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—— Abstract

The notion of limits of dense graphs was invented, among other reasons, to attack problems in
extremal graph theory. It is straightforward to define limits of order types in analogy with limits
of graphs, and this paper examines how to adapt to this setting two approaches developed to
study limits of dense graphs.

We first consider flag algebras, which were used to open various questions on graphs to
mechanical solving via semidefinite programming. We define flag algebras of order types, and
use them to obtain, via the semidefinite method, new lower bounds on the density of 5- or 6-tuples
in convex position in arbitrary point sets, as well as some inequalities expressing the difficulty of
sampling order types uniformly.

We next consider graphons, a representation of limits of dense graphs that enable their study
by continuous probabilistic or analytic methods. We investigate how planar measures fare as
a candidate analogue of graphons for limits of order types. We show that the map sending a
measure to its associated limit is continuous and, if restricted to uniform measures on compact
convex sets, a homeomorphism. We prove, however, that this map is not surjective. Finally,
we examine a limit of order types similar to classical constructions in combinatorial geometry
(Erdés-Szekeres, Horton ...) and show that it cannot be represented by any somewhere regular
measure; we analyze this example via an analogue of Sylvester’s problem on the probability that
k random points are in convex position.
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1 Introduction

The order type of a point set is a combinatorial encoding of the respective positions of its
elements that suffices to determine many of its properties. For instance, the order type
determines the halving lines or more generally the k-sets of the point set, which graphs admit
crossing-free straight line drawings with vertices supported on that point set, the structure of
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its simplicial depth partition, etc. Order types have received continued attention in discrete
and computational geometry since the 1980’s and are known to be rather intricate objects,
for instance difficult to axiomatise [13].

In this paper, we report on an effort to apply to order types ideas from the theories
of demnse graph limits developed by Borgs, Chayes, Lovasz, Sos, Szegedy and Vesztergombi
and flag algebras developed by Razborov. While order types can be defined for points in d
dimensions, in topological spaces, possibly with alignment, etc, all point sets considered in
this paper are finite subsets of the euclidean plane, with no aligned triple.

Order types. Formally, order types are defined as follows. Define the orientation of a
triangle pgr in the plane as clockwise (CW) if 7 lies to the right of the line pg oriented from

p to ¢ and counter-clockwise (CCW) if r lies to the left of that

"o = ,‘ ] oriented line. (So the orientation of gpr is different from that of
Y, pgr.) We say that two planar point sets P and @ have the same

cow k V,ﬂ// oW order type if there exists a bijection f : P — @ that preserves
/‘ » orientations: for any triple of pairwise distinct points p,q,r € P

the triangles pgr and f(p)f(q)f(r) have the same orientation. The
relation of having the same order type is easily checked to be an equivalence relation; the
equivalence class, for this relation, of a finite point set P is called the order type of P. A
point set P with order type w is called a realization of w.

When convenient, we extend to order types any notion that can be defined on a set of
points and does not depend on a particular choice of realization. For instance we define
the size of an order type w as the cardinality |w| of any of its realization. We adopt the
convention that there is exactly one order type of each of the sizes 0, 1 and 2. We used the
comprehensive list of all the order types of size up to 11, which was made available by Oswin
Aichholzer ! based on his work with Aurenhammer and Krasser [2] on the enumeration of
order types. Throughout this paper, all non-trivial facts we use with reference on order types
of small size can be traced back to that resource. We let O denote the set of order types
and O, the set of order types of size n.

Convergent sequences and limits of order types. We define the density p(w,w’) of an
order type w in another order type w’ as the probability that |w| random points chosen
uniformly from a point set realizing w’ have order type w. (Observe that this probability
depends solely on the order types and not on the choice of realization.) We say that a
sequence {wy, }nen of order types converges if the size |w,,| goes to infinity as n goes to infinity,
and if for any fixed order type w the sequence of densities p(w,w,,) converges. The limit of a
convergent sequence of order types {w, }nen is the map

{ O — [0,1]

w = im0 plw, wy)

A standard compactness argument reveals that limits of order types abound. Indeed, for
each element w, in a sequence of order types, the map w € O — p(w,w,) can be seen as
a point in [0, 1N, which is compact by Tychonoff’s theorem. Any sequence of order types
whose size go to infinity therefore contains a convergent subsequence, and many extremal
properties of point sets can be expressed in terms of limits of order types.

