for H2NO in the gas phase (left) and in aqueous
solution (right) as a function of the out-of-plane bending angle θ. Shown are data points
for every 20th snapshot in the gas-phase simulation (327 in total) and for every fifth of the
first 1000 snapshots in solution (200 in total) for clarity of presentation (note that there are
two data points for each snapshot in case of 1H because of the two non-equivalent hydrogen
atoms). Also shown are the quadratic fits to these data sets.
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Table 4.4: Coefficients for the fits a(θ) = a0 + a1θ
2 of the isotropic hfcc a as a function of

the out-of-plane bending angle θ. The values were obtained by fitting the data sets shown
in Figure 4.6.

a0 / MHz a1 / (MHz/degree2)
14N (gas) 10.860 0.0218
14N (solution) 14.935 0.0185
1H (gas) −39.218 0.0297
1H (solution) −35.831 0.0324

effect of the solvent. The results are in qualitative agreement with the experimental
shifts, which again demonstrates that structural effects — although important for the
average hyperfine coupling constant — are similar in gas phase and solution.

4.2.3 Assessment of the results

The example studied here demonstrates that frozen-density embedding can be used to
reliably model solvent effects on ESR hyperfine coupling constants in connection with an
appropriate way to sample the configurational space. A sophisticated treatment for both
structural and electronic effects of macrosolvation is necessary in order to reproduce the
experimental trends in particular for nitrogen, to assess which of the two effects will be
stronger in solution.
In our simulations we observed that the average out-of-plane angle θ is slightly lower
in solution than in the gas-phase. The strong dependence of the hfcc on θ suggests
that there should be a small change towards smaller values for both a(1H) and a(14N).
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The pure electronic effect can be estimated from the shift between the data sets for
gas-phase and solution in Figure 4.6. In a first approximation (for small angles, which
have the highest probability), the curve of a(1H) is shifted by ≈ −3 MHz in solution,
and the curve of a(14N) is shifted by ≈ +4 MHz.
To calculate the change in the average hfcc upon solvation, we also have to consider the
changes in the probability for different structures, in particular for different out-of-plane
angles. In contrast to the classical Monte Carlo simulation in Ref. [355], we do not
find a significant difference in the probability distribution of the out-of-plane bending
angle between gas-phase and solution. We attribute the differences in Ref. [355] to the
ROHF-based potential energy surface with a minimum at a much too large angle θ.
The total shifts in the average hfcc in our study are −5.9 MHz (1H) and +1.8 MHz
(14N), compared to −6.4 MHz and +8.8 MHz, respectively, in experiment. From these
calculated shifts we can — by subtracting the estimates for the electronic contribution
— give rough estimates for the structural contributions of ≈ −3 MHz for hydrogen and
≈ −2 MHz for nitrogen.
Like in the microsolvation study, we see that structural and electronic effects cause
shifts in opposite directions for nitrogen. But in the solution study the electronic effects
dominate, so that the calculated shift for 14N is too low, but it still has the same direction
(plus sign) as in experiment. The quantitative modeling is complicated by the fact that
already slight changes in the probability distribution have large effects on the average
hyperfine coupling constants. Although the electronic effect might still be underestimated
a bit by neglecting relaxation and spin-polarization effects in the frozen density, our
tests showed that the (combined) errors introduced by these approximations should not
be larger than ≈ 1 MHz. To arrive at full quantitative agreement with experiment,
structural differences between gas-phase and solution would probably have to be modeled
even more accurately (i.e., by using more sophisticated electronic structure methods in
combination with large statistical test sets of snapshots). The results for hydrogen on
the other hand are very encouraging and agree with the experimental shift within 0.5
MHz, although they might partially benefit from error cancellation in structural and
electronic effects.

4.3 Solvatochromism of aminocoumarin C151

In this section, we extend the analysis of solvation phenomena to shifts in absorption
bands of somewhat larger dye molecules, which require solvent shells of considerable size
and thus pose a greater challenge to the embedding scheme. We choose a coumarin dye
as a prototypical example from a class of molecules which show a strong dependence
of absorption and fluorescence characteristics on the surrounding medium (see, e.g.,
Ref. [360]). Consequently, these molecules have been of considerable interest as laser
dyes in the near-ultraviolet to green part of the spectrum [361], and as environmental
or solvent probes.
The lowest singlet excitation in these aminocoumarins is a π → π∗ excitation, which
shows a pronounced redshift in polar solvents [362–364]. Isosurface plots of the orbitals
involved in this transition in case of aminocoumarin C151 (see Figure 4.7 for the
Lewis structure) are shown in Figure 4.8. Former theoretical studies on the absorption
properties and excited states of these molecules in solution mainly used continuum
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solvation models [365–368]. Especially in Ref. [365], the importance of specific and
inhomogeneous interactions between solvent and solute, which are necessarily neglected in
continuum models, was underlined. In Ref. [297], the excitation energies were calculated
for C151 in water and acetonitrile. Solvent shifts were then computed with respect to
the vertical excitation energy of the molecule in vacuum (as a model for a non-polar
solvent), and they were found to reproduce the experimental shifts between non-polar
and polar solvents quite well. A direct comparison of the simulations in acetonitrile and
water, however, indicates a shift between these two solvents of 0.11 eV, compared to an
experimental shift of < 0.01 eV [362]. Moreover, it is known from CPMD simulations
[116] or studies of the vibrational broadening of absorption bands [319, 369, 370] that
vertical excitation energies and band maxima for gas-phase molecules often differ by
0.1 to 0.2 eV, so that this aspect should be taken into account in the calculation of
shifts in excitation energies. Hence, we want to assess the quality of the frozen-density
embedding scheme in combination with a classical MD simulation for the calculation of
solvatochromic shifts. For a direct comparison of a polar and a non-polar solvent, we
conduct simulations in n-hexane and in water.

Figure 4.7: Structure of aminocoumarin C151.

NH2 O O

CF3

Figure 4.8: Isosurface plots of HOMO (π) and LUMO (π∗) orbitals of aminocoumarin C151.

In the following, an assessment and a validation of different types of approximations
within the FDE approach as well as a closer look at the origin of the shift in our
simulation are presented. We also introduce a combination of the sum-of-fragment
approach for the frozen density and the freeze-and-thaw technique [357]. The results of
the final spectrum simulation are shown in Section 4.3.2.
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4.3.1 Comparison of approximate solvent models

The calculation of solvatochromic shifts requires to sample over the different possible
structures of the solute and the surrounding solvent. In this section we want to validate
our solvent model using a small set of 50 snapshots of C151 in solution for each solvent by
comparing different types of embedding calculations. An extended statistical sampling
with 400 snapshots from eight independent trajectories follows in the next section, which
shows that the results obtained in this section are accidentally closer to experiment.
Additionally, we try to separate the structural and electronic contributions to changes
in the excitation energies.

To this end, classical dynamics simulations (see Appendix B for details) were performed.
For the snapshots from these simulations, a substructure was created in which the nearest
300 solvent molecules were taken into account in the case of water as a solvent, and
the nearest 45 solvent molecules in case of n-hexane. This amounts to 900 atoms in
the frozen-density system in both cases. It was tested that with this setup excitation
energies are converged w.r.t. the size of the solvation shell. For the preparation of
the frozen-density in the former case, the innermost 50 water molecules were treated as
flexible fragments (geometries taken from the snapshots), while a uniform rigid structure
(optimized in vacuo) was used for the outer water molecules. No rigid structures were
assumed for the n-hexane molecules. The electron density of the solvent was then
calculated with LDA/DZP. Tests in which a TZP basis set was used for the solvent
density did not result in significant changes.

We first computed the shift in excitation energies for C151 in n-hexane compared to
the vertical π → π∗ excitation energy of the optimized, isolated molecule (3.238 eV).
To separate the structural effect due to the dynamics in solution and the electronic
effect due to the frozen density, we performed two series of excitation calculations: In
the first, we removed all solvent molecules from the snapshots, while we kept them
in the second. The first series, which includes only the structural effect, resulted in
an average excitation energy of 3.096 eV, 0.142 eV lower than the vertical excitation
energy for the isolated molecule. In contrast to this, the electronic effect in n-hexane
is negligible. If the n-hexane molecules are included by frozen-density embedding, the
average excitation energy changes by only 0.004 eV to 3.092 eV. The spectra simulated
in this way are shown in Figure 4.9.

In Ref. [297] the vertical excitation energy of the isolated molecule was taken as a
reference value to compute the “solvent shift” for solvation in water, which was then
compared to the experimental shift between water and n-hexane (the latter being a
solvent where both specific and non-specific solvent effects are expected to be small). In
view of the difference of 0.146 eV in our calculation between the isolated molecule and
the average excitation energy in n-hexane, we think that this is an oversimplification.
This is mainly due to the fact that the (dynamic) structural effect is neglected in a
(static) vertical excitation calculation. This also holds when comparing to a shift between
experimental gas-phase and solution spectra, since also gas-phase dynamics may change
the average excitation energy by 0.1 to 0.2 eV compared to vertical excitation energies,
as is known from other CPMD [116] or vibronic coupling simulations [319].

We performed similar calculations for the snapshots obtained with water as a solvent.
Considering the pure structural effect, we obtain an average excitation energy of 3.085
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Figure 4.9: Simulated spectra for aminocoumarin C151 in solution based on reduced sets
of 50 snapshots. Water (left) and n-hexane (right) have been considered as solvents. Each
individual transition is represented by a Gaussian curve of half-width 0.08 eV. Shown are
spectra in which the solvent is either included in a frozen-density calculation or completely
omitted. In the latter case, only the structural effect of the dynamics in solution affect the
spectrum. For water, we also show a simulation in which the 5 nearest water molecules are
included in the embedded (non-frozen) system. In this simulation, the band at the high-
frequency end of the spectrum is not obtained, since the number of excited states in the
calculation was restricted to 5, and additional excitations arise due to the water molecules.
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eV, which is comparable to n-hexane. This suggests that — within our model for the
dynamics — there are no significant structural differences in the solute molecule itself
for the different solvents. In contrast to n-hexane, however, the electronic effect is more
important for the aqueous solution. Modeling this electronic effect by the frozen-density
embedding including 300 frozen water molecules yields an average excitation energy of
2.955 eV, so that structural (−0.153 eV) and electronic effects (−0.130 eV) are of similar
magnitude.

The solvent shift of −0.137 eV between n-hexane and water calculated from this limited
statistics — though qualitatively correct — considerably underestimates the experimental
shift of −0.22 eV. Test calculations showed that the frozen-density embedding, especially
in its simplest form (i.e., without relaxation), may have some problems to accurately
model the effect of hydrogen-bonded water molecules for the current system [184]. This
could be improved, but in the present case not completely cured, by using at least one
freeze-and-thaw cycle to polarize the frozen density. There is, however, a fundamental
problem when using the sum-of-fragment approach introduced in Section 3.4.3 to generate
the frozen solvent density: We can only polarize the frozen density during an SCF for
the solvent system. The results in Ref. [309] suggest that polarization is most important
in those cases, where direct hydrogen bonding between the frozen and the embedded
system becomes important. We therefore tested the following hybrid approach: We
choose a set of solvent molecules which are close to the solute, typically only five to
ten molecules in the case of water, and calculate their density in an FDE calculation,
in which the density of the isolated aminocoumarin C151 is kept frozen. Then, we
combine the density of this polarized fragment with the density of all remaining solvent
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Table 4.5: Average excitation energies and solvent shifts (eV) for the π → π∗ excitation of
aminocoumarin C151. They are obtained from an analysis of a reduced set of 50 snapshots
of MD simulations for this molecule in water and n-hexane, respectively. For comparison we
also present calculations in which the solvent molecules have been removed in the excitation
calculation, so that only the structural effect of the dynamics in solution is monitored. The
acronym (fr.) stands for frozen, non-relaxed solvent molecules, (rel.) means frozen and relaxed
(polarized by the C151 density) solvent molecules, (fully rel.) means frozen and fully relaxed
solvent molecules (polarized by C151 and the outer water molecules), and (non-fr.) denotes
non-frozen solvent molecules (included in the embedded system).

structure C151 solvent model Eex / eV
isolated, opt. — 3.238
simulation n-hexane — 3.096
simulation n-hexane 45 n-hexane (fr., non-rel.) 3.092
simulation H2O — 3.085
simulation H2O 300 H2O (fr., non-rel.) 2.955
simulation H2O 5 H2O (fr., rel.), 295 H2O (fr., non-rel.) 2.930
simulation H2O 10 H2O (fr., rel.), 290 H2O (fr., non-rel.) 2.923
simulation H2O 10 H2O (fr., fully rel.), 290 H2O (fr., non-rel.) 2.916
simulation H2O 5 H2O (non-fr.), 295 H2O (fr., non-rel.) 2.862

molecules using the simple sum-of-fragment approach. The resulting density is frozen
and used in an FDE calculation on aminocoumarin C151. This partial relaxation leads
to an average excitation energy of 2.930 eV when the nearest five water molecules are
polarized, and of 2.923 eV when the nearest ten water molecules are relaxed, thus
improving the shift between n-hexane and water solution from −0.137 eV to −0.162 or
−0.169 eV, respectively. The small change from five to ten polarized water molecules
confirms that polarization is only needed for the closest solvent molecules, which show
the strongest interactions with the solute. We also tested the effect of relaxing the ten
nearest water molecules not only with respect to the frozen C151 density, but also to the
frozen density of the remaining water molecules, before this relaxed density is combined
with the other water molecules and again used in an FDE calculation on aminocoumarin
C151. This yields an average excitation energy of 2.916 eV, corresponding to a solvent
shift of −0.176 eV.

The restriction of the response to the embedded system can be another significant source
of error in the present case. Due to this restriction, changes in the solvent electron
density upon excitation cannot be described. A big advantage of the embedding scheme
is that the embedded system can always be extended to include also the nearest solvent
molecules, if we have an indication that they might take part in the excitation process.
This leads to a shell-like approach which is shown in Figure 4.10: There are three layers
of water molecules in the system, of which the innermost is treated explicitly (or by
relaxation, if sufficient). The next layer consists of normal frozen solvent molecules,
which complete (at least) the first solvation shell. The third layer is formed by rigid
water molecules modeling outer solvation shells.
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Figure 4.10: Shell structure in frozen-density embedding calculations. Top: The innermost
solvent molecules (red), for which hydrogen bonding to the solute (blue) is expected, can be
included in the embedded system, or partial relaxation can be used for them. Middle: To
complete the first solvation shell, flexible, solvent molecules (green) are added with structures
according to the snapshot of the dynamics and with frozen density. Bottom: Outer solvation
shells are modeled by rigid water molecules (grey).
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We tested this for the simulation in water and included the five water molecules closest
to the dye molecule in the non-frozen system, while the remaining 295 water molecules
for each snapshot were described by the frozen-density embedding scheme. The average
excitation energy for the π → π∗ excitation drops to 2.862 eV, 0.093 eV lower than in
the sum-of-fragment calculation. This corresponds to a solvent shift between n-hexane
and water of 0.230 eV for this limited set of snapshots, which agrees within 0.01 eV
with the experimental shift. The standard error in the average excitation energies is
still larger than 0.02 eV in this case. The combination of five explicit water molecules
in the embedded system with 295 frozen water molecules thus appears appropriate
to be used in a more extensive statistical sampling (see below). Including further
water molecules in the non-frozen region appears neither necessary nor adequate. Such
water molecules, which are not hydrogen-bonded to the dye molecule, will not directly
contribute to the π → π∗ excitation. The calculations with partially polarized water
densities already demonstrate that the influence of the nearest five water molecules
on the average excitation energy is much larger than that of the following five water
molecules. Additionally, the calculations with more non-frozen water molecules would
suffer from two problems: First, the computer time still shows the scaling behavior of
conventional DFT/TDDFT calculations with respect to the number of atoms in the non-
frozen region, so that the calculations get considerably more expensive if many water
molecules are included in the embedded part. Second, and even more severe, explicit
water molecules increase the risk of artificially low-lying charge-transfer excitations from
water-oxygen lone pairs to the π∗ orbital of the aminocoumarin. Even with only five
explicit water molecules, such excitations occur in rare cases. They can also affect the
desired excitations by spurious mixings (see Section 3.4.4), and make the identification
of these transitions cumbersome.

4.3.2 Spectra simulations

To improve our statistical analysis, we use 8 trajectories as explained in Section 4.3.1
for every solvent, leading to 400 snapshots in each case. In the last section it was
shown that it is necessary to include those water molecules explicitly into the embedded
system which interact via hydrogen bonds with the aminocoumarin. Therefore, we use
five non-frozen and 295 unpolarized frozen water molecules for water as a solvent. For
comparison, we also perform a calculation in which all water molecules are frozen and
unpolarized. For n-hexane, we only use this simple scheme, since electronic effects are
very small in that case anyway.

In Figure 4.11, we present the spectra resulting from 400 snapshots of the simulation
in water and in n-hexane. Average excitation energies and solvent shifts calculated
from these data are presented in Table 4.6. All solvent shifts here are extracted from
average excitation energies, but using other methods to extract the mean values (cf.
Section 3.4.5) changes this shift only in the order of 0.01 to 0.02 eV.

The simulation for n-hexane yields an average excitation energy of 3.07 eV, which is about
0.02 eV lower than for the smaller test set studied in Section 4.3.1, and 0.17 eV lower
than the vertical excitation energy for the optimized, isolated structure. The average
excitation energy in water is 2.90 eV for the recommended solvent model including five
non-frozen water molecules, ca. 0.04 eV higher than for the limited statistics in the
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Figure 4.11: Simulated spectra for aminocoumarin C151 in solution. Water and n-hexane
have been considered as solvents. Each individual transition is represented by a Gaussian
curve of half-width 0.08 eV. For water, two simulations have been carried out: (A) five
non-frozen, 295 frozen water molecules; (B) all 300 water molecules frozen. In the former
simulation, the band at the high-frequency end of the spectrum is not obtained, since the
number of excited states in the calculation was restricted to 5, and additional excitations
arise due to the water molecules.
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last section. Also for the simpler model with 300 frozen water molecules, the larger
statistics increases the average excitation energy by about 0.03 – 0.04 eV (compared to
the single trajectory) to 2.99 eV.

The calculated solvent shift from n-hexane to water is −0.17 eV when including five non-
frozen water molecules, which is in satisfactory agreement with the experimental shift
of −0.22 eV. The simple embedding technique with all 300 water molecules frozen also
shows a clear shift in negative direction, but its magnitude is somewhat underestimated
with only −0.08 eV. Due to the standard errors in the average excitation energies (0.005
eV to 0.008 eV), the statistical error estimated for the solvent shifts is ca. ± 0.01 eV.
In Table 4.6, we also calculate the shifts between the isolated molecule and the molecule
solvated in water. Although this shift lacks a direct physical meaning, it allows a
comparison to the QM/MM-CPMD study in Ref. [297]. With five non-frozen water
molecules, the shift between isolated structures and aqueous solution in our calculation
is identical to that in Ref. [297], where all water molecules were treated with a classical
model (−0.33 eV). The simple embedding technique (300 frozen water molecules) instead
yields a value of −0.25 eV for this shift. If we would use the vertical excitation energy
of the optimized, isolated molecule as a first approximation to the average excitation
energy in a non-polar solvent like n-hexane, we would have to conclude that the simpler
embedding model with 300 frozen water molecules yields the better results. The direct
comparison of the average excitation energies in the different solvents reveals, however,
that this is not the case.

The vertical excitation energy of the isolated molecule is thus not a well-defined reference
for the computation of solvatochromic shifts in a polar medium with respect to a
non-polar one. For a direct comparison to experimental shifts in different media, the
absorption spectra should be modeled in both solvents and then be compared.
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Table 4.6: Average excitation energies and solvent shifts (eV) for the π → π∗ excitation of
aminocoumarin C151. They are obtained from an analysis of 400 snapshots of MD simulations
for this molecule in water and n-hexane, respectively. Two simulations have been carried
out for water: (A) five water molecules included in the embedded system, 295 frozen H2O
molecules: (B) all 300 water molecules frozen. For comparison, we give the shift w.r.t. the
vertical excitation energy of the optimized isolated structure. We also include the results
from a QM/MM-CPMD study (all water molecules are treated in MM fashion there) [297].

embedding QM/MM-CPMDa exp.b

(SAOP/TZP/DZP) (BLYP)
isolated, opt. 3.24 3.32 —
n-hexane 3.07 — 3.70
water (A) 2.90 2.99 3.48
water (B) 2.99
shift n-hexane – water (A) −0.17 — −0.22
shift n-hexane – water (B) −0.08
shift isolated – water (A) −0.33 −0.33 —
shift isolated – water (B) −0.25

aRef. [297]
bRef. [362]

In summary, almost no electronic effect on the excitation energies arises in the n-hexane
solution for aminocoumarin C151, but such an effect is clearly visible for an aqueous
solution. A considerable change in the excitation energies is induced by water molecules
which are hydrogen-bonded to aminocoumarin C151. The spectra simulations show that
the calculated solvent shift between the two different solvents is too small if all water
molecules are kept frozen, but it is still qualitatively correct. Our tests on a limited set
of 50 snapshots clearly demonstrate that the results can be improved by a relaxation
of the frozen density. While this relaxation usually requires a full SCF for the frozen
system, we devised a method to combine a partial relaxation of the innermost solvent
shell with the sum-of-fragment approach for the construction of the frozen density.

An inclusion of a few solvent molecules in the embedded region remains important in
those cases in which the first solvation shell takes part in the response of the system.
In the present case, the magnitude of the experimental shift of −0.22 eV is reproduced
within 0.05 eV when the closest water molecules are included in the embedded system.
A quantitative prediction of solvent shifts is thus efficiently possible by this QM/QM
embedding even if the response is not strictly localized on the solute molecule.

4.4 Induced circular dichroism

The environmental effects investigated in the previous sections addressed solvation phe-
nomena on spectroscopic properties. Such phenomena can often qualitatively be de-
scribed by other types of embedding schemes relying on empirical parameters for the
particular solvent under study. Among the big advantages of the FDE approach are the
facts that (i) specific interactions with the environment can be described since FDE is
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an atomistic quantum chemical method, and (ii) it is parameter-free, so that any kind
of environment can be represented if a reasonable approximation for its electron density
can be obtained.

A type of spectroscopy that can act as a very sensitive probe for intermolecular in-
teractions when chiral molecules are involved is circular dichroism (CD) spectroscopy.
Of particular interest in this context is the effect of induced circular dichroism (ICD),
which is the phenomenon that the CD spectrum of a mixture of two compounds differs
from the sum of the spectra of the two individual compounds. Most attention has been
paid to cases of ICD in which an achiral chromophore shows circular dichroism in the
presence of a chiral partner, especially when the latter alone does not show CD activity
in the wavelength regime investigated in a certain experiment. In those cases, a CD
signal can be observed when combining the two compounds while there is no signal for
either of the individual compounds.

This effect is related to interactions between the achiral chromophore and the chiral
partner in its surrounding. The most important examples are symmetric compounds in
optically active solvents and complexes between chiral and achiral molecules. A special
case of the latter are host–guest complexes with achiral guest molecules in chiral hosts.
Two basic mechanisms causing ICD can be distinguished [371], a structural perturbation
of the achiral guest by the chiral partner, and an electronic perturbation of the guest
due to the chiral environment. For the structural effects, a further classification can
be made into (i) symmetric molecules that are inherently non-chiral, but for which a
chiral, non-symmetric structure is favored in presence of the chiral environment, and
(ii) molecules with inherently chiral structures, which are not optically active due to
low barriers between the enantiomeric forms, but for which a chiral partner selectively
stabilizes one enantiomeric form. The former molecules are non-chiral already in a
static picture (e.g., benzene), whereas the latter are only non-chiral on average (or in a
dynamic picture), as both enantiomeric forms will occur with equal probabilities (e.g.,
hydrogen peroxide).

Many systems showing ICD have been investigated experimentally. In particular the
class of cyclodextrins has been studied in detail as a host system for many small,
achiral molecules, e.g., benzoylbenzoic acid [372], different azi- and diaziadamantanes
(see Ref. [371]), 2,3-diazabicyclo[2.2.2]oct-2-ene and derivatives [373, 374], substituted
benzenes [375], N -bromophthalimide [376], maleimide [377], naphthalene [378] and its
derivatives [379], as well as fluorenone and xanthone [380]. A more extensive overview
over cyclodextrin inclusion compounds can be found in Refs. [381, 382]. Tokura and
co-workers investigated the induced circular dichroism and its solvent dependence in
the 2-benzoylbenzoic acid–amphetamine system [383,384]. Another application of ICD
is its use for chirality sensing, e.g., for amino acids, as demonstrated in Ref. [385].

Computational studies on induced circular dichroism are often restricted to classical
molecular mechanics (MM) approaches or semiempirical approaches, especially for the
relatively large systems of cyclodextrin compounds [377, 380, 386]. In many cases, the
intensity analyses for the CD spectra are based on the Kirkwood model of coupled
oscillators [387] or, to be more precise, on the modified Kirkwood expression based on
bond polarizabilities developed by Tinoco [388] (see, e.g., the work in Refs. [378, 380,
389,390]). Such investigations resulted in Harata’s rule, which states that the ICD of a
chromophore inside the cyclodextrin cavity will always be positive if its electric transition
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dipole moment is parallel to the principal axis of the cyclodextrin cavity [371,378], and
negative, if it is perpendicular. Additionally, Kodaka’s rule states that the situation is
reversed if the chromophore is located outside the cyclodextrin cavity [391, 392].

Due to the size of the host molecule, first-principles calculations of excitation energies
and rotational strengths for these systems are rather demanding. Although TDDFT
calculations may still be feasible for these systems, they suffer from spuriously low
long-range inter- and intramolecular charge-transfer excitations. In particular for rather
weakly bound systems, like the supramolecular complexes for which ICD is reported,
many of such artificially low excitations occur, as has been demonstrated in Section 3.3.

In this section, we want to study the ability of FDE to capture the effect of in-
duced circular dichroism by more complex surroundings, consisting of chiral partners
in supramolecular aggregates or symmetry-breaking host systems. Since the response
of the environment (the frozen system) is explicitly assumed to be negligible in the
FDE-TDDFT scheme (see Section 3.4.2) only those systems can be treated in which
the circular dichroism is due to transitions within the embedded system. If transitions
in both systems are important, it would still be possible to do two FDE calculations
with either the one or the other system frozen, so that the contributions of the two
molecules can be calculated separately. However, effects arising from a coupling of
electronic transitions in the two system cannot be described correctly by this type of
frozen-density embedding. But it should be a valuable tool if the ICD can be described
in terms of the perturbation of the guest’s electronic structure by the host system’s
charge density. Note that only electronic circular dichroism will be investigated here; for
a recent study on complexation effects on vibrational circular dichroism, see Ref. [393].

We analyze the results of FDE in calculations of the CD spectra of complexes between
2-benzoylbenzoic acid and (−)-(R)-amphetamine in Section 4.4.1. A ferrocenecarboxylic
acid–crown ether conjugate in a complex with protonated L-leucine serves as an ex-
ample with a more complicated electronic structure in Section 4.4.2. The aim of these
investigations is to analyze the advantages and shortcomings of FDE, in particular in
comparison to TDDFT calculations for the full complex, while a direct comparison to
experiment would require a much more extensive survey of possible low-energy struc-
tures. Section 4.4.3 deals with phenol as a guest in a cyclodextrin host molecule, a
system in which the limitations of the FDE-TDDFT approach become apparent. This
is due to the inability of frozen-density embedding to describe excitonic couplings to
the frozen-density region, which is a consequence of its restriction to the orbital space
of the embedded system. A prototypical case for this failure is the the benzaldehyde
dimer in Section 4.4.4.

4.4.1 Complexation of benzoylbenzoic acid by amphetamine

The first compound studied here is a hydrogen-bonded complex between the non-chiral 2-
benzoylbenzoic acid and (−)-(R)-amphetamine. The optimized structure of this complex
is shown in Figure 4.12. This system was experimentally studied in detail by Tokura
and co-workers [372,383]. They found strong evidence for the formation of a 1:1 complex
between the two molecules in solution. From the vibrational frequencies and the solvent
dependence of the ICD signal, they concluded that the complex was formed by the
deprotonated acid and the protonated amphetamine [383]. The ICD signal was found to
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be weaker in polar solvents, which favor the separation of the ion pair. Our optimization
of the isolated complex did not lead to an ion-pair structure, although the hydrogen
bond between the amino-N and the proton of the carboxyl-group is relatively short
(1.7 Å in structure 1a). Since the goal of this study is an assessment of frozen-density
embedding for modeling the ICD effect, we refrain from a detailed discussion of this
structural feature.
In this system, (−)-(R)-amphetamine acts as the chiral part that shall be described in
terms of its frozen density. The isolated amphetamine in the structure of complex 1a
shows only very weak CD intensity in the wavelength range investigated here, and no
transition for this molecule is observed below 4.75 eV. Furthermore, the lowest excitations
of (−)-(R)-amphetamine are shifted too higher energies ( > 5 eV) in complex 1a, so
that its contribution to the total CD spectrum is not relevant for our purposes and
consequently will not be discussed. Benzoylbenzoic acid is the non-chiral part in this
system, but it is non-chiral only in a dynamical sense. In its structure in 1a it is chiral,
and it has a non-zero CD spectrum as shown in Figure 4.13. A broad negative CD band
from several overlapping transitions can be observed at 360 nm, and a weak positive
band occurs at 287 nm, followed by a stronger negative band at 250 nm.

Figure 4.12: Optimized (BP86/TZP) structures of the benzoylbenzoic acid — (−)-(R)-
amphetamine complex. The structure of benzoylbenzoic acid in complex 1b is the (re-
optimized) mirror image of that in complex 1a (the mirror plane is approximately the
plane of the benzoyl group; see side views on lower panel). Note that the amphetamine
rotated around the C−N-bound during re-optimization. The energy difference between the
two complexes is 0.6 kJ/mol.
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In order to see if there is an induced circular dichroism in complex 1a we calculated the
CD spectrum of this complex in a supermolecular calculation. The resulting spectrum is
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included in Figure 4.13. The CD spectrum of the isolated 2-benzoylbenzoic acid in the
structure of complex 1a differs significantly from the CD spectrum of the whole complex
(as obtained in the supermolecular calculation). First, we observe a weak negative band
at 402 nm. However, this is a spurious transition in the supermolecular calculation,
since it represents partial charge-transfer between the two molecules. ALDA-TDDFT
does not describe such transitions correctly, yielding typically much too low excitation
energies. Besides this feature, the most important differences are a strong positive band
at 312 nm and a shoulder (at 282 nm) to the strong negative band at 256 nm, which
is shifted a bit compared to the isolated 2-benzoylbenzoic acid and shows slightly lower
intensity. This comparison shows that there is an important electronic contribution due
to the effect arising from the amphetamine on the 2-benzoylbenzoic acid.
To answer the question whether this effect can be modeled in terms of an effective
embedding potential, we carried out a calculation with a frozen-density representation
of the chiral amphetamine molecule. Two freeze-and-thaw cycles were used in the
embedding calculation, but the differences w.r.t. the results obtained with one freeze-
and-thaw cycle are negligible. Therefore, only one freeze-and-thaw cycle is used in all the
other examples studied in this section if not explicitly stated otherwise. The resulting
CD spectrum is shown in Figure 4.13. In the spectra plots, all vertical excitations are
represented as Gaussian curves with a half-width of 0.4 eV. The electronic contribution
is very nicely reproduced by the FDE calculation, in which the amphetamine was treated
as the frozen system. We observe a negative band at 353 nm, a positive band at 309
nm, and a shoulder at 281 nm to the strong negative band, which has its maximum at
254 nm. Although the rotational strengths for the bands at 353 and 309 nm differ a bit
from the corresponding supermolecular values, the general agreement between the two
curves is very nice. The only feature which is missing in the frozen-density calculation is
the low-intensity band at 402 nm with partial intermolecular charge-transfer character,
which cannot be obtained in FDE calculations.

Figure 4.13: CD spectra of the 2-benzoylbenzoic acid — (−)-(R)-amphetamine complex 1a in
Figure 4.12. Shown are spectra from an embedding calculation in which the amphetamine was
represented by its frozen density (solid line), a supermolecular calculation (dashed line), as well
as the spectra of isolated benzoylbenzoic acid (dashed-dotted line) and (−)-(R)-amphetamine
(dotted line) in the structures they assume in complex 1a.
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While the spectra shown in Figure 4.13 are a superposition of all excitations, we report
the individual excitation energies and rotational strengths in Table 4.7. That table
shows data for the isolated 2-benzoylbenzoic acid, the 2-benzoylbenzoic acid with the
effective embedding potential of the (−)-(R)-amphetamine, and the complex of the two
molecules (“supermolecule”). Corresponding excitations were found by mapping the
excitations of the supermolecule onto those excitations of the embedded or isolated
molecule for which the transition densities have the largest overlap (see Ref. [116]).

Table 4.7: Excitation energies Eex (SAOP/TZP; in units of eV) and rotational strengths R
(in cgs units of 10−40 esu2 cm2) for complex 1a in Figure 4.12. For comparison, also the
results for the isolated benzoylbenzoic acid in the structure of complex 1a are given.

supermolecule embedding isolated
No. Eex R Eex R Eex R

1 2.87 0.02 — —
2 3.04 −0.48 — —
3 3.18 −9.46 3.28 −0.84 3.66 −2.54
4 3.34 12.54 — —
5 3.51 −16.76 3.52 −14.79 3.42 −9.36
6 3.86 6.51 3.86 8.60 4.04 4.45
7 3.92 −11.71 3.91 −13.92 3.82 −3.22
8 4.00 27.88 4.03 21.55 4.30 2.00
9 4.13 −0.15 — —

10 4.21 −0.03 — —
11 4.30 0.32 — —
12 4.34 −13.49 4.33 −10.31 4.16 −5.60
13 4.37 −0.26 — —
14 4.41 0.27 4.54 1.52 5.09 −1.45
15 4.45 0.01 — —
16 4.49 5.37 4.56 −2.30 4.57 −2.05
17 4.51 −5.59 — —
18 4.60 −0.14 4.52 −2.47 4.35 7.62
19 4.62 −0.05 — —
20 4.65 0.41 — —
21 4.72 −6.60 4.74 −3.39 4.88 −3.74
22 4.73 0.42 4.78 −3.85 4.84 −1.08
23 4.84 −20.80 4.87 −18.46 4.95 −22.98

It can be observed that there are some excitations for which no corresponding transitions
can be found in the embedding or isolated calculation for 2-benzoylbenzoic acid. These
are charge-transfer excitations from one of the two molecules to the other. For charge-
transfer excitations, the XC-kernel in ALDA-TDDFT calculations completely fails as
discussed in Section 3.3: It yields a zero contribution, and the excitation energies reduce
to the orbital energy differences of the orbitals involved. As can be recognized from
Table 4.8, for almost all of these excitations missing in the embedded calculation, the
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orbital energy difference and the excitation energy are practically identical, which is
a strong hint on their CT nature. Further characteristics of CT excitations are their
low transition moments and rotational strengths, which holds for all of these additional
excitations except the ones at 3.34 eV and 4.51 eV. The latter also show the largest
deviations from the orbital energy differences for the excitation energies. Indeed, we find
a mixed character of CT and intramolecular valence transitions for these two excitations.
The other supermolecular CT excitations in Table 4.7 can be regarded as artefacts of
the ALDA-TDDFT method, with much too low energies.

Table 4.8: Excitation energies Eex and orbital energy differences ∆ǫorb for the most important
orbital pair in those excitations in Table 4.7 for which no corresponding excitation exists in
the embedding calculation (SAOP/TZP; in units of eV).

No. Eex ∆ǫorb

1 2.87 2.87
2 3.04 3.04
4 3.34 3.30
9 4.13 4.13

10 4.21 4.21
11 4.30 4.30
13 4.37 4.37
15 4.45 4.45
17 4.51 4.41
19 4.62 4.62
20 4.65 4.63

Figure 4.14: CD spectra of the benzoylbenzoic acid — (−)-(R)-amphetamine complexes 1a

(dotted line) and 1b (dashed line) in Figure 4.12 as well as the sum of these two spectra
(solid line).

280 300 320 340 360 380 400
wavelength / nm

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

∆ε
 / 

(L
 m

ol
-1

 c
m

-1
)

sum 1a + 1b
1b
1a



4.4. Induced circular dichroism 121

For the transitions which occur in both the supermolecular and the embedding cal-
culation, the excitation energies typically agree very nicely within 0.03 eV, even for
excitations that shift by up to 0.3 eV compared to the isolated calculation. Excitations
with larger differences between embedded and supermolecular calculation typically also
show larger absolute shifts with respect to the isolated 2-benzoylbenzoic acid, so that
the relative deviations are still rather small. E.g., the lowest singlet excitation in the
isolated molecule shifts from 3.66 eV to 3.28 eV (embedding) or 3.18 eV (supermolecule),
and the excitation at 5.09 eV in the isolated molecule shifts to 4.54 eV (embedding)
or 4.41 eV (supermolecule). There is no excitation for which the embedding predicts
a wrong direction of the shift. Also the rotational strengths are quite similar, which
leads to the very good overall agreement of the spectra. There is one exception for
the rotational strengths: The excitation at 3.18 eV in the supermolecular calculation
has a large negative rotational strength, while the embedding calculation predicts a
transition at 3.28 eV with a small negative rotational strength. In the supermolecular
calculation, there is another transition with large positive rotational strength at 3.34
eV, which also has a reasonable transition density overlap [318,319] with the excitation
at 3.28 eV in the embedding calculation. This excitation at 3.34 eV is — as noted
before — a spurious CT transition (cf. Table 4.8), but being accidentally close to
another excitation, it distorts the rotational strengths of the two transitions, picking
up much too high rotational strength itself and leaving a much too negative rotational
strength for the excitation at 3.18 eV. The net effect in the spectra is quite similar:
both in the supermolecular and in the embedding calculation, the total CD signal in
that energy range is quite small. Also for the excitations at 4.49, 4.51, and 4.60 eV
in the supermolecular calculation, we observe a rather strong mixing between different
orbital transitions, one of which is of CT type, leading to a cancellation of the rotational
strengths. From this example, it can be concluded that frozen-density embedding is
very well suited to reproduce the change in the CD spectrum due to the interactions
with the chiral, hydrogen-bonded partner molecule.

