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Abstract The recently introduced entropic lattice Boltzmann model for multiphase flows
(Mazloomi et al. in Phys Rev Lett 114:174502, 2015) is used to simulate binary droplet col-
lisions. The entropy-based stabilization, together with a new polynomial equation of state,
enhances performance of the model and allow us to simulate droplet collision for various
Weber and Reynolds numbers and large liquid to vapor density ratio. Different types of
droplet collision outcomes, namely coalescence, stretching separation and reflexive separa-
tion are recovered in a range of impact parameter for two equal sized droplets. The results
demonstrated the essential role played by the surface tension, kinematic viscosity, impact
parameter and relative velocity in the droplet collision dynamics leading to coalescence or
separation collision outcomes. Comparison between numerical results and experiments in
both coalescence and separation collisions demonstrate viability of the presented model.

Keywords Entropic lattice Boltzmann method · Two-phase flow · Droplet collision
dynamics

1 Introduction

Study of binary droplet collisions sheds light on many applications across different scientific
disciplines, fromunderstanding cloud formation in climate theory to engineering applications
such as turbine blade cooling, ink-jet printing, spray coating, and spray combustion in diesel
internal combustion engines. The prediction of the collision dynamics of liquid droplets is
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considered to be a challenging and important problem in fluid dynamics [22] and has regularly
been used to benchmark various models for multiphase flows. Therefore, droplet collision
has been the subject of numerous investigations, ranging from experimental, analytical to
numerical studies. However, the complexity and the small scale motion encountered in such
problems has mostly limited the full investigation to either experimental visualization of
droplet collision images or analytical studies based on simplified models. Therefore, direct
numerical simulations focusing on the collision dynamics of liquid drops are indeed very
scarce [7]. Also, the numerical simulation of multiphase flows is a challenging subject due
to a number of issues related to the tracking of interfaces, mass conservation of each fluid,
and the treatments of large density ratio and surface tension.

Numerous experimental investigations of droplet collisions have been reported in the liter-
ature [3,9,25].Most of these studies illustrated the generalmotion of the droplet and provided
collision images without sufficient time resolution which makes it difficult to describe the
intricacies of the collision dynamics for instance. Hence, a large number of investigations
were performed analytically to provide information on the probability of occurrence of par-
ticular type of collision [11,35]. In general, most of the developed droplet collision models
lack comprehensiveness and have not been adequately validated. Moreover, most of the com-
monly used droplet interaction analytical models are based upon experimental observations
of the behavior of water droplets. On the other hand, experiments of Qian and Law [26] on
hydrocarbon drops at high pressure show that the results can be significantly different from
those of water drops at atmospheric pressure. Thus further development of numerical models
can help advance the understanding of the dynamics and behavior of droplets during the
collision process.

Numerical simulations can provide important details which are not easily observed exper-
imentally, such as velocity and vorticity field in both the liquid and vapor phases. This and
the superior flexibility of simulations in the choice of initial and boundary conditions as well
as fluid properties make the numerical simulation an important tool for predicting the signifi-
cant characteristics of fluid dynamics. For numerical simulations of binary droplet collisions,
several numerical methods have been used for tracking the liquid–gas interface, includ-
ing the Marker-And-Cell method, the front tracking method, level-set method, smoothed
particle hydrodynamic method and volume-of-fluid method (VOF) [1,23,34,36]. The VOF
methodology with high accuracy and low computational cost has been successfully applied
by Nikolopoulos et al. [23,24] to study the binary collisions of fluid droplets, and good
agreement was achieved between their simulations and the experimental results of Qian and
Law [26]. Chen et al. [4,5] predicted the droplet behavior after collision using an improved
VOF technique, and adaptive mesh refinement algorithm and mass transfer process. Dai
and Schmidt [6] used a three-dimensional moving-mesh unstructured finite volume solver to
investigate the effect of viscosity on the maximum deformation amplitude. However, these
numerical methods are limited by inherent complexities of the multiphase flows such as
tracking interface, change of mass and momentum across interface and bringing behavior of
the large density ratios between fluids and surface tension upon interface.