! http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
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Problems and results. Let ¢ denote the order type of k points in convex position,
convg(n) the minimum number of convex k-gons in a set of n points in the plane, and
¢ = limy, o0 convg(n)/ (Z) their minimum density. Determining convy(n) and ¢ are classi-
cal problems in discrete geometry; see eg [6, Section 8.4, Problem 1]. Our first results are
the following new lower bounds:

» Proposition 1. ¢; > 0.0608516 and cg > 0.0018311.

The best upper bounds we are aware of on these numbers are c¢5 < 0.0625 and cg < 0.005822
and we are not aware of previously known lower bounds. We prove Proposition 1 by a
reformulation of limits of order types as positive homomorphisms from a so-called flag algebra
of order types into R (see Proposition 8); this point of view allows a semidefinite programming
formulation of the search for inequalities satisfied by limits of order types. Specifically, we
argue that for any limit of order type ¢

((05) > 0.0608516  and  £(cg) > 0.0018311.

The number ¢4 corresponds to the celebrated rectilinear crossing number of the complete graph
and has been extensively investigated; the best lower bound we could obtain on ¢4 via flag
algebra is ¢4 > 0.37843917, which is inferior to the best known bound ¢4 > 277/729 ~ 0.3799
(the best known upper bound being 83247328/218791125 =~ 0.3804). We refer the interested
reader to the survey of Abrego, Fernandez-Merchant and Salazar [1].

Probabilistic constructions are sometimes effective ways of finding extremal combinatorial
structures, a textbook example being the lower bound on Ramsey numbers for graphs. It is
of course easy to generate a random order type, for instance by sampling i.i.d. some measure
over R?. Tt is not clear, however, how well such a method samples the space of order types,
and hence how effective it would be to test conjectures and search for extremal examples (see
eg [6, p 326]). Sampling order types of a given size uniformly looks difficult, as suggested
by the lack of closed formulas for counting them, but we know of no formal justification
of the hardness of this problem. As it turns out, limits of order types can also be defined
as families of probability distributions on order types with certain internal consistencies
(see Proposition 6) and our second result, also obtained by the semidefinite method of flag
algebras, shows that a broad class of random generation method must exhibit some bias:

» Proposition 2. For any limit of order types £ there exist two order types wi,ws of size 6
such that £(wy) > 1.8208 £(wz) > 0.

This inevitability of bias applies in particular to the random generation of order types by
independent sampling of points from any measure over R?. Specifically, let 1 be a finite
measure over R? and for any order type w let p(w, 1) denote the probability that |w| random
points chosen independently from @u realize w; if every line is negligible for p then
¢, w s p(w, 1) is a limit of order types (Lemma 7) and Proposition 2 applies.

Some hard problems in extremal graph theory were solved by representing limits of graphs
by continuous functions, called graphons; a celebrated example is the application of large
deviations principles to random Erdds-Renyi graphs G(n,p) conditioned on the rare event of
having triangle density ¢ for some ¢ > p [10], or on having a fixed degree sequence. At the
heart of these results lies the fact that the relation between graphons and limits of graphs is
not only a bijection, but an actual homeomorphism when both spaces are equipped with
the adequate topologies. Since every finite measure p over R? (for which lines are negligible)
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defines a limit of order types ¢, it is natural to wonder if such measures can represent all
limits of order types, and whether this representation can be made an homeomorphism.
Let £ denote the space of limits of order types, endowed with the topology of the metric

d(ly,ly) ==Y 27" |y (wi) — Lo (w;)], (1)
i=1

where {w1,ws, ...} is some arbitrary enumeration of the set of order types. We first show that
the map p — £, from the space of finite measures over R? for which every line is negligible,

equipped with the topology of the weak convergence, into £, is continuous (Proposition 10).