Although it is not the aim of this work to provide a detailed comparison with experiment,
we would like to outline which steps would be necessary to simulate the behavior of
the real system in solution. Up to now, we only looked at one particular optimized
structure, although several other local minima might be energetically accessible and
therefore important in solution. In particular, it could be argued that we already
started from a chiral structure for the benzoylbenzoic acid, while its mirror image will
occur with the same probability in solution in absence of a chiral partner. Therefore, the
next step in the analysis of this system is to re-optimize the complex, but starting from
the conformer of benzoylbenzoic acid that is the mirror image of the structure in 1a. We
carried out such an optimization, which resulted in structure 1b. From the lower panel
in Figure 4.12 it can be seen that indeed the benzoylbenzoic acid moiety is just mirrored
w.r.t. the structure in 1a. During re-optimization, the (−)-(R)-amphetamine rotated
around the C−N-bond. The energy difference between the two conformers 1a and 1b is
only 0.6 kJ/mol, so that both forms will exist in almost identical amounts in solution,
and they would equally contribute to the total CD spectrum. Therefore, we performed
another FDE calculation on structure 1b, and the resulting CD spectrum is shown in
Figure 4.14. That figure also contains the spectrum of 1a as well as the sum of the two
spectra in the wavelength range which was investigated in the experiment [383]. It can
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be seen that the CD intensity for wavelengths between 340 and 400 nm more or less
disappears due to different signs in the CD bands for the two conformers. Between 300
and 320 nm, however, a net positive CD signal can be observed, because the negative
band of structure 1b is much less intense than the positive band of 1a. This positive
CD band with a maximum at 309 nm arises from π → π∗ transitions in 1a and 1b.

To really mimic the situation in solution, it would be necessary to investigate many
other low-energy structures and to sample their contribution to the total CD spectrum.
Nevertheless, it is gratifying to note that also in the experiment a positive CD band with
a maximum at λmax ≈ 318 to 326 nm (depending on the solvent) is the characteristic
feature in the CD spectrum of 2-benzoylbenzoic acid induced by (−)-(R)-amphetamine
[383].

4.4.2 Circular dichroism induced in amino acid receptor models

Our second test system is a complex between the ferrocenecarboxylic acid–crown ether
conjugate 2, which is shown in Figure 4.15, and the protonated amino acid L-leucine.
Like benzoylbenzoic acid in the first example, compound 2 is non-chiral only in a
dynamical sense. I.e., stable structures of 2 are chiral, but the system is flexible enough
so that the enantiomeric forms are accessible in solution. Compound 2 contains multiple
binding sites for amino acids: The carboxylic acid group can form two-point hydrogen
bonds to the −CO2H group group of an amino acid, and the crown ether moiety can bind
(protonated) amino groups. Therefore, the system can be seen as an artificial amino
acid receptor, and was shown to enable efficient extraction of protonated amino acids
from aqueous solution [385]. This system was employed in chirality sensing studies, since
α-amino acids induce a non-zero circular dichroism in complexes with the non-chiral 2.
In this way, 2 allows to discriminate between the optical antipodes of α-amino acids,
e.g., L- and D-leucine [385], which do not show own CD activity for wavelengths > 250
nm. The optimized (BP86/TZP) structure (3a) of this complex is shown in Figure 4.16.

Again, we treat the chiral molecule, i.e., L-leucine, as the frozen part in our calculation,
in order to test whether the effect of the chirality-inducing subsystem can be reproduced
by frozen-density embedding. This application may seem to be somewhat unusual, since
the “environmental system” in this case is smaller than the actual embedded system, and
from a computational point of view also the full supermolecular calculation is feasible.
But FDE not only reduces the computational cost, it also opens up the way to a simpler
interpretation of the induced circular dichroism signal in terms of an effective chiral
perturbation in the potential.

The lowest singlet excitation of L-leucine in a calculation on its structure in 3a was
found at 5.28 eV (235 nm). Therefore, there will be no direct contribution of this
amino acid to the spectrum of the complex in the wavelength range investigated here.
Since compound 2 in structure 3a is chiral, we first calculated the CD spectrum of
isolated 2, which is shown in Figure 4.17. The lowest excitations of 2 all involve orbital
transitions from Fe-d type orbitals to π∗ type orbitals of the substituted cyclopentadienyl
(Cp) ligands, which also have partly Fe-d contributions. At somewhat higher energies,
these transitions are augmented with π → π∗ excitations of the benzene moiety and
n(O) → π∗(Cp) excitations. Most of the bands observed for 2 in this structure show
a rather low intensity, e.g., the negative bands with maxima at 433 nm and 528 nm.
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Figure 4.15: Lewis structure of the ferrocenecarboxylic acid–crown ether conjugate 2.
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Figure 4.16: Optimized (BP86/TZP) structures of the complex between the ferrocenecar-
boxylic acid–crown ether conjugate (colored, ball-and-stick) and protonated L-leucine (grey,
sticks only). The total charge of the complex is +1. Complex 3b is a re-optimized com-
plex starting from L-leucine and compound 2 in the mirror image structure of its optimum
structure in complex 3a. Structure 3a is 1.2 kJ/mol lower in energy than structure 3b.

(3b)(3a)

However, there are also two strong negative peaks at 333 nm and 285 nm.

When we include L-leucine into the calculation by performing a supermolecular calcu-
lation on complex 3a, we observe a strong electronic effect that completely changes the
CD spectrum: A stronger negative band appears at 488 nm and a positive band at 380
nm with a shoulder at 419 nm. The strong negative peak is now shifted to 342 nm,
and has even gained intensity. Another negative band can be seen at 304 nm. On the
short-wavelength end of this spectrum, we see a very strong negative band centered at
253 nm. These features are very well reproduced if we use frozen-density embedding.
There is only a slight disagreement in the position of the maximum of the first (negative)
band (481 nm vs. 488 nm in the supermolecular calculation), and the negative bands
at 304 nm and 253 nm gain some intensity in the embedding calculation. This shows
that even in situations of complex interactions between a receptor-like molecule and
its substrate, the effect on the circular dichroism spectrum can reliably be modeled by
FDE.
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Figure 4.17: CD spectra of the complex 3a in Figure 4.16. Shown are spectra from a
calculation in which L-leucine was represented by its frozen electron density (dotted line), a
supermolecular calculation (dashed line), as well as the spectrum of isolated compound 2 in
the structure of complex 3a (solid line).
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Also in this case, an extensive sampling over important conformations of this complex
in solution would be necessary for a reliable comparison to experiment. Such a sampling
would be even more demanding than for the system of 2-benzoylbenzoic acid and (-)-
R-amphetamine. This is due to the fact that compound 2 is very flexible, and many
low-energy configurations might be found. Again, a first step into this direction can be
taken by optimizing the structure of the complex in which the mirror image of compound
2 in its structure in complex 3a is employed, together with protonated L-leucine. We
carried out such an optimization, which resulted in structure 3b in Figure 4.16. The
spectra of both complexes from frozen-density calculations and their sum are shown in
Figure 4.18.
Unfortunately, it is very difficult to draw even qualitative conclusions from this sum
spectrum in comparison to the experimental spectrum in Ref. [385]. The experimental
spectrum for the complex formed with protonated L-leucine shows a weak negative CD
band at 310 nm, a positive CD band at 290 nm, and a broad negative CD band at
about 255 nm. This spectral feature, denoted as a W-shaped band, is followed by a
more intense negative band at ca. 225 nm, i.e., at the short-wavelength end of the
spectrum. Taking the sum of the spectra of complexes 3a and 3b, we can reproduce
the cancellation of positive and negative CD signals in the wavelength regime from 365
to 600 nm. Moreover, the superimposed spectra indeed lead to a W-shaped spectral
feature with a positive band at 288 nm, and two negative peaks at 317 and 259 nm.
But there are also parts of the spectrum that do not match the experiment: There is a
positive CD band at 344 nm, for which there is no experimental counterpart, and the
strong negative band at ca. 225 nm is not observed.
We should take care not to over-interpret these results: At first glance, the spectra of 3a
and 3b look rather symmetrical to the zero-line. The sum of the two spectra will thus
depend very strongly on the exact positions and rotational strengths of the individual
transitions, and the typical errors in TDDFT excitation energies might already be too
large to quantitatively reproduce the experimental pattern. Second, there are several
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overlapping bands, and already the type of broadening applied in the simulated spectra
may change the overall shape of the spectrum considerably [394] (here, again a uniform
broadening of 0.4 eV was applied to all vertical transitions). As a further complication,
many more conformers of this complex may play a role in solution, as the system
is highly flexible (at least in the crown-ether moiety). These structures will occur in
solution with different probabilities, so that a (Boltzmann-) weighted sum of the spectra
would have to be taken instead of the unweighted sum used here. We can, however,
clearly conclude that our calculations strongly support the possibility of an alternating
sequence of positive and negative CD signals in the wavelength regime between 250 and
350 nm by electronic transitions of the ferrocene function.

Figure 4.18: CD spectra of the complexes 3a (dashed line) and 3b (dashed–dotted line) in
Figure 4.16 as well as the sum of these two spectra (solid line).
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4.4.3 Cyclodextrin inclusion compounds: Harata’s rule

As mentioned at the beginning of Section 4.4, cyclodextrin inclusion compounds are
subject to extensive studies on induced circular dichroism [371]. One example of a
non-chiral compound as a guest in a cyclodextrin cavity is phenol in β-cyclodextrin,
which is composed of seven glucose units. It was reported that the sign of the circular
dichroism depends on the orientation of the phenol molecule w.r.t. the axis of the
cyclodextrin cavity [389]. From the experimental sign of a particular electronic transition,
the orientation of the guest molecule in the cavity can be estimated.
Phenol as a guest molecule in its optimized conformation is non-chiral. Interactions with
the chiral host may lead to a distortion of its geometry, so that a structural effect due to
the host molecule induces circular dichroism. Here, we want to concentrate on possible
electronic effects causing ICD and their dependence on the orientation of the phenol
molecule inside the cavity. Therefore, we take an optimized (BP86/TZP) structure
of an isolated phenol, which is placed inside the cavity of an optimized (BP86/TZP)
conformation of β-cyclodextrin. The center-of-mass of phenol was placed in the center
of the cyclodextrin cavity. The initial orientation, in which the C−O bond of phenol is
in the plane of the cyclodextrin ring, is shown in Figure 4.19, as well as a 90◦ rotated
one, where the C−O bond is perpendicular to the ring.
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Figure 4.19: Structure of the host–guest complex 4 between phenol and β-cyclodextrin. Left:
0-degree orientation; right: 90-degree orientation.
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Figure 4.20: Direction of the electric transition dipole moment for the lowest singlet excitation
of phenol. The transition dipole moment is located in the molecular plane.
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For the isolated planar phenol molecule, the electric transition dipole moments can
be either in-plane (irrep A′) or perpendicular to the plane (irrep A′′). According to
Harata’s rule, A′ excitations should show a change in the sign of the CD signal when
the molecule is rotated by 90◦ (in the way shown in Figure 4.19), as the transition
moment is in the cyclodextrin plane for certain orientations, and perpendicular to it
for orientations rotated by 90 degrees w.r.t. the former ones. For the transition under
study here, i.e., the lowest singlet (n → π∗) excitation of phenol, the direction of the
electric transition dipole moment is in the molecular plane, approximately perpendicular
to the C−O bond (see Figure 4.20).
Harata’s rule was derived from the empirical Kirkwood–Tinoco model, which treats the
interactions between excitations in host and guest system as a dipole–dipole coupling
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between transition dipole moments. The transitions in the host system are approximated
in this case as transitions of individual groups or bonds j. It was noted [391] that
the most important term determining the sign of the rotational strength Ri for a
given transition i in the guest molecule is the geometrical factor (GF )j in the Tinoco
expression [388], which is usually defined as [378, 389]

(GF )j =
1

r3
ij

[

ei · ej −
3(eirij)(ejrij)

r2
ij

]

(ei × ej) · rij . (4.1)

In the above equation, ei is the unit vector in the direction of the electric dipole
transition moment of the guest molecule, ej is the unit vector in the direction of the
bond j, and rij is the vector between the two transition dipoles, which is assumed to
be the vector from the center of the guest molecule to the center of bond j. Since
(GF )j yields only the contribution of bond j, it is necessary to sum over all bond
contributions to get the rotational strengths. The sum is a weighted sum in which bond
polarizabilities parallel and perpendicular to the bond as well as an average wavenumber
of the electronic transitions in that group enter as empirical parameters [378, 389].
Although we do not want to perform a detailed analysis of the performance of the
Kirkwood–Tinoco model for our test case, it is interesting to see if qualitatively the
behavior predicted by Harata’s rule can be observed in our particular snapshot since
Eq. (4.1) depends on the position and orientations of the bonds in the host system. To
this end, we carried out a very simple analysis by performing an unweighted summation
of the geometrical factors for all bonds. This was repeated for different orientations
of the phenol molecule in the host cavity (the 0-degree and 90-degree orientations are
shown in Figure 4.19). Such an approach corresponds to a very naive approximation
within the Kirkwood–Tinoco model, namely, that the bond specific parameters are
identical for all bonds. We only followed the common practice to neglect the effect of
C−H bonds, which are usually assumed to have an isotropic bond polarizability that
does not contribute to the total rotational strength. Tests indicated, however, that
including the C−H bonds leads to the same qualitative behavior. For a more detailed
analysis of phenol in β-cyclodextrin described by the Kirkwood–Tinoco model, we refer
to Ref. [389].
The sum of the (GF )j for different angles of the C−O bond w.r.t. the plane in which the
cyclodextrin molecule is located is shown in Figure 4.21. The data were obtained by using
the transition dipole moment obtained for isolated phenol in each of these orientations.
Since we are only interested in a qualitative behavior, the curve was scaled to match the
results of a supermolecular TDDFT calculation for the axial orientation (90 degrees).
Indeed, the qualitative behavior agrees with the calculations in Ref. [389], i.e., we get
positive values for equatorial orientations (0 degrees and 180 degrees) while the rotational
strength is negative for the axial orientation of phenol (90 degrees, corresponding to an
equatorial orientation of the electric transition dipole moment). We also note that both
our simple analysis and the empirical calculations in Ref. [389] lead to a behavior of
the CD intensity that is symmetric w.r.t. the axial orientation (note that in Figure 11
of that reference the angle is measured for the electric transition dipole moment, not
for the C−O bond).
In order to investigate whether these results are confirmed by first principles methods,
we performed full supermolecular TDDFT calculations on this system for certain orien-
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Figure 4.21: Rotational strength of the lowest singlet transition of the host–guest complex 4

between phenol and β-cyclodextrin with varying orientation of phenol inside the cavity. The
0- and 90-degree orientations are shown in Figure 4.19. Shown are results from supermolecular
calculations (SAOP/TZP/DZP), employing a simple CT-correction scheme [395], and from
FDE calculations, in which the cyclodextrin was treated as the frozen system (either relaxed
or non-relaxed). For qualitative comparison, we also show (scaled) sums of the geometrical
factors (GF )j for a given structure, which determine the rotational strength in the Kirkwood–
Tinoco model.
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tations. In these calculations, we used the SAOP potential in combination with a TZP
basis set for phenol and a DZP basis set for β-cyclodextrin. Since the system is quite
extended (160 atoms), there is a severe problem with spuriously low charge-transfer ex-
citations. In order to remove these unphysically low excitations, we applied the simple
CT correction scheme presented in Section 3.3.
The resulting rotational strengths indeed behave as expected according to Harata’s
rule. Thus, they agree qualitatively with the calculations using the empirical Kirkwood–
Tinoco model [389], or the simple summation of the (GF )j factors described above:
For the 0-degree orientation, the electric transition dipole moment of the lowest singlet
excitation is (almost) parallel to the axis of the cyclodextrin, since it is perpendicular
to the C−O bond and in the molecular plane (see Figure 4.20). Indeed, this orientation
results in a positive rotational strength for the lowest singlet transition. At about
45 degrees, the rotational strength becomes negative, and reaches a minimum when
the C−O bond is parallel to the cyclodextrin axis (90-degree orientation; note that
this corresponds to the 0-degree orientation in Ref. [389], since we measure the angle
of the C−O bond w.r.t. the cyclodextrin plane, while in that work the angle of the
electric transition dipole moment w.r.t. the plane is used). In the latter orientation,
the transition dipole moment is perpendicular to the axis of the cyclodextrin host.
However, the supermolecular calculations show that the induced rotational strength is
not perfectly symmetric: The signal is, e.g., smaller at 0 degrees than at 180 degrees,
but on the other hand it is larger at 60 degrees than at 120 degrees.
To test the performance of the frozen-density embedding, we calculated the rotational
strengths for different orientations of the phenol molecule within the cyclodextrin cavity
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representing the latter by its frozen density. We compared two calculations, in which
the density of the β−cyclodextrin was either non-polarized or polarized by one freeze-
and-thaw cycle. The non-polarized calculations are much more efficient1, since the same
frozen density for the host system can be used for all different orientations of the phenol
molecule. The results are shown in Figure 4.21. The differences between the relaxed and
non-relaxed frozen-density schemes are almost negligible, so that we will only discuss
the calculations with a relaxed frozen density (and without frozen-core approximation).
The rotational strength does indeed change sign for the different orientations of the
phenol molecule, but it does so in an unexpected way: At 0 degrees, the rotational
strength is close to zero. Then it goes down until it reaches a first minimum at 20
degrees, changes sign again at about 45 degrees, and reaches a maximum at 70 degrees,
changes sign again at ca. 95 degrees and decreases until a second minimum is reached
at 110 degrees. Another change in sign occurs at about 130 degrees, before the next
maximum is reached at 160 degrees. This behavior is not in line with Harata’s rule,
which would predict a positive rotational strength for the 0- and 180-degree orientations,
and a negative one for the 90-degree orientation.

When comparing the results from the (simplified) Kirkwood–Tinoco model, the frozen-
density embedding, and the supermolecular TDDFT calculation, it appears that the
latter curve in Figure 4.21 is a superposition of a Kirkwood–Tinoco-model like symmetric
curve and the curve resulting from FDE. Subtracting the embedding curve from the
supermolecular one would lead to a more symmetric result, i.e., it would be closer to
the pure Kirkwood–Tinoco model. This can be rationalized as follows: FDE is able to
describe direct effects of the host system on the density and orbitals of the guest system,
i.e., it shows a strong dependence on the exact position and shape of the guest molecule
inside the host cavity. Due to the restricted response, however, it is not able to cover the
effect of couplings with host excitations. These are, on the other hand, described by the
empirical Kirkwood–Tinoco expression, whereas the only information about the guest
molecule used in this empirical model is the electric transition dipole moment. Specific
effects of the host on the orbitals of the embedded system are thus not included. The
FDE calculations demonstrate that those are significant. The supermolecular calculation
combines both effects, so that the results look like a sum of the curves obtained by
FDE and the Kirkwood–Tinoco model.

4.4.4 Failure for coupled excitations

The phenomenon of coupling between host and guest molecule excitations evidently
leads to discrepancy between FDE and the supermolecular benchmark calculations. To
bring home this point, we briefly consider a case where the inadequacy of FDE stands
out very sharply. There are some prototype systems consisting of several chromophores
for which exciton coupling models predict the appearance of a so-called couplet [396].
A couplet can be understood as two interacting transitions of two similar chromophores

1For testing, we also carried out non-polarized and polarized calculations in which a frozen-core
was used for the oxygen- and carbon-1s orbitals (not shown). That further reduces the computational
effort in the preparation step of the frozen density. It yields practically the same results as the
calculation without frozen core, so that we can conclude that the frozen core approximation does
not affect the embedding potential significantly.
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that have rotational strengths of similar magnitude but opposite sign. Based on simple
models employing localized wavefunctions [396] or on bond polarizabilities [388,391], it is
possible to estimate the splitting between two interacting transitions and their rotational
strengths. Because of the interaction of the two chromophores the positions of these
transitions are not exactly the same and the CD intensities do not cancel exactly. This
is demonstrated in the following for a benzaldehyde dimer as shown in Figure 4.22.
The structure of the monomer was optimized using BP86/TZP. Since we only want to
point out which type of interactions cannot be studied by frozen-density embedding,
and not to investigate the properties of a real benzaldehyde dimer, we constructed an
idealized dimer as a juxtaposition of a monomer with its mirror image. The mirror
plane was chosen in the middle of the C=O bond (perpendicular to this bond), so
that the positions of the carbonyl-C and O atoms are exchanged. Then, the reflected
monomer was displaced along the z-axis (perpendicular to the molecular plane) by 3 Å.

Figure 4.22: Structure of the benzaldehyde dimer constructed from optimized (BP86/TZP)
monomers.
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Figure 4.23: CD spectra of the benzaldehyde dimer shown in Figure 4.22 (SAOP/TZ2P).
Shown are the contributions of two excitations in a supermolecular calculation as well as
their sum. Additionally, the spectrum obtained in an embedding calculation is shown, which
is scaled by a factor of 100.
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Figure 4.23 shows the results of a supermolecular calculation for a π → π∗ type transition
of the benzaldehyde dimer. In this particular case, we get two transitions of different
symmetry for the C2 complex: The 8B transition has a strong positive rotational
strength, while the 8A transition, which is 0.12 eV higher in energy, shows a negative
rotational strength of almost the same magnitude. The superposition results in a
“couplet” with a positive part at the long-wavelength side and a negative part at the
short-wavelength side.
As is shown in Figure 4.23, FDE is not applicable if one benzaldehyde monomer is
treated as a frozen system, since the response is explicitly restricted to the embedded
system. This results in a very weak, positive CD signal with a maximum at 258 nm,
since there is no interaction possible with a similar excitation on the other fragment
(note that the signal for the embedding calculation in Figure 4.23 is scaled by a factor
of 100). Indeed, if we calculate the CD spectrum for the second monomer keeping the
first one frozen, we get exactly the same result because of the imposed C2 symmetry
of the dimer.
The frozen-density embedding method is by construction not able to describe couplings
to excitations that are not localized on the embedded system, which leads to a failure
in cases where these effects are dominant. The reason is the same that is responsible
for the advantages of the embedding method: the restriction of the orbital space to the
embedded fragment. It should be kept in mind that all effective embedding methods,
e.g., also QM/MM methods, necessarily have the same problem. However, as long as
such couplings are not important, frozen-density embedding offers a way for an efficient
description of interaction effects leading to induced circular dichroism, and it does not
rely on any system-specific, empirical parameterization. A generalized subsystem DFT
approach that can handle the coupled response of several subsystems is developed in
Chapter 5.
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5. Time-Dependent Density-Functional Theory for

Subsystems

5.1 A subsystem TDDFT approach for coupled excitations

As was demonstrated in the previous chapters, FDE and its TDDFT generalization are
very attractive approaches both from a conceptional and from a computational point
of view. Excitations can still be interpreted in terms of orbital transitions, the problem
of spuriously low-energetic excited states due to inter-subsystem transitions is avoided,
and even very large environmental systems can be handled efficiently.

However, the study on induced circular dichroism in Section 4.4 showed that there
are certain cases where FDE leads to qualitatively wrong results because couplings to
the environmental response become dominant, which are neglected in the approximate
FDE-TDDFT approach. As a consequence, excitation energy transfer (EET) couplings
between different subsystems cannot be described in this approximate formalism.

This is a severe restriction of the FDE-TDDFT formalism, since EET couplings are
essential for an understanding of many phenomena in complex aggregates containing
chromophores. In particular, photoexcitation and subsequent EET processes in natural
light-harvesting systems cannot be understood without such effects, as will be discussed
in detail in Section 5.3.

In principle, the excitation energy splittings arising from these couplings can be extracted
from quantum chemical calculations on the excited states of a supersystem composed
of all chromophores under investigation. Among the first-principle methods which can
be employed to describe excited states (see also Section 3.1), time-dependent density
functional theory is often the method of choice for structural motifs of biological or
biomimetic photosynthetic units [249, 397], and has proven to be a robust method for
systems of considerable size [199, 222].

A fully quantum chemical description of a system like a natural light harvesting complex
is still out of reach with conventional techniques, in particular if the surrounding medium
shall also be considered. Recently, methods have been proposed to include excitation
energy couplings perturbatively into TDDFT calculations starting from non-interacting
fragments, in which bulk medium effects are considered in terms of continuum models
[398–400]. From a chemist’s perspective, it appears that the description of aggregates of
interacting chromophores and their environment should indeed be based on a subsystem-
oriented approach, since the building blocks often retain their individual properties to
a good approximation also in the supermolecule. This requires, however, an efficient
subsystem TDDFT formalism that goes beyond the limitations of the FDE-TDDFT
approach outlined in Section 3.4.2.

The original TDDFT generalization of FDE in Ref. [308] leads to on effective kernel for
excitation energies of the embedded system which is still in principle exact. However, this

133
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effective kernel would actually require to calculate the full response of the environmental
system, so that no overall savings in computational effort can be expected. Furthermore,
a direct implementation of the approach from Ref. [308] would suffer from numerical
instabilities in the case of degenerate excitations, as will be outlined below. Here, a
general subsystem TDDFT formalism for excited states will be derived. It will be shown
that it is possible to find suitable approximations for the inclusion of EET couplings
between the different subsystems, which can be efficiently implemented and which are
thus applicable to complex systems of coupled chromophores.
Details of the formalism are presented in Section 5.1.1, followed by a discussion of possible
approximations that go beyond the local response and that allow to seamlessly include
excitation energy couplings in the FDE framework. A case study on a benzaldehyde
dimer is carried out in Section 5.1.4. Subsequently, we demonstrate the applicability
to more than two fragments and discuss cases in which both ground- and excited-state
couplings are decisive to reproduce the supermolecular spectrum. In the subsequent
sections of this chapter, it will be shown how general response properties can be obtained
from this subsystem TDDFT approach, and that it can be applied to gain insight into
the photophysical properties of natural light-harvesting complexes.

5.1.1 The subsystem formulation of TDDFT

The central assumption in the subsystem DFT approach outlined in Section 2.5 is that
the total density ρ(r) can be partitioned into subsystem densities according to Eq.
(2.2), each of which is given in terms of occupied subsystem orbitals, see Eq. (2.43).
The subsystem orbitals are, in turn, obtained from the Kohn–Sham-like one-electron
equations given in Eq. (2.60). For brevity, we introduce the following notation for the
effective potential in these equations for a subsystem J ,

vsub
J (r) = vsub

eff [ρ, ρJ ](r) = veff [ρ](r) +
δTs[ρ]

δρ(r)
− δTs[ρJ ]

δρJ (r)
. (5.1)

Following Ref. [308], we also partition the total density response, δρ(r), into subsystem
contributions (note that we skip the frequency dependence in the following),

δρ(r) =
∑

I

δρI(r). (5.2)

In analogy to the supermolecular case, the subsystem response densities can be expanded
in terms of the occupied and virtual molecular orbitals of the respective subsystems
following Eq. (3.25),

δρI(r) =
∑

(ia)I

2δP(ia)I
φiI (r)φaI

(r), (5.3)

where the index I labels the subsystems. It should be noted that this is an approxima-
tion compared to the supermolecular case. It is assumed that the density response can
be expanded in terms of intra-subsystem orbital transitions only, while inter-subsystem
transitions do not occur. No charge-transfer excitations between the subsystems can
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thus be described in the formalism. However, this approximation recovers the advantage
that no artificially low long-range CT excitations between different weakly interacting
fragments will be obtained, which is helpful for the analysis of the calculations. Nev-
ertheless, this approximation clearly restricts the range of applicability of the current
approach.
Also in the subsystem formulation, the expansion coefficients contain matrix elements
of the perturbation, which has two parts, see Eq. (3.28),

δv(ia)I
= δvext

(ia)I
+ δvind

(ia)I
, (5.4)

Assuming again a linear response of the effective one-electron potentials w.r.t. the density,
we obtain for the induced effective potential in system I,

δvind
I (r1) =

∑

J

∫

d3r2

(
δvsub

I (r1)

δρJ(r2)

)

δρJ(r2), (5.5)

where the functional derivative has to be understood as a partial derivative in which
all other subsystem densities ρK for K 6= J are kept fixed. The effective potential for
a subsystem I is given in Eq. (5.1) and consequently, its derivative w.r.t. the density
ρJ is obtained as

δvsub
I (r1)

δρJ(r2)
=

1

|r1 − r2|
+

δ2Exc [ρ]

δρ(r2)δρ(r1)
+

δ2Ts[ρ]

δρ(r2)δρ(r1)
− δ2Ts[ρI ]

δρI(r2)δρI(r1)
δIJ ,

= fCoul(r1, r2) + f tot
xck(r1, r2)− δ2Ts[ρI ]

δρI(r2)δρI(r1)
δIJ , (5.6)

= f tot
Cxck(r1, r2)−

δ2Ts[ρI ]

δρI(r2)δρI(r1)
δIJ , (5.7)

where fCoul is the Coulomb part of the kernel, f tot
xck is given as,

f tot
xck(r1, r2) =

δ2Exc [ρ]

δρ(r2)δρ(r1)
+

δ2Ts[ρ]

δρ(r2)δρ(r1)
(5.8)

and f tot
Cxck = fCoul + f tot

xck. Inserting this into Eq. (5.5), we obtain

δvind
I (r1) =

∫

d3r2

[

f tot
Cxck(r1, r2)δρ(r2)−

δ2Ts[ρI ]

δρI(r2)δρI(r1)
δρI(r2)

]

(5.9)

=

∫

d3r2

[(

f tot
Cxck(r1, r2)− δ2Ts[ρI ]

δρI(r2)δρI(r1)

)

δρI(r2)

+f tot
Cxck(r1, r2)

∑

J,J 6=I

δρJ(r2)

]

. (5.10)

The approximation introduced in Ref. [309] for the FDE case (see Section 3.4.2) is
to assume that only the response of the embedded system itself has to be taken into
account for local excitations,
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δvind,approx
I (r1) =

∫

d3r2

[(

f tot
Cxck(r1, r2)−

δ2Ts[ρI ]

δρI(r2)δρI(r1)

)

δρI(r2)

]

, (5.11)

i.e., the density of the “environment” is assumed to be frozen even if an external
perturbation is applied.
Going back to the full expression, Eq. (5.10), we can see that matrix elements of the
induced potential are given as

δvind
(jb)I

= 2
∑

(ia)J

Keff
(jb)I ,(ia)J

δP(ia)J
, (5.12)

where the sum runs over all orbital transitions (ia)J in all subsystems J and

Keff
(jb)I ,(ia)J

=

∫

d3r1

{

φjI
(r1)φbI

(r1)×
∫

d3r2

(

f tot
Cxck(r1, r2)−

δ2Ts[ρI ]

δρ(r2)δρ(r1)
δIJ

)

φiJ (r2)φaJ
(r2)

}

.

(5.13)

Similar to the supermolecular case we arrive at

δP(jb)I
= χs

(jb)I



δvext
(jb)I

+ 2
∑

(ia)J

Keff
(jb)I ,(ia)J

δP(ia)J



 , (5.14)

where χs
(jb)I

= ω(jb)I
/(ω2

(jb)I
− ω2). In complete analogy to the supermolecular case,

i.e., to conventional TDDFT, we can set up an eigenvalue equation to determine the
excitation energies,

[
Ωs − ω2

k

]
Fs

k = 0. (5.15)

The superscript s indicates that the corresponding matrix or vector can be decomposed
into subsystem blocks.1 E.g., the matrix Ωs can be divided into intra- (ΩIJ) and
intersubsystem blocks (ΩII ; for systems I, J = A,B, . . . , Z), so that we obtain,















ΩAA ΩAB · · · ΩAZ

ΩBA ΩBB · · · ΩBZ
...

...
. . .

...
ΩZA ΩZB · · · ΩZZ







− ω2

k








1AA 0AB · · · 0AZ

0BA 1BB · · · 0BZ
...

...
. . .

...
0ZA 0ZB · · · 1ZZ






















FA
k

FB
k
...

FZ
k








=








0A

0B
...

0Z







.

(5.16)
Compared to the eigenvalue equations for the isolated systems I, J, . . ., this equation
contains three differences: (1) The inter-system coupling blocks ΩIJ are absent in isolated
molecule calculations, (2) the coupling matrix elements carry the effective kernel that

1Note that this superscript will be omitted for the matrix elements, for which the subsystem is
always indicated by an additional index
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contains exchange–correlation and kinetic energy contributions from all subsystems, and
(3) the orbitals and orbital energies employed in the calculation of the matrix elements
are obtained from a ground-state FDE calculation. In contrast to the approaches in
Refs. [399,400] the effects arising from non-orthogonal orbitals are implicitly contained
in this equation by means of the non-additive kinetic energy contributions, both to the
ground-state potential and to the response kernel. Nevertheless, the FDE approach may
be affected if non-orthogonality effects become to strong because of the limitations of
the approximate non-additive kinetic energy functionals currently in use.
While the effects (2) and (3) mentioned above are also present in the approximate form
of FDE-TDDFT outlined in Section 3.4.2, the couplings to the environment are not.
Assuming that we already know the eigenvectors of the subsystem matrices ΩII [from
FDE-TDDFT calculations in the approximate form of Eq. (5.11)], we can set up a
unitary transformation matrix,

U =








UA 0AB · · · 0AZ

0BA UB · · · 0BZ
...

...
. . .

...
0ZA 0ZB · · · UZ








(5.17)

where UI are the square matrices containing as columns all the eigenvectors of the
subsystem matrices ΩII . Multiplying Eq. (5.15) from the left by U† and inserting UU†

in front of Fk yields
[
U†ΩsU− ω2

k

]
U†Fs

k = 0 (5.18)
[

Ω̃s − ω2
k

]

F̃s
k = 0, (5.19)

where F̃s
k = U†Fs

k and Ω̃s = U†ΩsU. This transformation will bring Eq. (5.16) into the
following structure,














ω2
A,0 Ω̃AB · · · Ω̃AZ

Ω̃BA ω2
B,0 · · · Ω̃BZ

...
...

. . .
...

Ω̃ZA Ω̃ZB · · · ω2
Z,0







− ω2

k








1AA 0AB · · · 0AZ

0BA 1BB · · · 0BZ
...

...
. . .

...
0ZA 0ZB · · · 1ZZ






















F̃A
k

F̃B
k
...

F̃Z
k








=








0A

0B
...

0Z







,

(5.20)
where again a tilde denotes transformed quantities, and ω2

I,0 is a diagonal matrix con-
taining the squared resonance frequencies of the subsystems in the absence of intersystem
couplings. Transition dipole moments and oscillator strengths within TDDFT can be
obtained from the solution vectors Fs

k [237], which are obtained as

Fs
k = UF̃s

k. (5.21)

This point will be discussed in more detail in Section 5.2.

5.1.2 Effective embedding kernel

There is a possible second approach to the solution of Eq. (5.16), which underlines the
“effective embedding nature” of the approach. Assuming that we are only dealing with
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a two-partitioning case (system A and environment B, which contains all subsystems
other than A), we get two sets of equations from Eq. (5.16),

[
ΩAA − ω2

k

]
FA

k + ΩABFB
k = 0 (5.22)

∧
[
ΩBB − ω2

k

]
FB

k + ΩBAFA
k = 0. (5.23)

The second equation can now be solved for FB
k ,

FB
k =

[
ω2

k −ΩBB

]−1
ΩBAFA

k , (5.24)

which can be inserted into Eq. (5.22),

[

ΩAA + ΩAB

[
ω2

k −ΩBB

]−1
ΩBA − ω2

k

]

FA
k = 0, (5.25)

so that we can formally solve the equation,

[
Ωeff

AA − ω2
k

]
FA

k = 0, (5.26)

where the effective matrix is

Ωeff
AA = ΩAA + ΩAB

[
ω2

k −ΩBB

]−1
ΩBA. (5.27)

The above equation can be used as a starting point for approximations, e.g., by treating
ΩAA exactly and using approximations for [ω2

k −ΩBB ]−1 (see Ref. [13], pp. 46–48, for
more details). Using Eq. (5.27) directly will, on the other hand be more problematic,
since (1) the effective matrix to be diagonalized depends on the sought-for eigenvalues,
so that Eq. (5.26) has to be solved iteratively. Furthermore a different matrix has to be
constructed and diagonalized for each eigenvalue, and the eigenvector in question has
to be identified. (2) If the diagonal elements of ΩBB are close to the eigenvalue ω2

k, the
procedure will be numerically instable. Nevertheless, Eq. (5.27) can be regarded as a
matrix analog to the effective kernel presented in Ref. [308].