Recently, the lattice Boltzmann method (LBM) became mainstream approach to incom-
pressible and weakly compressible flows. Applications of LBM range from hydrodynamics
at large Reynolds numbers to flows at a micron scale, porous media, and multiphase flows
[32]. LBM solves a fully discrete kinetic equation for populations fi (x, t). Populations cor-
respond to discrete velocities vi , i = 0, . . . , N , which fit into a regular spatial lattice with
the nodes x. This enables a simple “stream along links and equilibrate at nodes ”realization
of the LBM algorithm. A limitation of the standard LBM is the inability [32] to attain low
viscosity because of numerical instabilities. Hence, large Reynolds numbers in the standard
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1422 A. Mazloomi Moqaddam et al.

LBM simulation can be achieved only by grid refinement. Recent theoretical development of
the entropic lattice Boltzmannmethod (ELBM) [2,14] alleviates this obstacle by restoring the
second law of thermodynamics (Boltzmann’s H-theorem). This basic physical requirement
renders ELBM nonlinearly stable numerically.

Various approaches on how to treat multiphase flows in the framework of LBM have been
presented (for a recent review, see e.g. [31] and references therein). Many of them followed
the idea first presented by Shan and Chen (SC) [30]. The SC approach relies on a microscopic
picture ofmultiphase flows, where an additional forcing term based on nearest neighbor inter-
actionmimics the effect intermolecular interaction. Further development of the SCmodelwas
undertaken by many authors, in particular [29] (the multirange pseudo-potential method) and
[18,39] (general equations of state). Interested reader can find a concise review of the to-date
status of the SC modeling of multiphase physics in [17]. The thermodynamic inconsistency
of SC-type models was explained by He and Doolen in [12] and constitutes the major reason
why we choose an alternative, and more intuitive approach due to Swift et al. [33] which is
based on a direct forcing of the Korteweg’s stress onto the lattice Boltzmann system.

With the focus on the droplet collisions, few LBM simulations can be found in the liter-
ature. Inamuro et al. [13] produced droplet collision results at Reynolds number of around
2000 andWeber number around 100 at density ratio of up to 50, employing projectionmethod
applied to the free energy model. Lycett-Brown et al. [20] developed a cascaded LBM [10]
realization of the SC model (based on a formulation of the cascaded LBM by Karlin [15]).
They simulated droplets collisions up to We = 100 and Re = 1000, with density ratio over
100. The aforementioned approach, however inherited the problems for the SC model and is
computationally intensive due to additional cost for incorporating central moments. Using
SC model with a MRT scheme is carried out by Luo et al. [19] to achieve Reynolds numbers
of up to approximately hundred and Weber number up to 100 at a density ratio around 50.

In this paper, we apply the recently introduced ELBM for two-phase fluid flows [21] at
both large density ratios and low viscosity so that one can simulate binary droplet collisions
for various Weber and Reynolds numbers. Moreover, a thermodynamically consistent free-
energy approachwithout further simplifications is employed. The difficulty in the treatment of
large density ratios is resolved by using a polynomial equation of state (EoS) and application
of the ELBM. This resolves the limitation on the viscosity typical to most free energy based
simulations reported in the literature.

The remainder of the paper is organized as follows: The ELBM for two-phase fluids [21]
is reviewed in Sect. 2. Validation of the method and numerical results on the binary droplet
collision are presented in Sect. 3. Finally, conclusions are drawn in Sect. 4.