We next consider the special case of restrictions of the Lebesgue measure (the area) to
compact convex sets with non empty interior (convez bodies). Let K denote the quotient of
the space of convex bodies by affine transforms: if K is a convex body, [K] € K is the class
of convex bodies affinely equivalent to K. We equip K with the Banach-Mazur distance?
dpu, and remark that if K is a convex body and py is the uniform measure on K then the
limit of order types ¢, depends only on [K]. We prove:

» Theorem 3. Let K and K’ be two planar conver bodies.

(i) If for any w € O we have p(w, ux) = p(w, pk) then K and K' are affinely equivalent.
(ii) For any w € O we have |p(w, pr) — p(w, pr)| < 2|w|dpp (K, K').

As a consequence, the map [K] € IC— £, € L is a homeomorphism to its image.

The type of rigidity expressed by Theorem 3 extends to a broader class of measures (see the
journal version).

We next show that there exists a limit of order types that cannot be represented, in the
sense defined above, by a measure. The gist of the construction is to consider a sequence of
measures whose weak limit (in the measure sense) contains a Dirac mass. Specifically, for any
real t € (0,1), let ®; be a probability distribution over R? supported on two concentric circles,
with radii 1 and ¢, respectively. Each of the two circles has ®;-measure 1/2, distributed
proportionally to the length on that circle. We denote by ¢g, the limit of order types
associated to ®; (¢f Lemma 7) and we let £ be the limit of a convergent sub-sequence of
{€o,,, tnen=. Here we prove:

» Proposition 4. If yu is a compactly supported measure over R? then there exists w € O
such that p(w, 1) # Lo (w).

The proof that the compactness assumption can be removed is postponed to the journal
version.

We finally examine a variation on constructions of Erdds and Szekeres [7] and Horton [8]
to construct a limit of order types that no measure that is somewhere regular can represent.
We first define inductively a sequence { P, },en of point sets. The set Py consists of a single
point. Assuming P, has been constructed, we let P, 1 to be the union of two congruent
copies of P,, P? and P}, so that the following is true: any point in P} lies above every line
spanned by two points from P, any point from P? lies below every line spanned by two
points from P!, and the least 2 coordinate of a point in P} is greater than the greatest x
coordinate of a point in P2. We then let w,, denote the order type of P, and let ¢z denote
the limit of some convergent subsequence of {wy,}.

? Recall that dpa is dpa (K], [K']) :=In (inf{r : € RT, 34 € GA(2,R) : K C AK' C rK}) where rK
denotes a scaling of K by a factor r; we abuse the terminology here as it is a distance only for symmetric
convex sets.
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» Proposition 5. If i is a measure over R? that is, on an open set of positive pu-measure,
absolutely continuous to either the Lebesque measure or the length measure on a C? curve
then there exists k > 4 such that p(og, 1) > Lr (o).

Our proof hinges on the fact that when k — oo, €5 (o) decays faster than p(o, ) for any of
the measures considered. For perspective, recall that it is known that the rectilinear crossing
number equals the infimum, over all open sets U C R? with finite Lebesgue measure, of
p(e4, ), where py is the Lebesgue measure restricted to U [12].

2 Limits of order types

Order types can be understood as equivalence classes of chirotopes under the action of
permutations (see below). As such, they are an example of models in the language of
Razborov [11], and the theory of limits of order types is a special case of Razborov’s work.
In this section, we give a geometric presentation of the various faces of limits of order types.
We intend the presentation to be as self-contained as possible, and refer to general results of
Razborov when needed.

Limits as probability distributions on order types. The split probability p (w',w”;w), where
w',w"”,w are order types, is the probability that a random partition of a point set realizing w
into two classes of sizes |w’| and |w”|, chosen uniformly among all such partitions, produces two
sets with respective order types w’ and w”. (In particular p (W', w”;w) = 0 if |w| # |w1 |+ |wa].)

