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Abstract

The hallmark of N-linked protein glycosylation is the generation of diverse glycan structures in the
secretory pathway. Dynamic, non-template-driven processes of N-glycan remodeling in the endo-
plasmic reticulum and the Golgi provide the cellular setting for structural diversity. We applied
newly developed mass spectrometry-based analytics to quantify site-specific N-glycan remodeling
of the model protein Pdi1p expressed in insect cells. Molecular dynamics simulation, mutational ana-
lysis, kinetic studies of in vitro processing events and glycan flux analysis supported the defining role

of the protein in N-glycan processing.
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Introduction

N-Linked glycosylation is an abundant posttranslational modification
present on secretory proteins in all domains of life (Dell et al. 2010). In
eukaryotes, attachment and subsequent modification of N-glycans af-
fect the folding of glycoproteins and regulate their secretion, e.g. by
providing signals to the endoplasmic reticulum (ER) quality control
machinery (Shental-Bechor and Levy 2009; Aebi et al. 2010). On
the final glycoprotein product, N-glycans act as ligands that mediate
cell—cell interactions of cell surface glycoproteins and fine-tune the
function of mature glycoproteins (van Kooyk and Rabinovich 2008).

Biosynthesis of N-glycoproteins starts with the stepwise assembly
of a lipid-linked oligosaccharide precursor at the ER membrane. Oli-
gosaccharyl transferase then transfers the G3M9Gn2 carbohydrate
(G: glucose, M: mannose, Gn: N-acetylglucosamine) from the isopre-
noid lipid carrier onto the asparagine side-chain of the N-X-S/T con-
sensus sequence of polypeptides in the ER lumen (Kelleher and
Gilmore 2006). Initial modifications of the N-glycan in the ER involve

successive removal of glucose and o-1,2-mannosyl residues to generate
oligomannose-type glycans (Hebert et al. 2005; Mast and Moremen
2006). It is in the Golgi where glycosyl hydrolases (GHs) and trans-
ferases (GTs) generate the heterogeneous population of carbohydrate
structures presented on mature glycoproteins (Hua et al. 2012; More-
men et al. 2012).

GHs, GTs, and nucleotide sugar transporters represent the “hard-
ware” of the Golgi remodeling pathway that converts oligomannose
glycans into hybrid- and complex-type oligosaccharides (Varki
1998). This network of glycan modifying enzymes can vary between
different species, tissues, and cell types and generates variable
N-glycan structures. Glycoproteins expressed in mammalian cells gen-
erally carry an array of complex-type oligosaccharides decorated with
terminal galactose and sialic acid residues (North et al. 2010). In con-
trast, the glycosylation machinery of insect cells produces a variety of
paucimannose-type products with a.1,6- or a1,3-linked fucose residues
attached to the core Gn (Shi and Jarvis 2007; Hosokawa et al. 2010).
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N-Glycan diversity is the result of the dynamic and competitive na-
ture of N-glycan synthesis in the Golgi (Stanley 2011). Golgi GTs and
GHs usually have different substrate specificities and act sequentially,
but they may also compete for substrates (Moremen et al. 2012). Ana-
lysis of site-specific N-glycosylation of Sindbis virus glycoproteins,
carboxypeptidase Y, and invertase provided the first evidence that pro-
cessing of N-glycans is determined by the physical accessibility of the
carbohydrates (Hsieh et al. 1983a, 1983b; Trimble et al. 1983; Hub-
bard 1988). Subsequently, site-specific N-glycosylation has been
found on different proteins Thy1, lysosomal o-mannosidase, lactofer-
rin, and HIV envelope glycoproteins (Parekh et al. 1987; Heikinheimo
et al. 2003; Faid et al. 2006; Go et al. 2008; Hua et al. 2012; Nagae
and Yamaguchi 2012) and alterations in the polypeptide sequence can
yield different N-glycan structures (Yu et al. 2013).

To study in detail the factors that affect site-specific
N-glycosylation, we expressed a model protein, yeast Pdilp, in insect
cells and employed newly developed mass spectrometry-based analyt-
ical techniques to quantify site-specific N-glycan structures produced
in the ER and the Golgi. Combining molecular dynamics simulations,
mutational analyses, and in vitro assays we define the intramolecular
interactions of glycans and the protein surface that are major determi-
nants for carbohydrate modification. Implementing glycan flux ana-
lysis, we identified the rate-limiting processing steps for each
glycosite. Our studies confirm the importance of the protein structure
in the pathway of N-glycan processing.
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Establishing an MS-based workflow to analyze
site-specific glycosylation

ER-resident protein disulfide isomerase 1 (Pdilp) from Saccharomyces
cerevisiae is composed of four thioredoxin-like domains (a, b, b’ and
a’) (Wilkinson and Gilbert 2004; Tian et al. 2006). Unlike mammalian
PDIs, yeast Pdilp has five N-glycosylation sites (S1-S5) that are loca-
lized in three of the four domains (Figure 1A). Tryptic peptides con-
taining these glycosite were used in our study (Table I). A
C-terminal HDEL sequence retained the protein in the ER and early
Golgi, while disruption of this sequence resulted in the secretion of
the protein into the medium (sPdilp), allowing us to analyze ER-
and Golgi-located processing separately (Figure 1B). Pdilp proteins
were expressed in Trichoplusia ni insect cells using the baculovirus ex-
pression system and purified by Ni-NTA affinity chromatography via
an N-terminal His;(-tag. SDS-PAGE and immunoblot analysis veri-
fied that the purity was suitable for the following MS measurements
(Figure 1C).