5.1.3 Approximate treatments

A very common case will be a system composed of two parts, the embedded part A
and the environment B. The environment may be further partitioned, but for clarity
of presentation we restrict the discussion to two fragments. Usually, for both the
environment and the embedded system only a couple of eigenvalues and eigenvectors
are determined by, e.g., a Davidson-type diagonalization of the matrices ΩAA,ΩBB. In
such a case, we can still set up a truncated eigenvalue problem that includes selected
couplings between the previously determined subsystem excitations.
We know in those cases all the elements of subblocks of the matrices Ω̃AA, Ω̃BB, since
these are diagonal matrices with squares of subsystem excitation energies on the diagonal
— which were calculated with neglect of any inter-subsystem couplings, but from orbitals
and orbital energies that were obtained with an effective embedding potential. Let us
assume that we know a set {µA} of (uncoupled) transitions in system A and a set {νB}
of transitions of subsystem B in terms of their eigenvectors stored in the columns νA,B
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of matrix U. Then we need the following additional matrix elements in order to set up
the truncated eigenvalue problem,

Ω̃µAνB
=

∑

(ia)∈A

∑

(jb)∈B

U(ia)AµA
Ω(ia)A(jb)B

U(jb)BνB
(5.28)

=
∑

(ia)∈A

∑

(jb)∈B

2U(ia)AµA

√
ω(ai)A

Keff
(ia)A,(jb)B

√
ω(bj)B

U(jb)BνB
. (5.29)

Here, the sums run only over the orbital transitions within either subsystem A or B,
respectively. This equation formally contains a sum over all inter-subsystem coupling
matrix elements K(ia)A,(jb)B

. However, it is not necessary to calculate all these coupling
elements explicitely, as will shown in the following. We write the coupling matrix
elements explicitly, which results in

Ω̃µAνB
=

∑

(ia)A

(jb)B

2U(ia)AµA

√
ω(ai)A

×

∫

d3r1

∫

d3r2
[
φiA(r1)φaA

(r1)f
tot
CxckφjB

(r2)φbB
(r2)

]√
ω(bj)B

U(jb)BνB

=

∫

d3r1
∑

(ia)A

2U(ia)AµA

√
ω(ai)A

φiA(r1)φaA
(r1)

∫

d3r2f
tot
Cxck

×




∑

(jb)B

φjB
(r2)φbB

(r2)
√
ω(bj)B

U(jb)BνB



 . (5.30)

Similar to conventional TDDFT calculations employing density fitting techniques, we
can then express the whole term in square brackets in the last line of the above equation
in terms of a fitted density [236],

δρνB
=
∑

(jb)B

φjB
(r2)φbB

(r2)
√
ω(bj)B

U(jb)BνB
≈
∑

λ

aλfλ(r2), (5.31)

so that only matrix elements of an induced potential caused by this fitted density
have to be calculated. This approach is implemented in a locally modified version of
Adf [277, 278], which uses Slater-type functions (and fit functions) throughout. With
this fitting procedure, the potential induced in subsystem A by transition νB, δvind

A,νB
,

which appears in the matrix element, can be calculated analytically (compare e.g.,
Ref. [184]) as

δvind
A,νB

(r1) =
∑

λ

aλ

∫

d3r2

(
1

|r1 − r2|
+ f tot

xck

)

fλ(r2), (5.32)

where we used the superscript νB to indicate that the induced electronic perturbation
δvind

A,νB
has to be calculated for each electronic transition νB. The matrix element is

then obtained by numerical integration as

Ω̃µAνB
=

∫

d3r1
∑

(ia)A

2U(ia)AµA

√
ω(ai)A

φiA(r1)δv
ind
A,νB

(r1)φaA
(r1). (5.33)
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This means that only the eigenvectors for the transitions {µA, νB}, which describe the
transition densities, are needed in order to set up the truncated eigenvalue problem.

Since this procedure always involves an initial FDE-TDDFT calculation for the monomer
excitations, which are subsequently coupled in the general subsystem-TDDFT formalism,
we denote the monomer calculations as “uncoupled FDE” or FDEu calculations, whereas
we use the term “coupled FDE” or FDEc for the coupled response calculations.

This approach is conceptually similar to the TDDFT approach for non-interacting sys-
tems used in Refs. [399, 400], which can be related to Förster- and Dexter-type (or
general short-range) couplings between transition densities on a donor and acceptor
subsystem. These couplings occur in the present formalism as the Coulomb and ex-
change parts of the total matrix elements Ω̃µAνB

. Excitation energy splittings for two
degenerate excitations, e.g., located on two equivalent monomers, could be obtained by
solving a 2 × 2 eigenvalue problem for the relevant excitations only (see Section 5.1.4
for an example). The general expression for these coupling constants will be discussed
in the context of natural light-harvesting complexes in Section 5.3. For the special case
of two equivalent monomers, the coupling constants can be directly determined from
the energy splitting in the supermolecule. If we denote the excitation energy of the
monomers (obtained with the uncoupled FDE approach) as ωm, we can approximate
the excitation energies ωd in the dimer with a coupling described by a matrix element
Ω̃m1m2

as

ωd = ωm ±
Ω̃m1m2

ωm

, (5.34)

provided ω2
m ≫ Ω̃m1m2

. The matrix element Ω̃m1m2
is thus directly proportional to the

coupling strength. These couplings, in turn, are important for the rate of excitation
energy transfer between different chromophores [401–403]. Often, only the Coulom-
bic (Förster) coupling is considered, which dominates at larger distances between the
chromophores. It is further approximated in many cases by discrete representations of
the transition densities, e.g., in terms of oscillating dipoles (for a comparison see, e.g.,
Ref. [404]). The approaches in Refs. [399, 400] start from non-interacting subsystems,
whereas a large portion of the short-range effects between subsystems in close prox-
imity is, in the present approach, included in the effective embedding potential and
the corresponding kernel contributions. It will be demonstrated in Section 5.1.6 that
both ground- and excited-state interactions must be considered to accurately reproduce
spectra in the general case.

Refs. [399, 400] discuss the effect of condensed media on the excitation energy trans-
fer rate, describing the medium as a dielectric continuum. Since FDE was shown to
be an efficient model for solvent effects on electronic excitations when applied within
the approximate expression in Eq. (5.11), it could lead to a further improvement of
the description of a surrounding medium in the following way: To calculate the sub-
system excitations of a given chromophore, the entire surrounding system (i.e., other
chromophores and solvent) can be included according to Eq. (5.11), while couplings
are afterwards only included in a selective manner between the chromophores in the
system. In that way, both the effect of the solvent and the couplings between the
chromophores could explicitely be included, which was not possible with the uncoupled
FDE-TDDFT approach. It should be noted that such a hybrid approach between the
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uncoupled FDE for the solvent molecules and the coupled FDE approach for solvated
chromophores necessarily introduces the assumption that the entire density response
can be described in terms of the changes of the chromophore densities. For a discussion
of this neglect of solvent response and a comparison to a polarizable classical solvent
model, see Ref. [185].
From a fundamental point of view, this approach seems very appealing to model solvent
effects on coupled chromophores, since it is based entirely on density functional theory.
However, such a simulation also causes some additional difficulties in comparison to
continuum models: Since it is an explicit model, it requires to consider a representative
set of snapshots of solvent configurations instead of just one structure [116]. Additionally,
the size of the solvation shell must be sufficiently large, which can involve hundreds of
solvent molecules even for medium-sized molecules [184].

5.1.4 Test case: Benzaldehyde dimer

In Section 4.4.4 it was shown that FDE-TDDFT in the previous form, i.e., with the
approximation introduced in Eq. (5.11), is unable to deal with coupled identical chro-
mophores. In order to test the approximate formalism introduced in this section, we
investigated a pair of benzaldehyde molecules which are parallel displaced by varying
distances (see Figure 5.1). The monomer structure was optimized with BP86/TZP. For
technical details of the calculations presented here, see Appendix B.

Figure 5.1: Structure of the benzaldehyde dimer for an intermolecular distance of 5 Å.

In order to test the implementation and the quality of the results obtained with the
coupled FDE approach, we investigated the 3 1A′ state, which is the lowest π → π∗ singlet
transition of benzaldehyde with considerable intensity (oscillator strength f = 0.25), and
which has a dominant contribution from the (HOMO−1) → LUMO (4a′′ → 5a′′) orbital
transition. The calculated excitation energy for this transition in the isolated monomer
is 4.87 eV. Note that a lower-lying π → π∗ type transition can be found at 4.24 eV,
which has a dominant (HOMO−2) → LUMO character, but a rather small oscillator
strength of < 0.02. Both orbital transitions mentioned contribute considerably to both
π → π∗ transitions. The transition to the 3 1A′ state is well-suited in order to test the
approach outlined above, since there is a significant coupling between excitations of this
type on different monomers.
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Excitation energies were calculated for distances between 4 Å, where already significant
overlap of the π-systems of the monomers occurs, and 10 Å, where the couplings are
already quite weak. In case of frozen-density embedding, we first calculated the lowest
20 excitation energies for both monomers employing three freeze-and-thaw cycles, so
that the uncoupled FDE excitation energies were converged within < 0.0001 eV. In
a second step, these excitations were coupled according to the subsystem treatment
presented above.
Figure 5.2 shows the excitation energies from supermolecular and coupled FDE calcu-
lations as well as the uncoupled FDE results and the excitation energy of the isolated
monomer. It can be seen that the uncoupled FDE deviates slightly from the isolated
monomer due to the interaction of the two densities included in the ground-state FDE
calculation, which influences the orbitals and orbital energies used in the TDDFT part.
At a distance of 6 Å, this deviation is 0.007 eV and decreases to 0.003 eV at 10 Å.

Figure 5.2: Excitation energies of the benzaldehyde dimer shown in Figure 5.1 for the
excited states corresponding to the 3 1A′ state of the benzaldehyde monomer as a function
of the intermolecular distance. Solid line: supermolecular TDDFT; dashed line: coupled
FDE; dashed-dotted line: uncoupled FDE (no splitting); dotted line: isolated benzaldehyde
monomer.
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The supermolecular calculations show a significant coupling between the two monomer
excitations. Even at a distance of 10 Å, there is a splitting of 15 meV, which increases
to 86 meV at 5 Å distance. This behavior is very nicely reproduced by the coupled
FDE calculations, especially at separations larger than 5 Å. For distances larger than
7 Å, the error in the excitation energies is smaller than 1 meV, and even at 5 Å, it is
4.4 or 2.2 meV, respectively, for the lower and the upper state. Absolute errors in the
energy splitting are between 0.1 (10 Å) and 2.2 meV (5 Å), and the relative error in
the splitting energy is between 0.8 (10 Å) and 2.5 % (5 Å).
At 4 Å separation, the situation changes significantly. Although there is still qualitative
agreement between the coupled FDE approach and the supermolecular results, the energy
gap in the FDE calculation is notably larger (0.154 eV compared to 0.103 eV in the
supermolecular case). This is caused by the fact that additional excited states couple
to the π → π∗ excitations under study, which partly have charge-transfer character. As
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explained in the Section 5.1.1, such excitations are not covered by the coupled FDE
scheme. Consequently, there will be no couplings to such states in the coupled FDE
formalism which could decrease the splitting between the two states under investigation.
As mentioned above, interactions between such transitions are often discussed in terms
of Förster- (Coulomb-) or Dexter- (exchange-) couplings. In the present formalism,
we actually have to distinguish three different effects: Our effective coupling integrals
contain a Coulomb- (Coul), an exchange–correlation (XC), and a kinetic-energy (Tkin)
contribution. The latter can be associated with “Pauli-repulsion” effects, since it ef-
fectively corrects for the non-orthogonality of the subsystem orbitals. Additionally,
there are interactions between the fragments taken into account in the ground-state
embedding calculation, which will not be further analyzed here (see, e.g., Ref. [185]
for a discussion of their influence on excitation energies). The different contributions
can be analyzed by deactivating certain parts of the effective kernel for inter-subsystem
coupling matrix integrals Keff

(ia)A,(jb)B
. The resulting splitting energies are shown in Fig-

ure 5.3. Obviously, the by far dominating contribution to the coupling in this case is
the Coulomb coupling. Indeed, the XC and Tkin contributions are hardly visible for
distances larger than 5 Å. Particularly interesting is that the splitting energies which
only include Coulomb coupling agree almost perfectly with the fully coupled data, since
the XC and Tkin contributions almost cancel each other even at a separation of 4 Å.
However, at distances where these effects become visible, the couplings with the CT-like
excitations actually have a much larger effect, which causes the deviation between the
coupled FDE and the supermolecular calculations.

Figure 5.3: Splitting energies (in units of eV) of the benzaldehyde dimer shown in Figure 5.1
for the excited states corresponding to the 3 1A′ state of the monomer, as a function of
the intermolecular distance. Solid line: supermolecular TDDFT; dashed line: coupled FDE
(all contributions); dashed-dotted line: coupled FDE, only Coulomb and XC contributions;
long-dashed line: coupled FDE, only Coulomb and Tkin contributions; dotted line: coupled
FDE, only Coulomb contributions.
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Another question is related to the number of couplings that have to be included in order
to converge the excitation energies for the coupled transitions. Simple excitonic coupling
models usually assume that only pairs of identical transitions have to be coupled, so
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Table 5.1: Excitation energies and splitting energies (in units of eV) for the excited states
of the benzaldehyde dimer corresponding to the 3 1A′ excitation of the monomer for different
numbers of coupled states. The intermolecular distance was 5 Å.

no. of states E1 E2 ∆E
1, 1 4.8311 4.9201 0.0889
10, 10 4.8310 4.9199 0.0889
15, 15 4.8293 4.9183 0.0891
20, 20 4.8292 4.9183 0.0891

that Eq. (5.19) reduces to a 2 × 2 matrix-eigenvalue problem. In order to investigate
this point, we considered only selected states in the subsystem formalism to investigate
how the number of couplings included affects the excited-state energies and the splitting
between the two states. The results for an intermolecular distance of 5 Å are given
in Table 5.1. It can be seen that the splitting energy is converged within 0.0002 eV
even if only one excitation per monomer is taken into account. The excitation energies
themselves shift slightly (by approximately −0.002 eV) if more than 15 excitations
per monomer are included. Thus, the by far dominant correction to the uncoupled
excitation energies originates from the coupling of the degenerate excitations, as would
be expected.

The efficiency of uncoupled FDE calculations was discussed in detail in the previous
chapters. The decrease in computational cost compared to supermolecular calculations
can be extremely large if simple approximations for the environmental density are
sufficient. In the coupled FDE approach, additional computational effort is necessary:
For every subsystem for which excitations shall be coupled with the other fragments it
is necessary to perform an excitation calculation in addition to the calculation of the
ground-state density. Furthermore, an element of the matrix Ω̃s has to be calculated
for every pair of states that shall be coupled. The computational effort thus depends
linearly on the number of couplings that are included. The effort needed to describe
one of these couplings is proportional to the number of integration points Npoint, and
the number of occupied and virtual orbitals per subsystem, N sub

occ and N sub
virt . The latter

two numbers can be considered constant in systems with identical chromophores if the
number of chromophores is increased. Furthermore, the matrix elements needed involve
the induced potential and basis functions on one subsystem only, so that in principle
also the number of grid points could be kept constant. This requires to generate one
integration grid per subsystem, as will be described in Section (5.3.2). On the other hand,
the CPU time needed in a supermolecular calculation is proportional to [236] Npoint ×
N super

occ × N super
virt , where N super

occ and N super
virt are the number of occupied and unoccupied

orbitals, respectively, in the supersystem. Actually, this is the scaling behavior for one
matrix–vector product in the iterative solution of the eigenvalue problem. The number of
matrix–vector multiplications can roughly be estimated to be proportional to the number
of excited states that have to be optimized. In case of an exact diagonalization of the
matrix Ω, this number would be N super

occ ×N super
virt . As was shown in Ref. [116], this number

will be much larger in a supermolecular calculation than in an FDE calculation. Since
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also the numbers of occupied and virtual orbitals of the supersystem scale linearly with
the number of (identical) subsystems, the coupled FDE approach will be particularly
valuable if couplings are only needed for a small number of excitations (as is the case
here, see Table 5.1).

5.1.5 Extension to several fragments

The frozen-density approach as originally suggested by Wesolowski and Warshel di-
vides the total system into an embedded part and an environment [111]. The initial
implementations in Adf [184, 309] followed this approach, so that intermediate steps
were usually required in order to use sum-of-fragment approaches for the density of the
environment [116,184]. This approach is preferable if FDE is used as an effective envi-
ronmental model. However, the original subsystem approach by Cortona [106] was not
restricted to a fixed number of fragments (see Section 2.5). The subsystem formulation
for excited states given here can also be generally applied for n fragments for which
excitations are calculated individually, and which are then coupled in the way described
in Sections 5.1.1 and 5.1.3. This is now also possible for ground-state calculations in a
new Adf implementation [190]. The matrix elements Ω̃νIµJ

, which are available for all
pairs of fragments I and J , are then still a measure for the strength of the coupling
between the excitations on the different subsystems. However, their relation to the
splitting energy is of course more complicated than in the simple approximation given
in Eq. (5.34) or its generalization to cases of non-equivalent subunits. Additionally, the
presence of a third molecule can modify the coupling matrix elements by its influence
on the molecular orbitals in the ground-state FDE calculation.
We calculated the excitation energies for a benzaldehyde trimer, which consists of three
benzaldehyde molecules in a row with intermolecular distances of 5 Å. The monomer
units are numbered as follows: Monomer 1 is the fragment in the middle of the trimer
(molecular plane = z-plane), monomer 2 is at z = +5 Å, and monomer 3 is at z = −5
Å. Subsystems 2 and 3 are thus equivalent by symmetry.

Table 5.2: Excitation energies (in units of eV) of the coupled excitation in the benzaldehyde
trimer corresponding to the 3 1A′ excitation (at 4.871 eV) in the isolated monomer; FDEu:
uncoupled FDE approach; super: supermolecular TDDFT calculation; 1–{2, 3}: monomer 1
coupled to dimer {2, 3}; 2–{1, 3}: monomer 2 coupled to dimer {1, 3}; 1–2–3: monomer 1
coupled to monomers 2 and 3. Monomer 1 is the middle fragment.

No. iso FDEu super 1–{2, 3} 2–{1, 3} 1–2–3
1 4.871 4.880 4.812 4.819 4.814 4.816
2 4.871 4.878 4.868 4.870 4.871 4.871
3 4.871 4.878 4.932 4.942 4.937 4.941

The excitation that occurs at 4.871 eV in the isolated monomer splits into three excita-
tions due to the couplings between the three monomers. In the case of FDE calculations,
it is possible to construct the trimer either as consisting of three fragments (1,2,3) or of
two fragments. In the latter case, we can either choose the monomer 1 and the dimer
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{2, 3} or the monomer 2 and the dimer {1, 3} (the third choice of monomer 3 and
dimer {1, 2} is equivalent by symmetry). The results from supermolecular calculations
and coupled FDE calculations with different fragments are shown in Table 5.2. The
lowest 20 singlet–singlet excitations were calculated for each fragment and subsequently
coupled. In the supermolecular calculation there is a splitting of 0.120 eV between the
lowest and the highest of the three excitations. The coupled FDE approach starting
from a monomer and a dimer yields a very similar splitting of 0.123 eV for all possible
choices of monomer-dimer combinations (although the absolute positions vary slightly
by 0.005 eV). The calculation based on three monomers results in a splitting that agrees
well with the supermolecular approach (0.125 eV), which demonstrates the applicability
of the approach to general cases with several interacting molecules.

5.1.6 Ground-state and excited-state interactions

In complex aggregates of pigment molecules, different chromophores will, in general, have
non-equivalent environments. The hypothetical excitation energies of the chromophores
in absence of any excited-state interaction are called site energies; the corresponding
states may be regarded as quasi-diabatic states. Their coupling by excitonic interaction
then leads to the excitation energies that are observable in experiment, corresponding
to adiabatic excited states.

One of the advantages of the subsystem TDDFT approach introduced here is its seamless
integration into the corresponding ground-state formalism. The excitation energies from
the uncoupled frozen-density embedding approach can thus be regarded as the site
energies of a chromophore in an aggregate, and a subsequent coupling of the excitations as
outlined above will lead to the excited states of the total system. This is demonstrated for
the dimer of benzaldehyde molecules depicted in Figure 5.4. That figure also contains the
excitation energies for the lowest-lying excited states of the two benzaldehyde molecules
calculated in different approximations. For the isolated molecules A and B, the excitation
energies are, of course, identical, as the dimer is composed of two identical benzaldehyde
molecules that are lying in the same plane, but are displaced along the direction of the
C−CO bond. It can be seen that already the uncoupled FDE calculation gives rise to
a splitting in the excitation energies, since the two monomers are not equivalent. The
differences in the excitation energies are larger for the lower-lying states, but also the
upper state shows a small splitting. The excited-state couplings included in the FDEc
calculation leave the energies of the lower-lying states almost unchanged, but widen
the gap between the two higher-lying states. Note that the excited states in the FDEu
calculation can still be assigned to either monomer A or B, whereas the excited states
in the FDEc calculation are typically delocalized over both monomers. By comparison
to the results of a supermolecular calculation, it can be seen that the accuracy of the
FDEc calculation is very good (note that low-lying excitations of charge-transfer type in
the supermolecular calculation are not shown for clarity). Figure 5.4 also contains the
excitation energies obtained from a coupled calculation based on the isolated monomers
instead of those from a ground-state FDE calculation (denoted as “iso”). It can be
seen that the magnitude of the splitting for the higherlying states is approximately
correct, but neither the expected vertical position of these states nor the splitting in
the lower-lying excitations is obtained. This clearly demonstrates that both ground-



5.1. A subsystem TDDFT approach for coupled excitations 147

Figure 5.4: Left: Structure of the non-symmetric dimer of two benzaldehyde molecules; right:
lowest excited states for monomers A and B in isolated molecule calculations (iso), uncoupled
(FDEu) and coupled FDE calculations (FDEc), a calculation on the supermolecule/dimer
(super), and a coupled calculation starting from the non-interacting monomers (iso). Note
that these illustrative calculations were performed with BP86/DZP.
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and excited-state interactions must be properly taken into account in order to calculate
excitation energies reliably within a subsystem approach.

5.1.7 Circular dichroism spectra of coupled chromophores

In Section 4.4.4 it was shown that FDE-TDDFT leads to a complete failure for the
circular dichroism spectrum of a benzaldehyde dimer. Here we consider such a dimer
again, which is shown in Figure 5.5. (Note that a different exchange–correlation func-
tional was used in Section 4.4.4). The monomers are the same as employed throughout
this section, and the intermolecular distance was set to 5 Å. We performed both a
supermolecular calculation and a coupled FDE calculation. Rotational strengths were
calculated using the dipole-velocity form for the electric transition dipole moments to
obtain origin-independent results. Again, the lowest 20 excitations per monomer were
included in the coupled FDE calculation. The spectra resulting from all transitions
below 5 eV are shown in Figure 5.6. It can be seen that the coupled FDE approach
nicely reproduces the supermolecular results. Only slight deviations can be observed
in the position of the peak maxima and the intensities for the couplet dominating the
spectrum. Overall, the agreement is very good.

We can thus conclude from the above examples that excitation energy couplings from
supermolecular calculations can be reliably reproduced, and that the subsystem TDDFT
approach is readily applicable to several subsystems. At short range, problems may arise
from deficiencies in the approximate kinetic energy functionals employed here and from
the fact that charge-transfer-like excitations play a role, which are excluded from the
present approach. It was furthermore shown that spectral features in circular dichroism
spectra arising from couplings between two chromophores are reproduced, for which the
former FDE approaches failed completely (see Section 4.4.4).
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Figure 5.5: Structure of the C2-symmetric benzaldehyde dimer for the CD calculations. The
intermolecular distance is 5 Å.

Figure 5.6: Circular dichroism spectrum (BP86/TZP) of the benzaldehyde dimer shown in
Figure 5.5 (all excitations below 5 eV were taken into account).
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5.2 General response properties from subsystem TDDFT

Whereas the last section concerned excitation processes exclusively, there are several
other spectroscopic phenomena that are related to environmental response, and that may
be of very intricate nature. To give an example, it has recently been argued that the
optical rotatory dispersion of methyloxirane in benzene is caused mainly be the response
of the benzene molecules due to a chiral imprinting effect [405,406]. Subsystem density
functional response theory can provide an ideal means for the investigation of such
phenomena, since both the entire frequency-dependent response of a system as well as
the contributions of each subsystem individually can easily be assessed.
In the following, we will therefore extend the theoretical analysis given in Section 5.1
and derive explicit expressions for polarizabilities and optical rotation parameters. Addi-
tionally, we will establish the expressions for oscillator strengths and rotatory strengths
in analogy to the supermolecular case. The design of efficient algorithms and an imple-
mentation of this approach will be discussed subsequently. Note that a formal derivation
for polarizabilities in the two-partitioning case (embedded system and environment) was
given in Ref. [308]. However, no generalization to arbitrarily many subsystems and no
algorithms for practical calculations or implementations are available so far.
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5.2.1 Polarizabilities

The components of the polarizability tensor are defined as the derivatives of the electric
dipole moment with respect to an electric field. E.g., the xz-component of the frequency-
dependent polarizability tensor is defined through the first-order perturbation in the
x-component of the dipole moment, µ

(1)
x (ω),

µ(1)
x (ω) =

∂µx

∂Ez
︸︷︷︸

αxz(ω)

Ez (5.35)

where Ez is the amplitude of the frequency component with frequency ω of the exter-
nal electric field. All other components can, of course, be defined analogously. The
frequency-dependent electric dipole moment can be calculated as an expectation value
of the electric dipole operator if the frequency-dependent density change is known. An
expression for µ

(1)
x (ω) can be obtained from the linear response of the density, so that

the polarizability component can thus be written as

αxz(ω) =
µ

(1)
x (ω)

Ez
=

1

Ez

∫

d3rδρ(ω, r)µ̂x (5.36)

=
2

Ez

∑

(ia)I

δP(ia)I
Dx,(ia)I

. (5.37)

Again, the sum runs over all orbital transitions in all subsystems. In the last line we
inserted the expression for δρ(ω, r) according to Eqs. (5.2) and (5.3) obtained within
the subsystem-TDDFT formalism and explicitly stated its frequency dependence. We
have furthermore introduced the definition of the vector Ds

x (the vectors Ds
y and Ds

z

are defined correspondingly; the superscript s again indicates their subsystem block-
structure), which contains matrix elements of the electric dipole operator µ̂,

Dx,(ia)I
= (Ds

x)(ia)I
= 〈φiI |µ̂x|φaI

〉. = −e〈φiI |rx|φaI
〉. (5.38)

In Section 3.2.2 it was shown that a formal solution for the perturbed density matrix
is,

δP = S−1/2
[
ω2 −Ω

]−1
S−1/2δvext, (5.39)

and a corresponding expression can be obtained for the subsystem-TDDFT case from
Eq. (5.14),

δPs = (Ss)−1/2
[
ω2 −Ωs

]−1
(Ss)−1/2δvext,s, (5.40)

where the vector δPs contains blocks δPI with elements δP(ia)I
for every subsystem I,

and a corresponding definition holds for the diagonal matrix Ss, which contains elements,

S(ia)I ,(jb)J
= (Ss)(ia)I ,(jb)J

=
1

(ǫbJ
− ǫjJ

)
δ(ia)I

δ(jb)J
. (5.41)
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The differences to the conventional TDDFT response formalism are that (i) each of
the matrices/vectors in this equation has a subsystem structure, thus offering new
algorithmic ways and approximations for the solution (see Section 5.2.5), and that (ii)
the response kernel differs as explained in Section 5.1.1.
The vector δvext,s is, for an electric field in z-direction, given as

δvext,s = EzD
s
z, (5.42)

With Eqs. (5.42) and (5.39), we can thus rewrite Eq. (5.37) as (in analogy to the
supermolecular TDDFT expression [220]),

αxz(ω) = 2
∑

(ia)I

∑

(jb)J

{

(Ss)−1/2
[
Ωs − ω21

]−1
(Ss)−1/2

}

(ia)I ,(jb)J

Dz,(jb)J
Dx,(ia)I

.(5.43)

By using the spectral representation [220],

[
Ωs − ω21

]−1
=
∑

ν

Fs
νF

s,†
ν

ω2
ν − ω2

, (5.44)

where ω2
ν and Fs

ν are the eigenvalues and eigenvectors of matrix Ωs, see Eq. (5.15), we
obtain,

αxz(ω) = 2
∑

ν

1

ω2
ν − ω2

Ds,†
x (Ss)−1/2Fs

νF
s,†
ν (Ss)−1/2Ds

z (5.45)

= 2
∑

ν

1

ω2
ν − ω2

(
Ds,†

x (Ss)−1/2Fs
ν

) (
Ds,†

z (Ss)−1/2Fs
ν

)†
. (5.46)

5.2.2 Oscillator strengths

If we compare Eq. (5.46) to the sum-over-states expression of the polarizability in terms
of wavefunctions and total energies (see, e.g., Refs. [220,227]),

αxz(ω) = 2
∑

ν

ων

ω2
ν − ω2

〈Ψ0|µ̂x|Ψν〉〈Ψν |µ̂z|Ψ0〉, (5.47)

we see that, just like in conventional TDDFT,
(
Ds,†

x (Ss)−1/2Fs
ν

)
=
√
ων〈Ψ0|µ̂x|Ψν〉, (5.48)

so that the transition dipole moment is given as

〈Ψ0|µ̂x|Ψν〉 =
1√
ων

(
Ds,†

x (Ss)−1/2Fs
ν

)
(5.49)

=
∑

(ia)J

〈φiJ |µ̂x|φaJ
〉
√

(ǫaJ
− ǫiJ )

ων

Fν,(ia)J
. (5.50)

Oscillator strengths can be obtained as [220, 227, p. 510],

fν =
2

3
ων |〈Ψ0|µ̂|Ψν〉|2 (5.51)

=
2

3

(
|Ds,†

x (Ss)−1/2Fs
ν |2 + |Ds,†

y (Ss)−1/2Fs
ν |2 + |Ds,†

z (Ss)−1/2Fs
ν |2
)

(5.52)
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5.2.3 Optical rotation

The optical rotation parameter β̄, which is the isotropic part (the trace divided by 3)
of the corresponding optical rotation tensor β, has the form [407,408],

β̄ =
2

3

∑

ν

Im(µ0ν ·mν0)

ω2
ν − ω2

=
2c

3

∑

ν

Rν

ω2
ν − ω2

, (5.53)

where c is the speed of light, ω is the angular frequency of the external electromagnetic
field, and ων is the excitation energy from the ground state to state ν, and the rotational
strengths Rν are given as,

Rν = Im (〈Ψ0|µ̂|Ψν〉 · 〈Ψν |m̂|Ψ0〉) = Im(µ0ν ·mν0), (5.54)

where µ̂ and m̂ are the electric and magnetic dipole operator, respectively. The form
of the latter for a system of electrons is [409, p. 70],

m̂ = −
∑

i

e

2mi
ri × pi = −

∑

i

µB

h̄
ri × pi, (5.55)

where µB is the Bohr magneton. In atomic units, this simplifies to,

m̂ = −
∑

i

1

2
ri × pi. (5.56)

The tensor β can be obtained either by considering the effect of an electric perturbation
on the magnetic dipole moment, or by considering the effect of a magnetic perturbation
on the electric dipole moment of the molecule [407, p. 703]. Magnetic moments and
perturbations cannot be represented in terms of the electron density alone. It was,
however, proposed that β can be obtained from the perturbed density matrix of the
Kohn–Sham system based on the argument that the latter not only reproduces the
correct density of the interacting system, but also its current density [228]. In the case
of subsystem density functional theory, this invokes the additional assumption that the
total current density can be decomposed into subsystem contributions as well. This
assumption was applied before in the study of nuclear magnetic resonance shieldings
[335]. The xz component of the optical rotation tensor can then be obtained as [408],

βxz =
2

Ez
Im
(
Ms,†

x SsδPs
)

(5.57)

= 2Im
(

Ms,†
x Ss(Ss)−1/2

[
Ωs − ω2

]−1
(Ss)−1/2Ds

z

)

(5.58)

= 2Im
(

Ms,†
x (Ss)1/2

[
Ωs − ω2

]−1
(Ss)−1/2Ds

z

)

(5.59)

where the elements of the vector Ms
x are defined in analogy to Ds

x as matrix elements
of the magnetic dipole moment operator,

Mx,(ia)I
= (Ms

x)(ia)I
= 〈φiI |m̂x|φaI

〉. (5.60)

In Eq. (5.57), we have again used Eqs. (5.39) and (5.42). This shows that we can
immediately calculate β once the electric-field induced perturbation of the density matrix
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and the magnetic dipole integrals are available. Of course, it would also be possible to
calculate β from δPs determined for a magnetic perturbation, which in theory should
lead to the same results [407, 408]. In practice, differences of the order of 1 % have
been reported [410].

5.2.4 Rotational strengths

Expressions for the magnetic dipole transition moments and the rotational strengths
can again be deduced by using the spectral representation of [Ωs − ω2]−1 (see also
Refs. [411, 411] for the supermolecular case),

βxz = 2Im

[
∑

ν

1

ω2
ν − ω2

(
Ms,†

x (Ss)+1/2Fs
ν

) (
Ds,†

z (Ss)−1/2Fs
ν

)†

]

. (5.61)

From Eq. (5.61) we can identify the components of the magnetic transition dipole
moment, m0ν by comparison with the sum-over-states expression in Eq. (5.53) and the
form of the electric transition dipole moment from Eq. (5.49),

mx,0ν = −ω1/2
ν Ms,†

x (Ss)1/2Fs
ν (5.62)

= −
∑

(ia)J

√
ων

ǫaJ
− ǫiJ

Mx,(ai)J
Fν,(ia)J

(5.63)

=
∑

(ia)J

√
ων

ǫaJ
− ǫiJ

Mx,(ia)J
Fν,(ia)J

. (5.64)

In the last line we have used the fact that Mx,(ai)J
= −Mx,(ia)J

. Rotational strengths
can then be obtained by inserting Eqs. (5.64) and (5.49) into Eq. (5.54).

5.2.5 Subsystem decomposition of polarizability and optical rotation

In order to calculate the polarizability according to Eq. (5.37), we need the occupied–
virtual matrix elements of the electric dipole moment operator and the elements of the
perturbed density matrix, δP(ia)I

. The calculation of the former does not present a
problem, whereas the latter quantities require the solution of the large linear system
given in Eq. (5.39). This problem is typically tackled by iteratively solving the equation

(Ss)1/2
[
ω2 −Ωs

]
(Ss)1/2

︸ ︷︷ ︸

G

δPs = GδPs = δvext,s, (5.65)

since the matrix G is usually too large to be inverted directly. This corresponds to
the approach used by Feyereisen et al. in the context of Hartree–Fock theory [233]. A
similar approach starts by combining the Eqs. (5.14) for all occupied–virtual pairs (jb)J

in a matrix–vector equation [412],

δPs = χs
[
δvext,s + 2KeffδPs

]
, (5.66)
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where χs is a diagonal matrix with elements,

χs
(ia)I ,(ia)I

(ω) =
ω(ia)I

ω2
(ia)I
− ω2

. (5.67)

For the solution, a guess for δPs is constructed by neglecting δPs on the right-hand
side of Eq. (5.66), from which the so-called uncoupled response of the density matrix
is easily obtained as,

δPs,(0) = χsδvext,s, (5.68)

with elements,

δP
(0)
(ia)I

=
ω(ia)I

ω2 − ω2
(ia)I

δvext
(ia)I

. (5.69)

Then, δP
(0)
(ia)I

can be inserted into the right-hand-side of Eq. (5.66) to determine the

next approximation δP
(1)
(ia)I

and so forth until self-consistence is achieved.

At this point, we note explicitly again that all quantities in Eq. (5.66) exhibit a subsystem
structure, so that we can write,








δPA

δPB
...

δPZ








=








χs
A 0 · · · 0

0 χs
B · · · 0

0 0
. . .

...
0 0 · · · χs

Z






















δvext
A

δvext
B
...

δvext
Z








+








K
eff
AA K

eff
AB · · · K

eff
AZ

K
eff
BA K

eff
BB · · · K

eff
BZ

...
...

. . .
...

K
eff
ZA K

eff
ZB · · · K

eff
ZZ















δPA

δPB
...

δPZ















(5.70)

The solution of this system of equations for the density response seems not much simpler
than in a conventional TDDFT calculation. The main simplification up to this point is
that no inter-subsystem orbital transitions are included into the equation. If we assume
a system composed of N identical subsystems with nocc and nvirt occupied and virtual,
respectively, orbitals per subsystem in a given one-particle basis set, then the dimension
of the vector δP is (nocc · N) × (nvirt · N) in the supermolecular case, whereas the
dimension of δPs is (nocc ·nvirt)×N in the subsystem approach. Another big advantage
of the subsystem approach is, however, that the density response of any subsystem I
can be obtained as,

δPI = χs
I

[

δvext
I + 2

∑

J

Keff
IJδPJ

]

, (5.71)

which we can split up into,

δPI = χs
I

[

δvext
I + 2Keff

II δPI + 2
∑

J,J 6=I

Keff
IJδPJ

]

. (5.72)
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The coefficients of the perturbed density matrix of subsystem I can thus be partitioned
into three parts: (i) a part due to the external perturbation, (ii) a part due to the
change in the potential induced by the density change within the same subsystem, and
(iii) a part due to the change in the potential induced by the density change in all
other subsystems.
A first approximation to the perturbed density matrix for subsystem I can be obtained
from a self-consistent solution of,

δP
(1)
I = χs

I

[

δvext
I + 2Keff

II δP
(1)
I

]

, (5.73)

i.e., by neglecting any inter-subsystem response couplings. Within the framework of
excitation energies presented in Section 5.1, this approximation led to the “uncoupled
frozen-density embedding” (FDEu) approximation. In the context of polarizabilities
and response densities, the term “uncoupled” is already reserved for the (much more

drastic) approximation δP
(0)
I in Eq. (5.69). Therefore, we will use the term “local

response approximation” for Eq. (5.73). Eq. (5.73) was suggested for the calculation of
polarizabilities of an embedded molecule within the FDE framework before [41]. Results
calculated for water in water within the local response approximation were published in
Ref. [185]. In comparison to a polarizable classical force field model for the environment,
it was observed in that study that the changes in the polarizability from isolated water
to the embedded water changed into the wrong direction if described by FDE. For static
polarizabilities, this failure could be remedied by employing finite-field techniques [185].