Fix two order types w’,w” € O, consider a converging sequence {wy, }nen of order types,
and let ng be such that |w,| > |w’| + |w”| for any n > ng. For any n > ng let

an =pw wy)pw”,w,)  and B, = Z p(w',w";w)p(w, wy).

we(’)wqﬂwu‘

Now, fix some point set P with order type w,. On the one hand, «,, equals the probability
that two independent events both happens: (i) that a set P’ of |w’| random points chosen
uniformly from P have order type w’, and (ii) that another set P” of |w”| random points
chosen uniformly from P have order type w”. On the other hand, observe that ,, equals the
probability that (i) and (ii) happen and that P’ and P” are disjoint. The difference |a, — ;|
is therefore bounded from above by the probability that P’ and P” intersect. Bounding from
above the probability that P’ and P” have an intersection of one or more elements by the
expected size of P’ N P”, we have

/! "
P onple w) = Y plel e wp(w,wn)| <E(P 0P = LI )
wGO‘W/‘Jr‘W//‘ |Wn‘
Taking n — oo in (2) we see that every limit of order types ¢ satisfies
Vo', €0, LW = Y pwww)l(w). (3)

wEOlw/‘+‘W//‘

These internal consistency relations provide the following alternative characterization of
limits as families of distributions on order types:

» Proposition 6 (Lovasz and Szegedy [9, Theorem 2.2], Razborov [11, Theorem 3.3]). A
function € : O = R is a limit of order types if and only if it satisfies Condition (3) and for
every n € N the restriction £|o,, is a probability distribution on O,,.
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Limits from measures over R2. As spelled out in the paragraph following Proposition 2,
measures over R? provide examples of limits of order types.

» Lemma 7. The map {,, : w € O p(w, ) is a limit of order types if and only if ju is a
measure for which every line is negligible.

Proof. Assume that ¢, is a limit of order types and let {wy }nen be a sequence converging
to p. Let .. denote the order type of size 3. We have
ploop) =Lu(-) = lim p(,wp) =1

n—oo

so three random points chosen independently from @ u are aligned with probability 0,
and every line is negligible for pu.

Conversely, assume that p is a measure for which every line is negligible. For every
n > 3 the restriction of ¢, to O, is a probability distribution. Moreover, for any order types
w',w"” € O we have

Pr,(w")Pr,(w") = Z Pr,(w)p(w',w";w)

wGOM/‘ku‘

since the union of two independent random sets of sizes |w;i| and |ws| has size |wi| + |wa|
almost surely. Proposition 6 implies that ¢, is a limit of order types. |

Limits as positive algebra homomorphisms. Let {w,},cn be a sequence of order types
converging to a limit £. Let w € O, let k > |w| and let ng be large enough so that |w,| > &
for n > ng. A simple conditioning argument yields that for any n > ny,

p(w’wn) = Z p(mw’)p(w/,wn).

w’ €Oy

Indeed, the probability that a random sample realizes w is the same if we sample uniformly |w|
points from a realization of w,,, and if we sample k points uniformly from that realization,
then select a subset of |w| of these & points uniformly. It follows that any limit ¢ of order
types satisfies:
Vw € OVE > |w|, fw)= Y plw,w)l(w). (4)
w' €0y

Now, let RO be the set of all finite formal linear combinations of elements of O with real
coefficients and consider the quotient vector space

A=RO/R  where K= Vect{w - Z plw,ww 1w e (9}.

W €041

We define a product on O by

Ywi,ws € O, w1 X wo = Z plwr, wa; w)w (5)
WEO|wy | +]wz|

and extend it linearly to RO. This extension is compatible with the quotient by £ [11,
Lemma 2.4] and therefore turns A into an algebra.

We call an algebra homomorphism from A to R positive if it maps every element of O to
a non-negative real, and denote by Hom™ (A, R) the set of positive algebra homomorphism
from A to R. (Note that any algebra homomorphism sends -, the order-type of size one, to
the real 1 as it is the neutral element for the product on order types.)
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» Proposition 8 ([11, Theorem 3.3b]). A map f : O — R is a limit of order types if
and only if its linear extension is compatible with the quotient by K and defines a positive
homomorphism from A to R.

We write that an element of A4 is non-negative when its image under any positive
homomorphisms is non-negative. The algebra A allows us to compute effectively with density
relations that hold for every limit £.