2 Numerical Method

2.1 Entropic Lattice Boltzmann Method for Two-Phase Fluids

Here we use the recently proposed entropic lattice Boltzmannmodel for two-phase flows [21]
which we briefly review. The classical capillarity theory by van derWaals [37] and Korteweg
[16] is followed below. Free-energy functional is composed of a bulk free energy, �, and an
excess free energy stored at the liquid–vapor interface,

G =
∫ [

�(ρ, T ) + κ

2
|∇ρ|2

]
dx, (1)
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where κ is the surface tension coefficient, and ρ is the local density. Equation (1) implies
Korteweg’s stress [16] (see [8,28]),

P =
(
p − κρ∇2ρ − κ

2
|∇ρ|2

)
I + κ

(∇ρ
) ⊗ (∇ρ

)
, (2)

where p is the EoS, p = ρ(∂�/∂ρ) − �, and I is unit tensor.
ImplementationofKorteweg’s stress (2) in the latticeBoltzmann settingwasfirst suggested

by Swift et al. [33], and refined by Wagner and Li [38]. In the forcing method of implemen-
tation of multiphase models, the local flow velocity is altered by an amount δu = (F/ρ)δt ,
where δt = 1 is the lattice time step, and F is the force related to Korteweg’s stress,

F = ∇ · (
ρc2s I − P

)
. (3)

where c2s is the lattice speed of sound.
The entropic lattice Boltzmann equation is written,

fi
(
x + vi , t + 1

) − fi
(
x, t

) = αβ
[
f eqi

(
ρ, u

) − fi
(
x, t

)]

+
[
f eqi

(
ρ, u + δu

) − f eqi
(
ρ, u

)]
, (4)

where 0 < β < 1 is a parameter related to the kinematic viscosity, ν = μ/ρ = (β−1−1)c2s /2.
The equilibrium f eq is the minimizer of the discrete entropy function H under the constraints
of local conservation laws of mass and momentum, {ρ, ρu} = ∑N

i=0{1, vi }{ f eqi }, where

H =
N∑
i=0

fi ln
(
fi/Wi

)
, (5)

with Wi the lattice-specific weights. For the sake of computational efficiency, it suffices to
use the expansion of the minimization problem to order u3 (see also [27]),

f eqi = ρWi

(
1 + viαuα

c2s
+ uαuβ

2c4s

(
viαviβ − c2s δαβ

) + uαuβuγ

6c6s
viγ

(
viαviβ − 3c2s δαβ

))
. (6)

Key point is the parameter α in (4) which maintains the entropy balance in the relaxation
step at each node; and is available as the non-trivial root of the equation,

H
(
f + α

(
f eq − f

)) = H( f ). (7)

The last term on the right hand side of Eq. (4) is a specific realization of the forcing, the
so-called exact difference method (EDM) [18]. To this end, the difference from the standard
LB models for the two-phase flow is the ELBM relaxation (α is computed from the entropy
balance (7), as opposed to taking the fixed value α = 2).

2.2 Nonideal Equation of State

Finally, it remains to specify EoS p. A polynomial nonideal gas EoS of Ref. [21] is used in the
present work. In order to construct the polynomial EoS, we begin with the Peng–Robinson
(PR) EoS, as given by Yuan and Schaefer [39]:

pPR
(
ρ, T

) = ρRGT

1 − bPRρ
− aPRσ(T )ρ2

1 + 2bPRρ − b2PRρ2
, (8)

σ
(
T

) =
[
1 + (

0.37464 + 1.54226ω − 0.26992ω2)(1 − √
T/Tc

)]2
, (9)
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with aPR = 2/49, bPR = 2/21, RG = 1, and with the acentric factor ω = 0.344 correspond-
ing to water (see [39]). The choice of the parameters corresponds to the critical temperature
Tc = 0.0729. Next, a different EoS is constructed as a polynomial in both density and
temperature, in the form

p
(
ρ, T

) = ρRGT
(
1 + bρλ(ρ, T )

) − aρ2, (10)

with a = 9/49, b = 2/21 (the van der Waals parametrization, cf. [39]) and RG = 1.
Furthermore, function λ is the density-dependent collision probability [12] considered here
as a polynomial in density,

λ =
4∑

k=0

Ak(T )ρk, (11)

and where, in turn, functions Ak are polynomials of the temperature,

Ak(T ) =
m∑

n=0

aknT
n . (12)