A fully self-consistent solution of Eq. (5.72) can be obtained by first calculating δP
(1)
I

for each subsystem and then iteratively solving,

δP
(n+1)
I = χs

I

[

δvext
I + 2Keff

II δP
(n+1)
I + 2

∑

J,J 6=I

Keff
IJδP

(n)
J

]

(5.74)

= χs
I

[

δvext
I + δv

inter,(n)
I + 2Keff

II δP
(n+1)
I

]

, (5.75)

where,

δv
inter,(n)
I = 2

∑

J,J 6=I

Keff
IJδP

(n)
J , (5.76)

is the inter-subsystem contribution to the matrix elements of the potential induced by
the density perturbation in iteration n. Note that in each macro-iteration, i.e., in each
step from n to n+1 in the solution of Eq. (5.75), the perturbed density matrix for every
subsystem has to be determined self-consistently according to Eq. (5.75) in a series of
micro-iterations, before one can switch to the next macro-iteration.
The computational effort for one macro-iteration per subsystem is comparable to that
of a conventional polarizability calculation of that subsystem. Our implementation in
a development version of Adf makes use of Pulay’s direct inversion in the iterative
subspace (DIIS) algorithm [413–415] in order to improve the overall convergence behavior
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of each macro-iteration, i.e., in order to keep the number of micro-iterations per macro-
iteration small. In addition, it turned out that oscillations in the responses of different
subsystems may sometimes hamper the convergence, so that too many macroiterations
would be required to converge the density response. This could be avoided by introducing
a second layer of DIIS convergence acceleration for subsequent macro-iterations.
Ground-state frozen-density embedding can typically be performed in two different ways
as was mentioned in the previous chapters at several points. The first is a fully self-
consistent way, in which several freeze-and-thaw cycles are performed, so that the
properties under study are converged. In the more approximate yet also more efficient
second way, we try to find a simple approximation for the electron density of the
environment and then only optimize the electron density of an active subsystem in the
presence of the frozen environmental density. Both strategies can also be applied for
the response. The fully self-consistent approach for the calculation of polarizabilities
was already outlined above. The “pure embedding” approach would require that an
approximation for the response of the other subsystems (δPJ) is available, which is kept
frozen during the entire calculation. Then, one can obtain an approximation for the
“embedded” density response of the active system, e.g., system A, as follows,

δPemb
A = χs

A

[

δvext
A + 2Keff

AAδP
emb
A + 2

∑

J,J 6=A

Keff
AJδP

approx
J

]

. (5.77)

Although such an approximation would not be fully self-consistent, we can still expect
that it allows to capture polarization effects due to the environmental response in a
qualitatively correct way. The computational cost in this approximation is reduced
to N + 1 response calculations for one of the subsystems, where N is the number
of subsystems. Note that one way to perform the subsystem response formalism in
embedding mode is to construct the approximate density perturbation from the local
response approximation in Eq. (5.73), i.e., to stop the iterative solution of Eq. (5.75)

after δP
(2)
A has been calculated.

In the end, one would obtain a subsystem-polarizability for each fragment according to,

αI
xz(ω) =

2

Ez

∑

(ia)∈I

δP(ia)I
Dx,(ia)I

(5.78)

= 2
∑

(ia)∈I

∑

(jb)J

{

(Ss)−1/2
[
Ωs − ω21

]−1
(Ss)−1/2

}

(ia)I ,(jb)J

Dz,(jb)J
Dx,(ia)I

, (5.79)

Note that in contrast to Eq. (5.37) the first sum in both lines in the above equation
is only over all occupied–virtual pairs within subsystem I, and not over all pairs and
all subsystems as in the second sum, which includes the reaction of the response in
system A to that of all other subsystems. The total polarizability of the system is then
conveniently given as a sum of all subsystem polarizabilities,

αxz(ω) =
∑

I

αI
xz(ω). (5.80)
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In a similar way, the components of the optical rotation tensor β can be decomposed
into subsystem contributions, e.g.,

βI
xz =

2

Ez

∑

(ia)∈I

Im
(
Mx,(ai)I

S(ia)I ,(ia)I
δP(ia)I

)
(5.81)

= 2
∑

(ia)∈I

∑

(jb)J

Im

({

(Ss)1/2
[
Ωs − ω2

]−1
(Ss)−1/2

}

(ia)I ,(jb)J

Dz,(jb)J
Mx,(ai)I

)

,(5.82)

so that,

βxz(ω) =
∑

I

βI
xz(ω). (5.83)

This allows to calculate the response tensors for each subsystem individually, eventually
using different types of approximations for different subsystems, so that the change in
the response due to an environment can be obtained. Moreover, the overall response of
the supersystem can conveniently be obtained as a sum of the subsystem contributions.

5.2.6 Illustrative calculations

As an example for the investigation of effects due to a coupled response, we study
a system of two benzaldehyde molecules that are parallel displaced in z-direction by
distances varying between 5 and 15 Å (see Figure 5.1). This example has already been
studied in Section 5.1.4, where large excitonic couplings for the low-lying excited states
were observed. It should thus serve as an ideal example of a system in which the
coupled response becomes very important.
Figure 5.7 shows the distance dependence of the component αxx obtained from the
local response approximation (FDEu), the coupled subsystem approach (FDEc), and
from a supermolecular Kohn–Sham calculation. All calculations were carried out with
the BP86 functional and the large QZ4P basis set in the static limit. For the non-
additive kinetic energy component of the embedding potential, the PW91k functional
in the LC94 parameterization was employed. For comparison, we also give the sum of
the xx-polarizability components for the two isolated monomers, which is, of course,
distance-independent. The FDEu approach is clearly not suited to describe the change
in the polarizability caused by a second benzaldehyde molecule. Even at rather small
distances, the results hardly differ from the isolated molecule calculations, and the tiny
difference that can be observed increases the total polarizability. The supermolecular
approach, on the other hand, shows a significant decrease of about 15 a.u. (7 %) with
respect to two isolated benzaldehyde molecules. This effect is very nicely reproduced by
the coupled subsystem approach. The deviations between the FDEc and supermolecular
values are 0.95 a.u. for a distance of 5 Å and decrease to 0.02 a.u. for a distance of 15
Å.
It should be noted that the agreement is slightly worse, though still qualitatively correct,
if a smaller TZP basis set is employed. In that case it seems that the supermolecular
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Figure 5.7: Results for the xx component of the polarizability of the benzaldehyde dimer
shown in Figure 5.1 for varying distance obtained with BP86/QZ4P from local response
(FDEu) and coupled subsystem approaches (FDEc) as well as from conventional supermolecular
Kohn–Sham calculations (super). For comparison, also the data for two isolated benzaldehyde
molecules are shown (iso).
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calculation suffers from a basis set superposition-type error for the polarizability, which
leads to a worse agreement at intermediate distances.

As far as optical rotation calculations are concerned, we have so far implemented only
the dipole-length form of the electric transition dipole moment. The calculations are
thus subject to a gauge origin dependence. It has recently been noted that the individual
components of the electric dipole–magnetic dipole tensor are not gauge invariant [416–
420] even in an exact theory unless contributions from the electric quadrupole tensor are
taken into account. In order to minimize gauge origin effects, we again employ the very
large QZ4P basis set. A benchmark calculation was carried out for the C2-symmetric
dimer from Figure 5.5.2 The optical rotation was calculated for a wavelength of 589.5932
nm, corresponding to the longer of the two wavelengths associated with the sodium D-
line [421]. It should be noted that for this comparison between supermolecular and FDE
results the gauge origin problem can be ignored, since it will affect both calculations
in the same way. Nevertheless, the extent to which the results are affected by the
gauge problem can be assessed by the calculation of the optical rotation for the isolated
molecules. The isotropic optical rotation should be zero for these planar molecules. A
BP86/TZP calculation resulted in an isotropic value of β = 0.82 a.u. for the sum of
the two isolated molecules, which decreased to less than 0.01 with the QZ4P basis set,
thus showing that gauge origin problems are not severe with the large basis.

The results for the optical rotation tensor β and its isotropic value β̄ are listed in
Table 5.3. It can be recognized that already the local-response version of the subsystem
TDDFT approach (FDEu) leads to a change in the components of β, but this change is

2The orientation of the dimer was chosen as follows: The origin was located in the center of
mass of the supermolecule. Each of the monomers was placed in plane parallel to the xy-plane,
but shifted by ±2.5 Å. The two C=O groups form a rectangle lying parallel to the xz-plane at
y = −1.707 Å.



158 5. Time-Dependent Density-Functional Theory for Subsystems

Table 5.3: Components of the optical rotation tensor β and its isotropic value β̄ (BP86/TZP,
in units of a.u.) calculated as a sum of isolated molecule contributions (iso), from FDEu,
FDEc, and from a supermolecular calculation (super).

iso FDEu FDEc super
βxx 76.93 77.48 80.58 80.67
βyy −76.92 −77.82 −75.17 −75.20
βzz 0.00 0.53 −1.52 −1.73
βxy 0.00 −0.01 −0.01 0.02
βxz 37.71 37.36 37.68 37.82
βyz 0.00 0.00 0.00 −0.07
βyx 0.00 0.00 0.00 −0.06
βzx 12.33 13.61 10.64 10.60
βzy 0.00 −0.01 −0.01 −0.07
β̄ 0.00 0.06 1.29 1.25

not always in the direction expected from the supermolecular calculation. E.g., the zx-
component increases from 12.33 to 13.61 a.u. when the ground-state interaction between
the monomers is switched on. However, the supermolecular calculations yields a value
of 10.60 a.u., so that there is a discrepancy of −3.01 a.u. in total. The FDEc approach
corrects the FDEu value by −2.97 a.u., thus leading to a very good agreement with
the supermolecular result. Also for the other components of β, the deviations between
FDEc and the supermolecular results are small, with a maximum of 0.21 obtained for
βzz. The deviation in the isotropic value β̄ is < 0.05 a.u. and thus of the order of 4 %.
This underlines the reliability of the subsystem TDDFT approach for optical rotation
calculations, in contrast to its FDEu approximation. The latter results in a optical
rotation of 0.06 a.u. compared to 1.25 a.u. in the reference calculation, and is thus not
appropriate for systems with pronounced coupled response.

5.3 Studying natural light-harvesting complexes with subsystem

TDDFT

Light-harvesting complexes accomplish the first two of the essential steps in photosynthe-
sis: They are responsible for the absorption of light and the transport of the excitation
energy to the photosynthetic reaction center, where the subsequent steps, i.e., charge
separation and chemical storage of the energy, take place [422–424]. A key step towards
the understanding of the processes in light-harvesting complexes on a molecular level was
the crystal structure determination of the integral membrane light-harvesting complexes
from purple bacteria (for reviews see Ref. [425, 426]), e.g., from Rhodopseudomonas

molischianum [427] and from Rhodopseudomonas acidophila [428–430].

In the present study, we will concentrate on the light-harvesting complex 2 (LH2) of
the latter bacteria, for which extensive studies of pigment properties and excitation
energy transfer processes have been conducted [403,431–439]. To investigate the energy
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transfer pathways in light-harvesting systems, it is necessary to calculate the excitation
energy couplings between the individual chromophores [402, 440,441]. In principle this
information should be accessible from a quantum chemical calculation of the excited
states of the entire light-harvesting system, but there are two basic problems. The first
is the size of the antenna systems, which is — depending on the particular model chosen
— in the order of several thousands to ten thousands of atoms. The second is the fact
that this type of analysis necessarily requires a picture in which the excited states of
the pigment complex are expressed in terms of local excited states of the individual
chromophores. A quantum-chemical calculation, however, would typically result in a
delocalized picture, which prohibits (or at least severely complicates) the extraction of
such coupling constants.

For these two reasons, the investigation of excitonic couplings in antenna systems is
usually carried out by calculating excited states of individual, isolated chromophores.
Subsequently, the coupling constants are determined by calculating the interaction matrix
elements between the excited states of the monomers, which effectively corresponds to
an interaction of the transition densities of the isolated monomers. With these coupling
matrix elements, an effective Hamiltonian matrix can be set up from which energy levels
of the light-harvesting system can be extracted upon diagonalization [401].

The EET couplings relevant for these phenomena are often described in terms of Förster
(Coulomb) [442] and Dexter (exchange) couplings [443] of non-interacting subunits.
Several studies on these effects have been carried out during the past years, which
highlight the effect of approximations introduced for the Coulomb coupling as well as
short-range effects of general orbital penetration and charge-transfer type [401,404,436,
440,444]. Among the methods which are most often used to approximate the Coulomb
couplings are multipole expansions, e.g., the Förster-type dipole–dipole coupling [442],
transition monopole interactions in terms of atomic partial transition charges [445,
446], or a real-space partitioning of the transition densities and a subsequent numerical
integration of the Coulombic interactions as in the transition density cube method
[435]. For a comparison of some of these approaches see Ref. [404]. More recently,
density-functional and configuration-interaction type methods based on an exciton-like
interaction between two local electronic transitions on isolated pigments have been
suggested, which may also incorporate the effect of a dielectric medium on the coupling
[398–400,447].

In view of the structure of the light-harvesting complex, which clearly contains specific
interactions between the chromophores and their environment, e.g., the apoproteins
surrounding the pigments [448], it appears desirable to be able to study the electronic
excitations of the antenna system including such interactions by an atomistic, quantum
chemical model. The subsystem TDDFT formalism developed in Section 5.1 offers the
possibility to tackle such problems.

Therefore, we are going to test the ability of this subsystem approach for the descrip-
tion of specific pigment–environment and excitation energy transfer interactions in the
following. After a brief summary of the structural features of LH2 in Section 5.3.1, Sec-
tion 5.3.2 explains how the coupling matrix elements obtained in the TDDFT treatment
can be related to the phenomenological coupling constants used in model theories of
EET. Subsequently, specific pigment–environment interactions on local excitations and
couplings arising from interactions of excitations in different subsystems are investigated
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in Section 5.3.4, before the calculated absorption spectra are presented in Section 5.3.5.
Technical details of the calculations are given in Appendix B.

5.3.1 The structure of LH2

The structure of LH2 from Rhodopseudomonas acidophila has been described in detail
before [428–430], so that only a brief summary of the most important features relevant
for the present study will be given here. A crystal structure obtained at 2.0 Å resolution,
which was reported in Ref. [429], showed that this antenna system has — within the
experimental accuracy — C9 symmetry. The structure is shown in Figure 5.8. It
contains nine bacteriochlorophyll a (Bchl a) molecules forming a ring in such a way
that the planes of the macrocyles are aligned parallel to the membrane. This set of Bchl
a molecules is called the B800 system, since its absorption maximum is at a wavelength
of 800 nm. Additionally, there is a second ring of 18 Bchl a molecules forming the so-
called B850 system, in which the macrocycle planes are perpendicular to the membrane.
These Bchl a molecules occur in pairs of so-called α and βB850 molecules. The Mg−Mg-
distance in B800 is 21.2 Å, the distances in B850 are 9.0 Å within an (α, β)-dimer and
9.5 Å between different dimers. There is an inner ring of so-called α-apoproteins, and an
outer ring of β-apoproteins. The Mg atoms in B800 interact with an oxygen atom from
the COO−-modified α-Met1 residue, while the Mg atoms in B850 ligate nitrogen atoms
from α-His31 or β-His30 residues, respectively. These interactions may lead to shifts
in the absorption properties of the Bchl a molecules, although this effect is typically
small [437]. The CIS calculations in Ref. [403] showed that a red-shift of about 0.02 eV
results from the His residues, although this calculation was carried out with a very small
basis set (3-21G*). Additionally, the residues α-Trp45 and α-Tyr44 can form hydrogen
bonds to the ring I acetyl groups of αB850 and βB850, respectively. In Ref. [437] it
was reported that this causes a measurable red-shift in the absorption spectra of the
light-harvesting complex. The B800 Bchl a molecules can form hydrogen bonds to the
β-Arg20 residue, for which a significant red-shift was calculated in Ref. [433].
The asymmetric unit of the antenna system is called a protomer and consists of an α- and
a β-apoprotein together with one B800 molecule and a B850 dimer as well as a carotenoid
(rhodopin glucoside, RG1). In Ref. [429], part of the electron density was assigned to
a second carotenoid, which was assumed to exhibit cis-double bonds in contrast to the
all-trans-structure of RG1. In later work, this assignment was reversed [428].
In Sections 5.3.3 and 5.3.4, it will be demonstrated that a detailed understanding
of the spectral features of the LH2 antenna system is possible on the basis of FDE
calculations. We will concentrate on the interactions of the Bchl a pigments with their
direct environment, as well as on EET coupling interactions between these chromophores,
whereas the RG1 pigments are not explicitly taken into account in this study (see, e.g.,
Ref. [449] for an investigation on their role in excitation energy transfer processes).

5.3.2 Extracting excitonic coupling constants

The most important approximations introduced in Section 5.1 for the solution of the
eigenvalue problem in Eq. (5.19) are (i) the restriction to subsets of excitations for the
subsystems, which can be obtained as in conventional TDDFT calculations by means of a
Davidson-type diagonalization, and additionally (ii) the use of density fitting techniques
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Figure 5.8: Structure of LH2 of Rhodopseudomonas acidophila.

to calculate the potential induced by a transition density of a local excitation. To make
the approach work for larger aggregates, some further improvements are introduced
here, which make the calculation of the elements of Ω̃s much more efficient without
significant effect on the numerical accuracy.
The scheme presented in the following is implemented in a locally modified version of
the Adf program package [277,278]. Most of the actual computational effort is spent
on the integration of the matrix elements in Eq. (5.29), which can be written as

Ω̃µAνB
=

∫

d3r1
∑

(ia)∈A

2U(ia)AµA

√
ω(ai)A

φiA(r1)δvind
A,νB

(r1)φaA
(r1), (5.84)

where δvind
A,νB

is the potential induced in subsystem A by transition ν located on subsystem
B, which is calculated analytically from fitted transition densities. The matrix elements
are determined in Adf by numerical integration, i.e.,

Ω̃µAνB
≈

∑

k

w(rk)
∑

(ia)∈A

2U(ia)AµA

√
ω(ai)A

φiA(rk)δvind
A,νB

(rk)φaA
(rk), (5.85)

where rk and w(rk) are the coordinates and weights of the grid points, respectively.
From this it becomes apparent that the coupling matrix elements for a certain column
µA in the matrix Ω̃s will only require an accurate integration grid in the region where the
molecular orbitals (MOs) of system A are non-vanishing. Since the MOs are expanded in
basis functions of the subsystem, the numerical grid must be accurate in regions where
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Figure 5.9: Illustration of the subsystem grid technique for the calculation of coupling
constants within the subsystem TDDFT approach.

Subsystem Integration Grids

etc.

Full Integration Grid

the basis functions of the subsystem are non-vanishing. However, we usually have to
calculate coupling matrix elements between electronic transitions of all the subsystems,
and the numerical grid must be suited for all of them. This would correspond to the
default grid construction used in Adf and would cover the entire supersystem for which
the calculation is carried out.
For the subsystem-TDDFT approach used here we can significantly reduce the com-
putational cost by using different subsystem grids for the coupling matrix elements
involving different subsystems, so that the number of integration points per coupling
matrix element is indeed small and independent of the size of the surrounding system
(see Figure 5.9 for a schematic representation). Hence, the size of the integration grid
can greatly be reduced without significant effect on the numerical integration accuracy.
Since the computer time needed scales linearly with the number of integration points,
this results in a substantial speed-up of the calculations. This was implemented in the
subsystem-TDDFT module of a locally modified version of Adf. Note that also the
recently presented ground-state FDE implementation in Adf, in which the densities of
several subsystems can be optimized in one calculation, allows to use subsystem grids
optimized for each particular subsystem [113].
It should be noted that the numerical integration is very well suited for paralleliza-
tion, and full advantage of this is taken in the calculation of the coupling constants.
Additionally, a pre-screening for the elements U(ia)AµA

of the subsystem-eigenvectors is
carried out in order to reduce the number of occupied–virtual pairs that have to be
taken into account in the summation, which also increases the speed of the calculation
while allowing for full control over the numerical error introduced. In this way, an
efficient calculation of the excitation energies and transition dipole moments is possible
for systems that are composed of many subunits, even if the individual subunits are
already comparatively large (> 100 atoms). Nevertheless, the limiting factor for the
calculations is in general the size of the largest subsystem in the calculation.
Another feature that is used in ground-state FDE calculations is the superposition of
subsystem densities in order to approximate the density of the full system [116]. In
particular, it is possible to copy the density of a particular fragment to several positions
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in space in case of identical subsystems [184]. This can also be applied for the present
subsystem-TDDFT approach and has been extended so that also transition densities and
(electric and magnetic) transition dipole moments can be used for multiple fragments.
The cost for the preparation steps of the subsystem calculation is thus significantly
reduced for systems in which several identical chromophores occur.
Coupling constants as used in phenomenological excitonic coupling schemes are usually
calculated as matrix elements between local excited states. With these coupling matrix
elements, a configuration-interaction-like matrix can be set up, and excited-state energies
of the total system are found by diagonalization of that matrix (see, e.g., Ref. [450]).
The matrix eigenvalue problem solved in the context of TDDFT in Eq. (3.51) is,
however, somewhat different as it effectively involves coupling matrix elements between
(energy-weighted) transition densities, and it yields squared excitation energies instead
of excited-state energies. For better comparison with data from the literature, it is thus
desirable to establish a relationship between the two different sets of coupling constants
or to calculate CI-like coupling constants from the TDDFT data. This is possible as
follows: Consider a pair of uncoupled excited states with energies Ea,b. In a CI-like
case, the coupling between the two states, Vab, will lead to new energy levels

E+,− =
Ea + Eb

2
±

√
(
Ea −Eb

2

)2

+ V 2
ab. (5.86)

The energy levels will, of course, change if couplings to other local excited states are
included, although for (near-)degenerate states typically one single coupling is dominant.
Nevertheless, this means that V 2

ab can be obtained from the energies of the two-state
problem as

V 2
ab =

(
E+ −E−

2

)2

−
(
Ea − Eb

2

)2

. (5.87)

The energy differences can also be expressed in terms of excitation energy differences
ω, which are the quantities occurring in the TDDFT context

V 2
ab =

(
ω+ − ω−

2

)2

−
(
ωa − ωb

2

)2

. (5.88)

The excitation energies ωa,b of the local (subsystem-) excitations are known in the
calculation, and the coupled excitation energies ω+,− can be obtained from the eigenvalues
of the corresponding 2×2 subblock of the coupling matrix. They can also be expressed
directly in terms of the coupling matrix elements Ω̃ab, leading to (cf. the structure of
Ω̃s in Section 5.1)

ω+ − ω− =

√
√
√
√ω2

a + ω2
b

2
+

√
(
ω2

a − ω2
b

2

)2

+ Ω̃2
ab −

√
√
√
√ω2

a + ω2
b

2
−

√
(
ω2

a − ω2
b

2

)2

+ Ω̃2
ab.

(5.89)
In combination with Eq. (5.88) this can be used to convert the TDDFT coupling matrix
elements Ω̃ab into CI-like excitonic coupling integrals Vab. The information about the
sign is taken from Ω̃ab, since only the relative signs of the matrix elements play a role,
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which are the same for matrix elements between excited states or their corresponding
transition densities. It should be noted that the relationship above only guarantees the
same energy gaps between the two excited states, but not exactly the same excited-state
energies. This is because the coupling in a CI context creates a symmetrical splitting of
the energy around the mean value of the locally excited states, (Ea +Eb)/2, whereas the
coupling in a TDDFT context induces a splitting that is symmetrical for the square of
the excitation energy, ω2, around the mean value of the squared local excitation energies,
(ω2

a+ω2
b )/2. By diagonalizing the CI-like matrix constructed from such phenomenological

coupling constants and the excitation energies it turns out, however, that the differences
between the original TDDFT results and those from a CI-like treatment are usually
very small (in the order of 0.001 eV).

It should be noted that the definition of the couplings on the basis of energy differences,
i.e., following Eq. (5.86) is consistent with other DFT based approaches [399, 400], in
particular for the case of identical monomer excitation energies, which is stated explicitly
in Ref. [400]. Eqs. (5.88) and (5.89) implement this definition in the context of the
FDEc scheme used here. A difference exists, however, in how the interactions between
the monomers are taken into account (see also Section 5.1) The approaches proposed
in Refs. [399, 400] evaluate the couplings starting from isolated monomers, whereas
the method employed here is integrated into the FDE formalism, so that already the
monomer properties and excitation energies are calculated in the presence of all other
monomers included in the calculation. Thus, the starting point for the evaluation of
the coupling constants are the (hypothetical) excitation energies of the monomers in the

aggregate with excitonic coupling switched off. In a recent study based on the approaches
in Refs. [399, 400], this effect was approximately taken into account by means of a set
of point charges that were fitted to the other monomers’ charge distributions [451]
and was found to be rather small in that particular case. In contrast to such an
approximate treatment, FDE can be regarded as a method that is in principle exact
for the description of the ground-state interactions between different molecules (in the
limit of exact functionals, see also Section 2.6.3 for the exact requirements), and its
local response variant has proven to yield good results in many cases where the effect
of such interactions on the absorption properties are dominant, see Chapter 4 and
Refs. [116, 184, 185, 309]. Furthermore, the calculation of the interaction between the
local excitations is carried out in a slightly different way compared to the other DFT-
based schemes. Whereas Coulomb and exchange–correlation couplings are treated in
formally the same way (although this may not hold for the approximation employed
for the exchange–correlation kernel), overlap effects are treated differently. Within the
FDE framework, the non-additive kinetic energy functional and its functional derivatives
that enter the embedding potential and effective kernel should, in principle, take care
of non-orthogonality effects, whereas an explicitly overlap-dependent term is included
in the perturbative treatment of Ref. [400]. When comparing these effects it must
be considered that already the subsystem orbitals and transition densities in the case
of FDE are influenced by the kinetic-energy functional, and that only approximate
kinetic-energy functionals can be applied. In practice, however, such effects are usually
very small [229]. In Ref. [399], the overlap contribution to the coupling for the B1u

transition of the ethylene dimer was calculated explicitly and found to be roughly four
orders of magnitude smaller than the Coulomb contribution and two orders of magnitude
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smaller than the exchange–correlation contribution at the rather short intermolecular
distance of 4 Å. An additional short-range effect that might be more important for the
splitting energies is the interaction with charge-transfer-like configurations (see, e.g.,
the example in Section 5.1.4). Neither the approach originally suggested in Ref. [400]
nor the coupled FDE approach used here include such effects at the present stage.
Finally, it should be noted that the approaches in Refs. [399, 400] focused mainly on
the inclusion of condensed-matter effects on excitation energy transfer phenomena by
means of continuum models.

5.3.3 Chromophore–environment interactions

The absorption properties of a natural light-harvesting complex will depend on several
factors, involving (i) the absorption properties of the (isolated) pigment molecules, (ii) the
environmental effects on the subsystem properties (e.g., axial ligand, protein side-chains,
neighboring pigments etc.), and (iii) phenomena related to the aggregation of several
chromophores (i.e., excitation energy couplings). In this section, the environmental
effects on local fragment properties will be studied by means of the (uncoupled) FDE
approach. The following effects on the excitation energies of Bchl a will be analyzed:
a) the structural change from an optimized structure to the crystal structure, b) the
influence of neighboring Bchl a molecules in the aggregate, c) the effect of axial ligands
and d) of hydrogen-bonding ligands. In the latter three cases, the neighboring molecule
or ligand will be represented in terms of an effective embedding potential obtained from
its frozen density; these densities are polarized in all cases by means of freeze-and-thaw
iterations (details are described below).

The absorption spectrum of a Bchl a molecule consists of three prominent bands: the
intense Qy band in the region of 750 to 800 nm with a maximum at 773, the much less
intense Qx band between 550 and 600 nm (maximum at 577 nm), and the intense Soret
band with a maximum at 358 nm, which extends from < 300 nm to above 400 nm
(see, e.g., Ref. [423]). In Table 5.4 we compare the calculated excitation energies for the
intense low-lying Qy transition as well as the Qx transition of bacteriochlorophyll a for
different structural models and environments of the pigments. The general structures
of the α and βB850 Bchl a molecules as well as that of B800 Bchl a are shown in
Figure 5.10.

We will first concentrate on the isolated models. If these structures are fully optimized
(“fully opt.” in Table 5.4), we obtain excitation energies between 1.76 and 1.79 eV for
the Qy transitions of αB850, βB850, and B800 Bchl a, and between 2.02 and 2.07 eV
for the Qx transitions. These excitation energies are — within the typical error bar of
TDDFT results for valence excitations — in reasonable agreement with the experimental
excitation energies of Bchl a in diethyl ether solution (taken from Ref. [423]; these values
thus do not contain effects from aggregation or surrounding protein), which are 1.60 (Qy)
and 2.15 (Qx), respectively. As a next step, we investigated the effect of constraining the
positions of the non-hydrogen atoms in Bchl a to the positions obtained from the crystal
structure for the isolated pigments, as these structures will be used in the analysis of the
effect of chromophore aggregation in Section 5.3.4. Only the positions of the hydrogen
atoms, which had to be added to the X-ray structure, were optimized (“H opt.” in
Table 5.4; see also Appendix B). It can be seen that the excitation energies of the
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Figure 5.10: Structure of the Bchl a monomers investigated in this study. All structures
were obtained from the X-ray structure from Ref. [429], PDB code 1NKZ. Positions of added
hydrogen atoms were optimized (BP86/TZP).
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αB850 and βB850 Bchl a structures differ slightly by 0.02 eV for the Qy (1.59 and 1.57
eV, respectively) and by 0.03 eV for the Qx (1.92 and 1.95 eV, respectively) transition.
The Qy excitation energy of B800 Bchl a is even somewhat higher than that of αB850
Bchl a (1.61 eV), and its Qx transition energy (1.94 eV) is between the corresponding
values of the B850 pigments. Compared to the corresponding excitation energies of the
fully optimized structure, both transitions show a pronounced blue-shift of the order of
0.1 to 0.2 eV. Apparently, the energy difference between the Qx and the Qy excitation
energy is systematically underestimated in the SAOP/TZP calculations for all structural
models tested here when compared to the experimental reference. The latter difference
is 0.55 eV [423], whereas in this work energy differences of 0.25 to 0.38 eV are obtained
for the isolated Bchl a models. This difference could be caused either by structural
effects, since not all possible conformations of the Bchl a molecule were investigated,
or by deficiencies of the SAOP potential in combination with the ALDA kernel. The
energy differences obtained in Ref. [433], in which the B3LYP hybrid functional was
used, are somewhat larger (> 0.4 eV), which might be a hint on the latter effect. On the
other hand, only relatively small basis sets were used in that study, so that the energy
differences might be subject to changes when larger basis sets are used in connection
with the B3LYP functional.

In order to analyze whether the neighboring Bchl a molecules have an impact on
the (uncoupled) excitation energies of the pigments, we investigated the B850 unit
of LH2 by means of uncoupled FDE calculations as described in detail in Ref. [116].
In these calculations, the effect of the surrounding molecules is incorporated by an
effective embedding potential constructed from the environmental density. This density
surrounding either an αB850 or a βB850 Bchl a molecule was approximated in the
following way: We extracted a tetrameric unit from B850, which is shown in Figure 5.11.
Then, the electron densities were calculated (SAOP/TZP) for each of the monomers
within the tetramer without including effects of neighboring molecules. Subsequently,
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the electron densities for all four monomers were relaxed in a series of ground-state FDE
calculations, in which a superposition of the densities of the other three subsystems was
employed to model the environment. In each step, the latest approximation available
for the density of each system in the environment was used. This cyclic optimization
was carried out three times in total. Since the adjacent Bchl a molecules will have a
much stronger impact on the electron density of a particular pigment than more distant
monomers, the electron densities thus obtained for the inner two Bchl a molecules of the
tetramer should already represent a good approximation to the monomer density in the
full B850 system. In a last step, we used the densities for these inner two monomers of
the tetramer to set up an approximate density of the full B850 system by superposition
of these relaxed monomer densities. With this environmental density, we calculated the
electron densities of one αB850 and one βB850 Bchl a in the full B850 complex as well
as their uncoupled excitation energies in an FDE calculation. The total system in these
calculations consists of 2520 atoms, of which 2380 belong to the frozen environment
and 140 to the embedded system. It should be noted that this way of approximating
the environmental density in an uncoupled FDE calculation is much more sophisticated
than, e.g., a simple superposition of non-relaxed subsystem densities, which nevertheless
often yields reasonable results (see Sections 3.4.2 and 4.3)

Figure 5.11: Structure of the tetrameric Bchl a substructure of the B850 unit. The labels
A and B for the (α, β) dimers were introduced for comparability with the results obtained
in Ref. [435], where the same notation is used.
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The effect of the other Bchl a molecules within the B850 unit on the site energies is
rather small. The excitation energies of the Qy and Qx transitions of both αB850 and
βB850 Bchl a are shifted by only 0.01 eV and 0.02 eV, respectively, when this part of
the environment is included (see Table 5.4).

A similar test was carried out for the B800 system, but because of the larger distance
between the monomers, we only performed one relaxation step of the monomer density
w.r.t. the density of all other monomers. Also here, the excitation energies for Qy and
Qx transitions are virtually unchanged (the change in the Qy excitation energy is in
the order of 0.001 eV but leads to a roundoff effect).
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Table 5.4: Calculated excitation energies (SAOP/TZP; in units of eV) of Bchl a for different
structures and environments. The starting point for all (partial) structure optimizations carried
out here was the X-ray structure with 2.0 Å resolution from Ref. [429], PDB code 1NKZ; H
opt.: hydrogen atoms added and optimized (BP86/TZP); fully opt.: hydrogen atoms added,
all atoms optimized (BP86/TZP). Environments: B850/B800: all other B850/B800 Bchl a
molecules included; model compounds of different size were used for the amino acid residues
α-His31, α-Trp45, β-His31, α′-Tyr44, α-Met1 and Arg20 (see text for details). Experimental
values for Bchl a in diethyl ether were taken from Ref. [423].

structure environment Qy Qx

αB850 Bchl a (fully opt.) — 1.76 2.02
αB850 Bchl a (H opt.) — 1.59 1.92
αB850 Bchl a (H opt.) B850 1.60 1.94
αB850 Bchl a (H opt.) α-His31 1.60 1.88
αB850 Bchl a (H opt.∗) α-Trp45 1.59 1.91
βB850 Bchl a (fully opt.) — 1.77 2.02
βB850 Bchl a (H opt.) — 1.57 1.95
βB850 Bchl a (H opt.) B850 1.58 1.97
βB850 Bchl a (H opt.) β-His31 1.58 1.92
βB850 Bchl a (H opt.∗) α′-Tyr44 1.57 1.93
B800 Bchl a (fully opt.) — 1.79 2.07
B800 Bchl a (H opt.) — 1.61 1.95
B800 Bchl a (H opt.) B800 1.60 1.95
B800 Bchl a (H opt.) α-Met1 1.61 1.90
B800 Bchl a (H opt.) β-Arg20 1.55 1.85
exp. Bchl a [423] 1.60 2.15

In a next step, we investigated the influence of an axial ligand on the Bchl a pigments.
For αB850 and βB850, this axial ligand is a histidine residue, which was modeled by the
frozen density of an imidazole ring in a FDE calculation. Also this axial ligand results
in only a small change. For αB850 Bchl a the Qy excitation energy increases by 0.01
eV to 1.60 eV, and the Qx excitation energy decreases by 0.04 eV. Similar changes are
found for βB850 Bchl a. This is consistent with the observations made before, according
to which axial ligands only lead to slight modulations of the site energies of Bchl a
molecules [437]. In case of B800 Bchl a, the axial ligand reported in Refs. [428, 429],
which was also used in our study, is a COO−-modified α-Met1, i.e., the coordinating
group is a carboxy group. This is in contrast to the Met ligand that was assumed in
the earlier study reported in Ref. [433], where the effect of the protein environment
on the excited states of Bchl a in B800 were investigated. In this case, we included
also the following residues (Asn2−Gln3−Gly4) into the part of the protein modeled by
FDE in order to test the influence of a larger protein model. But also here, the effect
is rather small. The Qy excitation energy remains unchanged at 1.61 eV, while the Qx

transition shifts by 0.05 eV to 1.90 eV.
Finally, the effects of the hydrogen-bonding residues α-Trp45 (αB850), α-Tyr44 (βB850),
and β-Arg20 (B800) were investigated. These amino acids were modeled by their side-
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chains only (saturated with hydrogen). Again, the positions of the hydrogen atoms
were optimized in the monomers from which the hydrogen bonded complex was created.
Afterwards, the positions of the atoms involved in the hydrogen bond were optimized in
the hydrogen-bonded complex. For the structures obtained in this way, we performed
uncoupled FDE calculations considering the amino acid side chains as the frozen part.
For the B800 Bchl a pigment, we find rather large red-shifts of 0.06 and 0.10 eV for the Qy

and Qx transition in comparison to the isolated molecule. This is in good agreement with
the corresponding shifts of 0.05 and 0.08 eV obtained from supermolecular B3LYP/6-
31G calculations in Ref. [433]. In contrast to this, rather small changes (≤ 0.02 eV)
were found for αB850 and βB850 in comparison to the isolated pigment molecules.