» Example 9. Let us denote by - the order type on one point, by - = and .  the two
order types of size four and by - -, ~ - Jand by .. the three order types of size five,
seen as elements of A. From Identity (4) we get
. 3 .. 1 . . .. .
= D g amd k04 L= )

Since for any limit of order types ¢ we have £(-) = 1, the above easily implies that ¢(o4) > 1/5.

Using again Identity (4), and the non-negativity of ..  we then obtain:
2 . .. 3 . .. . .. 3
— . . > _ . . . .. p— —_
Sz -t )=l -k

and £(o5) > 30(o4) — 2 for any limit of order types £.

3 The semidefinite method for order types

Let us give an intuition of how the semidefinite method works on an example. A simple
(mechanical) examination of 6405 order types reveals that p(o4,w) > 19/70 for any w € Os.
With Identity (4) this implies = = > 19/70 - or equivalently ¢y > 19/70 > 0.2714. Observe
that for any C' € A and any (linear extension of a) limit of order types ¢ we have ¢(C x C) =
¢(C)? > 0 by Proposition 8. We thus have at our command an infinite source of inequalities
to consider to try and improve the above bounds. For instance, a tedious but elementary
computation yields that

6 .. 11 . \? 208819
(25 <o T 125 - ) T 1003750 2 YT 2 G
weO0sg w€Osg
where a,, < p(o4,w) for every w € Og. This implies that £(¢4) > 298819/1093750 > 0.2732

for any limit of order types £. The search for interesting combinations of such inequalities
can be done by semidefinite programming.

3.1 Improving the semidefinite method via rooting and averaging

The effectiveness of the semidefinite method for limits of graphs was greatly enhanced by
considering partially labelled graphs. We unfold here a similar machinery, using some blend
of order types and chirotopes.

Partially labelled point sets, flags, o-flags and A°. A point set partially labelled by a
finite set Z (the labels) is a finite point set P together with some injective map L : Z — P;
we will write this (P, £, L) when we need to make explicit the set of labels and the label map.
We say that two partially labelled point sets (P, Z, L) and (P’, Z, L) have the same flag if
there exists a bijection ¢ : P — P’ that preserves both the orientation and the labelling, the
latter meaning that ¢(L(:)) = L'(4) for any ¢ € Z. The relation of having the same flag is an
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equivalence relation, and a flag is an equivalence class for this relation. Again, we call any
partially labelled point set a realization of its equivalence class, and the size |7] of a flag 7 is
the cardinality of any of its realizations.

We call a flag where all the points are labelled, ie where |P| = | Z] in some realization
(P, Z,L), a Z-chirotope. (When Z = [k] = {1,2,...,k} a Z-chirotope coincides with the
classical notion of chirotope.) Discarding the unlabelled part of a flag 7 with label set Z
yields some Z-chirotope o called the root of 7. We call a flag with root ¢ a o-flag and we
denote by X7 the set of o-flags. The unlabelling 7% of a flag T with realization (P, Z, L) is
the order type of P.

Let Z be a set of labels and o a Z-chirotope. We define densities and split probabilities
for o-flags like for order types. Namely, let 7,7’ and 7" be o-flags realized, respectively, by
(P,Z,L) and (P, Z,L") and (P”,Z,L"). The density of 7 in 7" is the probability that for a
random subset S of size |P| — |Z|, chosen uniformly in P’ \ L'(Z), the partially labelled set
(SUL'(2),Z,L') has flag 7. The split probability p(r,7';7") is the probability that for a
random subset S of size |P| — | Z], chosen uniformly in P”\ L"”(Z), the partially labelled set
(SUL"(2),Z,L") and (P"\ S, Z,L") have, respectively, flags 7 and 7’.

We can finally define an algebra of o-flags as for order types. We equip the quotient
vector space

A7 =RX7/R”  where 87 = Vect{w — Z plw,w ' we X”}
w'exe”
lwl+1

"

by the linear extension of the product defined on X7 by 7x7" =%, o p(r, 777"

ITI+17" =]

Rooted homomorphisms and averaging. The use of the A%’s to study A relies on three
tools which we now introduce. We first define an embedding of a Z-chirotope in an order type
w as a o-flag with root o and unlabelling w. We use random embeddings with the following
distribution in mind: fix some point set realizing w, consider the set I of injections f : Z — P
such that (P, Z, f) is a o-flag, choose some injection f,. from I uniformly at random, and
consider the flag of (P, Z, f,.). We call this the labelling distribution on embeddings of o
in w.