To assess site-specific glycan heterogeneity, we employed the filter-
assisted sample preparation (FASP) method (Wisniewski et al. 2009).
Peptides were analyzed on a nanoLC-LTQ Velos Orbitrap operated in
scheduled data-dependent acquisition mode, one MS scan followed by
10 HCD MS/MS scans. Based on the unique fragmentation of glyco-
peptides by the HCD method, we developed the ExtractMgf algorithm
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Fig. 1. Purification of recombinant Pdi1 and sPdi1p from insect cells. (A) Model of glycosylated Pdi1p. M9Gn2 N-glycans were modelled onto the five glycosites of the
crystal structure of Pdi1p (PDB: 2B5E; www.glycam.org). Glycans are depicted in colors: S1 green, S2 blue, S3 purple, S4 red and S5 yellow. Different domains of
Pdi1p are in different shades of gray. (B) Schematic representation of Pdi1p and sPdi1p purification. Trichoplusia ni cells were infected with recombinant viruses
carrying expression copies of ER retained Pdi1p or secreted Pdi1p (sPdi1p). Pdi1p was purified via NiNTA chromatography from cell lysates; sPdi1p was isolated
from culture supernatants. ER retention of full-length sPdi1p was disrupted by the presence of two additional amino acids at the protein’s C-terminus (HDELLE)
(Raykhel et al. 2007). SP: signal peptide; His: Hisqo tag, HDEL: ER retrieval signal. (C) Purification of Pdi1p and sPdi1p. Samples of input (in), flow-through (out)
and eluted (E) fractions were analyzed by SDS-PAGE and stained with Coomassie (left/middle), or analyzed by immunoblot using anti-His5 antibodies (right).
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Table I. Glycosylation site of yeast Pdi1p

to speed up manual analyses of MS/MS spectra, as exemplified for the

Site Sequence

S1 glycopeptide (Segu and Mechref 2010) (Figure 2A). From 3648

[M-H] measured spectra, the glycan oxonium ions [HexNAc]* 204.09 and
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3258.52 [HexNAc + Hex]* 366.14 were used to identify the MS/MS scans of
1579.70 all glycopeptides from the peak list. Next, the Y1 ion corresponding
3212.71 to m/z of the peptide plus one HexNAc was used to identify the
1707.78 peptide backbone. In the case of S1, 1731.3034 corresponding to
2468.25 [S1 + HexNAc + 2H]** was used to sort out all MS/MS spectra from

A list of the five tryptic peptides containing a glycosylation sequon monitored
in this study. C* represents carbamidomethylated cysteine.
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Fig. 2. Overall workflow for glycopeptide analysis by mass spectrometry. (A) Purified proteins were processed by FASP. The mixture of peptides and glycopeptides
was analyzed by LC-HCD mass spectrometry. Raw data were transformed into a peak list and processed by ExtractMgf. For relative quantification, XIC of each
glycoform was plotted and its corresponding peak area was integrated. The relative abundance of each form was calculated. Symbols represent
monosaccharides: mannose (circle), N-acetylglucosamine (square) and fucose (triangle) (B) One MS/MS spectrum at m/z 1200.54 (z=4) was assigned to the first
glycosylation site of Pdi1p containing M7Gn2 glycoform. Glycan oxonium ions and doubly/triply charged Y1 at m/z 1154.54 (z=3)/1731.31(z=2) are indicated. The
nomenclature of peptide fragment ions and glycan fragmentation ions was described previously (Roepstorff and Fohlman 1984; Domon et al. 1990; Dell et al. 1994).
(C) The overall glycosylation profile of S1 obtained by grouping of MS spectra. Corresponding ions are indicated. (D) XIC of each glycoform sharing the same peptide
backbone. See Supplementary data, Figure S2 and Table S2 for quantification of RNaseB glycans. (B-D) The structures of glycan isomers were assigned according
to the biosynthesis pathway of insect cells shown in Figure 7A. This figure is available in black and white in print and in color at Glycobiology online.
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remaining HexNAc was a frequent event and resulted in neutral loss of
120 Da from the Y1 ion (Figure 2B; Supplementary data, Figure S1),
we used the triple peaks, Y1, %?X and [peptide + H]*, to manually
confirm the identity of the Y1 ion in HCD spectra. One example of
an S1 MS/MS spectrum of the M7Gn2 is shown in Figure 2B.

Since glycopeptides containing the same peptide backbone
co-elute when applied to reverse phase liquid chromatography, we
identified the different glycan structures of one site by grouping MS
spectra based on the presence of Y1 ions observed in the original
MS/MS spectra. In the example given, the overall glycosylation profile
of S1 ranged from M5Gn2 to M9Gn2 (Figure 2C). Finally, we quan-
tified the amount of each glycan structure by its extracted ion chro-
matogram (Figure 2D). We verified the accuracy of the method by
analyzing bovine RNase B that carries a known mixture of oligoman-
nose glycans on a single glycosite (Supplementary data, Figure S2).

Pdi1p glycans are differentially processed

In an initial experiment, we analyzed the N-linked glycans of Pdilp
retained in the ER and early Golgi. As expected, we found oligoman-
nose structures; yet, we did not observe a defined structure per site, but
rather a mixture of glycans processed to varying degrees (Figure 2D).
The processing of N-glycans was significantly different for the five sites
analyzed: while S2, S3 and S5 mainly carried M7Gn2 to M5Gn2 gly-
cans, S4 contained a higher fraction of M9Gn2 and M8Gn2 glycans
(Figure 3A and B). S1 showed an intermediate processing pattern with
M7Gn2 as the most prevalent structure. By comparing the glycan pro-
files for each site using Euclidean distance and hierarchical clustering
analysis, we confirmed that S4 showed the most distinct glycan pattern
(Figure 3C). These results indicated that the location of an N-glycan
on Pdilp was an essential parameter influencing the processing of
the glycan by mannosidases of the ER and early Golgi.