In all the calculations reported above, the effect of either neighboring molecules, axial
ligands, or hydrogen-bonding ligands was included by means of an effective embedding
potential in an (uncoupled) FDE calculation. In order to assess the error introduced by
the frozen-density approach, the calculation on αB850 Bchl a including the Trp45 ligand
was repeated in a supermolecular Kohn–Sham (TD)DFT calculation. The resulting
excitation energies for the Qy and Qx transitions agree within 0.01 eV with the FDE
values, which shows that FDE does not introduce significant errors for these excitations.

5.3.4 Chromophore–chromophore couplings

The next step in the calculation of the absorption properties of LH2 is to determine
the coupled excitation energies. As outlined in Section 5.3.2 this is often done by
calculating CI-like matrix elements between excited monomer states, which are then
used to construct an effective Hamiltonian matrix from which coupled excitations can
be obtained. In order to validate the coupling constants obtained here by comparison
to previous results, we will in this section concentrate on the largest coupling constants
between neighboring pigments in the light-harvesting complex, whereas all couplings
occurring between the Qy and Qx transitions are implicitly incorporated in the resulting
spectra presented in Section 5.3.5. Couplings were calculated for the combined B850 and
B800 units (3780 atoms in total) of LH2, which were separately prepared as described in
the last section and then combined (i.e., no additional uncoupled FDE calculations were
performed). The intra-subunit couplings obtained by considering the B850 and B800
units independently are virtually the same and are therefore not explicitly mentioned
here. The pigments are labeled with a letter (A,B) indicating the protomer unit, i.e.,
an A–A coupling is an intrapolypeptide coupling in the nomenclature of Ref. [403],
whereas an A–B coupling is an interpolypeptide coupling.

The results for the strongest couplings between pigments within the B850 subunit are
compared to the (Coulomb-only) transition density cube (TDC) data based on scaled
CIS transition densities from Ref. [435] as well as to the CIS results from Ref. [403]
in Table 5.5. The first observation that can be made is that the coupling constants
calculated here are in reasonable agreement with the ones obtained by Krueger et

al. [435] and the scaled Coulomb results by Scholes et al. [403]. This is due to the
fact that the couplings are dominated by the Coulomb contribution, which was scaled
in Refs. [403, 435] to match the experimental transition dipole moment. Scholes et al.

assumed an experimental dipole moment of 2.51 a.u. (6.39 D), whereas their CIS/6-31G*
calculation resulted in a transition moment of 4.03 and 3.98 a.u. for αB850 and βB850
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Table 5.5: Calculated (SAOP/TZP; in units of cm−1) coupling constants for the Qy transition
of (α, β)B850 Bchl a in a combined B850–B800 complex (FDEc: coupled FDE calculation).
For comparison, also the results from Ref. [435] obtained from a Coulomb-only coupling with
the transition density cube (TDC) method on the basis of scaled CIS transition densities
as well as the CIS results (both original data and with scaled Coulomb contribution) from
Ref. [403] are presented.

type αB ↔ βA αB ↔ βB αB ↔ αA βB ↔ βA

FDEc, B850+B800 200 232 −65 −45
TDC (scaled Coulomb only) [435] 213 238 −46 −37
CIS [403] 550 730
CIS (scaled Coulomb) [403] 255 320

Bchl a, respectively, so that their calculated Coulomb contribution was empirically scaled
down to about 40 % of the original value. The transition dipole moment calculated in
this work (SAOP/TZP) is 2.72 a.u. for αB850 and 2.71 a.u. for βB850 Bchl a in the
isolated calculation and decreases slightly to 2.67 a.u. for both αB850 and βB850 Bchl
a in the uncoupled FDE calculation on the full B850 system, thus demonstrating the
reliability of transition dipole moments from TDDFT calculations.

The data from Ref. [403] suggest that short-range contributions to the total coupling
are small though not negligible. The short-range contributions given there are 55 and
60 cm−1, respectively, for couplings of type αB ↔ βB and αB ↔ βA, respectively.
However, these couplings were also found to be very sensitive to the inclusion of amino
acids with hydrogen-bonding ability, which could not be explained on the basis of their
calculation. Additionally, the Coulomb contributions in the results from Ref. [403] were
empirically scaled down as mentioned above, whereas the short-range contribution was
not modified. It is therefore not completely clear if the short-range contribution was
overestimated in that work.

In the case of coupled frozen-density embedding calculations, short-range contributions
are in principle included, although they cannot directly be mapped to the corresponding
short-range contributions in a CIS-like treatment or in other DFT-based approaches
[399,400]. The ground-state calculations in the FDE case include interactions between
the monomers, so that the monomer orbitals and densities are already polarized w.r.t.
the surrounding molecules in the aggregate. This can of course lead to changes in
the coupling strength, e.g., in a modified Coulomb coupling due to changes in the
orbitals. Furthermore, the effective kernel employed in the (uncoupled and coupled)
subsystem TDDFT contains both exchange–correlation and kinetic energy contributions
originating from the effective embedding potential [229], which also give rise to short-
range contributions. However, the current implementation for the coupled FDE approach
employs the adiabatic local density approximation (ALDA) for both XC and kinetic-
energy contributions, which are usually small and of opposite sign (see Section 5.1.4).
In order to analyze the role of short-range couplings in the results obtained here in
more detail, we extracted an (α, β) Bchl a dimer from the B850 subunit, which shows
the largest couplings in LH2. The coupling constant obtained for this dimer was 234
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cm−1 and thus very similar to the corresponding value in the full B850+B800 system.
The XC and kinetic-energy contributions in the coupled FDE calculation were analyzed
by switching the corresponding terms in the kernel off in the dimer calculation. If the
kinetic energy contribution is omitted, the coupling reduces from 234 to 230 cm−1. If
additionally the XC contribution is omitted (pure Coulomb coupling), the total coupling
increases again to 233 cm−1. This shows that the combined effect of kinetic energy
and XC contribution is almost negligible in the present approximation for the kernel.
An additional effect that may become important at small distances are charge-transfer-
like excitations between the subsystems. However, the subsystem TDDFT approach
introduced in Section 5.1 does by construction not account for interactions with charge-
transfer excitations. Although this is — in the context of the problems for TDDFT
to describe such excitations [250–255, 395] — desirable for calculations on very large
systems, which would suffer substantially from the long-range charge-transfer problem
[116,395,452] it may lead to inaccuracies in the couplings at very short range.

Because of this disagreement concerning the role of the short-range couplings, we carried
out an additional test of the FDE methodology. We performed a supermolecular TDDFT
calculation in comparison to a coupled FDE calculation for a model of the (α, β)B850
dimer, in which the phytyl chain was omitted. The data are reported in Table 5.6.
It can be seen that the splitting between the two Qy excitations is nicely reproduced
by the coupled FDE calculation. The two states resulting from the coupling appear at
1.541 and 1.606 eV (FDEc) with oscillator strengths of 0.556 and 0.036, respectively,
which compares well to the supermolecular result of 1.530 and 1.596 eV (oscillator
strengths: 0.574 and 0.043), respectively. The splitting energy is 518 cm−1 in the case
of FDEc and 536 cm−1 in the conventional supermolecular TDDFT calculation. The
coupling constants calculated according to Eq. (5.88) are 242 cm−1 (FDEc) and 252 cm−1,
respectively (in the latter case, ω+,− were taken from the supermolecular calculation
and ωa,b were taken from the uncoupled FDE calculations), which demonstrates that
the additional approximations introduced in the subsystem TDDFT approach have only
a minor effect on the coupling constants.

It should be mentioned that the situation for the Qx transitions is more complicated.
While the excitation energies for the lower of the two resulting states are similar (FDEc:
1.907 eV; super: 1.910 eV), there is a larger discrepancy for the higher-energy state
(FDEc: 1.943 eV; super: 1.925 eV). The splitting between the two states in the super-
molecular case is even smaller than the splitting between the assumed “site energies”,
which are approximated by the FDEu calculations. Therefore, this splitting cannot be
analyzed in terms of Eq. (5.88), which cannot describe a decrease of the energy gap
between the two excitations. Possible reasons for this problem could be (i) inaccuracies
in the uncoupled excitation energies (which are not a measurable quantity anyway, since
one cannot obtain uncoupled excitation energies from an interacting dimer), or (ii) an
interaction with one of the many higher-lying excited states of partial charge-transfer
character that can be found in the supermolecular calculation, but that are absent in
the FDEc calculation. Nevertheless, both supermolecular and FDEc calculations agree
on the qualitative picture that the interactions between the Qx transitions are much
smaller than for the Qy transitions. In addition, it has been argued that it is not
necessary to consider Qx transitions as donor transitions in EET processes because of
a rapid Qx −Qy internal conversion [435].
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Table 5.6: Excitation energies E (SAOP/TZP; in units of eV) and oscillator strengths f
for the Qy and Qx transitions of a Bchl a model dimer from coupled FDE (FDEc) and
supermolecular TDDFT calculations (super) (phytyl chain omitted; note that the oscillator
strengths in Ref. [453] for the FDEc calculations are slightly different due to an inconsistent
energy weighting of the transition moments). For comparison, also the monomer excitation
energies from uncoupled FDE calculations on the dimer (FDEu) are shown.

calculation E(Qy) f(Qy) E(Qy) f(Qy)
FDEu (α) 1.585 0.298 1.911 0.071
FDEu (β) 1.563 0.293 1.940 0.074
FDEc (α + β) 1.541 0.556 1.907 0.028

1.606 0.036 1.943 0.112
super (α + β) 1.530 0.574 1.910 0.037

1.596 0.043 1.925 0.074

Table 5.7: Calculated (SAOP/TZP; in units of cm−1) coupling constants for the Qy transition
of Bchl a in the combined B800 and B850 subunits (FDEc: coupled FDE calculation). For
comparison, also the results from Ref. [435] obtained from a Coulomb-only coupling with the
transition density cube (TDC) method on the basis of scaled CIS transition densities are
shown.

type FDEc, B800 + B850 TDC [435]
B800B ↔ B800C −31 −27
B800A ↔ B800C −3 −3
B800A ↔ αB850B 31 27
B800A ↔ βB850B 3 23
B800A ↔ βB850A −3 5

After this discussion of the rather strong interactions within the B850 unit, we will now
address the couplings among the B800 Bchl a molecules and between the B800 and B850
Bchl a pigments. These couplings are weaker because of the larger distances between the
chromophores. Therefore, they should be almost exclusively due to Coulomb coupling.
Again, we compare our results to the (Coulomb-only) transition density cube data based
on the scaled CIS transition densities from Ref. [435] for the most important couplings.
The data are shown in Table 5.7.

It can be seen that there is in most of the cases a reasonable agreement in the computed
coupling constants with those from Ref. [435]. However, two differences can be seen: The
B800A ↔ βB850B coupling is much weaker in our calculation than in the reference, and
the sign differs for the coupling B800A ↔ βB850A. In order to analyze this discrepancy,
we calculated the coupling constants in a dipole–dipole approximation according to [435]

V d−d =
1

4πε0
κ
|µD||µA|
R3

DA

, (5.90)
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where µD and µA are the transition dipole moments of the donor and acceptor transition,
respectively, κ is the so-called orientation factor

κ = ~rD · ~rA − 3(~rD · ~R)(~rA · ~R), (5.91)

~R is a unit vector from the center of the donor to the center of the acceptor transition,
RDA is the distance between these two centers, and ~rD,A are unit vectors in the direction
of the transition dipole moments. In Table 5.8 we report the distances RDA and
orientation factors κ for the pairs of transitions from Table 5.7. For comparison, we
also give the corresponding values from Ref. [435]. Differences between our data and
those from that reference can be due to the different crystal structure used in that study,
which leads to slightly different bond distances, and differences in the orientation and
magnitude of the transition moments. However, in general there is a good agreement
between the distances, orientation factors and dipole–dipole couplings obtained here and
in Ref. [435], e.g., for the B800B ↔ B800C, B800A ↔ B800C, and B800A ↔ αB850B
coupling. Nevertheless, the comparison suggests that the coupling constant reported for
B800A ↔ βB850B may be incorrect in that reference when compared to the B800A
↔ αB850B coupling: Although the orientation factor is smaller by about a factor of
five in the first case and the distance between donor and acceptor is slightly larger
(both here and in Ref. [435]), the coupling constant calculated from the dipole–dipole
approximation in Ref. [435] is even larger than in for B800A ↔ αB850B. Since the
magnitudes of all transition dipole moments are almost identical, one would expect that
the B800A ↔ βB850B coupling should be much smaller than the B800A ↔ αB850B
coupling. This is confirmed by our dipole–dipole results, which yield a coupling of 33
cm−1 for the latter and of 5 cm−1 for the former pair of transitions. As far as the
discrepancy for the B800A ↔ βB850A pair of transitions is concerned, we would like to
note that our dipole–dipole approximation yields an orientation factor of approximately
the same magnitude but opposite sign when compared to the results in Ref. [435],
The sign of a single coupling constant is actually arbitrary, since already the sign of
the transition density (or the transition moment) is, in principle, arbitrary for each
monomer, but of course it must be used consistently in the calculation of all coupling
constants. In our case, we have chosen the same sign of the transition moment for
each chromophore within the B850 ring. For this choice, the orientation factors for
the B800A ↔ βB850B and B800A ↔ βB850A couplings, and consequently also the
coupling constants within the dipole–dipole approximation, differ in sign.

5.3.5 Absorption spectra of the B850 and B800 units of LH2

The absorption spectra of the B850 unit have been obtained from the coupled FDE
calculation described in Section 5.3.4. In Figure 5.12 we compare the monomer spectra
resulting from the Qy transitions of isolated αB850 and βB850 pigments with those
obtained for the (α, β)B850 dimer, and the full B850 unit (i.e., 18 Bchl a molecules).
The monomer peaks appear at 779 and 788 nm, respectively, for isolated αB850 and
βB850. Already the coupling in the dimer leads to a considerable splitting with an
intense peak at 800 nm and a less intense peak at 769 nm. In the full B850 ring of
Bchl a monomers the intense peak (scaled with a factor of 0.1 in Figure 5.12) occurs
at 812 nm, and an additional peak of low intensity can be found at 759 nm. The main
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Table 5.8: Calculated (SAOP/TZP; in units of cm−1) coupling constants for the Qy transition
of Bchl a in the combined B800 and B850 subunits within the dipole–dipole approximation,
Eq. (5.90). Additionally given are the distances between the pigment centers (in units of Å)
as well as the orientation factors κ. For comparison, also the results from Ref. [435] obtained
within the dipole–dipole approximation are shown.

this work Ref. [435]
coupling RDA κ V dd RDA κ V dd

B800B ↔ B800C 21.2 −1.20 −29 21.2 −1.33 −26
B800A ↔ B800C 39.9 −0.91 −3 39.9 −1.04 −3
B800A ↔ αB850B 17.8 0.79 33 17.6 0.79 27
B800A ↔ βB850B 21.7 0.22 5 21.8 0.17 31
B800A ↔ βB850A 18.5 −0.10 −4 18.3 0.13 4

reason for the discrepancy of the Qy excitation energies with the absorption maxima in
the natural light harvesting system (about 850 nm) are small errors in the site energies.
When using the empirical site energies from Ref. [436] of 1.56 eV (αB850), 1.50 eV
(βB850), which differ by only 0.04 and 0.08 eV from the energies of the monomers in the
uncoupled FDE calculations (see Table 5.4), the intense peak shifts to 852 nm, while the
less intense peak shifts to 785 nm. This is in nice agreement with the spectra modeled
in Ref. [436], where these two peaks were found at 857 and 773 nm, respectively.

Figure 5.13 contains the spectra calculated from both the Qy and the Qx contributions
of the B850 subunit and the combined B850 and B800 subunits of LH2. It should be
noted that these spectra do not include ensemble averaging effects like static disorder
or fluctuations in the environment and just serve the purpose to illustrate the results
of the subsystem TDDFT calculations. The additional signals caused by the B800 ring
in the lower panel of Figure 5.13 can clearly be recognized, and no significant changes
occur in the bands already present in the B850 spectrum.

In summary, this application demonstrates the efficiency of the general subsystem
TDDFT approach to describe both protein–pigment and pigment–pigment interactions
in natural light-harvesting complexes. Site energies and excitonic coupling constants are
accessible, i.e., quasi-diabatic and adiabatic pictures are provided. This is an important
prerequisite for the analysis of excitation energy transfer phenomena.

As far as environmental effects are concerned, the present study investigated direct
effects of neighboring molecules, but no screening effects of a surrounding medium on
the coupling constants were considered. Studies concerning this point in the context of
light-harvesting phenomena were recently presented by Scholes et al. [454] and Curutchet
et al. [451]. On the basis of a continuum solvation model, they showed that such effects
can be very important for excitation energy couplings in condensed matter. Subsystem
TDDFT offers, in principle, the possibility to study also such effects in an explicit way.
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Figure 5.12: Qy contributions to the absorption spectra (SAOP/TZP) of (subunits of) the
B850 ring of LH2 (Rhodopseudomonas acidophila). Only the Qy transitions are considered.
Note that the oscillator strengths in Ref. [453] for the FDEc calculations are slightly different
due to an inconsistent energy weighting of the transition moments. The spectrum of the full
B850 unit was scaled by a factor of 0.1 for better comparability. A Gaussian broadening of
0.01 eV has been applied to the peaks in the calculated absorption spectrum.
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Figure 5.13: Absorption spectra (SAOP/TZP) of the B850 ring and the combined B850
and B800 rings of LH2 (Rhodopseudomonas acidophila). Note that the oscillator strengths
in Ref. [453] for the FDEc calculations are slightly different due to an inconsistent energy
weighting of the transition moments. A Gaussian broadening of 0.01 eV has been applied to
the peaks in the calculated absorption spectrum.
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6. Chromophore-Specific Vibrational Spectroscopy

6.1 Selective vibrational spectroscopy

As far as the investigation of molecular structure and reactivity is concerned, vibrational
spectroscopy is probably an even more important tool than pure electronic spectroscopy
as described in the previous chapters. The reason for this is that many more bands
can be distinguished in vibrational spectra than in electronic spectra, in particular for
molecules in solution or large molecules with many functional groups. These spectra
thus contain much more information than electronic absorption or circular dichroism
spectra, which often exhibit broad or blurred bands for such systems.

For molecules relevant in a biological context, e.g., proteins or nucleic acids, the number
of peaks in a conventional vibrational spectrum, e.g., an infrared (IR) or Raman spec-
trum, may become prohibitively large for an assignment due to close-lying or overlapping
peaks. Special experimental techniques have therefore been developed that either filter
out selected parts of the total spectrum, or that spread the vibrational information
over two dimensions by recording them in dependence of another parameter, e.g., the
wavenumber of a previous pump pulse. Examples for the former are difference-IR [455]
and -Raman techniques [456], while the latter include two-dimensional IR [457,458] or
two-dimensional Raman spectroscopy (see, e.g., [459]). There are additional techniques
such as vibrational circular dichroism (VCD) or vibrational Raman optical activity
(VROA), which provide selective information related to chirality [460, 461]. No com-
prehensive review of all these techniques will be given here; for details, we refer to the
references given above and the general overview given in Ref. [462].

Also the theoretical description of vibrational spectroscopy has made rapid progress
during the past years, so that now efficient density-functional theory implementations
are available for, e.g., infrared and Raman [328, 463, 464], VCD [465–467], or VROA
spectra [420]. A very useful method for the selective calculation of vibrational frequencies
and normal modes in complex systems is the mode-tracking approach, which allows to
directly target vibrations related to a specific scientific question on the basis of an
intuitive guess [468]. Mode tracking has found a wide range of applications during the
past years, which are reviewed in Ref. [469]. General information on the first-principles
approaches to vibrational spectroscopy of biological systems is provided in Ref. [462].

Here, we will focus on chromophore-specific spectroscopic techniques which work under
resonance conditions with a certain electronic transition of a chromophore. In particular,
we will concentrate on theoretical resonance Raman spectroscopy, which can be regarded
as a two-dimensional type of spectroscopy, in which resonance Raman intensities are
not only recorded as a function of the Raman shift (i.e., the wavenumber offset from
the exciting laser beam), but also in dependence of the frequency of the incident light.
This requires to consider coupled electronic and vibrational degrees of freedom of the

177
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system, and hence presents a big challenge to quantum chemistry. For this purpose, we
will in the following give a brief outline of theoretical approaches for the calculation of
resonance Raman spectra.1

6.2 Resonance Raman as a chromophore-specific spectroscopy

In resonance Raman spectroscopy, the intensities of certain vibrational bands are se-
lectively enhanced compared to normal Raman scattering, which has two important
consequences for practical applications: (i) The absolute intensities are several orders of
magnitude higher than in normal Raman scattering, so that the technique has a greatly
enhanced sensitivity, and (ii) since only certain bands are enhanced in intensity, the
resonance effect acts like a filter on the vibrational spectrum [470]. The second point is
due to the fact that resonance Raman intensities can be related to structural changes
in the excited state of a molecule (see below), which also means that information about
excited-state processes can be deduced from resonance Raman experiments [471]. By
tuning the excitation wavelength to resonances for particular chromophoric groups, it
is possible to selectively enhance vibrations located on that chromophore. This makes
the method well suited for applications to complex biological systems [472, 473], e.g.,
proteins [474–477]. Resonance Raman spectroscopy is often applied in studies on mo-
tifs in artificial or biological photosystems [478,479], like bacteriochlorophyll a [480] or
dendritic antenna systems [481], where electron- or excitation-energy transfer processes
occur between different chromophores in a functional arrangement. It has also been
used to investigate the spectroscopic properties of ruthenium–polypyridyl or related
complexes [482] (see also Section 6.4).

The theory of resonance Raman scattering is, in principle, well-known, and detailed
presentations are available in the literature [483–486]. The most common approaches
are discussed in the following to show which approximations have to be made to arrive
at schemes that are applicable to systems of considerable size.

6.2.1 Sum-over-states formulation

The starting point for the discussion of resonance Raman intensities is the Kramers–
Heisenberg–Dirac expression for the scattering tensor (also sometimes called generalized
or transition polarizability tensor) for a transition from an initial state |i〉 to a final
state |f〉. The scattering cross section σfi for this transition is, for a randomly oriented
sample, given by [485],

σfi(ω) =
8πω3

sω

9c4

∑

ρλ

|[αρλ]fi|2, (6.1)

where c is the speed of light, ω is the angular frequency of the incident light, ωs is the
angular frequency of the scattered radiation, and [αρλ]fi is a component of the scattering
tensor,

1We will consider only vibrational resonance Raman spectroscopy in the absence of resolved
rotational band structure.
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[αρλ]fi =
1

h̄

∑

r

{
µλ,frµρ,ri

ωrf + ω + iΓr
+

µρ,frµλ,ri

ωri − ω − iΓr

}

. (6.2)

Here, the sum runs over all excited vibronic states |r〉, the angular frequency ωab =
(Ea −Eb)/h̄ corresponds to the energy difference between vibronic states a and b, and

µρ,ab = 〈a|µ̂ρ|b〉, (6.3)

is a matrix element of a component ρ = {x, y, z} of the electric dipole operator. The
expression for α follows from standard perturbation theory. The damping constant Γr

introduced in Eq. (6.2) accounts for the finite life time of the molecule in the excited state
|r〉 due to spontaneous emission effects. While it can be rigorously derived from quantum
electrodynamics [226,487], it is often just included phenomenologically [487, p. 73]. The
relative signs of the iΓr terms have until recently been subject to a debate (see Ref. [483,
p. 535]). In Ref. [488], which also provides a brief historical account of the discussion, it
was argued on the basis of time-reversal symmetry that the damping constants should
have the same sign in both terms. Subsequently, Buckingham and Fischer demonstrated
that this same-sign convention (also denoted as equal-sign or constant-sign convention)
leads to unphysical results [489], see also [490, 491]. Most recently, this controversy
was resolved as a difference between a semiclassical linear-response and a scattering
description of the process [492, 493]. In the former, a time-ordering is imposed on the
process (i.e., it is assumed that first an incoming photon is absorbed, and a second
photon is emitted afterwards), whereas all interactions are treated on the same footing
from the scattering point of view (i.e., all time-orderings are allowed, including those
in which first an emission takes place, followed by an absorption of a photon). The
linear-response formalism leads to the opposite-sign prescription, whereas the scattering
treatment results in equal signs for both terms. For resonance Raman calculations, this
problem is usually not severe, since the term with the frequency sum in the denominator,
ωfr +ω, usually hardly contributes to the scattering cross section (see below). Following
Ref. [483], we will adopt the opposite-sign convention in the intermediate steps, which
is consistent with the derivation of [αρλ]fi as the linear response of the transition dipole
moment.

Within the Born–Oppenheimer approximation, we assume that we can write the wave-
function for each vibronic state |r〉 as a product of a nuclear wavefunction χ and an
electronic wavefunction Ψ. For the fundamental transitions that we will consider here,
|f〉 and |i〉 are vibrational states on the ground-state electronic potential energy surface
that differ by one vibrational quantum. In addition, the sum over all excited rovibronic
states |r〉 in Eq. (6.2) is usually restricted to the vibrational states χks of the excited
state Ψs under resonance. A slightly more general expression is obtained by assuming
that there might be several excited electronic states |Ψs〉 that are close to resonance,

[αρλ]fi =
1

h̄

∑

s,ks

{ 〈χf0
Ψ0|µ̂λ|χksΨs〉〈χksΨs|µ̂ρ|χi0Ψ0〉

ωsk,0f
+ ω + iΓsk

+
〈χf0

Ψ0|µ̂ρ|χksΨs〉〈χksΨs|µ̂λ|χi0Ψ0〉
ωsk,0i − ω − iΓsk

}

,

(6.4)
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which includes the case of a single resonating state as a special case in which the sum
over the excited electronic states |Ψs〉 is replaced by a single excited state only. A
general treatment for close-lying excited states would require to include non-adiabatic
coupling effects between different electronic states [318, 319].
The terms involving the nuclear contribution to the electric dipole moment operator in
Eq. (6.4) vanish due to the orthogonality of the electronic wavefunctions in the ground
and excited states. The electronic contribution can be expanded in a Taylor-series in
terms of normal coordinates Q, e.g.,

〈χksΨs|µ̂ρ|χi0Ψ0〉 = 〈χks|µel
ρ,s0(Q)|χi0〉 (6.5)

= µ
el,(0)
ρ,s0 〈χks|χi0〉+

∑

i

(

∂µ
el,(0)
ρ,s0

∂Qi

)

0

〈χks|Qi|χi0〉+O(Q2), (6.6)

where we have introduced the notation µ
el,(0)
ρ,s0 = µel

ρ,s0(Q0) for the electronic contribution
to the electric transition dipole moment at the ground-state equilibrium position Q0. If
we invoke the Condon approximation (µel

ρ,s0(Q) = µ
el,(0)
ρ,s0 ), only the leading term is taken

into account and we obtain,

[αρλ]fi =
1

h̄

∑

s,ks

µ
el,(0)
ρ,s0 µ

el,(0)
ρ,s0

{〈χf0
|χks〉〈χks|χi0〉

ωsk,0f
+ ω + iΓsk

+
〈χf0
|χks〉〈χks|χi0〉

ωsk,0i
− ω − iΓsk

}

, (6.7)

where we have used the fact that µ
el,(0)
ρ,s0 = µ

el,(0)
ρ,0s etc. for real wavefunctions, which we

assume here. This so-called Franck–Condon (FC) scattering is the dominant contribution
to the resonance Raman scattering in particular for resonance with strongly allowed
transitions and totally symmetric modes. The first-order correction to the electronic
transition dipole moment in Eq. (6.6) gives rise to Herzberg–Teller scattering, which
becomes important for non-totally symmetric modes [484]. These terms are in most
cases much weaker than the FC-type scattering and will therefore be neglected in the
studies presented here. Note that the first term on the right-hand-side of Eq. (6.7) is
often neglected, because the second term contains an energy difference that approaches
zero under resonance conditions. It will thus dominate the resonance Raman intensities
by far.
Since the theoretical prediction of the damping constants Γsk

for state |χksΨs〉 is
very involved (see above), they are most often introduced as phenomenological, state-
independent constants, and their value is typically chosen in the range of 100 to 1600
cm−1 [494, 495]. Preliminary tests in this work showed that the choice of Γ within
this range mainly affects the absolute intensities, whereas the relative intensities are not
much changed. Since we are only interested in relative intensities, we apply a uniform
damping constant of 400 cm−1 in all our calculations.
In order to carry out the summation in Eq. (6.7) for all but the smallest molecules, for
which essentially full potential energy surfaces and the corresponding vibrational states
can be determined, it is necessary to make a model assumption concerning the potential
energy surfaces for ground and excited states. For larger molecules, this typically involves
the harmonic approximation for both states. The reference point for the harmonic
expansion in the ground state is clearly the ground-state equilibrium structure. For
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the excited state, there are in principle two choices: Either, the equilibrium position
of the excited-state potential energy surface is determined as well, which will be called
adiabatic Franck–Condon approach, or the expansion is carried out at the ground-state
equilibrium structure. The latter method, called vertical Franck–Condon approach, has
two advantages. Fast processes in the excited state only probe the Franck–Condon
region, so that the potential energy surface should be accurate there [485]. This point
will be discussed below in the context of the time-dependent approach to resonance
Raman scattering. Moreover, there is a computational advantage, since the additional
effort for the excited-state structure optimization is not necessary. This gives rise to
considerable savings in computer time in particular if several excited states shall be
considered.

The Franck–Condon-type integrals arising from either type of approximation can be
solved analytically, and efficient recursion formulae and algorithms have been designed
for that purpose [369,370,496–504]. The simplest model for the excited-state potential
energy surface, which is called the “independent mode, displace harmonic oscillator
model”, corresponds to a neglect of both Duschinsky rotations, i.e., changes in the
normal modes in the excited state, and frequency changes in the excited state w.r.t. the
ground state [505,506]. This is of particular interest in calculations for large molecules,
e.g., transition metal complexes [507, 508], since it only requires the calculation of
the excited-state gradient vector for each state under consideration within the vertical
Franck–Condon approach. Therefore, this scheme is sometimes called “gradient Franck–
Condon” (GFC) approach or linear electron–phonon coupling. The resulting integrals
can easily be evaluated [485], and the only remaining problem is the tremendous number
of integrals that is needed for large molecules.

One of the reasons why theoretical resonance Raman spectroscopy has seen such a
revived interest during the past years is that robust analytical gradients for excited-state
potential energy surfaces are now readily available from excited-state electronic-structure
methods like CIS [201], CC2 [206,509], CASSCF [510], and TDDFT [231,239,511–514].
In particular the latter are computationally cheap and usually provide reliable results
for resonance Raman intensities [494, 495,506,508,515–518] (see also below).

6.2.2 Time-dependent theory of Raman scattering

In the time-dependent theory of resonance Raman scattering (see, e.g., Refs. [486,
494,519–523]), the energy denominator of the resonant term on the right-hand side of
Eq. (6.7) is expressed as the half Fourier transform [520],

1

ωsk,0i
− ω − iΓ

= i

∫ ∞

0

dte[−i(ωsk,0i
−ω−iΓ)t], (6.8)

where a common linewidth Γ is assumed for all vibronic transitions involved. We will,
in the following, neglect the non-resonant term in Eq. (6.7), and restrict the discussion
to one excited state Ψs.

We proceed by explicitly writing ωsk,0i
= ωsk

−ω0i
as a difference of the energy levels (in

terms of angular frequencies), and by noting that exp[−iωsk
t]|χks〉 = exp[−iĤext/h̄]|χks〉,

where Ĥex is the Hamiltonian for the nuclear motion on the excited-state potential energy
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surface for electronic state |Ψs〉. With that, we get from Eq. (6.7),

[αρλ]f,i =
i

h̄
µ

el,(0)
ρ,s0 µ

el,(0)
λ,s0

∫ ∞

0

dte[i(ω0i
+ω)t−Γt]〈χf0

|e[−iĤext/h̄]
∑

ks

|χks〉〈χks|χi0〉

=
i

h̄
µ

el,(0)
ρ,s0 µ

el,(0)
λ,s0

∫ ∞

0

dte[i(ω0i
+ω)t−Γt]〈χf0

|e[−iĤext/h̄]|χi0〉. (6.9)

In the last transformation, we used the closure relation
∑

ks
|χks〉〈χks| = 1. In a more

compact notation, the initial vibrational wavepacket propagated by the excited-state
vibrational Hamiltonian is often written as exp[−iĤext/h̄]|χi0〉 = |χi0(t)〉, so that

[αρλ]f,i =
i

h̄
µ

el,(0)
ρ,s0 µ

el,(0)
λ,s0

∫ ∞

0

dte[i(ω0i
+ω)t−Γt]〈χf0

|χi0(t)〉. (6.10)

The time-dependent wavepacket overlap can be evaluated analytically for the IMDHO.
This requires the displacements of the excited-state equilibrium structure along the
normal coordinates relative to the ground-state equilibrium structure, which are —
within the IMDHO model — proportional to the excited-state gradients along the
normal coordinates. The time-integral can then be evaluated numerically, where the
upper limit for the integration can be chosen on the basis of the damping constant Γ.
Both the time-dependent approach to resonance Raman intensities and the sum-over-
states approach (within the GFC model) were implemented in the program Dnr [524],
which was used for the resonance Raman calculations reported in Section 6.3. Both
approaches give the same results (within the specified numerical accuracy), but calcu-
lations on the basis of the time-dependent approach are typically much more efficient
for molecules with many vibrational modes.
By comparison of the sum-over-states expression, Eq. (6.7), with Eq. (6.10) for the case
of a single resonant state, for which we can choose the coordinate system in such a way
that only one component of the transition dipole moment is non-vanishing, we see that
the intensities (given in terms of the scattering cross sections) from both expressions
will depend on the fourth power of the electric transition dipole moment of the state
in resonance. This can be an important hint in resonance Raman calculations on the
basis of approximate electronic-structure methods, since the first important task in such
calculations is the identification of the electronic state in resonance. Two factors are
decisive for this issue: (i) the excitation energy to the state in resonance must match
the frequency of the incident light beam, and (ii) the transition must show a significant
oscillator strength.

6.2.3 Heller’s gradient approximation

Under certain conditions, the time integral in Eq. (6.10) is determined by the dynamics
of the system during a very short time after excitation, in which the overlap 〈χf0

|χi0(t)〉
is large. This is in particular the case if (i) the excitation is in pre-resonance, (ii)
the damping factor exp[−Γt] is small enough to quench the overlap for longer times
after excitation (e.g., by interactions with solvent molecules), or (iii) there are many
Franck–Condon active vibrational normal modes with considerably different frequencies.
As discussed in Refs. [519,521], the latter case arises from the fact that it is increasingly
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difficult that all vibrational coordinates return at the same time to the Franck–Condon
region, so that the overlap integral 〈χf0

|χi0(t)〉 is large. I.e., it may take a rather long
time before this integral becomes large again, probably so large that the quenching due
to the damping factor determines the integral.
Heller et al. could — on the basis of an analysis of Gaussian wavepacket dynamics
on classical excited-state potential energy surfaces [519] — show that in this case the
polarizability tensor matrix element is determined to a good approximation only by the
gradient of the excited state potential energy surface. The result for the ratio of the
intensities of two modes is (see, e.g., Ref. [486]),

ij
ik

=

(
V q

j

V q
k

)2

=

(
∆q

jωj

∆q
kωk

)2

, (6.11)

where V q
j is the gradient of the excited state expressed in terms of reduced normal

coordinates,

V q
j =

(
∂Ea

∂qj

)

qj=0

, (6.12)

∆q
j is the displacement of the excited-state equilibrium position from the ground-state

equilibrium along the reduced normal mode qj , and the definition of reduced (or di-
mensionless) normal coordinates qj in terms of mass-weighted normal coordinates Qj

is,

qj = Qj

√

2πcν̃j/h̄ = Qj

√

ωj/h̄. (6.13)

The second equality in Eq. (6.11) only holds within the IMDHO model, because then
there is a simple relationship between excited-state gradients and normal-mode dis-
placements; in this case, the expression is known under the name of “Savin’s rule”. It
should be noted that Heller’s derivation is independent from that assumption. Although
only valid within clearly defined conditions, this approach has successfully been used in
several studies on resonance Raman spectra (see, e.g., Refs. [506, 515,525,526]).