Next, we associate to any convergent sequence of order types {wn}nen, and for any
Z-chirotope o, a probability distribution on Hom™ (A%, R). For any n € N, the labelling
distribution on embeddings of ¢ in w,, defines a probability distribution P2 on mappings
from A% to R; specifically, for each embedding 6,, of ¢ in w,, we consider the map

o A7 — R
LT e p(r0)

and assign to it the same probability, under P¢, as the probability of 8,, under the labelling
distribution. Since p(w,wy,) converges as n — oo for every w € O, the sequence {P%},,en
weakly converges to a Borel probability measure on Hom™ (A%, R) [11, Theorems 3.12 and
3.13] which we denote by P§. Moreover, if ¢(6”) > 0 then the homomorphism induced by ¢
determines the probability distribution P7 [11, Theorem 3.5].

We finally define, for any Z-chirotope o, an averaging (or downward) operator [-]o :

A7 — A as the linear operator defined on the elements of 7 € X7 by [7], := pZ-7?, where p?

is the probability that a random embedding of ¢ to 7% (for the labelling distribution) equals 7.

Here are a few examples of o-flags, where ¢ = 123 is the CCW chirotope of size 3:

|[ e :|:| 1 . |:|: . 3 ]] B o« . |:|: 3e :|] . .
- 2 - . - 8 .
1o +2 Jlq93 . . e 22 Jlq93 o« . 1o 22 Jlq98 .

o=
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For any given Z-chirotope ¢ and a limit of order types £, we have the following important
identity [11, Lemma 3.11]:

vred, (i) =£(el,) | o (r)dPy. ”)
¢° €Hom™ (A7 R)

In particular, £([C?],) > 0 for any C? € A” such that ¢?(C?) > 0 almost surely for

$° € Hom™ (A%, R), relatively to P¢; for any limit of order types ¢ and any Z-chirotope o

we therefore have

VO € A7, ¢ ([[(00)2]]6) > 0. (8)

3.2 The semidefinite method for order types

The operator [-], is linear, so for every ¢ € Hom™ (A, R), any A{, A3,..., A € A°, and any
non-negative reals 21, 29, ..., 27, we have

S| D (A7) > 0.

€[] -

For any finite set of flags S C O and for any real, symmetric, positive semidefinite matrix
M of size |S| x |S|, we have ¢ ([vE Mvg] J) > 0, where vg is the vector in (A”)IS‘ whose ith
coordinate equals the ith element of S (for some given order). This recasts the search for a
good “positive” quadratic combination as a semidefinite programming problem.

Let N be an integer, f = ZweoN fow some target function, and o1, ..., 0% a finite list of
chirotopes so that |o;| = N mod 2. For each i € [k], let v; be the |X8{",+|Ji|)/2\—dimensional
vector with ith coordinate equal to the ith element of X(‘K’, Hos))/2° We look for a real b
as large as possible subject to the constraint that there exists k real, symmetric, positive
semidefinite matrices My, Mo, ..., My, where M; has size |v;| X |v;|, so that

Yw € Oy, fo>ay where Z Ay = Z [[vlTMlvlﬂ o T b Z w. (9)

weON 1€[k] weOyN

The values of the a,,’s are determined by b, the entries of the matrices My, M, ..., My,
the splitting probabilities p(7/,7";7), where 7, 7" € X&HU‘D/? and 7 € A}, and the
probabilities pZ¢, where 7 € OFf. Moreover, finding the maximum value of b and the entries

of the matrices M; can be formulated as a semidefinite program.

Effective semidefinite programming for flags of order types. In order to use a semidefinite
programming software for finding a solution of programs in the form of (9), it is enough to
generate the sets Oy and XY/, the split probabilities p(r/, 7”; 7), where 7/, 7" € )(("1\"/_|r“7i|)/2
and 7 € Xy, and the probabilities pZ¢, where 7 € O%.