The 5 × (m + 1) numerical coefficients akn in (12) are defined from matching the values of
the function (10) with the original PR EoS (8),

p
(
ρr , Ts

) = pPR
(
ρr , Ts

)
, r = 0, . . . , 4, s = 0, . . . ,m; (13)

where the density and the temperature values are chosen as follows: (i) For each selected
Ts , the fourth-order polynomial p(ρ, Ts) matches the isotherm pPR(ρ, Ti ) at the minimum,
the maximum, at the saturated vapor, at the saturated liquid and at the intercept (the latter
three points are the Maxwell equal area rule); (ii) (m + 1) values of the temperature for this
matching procedure [in other words, (m+1) PR isotherms] are selected uniformly in the sub-
critical regime, between the lowest value T0 = 0.04486 and the highest value Tm = 0.07042.
It was found that with m = 6, the polynomial EoS reproduces well the non-polynomial PR
EoS in the domain of interest. Numerical values of the coefficients in these polynomials are
given in Table 1. The use of the polynomial EoS (10) instead of the PR EoS is motivated
by the absence of the singularity in the former. Using the EoS (10), we were able to achieve
high density ratios in the dynamic regime, and also improve the performance of free energy
models.

Simulations were performed using the standard 27-velocity lattice, c2s = 1/3, with the
discrete velocities and the corresponding weights as follows:

vi =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0, 0) i = 0;
(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1, 2, . . . , 6;
(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, 8, . . . , 18;
(±1,±1,±1) i = 19, 20, . . . , 26.

(14)

Wi =

⎧⎪⎪⎨
⎪⎪⎩

8/27 i = 0;
2/27 i = 1, 2, . . . , 6;
1/54 i = 7, 8, . . . , 18;
1/216 i = 19, 20, . . . , 26.

(15)

Thermodynamic consistency of the present model was validated numerically by simulating
the coexistence curve as shown in Fig. 1. It can be seen that the densities of liquid and vapor
phases in the simulation agree well with the values predicted by Maxwell’s equal area rule.
Themaximal density ratio r = ρl/ρv of liquid and vapor phases achieved in these simulations
was r > 800.
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Fig. 1 The coexistence curve.
Symbol ELBM simulation; line
Maxwell’s equal area rule

Fig. 2 Schematic representation
of the binary droplet collision

3 Results and Discussion

Collision setup for equal-size droplets is investigated using the above method, as sketched in
Fig. 2. Two liquid droplets of diameter D0 are initially placed 1.5D0 apart, with the centers
offset B, in equilibrium with the surrounding vapor. Droplets were set into motion with the
initial relative velocity U0. In general, depending on the sizes of the impinging drops, their
kinetic energy, the impact parameter and thefluids properties, the outcomeof the collisionmay
differ. All these factors can be parametrized in terms of a group of dimensionless numbers;
namely the Weber number (We), the Reynolds number (Re) and the impact parameter (χ),

Re = U0D0

νl
, We = ρlU 2

0 D0

σ
, χ = B

D0
, (16)

where σ is surface tension and ρl and νl are density and viscosity of liquid droplet, respec-
tively.

A collision occurs when 0 ≤ χ < 1 and U0 > 0. When B = 0 a head-on collision
occurs otherwise an off-center collision happens. The material properties of the fluids used
in the present simulations are σ = 0.353, ρl = 7.8, ρv = 0.07 and νl = νv in range of 0.1
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t=0 (ms) t=0.16

t=0.78

t=2.02

t=0.92

t=2.1

t=1.23

t=0.2t=0.05

t=2.88t=2.74t=2.27

t=1.8t=1.6

t=0.66

(a)

t=0 (ms) t=0.054

t=2.05 t=2.34 t=2.4

t=1.87t=1.78t=1.45 t=1.62

t=1.19t=0.911

t=0.235

t=0.715 t=0.81

t=0.154

(b)