6.2.4 Alternative methods

The last section showed that it is necessary to calculate the gradients of the electronic
energy in the excited state under investigation in order to use the short-time approxi-
mation for resonance Raman estimates. A quantity directly related to the excited-state
gradients are the forces on the atoms on the excited-state potential energy surface.
Tozzini and Giannozzi [527] used an alternative approach, in which a very short MD
run on the excited-state PES was carried out in which the atoms acquired a momentum
proportional to the forces without significant displacements from the equilibrium posi-
tions. Then, the system was brought back to the ground-state, and a new MD run was
performed on the ground-state in which the positions and velocities were taken from
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the previous excited-state run. The Fourier-transform of the mass-weighted velocity–
velocity autocorrelation function then gives a spectrum with peaks corresponding to
the vibrational frequencies and intensities proportional to the initial amplitude of the
corresponding normal mode (in the harmonic approximation). Since this amplitude is
proportional to the excited-state gradient, we are back at the short-time approximation.
For systems of moderate size, this may seem like a somewhat complicated way to
calculated a quantity proportional to the excited-state gradients (which actually have
to be calculated intermediately to perform the MD run). The advantage of this method
in the context of simulations under periodic boundary conditions is, however, that no
conventional frequency analysis is needed, since the vibrational spectrum is calculated
from an autocorrelation function.
Jensen et al. proposed a method that replaces the wavepacket propagation in the time-
dependent approach to resonance Raman intensities by a classical propagator in order to
arrive at an intensity expression that closely resembles the one for off-resonance Raman
scattering [328,483] but contains a phenomenological damping constant as needed under
resonance conditions [495]. In the case of just one excited electronic state, this method
reduces to Heller’s gradient approach.

6.3 The photochemistry of o-nitrobenzaldehyde

Due to the enhanced intensities in resonance Raman spectroscopy when compared to
off-resonance Raman, this method is well suited for the detection and investigation of
transient species in low concentrations. By applying special time-resolved techniques such
as femtosecond stimulated Raman spectroscopy (FSRS, see Ref. [528] for a review), it is
possible to track chemical reactions following photoexcitation with high time-resolution.
Basically, Raman spectra are recorded as a function of time after an initial pump laser
pulse, so that intermediate products and transient species can be identified on the basis
of their characteristic Raman bands.
This was exploited in recent years to study the intricate photochemistry of nitroarenes,
which has adverse and benevolent aspects. Nitroarenes are very common — yet toxic —
industrial chemicals and thereby (potential) pollutants. In the environment nitroarenes
will absorb solar UV radiation. This can degrade these components resulting in sec-
ondary pollutants. (The World Health Organization has compiled production data,
environmental and health hazards of the parent compound of nitroarenes, nitrobenzene,
in Ref. [529].) The benevolent aspect is that certain nitroarenes serve as photolabile pro-
tecting groups in organic synthesis [530]. These groups have been employed in numerous
caged compound experiments [531] and in the automated synthesis of oligonucleotides
for DNA chips [532].
The mechanisms of the primary photoprocesses of these compounds have been studied
by Yip et al., who performed picosecond transient absorption experiments on various
nitroarenes [533–537]. Mostly, they observed the formation of the primary photoproducts
within their instrumental response function of ∼30 ps. Thus, they could only report an
upper boundary for the formation time of the order of ∼30 ps. Schwörer and Wirz [538]
performed experiments with a higher time-resolution on the photo-tautomerisation of
nitrotoluene. Yet, their paper does not focus on the primary processes.
An investigation on a prototypical reactive nitroarene, ortho-nitrobenzaldehyde (NBA),
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was recently started by Laimgruber et al. [539]. As early as 1901 Silber and Ciamician
[540] reported that when illuminated, NBA transforms into nitrosobenzoic acid. The
quantum yield of the transformation is ∼0.5 nearly irrespective of the solvent [541].
Time-resolved experiments by Yip and Sharma [535] and recent ones by Laimgruber
et al. [539] gave evidence that this transformation involves several elementary steps. It
is commonly assumed [530] that the primary step in ortho-substituted nitroarenes is
a hydrogen transfer from the substituent to the nitro group. For NBA this transfer
should result in the formation of a ketene (see Figure 6.1) [535, 539, 541, 542]. Indeed,
such a ketene could be cryo-trapped in an argon matrix [542]. In a femtosecond IR
experiment [539] the ∼2100 cm−1 resonance characteristic for a ketene [543] was seen
to rise in ∼400 fs. The ketene lifetime is strongly dependent on the solvent [535, 539].
In protic solvent it is ∼100 ps or below whereas it is of the order of nanoseconds in
aprotic ones. In the latter solvents, e.g., in acetonitrile [518], one can therefore examine
the structural details of a vibrationally relaxed ketene.

Figure 6.1: Schematic representation of the photochemistry of NBA. Photoexcitation triggers
a hydrogen transfer process which results in a ketene intermediate. Subsequent reactions yield
the final nitroso product.

In the following, we will present TDDFT-based Raman spectra and compare them to
recent results from FSRS [518] addressing the structure of the ketene intermediate.
Since the experimental spectra are subject to a resonance enhancement we expect that
normal Raman calculations are not appropriate since Placzek’s polarizability theory for
Raman scattering [328,483,544] breaks down in this case. Therefore, resonance Raman
calculations based on Heller’s time-dependent approach (see Section 6.2.3) are carried
out, for which we employ electron–phonon coupling constants from TDDFT calculations.

6.3.1 The resonance Raman spectrum of the ketene intermediate

In this section we will first validate the (TD)DFT approach by analyzing the resonance
Raman spectrum of NBA, for which an experimental steady-state spectrum is available.
Subsequently, we will use the same approach for the transient ketene intermediate
and compare the theoretical findings with the FSRS spectra. Technical details of the
calculations can be found in Appendix B.
Starting from the BP86/TZP optimized structure of NBA (see Figure 6.2), electronic
excitations were calculated seeking states which contribute to a (pre)-resonance Raman
enhancement. In the following, we will try to identify the important excited states in the
experimental spectrum. Then, we will compare the calculated SAOP excitation energies
and oscillator strengths to those from B3LYP calculations, so that we can finally map
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the calculated states to those experimental transitions for which resonance conditions
are fulfilled. Note that an assessment of the oscillator strengths obtained from different
density functional schemes can be found in Ref. [545].

Figure 6.2: Optimized (BP86/TZP) structure of NBA.
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Figure 6.3: Isosurface plots of the molecular orbitals (SAOP/TZP) involved in the lowest
electronic excitations of NBA.
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A comparison of the laser wavelength of 388 nm with the experimental absorption
spectrum of NBA shows that the incident light beam corresponds to an excitation into
the long-wavelength tail of the spectrum [518]. Based on the decomposition of the
experimental absorption spectrum in Ref. [518] the most probable state in resonance
as deduced from experiment would be the first excited singlet state with a maximum
at 343 nm in acetonitrile, which was assigned to a nπ∗ transition. This state, however,
has a rather low oscillator strength of 5.2 · 10−3. It might thus be possible that also
the second excited state plays a role for the resonance enhancement. This state is
experimentally found at 297 nm in acetonitrile and was assigned to a ππ∗ transition.
Although it is much higher in energy, it could still be important since the absorption
band is broad and it has a higher oscillator strength of 0.0306 (in the experiment).
Table 6.1 shows the calculated excitation energies, oscillator strengths, and the dominant
orbital transitions obtained from our SAOP calculation. In this calculation, the lowest
unoccupied molecular orbital (LUMO) of NBA is a π∗ orbital located on the nitro
group (see Figure 6.3). Hence, transitions from the occupied π orbitals of the benzene
ring to the LUMO are expected to suffer from the general problem of TDDFT to
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Table 6.1: Calculated (SAOP/TZP and B3LYP/TZVP) excitation energies Eex (in units of
eV) and oscillator strengths f for NBA. Experimental values deduced from the decomposition
of the absorption spectrum of for NBA [518] in acetonitrile are given for comparison.

SAOP/TZP B3LYP/TZVP exp.
type dominant contr. Eex f Eex f Eex f

nπ∗ HOMO → LUMO 2.53 0.0005 3.38 0.0006 3.61 0.0052
ππ∗(CT) HOMO−1 → LUMO 3.40 0.0165 4.26 0.0133 4.73 0.1012
ππ∗ HOMO−2 → LUMO 3.54 0.0280 3.75 0.0168 4.17 0.0306

describe charge-transfer excitations, see Section 3.3. Although this does not mean a
complete failure as in the case of long-range charge-transfer excitations (see Section 3.3),
it is well-known that such excitation energies in nitrobenzenes are underestimated by
TDDFT [546,547].

In order to identify problems related to the CT character of certain transitions, we
also calculated excitation energies using the B3LYP hybrid functional for a structure
optimized with B3LYP/TZVP. The resulting excitations were mapped to the SAOP
results on the basis of the orbital transitions involved (see Table 6.1). An additional
low-lying state with small oscillator strength (not shown in Table 6.1), which corresponds
to a HOMO → LUMO+1 orbital transition, was found at 3.64 eV (SAOP) and 4.12
eV (B3LYP). This state is not considered to be important for the resonance Raman
scattering because of its low intensity and relatively high excitation energy. Since the
B3LYP calculations partly (though not sufficiently) correct for the failure in case of CT
transitions of the ALDA kernel applied in connection with SAOP TDDFT calculations,
we expect significant shifts for those excitations that are of CT type. By comparing
the SAOP and B3LYP data in Table 6.1 it can be seen that there are large differences
for the first and second excited-state energies of the SAOP calculation in comparison to
B3LYP. The reason for the deviation in case of the ππ∗(CT) excitation is certainly its
CT character, and complete active space self-consistent field calculations with second-
order perturbation theory (CASPT2) on the corresponding transitions in nitrobenzene
suggest typical excitation energies of 4.99 eV [548]. In contrast to this, the discrepancy
for the nπ∗ transition occurring within the NO2 group is not obvious in terms of the
orbital transitions. For the third excited state, which is of ππ∗ type and also shows
a partial CT contribution, SAOP and B3LYP are in in much better agreement with
a deviation of 0.21 eV. The calculated excitation energies from both calculations are
much lower than the ones determined on the basis of a Gaussian decomposition of the
experimental absorption spectrum in acetonitrile. An additional calculation using the
approximate coupled cluster doubles model CC2 and Dunning’s correlation consistent
valence triple-ζ basis with polarization functions (cc-pVTZ) with the RI-CC2 program
of the Turbomole suite [205] resulted in an excitation energy for this ππ∗(CT) state
of 4.71 eV and is thus in accordance with the experimental results. However, it turned
out that this coupled-cluster approach does not provide a reliable reference wavefunction
for NBA based on the so-called D1 diagnostic proposed in Ref. [549], so that also the
RI-CC2 excitation energies are not fully trustworthy.
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The values of the experimental excitation energies are of course also subject to uncer-
tainties. They were obtained assuming Gaussian line shapes and a certain number of
Gaussian components. Either assumption can be questioned. Nevertheless, large dis-
crepancies between the TDDFT calculations and experiment remain. The assignment
of the excited states to be considered for the resonance enhancement, i.e., the nπ∗ and
the ππ state identified on the basis of the experimental absorption spectrum, is less
complicated. Apparently, the first transition (nπ∗) from the SAOP calculation fits best
to the applied laser energy of 3.20 eV (388 nm) if we take into account that the SAOP
excitation energies are too small. The second excited state obtained with SAOP is
severely affected by the CT problem and should appear at much higher energies, so
that the third excited state (ππ∗) in the SAOP calculation (or the second excited state
in the B3LYP calculation) corresponds to the broad experimentally observed state at
4.17 eV (297 nm). These two states will thus be considered in the following. In spite
of the problems of TDDFT to reproduce the correct vertical excitation energies, the
derivatives of the excitation energies along the normal coordinates as needed for the
calculation of resonance Raman intensities will be much less affected, since they will
— to a large extent — be determined by the change in the energies of the orbitals
involved in the transition. Since neither SAOP nor B3LYP are able to reproduce the
vertical excitation energies accurately, we restrict ourselves to the discussion of the
SAOP results for the resonance Raman spectra. It will be shown in Section 6.4 that
non-hybrid exchange–correlation functionals yield reliable resonance Raman intensities
under similar conditions.

Figure 6.4: Comparison of experimental (solid, black) and computed (SAOP/TZP) Raman
spectra (dotted, colored). Lower graph NBA. Upper graph ketene. Intensities are given in
arbitrary units (a.u.). To reproduce the experimental linewidth the theoretical stick spectra
were convoluted with Gaussian line shape functions with a width of 25 cm−1. For NBA
resonance with the first excited state and for the ketene resonance with the second one was
assumed.
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Figure 6.5: Calculated (SAOP/TZP; intensities in arbitrary units) resonance Raman spectra
for NBA using Heller’s time-dependent formalism. Lower panel: resonance assumed for the
first excited state (nπ∗); middle panel: resonance assumed for the third excited state (ππ∗;
second excited state in experiment); upper panel: both states included in the calculation.
All spectra are normalized. Stick spectra were convoluted with Gaussian line shape functions
with a width of 25 cm−1.
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We calculated the resonance Raman intensities for the lowest excited states of NBA with
SAOP/TZP based on the time-dependent formalism described in Section 6.2.2. In order
to analyze the importance of the two excited states that we identified as potentially
involved in the resonance Raman scattering of NBA (nπ∗ and ππ∗), we compare the
spectra obtained when considering (i) only the first excited state (nπ∗), (ii) only the third
excited state (in the SAOP calculation; second excited state in experiment, ππ∗), and
(iii) both of these states simultaneously in Figure 6.5. Note that intensities are not in
general additive in case of several excited states in resonance according to Eqs. (6.1) and
(6.4), see also Refs. [550,551]. Another difficulty for several states in or close to resonance
is that the energy gap between the excited states can play a crucial role for the total
intensity. Since the vertical excitation energies from the TDDFT calculations turned out
not to be fully trustworthy for NBA, we simulated the resonance Raman spectrum with
the combined effect of both states assuming the experimentally determined excitation
energies of 3.61 and 4.17 eV, and a laser wavelength of 388 nm. All spectra shown in
Figure 6.5 are normalized, so that their absolute intensities are not directly comparable.
The ππ∗ transition has a larger contribution on an absolute scale than the nπ∗ transition
due to its much larger transition moment, so that the features of the spectrum obtained
for the third excited state in resonance also dominate the spectrum in which both states
were considered. In comparison to the experimental spectrum in Figure 6.4 we note that
all three calculated spectra reproduce the intense feature for the NO2 stretch vibration.
The calculated wavenumber of 1296 cm−1 underestimates the experimental one at 1350
cm−1 considerably, which is rather unusual for frequency analyses based on the BP86
functional [552]. The peaks above 1350 cm−1 up to 1700 cm−1 in the experimental
spectrum apparently agree best with the features in the computed spectrum where the
first excited state (nπ∗) is assumed to be in resonance (see Figure 6.4). This could
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mean that either the ratio of the calculated transition moments for the nπ∗ transition in
comparison to the one obtained for the ππ∗ transition is too small, or that inaccuracies in
the experimental decomposition affect the outcome of the resonance Raman calculation.
At the present stage, the best strategy to decide which state is in resonance appears
to be a comparison of experimental and calculated spectra (see also Ref. [515]).

Figure 6.6: Optimized (BP86/TZP) structure of the ketene intermediate.
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Figure 6.7: Isosurface plots of the molecular orbitals (SAOP/TZP) involved in the lowest
electronic excitations of the ketene intermediate.
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The ketene intermediate is formed in a hydrogen transfer process from the aldehyde
substituent to the nitro group. It is most likely that after transfer the hydrogen atom
is bonded to the oxygen of the nitro group next to the (former) aldehyde function (Z-
form). The optimized structure of this Z-form is planar, the hydrogen atom attached to
the nitro group points away from the ketene function and this function is slightly tilted
(Figure 6.6). The SAOP/TZP calculation yields three transitions in the spectral range
of interest which are located at 2.12 eV (oscillator strength f = 3.5 · 10−5), 2.61 eV
(f = 0.0804), and 4.10 eV (f = 0.0802). The dominant orbital transitions in this case
are the HOMO → LUMO+1, HOMO → LUMO, and HOMO → LUMO+2, respectively
(see Figure 6.7). Again, a B3LYP/TZVP calculation carried out for comparison yields
larger excitation energies, but the disagreement is only about 0.2 eV for the first two
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transitions (2.31 eV, f = 3.1 · 10−5 and 2.84 eV, f = 0.1125) and about 0.4 eV for the
third one (4.51 eV, f = 0.1180). Hence, the deviation is much smaller than in case of
NBA.

The first transition is not observed in the experimental spectrum assigned to the ketene
intermediate given in Ref. [518]. This could very well be due to its low oscillator
strength. The second transition, which is predicted to be more intense and to peak
at 2.61 eV (480 nm, SAOP/TZP), is in line with the experimental spectrum which
features a band peaking at 440 nm. The experimental spectrum hints to a further
intense transition at ∼300 nm (4.13 eV) again in accordance with the SAOP/TZP
calculation. The wavelength of the Raman pump pulse is within the envelope of the
445 nm transition and so this transition will be dominantly responsible for the resonance
Raman enhancement. The resonance Raman spectrum computed for this transition is
in good agreement with the experimental one (Figure 6.4). In both the experimental
and the theoretical spectrum a weak resonance at ∼2100 cm−1 is observed. This peak is
due to the stretch vibration of the central carbon atom in the ketene function. Because
of the lower signal-to-noise ratio of the set-up employed in the foregoing experimental
study [539] this mode was not observed by Raman spectroscopy heretofore. In that
study, advantage of the large IR cross section of this mode was taken and its IR signature
recorded. Improvements described in Ref. [553] subsequently enabled the detection of
this resonance also by means of FSRS [518]. The next resonance in the theoretical
spectrum, which is accompanied by a very weak peak at its low frequency edge, is
located at 1639 cm−1 These two bands might correspond to the experimental band at
1600 cm−1 which is broader than the other resonances pointing at overlapping bands.
The 1639 cm−1 mode has a large N−C stretch contribution. Its high frequency points
to a double bond between the nitrogen atom of the nitro group and the ring. In both
the theoretical and the experimental spectrum, the most intense band is located at
∼1520 cm−1. This mode can be described as an in-phase motion of the two formal
double bonds in the ring. The good agreement for these three stretch vibrations strongly
support the valence bond structure of the ketene intermediate depicted in Figure 6.1. The
other modes at lower frequencies have mostly hydrogen in-plane deformation character.
Also for them the agreement with the experimental data is reasonable, but they are
less informative in terms of structure.

6.3.2 Conclusions for photochemical intermediates

The comparison of the TDDFT calculations to the FSRS data allowed us to characterize
the first ground-state intermediate in the photochemistry of NBA. This intermediate
is a ketene which is formed via a hydrogen transfer from the aldehyde to the nitro-
substituent. Evidence for the population of the electronic ground state of the ketene
comes the fact that the experimental Raman spectrum could be well reproduced in the
TDDFT-based resonance Raman calculations, which have been performed for the ground
state of the ketene intermediate. The reliability of the TDDFT-based calculation of
resonance Raman intensities was confirmed for the steady-state spectrum of o-NBA, in
spite of the problems for the vertical excitation energies. The experimental and computed
Raman spectra feature resonances which are very characteristic for the single-double
bond pattern of the ketene intermediate, and thus underline that resonance Raman
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spectroscopy can be regarded as a chromophore-specific type of spectroscopy. If the
ketene were in an electronically excited state the respective bond orders should be
different and thereby the Raman spectrum. Finally, we would like to note that also the
transient absorption spectrum recorded in Ref. [518] supports this finding.

6.4 Photoexcitation processes in artificial photosynthesis models

6.4.1 Ruthenium–polypyridyl clusters as models for photosynthetic units

The importance of light-harvesting complexes in natural photosynthetic systems has
already been discussed in Section 5.3 for the LH2 unit of purple bacteria. In general,
natural antenna systems mainly consist of extended supermolecular aggregates of (bac-
terio)chlorophyll a and b, i.e., of substituted tetrapyrroles coordinated to a central man-
ganese atom, and of carotenoids [554]. During the past years, more and more attempts
are made to mimic these biological systems by creating artificial photosynthetic units
for solar energy conversion [422]. The analogs of chlorophyll in these artificial systems
are often either zinc porphyrin chromophores [555, 556], or ruthenium–polypyridyl and
related complexes. The latter play a central role as photoactive components [557,558],
e.g., in dye-sensitized photovoltaic devices [559,560], or as model compounds for energy-
transfer and charge-separation processes [561]. In the context of artificial photosynthe-
sis, ruthenium–polypyridine complexes are of particular interest in combination with
an electron-donating manganese cluster as functional models for the P680 complex in
photosystem II of green plants [562]. Related applications include the photocatalytic
generation of hydrogen at room temperature and in homogeneous solution by [RuPd]
complexes [563].
The initial steps involved in the photoexcitation of ruthenium–polypyridine complexes
can in most cases be described as a transition from the singlet ground state to the
first excited singlet state, followed by a very fast inter-system crossing to the lowest-
lying triplet state [564]. Investigations using femtosecond time-resolved spectroscopy
suggest that a subsequent charge transfer from Ru to Pd takes place in systems con-
taining one or more additional Pd center(s) [564], like the tetranuclear [Ru2Pd2] complex
{[(tbbpy)2Ru(tmbi)]2[Pd(allyl)]2}2+ reported in Ref. [565] (tbbpy = 4,4’-di-tert-butyl-
2,2’-bipyridine, tmbi = 5,6,5’,6’-tetramethyl-2,2’-bibenzimidazolate; see the lower part
of Figure 6.8 and Figure 6.9).
The tetranuclear [Ru2Pd2] complex can therefore be regarded as a small model for
an antenna system (the [Ru] subunits) linked to a possible reaction center (the [Pd]
subunits) via a bibenzimidazolate bridge. Since the [Ru] subunits take part in the charge
transfer, they may, in addition to their role as antennae, also be interpreted as a part
of the reaction center. What makes the [Ru2Pd2] complex special compared to, e.g.,
its flat [Ru2Cu2] analogon [565], is its roof-like structure, in which the two central [Pd]
fragments constitute the roof ridge and are thus easily accessible for potential reactants.
Although photocatalytic activity of the [Ru2Pd2] complex has not been shown yet, this
system can serve as a a prototype for photosystems with exponated reactive centers,
for which our results are expected to be of significance.
The goal of this study is to investigate the very first step in the photoexcitation of
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Figure 6.8: Structures of the two ruthenium–bipyridyl systems under study:
[(tbbpy)2Ru(tmbiH2)](PF6)2 (1; top) and {[(tbbpy)2Ru(tmbi)]2[Pd(allyl)]2}(PF6)2 (2; bot-
tom).

[Ru]

1

2

[Ru2Pd2]

Figure 6.9: Roof-like structure of [Ru2Pd2] (2). Structure optimization: BP86/TZVP.
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the tetranuclear {[(tbbpy)2Ru(tmbi)]2[Pd(allyl)]2}2+ complex, i.e. the transition to the
excited singlet state on the basis of resonance Raman spectroscopy. We compare first-
principles quantum chemical calculations relying on density functional theory to exper-
imental resonance Raman spectra [508]. These calculations serve two purposes: First,
the comparison of the calculated spectra to the measured ones provides an excellent
means to assess the feasibility and reliability of currently available quantum chemical
methodology. This holds in particular for the capability of the short-time approximation
in connection with TDDFT to predict resonance Raman spectra of ruthenium–bipyridyl
compounds. Second, and more important, the calculations provide insight into the elec-
tronic mechanisms involved in photoexcitation not avaliable in this detailed resolution
from experiment. From theory, we hence gather detailed information on the inter-
connection between electronic structure and vibrational modes in the photoexcitation.
Local contributions to the most intense resonance Raman peaks may be identified by
inspecting the associated calculated normal modes, and the nature of the transition to
the excited singlet state may be characterized by analyzing the electronic structure in
terms of Kohn–Sham orbitals mainly involved in the description of the excitation by
TDDFT.

The photoexcitation is supposed to be located uniquely on the [Ru] fragment, the
resonance Raman spectrum of the tetranuclear [Ru2Pd2] complex is thus expected to
be very similar to the one of its peripheral building block, the mononuclear complex
[(tbbpy)2Ru(tmbiH2)]2+ (see the upper part of Figure 6.8). In order to test this as-
sumption, resonance Raman spectra were also recorded and calculated for the smaller
mononuclear [Ru] complex. Details concerning the experimental determination of the
spectra are reported in Ref. [508], while technical details of the calculations presented
here are given in Appendix B. The [Ru] and the [Ru2Pd2] complexes will be denoted
as 1 and 2, respectively, in the following.

6.4.2 Analysis of resonance Raman spectra

Because of the size of the complexes under study, Heller’s gradient approximation as
outlined in Section 6.2.3 in connection with TDDFT [506] is the method of choice for
the calculation of the resonance Raman spectra, and was thus applied to obtain the
spectra shown in the following. The comparatively small [Ru] complex 1 serves as
a test case for the dependence of calculated resonance Raman spectra on the choice
of the density functional. The calculation of the resonance Raman spectrum may be
divided into three steps: The optimization of the geometric structure, the calculation
of the vibrational normal modes and frequencies, and the subsequent calculation of the
resonance Raman intensities. For the structure optimization as well as for the calculation
of vibrational normal modes and frequencies, the BP86 density functional was employed.
The optimized structure is in reasonable agreement with the one obtained from X-ray
crystallography [565]. While bonding distances between the ruthenium centers and the
ligands are reproduced very well, the bonding distances to palladium are overestimated
by around 0.05 Å.

To investigate whether the BP86 functional is suited for the excited-state gradient
calculations, the resonance Raman spectrum of the [Ru] complex 1 was calculated using
both BP86 and B3LYP, respectively, for the excited-state gradients. For the normal



6.4. Photoexcitation processes in artificial photosynthesis models 195

modes, BP86 was always employed. Despite the inability of BP86 to provide reasonable
vertical excitation energies within a TDDFT framework (see below), the resulting spectra
indeed agree very well (see Figure 6.10).

Figure 6.10: Comparison of experimental and calculated resonance Raman spectra of
[(tbbpy)2Ru(tmbiH2)]

2+ (1), assuming resonance with the first excited singlet state in the
calculation. A Gaussian line-broadening with a half-width of 20 cm−1 was applied. The
assignments “BP86” and “B3LYP” refer to the density functional used for the excited-state
gradients needed for the intensities, while BP86/TZVP was employed for the force field in
both cases. Wavenumbers in B3LYP and BP86 spectra are thus identical.
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Figure 6.11: Comparison of experimental and calculated (BP86/TZVP) resonance Raman
spectra of {[(tbbpy)2Ru(tmbi)]2[Pd(allyl)]2}2+ (2). For the calculation, resonance with the
second excited singlet state was assumed. Off-resonance Raman spectra are shown for com-
parison. A Gaussian line-broadening with a half-width of 20 cm−1 was applied.
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This is due the fact that in the short-time approximation only the shape of the excited-
state potential energy surface at the ground-state equilibrium structure is relevant, but
not its vertical position. The excited-state gradient, which determines this local shape,
is obviously described well with both functionals. This holds true, in particular, for
the most characteristic part of the spectrum between 1200 and 1700 cm−1. Small
discrepancies can be observed for the spectral features between 1000 and 1200 cm−1.
Overall, the BP86 intensities are actually in better agreement with experiment than the
B3LYP ones.

Thus, the resonance Raman spectrum of the much larger tetranuclear [Ru2Pd2] complex
2 (containing 272 atoms) has been calculated using the BP86 density functional for both
the normal modes and the resonance Raman intensities.

Figure 6.11 shows that also for the significantly larger tetranuclear complex 2, the calcu-
lated spectrum agrees very well with the experimental one. Owing to the efficient BP86
calculations and to a combination of good parallelization and restart facilities provided
by our Snf vibrational spectroscopy package [328], it is thus now possible to calculate
the full spectrum of normal modes and vibrational frequencies for compounds of the
size of the tetranuclear complex under study with remarkable accuracy. The calculated
spectrum is indeed dominated by the [Ru] fragment peaks. The most significant differ-
ence between the calculated spectra for the [Ru] complex 1 and the [Ru2Pd2] complex
2 is the peak around 1290 cm−1, which is considerably more intense in the spectrum
of 2. This is mainly due to an amplification of resonance Raman scattering intensities
associated with breathing-like vibrational modes of the RuN2C2 ring of the tmbi ligand
(see Figure 6.12). In the experimental spectra, however, this amplification is much less
pronounced. Furthermore, the measured spectrum shows a large signal at around 700
cm−1 which is not reproduced by our quantum chemical calculation. This peak is an
artifact of the solvent spectrum subtraction procedure (the most intense Raman band
of the CH2Cl2 solvent is centered around 713 cm−1).

It should be noted that in the present example there is not a single excited state that
is energetically clearly separated in the calculation, so that it can be unambiguously
identified as the excited state in resonance with the laser beam. In experiment, an
excitation into the lowest-energy absorption band of 2 is applied with a laser wavelength
of 458 nm (2.71 eV). This absorption band is broad and structureless and extends from
approximately 550 to 450 nm (or 2.25 to 2.75 eV) [564], so that the relative resonance
Raman intensities may be expected to be rather insensitive to the exact excitation energy.
As mentioned before, there are two main criteria that can be applied to identify states
in the calculation that may be important for the resonance Raman spectrum: (i) the
calculated energy difference for a given transition compared to the energy corresponding
to the wavelength of the incident laser beam, and (ii) its oscillator strength. The
comparison of transition energies is hampered by the fact that the calculated vertical
TDDFT excitation energies depend strongly on the density functional. In particular,
some of the low-lying excitations in the [Ru2Pd2] complex 2 are clearly of the long-range
charge-transfer type, for which generalized gradient approximation functionals such as
BP86 (and the corresponding functional derivatives) are not suitable, see Section 3.3.
As can be seen from Figure 6.13, there are pairs of nearly degenerate MOs located on
either side of the “roof ridge”. The HOMO → LUMO (S1 in Figure 6.13) and the
HOMO−1 → LUMO+1 (S3) transitions involve spatially separated orbitals with almost
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no (differential) overlap, and the calculated excitation energies are (nearly) equal to the
difference in the orbital energies. As outlined in Section 3.3, this is a characteristic
feature of the long-range charge-transfer problem in TDDFT calculations. In general,
the excitation energies for such transitions are dramatically underestimated, so that
it is not likely that these states are in resonance under the experimental conditions
employed here. In addition, pure long-range charge-transfer excitations also show a
vanishing transition dipole moment, and are therefore neglected in the following.

Figure 6.12: Normal modes responsible for two of the most intense peaks in the [Ru2Pd2]
(2) resonance Raman spectra (BP86/TZVP). Hydrogen atoms have been left out for the sake
of clarity.

1292 cm−1 1295 cm−1

In the literature, the photoexcitation of ruthenium–bipyridyl complexes is described as
initiated by an metal-to-ligand charge-transfer (MLCT) [566,567]. The four lowest-lying
electronic singlet-to-singlet transitions are characterized predominantly by a transition
from an occupied MO which has mainly metal dz2-character, with contributions from
the π system of the bibenzimidazolate ligand, to a virtual MO with negligible metal
contribution, which is delocalized over the π system of the two bipyridyl ligands. This
fits very well into the picture of an initial MLCT.
We are rather interested in the MLCT excitations HOMO → LUMO+1 (S4) and
HOMO−1 → LUMO (S2). Transitions to both of these as well as to several other
low-lying excited states have significant oscillator strengths and could therefore be im-
portant for the resonance Raman spectrum. The excitation energy again is not a very
good criterion for the selection of the state in resonance: The BP86 results for the
transitions denoted as S2 and S4 in Figure 6.13 are 1.23 and 1.26 eV, while the corre-
sponding B3LYP excitation energies are 1.79 and 1.81 eV. Since these two excitations,
which both have significant oscillator strengths, are spatially and energetically equiva-
lent, we chose to concentrate on the S2 state. The choice of these two transitions is
confirmed furthermore by the agreement of the qualitative picture of an MLCT tran-
sition with chemical intuition as well as by the excellent prediction of the measured
spectra. It may be anticipated, however, that the measured resonance Raman spec-
trum contains contributions from several energetically close-lying states in resonance.
To elucidate this point, we calculated spectra for six different low-lying excited states,
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which all give rise to similar individual resonance Raman spectra (see the Supporting
Information to Ref. [508]).

Figure 6.13: Frontier molecular orbitals dominating the excitations to the 4 lowest excited
singlet states (denoted by S1 to S4) in the [Ru2Pd2] complex 2 (BP86/TZVP). The cor-
responding orbital energies are given in parentheses. The orbital energies for the depicted
pairs of occupied and unoccupied orbitals, respectively, indicate the somewhat imperfect Cs

symmetry of the rooflike cluster, which was optimized without symmetry constraints. The
small differences in these pairs of energies may be taken as an explanation for the localization
of the orbitals on either half of the cluster.

S4
S1 S3

S2

LUMO (− 0.2299 a.u.) LUMO+1 (−0.2289 a.u.)

HOMO−1 (−0.2744 a.u.) HOMO (−0.2741 a.u.)

We thus conclude from our results as follows: The resonance Raman spectrum of the
[Ru2Pd2] complex is dominated by vibrations located on the [Ru] building blocks. This
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result as well as an inspection of the Kohn–Sham molecular orbitals mainly involved
in the TDDFT description of the vertical electronic excitations support the assumption
that the initial photoexcitation step in the [Ru2Pd2] system is a MLCT excitation on the
[Ru] fragments. The good agreement of the calculated resonance Raman spectra with
the experimental ones indicates the more general ability to predict reliable resonance
Raman spectra for ruthenium–polypyridyl complexes on the basis of Heller’s gradient
approximation. This is of particular relevance for studies on biomimetic solar energy
conversion, because ruthenium-based systems are among the most commonly employed
and most intensely studied artificial light-harvesting antenna systems [557–563].
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7. Resonance Raman Intensity-Tracking

7.1 Selectivity in theoretical resonance Raman spectroscopy

In Chapter 6 it was outlined that experimental resonance Raman spectroscopy is well
suited to study complex molecular systems because of its selective enhancement of
certain vibrations. It was also shown that the application of theoretical approaches to
resonance Raman spectra has become feasible for larger molecules in recent years due to
the development of reliable methods for the calculation of ground-state vibrational modes
and excited electronic states [494,495,506,515,517,523,568,569]. In particular the fact
that frequency analyses based on density functional theory are very efficient [328] and
yield harmonic frequencies that are usually in very good agreement with fundamental
frequencies as obtained in experiment [552, 570] made it possible to clarify intricate
features in complicated vibrational spectra [463, 571, 572]. An analysis on the basis of
experimental information alone would be much more difficult in many cases, if possible
at all. The development of the mode-tracking algorithm [468,469,573], which allows the
selective calculation of a subset of pre-defined normal modes, offers the possibility to
restrict the theoretical frequency analyses to subsets of the Hessian eigenvectors which
are of relevance for a particular problem under study. A necessary condition for an
efficient application of the mode-tracking algorithm is that at least a rough guess for
the normal modes to be optimized can be provided. Various ways to obtain such a
guess have been employed [397,573–580]. For a recent review see Ref. [469].

While it is sometimes known which vibrations will get enhanced under resonance condi-
tions, so that a guess for a mode-tracking calculation could be constructed, this may not
be true in general for more complicated molecules, e.g., transition metal compounds [507].
We will therefore explore the possibility to use an algorithm based on the mode-tracking
principle together with the information on the excited-state gradient in order to directly
determine only the intense vibrations in a resonance Raman spectrum. I.e., we attempt
to exploit the selectivity observed in experimental resonance Raman spectra also in the
theoretical determination to enable calculations for, e.g., complex biomolecular systems.
The approximate relative intensity of a vibration within Heller’s gradient approxima-
tion (see Section 6.2.3) is related to the projection of the excited-state gradient vector
onto the corresponding normal mode. The method developed here uses this gradient
vector as a guess vector in a mode-tracking calculation and subsequently focuses on
vibrational normal modes with a large overlap with that vector. Of major importance
for the efficiency of the method are the criteria according to which the intense modes
are chosen and their convergence is assessed. The algorithm applied here is thus very
different from, e.g., the approach presented in Ref. [463], in which the intensities were
calculated in a mode-wise way after the vibrational frequencies and normal modes had
been determined.
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Although this algorithm should be of general use, we are in particular aiming at its
application for resonance Raman investigations on (models for) proteins, since the struc-
ture elucidation of proteins is an important field of application for experimental reso-
nance Raman spectroscopy. By analyzing the amide vibration wavenumbers and inten-
sities [139,581,582], the secondary structure of proteins can be probed. If the excitation
wavelength is tuned to energies at which bands of the aromatic amino acids tryptophan
(Trp), tyrosine (Tyr), and phenylalanine (Phe) are selectively enhanced, information
about hydrogen bonds and hydrophobicity of the environment and orientation of these
chromophores can be obtained [581,583–586]. Resonance Raman spectroscopy is also a
valuable method to aid the study of protein folding, as shown, e.g., in the investigation of
variants of the E colicin-binding immunoprotein Im7 and their different conformational
states [477].
In the following, we will first present the underlying theory and details of the algorithm
and implementation (Section 7.2) before we study the approach for the calculation of
resonance Raman intensities of uracil in Section 7.3. An application to models of the
protein Im7 follows in Section 7.4.

7.2 Theory: Intensity-driven resonance Raman spectroscopy

In order to appreciate the algorithmic structure of the intensity-tracking approach, which
focuses exclusively on the determination of high-intensity modes, we briefly review the
algorithmically related, though conceptually very different mode-tracking protocol, which
is solely based on the form of the collective motion provided as a guess.