We generated the sets and the values by brute force up to NV = 8. The only non-trivial
algorithmic step is deciding whether two order types, represented by point sets, are equivalent.
This can be done by computing some canonical ordering of the points that turn two point
sets with the same order type into point sequences with the same chirotope. Aloupis et al. [4]
recently proposed an algorithm performing that in time O(n?); the method we implemented
takes time O(n?logn) and seems to be folklore (we learned it from Pocchiola and Pilaud).
For solving the semidefinite program itself, we used a library called CSDP [5]. The input
data for CSDP was generated using a mathematical software SAGE [14].
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Setting up the semidefinite programs. In the rest of this section we work with NV = 8 and

use chirotopes labelled 01,09, ...,024 where o1 the empty chirotope, oo the only chirotope
of size two, o3 and o4 the two chirotopes of size 4 depicted on the
4o <3 4e left, and o3, ...,094 a fixed set of 20 chirotopes of size 6 so that
1o 9 1.3' ) Og = {ag, . ,094}; note that since |Og| = 20, what follows will
not depend on the choices made in labelling o5,...,024. The
vectors v1, Vg, ..., Vs described in the previous paragraph for this choice of N and o;’s have

lengths 2, 44, 468, 393, 122, 112, 114, 101, 101, 103, 106, 103, 103, 120, 102, 108, 94, 90, 91,
91, 95, 95, 92, 104, respectively.

Computations proving Propositions 1 and 2. We solved two semidefinite programs with
the above choice of parameters for f =3 o p(os,w)and f =3 o p(06,w) and obtained
real symmetric positive semidefinite matrices My, ..., Moy and My, ..., M}, with rational
entries so that

15715211616602583691
> Tar..
> ploswwz ) v Vilo:  Sosaa1T031933722624 > w

weOg 'L€[24} w€eOsg
and
67557324685725989
> Tarlvd,.
> p(OG’w)“’—-,EE: [vi Mivilo: + 36503488147419103232 > v
w0y 1€ (24] weOsg

The lower bounds on ¢; and c¢g then follow from Identity (4).

Assume (without loss of generality) that Os = {ws 1, ws 2, - - -, wWe,20}. Solving two semidef-
inite programs, we obtained real symmetric positive semidefinite matrices My, ..., May and
M, ..., M}, as well as non-negative rational values dy,...,dso and df, ..., db, so that

Z d; (wGJ 3 Z w) + Z [l Msv;]o, <0

J€[20] w€Os i€[24]
and
1 v
Z d; < we,j + 1 Z w) + Z [v; Mivi]s, <O.
je[20] wEOs i€[24]

They imply that there is no £ € Hom™ (A, R) such that, respectively £(w) > 1/32 for every
w € Og, or such that ¢(w) < 1/18 for every w € Og. Together this proves Proposition 2 with
an imbalance bound of 32/18 > 1.77. The better bound of Proposition 2 is obtained by a
refinement of this approach where the order types with minimum and maximum probability
are prescribed; this requires solving over 700 semidefinite programs.

The numerical values of the entries of all the matrices My, ..., Moy and coefficients
di,...,d2 mentioned above can be downloaded from the web page http://honza.ucw.
cz/proj/ordertypes/. In fact, the matrices Mj,..., Moy are not stored directly, but
as an appropriate non-negative sum of squares, which makes the verification of positive
semidefiniteness trivial. To make an independent verification of our computations easier, we
created sage scripts called “verify_ prop*.sage”, available from the same web page.
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4 Representation of limits by measures

Let £ denote the space of limits of order types endowed with the topology of the distance
given by Equation (1). Let M denote the space of finite measures over R? for which every
line is negligible, equipped with the topology of the weak convergence®.

» Proposition 10. The map pp € M — £, € L is continuous.

Proof. For k > 1 and any measure p over R? we let ;* denote the k-fold product measure
over R?*. For any order type w we let R, C R2“l denote the space of all realizations
of w, that is R, contains all 2|w|-tuples (x1,y1,22,¥2,..., 70|, ¥|w|) such that the points
(z1,91), (22, Y2), - - -, (T)w|, Yjw|) Tealize w. Observe that p(w, p) = p*(Ry).