Fig. 3 Sequence of coalescence observed for binary collision of equal size droplets atWe = 32.8,Re = 210.8,
χ = 0.08 and D0 = 318μm. a Experiment of Qian and Law (Ref. [26]); b simulation

to 0.01, depending on the Reynolds numbers. Periodic boundary condition was set for all
the six sides of the computational domain. At the beginning of the simulation, t = 0, the
droplets are seeded with a gap (1.5D0) and a uniform velocity U0/2 is imposed on each of
them in opposite directions without any driving external force while the surrounding vapor
is initialized in a static state. The computational domain is determined according to the size
of the droplets and the stretching they undergo. The following simulations, unless otherwise
stated,were performed on a 8D0×4D0×4D0 gridwith an initial droplet diameter of D0 = 80
grid points. In this study all the parameters and variables are given in dimensionless units
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t=0 (ms) t=0.05

t=1.85

t=0.76 t=0.85 t=0.93 t=1.25

t=0.67t=0.56t=0.24 t=0.34

t=0.13t=0.1

t=2.36t=1.93

(a)

t=0 (ms) t=0.051

t=0.847 t=0.882 t=1.044 t=1.38

t=0.802t=0.597t=0.23 t=0.325

t=0.128t=0.093

t=2.23t=1.78 t=1.84

(b)

Fig. 4 Near head-on reflexive separation collision at We = 37.2, Re = 228.0, χ = 0.01 and D0 = 328μm.
a Experiment of Qian and Law (Ref. [26]); b simulation

after rescaling with the relative velocity U0 for the velocity, with the droplet initial diameter
D0 for the length, and with D0/U0 for the time.

It is known that, depending on the Weber number and the impact parameter, different
types of collision outcomes can be observed in the experiment [3]. These distinct regimes
are specified as coalescence and bouncing at low to moderate We, reflexive separation for
higher We and lower impact parameter, and stretching separation for both higher We and
higher impact parameter. Before studying various regimes of droplet collisions, validation of
the method is required. To that end, we compare the simulation results with those reported
by experiments [26].
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t = 0* 1.06

12.011.29

9.538.828.127.06

3.88 4.59 5.29 6.35

2.471.41

13.4112.71

Fig. 5 Time evolution of the head-on droplet collision at We = 50, Re = 263 and χ = 0.0

The result of a near head-on collision at We = 32.8, Re = 210.8 and χ = 0.08 is
shown in Fig. 3, and it clearly reproduces the experiments by Qian and Law [26] also shown
in the same figure. A sequence of configurations during the collision is generated from the
simulation for a direct comparison with the experimentally observed shapes. Tomake a direct
comparison, the simulation starts at the moment when the two drops are separated by the
same distance as that in the experiment at t = 0. It is evident from Fig. 3 that the process of
the collision is well captured by the simulation.

Figure 4 compares the simulation results with another experimental outcome which leads
to a reflexive separation for near head-on droplet collision. Direct comparison of the simu-
lation results with experiments reveal a reasonable agreement. In both the comparisons, the
droplet shapes as a function of collision time are reproduced satisfactorily. Grid size for these
simulations is 150 × 150 × 150 with D0 = 30.

The time evolution of droplets shape at We = 50, Re = 263 and χ = 0 is shown in Fig.
5. It is clearly seen from Fig. 5 that after two droplets collide head-on, a disk-like droplet
is formed at t∗ = 2.47. Large curvature at the circumference of the disk-like droplet raises
the pressure difference between the inner and the outer regions caused by surface tension
effects. As a result, the disk contracts radially inwards from t∗ = 2.47 to t∗ = 4.59 and
pushes the liquid outwards at t∗ = 5.29 from its center to form a liquid cylinder at t∗ = 7.06.
After forming rounded ends at t∗ = 9.53, the liquid cylinder oscillates to become a spherical
droplet. Coalescence collision is clearly the outcome of this type of collision.