Interactions with the protein surface reduce accessibility
of the S4 glycan

In order to test whether glycan—protein interactions influence oligosac-
charide processing, we generated a three-dimensional model of a trun-
cated version of Pdilp composed of the a and b domain and with an
MIGn2 glycan attached to S4. To remove any bias from the initial gly-
can orientation, an explicitly solvated molecular dynamics simulation
was performed for 0.5 ps. Throughout the simulation, the B-branch of
the S4 glycan remained in close contact with the surface of the
b-domain, while the A- and C-branch formed interactions with the
a-domain (Figure 4A; Supplementary data, Movie). Once formed,
the interactions between the S4 glycan (located on the b-domain)
and the a-domain remained stable over the course of the simulation
timescale. The contacts formed with the a-domain reduced the acces-
sibility of the S4 glycan, which correlated with the attenuated process-
ing of the S4 glycan by mannosidases (Figure 4B). Notably, the
interactions formed by the S4-glycan with the surface of the a-domain
altered the relative orientation and dynamics of the a- and b-domains
while the unglycosylated protein fluctuated about the crystal structure
conformation (Figure 4C).

To confirm these in silico predictions, we designed truncated var-
iants of Pdilp, each containing the glycosylated b-domain with an
N-terminal Hiso-tag and a C-terminal HDEL sequence (Figure SA).
The different proteins were expressed, purified, and the peptides
were analyzed by the ExtractMgf workflow (Figure 5B and C). The
glycan profiles on $4 of full-length Pdil1p, the abb’- and the ab-domain
glycoprotein were almost identical. However, when we removed the
a-domain, the distribution of glycoforms changed and shifted to

smaller, more processed glycans (Figure 5C; Supplementary data,
Figure S3), resulting in a different glycosylation pattern (Figure 5D).
These findings supported the hypothesis that the interaction of a
glycan with the surface of the covalently linked protein altered the
accessibility of the glycan to the processing machinery.

N-Glycans on Pdi1p represent different substrates

to Mns1p

According to this hypothesis, the five N-linked glycans should display
different processing kinetics by a given enzyme. We addressed this by
an in vitro experiment and analyzed the processing of the glycans of
Pdilp by ER a-mannosidase from S. cerevisiae, Mns1p. Mns1p recog-
nizes the terminal mannose residues of both, the B- and C-branch of an
M9Gn2 glycan and specifically hydrolyzes the a-1,2-glycosidic link-
age of the terminal mannose of the B-branch (Jelinek-Kelly et al.
1985; Ziegler and Trimble 1991; Vallée et al. 2000). Pdilp carrying
MO9Gn2 glycans was obtained from insect cells that were incubated
with the a-mannosidase inhibitor kifunensine during protein produc-
tion. MS analysis confirmed that Pdilp was homogeneously glycosy-
lated with M9Gn2 N-glycans on all five sites (Figure 6A;
Supplementary data, Figure S4). Mns1p was expressed in T. i cells
and purified by glutathione affinity chromatography (Supplementary
data, Figure S4A). In vitro assays were performed with a 100x molar
excess of glycosylated Pdilp (Karaveg and Moremen 20035). Aliquots
were taken at different time points, and site-specific glycosylation was
determined by quantitative MS analysis. Three minutes after initiating
the reaction 84, 80, 62, and 54% of M9Gn2 were processed to
M8Gn2 on S2, S3, S5, and S1, respectively, whereas the conversion
of M9Gn2 on S4 was only 37% (Figure 6B). After 10 min, all but
$4 glycan showed >90% processing; conversion to M8Gn2 was com-
pleted for all five glycans after 60 min. We concluded that interaction
of a glycan with the protein surface competed with enzyme binding
and, thus, reduced enzymatic turnover of the glycan: the more favor-
able this interaction the slower the processing.

N-Glycans of sPdi1p are processed differently

in the Golgi

In the absence of the HDEL ER retrieval sequence, Hiso-tagged
sPdilp was secreted into the medium, allowing us to analyze the com-
plete glycan-processing pathway. Employing the Extractmfg work-
flow, we found glycan structures reflecting the whole glycosylation
machinery of T. #i cells, yet, glycans on the five glycosites of Pdilp
were processed differently (Figure 7A and B). S1, S2 and S3 glycans
showed a similar distribution of oligomannose, paucimannose-type
and complex-type structures. However, the ratio of di-fucosylated gly-
cans was significantly higher on S2 and S3 when compared with S1
and oligomannose glycans were almost absent on S3. In contrast to
these glycosites, S4 maintained a high ratio of oligomannose oligosac-
charides and paucimannose-type glycans that were neither fucosylated
nor decorated with a second Gn. Interestingly, one of the abundant
glycoforms on S4 was GnM4Gn2, an intermediate product of
o-mannosidase II processing (Figure 7B; Supplementary data,
Figure S5). Hierarchical clustering analysis confirmed that the glycan
profiles of S2 and S3, and S1 and S5, respectively, were closely related
while the S4 glycan profile was different to all the other sites
(Figure 7C). These data confirmed that for the remodeling of
N-glycans in the Golgi, the localization of the glycan on the protein
surface was a major factor that determined both the structure of
an oligosaccharide and the relative abundance of this structure.
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Fig. 3. Pdi1p retained in the ER and early Golgi displays site-specific glycan profiles. (A) Analysis of M8Gn2 on S4. The MS/MS spectrum of m/z1705.68 (z=2) was
obtained as described in Figure 2. The peptide was identified by the Y1 ion (S4 peptide plus HexNAc at m/z1910.78). The peptide sequence is displayed together with
the attached M8Gn2 glycan. The underlined N represents the N-glycosite and y’ represents y ion without a glycan. (B) Site-specific N-glycan profile of Pdi1p. Pdi1p
was expressed and purified and site-specific glycan profiles were analyzed. The relative abundance of the different glycoforms at a given site (S1 to S5) is shown.
Data represent the mean values of glycan ratios of four independent experiments with error bars indicating the standard deviation. P-values were calculated by
paired Student’s t-test: * P<0.05; ** P<0.01; *** P<0.001. (C) Similarity representation of five Pdi1p N-glycosylation sites based on the relative glycoform
distribution. Similarity between site-specific profiles was calculated using the Euclidean distance and the dendogram was obtained by Centroid Linkage
Clustering. The color scale represents the relative glycoform abundance from Figure 3B. See Supplementary data, Figure S3 and Table S3 for spectra and raw
data. This figure is available in black and white in print and in color at Glycobiology online.