7.2.1 The mode-tracking algorithm

The full details of the original mode-tracking algorithm have been presented in previous
work [468, 469, 573]. An outline of the main steps is given in the following. In the
mode-tracking algorithm the eigenvalues λi of the Hessian matrix are determined by
employing a subspace iteration method like the Lanczos [587] or Davidson method [234].
In each iteration, approximate solutions for a subset of eigenvectors Li are obtained.
This procedure can be applied to solve for a certain pre-selected mode (or, when using
a block-Davidson method, several pre-selected modes), where the iterative algorithm
will be carried out until the approximations of the selected eigenvectors are converged.
Thus the diagonalization of the full mass-weighted Hessian Hmw,

(Hmw − λi)Li = 0 (7.1)

is formally replaced by solving,

(Hmw − λ(k)
i )L

(k)
i = r

(k)
i , (7.2)

where r
(k)
i is the residuum vector for the approximate eigenvector L

(k)
i in iteration k.

The exact eigenvectors of the Hessian provide the unitary transformation matrix from
mass-weighted Cartesian (Rmw) to mass-weighted normal coordinates (Q) according to,

Q = LRmw, Rmw = L†Q. (7.3)
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In a somewhat sloppy language, the eigenvectors Li, i.e., the columns of the matrix L
are sometimes denoted as “normal mode vectors” or “normal modes”.
At the beginning of the mode-tracking calculation, an approximation bi for each normal
mode to be optimized has to be chosen. These “guess vectors” represent the first basis
vectors in which the approximate eigenvectors are expanded. In the following step, the
vectors σi are determined,

σi := Hmwbi, (7.4)

which are calculated numerically as directional derivatives of the gradient of the electronic
energy with respect to the basis vectors. The vectors σi are used for the calculation of
the elements of the small Davidson matrix H̃,

H̃ji = bT
j Hmwbi = bT

j σi. (7.5)

By diagonalization of the Davidson matrix, approximate eigenvalues λ
(k)
i and eigenvectors

L
(k)
i of the full Hessian can be constructed. Subsequently the residuum vectors r

(k)
i are

calculated for all L
(k)
i according to Eq. (7.2).

Afterwards, the root homing step is carried out, in which those approximate eigenvectors
from the full set {Lk

i } are determined which correspond to the sought-for vibrations
and shall thus be further optimized. This is typically done on the basis of the overlap
with either the initial guess vector(s) or the approximate eigenvector(s) selected in the
previous iteration.
In a subsequent convergence check it is tested whether the approximate normal modes
are already sufficiently accurate. If not, new basis vectors are constructed according to

bnb+1 = Xr
(k)
i , (7.6)

where nb is the number of basis vectors in use so far and X is a preconditioner. In our
previous investigations, it turned out that even without preconditioning, i.e. by formally
choosing X(k) = 1, the algorithm can be applied very efficiently (cf. Ref. [573]).

7.2.2 Intensity tracking

Heller’s gradient approximation offers a way to estimate relative resonance Raman
intensities on the basis of excited-state energy gradients (see Section 6.2.3). If this
approximation is applicable, the calculation of relative intensities is even simpler than
the calculation of off-resonance Raman intensities [506, 508, 515, 525, 588]. According
to the criteria for the validity of the gradient approximation it can be inferred that it
should work the better the more vibrational degrees of freedom there are in the molecule
under study.
The mode-tracking algorithm as described above aims at finding those eigenvectors of
the Hessian which resemble most closely the pre-defined collective motion. In contrast
to that, intensity tracking aims at the determination of all normal modes of considerable
intensity without an intuitive guess for how these vibrations look like. We will show in the
following that Heller’s gradient approximation offers a way for such an intensity-driven
approach for the case of resonance Raman spectroscopy since it can selectively provide
information about the movement of the atoms in the intense vibrational modes.
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The expression for the relative intensities ij and ik in the framework of the gradient
approximation is given in Eq. (6.11), and is re-written here in terms of mass-weighted
normal coordinates,

ij
ik

=

(
V q

j

V q
k

)2

=
ν̃k

ν̃j

(

V Q
j

V Q
k

)2

, (7.7)

where

V Q
j =

(
∂Eex

∂Qj

)

Q=0

. (7.8)

The expression for relative intensities contains the wavenumbers and the gradient of the
excited-state energy with respect to the mass-weighted normal coordinates. Although
wavenumbers and normal modes of the spectrum are unknown before a vibrational
calculation, the excited-state gradient with respect to Cartesian coordinates can be cal-
culated analytically with a single calculation for many excited-state electronic structure
methods, see Section 6.2.1.
We can write the expression for V Q

j explicitly in terms of mass-weighted coordinates as,
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where we have introduced the mass-weighted gradient vector gmw,

gmw
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∂Eex
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i

)

R=0

, (7.10)

and used Eq. (7.3) to determine

∂Rmw
i

∂Qj
= Lij . (7.11)

Eq. (7.9) thus shows that the excited-state derivative along a normal coordinate is
equal to the corresponding expansion coefficient of the mass-weighted gradient vector
in terms of normal coordinates, i.e., its projection onto the Hessian eigenvector. Since
the intensity is proportional to (V Q

j )2, intense modes will have larger overlap with
the excited-state gradient vector, so that the gradient resembles a particular normal
coordinate the more closely the more intense it is. The excited-state gradient is thus a
suitable initial vector for the mode-tracking of intense modes. Since the present approach
tries to select and optimize all normal modes that carry a significant percentage of the
total intensity, irrespective of the type of motion, the root homing procedure, i.e., the
selection of eigenvector approximations for further optimization, has to be adapted, in
order to choose the most intense modes.
During the intensity-tracking iterations, only approximate normal mode vectors are
available at the beginning. An expression for the approximate relative intensity of
mode j can be derived from Eq. (7.7),

ij,rel =
1

ν̃j
·
(

V Q
j

)2

=
1

ν̃j
· (Lj · gmw)2 , (7.12)
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where the eigenvectors Lj and wavenumbers ν̃j have to be replaced by their current
approximations.
Modes which according to Eq. (7.12) have a high approximate intensity are selected
for further optimization. There are several possible schemes how to implement such
a root-homing procedure, of which we have tested: (i) the selection of the N most
intense modes in each iteration, (ii) the selection of all modes with a relative intensity
larger than a certain threshold, or (iii) the selection of a certain number of modes in
such a way that their relative intensities sum up to a certain percentage of the total
intensity. The subsequent steps, i.e., convergence check and construction of new basis
vectors, follow the standard mode-tracking procedure. The description of the most
intense modes is iteratively improved until they are converged, so that we obtain an
approximate resonance Raman spectrum which is accurate with respect to the most
intense modes. The gain in efficiency compared to a conventional calculation of the
resonance Raman spectrum should thus be the larger the more low-intensity modes are
present in the spectrum, which will be automatically discarded in the intensity-tracking
calculation.

7.3 Validation: Intensity-tracking for uracil

In order to validate the intensity-tracking algorithm, we study the resonance Raman
spectrum for the second excited state of uracil, which has been well studied with vari-
ous theoretical methods [495,506,589]. Uracil is a planar molecule and, within Heller’s
gradient approximation, resonance Raman active vibrations must be in that plane (a′

symmetry). Our mode-tracking implementation does not consider the molecular symme-
try for the calculations, but allows the creation of an orthogonal subspace against which
new basis vectors are orthonormalized. The optimized Cs symmetric uracil structure,
see Fig. 7.1, was obtained using B3LYP/TZVP and the gradient of the 21A′ state at
5.25 eV was employed for the resonance Raman calculation. Since uracil is a planar
molecule with 12 atoms, there are 12×2 = 24 degrees of freedom in the xy-plane. Two
of them represent translations and one is a rotation, so that there are 21 degrees of
freedom for vibrational motion relevant for the current test.

Figure 7.1: B3LYP/TZVP optimized structure of uracil (Cs symmetry) and molecular orbitals
(B3LYP/TZVP) dominating the transition to the second excited state of uracil.
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We expect the intensity-tracking algorithm to work best for electronic transitions local-
ized on a small part of a larger molecule with localized vibrational modes. The uracil
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molecule studied here does not at all fulfill this prerequisite, since the molecular orbitals
involved in the electronic transition are basically delocalized over the entire molecule
(see Fig. 7.1). Therefore, this small system represents the most critical test case for the
convergence behavior of the intensity-tracking algorithm since the mode construction
cannot benefit from intensity selection. This is reflected in the current example by the
necessity to include all 21 basis vectors in order to converge the spectrum if rather
strict convergence criteria are applied.

Figure 7.2: Intermediate results of the intensity-tracking resonance Raman calculation as-
suming resonance with the second excited state of uracil (B3LYP/TZVP; black: converged;
red: not converged). The total number of basis vectors (bv) is given on the left. The relative
intensities have a common scale, only the intensities in the lowest two panels are magnified
by a factor of 3 for better comparability. The bottom panel shows a conventional gradient
spectrum as a reference.
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The intermediate and final spectra are depicted in Fig. 7.2 (note that all resonance
Raman spectra are plotted applying a Gaussian broadening with a half-width of 10 cm−1).
The spectrum of the first iteration contains the intensity of all modes concentrated in
one peak, which corresponds to the collective motion given by the excited-state gradient
vector. Its approximate eigenvalue is already quite close to the frequency of the most
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intense mode in the converged spectrum. In the following iterations, the intensity
is distributed to more and better approximations of the normal modes (note that in
Fig. 7.2 only vibrations between 500 and 2000 cm−1 are shown). Enlarging the basis
leads to a shift in the wavenumbers and appearance of new modes. New approximate
normal modes which carry a substantial fraction of the intensity are selected for further
optimization in the root-homing step. Such modes may split up in subsequent iterations
(cf. Fig. 7.2, iteration 3 to iteration 4). After a few iterations the most important
features are obtained, i.e. the approximate frequencies of the intense peaks and their
relative intensities do not change anymore. For example, the two most intense peaks
already appear at approximately correct positions after three iterations. The spectrum
of iteration 8 represents already a good approximation to the final spectrum. Several
modes which are not converged according to the applied criteria hardly change compared
to the next iteration. This suggests that the applied convergence criteria are too strict.
Another important aspect for the convergence behavior of the spectra is the choice
of the selected modes and thus the root-homing procedure, which will be analyzed in
the next section. In a complete basis, the converged intensity-tracking spectrum and
conventional gradient spectrum are essentially identical, see bottom of Fig. 7.2. The
marginal remaining deviations are due to the fact that the numerical differentiations
applied in both types of calculations make use of different basis vectors, so that they
are affected by numerical noise in slightly different ways.

7.4 Resonance Raman spectra of Im7-based models

Intensity tracking is expected to be most valuable in cases of large molecules with a
comparatively small number of intense vibrations. In the following, we will show how
the iterative refinement of signatures in a resonance Raman spectrum can be optimized
if these requirements are fulfilled. As an example, we study models derived from the
Im7 protein (PDB entry: 1AYI), that all contain the skatole motif from the tryptophan
residue, within Heller’s gradient approximation.

This investigation requires several steps: First, the excited states of the core chro-
mophore, i.e., the skatole moiety of the Trp residue, will be investigated in order to
identify possible states in resonance, and its conventional gradient spectra are deter-
mined. Second, we will map the excited states for Im7-based models to those of skatole
in order to identify the resonant states for their UV resonance Raman spectra. After
these steps have been carried out, we will determine how the convergence behavior can
be controlled and steered in such a way that it allows fast access to the characteristic
signatures. Finally, we will apply the criteria obtained from these investigations in a
model calculation of the resonance Raman spectrum for a large fragment of the Im7
protein.

7.4.1 Preparatory calculations: Identification of resonating states

The resonance Raman spectra of Trp and its structural motif skatole show a rather strong
dependence on the polarity and the hydrogen-bonding abilities of the surroundings, as
was analyzed in detail before [581,584,586]. Therefore, the ultraviolet resonance Raman
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spectrum of the Trp residue in Im7 was employed in order to investigate its solvent
accessibility [477].
The calculation of resonance Raman spectra in Heller’s gradient approximation requires
as a first step the identification of the state responsible for the resonance enhancement.
As mentioned in Section 6.2.3, the criteria that can be used for this purpose are the
requirements that (i) the resonance condition with the incident light beam is fulfilled
for the excited state and that (ii) the transition dipole moment for the corresponding
transition is large. For the larger Im7-based models that we are aiming at, TDDFT is the
only applicable first-principles method for excited states since it gives a good compromise
between accuracy and computational cost, in particular for the valence excited states
that are studied in here. However, the identification of important excited states is
hampered also in the current example by the CT problem discussed in Section 3.3. The
number of low-lying excited states is thus artificially increased in such calculations, and
the oscillator strength of intense electronic transitions may be distributed over several
close-lying excitations by spurious mixings [395].

Figure 7.3: B3LYP/TZVP optimized structures of skatole (Cs) and model 1 as well as the
BP86/TZVP optimized structure of model 2. Also shown are isosurface plots of the molecular
orbitals (B3LYP/TZVP) involved in the lowest electronic excitations of skatole.

Im7 based model 0: skatole

Im7−based model 2:Im7−based model 1:

Therefore, we chose two models of different size for that part of the Im7 protein that
contains the Trp fragment and mapped their excited states to those of the bare skatole
chromophore. Note that the full Im7 protein also contains three tyrosine residues that
are important for the total resonance Raman spectrum, which we ignored in our study in
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order to set up model compounds in which one particular chromophore can be assumed
to be responsible for the intensity pattern to be tracked.
In Fig. 7.3, the optimized structures of skatole as a zeroth-order model for Trp in
Im7 (in a Cs symmetric minimum structure) and of the Im7-based models 1 and 2
are shown. For the optimization of the ground-state structures, frequency analyses,
excitation energies and excited-state gradients of skatole and model 1, we employed
B3LYP/TZVP, whereas for the larger model 2, BP86/TZVP was used for the ground-
state structures and frequency analysis for efficiency reasons. The implications of using
different functionals for ground- and excited states were discussed in Section 6.4.2, and
similar observations were made for the present example.
The small Im7-based model 1 comprises 35 atoms and consists of the amino acid Trp,
capped by an aldehyde at the N-terminus and a glycine fragment (instead of the arginine
residue) connected to the C-terminus, see Fig. 7.3. Model 2 consists of the amino acid
sequence Ile–Lys–Glu–Trp–Arg–Ala–Ala–Asn–Gly (151 atoms), in which Lys and Arg
are included in their neutral form. The structures of all models were fully optimized.

Table 7.1: Calculated excitation energies, dominant orbital transitions and corresponding
transition dipole moments µt for skatole and model 1. The applied functionals are given
in parentheses. Where two different functionals are mentioned, the first one was used for
the ground state structure and frequencies and the second one for excitation energies and
the excited-state gradient. Note that the transition in the first column always refers to the
corresponding transition in skatole; H: HOMO; L: LUMO.

transition molecule state transition E / eV µt / a.u.

H → L skatole (B3LYP) 21A′ 6a′′ − 7a′′ (89%) 4.62 0.78
skatole (BP86) 21A′ 6a′′ − 7a′′ (88%) 4.20 0.67
model 1 (B3LYP) 41A 72a− 74a (89%) 4.64 0.78
model 1 (BP86/B3LYP) 41A 72a− 74a (86%) 4.58 0.78
model 1 (BP86) 81A 72a− 74a (78%) 4.17 0.64
model 2 (BP86/B3LYP) 151A 283a− 288a (65%) 4.59 0.59
model 2 (BP86) 921A 279a− 288a (46%) 4.26 0.46

H−1 → L skatole (B3LYP) 31A′ 5a”−7a” (60%) 4.87 0.42
+ H → L+1 6a”−8a” (37%)

skatole (BP86) 31A′ 5a”−7a” (55%) 4.57 0.25
6a”−8a” (44%)

model 1 (B3LYP) 61A 71a−74a (61%) 4.87 0.44
72a−78a (25%)

model 1 (BP86) 121A 71a−74a (45%) 4.57 0.28
72a−77a (40%)

In Table 7.1 excitation energies, transition dipole moments and dominant orbital tran-
sitions are presented. In the wavelength regime between 250 and 280 nm (energy range
from 4.4 to 5.0 eV), which we will assume for the excitation wavelength, we obtained
two excited states for skatole, which are denoted as Lb (21A) and La (31A). The 21A
state is dominated by the HOMO→LUMO orbital transition while the transition to
the 31A state can be characterized by a combination of the HOMO−1→LUMO and



210 7. Resonance Raman Intensity-Tracking

HOMO→LUMO+1 orbital transitions. Isosurface plots of the orbitals involved are
shown in Fig. 7.3. Since the 21A and 31A state are only 0.25 eV apart in energy for
B3LYP and 0.37 eV for BP86, they can both be expected to contribute to a resonance
Raman spectrum with an excitation energy in that range. The experimental excitation
energies for both states are lower, but similarly close (4.31 eV and ∼ 4.77 eV [590],
respectively). A detailed theoretical study of the underlying indole motif can be found
in Ref. [591].

Figure 7.4: Resonance Raman spectra for resonance with the 21A′ or 31A′ state of skatole
obtained by a conventional gradient calculation using B3LYP/TZVP. Also shown are the
spectra for the corresponding states of Im7-based model 1 obtained either in a converged
intensity-tracking calculation (ITC) or as conventional gradient spectra (CGS). Wavenumbers
of selected vibrations are given in units of cm−1.
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Within Heller’s gradient approximation, it is always assumed that only one excited state
is in resonance, which is clearly a simplification in the present case. In principle, the
approach could also be applied to identify the most important modes for two or more
close-lying states. Once these vibrations are identified, more sophisticated treatments
taking interference effects into account could be applied subsequently in the restricted
set of normal modes. For the current pilot study of the intensity tracking algorithm,
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however, we will make the approximation that either the Lb or the La state alone
determine the spectrum.
For model 1, the identification of the Lb and La states is straightforward by comparing
the excitation energies, transition dipole moments, and orbital transitions involved in
the excitations (see Table 7.1). The situation for model 2 is more complicated and
not unambiguous due to the problems outlined above for TDDFT calculations on large
systems. But the choice of the resonating states made here can be assessed by comparing
the final resonance Raman spectra to those of the smaller structural motifs, which will
be done in Sec. 7.4.3.
While the state corresponding to the 21A state (Lb transition) of skatole was inves-
tigated for both models, the excited state corresponding to the 31A state of skatole
(La transition) was only examined for model 1 in order to test convergence criteria
and root-homing options. As will be shown below, the intensity distribution for this
state is distinctly different from that of the 21A state, so that the requirements for the
intensity-tracking algorithm to converge quickly can be tested on a broader basis.

Figure 7.5: Graphical representation of the intense vibrations (B3LYP/TZVP) in the reso-
nance Raman spectrum of skatole (upper row) and of model 1 (lower row).
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The B3LYP/TZVP resonance Raman spectrum obtained within Heller’s gradient ap-
proximation by assuming resonance with the 21A′ state of skatole is shown in Fig. 7.4.
It is dominated by the peak at 1617 cm−1, and two further intense peaks appear at
775 cm−1 and 1371 cm−1. The corresponding normal modes are visualized in Fig. 7.5.
Fig. 7.4 also shows resonance Raman spectra for model 1 of the Im7 protein, calculated
for the 41A and 61A states, which correspond to the 21A′ and 31A′ states of skatole.
Using strict convergence criteria, the intensity-tracking calculation requires almost a full
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basis, and the results of the conventional gradient calculations can be reproduced apart
from small numerical deviations, which again can be attributed to the different impact
of numerical noise when different types of basis vectors are employed. Note that the
resonance Raman spectrum of the 41A state is very similar to the 21A′ spectrum of
skatole with respect to the intensity distribution and wavenumbers of the modes. The
wavenumbers of the intense modes exhibit only very small shifts, e.g. from 1371 cm−1

to 1369 cm−1, and the vibrations are mainly localized on the skatole moiety. In Fig. 7.5,
graphical representations of the normal modes are compared to the corresponding skatole
modes. The spectrum of model 1 exhibits further modes in the region of 1000 to
1400 cm−1 carrying small percentages of the intensity, but the additional 64 vibrational
degrees of freedom compared to skatole do not alter the spectrum significantly.

7.4.2 Root homing

In the preceding tests, reasonable spectra required the convergence of a rather large
number of modes. This is caused by the fact that too many modes are selected with
the root-homing criteria initially applied, especially when the most intense modes are
already obtained. The algorithm hence tries to optimize also many lower-intensity
modes that may not be relevant for the most characteristic features of a spectrum.
This results in an almost simultaneous convergence of all selected modes as the basis
approaches completeness. A smart root-homing should, on the contrary, lead to a
directed convergence of the most intense features of the spectrum and not construct to
many new basis vectors per iteration, so that a smooth development of the spectrum
can be expected.

Three possible types of root homing were tested in initial calculations for Im7-based
model 1: (A) selecting the most intense modes to be optimized so that their cumulative
intensity exceeds a threshold percentage of the total intensity Ithres, (B) choosing the
integer number of Nsel most intense modes, or (C) optimizing those modes which carry
a relative intensity exceeding the threshold value ithres. It must be noted that the
convergence criterion is tested for each of the modes selected for optimization. I.e., the
calculation is only considered converged if all modes that are of interest (as defined by
the root-homing criterion) fulfill the convergence criteria. Therefore, the root-homing
somehow determines the convergence criterion for the overall spectrum, although the
criterion applied to each mode may be the same for different root-homing settings.

In all three cases the number of basis vectors needed to fulfill the formal convergence
criteria (maximum component of r < rthres

max = 5 × 10−4 hartree/[amu × bohr2]) were
rather large. However, it turned out that option (A) is best suited for spectra with
several vibrations of similar intensity, whereas option (B) is more appropriate if there
is a particular interest in a small number of high-intensity modes. Root-homing option
(C) is in general the least efficient one and will not be further discussed.

Neither root-homing scheme (A) nor (B) alone are completely satisfactory, and their
disadvantages are complementary: With scheme (A), too many modes are chosen for
optimization in each iteration, resulting in a sudden simultaneous convergence of many
modes when the basis set reaches completeness. On the other hand, scheme (B) may
select too few modes for optimization in spectra with several important modes and thus
miss essential parts of the spectrum. To further enhance the efficiency of the algorithm,
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we thus combined the two schemes in such a way that scheme (A) determines how
many and which modes are checked for convergence, whereas only for a subset of
them new basis vectors are constructed according to scheme (B). This leads to a much
smoother convergence than scheme (A) alone and avoids unnecessary basis vectors. As
an additional selection criterion, the allowed wavenumber range may be restricted for
modes to be optimized.

Figure 7.6: Converged spectra for the 41A′ state of model 1 for different root-homing options
calculated with the convergence criterion rthres

max = 5×10−4. The total number of basis vectors
(bv) and of converged modes (conv) is given for each spectrum.
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The results for different combinations of Ithres and Nsel obtained in calculations assuming
resonance with the 41A state of model 1 are shown in Figure 7.6. It can be seen that in
particular the combination of Ithres = 0.5 and Nsel = 5 leads to convergence with a small
number of only 43 basis vectors. Whereas the highest-intensity peaks at 1617 and 780
cm−1 are very well converged in that case, the less intense features between 1300 and
1550 cm−1 are only approximately reproduced. In a sense, this is exactly what one would
require from an efficient intensity-tracking scheme, i.e., to accurately reproduce the most
intense features with a small number of basis vectors and to provide a reasonable guess
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for where additional peaks of lower intensity may be found. Moreover, also the less
important parts of the spectrum can be systematically improved by increasing the value
of Ithres, as is apparent in Figure 7.6.

7.4.3 Intensity tracking for Im7-based model 2

For large models of the Im7 protein, TDDFT yields a multitude of artificially low-lying
excited states which mix with the excited states relevant to describe the experimentally
observed spectra as can be seen from the data in Table 7.1. These data also show that
B3LYP at least partly remedies this problem, since the state corresponding to the 21A
state of skatole is the 151A state of model 2 with B3LYP, whereas it is the 921A state
in case of BP86. I.e., 77 more low-lying states are found in the BP86 calculation, and
it would thus be advantageous to use B3LYP for the entire calculation, as was done for
the previous models. However, the pure density functional BP86 leads to an enormous
increase in efficiency for large molecules, since density fitting schemes can readily be
applied. We therefore again employ the hybrid approach already tested in Section 6.4.2
in which we calculated the excitation energies and excited-state gradients with B3LYP,
whereas BP86 was used for the frequency analysis, which will also be applied here. Test
calculations employing this hybrid approach for the smaller model 1 have shown that
the main features in the spectra are the same.

In Fig. 7.7 we show approximate resonance Raman spectra obtained during an intensity-
tracking calculation with this approach, i.e., using a BP86/TZVP force field in com-
bination with a B3LYP/TZVP gradient of the 151A′ state, which corresponds to the
21A′ state of skatole. From the visual inspection of these spectra, it can be seen that
the dominant features in this resonance Raman spectrum, which can be found in the
region above 1300 cm−1, appear well-converged already in iteration 42. Some smaller
interferences occur for the less intense peaks in this region in intermediate steps. But
in particular the two peaks at 1569 and 1544 cm−1, which dominate the spectrum by
far, and the neighboring peaks, are very stable. Also the intensity distribution in the
whole wavenumber range plotted reproduces the intensity distribution in the reference
spectrum. A remaining difficulty at the current point is the definition of convergence
criteria that agree with the visual impression of a converged spectrum. To be more
precise, the problem is to determine how many and which modes must be classified as
converged for overall convergence. In the present example, we used the combination
Ithres = 0.8 and Nsel = 5, in which apparently too many modes are checked for our
purposes. However, the spectra in Figure 7.7 show that the convergence of the overall
spectrum is smooth, so that it can easily be judged by inspection whether the essential
parts of the spectrum are converged.

164 basis vectors are needed to obtain the approximate spectrum in iteration 42, com-
pared to 453 that are needed in a conventional calculation. Although this gain in
efficiency is not as large as in typical mode-tracking calculations for specific vibra-
tions [318, 574, 592], it must be kept in mind that intensity-tracking calculations (i)
target several vibrations, the exact number of which is unknown, (ii) start with an
unspecific guess for the type of collection motion, and thus typically require more basis
vectors for correction, and (iii) may partially comprise very unspecific modes that easily
couple to other vibrations in the molecule, which affects the convergence behavior. In
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view of these points, the methodology outlined here appears quite successful in providing
insight into the dominant features of the resonance Raman spectrum of large molecules
at reduced cost.

Figure 7.7: Approximate resonance Raman spectra (BP86/TZVP) of model 2 for several sub-
sequent intensity-tracking iterations. Calculations were performed using the (B3LYP/TZVP)
gradient of the 151A′ state, which corresponds to the 21A′ state of skatole. As a reference
spectrum, the conventional gradient spectrum is shown. The criteria for root-homing were
Ithres = 0.8 and Nsel = 5.
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In order to demonstrate that it is possible to find suitable combinations of root-homing
and convergence criteria, which do not require a visual inspection as an additional
convergence control, we also show the results obtained in a calculation which only
employed the criterion of Nsel = 5 in Figure 7.8. In this calculation, formal convergence
was reached after 49 iterations, employing a slightly higher number of 197 basis vectors.
As can be seen, the resulting spectrum agrees very well with the conventional gradient
spectrum and all intense features are accurately reproduced.
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Figure 7.8: Approximate resonance Raman spectra (BP86/TZVP) of model 2 from an
intensity-tracking calculation with root-homing criterion Nsel = 5. The calculation was per-
formed using the (B3LYP/TZVP) gradient of the 151A′ state, which corresponds to the 21A′

state of skatole. As a reference spectrum, the conventional gradient spectrum is shown.
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In summary, we note that conventional gradient spectra can be reproduced very well
with intensity-tracking if strict convergence criteria and suitable root-homing schemes
are applied, which is a necessary condition for a successful application of this algo-
rithm. The combination of different root-homing criteria avoids the problems of either
optimizing too many modes simultaneously, which typically results in bad convergence
behavior, or of neglecting essential parts of the spectrum. Although the convergence
in intensity-tracking calculations is intrinsically more difficult than typical examples in
mode-tracking calculations, it is possible to devise root-homing schemes that lead to a
smooth convergence at reduced computational cost. Further improvements in the con-
vergence control might be possible by defining different convergence criteria for modes of
different intensities, for example in such a way that tight convergence is only requested
for those parts of the spectrum that stand out very sharply due to their high intensity.



8. Conclusions and Outlook

The present work focused on the development of tailor-made quantum chemical meth-
ods for targeting local properties in supermolecular assemblies. It was outlined how
spectroscopic features of complex systems can be described and understood on the basis
of chromophore-specific spectroscopic methods. The range of systems studied in this
work covers simple hydrogen-bonded complexes, dye molecules in solution, organic in-
clusion compounds, artificial as well as natural light-harvesting complexes, and models
for proteins. The types of spectroscopy for which subsystem-oriented methods have been
devised include electronic absorption and circular dichroism, electron spin resonance,
optical rotation, and resonance Raman spectroscopy.

The basis for a chromophore-specific electronic-structure theory for complex systems
was developed within a subsystem DFT framework. The fundamental assumption of
this approach is that the electron density of a combined system can be obtained from
suitable subsystem calculations, and this assumption was tested in detail. It turned out
that even in cases of strongly hydrogen-bonded systems or complexes with coordination
bonds reasonably accurate electron densities can be obtained, although the limitations
of this approach become apparent in cases of stronger covalent bonding. Furthermore,
these applications showed that the electron leak problem in frozen-density embedding
calculations is by no means irrelevant and can lead to severe problems in electronic-
structure calculations for metal complexes in which the subsystem border cuts a metal–
ligand bond. The range of applicability of subsystem DFT could thus be defined more
clearly, which is an important prerequisite for its application to complex systems.

In order to investigate absorption and circular dichroism spectra, electronic-structure
methods for excited states are needed. Although the time-dependent response approach
within Kohn–Sham DFT is a rather efficient method, it becomes cumbersome to analyze
the results from conventional TDDFT calculations in particular for extended systems or
systems composed of many molecules. The well-known reason for this is related to the
long-range charge-transfer problem of TDDFT, for which a simple, though very effective
method was implemented. It could be shown that charge-transfer excitations can auto-
matically be detected and shifted towards higher energies in a qualitatively correct way,
and even quantitative corrections are possible with carefully chosen parameterizations.
Such a correction is much less important within the frozen-density embedding approach
to TDDFT, since it automatically restricts the active orbital space to the embedded
subsystem. Hence, no inter-subsystem charge-transfer excitations are possible and an
easy identification of valence excited states is facilitated.

A problem, that is deeply connected with the prediction of spectroscopic properties of
complex systems with increasing number of atoms and decreasing rigidity of certain
parts of the system, is the fact that it becomes more and more important to consider
the explicit dynamics of the system. For small, rigid molecules, this can be done on
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the basis of vibrational averaging procedures, but for, e.g., a molecule in solution, this
is simply unfeasible. An alternative is to investigate a representative set of snapshots
for the molecule in solution. Since the spectroscopic properties in question have to be
evaluated for every structure, and several hundreds of snapshots may be needed, the
electronic-structure approach applied for this purpose must be very efficient. It could be
demonstrated in this work that frozen-density embedding clearly fulfills this condition.
It is thus a valuable tool for explicit solvation studies. Concluding from the analyses of
environmental effects on solvatochromism and induced circular dichroism we note that
both specific interactions — as in the amino acid receptor model in Section 4.4.2 — and
bulk environmental effects — as in the solvation study in Section 4.3 — are accurately
described by frozen-density embedding. The results from Chapter 4 also highlight the
ability of frozen-density embedding to account for chiral or spin-polarized environments,
although the latter effect was found to be of minor importance in the examples studied.

The caveat mentioned in the introduction concerning the local nature of properties in
subsystem approaches became apparent in the study on induced circular dichroism. A
model for environmental effects like FDE that explicitly assumes a local response of the
embedded subsystem to the external perturbation cannot be expected to account for
effects due to the environmental response. Consequently, the excitonic coupling effects
observed in cyclodextrin inclusion compounds could not be reproduced in embedding
calculations. This led to the development of a general time-dependent density-functional
theory for subsystems in Chapter 5. Its relationship to FDE-TDDFT was clearly defined
and it was demonstrated that approximate schemes can be implemented that make the
method applicable to systems of coupled chromophores. The method was generalized
for other response properties, which will be important for solvation effects that depend,
e.g., on the optical rotation induced by a chiral solvation shell. In the context of
polarizability and optical rotation tensors, this coupled-response description offered by
the subsystem TDDFT approach is clearly needed, since the frozen-density embedding
version of TDDFT yields qualitatively wrong results for such properties.

The intention to develop this subsystem approach for chromophore-specific spectroscopy
was purpose-driven by the aim of enabling quantum chemical investigations for biological
systems, in particular those involved in photosynthesis. The first important step into
this direction was made in the investigation of pigment–protein and pigment–pigment
interactions in the light-harvesting complex 2 of Rhodopseudomonas acidophila. Both
the shifts of excitation energies due to a polarization of the electron density due to
interactions with specific residues of the surrounding protein and the excitonic coupling
between different pigment molecules can be described in terms of the subsystem approach
developed here. Subsystem TDDFT provides both a diabatic and an adiabatic picture
for the excited states of such a light-harvesting system: The excitation energies in the
“local response” approach can be identified with the hypothetical site energies, whereas
the subsequent coupled response formalism leads to the splitting in excitation energies
due to excited-state interactions. Subsystem TDDFT thus bridges the gap between
rigorous quantum chemical methods for excited states and phenomenological excitonic
coupling models.

An even more informative approach to deduce properties of excited states can be provided
by resonance Raman spectroscopy. Whereas accurate resonance Raman calculations are
almost unfeasible already for systems of medium size, it was shown that simple ap-
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proximations that are already well-known for a long-time may be successfully applied
in combination with time-dependent density-functional theory calculations for the char-
acterization of excited electronic states. A reason for this success may be the fact
that these schemes, that derive from Heller’s short-time approximation [519, 521], are
expected to work the better the more vibrational degrees of freedom are involved, i.e.,
the larger the molecule is. But only with recent developments in TDDFT it has become
feasible to study excited-state potential energy surfaces of molecules with hundreds of
atoms. These approaches to resonance Raman spectroscopy were applied here to clarify
the first intermediate in the photochemistry of ortho-nitrobenzaldehyde in combination
with time-resolved experimental data.

The role of resonance Raman spectroscopy for the investigation of photosystems was
highlighted in the study on ruthenium–polypyridyl complexes in Section 6.4, for which
the calculations supported the experimental assumption of a metal-to-ligand charge-
transfer as the initial photoexcitation step. In these calculations, it became apparent
that the bottleneck in the determination of resonance Raman spectra with Heller’s
gradient approximation is not the characterization of the excited state, but rather the
calculation of the normal modes and vibrational frequencies of the system. In order
to tackle this problem, an intensity-driven algorithm for the iterative determination
oft the high-intensity vibrations in a resonance Raman spectrum was developed and
implemented in Section 7. It was shown that the algorithm converges to the exact
result within the quantum chemical model chosen for the calculation of intensities and
frequencies. Different options were tested to steer the convergence characteristics of
this approach in an optimum way to get a balance between an accurate description of
the resonance Raman spectrum and a computationally cheap method. This approach
should be very well suited to study proteins, in which only a few aromatic side-chains
dominate the resonance Raman spectrum at specific wavelengths. A first indication for
this was provided for models of the E colicin-binding immunity protein Im7.

The developments presented in this work provide the basis for spectroscopic investigations
of functional assemblies of chromophores in larger aggregates. This opens up the way
to fully non-empirical studies on excitation energy-transfer pathways in photosystems,
as was already indicated in the study on LH2. Many energy-transfer and energy-
dissipation pathways in natural photosystems depend on a fine-tuning of energy levels
in the pigment molecules involved, both by direct ground-state interactions and by
excited-state interactions. In particular the role of the carotenoid pigments in these
light-harvesting complexes and its role in energy transfer to bacteriochlorophyll molecules
is an active field of research [593]. The subsystem TDDFT approach developed in this
work can be an important tool for investigations of such systems.

Since the environmental response can explicitly be taken into account, phenomena related
to solvent shielding effects on excitation energy transfer couplings can be investigated
by explicit inclusion instead of by continuum models, as has been done so far in most
of the studies. In particular for couplings at short range, this may provide significant
new insights, since assumptions concerning the cavity in implicit solvation models can
be tested. But also quite unusual phenomena may be investigated, as for example
the recently reported optical rotation due to chiral imprinting and related effects [405]
(see also Ref. [229]). Currently, the only way to study such phenomena is the explicit
inclusion of solvent molecules into the quantum chemical description. This leads to a
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dramatic increase in effort, since large solvation shells may have to be considered for
many configurations in order to unambiguously prove that the results are not due to
artifacts in the simulation. While this may be out of reach with standard quantum
chemical methods, the subsystem response approach presented here facilitates such
investigations.
The intensity-driven algorithm for resonance Raman spectroscopy provided in this work
was designed for the study of components of natural photosystems, for which they can
provide important insight into the initial photoexcitation steps, and for the investigation
of protein structures. The latter point is related to the strong solvent-dependence of
resonance Raman spectra obtained for aromatic amino acid side-chains. In order to gain
a more detailed understanding into this phenomenon by means of a quantum chemical
analysis, a restriction to the relevant degrees of freedom is clearly required. Since
this involves both electronic and vibrational degrees of freedom, the combination of
subsystem density functional theory techniques and selective approaches for vibrational
spectroscopy features a unique possibility for conducting chromophore-specific studies
on general spectroscopic phenomena.



9. Acknowledgments

The investigation of complex chemical systems is a complex endeavor, which requires to
combine knowledge from different branches of chemistry. This can hardly be achieved
by a single person, and the present work clearly benefited substantially from discussions
and collaborations with other scientists, which shall be acknowledged at this point.