Figure 6 shows the simulation results of time evolution of head-on collision at We = 76
and Re = 324. Results of this simulation indicate deformation of the coalesced droplet
increases as the Weber number keeps increasing. Similar to previous case, after two droplet
collide, they initially form an outward spreading disk, this disk eventually contracts because
of surface tension and creates a liquid cylinder which stretches out along initial coalescence
axis (t∗ = 6.96 to t∗ = 14.8) until the two end-drops are connected by a ligament. At
t∗ = 16.1, the inertia overcomes the surface tension forces and this results in breaking of
the ligament. Eventually, two separate droplets are seen in this type of collision which also
belongs to the reflexive separation class.
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t = 0* 0.87

14.80

10.01

13.93

12.1910.888.70

7.846.965.664.79

3.051.74

16.9816.10

Fig. 6 Time evolution of the reflexive separation collision at We = 64.3, Re = 324.2, χ = 0.0

Off-center droplet collisions have been simulated for the sameWeber and Reynolds num-
ber while impact parameter varied between 0.1 and 0.82. Simulation results are shown in
Fig. 7. Off-center collisions resulting in a coalescence are shown in Fig. 7a, b and c. In the
range of χ = 0.1–0.3, the flow gained during the coalescence includes radial flows and axial
flows which result in spherical rear parts of the colliding drops. The radial flow expands
the colliding drops in the radial direction resulting in a thin liquid sheet call lamella inside
the torus. Because of the extra axial momentum caused by high Weber number, the lamella
ruptures and results in a small liquid mass in the center and the surrounding torus. One can
see in Fig. 7a to c that the torus contracts and connects with the small droplet in middle under
surface tension effects, and ends up in a full coalescence.

If the Weber and the Reynolds number are kept the same as in the above cases but the
impact parameter is increased, the regime of stretching separation is observed, Fig. 7d, e
and f. In the regime of stretching separation, the collision may produce one or more satellite
droplets between the larger trailing (primary) drops. The capillary-wave instability and the
end-pinching are two conjectured reasons for the liquid ligament breakup [3,26]. Figure 7d
shows that the two ending droplets are pinched off from the liquid cylinderwith a liquid thread
left in the middle. The liquid thread oscillates and eventually becomes a satellite droplet.

The collision regime of stretching separation in which lobe-shaped drops are formed
after collision, are shown in Fig. 7e and f. One can observe a strong rotational motion during
droplet formation causedby large impact parameter inFig. 7e.Owing to this rotation, a slender
liquid cylinder is generated in between and then disintegrates into smaller drops. The typical
interface width observed in our simulations varies from two to five grid points depending on
the radius of curvature and the dynamics of the droplet. If the impact parameter become larger
(Fig. 7f), only a small portion of the droplets touch each other and the remaining portion of
the droplets tend to move in the direction of their initial velocity. Therefore, a long liquid
filament is generated between the trailing and leading droplets before eventually breaking up
into a very small liquid filament in the middle as shown in Fig. 7f.

123



Simulation of Droplets Collisions Using Two-Phase. . . 1431

Time

(a) χ =0.1

=0.2χ(b)

=0.3χ(c)

=0.41χ(d)

=0.6χ(e)

=0.82χ(f)

Fig. 7 Process of the binary droplet collisions for various impact parameter at We = 76 and Re = 262

4 Conclusion

We used the entropic lattice Boltzmann method for two-phase flows [21] to simulate three-
dimensional binary droplet collisions for various Weber numbers and impact parameters.
Low viscosity is achieved due to the use of entropic approach while the large density ratios
are attained by employing polynomial EoS. Although the density ratio of the liquid and vapor
phases are not as high as in the experiments (typically of the order 1000) it is clear that the
vapor phase has minimal influence on the liquid phase (due to density ratio of around 100)
and this is sufficient for us to recover all the experimental results. The free energy model
together with the entropic approach was shown to be a reliable tool for predicting droplet
dynamics. This fills in the gap in the literaturewheremost of the droplet dynamics simulations
so far were performed using the Shan–Chen model because of the drawbacks of the previous
formulations of the free energy model. The method [21] was applied to equal size binary
droplet collisions, and all three types of expected collision regimes, coalescence, reflexive
separation and stretching separation were clearly observed. Good agreement between the
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simulation results and experimental observationswas demonstrated. A number of simulations
were performed to determine the influence of Weber number and impact parameter. Further
simulations by varying Reynolds numbers, Weber numbers and the sizes of the colliding
droplets are underway and will be reported elsewhere. Simulation of a droplet impacting on
a solid surface are planned for the near future.
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