http://glycob.oxfordjournals.org/lookup/suppl/doi:10.1093/glycob/cwv058/-/DC1

1340

| Hang et al.

C-branch
forms
contact with
a-domain §

New a-domain
orientation is
stabilized

A-branch forms
additional
contact

| A-branch forms additional contact with a-domain |

25 C-branch stabilizes new
a-domain orientation

_INonwglycosylated form retains crystallographic orientation |

0 100 200
C 100

Branch Accessibility (%)
n B [=2] [==]
[=] o o (=]

o

Time (ns) 300 400 500

o

100 200

Time (ns) 300 400 500

Fig. 4. Molecular dynamics simulation of glycosylated Pdi1p-ab. (A) Six snapshots from the molecular dynamics simulation of the S4 glycosylated ab-domain
variant of Pdi1p, showing the contacts formed between the S4 glycan and the a-domain (blue surface). The b-domains of each snapshot are aligned to the
crystal structure coordinates. The glycan is shown as van-der-Waals spheres, with the A-branch in yellow, the B-branch in green and the C-branch in red. (B) A
plot of the RMSD of the a-domain obtained over the course of the simulation relative to the crystal structure orientation (blue line: RMSD of the a-domain with
S4 glycosylated, orange line: RMSD of a-domain without S4 glycosylation). (C) The relative solvent accessibility of the non-reducing terminal disaccharides of
the A- (yellow), B- (green) and C-branches (red) of the S4 glycan over the course of the simulation.

Consequently, the substrate properties of the five N-linked glycans of
sPdilp differ for a given processing enzyme.

To quantify the in vivo activity of different processing enzymes on
the five N-glycans, we performed glycan flux analysis using a stoichio-
metric matrix to describe the connectivity of the network (see Materi-
als and Methods for a detailed description). We calculated the

substrate fluxes at each enzyme employing the assumption that the se-
creted Pdilp represented a quasi-steady state of the glycan processing
in the cell. Conversion for each reaction was normalized to the incom-
ing fluxes (Figure 7D). This analysis revealed that conversion for en-
zymes acting early in the pathway was generally higher than those for
enzymes acting late in the processing. Substrate conversion by
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o-mannosidase I and II was significantly lower for the S4 glycan than
for all the other glycans. On the other hand, the S2 and S3 glycans
were more preferred substrates for a.1,6- and a.1,3-fucosyl transferases
than the oligosaccharides on S1 and S5. Thus, altered conversion re-
sults in site-specific processing of the N-glycans. Importantly, this flux
analysis revealed that only a subset of Golgi processing enzymes was
sensitive to the localization of the N-glycan.

Site-specific processing profile of N-glycans on sPdi1p
is dependent upon the protein structure and the Golgi
processing machinery

We next analyzed whether protein structure also affect site-specific pro-
cessing of Pdi1p in the Golgi. Again, we took advantage of the modular
structure of Pdilp and designed truncated variants as in Figure 4D, vyet,
without the C-terminal HDEL sequence. Constructs were expressed in
T. ni cells and purified from the culturing media (Figure 8A). After
MS-analysis and data processing, we observed that the glycans of the
b- and bb’-domain constructs were more processed when compared
with full-length sPdilp and the variants containing the a-domain. The
S4 glycan profiles on both b- and bb’-domain constructs contained

significantly lower amounts of oligomannose-type N-glycans, while
the paucimannose-type structure M3Gn2 was more abundant (Fig-
ure 8B). Conversion analysis revealed that removal of the a-domain
made the S4 glycan a more preferred substrate for a-mannosidases I
and IT and N-acetylglucosaminidase (Figure 8C). We also noted changes
in the processing pattern of the other N-glycans with respect to altered
protein structure (data not shown).

Expression of an additional glycosyltransferase
increases site-specific glycan diversity

Microheterogeneity of N-glycan structures on sPdilp is the result of
incomplete conversion by glycan-processing enzymes. In addition,
site-specific processing by a subset of these enzymes resulted in site-
specific glycan profiles. It is evident that increasing the number of pro-
cessing steps in such a system will elevate the probability of site-specific
N-glycan processing. We therefore expressed B1,4-galacosyltransferase
(GALT-1) from Caenorhabditis elegans in insect cells (Figure 9A).
GALT-1 acts late in the pathway and adds a p1,4-galactose to the
al,6-linked core fucose residue (Titz et al. 2009). We analyzed site-
specific glycosylation profiles of sPdilp purified from cells co-infected
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Fig. 6. The S4 is processed more slowly by Mns1p in vitro. (A) N-Glycan analysis
of M9Gn2-Pdi1p. Trichoplusia ni cells were incubated with kifunensine and
infected with virus containing an expression copy of GST-tagged Pdi1p.
GST-Pdi1p was affinity purified and the GST tag was removed. N-Glycan
profiles were determined by MS analysis. Data represent the mean values of
relative glycan abundances of three independent experiments with error bars
indicating the standard deviation of mean. (B) M9Gn2-Pdi1p was incubated
with Mns1p. At the indicated time points, aliquots were TCA precipitated and
analyzed by MS. Mean values for the relative abundance of M8Gn2 at the
different glycosites from three independent experiments were plotted with
error bars representing the standard deviation of mean. See Supplementary
data, Figure S5 and Table S5 for spectra and raw data.