I am indebted to my mentor at ETH Zurich, Prof. Markus Reiher, in many respects. He
granted the freedom I needed to pursue my own, independent research objectives and
offered any kind of support that was necessary to achieve these goals. His continued
interest in my work and our stimulating discussions were very helpful for my research
activities. Additionally, the infrastructure available in his group, in particular (though
not exclusively) the excellent computer facilities, provided an ideal framework for the
large-scale simulations that I carried out during the past years.

I also owe a special debt of gratitude to Prof. Evert Jan Baerends, with whom I
spent two and a half years as a postdoctoral research fellow at the Vrije Universiteit
Amsterdam with financial support by the Deutsche Forschungsgemeinschaft (DFG). He
introduced me to the field of time-dependent density-functional theory, and I learned a
lot about the fundamental aspects of density-functional theory in general from him. I
appreciate the independence that he gave me in all my projects very much, including
the first studies on frozen-density embedding, which were conducted in Amsterdam. I
would also like to thank the members of his group, in particular Dr. Oleg Gritsenko
and Manuel Louwerse, who contributed to some of the projects that I carried out in
the Netherlands.

For our collaborations concerning solvent effects, I would like to thank Dr. Tomasz
Weso lowski from the University of Geneva, as well as for the discussions on orbital-free
embedding techniques in general. Several interesting studies were (and are still) carried
out in collaboration with Prof. Lucas Visscher, and I owe him my gratitude for that.
The work on electron spin resonance parameters in solution was stimulated by Prof.
Paola Belanzoni from Perugia during a visit in Amsterdam, which I would also like to
acknowledge at this point.

For our (ongoing) collaboration on resonance Raman spectroscopy of aromatic nitro
compounds, I would like to thank PD Dr. Peter Gilch from LMU München and his
group. The exchange of experimental and theoretical questions we had was always
very inspiring and encouraging for further research. The experimental results for the
study on ruthenium–polypyridyl complexes provided by the group of Prof. Jürgen Popp
(University of Jena) are also gratefully acknowledged.

Special thanks are due to Dr. Christoph Jacob, who was of great help in particular for
the improved ground-state implementation of the frozen-density embedding scheme in
Adf, for which he did a major part of the work. Moreover, I acknowledge the numerous
contributions by my PhD student Karin Kiewisch. Many problems, in particular in the

221



222 9. Acknowledgments

field of resonance Raman spectroscopy, would not have been tackled in this short time
without her work.
I would furthermore like to express my gratitude to all the members of the theoretical
chemistry group in Zurich for the pleasant working atmosphere. In particular, I acknowl-
edge the contributions to some of the projects presented that were made by Dr. Carmen
Herrmann (now at Northwestern University, Evanston), Dr. Georg Eickerling (now at
Universität Augsburg), and Samuel Fux. Carmen’s work led to rapid progress in the
projects on vibrational spectroscopy, and Samuel Fux carried out the FDE calculations
on coordination compounds as a sequel to a former study, in which Georg shared his
knowledge on topological electron density analyses. I would also like to thank Romy
Isenegger for all her help in administrative questions.
For taking care of the computer infrastructure, I express my gratitude to Markus Traber,
Dr. Gerrit Moritz, Dr. Stephan Schenk, and Koni Marti. I would also like to acknowledge
the assistance I got for any kind of problem with the Adf package from the team of
SCM (Scientific Computing & Modelling), in particular Dr. Stan van Gisbergen, Dr.
Erik van Lenthe, Dr. Olivier Visser, and Dr. Alexei Yakovlev.
Financial support for my work in Zurich was granted by the Fonds der Chemischen
Industrie through a Liebig-Stipendium.



A. List of Publications

This thesis is a monograph on chromophore-specific spectroscopy and its underlying
quantum chemical basis. It contains parts that are based on results of previous publica-
tions, which are indicated by a star (⋆) in the following list. Other parts of this mono-
graph are entirely new, and have not been published before. In particular, this includes
the work on general response properties in a subsystem formulation of time-dependent
density-functional theory (Section 5.2), and selective calculations of high-intensity vi-
brations in molecular resonance Raman spectra (Chapter 7).

1) J. Neugebauer, M. Reiher, J. Hinze, Analysis of the asymptotic and short-range
behavior of quasi-local Hartree-Fock and Dirac-Fock-Coulomb electron-electron
interaction potentials, Phys. Rev. A 65 (2002), 032518.

2) J. Neugebauer, M. Reiher, J. Hinze, Analytical local electron-electron interaction
model potentials for atoms, Phys. Rev. A 66 (2002), 022717.

3) J. Neugebauer, M. Reiher, C. Kind, B. A. Hess, Quantum Chemical Calcu-
lation of Vibrational Spectra of Large Molecules — Raman and IR spectra for
Buckminsterfullerene, J. Comput. Chem. 23 (2002), 895.

4) J. Neugebauer, M. Reiher, B. A. Hess, Coupled cluster Raman intensities: As-
sessment and comparison with multi-configuration and density functional methods,
J. Chem. Phys. 117 (2002), 8623.

5) M. Reiher, J. Neugebauer, B. A. Hess, Quantum Chemical Calculation of Ra-
man Intensities for Large Molecules: The Photoisomerization of
[Fe‘S4’(PR3)2(N2H2)] (‘S4’

2−= 1,2-bis(2-Mercaptophenylthio)Ethane (2-)), Z. Phys.
Chem. 217 (2003), 91.

6) J. Neugebauer, M. Reiher, B. A. Hess, Structure, Energetics, and Spectroscopy of
Models for Enzyme Cofactors, in: S. Wagner, W. Hanke, A. Bode, F. Durst (Eds.),
High-Performance Computing in Science and Engineering 2000-2002, Transactions
of the First Joint HLRB and KONWIHR Status and Result Workshop, Springer-
Verlag, Berlin 2003, pp. 157–169.

7) M. Reiher, J. Neugebauer, A mode-selective quantum chemical method for track-
ing molecular vibrations applied to functionalized carbon nanotubes, J. Chem.
Phys. 118 (2003), 1634.

223



224 A.List of Publications

8) J. Neugebauer, B. A. Hess, Fundamental vibrational frequencies of small poly-
atomic molecules from density-functional calculations and vibrational perturbation
theory, J. Chem. Phys. 118 (2003), 7215.

9) J. Neugebauer, B. A. Hess, Resonance Raman spectra of uracil based on Kramers–
Kronig relations using time-dependent density functional calculations and multiref-
erence perturbation theory, J. Chem. Phys. 120 (2004), 11564.

10) J. Neugebauer, M. Reiher, Vibrational Center–Ligand Couplings in Transition
Metal Complexes, J. Comput. Chem. 25 (2004), 587.

11) J. Autschbach, B. A. Hess, M. P. Johansson, J. Neugebauer, M. Patzschke, P.
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B. Technical Details

B.1 Density-functional theory calculations

Most of the density-functional theory calculations carried out in this work were performed
with the Amsterdam Density Functional (Adf) program package [277, 278], in which
also all own developments within the context of subsystem DFT/TDDFT and the
charge-transfer correction scheme presented in Section 3.3 were implemented. Structure
optimizations were carried out with the Becke–Perdew functional denoted as BP86
[594,595] and a triple-ζ basis set with polarization functions on all atoms (TZP) from
the Adf basis set library [277] if not explicitly mentioned otherwise. This is also
the default for the frozen-density embedding calculations in the topological electron
density analyses presented in Section 2.9. For certain applications, larger basis sets
with a second set of polarization functions on all atoms (TZ2P) or of quadruple-ζ
type with four sets of polarization functions (QZ4P) from the Adf basis set library
were used. These are explicitly mentioned in the main text. In DFT calculations
labeled as “LDA” calculations, the exchange contribution is calculated from the Dirac
exchange functional [44] and the correlation part from the Vosko–Wilk–Nusair functional
(parameterization “V” in Ref. [596]).

FDE and subsystem-DFT calculations as presented in this work always employed the
same exchange–correlation functional for the XC contribution of the embedding poten-
tial that is also used within the subsystems. An exception are calculations using the
SAOP (“statistical averaging of molecular orbital potentials”) potential, which is orbital-
dependent (see below), and can thus not be applied within the orbital-free embedding
framework. In those cases, the XC part of the embedding potential is calculated with
the potential derived from the BPW91c exchange–correlation functional. Although this
introduces a slight inconsistency in the treatment of frozen and non-frozen subsystem,
the use of different exchange–correlation potentials for different subsystems is — from
a pragmatic point of view — an advantage, as a more sophisticated potential with cor-
rect asymptotic behavior can be applied for the embedded system. As a default for the
non-additive kinetic energy contribution, the PW91k generalized-gradient approximation
(GGA) kinetic-energy functional was employed, which has the same functional form for
the enhancement factor F (s) as the exchange functional of Perdew and Wang [64], and
which was parameterized for the kinetic energy by Lembarki and Chermette [63]. In
the course of the present work, we discovered an inconsistency in the ADF implementa-
tion of the PW91k functional for the spin-restricted case, which effectively corresponds
to different parameterization of the PW91k gradient correction to the non-additive ki-
netic energy functional used in closed-shell calculations. We have tested the effect of
this inconsistency, and found no significant discrepancies between the two different pa-
rameterizations. In particular, the differences for excitation energies and most other
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properties are very small. Details can be found in Ref. [597]. In the present context,
the term PW91k refers to the version originally implemented in Adf, while the calcu-
lations obtained with the Lembarki–Chermette parameterization are denoted as PW91k
calculations in the LC94 parameterization.
For KS- and FDE-TDDFT calculations, we applied the Adf Response module [236];
the implementation of rotational strengths and optical rotation by Autschbach et al.

[408,410,411] was employed for the computation of chiroptical properties in those cases.
In contrast, general subsystem-TDDFT response properties and excitation energies are
calculated with the new implementation described in this work. Calculations of exci-
tation energies and excited-state gradients are in general carried out with the SAOP
(“statistical averaging of molecular orbital potentials”) potential [598–600], which is a
special, orbital-dependent exchange–correlation potential designed for the calculation of
excitation energies. An exception are the benchmark calculations with the new sub-
system TDDFT approach on small test systems presented in Sections 5.1 and 5.2, for
which the BP86 functional was used. The SAOP potential is well suited for describ-
ing both valence and Rydberg excited states; this is in contrast to normal generalized
gradient approximation potentials, which introduce additional problems by artificially
placing Rydberg excitations at much too low energies [601]. Since no corresponding
energy functional is defined for the SAOP potential, we employ the Becke–Perdew–
Wang (BPW91c) exchange-correlation functional [62,64] for calculations of ground-state
energies if needed in applications of the SAOP potential. All TDDFT calculations (KS,
FDE, and subsystem-DFT) employ the adiabatic local density approximation (ALDA)
for the exchange–correlation kernel. It should be noted that the TZP basis set is in
general quite well suited for excitation energy calculations of valence excited states.
Selected calculations were repeated with the much larger QZ3P–1DIFFUSE basis set
from the Adf basis set library, which is of quadruple-ζ quality and contains three sets
of polarization functions as well as additional diffuse functions. For the valence excited
states investigated here, the excitation energies changed by about 0.05 eV compared to
the TZP basis.
For the ESR calculations in Section 4.2, we employed the ZORA-QZ4P basis set from
the Adf basis set. Also in this case, the BP86 functional was used, since it was shown
to yield reliable results for calculations of ESR hyperfine coupling constants [340].
No frozen-core approximations were made here. Spin-unrestricted calculations were
performed for the hyperfine interactions, in which we also used the zero-order regular
approximation (ZORA) [602–604] for consistency with g-tensor calculations as reported
in Ref. [332]. The method used here to calculate the ESR parameters is described in
detail in Refs. [605] and [606].

B.2 Spectra simulation

Some of the applications of the FDE approach required the simulation of spectra or
spectroscopic properties in solution, or, for comparison, in the gas phase. This required
the generation of snapshots, which were obtained either from molecular dynamics ap-
proaches based on classical force fields or from CPMD simulations. For classical MD
simulations, we employed the General Amber Force Field (GAFF) [607] and the TIP3P
water model [608] using the Tinker package [609,610] to run the calculations.
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CPMD simulations were carried out with the Projector Augmented Wave (PAW) pack-
age [611] using the BLYP functional [62, 612]. For efficiency reasons, we employed
deuterium isotopes for the hydrogen atoms. We used a fictitious mass for the wave-
functions of 100 a.u., a time step of 6.5 a.u. (0.157 fs) and a small friction on the
wavefunctions of 0.0002 or 0.00005. The cutoff for the plane-wave basis was 30 Ry (408
eV) and 90 Ry (1225 eV) for the charge density. Using the projector augmented-wave
approach rather low plane-wave cutoffs can be used, comparable to Vanderbilt’s ultrasoft
pseudopotentials, and lower than those necessary with, e.g., Troullier–Martins norm-
conserving pseudopotentials [611, 613]. This has been tested to give good simulations
of liquid water. A Nosé thermostat with an oscillation frequency of 60000 a.u. was
used to keep the temperature at 300 K. After equilibration for 11 to 15 ps with more
strongly coupled thermostats, the simulations were prolonged for 8 to 12 ps.

The CPMD simulation in Section 4.2 was performed with one H2NO molecule and
32 water molecules in a periodic cubic box of 10.05 Å. For the statistical analysis,
we took the 75 water molecules closest to the radical into consideration for every
snapshot in aqueous solution. In all subsequent frozen-density calculations the frozen
density, ρ2 in Eq. (2.75), was calculated from a sum of molecular densities of solvent
molecules obtained within the local density approximation (LDA) and a TZP basis
set. For canonical ensemble (constant temperature) gas-phase simulations of such a
small molecule, (CP)MD approaches introduce the problem that it is not possible to
use conventional thermostating techniques. Tests using a scheme similar to the one
used in Ref. [116] for the gas-phase simulation showed that there is no exchange of
energy between the different degrees of freedom in the present molecule during the
simulation time, so that no proper sampling of the configurational space is achieved.
We therefore used a Monte Carlo sampling in internal coordinates, in which Adf–DFT
calculations were performed to determine the potential energy of the trial structures.
An acceptance ratio of 0.5 was used for the Monte Carlo sampling, and the probabilities
of acceptance were scaled by the factors arising from the Jacobian due to the use of
non-linear coordinates (see the examples in Ref. [614, 615]).

The simulation for acetone (Section 3.4.2) was performed with one acetone molecule
and 31 water molecules in a periodic cubic box of 10.168 Å. Every 36 fs, a snapshot
for the final statistics was taken (220 in total), while general analyses are carried out
with snapshots taken in intervals of 182 fs (44 in total). Additionally, we employed a
purely classical model for acetone in water. Parameters from the GAFF [607] force field
were used for acetone, combined with scaled partial charges from a Hirshfeld charge
analysis for the isolated acetone molecule (SAOP/TZP). In order to verify this model, we
compared the results of our MD simulations with those of the CPMD simulation with the
same periodic box of 10.168 Å with one acetone molecule and 31 water molecules. The
O(carbonyl)−H(water) and O(carbonyl)−O(water) radial distribution functions from
both simulations are shown in Figure B.1. The partial charges for the acetone molecule
were uniformly scaled in order to obtain optimum agreement of these radial distribution
functions (scaling factor: 1.61). With this classical model, we performed simulations at
300 K of a periodic cubic box of 21.225 Å with 315 TIP3P water molecules and one
acetone molecule. After a structure optimization and an equilibration phase of 200 ps
(with 2.0 fs time steps), we carried out a simulation of 50 ps. Every 2 ps, a snapshot
of the box was taken.



230 B.Technical Details

Figure B.1: Radial distribution function g(r) and integral from a MD simulation
(GAFF/TIP3P) in comparison to a CPMD simulation of the same system. Left:
O(carbonyl)−H(water) distribution function; right: O(carbonyl)−O(water) distribution func-
tion.
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In Figure B.1 the radial distribution functions around the carbonyl oxygen are compared.
After scaling the partial charges for the acetone molecule especially the first peaks are
very well reproduced by the classical MD simulations. This means that the distances
and the number of hydrogen bonds to the acetone oxygen are correctly modeled. A
minor difference is that the first peak in the O(carbonyl)−H(water) radial distribution
function has a bit of a tail and at longer distances the peaks are slightly less pronounced.
The orientation of the hydrogen bonds around the carbonyl group is much less well
reproduced by the classical simulations. In the CPMD simulations the hydrogen bonds
are in the plane of the acetone molecule (dihedral angles with the methyl groups:
0o±30o) with angles around 150o(±10o) with the CO bond. In the classical simulations
this chemical preference for certain angles was not present at all. Naturally, this could
affect the solvent shift calculated from these structures.

The absorption spectra for the aminocoumarin C151 in Section 4.3 were simulated
by calculating excitation energies for a number of solvent configurations, obtained as
snapshots from a (NVT) classical MD simulation. For these MD simulations, the General
Amber Force Field (GAFF) [607] and the TIP3P water model [608] were employed using
the Tinker package [609, 610] to run the calculations. Partial atomic charges for the
aminocoumarin dye were taken from a multipole-derived charge analysis (reconstructing
monopoles, dipole and quadrupole moments) [616] based on a SAOP DFT calculation.
For n-hexane as a solvent, we used a mean value of these multipole-derived charges for
an optimized structure. To improve the force-field parameters for bond stretching and
valence angle bending, the equilibrium bond lengths and bond angles from an optimized
structure (BP86/TZP) of C151 were used. The MD simulations for aqueous solution
were carried out at a temperature of 300 K, with a cubic box of length 25 Å, containing
one aminocoumarin dye molecule and 513 water molecules, leading to a density of 1.0066
kg/L. Starting from a random water structure around the aminocoumarin dye, we first
optimized the structure and then equilibrated for 50 ps, heated the system to 500 K,
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cooled it down to 300 K, and equilibrated again for 50 ps. After this preparation, a
trajectory of 50 ps was generated with a time step of 2 fs. Every picosecond, a snapshot
of the system was taken for the statistical analysis. No rigid bond constraints were
used in the simulations presented here. But an additional trajectory, in which we used
a Shake-like algorithm [617] to constrain bonds involving hydrogen atoms, resulted in
only slight changes compared to the trajectory discussed here (the average excitation
energy for a set of 50 structures changed by less than 0.03 eV). The MD simulations
with n-hexane as a solvent were carried out in the same manner. We also used a
cubic box of length 25 Å, with a density of the solution of 0.6745 kg/L (71 n-hexane
molecules). Since this is a bit higher than the density of pure n-hexane at the simulation
temperature, and since no accurate information about the density of the solution studied
here is available, we performed an additional test with a trajectory obtained with the
slightly lower density of 0.6596 kg/L (cubic box of length 25.1881 Å). No significant
changes could be observed in the resulting spectra. We employed 8 trajectories for both
solvents; between the individual trajectories, we heated the system to 500 K, cooled it
down to 300 K and re-equilibrated for 50 ps.

B.3 Subsystem-TDDFT calculations

In the subsystem-TDDFT calculations presented in Chapter 5, fitted induced densi-
ties were employed for both the exchange–correlation and the Coulomb part (and also
for the kinetic energy contribution in the case of subsystem calculations) of the in-
duced potential for efficiency. For the benchmark tests in Section 5.1, the ground-state
exchange–correlation potential was calculated from the exact densities. The ALDA-
TDDFT coupling matrix is, in principle, symmetric. Due to the fitting procedure,
however, there can be a slight deviation between the coupling matrix and its trans-
pose, which is usually eliminated by taking the average of the original matrix and its
transpose. In our case, however, calculating both the (A,B)- and the (B,A)-interaction
blocks would double the computational cost. Hence, only the (A,B)-block is calculated
explicitely, and transposed to obtain the (B,A)-block. This is done since system A is,
by definition, the embedded system, for which we include an effective coupling to the
environment. Therefore, we always employ the more approximate (fitted) representation
for the environmental system. The exchange–correlation and the kinetic energy part of
the kernel were obtained within the generalized ALDA, i.e., using a Thomas–Fermi-like
kinetic energy contribution in addition to the conventional ALDA kernel [308].
The overall accuracy of excitation energies calculated from TDDFT depends on several
parameters, like the choice of the basis set, the exchange–correlation potential used in the
ground-state DFT calculation, the choice of the exchange–correlation kernel, the basis
set and the fit set if density fitting techniques are use — as is the case in Adf. For a
discussion of the influence of these parameters, we refer to, e.g., Ref. [222]. Details about
the fitting procedure in Adf can be found in Ref. [236] and the references mentioned
therein. Since Adf uses Slater-type basis functions, the calculation of the coupling
matrix elements is carried out numerically, and the numerical precision of the excitation
energies thus depends on the quality of the integration grid. The numerical error can
be tested by increasing the number of integration points. For the examples studied in
Section 5.1, we repeated a calculation of the excitation and splitting energies requesting
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a numerical precision that should roughly be one order of magnitude higher than in
the default calculations. The excitation energies obtained with this higher integration
accuracy changed by typically 0.0001 to 0.0008 eV compared to the calculation with
the smaller integration grid. It could be observed that the changes in the excitation
energies are not completely random, but rather systematic, so that the precision of the
splitting energies was actually better than that of the excitation energies (in the order
of 0.0002 eV), and thus substantially smaller than typical splitting energies (which are
in the order of 0.01 to 0.10 eV).
For the structural motives of LH2 investigated in Section 5.3, the following procedure
was applied: Coordinates for non-hydrogen atoms were taken from the X-ray structure
reported in Ref. [429] (PDB entry 1NKZ). Hydrogen atoms were added using default
bond angles and bond lengths. Subsequently, the positions of the hydrogen atoms in
the individual pigment molecules were optimized with BP86/TZP. The positions of the
non-hydrogen atoms were kept fixed. For the calculation (SAOP/TZP) of excitation en-
ergies and excitation energy couplings we proceed as follows: The ground-state densities
and molecular orbitals of the pigment molecules and the surrounding fragments under
investigation are determined from a frozen-density embedding calculation [111] for each
subsystem, including three freeze-and-thaw cycles [117]. For the pigments we calcu-
lated the local excitations within the frozen-density embedding approach as described
in Section 3.4, which were subsequently coupled according to the approach presented
in Section 5.1.

B.4 Resonance Raman calculations

Resonance Raman intensities within Heller’s gradient approximation were calculated
either by numerical differentiation of excited-state energies along normal coordinates
using Adf’s VIBRON module [318] (SAOP calculations in Section 6.3) or by a projection
of analytical excited-state gradients onto the ground-state normal modes (see below).
Apart from the SAOP spectra mentioned above, we employ the semi-numerical calcu-
lation of vibrational frequencies and normal modes available through the vibrational
spectroscopy program package Snf [328], which allows for high-efficiency massive par-
allelization and excellent restart facilities necessary for systems of the size under study
here. Ground- and excited-state electronic structure, gradient calculations, and geom-
etry optimizations in Section 6.4 and Chapter 7 were performed with the quantum
chemical suite of programs Turbomole [618,619] using density functional theory. We
employed either the BP86 functional [62, 595] in combination with the resolution-of-
the-identity (‘RI’) density fitting technique and auxiliary basis sets as implemented
in Turbomole [620–622], or the hybrid functional B3LYP [62, 594, 612, 623]. SV(P),
TZVP and TZVPP basis sets as available from the Turbomole basis set library were
applied [618,619,624].
Excited-state gradients were calculated analytically based on TDDFT as implemented in
Turbomole [231,239]. For the metal atoms in the calculations in Section 6.4, effective
core potentials of the Stuttgart group were employed (which also account for scalar
relativistic effects) [625]. These potentials include 28 electrons of the inner shells of
both ruthenium and palladium, i.e. the 16 (Ru) or 18 (Pd) electrons belonging to the
4s, 4p, 4d and 5s shell are treated explicitly. The two PF−1

6 anions were not included
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into the calculations, resulting in a charge of +2 for each of the two complexes under
study.
No empirical scaling of the vibrational frequencies was performed. In contrast to the
B3LYP functional, BP86 has proven to yield harmonic vibrational normal modes in
close agreement with fundamentals from experiment [552, 570, 626] due to a fortunate
error cancellation [552], which is true in particular for transition metal complexes [463,
571,627,628].
The intensity-tracking calculations in Chapter 7 were carried out with a modified version
of the program Akira [468]. If not specified otherwise, standard Akira convergence
criteria and an intensity threshold of 80 % of the total intensity for root-homing were
applied. For comparison to the intensity-tracking spectra, excited-state gradients were
projected onto normal modes as outlined above. These spectra are dubbed “conventional
gradient spectra”.

B.5 Visualization

Graphics of the molecular structures were generated with the programs Molden [629],
VMD [630], and Molekel [631]. Graphical representations of normal modes, were created
with the program Jmol [632].
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C. List of Abbreviations

Adf Amsterdam Density Functional program
AIM atoms in molecules
ALDA adiabatic local density approximation
amu atomic mass unit (1.66056 · 10−27 kg)
BCP bond critical point
BP86 Becke’s exchange functional combined with Perdew’s correlation functional
BLYP Becke’s exchange functional combined with the

Lee–Yang–Parr correlation functional
B3LYP Becke’s three-parameter hybrid functional
CASSCF complete active space self-consistent field
CASPT2 CASSCF with second-order perturbation theory
cc-pVTZ Dunning’s correlation-consistent valence triple-ζ plus polarization basis
CCSD coupled cluster with single and double excitations
CCSD(T) CCSD with perturbative inclusion of triple excitations
CC2 approximate coupled cluster model to second order
CD circular dichroism
CGE conventional gradient expansion
CI configuration interaction
CIS configuration interaction with single excitations
CISD configuration interaction with single and double excitations
CIS(D) second-order perturbation expansion of CCSD
CIS(3,4) third- and fourth-order analogs of CIS(D)
CPMD Car–Parrinello molecular dynamics
CT charge transfer
DFT density-functional theory
DIIS direct inversion in the iterative subspace
DNA desoxyribonucleic acid
DZ Adf’s double-ζ basis set
DZP Adf’s double-ζ basis set with one set of polarization functions
EET excitation-energy transfer
ESR electron spin resonance
EVB empirical valence bond
FC Franck–Condon
FDE frozen density embedding
FDEc coupled FDE (i.e., including inter-subsystem response)
FDEu uncoupled FDE (i.e., neglecting inter-subsystem response)
FDFT frozen density functional theory
FSRS femtosecond stimulated Raman spectroscopy
GFC gradient Franck–Condon
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GGA generalized gradient approximation
HF Hartree–Fock
hfcc hyperfine coupling constant
HOMO highest occupied molecular orbital
ICD induced circular dichroism
IMDHO independent mode, displaced harmonic oscillator
IR infrared
KS Kohn–Sham
KSCED Kohn–Sham equations with constrained electron density
LC94 Lembarki–Chermette parameterization of the PW91k functional
LDA local density approximation
LH2 light-harvesting complex 2 (in purple bacteria)
MC Monte Carlo
MD molecular dynamics
MLCT metal-to-ligand charge transfer
MM molecular mechanics
MO molecular orbital
MP2 second-order Møller–Plesset perturbation theory
LUMO lowest unoccupied molecular orbital
NBA (ortho-) nitro benzaldehyde
PCM polarizable continuum model
PES potential-energy surface
PW91 Perdew–Wang functional
PW91c Perdew–Wang correlation functional
PW91k kinetic-energy functional derived from PW91x
PW91x Perdew–Wang exchange functional
ONIOM Morokuma’s “Our-owN n-layered Integrated molecular Orbital

+ molecular mechanics Method”
QM/MM quantum mechanics/molecular mechanics
QZ4P Adf’s quadruple-ζ basis set with four sets of polarization functions
RCP ring critical point
RI resolution of the identity
ROHF restricted open-shell Hartree–Fock
ROKS restricted open-shell Kohn–Sham
SAOP statistical averaging of molecular orbital potentials
SCF self-consistent field
SMA small matrix approximation
SOMO singly occupied molecular orbital
SPA single-pole approximation
SVP Ahlrichs’ split-valence basis set with one set of polarization functions
SV(P) like SVP, but without polarization functions on hydrogen
TDC transition-density cube
TDDFT time-dependent density-functional theory
TDKS time-dependent Kohn–Sham
TF Thomas–Fermi
TFD Thomas–Fermi–Dirac
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TFW Thomas–Fermi–von Weizsäcker
TFWD Thomas–Fermi–von Weizsäcker–Dirac
TZP Adf’s triple-ζ basis set with one set of polarization functions
TZ2P Adf’s triple-ζ basis set with two sets of polarization functions
TZVP Ahlrichs’ triple-ζ basis set with one set of polarization functions
TZVPP Ahlrichs’ triple-ζ basis set with two sets of polarization functions
UQCISD[T] unrestricted quadratic CISD with approximate treatment of

triple excitations
UV ultraviolett
VCD vibrational circular dichroism
VROA vibrational Raman optical activity
XC exchange–correlation
ZORA zero-order regular approximation
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[15] Per-Olov Löwdin. Studies in Perturbation Theory. IV. Solution of Eigenvalue
Problem by Projection Operator Formalism. J. Math. Phys., 3 (1962) 969–982.

[16] A. J. Fisher. Methods for embedding for defect and surface problems. J. Phys.

C: Solid State Phys., 21 (1988) 3229–3249.

[17] Weitao Yang. Direct Calculation of Electron Density in Density-Functional Theory.
Phys. Rev. Lett., 66 (1991) 1438–1441.

[18] Kazuhiro Fujimoto, Weitao Yang. Density-fragment interaction approach for
quantum-mechanical/molecular-mechanical calculations with application to the ex-
cited states of a Mg2+-sensitive dye. J. Chem. Phys., 129 (2008) 054102.

[19] Tomoko Akama, Masato Kobayashi, Hiromi Nakai. Implementation of divide-and-
conquer method including Hartree–Fock exchange interaction. J. Comput. Chem.,
28 (2007) 2003–2012.

[20] Masato Kobayashi, Tomoko Akama, Hiromi Nakai. Second-order Møller–Plesset
perturbation energy obtained from divide-and-conquer Hartree–Fock density ma-
trix. J. Chem. Phys., 125 (2006) 204106.

[21] Masato Kobayashi, Yutaka Imamura, Hiromi Nakai. Alternative linear-scaling
methodology for the second-order Møller–Plesset perturbation calculation based
on divide-and-conquer method. J. Chem. Phys., 127 (2007) 074103.

[22] Masato Kobayashi, Hiromi Nakai. Extension of linear-scaling divide-and-conquer-
based correlation method to coupled cluster theory with singles and doubles ex-
citations. J. Chem. Phys., 129 (2008) 044103.

[23] Kazuo Kitaura, Eiji Ikeo, Toshio Asada, Tatsuya Nakano, Masami Uebayasi. Frag-
ment molecular orbital method: an approximate computational method for large
molecules. Chem. Phys. Lett., 313 (1999) 701–706.

[24] Dmitri G. Fedorov, Kazuo Kitaura. Extending the Power of Quantum Chemistry
to Large Systems with the Fragment Molecular Orbital Method. J. Phys. Chem.

A, 111 (2007) 6904–6914.

[25] Thomas M. Henderson. Embedding wave function theory in density functional
theory. J. Chem. Phys., 125 (2006) 014105.

[26] J. E. Inglesfield. A method of embedding. J. Phys. C: Solid State Phys., 14 (1981)
3795–3806.

[27] Ulrich Gutdeutsch, Uwe Birkenheuer, Sven Krüger, Notker Rösch. On cluster
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von Weizsäcker models in finite systems. J. Chem. Phys., 114 (2001) 631–638.

[58] H. Lee, C. Lee, R. G. Parr. Conjugate gradient correction to the Hartree–Fock
kinetic- and exchange-energy density functionals. Phys. Rev. A, 44 (1991) 768–771.

[59] V. V. Karasiev, S. B. Trickey, Frank E. Harris. Born–Oppenheimer interatomic
forces from simple, local kinetic energy density functionals. J. Compu.-Aid. Mat.

Des., 13 (2006) 111–129.

[60] R. Kevorkyants, M. Dulak, T. A. Wesolowski. Interaction energies in hydrogen-
bonded systems: A testing ground for subsystem formulation of density-functional
theory. J. Chem. Phys., 124 (2006) 024104.

[61] N. H. March, R. Santamaria. Non-Local Relation Between Kinetic and Exchange
Energy Densities in Hartree–Fock Theory. Int. J. Quantum Chem., 39 (1991)
585–592.

[62] A. D. Becke. Density-functional exchange-energy approximation with correct
asymptotic behavior. Phys. Rev. A, 38(6) (1988) 3098–3100.

[63] A. Lembarki, H. Chermette. Obtaining a gradient-corrected kinetic-energy func-
tional from the Perdew-Wang exchange functional. Phys. Rev. A, 50 (1994) 5328.

[64] J. P. Perdew. In P. Ziesche, H. Eschrig, Eds., Electronic Structure of Solids, p. 11.
Akademie Verlag, Berlin, 1991.

[65] Andrew E. DePristo, Joel D. Kress. Kinetic-energy functionals via Padé approx-
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[74] P. Garćıa-Gonzáles, J. E. Alvarellos, E. Chacón. Kinetic-energy density functional:
Atoms and shell structure. Phys. Rev. A, 54 (1996) 1897–1905.

[75] Enrico Smargiassi, Paul A. Madden. Orbital-free kinetic-energy functionals for
first-principles molecular dynamics. Phys. Rev. B, 49 (1994) 5220–5226.

[76] Michael Foley, Paul A. Madden. Further orbital-free kinetic-energy functionals for
ab initio molecular dynamics. Phys. Rev. B, 53 (1996) 10589–10598.

[77] Yan Alexander Wang, Niranjan Govind, Emily A. Carter. Orbital-free kinetic-
energy functionals for the nearly free electron gas [Errata: Phys. Rev. B 60 (1998),
17162; Phys. Rev. B 64 (2001), 129901]. Phys. Rev. B, 58 (1998) 13465–13471.

[78] Karin M. Carling, Emily A. Carter. Orbital-free density functional theory calcula-
tions of the properties of Al, Mg and Al–Mg crystalline phases. Modelling Simul.

Mater. Sci. Eng., 11 (2003) 339–348.

[79] Gregory Ho, Mitchell T. Ong, Kyle J. Caspersen, Emily A. Carter. Energetics and
kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free
density functional theory. Phys. Chem. Chem. Phys., 9 (2007) 4951–5966.

[80] Terry J. Frankcombe, Geert-Jan Kroes, Nicholas I. Choly, Efthimios Kaxiras.
Orbital-Free Density Functional Theory Applied to NaAlH4. J. Phys. Chem. B,
109 (2005) 16554–16562.

[81] Baojing Zhou, Vincent L. Ligneres, Emily A. Carter. Improving the orbital-free
density functional theory description of covalent materials. J. Chem. Phys., 122
(2005) 044103.

[82] Nicholas Choly, Efthimios Kaxiras. Kinetic energy density functionals for non-
periodic systems. Sol. State Commun., 121 (2002) 281–286.



BIBLIOGRAPHY 245

[83] Gregory S. Ho, Vincent L. Lignères, Emily A. Carter. Analytic form for a nonlocal
kinetic energy functional with a density-dependent kernel for orbital-free density
functional theory under periodic and Dirichlet boundary conditions. Phys. Rev.

B, 78 (2008) 045105.
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Rps. acidophila at 2.0 Å Resolution and 100 K: New Structural Features and
Functionally Relevant Motions. J. Mol. Biol., 326 (2003) 1523–1538.

[430] G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z.
Papiz, R. J. Cogdell, N. W. Isaacs. Crystal structure of an integral membrane
light-harvesting complex from photosynthetic bacteria. Nature, 374 (1995) 517–
521.



BIBLIOGRAPHY 271

[431] Rienk van Grondelle, Vladimir I. Novoderezhkin. Energy transfer in photosynthesis:
experimental insights and quantitative models. Phys. Chem. Chem. Phys., 8 (2006)
793–807.

[432] Graham R. Fleming, Gregory D. Scholes. Physical chemistry: Quantum mechanics
for plants. Nature, 431 (2004) 256–257.
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[517] Julien Guthmuller, Benôıt Champagne. Time dependent density functional theory
investigation of the resonance Raman properties of the julolidinemalononitrile
push–pull chromophore in various solvents. J. Chem. Phys., 127 (2007) 164507.

[518] S. Laimgruber, T. Schmierer, P. Gilch, K. Kiewisch, J. Neugebauer. The Ketene
Intermediate in the Photochemistry of ortho-Nitrobenzaldehyde. Phys. Chem.

Chem. Phys., 10 (2008) 3872–3882.

[519] Eric J. Heller, Robert L. Sundberg, David Tannor. Simple Aspects of Raman
Scattering. J. Phys. Chem., 86 (1982) 1822–1833.

[520] Anne B. Myers. ‘Time-Dependent’ Resonance Raman Theory. J. Raman Spectr.,
28 (1997) 389–401.

[521] E. J. Heller. The Semiclassical Way to Molecular Spectroscopy. Acc. Chem. Res.,
14 (1981) 368–375.



278 BIBLIOGRAPHY
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[563] Sven Rau, Bernhard Schäfer, Dieter Gleich, Ernst Anders, Manfred Rudolph, Man-
fred Friedrich, Helmar Görls, William Henry, Johannes G. Vos. A Supramolecular
Photocatalyst for the Production of Hydrogen and the Selective Hydrogenation
of Tolane. Angew. Chem. Int. Ed., 45 (2006) 6215–6218.

[564] B. Dietzek, W. Kiefer, J. Blumhoff, L. Böttcher, S. Rau, D. Walther, U. Uhlemann,
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