with GALT-1 recombinant viruses (Figure 9B). Indeed, we observed
site-specific processing: in contrast to S2, S3 and S5 oligosaccharides,
GALT-1 did not process the S1 glycan, even though all of the sites pre-
sented suitable GALT-1 substrates. Thus, introducing an additional
late-acting enzyme in the pathway allowed us to differentiate the gly-
cans of Pdilp further; the glycan profile of S1 deviated from the profile
of S5 (Figure 9C). Taken together, the location of the N-linked glycan
on a protein in a given setting of glycan-processing enzymes in the se-
cretory pathway defines its processing.

Discussion

In this study, we exploited baculovirus-driven expression in insect cells
to produce model glycoproteins that were retained in the ER and early
Golgi (Pdilp), or secreted into the medium (sPdilp), respectively
(Figure 1). Since yeast Pdilp carries five N-glycans distributed over

the molecule, we could observe remodeling of individual N-linked oli-
gosaccharides at different locations on the same protein while they
were presented to the identical cellular glycan-processing machinery
for the same amount of time. In addition, the protein has a modular
composition of four thioredoxin-like domains that fold independent-
ly; hence, we were able to express truncated variants of Pdilp lacking
one or multiple domains without disturbing the structure of the re-
maining protein (Kemmink et al. 1996, 1999). This set-up allowed
us to assess the influence of the protein on glycan remodeling while
keeping the cellular environment constant.

Mammalian glycans contain sialic acid residues that are easily lost
during ionization in mass spectrometric analyses; consequently, it is dif-
ficult to quantify carbohydrates on mammalian glycoproteins (Powell
and Harvey 1996). In contrast, insect cells produce fucosylated pauci-
mannose structures without galactose or sialic acid, allowing us to
quantify oligosaccharide structures linked to specific glycosites. To as-
sess site-specific glycan composition, we developed an analytic work-
flow based on mass spectrometry operated in HCD fragmentation
mode (Figure 2). Detection of Y1, X and peptide peaks are frequently
reported in CID MS/MS of glycopeptides by Q-TOF or TOF-TOF MS,
but this peak triplet has not been exploited for identification in the HCD
fragmentation method (Krokhin et al. 2004; Sparbier et al. 2007). Our
data demonstrated that using the peak triplet and characteristic peptide
fragment ions is a suitable tool for glycopeptide identification without
further tandem mass spectrometry. Moreover, we developed and eval-
uated a reliable quantification method of each glycoform that allows to
partly automate and speed up data analysis.

Although the glycan-processing machinery of insect cells used in
this study is less complex than in mammalian cells, it implements
the same underlying principles. According to the current view, a glyco-
protein may transit through the Golgi too quickly to be processed
completely by every possible enzyme (Stanley 2011; Moremen et al.
2012). In addition, many GHs and GTs compete for the same oligo-
saccharide substrate producing additional heterogeneity of glycan
structures (Schachter 1991; Geisler and Jarvis 2012). Earlier studies
suggested that the local protein surface influences enzyme accessibility
to individual glycans (Hsieh et al. 1983a, 1983b; Trimble et al. 1983;
Hubbard 1988); however, these studies did not provide direct evidence
to support this hypothesis. Analyzing the glycan profiles of Pdilp and
sPdilp, we found that the five glycosites displayed individual carbohy-
drate profiles throughout the secretory pathway (Figures 3 and 7). In
particular, the S4 glycan was less processed in both, the ER and Golgi
compartments relative to the other glycans. Molecular dynamics
simulations showed that the terminal mannose residues of an
M9Gn2 glycan on S4 made long-lasting contacts with specific
amino acid residues of the a- and b-domain (Figure 4A). These inter-
actions might reduce enzyme accessibility and, thus, processing of the
S4 glycan. Along this line, ER mannosidase processed in vitro the $4
glycan more slowly than its counterparts on the other glycosites. Con-
sequently, when we removed the a-domain from the protein in vivo,
the glycan on S4 became more accessible and the resulting glycan
profile shifted to more processed glycan structures (Figures 4 and 8).
In addition, implementing glycan flux analysis, we identified the rate-
limiting steps for each glycosite. Interestingly, it is only a subset of
processing enzymes that are kinetically controlled (thereby generating
microheterogeneity of the glycan structures) and some of these en-
zymes are affected by the location of the N-glycan on the protein
(resulting in site-specific processing). Taken together, our data show
that the structure of a glycoprotein can control the processing of
some N-linked oligosaccharides at different stages of the glycosylation
pathway.
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Site-specific N-glycans can affect the function of glycoproteins, e.g.
immunoglobulins (Niwa et al. 2004; Scallon et al. 2007; Sazinsky
et al. 2008; Ferrara et al. 2011), but for most glycoproteins, this has
not been addresses experimentally. It is evident that the quantitative
analysis of site-specific glycans will be essential for future research in
this direction. The MS-based, quantitative glycoproteomics method
presented in this report will become a valuable tool to define more pre-
cisely the role of the carbohydrate in glycoprotein function. Similarly,
the mathematical modelling of glycan processing based on quantita-
tive glycoproteomics data will be essential to experimentally approach
and understand the function of the Golgi and will affect the biotech-
nological production of glycoproteins.

Materials and methods

Reagents

The monoclonal anti-His antibody was purchased from Qiagen AG
(Cat. No. 34670). Monoclonal anti-GST antibody was purchased

from Rockland (Cat. No. 600-101-200). Spodoptera frugiperda
Sf21 and Trichoplusia ni Hi5 cells were obtained from K. Locher
and cultivated in S$f-900 II SFM medium (Invitrogen, Cat.No
10902104).

Construction of plasmids for baculovirus-based protein
expression
Plasmids used in this study are summarized in Supplementary data,
Table S1. Plasmids were constructed using standard cloning protocols.
Open reading frames of all constructs were confirmed by nucleotide
sequencing.

pRG105: The plasmid pRG10S5 was constructed to allow for
baculovirus-based expression of secreted proteins fused to an
N-terminal affinity tag. gp67 secretion signal peptide followed by
GST was PCR-amplified from pAcSecG2T baculovirus transfer vec-
tor (Fischer Scientific, Cat. no. BDB554797) using primers RG395
(5'-TGG GCG CGC ATG CTA CTA GTA AAT CAG TCA
CAC-3’) and RG396 (5'-CCC AAG CTT TTA CTC GAG CTG
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CAG AGG CCT GAG CTC GGATCC ACG CGG AAC CAGA-3').
The resulting PCR fragment was cloned into the BssHII and HindIII
restriction sites of pPRG74 (Gauss et al. 2011) to generate pRG100.
Next pRG100 was used as a template to introduce His;o-tag follow-
ing a cleavable signal sequence by PCR using RG394 (5'-AAG TGG
TTC GCA TCC TCG GTTT-3’) and RG398 (5'-CCC GAG CTC
CAG GGG CCC CTG GAA CAG AAC TTC CAG ATG GTG
ATG GTG ATG GTG ATG GTG ATG GTG GGT ACC CGC AAA
GGC AGA ATG CGC-3’) primers producing pRG101. Finally, the
PDI1 gene (without the signal peptide) was excised from pRG84
(Gauss et al. 2011) by digestion with Sacl and Xhol and introduced
into pRG101 generating pRG1035. ER retention of sPdilp is dis-
rupted by the presence of two additional amino acids at the protein’s
C-terminus (HDELLE).

pRG143, pRG144, pRG145, pRG146: Truncated versions of the
PDI1 gene were PCR-amplified from pRG84 using the following pri-
mer pairs: RG476 (5'-CCG AGC TCA CTA GTC CGG CTG TCG

CCG TTG TTG CTG ATC-3’) and RG477 (5’-CCC TGC AGC
TCG AGG TAG GGC AAG GCT TCC ACT TGC AACC-3')
(b-domain); RG475 (5’- CCG AGC TCA CTA GTG AGG CTG
TGG CCC CTG AAG ACT CC-3’) and RG477 (ab-domains);
RG475 and RG478 (5'- CCC TGC AGC TCG AGA CCT TTC
AAG AAG TCC TTA ACC AAAG-3’) (abb’-domains); RG476 and
RG478 (bb’-domains). To allow for expression of ER-retained pro-
teins, the respective PCR products were cloned into the Sacl and
Xhol restriction sites of pRG85 upstream of the HDEL sequence
thus replacing the PDI1 gene and yielding pRG143 (b), pRG144
(ab), pRG145 (abb’) and pRG146 (bb’).

pRG135, pRG136, pPRG137, pRG138: To allow for expression
and secretion of truncated Pdilp variants, the coding sequences of
pRG143, pPRG144, pRG145, and pRG146 were excised by Sacl and
Xhol. Fragments were ligated into the respective restriction sites of
pRG105 downstream of the gp67 signal sequence yielding pRG135
(b), pPRG136 (ab), pPRG137 (abb’) and pRG138 (bb’).


http://glycob.oxfordjournals.org/lookup/suppl/doi:10.1093/glycob/cwv058/-/DC1
http://glycob.oxfordjournals.org/lookup/suppl/doi:10.1093/glycob/cwv058/-/DC1
http://glycob.oxfordjournals.org/lookup/suppl/doi:10.1093/glycob/cwv058/-/DC1
http://glycob.oxfordjournals.org/lookup/suppl/doi:10.1093/glycob/cwv058/-/DC1

1346

| Hang et al.

Expression and purification of recombinant proteins

in insect cells

Standard procedures were used to generate recombinant baculoviruses
in Sf21 cells. Recombinant viruses were collected after 72 h. Viruses
were amplified by infecting Sf21 cell cultures with virus solution in a
1:10 and 1:100 (v/v) ratio. Expression of intracellular or secreted re-
combinant proteins was monitored by SDS-PAGE and immunoblotting
after each virus amplification step. For protein expression, T. 7i Hi5 cells
were diluted to 1 million cells per milliliter in shaker flasks and infected
1:100 (v/v) with recombinant viruses. For the analysis of site-specific
processing of sPdilp by GALT-1, sPdilp was expressed in Hi5 cells co-
infected with GALT-1 recombinant viruses.

Trichoplusia ni Hi5 cells were diluted to 1 million cells per milliliter
in shaker flasks and infected 1: 100 (v/v) with recombinant viruses.
Infected cells were incubated at 27°C for 48 h. To purify His;o-tagged
ER retained proteins, cells were pelleted by centrifugation (600 rcf,
5 min), washed with 1x PBS and lysed with lysis buffer [1% Triton
X-100, 1x Protease Inhibitor cocktail (Roche, 11873580001) in 1x
PBS]. The lysates were centrifuged at 3500 rcf for 10 min and the sol-
uble fraction was filtered using PES-membrane 0.2 pM filters (TPP). For
the purification of secreted proteins, the culture supernatant was cleared
by centrifugation at 3500 rcf for 10 min and filtered. Affinity purifica-
tion was performed on gravity flow columns filled with 1 mL NiNTA
beads (Protino, 745400.100) equilibrated either with 10 column vo-
lumes (CVs) of lysis buffer or medium. The bound fraction was washed
with 15 CV washing buffer (30 mM imidazole in 1x PBS) and proteins
were eluted with 4 CV of elution buffer (250 mM imidazole in 1x PBS).
Eluted fractions were concentrated on Amicon Ultra-4 Centrifugal
Filter Devices. For MS analysis, samples were prepared as described
in the “Sample preparation” paragraph. Proteins that were stored
after buffer exchange to 1x PBS and kept frozen at —20°C.

To purify GST-tagged M9Gn2-Pdilp, Hi$5 cells were infected with
recombinant virus in the presence of 10pM kifunensine
(Sigma-Aldrich, K1140-1MG) and incubated for 48 h. Mns1p was
purified from Hi5 cells 48 h after infection with recombinant virus.
Following cell lysis, proteins were bound to Gluthatione Sepharose
4B matrix (GE Healthcare, 17-0756-01). Bound proteins were washed
with 15 CV of 1x PBS and subsequently with 15 CV of PreScission
Protease (PSP; VWR, 27-0843-01) activity buffer (150 mM NaCl,
1 mM EDTA, 1 mM DTT in 50 mM Tris, pH 7.0). On column cleav-
age was performed by incubating bound proteins with 20 U of PSP in
1 mL of PSP activity buffer for 16 h. Released proteins were collected
by gravity flow. Sample was concentrated and the buffer was ex-
changed to Mns1p activity buffer (150 mM NaCl, 5 mM CaCl, in
20 mM MES, pH 7.0) (Karaveg and Moremen 2005).

In vitro Mns1p activity assay

Fifty micromolars of Pdilp were mixed with 0.5 pM Mns1p in total
volume of 85 pL and incubated at 37°C. Aliquots of 17 pL were taken
at different time points. Each aliquot was mixed with 3 uL of 100%
TCA, vortexed, and incubated on ice for 5 min. After centrifugation
at 20,000 x g and 4°C for 5 min, the pellet was washed three times
with 500 pL of ice cold acetone. The pellet was air dried and stored
at —20°C. For MS analysis, protein pellets were resuspended in
50 pl of 8 M urea in 50 mM ammonium bicarbonate (pH 8.5).

Sample preparation and glycopeptide analysis

by nano-HPLC-HCD-MS/MS

Purified proteins were loaded onto a filter device (Microcon YM-30,
Millipore) and washed three times with water. Usually, 50 pug was

reduced by 50 mM dithiothreitol in 50 mM ammonium bicarbonate
buffer (pH 8.5) at 37°C for 1h, following by alkylation with
65 mM iodoacetamide at 37°C in the dark for 1 h. After four washing
steps with ammonium bicarbonate buffer, proteins were digested by
trypsin (weight ratio 50 : 1, Promega, Cat. No. V5111) at 37°C for
16 h. Digested peptides and glycopeptides were collected by centrifu-
gation and dried in a speedvac. Samples were desalted by Zip-Tip C18
(Millipore) prior to nanoLC-MS/MS analysis. Samples were analyzed
on a calibrated LTQ-Orbitrap Velos mass spectrometer (Thermo
Fischer Scientific) coupled to an Eksigent-Nano-HPLC system (Eksi-
gent Technologies). Peptides were resuspended in 2.5% acetonitrile
with 0.1% formic acid and loaded onto a self-made tip column (75
pm x 80 mm) packed with reverse phase C18 material (AQ, 3 um
200 A, Bischoff GmbH). Peptides were eluted with a flow rate of
200 nL per minute by a gradient from 3 to 30% of solution B
(99.9% ACN, 0.1% FA) applied for 22 min, 50% B applied for
25 min, 97% B applied for 27 min. One scan cycle comprised of a full-
scan MS survey spectrum, followed by up to 10 sequential HCD MS/
MS on the most intense signals above a threshold of 2000. Full-scan
MS spectra (800-2000 m/z) were acquired in the FT-Orbitrap at a
resolution of 60,000 at 400 m/z, while HCD MS/MS spectra were re-
corded in the FT-Orbitrap at a resolution of 15,000 at 400 m/z. HCD
was performed with a target value of 1e5 and stepped collision energy
rolling from 35,40 and 45 V was applied. AGC target values were 5e5
for full FTMS. For all experiments, dynamic exclusion was used with a
single repeat count, 15 s repeat duration, and 60 s exclusion duration.

Identification and quantification of different glycoforms

sharing the same peptide backbone

MS and MS/MS data were processed into the Mascot generic format
(mgf) file. Extractmgf was written in Perl to perform the following
steps: glycopeptides were initially extracted from mgf file by identify-
ing glycan oxonium ions, [HexNAc]* 204.09 and [HexNAc + Hex]*
366.12. Glycopeptides corresponding to each site were further ob-
tained by sorting out the corresponding Y1 ion individually from ex-
tracted mgf file. All MS/MS spectra were confirmed manually. Here,
XCalibur 2.2 sp1.48 was used for data processing. For quantification,
extracted ion chromatography (XIC) of each glycoform was plotted by
its individual /7 with the mass tolerance of 5 ppm. Peak area was de-
fined manually and integrated by the program. The relative amount of
each glycoform sharing same peptide backbone was calculated as fol-
lowing equation:

Relative amount of each glycoform (%)

_ Peak area of each glycoform
" Sum of peak area of all glycoforms

x 100%.

Molecular modelling

Three-dimensional structure preparation

Initial starting coordinates for the a- and b- subdomains of Pdilp
were taken from PDB: 2BSE. Models were generated for the unglyco-
sylated domains and for a glycoform with M9Gn2 at site 4 (S4) using
the online glycoprotein builder available on GLYCAM-Web (Kirsch-
ner et al. 2008; Woods Group, 2005-2014). Using tleap (Case et al.
2014), the structures were placed in a truncated octahedron of TIP3P
(Jorgensen et al. 1983) water with an 8 A distance buffer from the
solute to the edge of the periodic box and 0.5 A spacing between sol-
ute and water molecules. Prior to solvation, all waters of crystalliza-
tion were removed, and the systems were neutralized with sodium
counter-ions.
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Energy minimization and molecular dynamics simulations

Energy minimization (10,000 steps of steepest descent, followed by
10,000 steps of conjugate gradient) was performed in a stepwise fash-
ion with initially a 5 kcal mol™" A~2 restraint applied to the solute
(protein and glycan) heavy atoms. This was followed by minimization
with restraints only on the glycan heavy atoms, before a final mini-
mization with no restraints on any atoms. Minimizations were per-
formed with sander.MPI in AMBER14 (Case et al. 2014).
Molecular dynamics simulations were performed with the CUDA im-
plementation of PMEMD (Gotz et al. 2012; Salomon-Ferrer et al.
2013) in AMBER14 using constant pressure (nPT) conditions. A Be-
rendsen barostat with a time constant of 1 ps was employed for pres-
sure regulation, while a Langevin thermostat with a collision
frequency of 2 ps~' was employed for temperature regulation. A non-
bonded interaction cutoff of 8 A was employed. Long-range electro-
statics were treated with the particle-mesh Ewald method (Darden
et al. 1993). Covalent bonds involving hydrogen were constrained
with the SHAKE algorithm allowing a time step of 2 fs (Ryckaert
et al. 1977). Cartesian restraints were applied to the protein Ca
atoms (5 kcal mol™' A=2) during a 100 ps heating stage from 5 to
300 K, which was followed by a 100 ps equilibration phase. All re-
straints were then removed for a 1 ns equilibration phase prior to a
500 ns production phase.

Data analysis

Root mean squared deviation (RMSD) of the a-domain: The cpptraj
(Roe and Cheatham 2013) module was used to extract 1000 snapshots
from each simulation at 500 ps intervals, these frames were aligned on
the b-domain of the crystal structure, and the RMSD computed for the
a-domain. Glycan branch accessibility: NACCESS (Hubbard and
Thornton 1993) was employed with a 6 A radius probe to compute
the accessibility of the non-reducing terminal disaccharides in the
A-, B- and C-branches of the glycan over 100 snapshots from the simu-
lation; the approximate end-to-end distance of the disaccharide being
12 A. The values were normalized relative to the accessibility of a
Mano1-2Mana disaccharide.

Glycan flux analysis of T. ni Golgi glycosylation network
Glycan flux analysis is based on the principle of metabolic flux ana-
lysis (MFA) and thus describes a steady state of the system. The glyco-
sylation network is regarded as an enclosed biological system, in
which the glycan structures are connected by fluxes v. The network
is characterized by the stoichiometric matrix S with the objective to
balance fluxes across glycan structures. The stoichiometric matrix is
an 7z (number of glycan structures) times 7 (number of fluxes) matrix
with the following logic:

S(i,j) < 0 glycanstructureiis a reactant in reaction,
S(#,j) = Oglycan structure i does not appear in reaction

S(i,j) > 0 glycanstructureiisa productin reactionj.

The change of glycan concentrations ¢ over time can be written as
the product of the stoichiometric matrix and the fluxes:

de(2)
W su) (1)

In MFA, a pseudo steady-state assumption is made for cell internal
metabolites, stating that internal species change much faster than the
measured external ones (Antoniewicz 2013). In glycan flux analysis,
this assumption is also valid considering the reported Golgi residence
time of 20-40 min which is much shorter than the culture duration

and any observed changes in glycosylation (Jimenez del Val et al.
2011). Therefore, equation (1) can be written as

Sv=0. )

The stoichiometric matrix S can be split into a Golgi internal stoi-
chiometric matrix S; and a stoichiometric matrix of the exchange
fluxes S, that relates external with internal glycan structures. Equation
(2) can be split accordingly:

Sil/i + Seve =0. (3)

Since in our case, S; is a square matrix with full rank, the inverse
S;* was used to solve equation (3):

vi = 7(8,‘)#&31/3. (4)

The measured glycans are considered as constant fluxes v, out of
the Golgi apparatus and were used to calculate the fluxes v; inside the
network. M9Gn2 was assumed as the only structure entering the late
ER and Golgi apparatus (Krambeck et al. 2009). Large glycosylation
networks often contain cycles and therefore more reactions than spe-
cies which leads to so-called underdetermined systems with multiple
possible flux distributions. However, in our case there are as many
measured glycan structures as there are internal fluxes and hence
S; is invertible leading to a unique solution of equation (4). It is
worth noting that enzymatic reactions are in principle reversible, yet
only the net fluxes can be derived from expressed glycan patterns.
Based on the computed fluxes, the conversion for every enzymatic
step was calculated by normalizing the effluxes with respect to the
influxes over each glycan species. Small differences early in the glyco-
sylation process such as a different mannosidase activity can signifi-
cantly change the entire glycosylation profile even if all reaction
further downstream are equally active on each site. This is mainly
due to a changing availability of substrates for each reaction, yet the
enzymes are not more or less occupied regarding all other glycopro-
teins which are simultaneously present in the Golgi apparatus. As a
consequence, the flux conversion of each individual step in the path-
way can be used to quantitatively compare the enzymatic preference
towards site-specific processing.

Supplementary data

Supplementary data for this article are available online at http:/
glycob.oxfordjournals.org/.
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