Let {pn }nen be a sequence of measures in M weakly converging to a measure u € M. For
any k, the k-fold product measures 1* converge weakly to u*. Moreover, for every order type
w the boundary OR,, consists solely of planar point sets with at least one aligned triple. The
measure ;¥ (OR,,) is therefore bounded from above by the probability that |w| random points
sampled from p contains at least three aligned points. Since every line is negligible for pu, this
ensures that ;% (9R,,) = 0 and therefore for any w, £, (w) = pk(Ry) — pF(Ry) = £, (w). <

In the rest of this section we prove Theorem 3, which strengthens Proposition 10 for
uniform measures on convex bodies, and prove Proposition 4 and 5.

4.1 Proof of Theorem 3

The gist of our proof is to relate a convex set K to the limit of order types g induced by the
measure i through a family of positive algebra homomorphism ¢p ., pr(7) € Hom™ (A7, R)
defined for any point sequences P and P’.

For two chirotopes o, ¢’ we write o’ >0 and say that o’ extends o if there exists sequences
of points P = {p1,p2,...,pn} and P’ = {p},p5,...,p),} so that P has chirotope ¢ and
the sequence PU P’ := {q1,q2,. .., qn+n’ : ¢ = p; for i < n and ¢; = p,_,, for i > n} has
chirotope o’. Let i be a measure over R? for which lines are negligible. For any o’-flag
T we let ¢p,, p/(T) denote the probability that |7| — |o’| random unlabeled points chosen
independently from p define, together with P U P’, a partially labelled sequence realizing 7.
The map 7 € A7 ¢pu p(T) is easily seen to be a positive algebra homomorphism from
A" to R. For a fixed P and varying P’ such that n’ = |P’|, we define a map

¢P . (K)n — Ua’ba;\o’|:|a|+n’ HOer(AU/,R)
s P = {r— ¢pup(T)}

’

where we assume that 7 is a o’-flag and P U P’ have chirotope o¢’. (For the sake of the
presentation, we write ¢p , ¢ in place of ¢p, 11 when applying ¢p . . to a singleton.) The
key fact about this map is that if we push forward ,u"/ through ¢p,, . it induces a probability
distribution on U5/ |=|s|+-n/ 0> Hom™ (,A”/ ,R) that turns out, due to a theorem of Razborov,
to be essentially determined by ¢,,. We will denote by Q a set of n’ random points chosen
independently from p, and by ¢p , q the random homomorphism corresponding to the push
forward of u”/.

3 A sequence {fin }nen of measures weakly converges to a measure p if pn (A) — p(A) for every measurable
set A such that p(9A) = 0, where 9 stands for the topological boundary.
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We first argue that the geometry of K, up to affine transformation, can be retrieved
from these homomorphisms since they encode ratios of triangle areas that determine certain
barycentric coordinates.

» Lemma 11. Let K be a convex body, {t1,t2,ts3,t} C K. For any triangle T’ supported in
{t1,ta,t3,t}, the ratio of the area of T’ to the area of titats is determined by the values of
Bty o, ts ).t ON O-flags of size 5, where o is the chirotope of {t1,t2,13,t}.

area(T’)

Proof. The relative area of a triangle T” with respect to a triangle T' is the quotient
Let us begin with the case in which ¢ € conv(T) with T' = {¢,%2,t3}. The point ¢ subdivides
T into 3 triangles. Without loss of generality, let 7 be the o-flag corresponding to appending a
point ¢’ inside the triangle {t,t,t3}. By definition ¢, +(7) = % When t belongs
to any of the six remaining regions defined by the lines spanned by {t1, t2, t3}, a triangle of the
form {t,tq,t3} is divided into two triangles by T, and as before we can determine the relative

area of each of these triangles and their sum provides the relative area of {t,t2,3}. |

We next show that measures that induce the same limit give rise to equivalent families of
homomorphisms (due to lack of space we defer the proof to the journal version).

» Lemma 12. Let 11 and p' be two measures in R? for which lines are negligible. Let Q be a
set of m random points chosen independently from p, and Q' be a set of m random points
chosen independently from p'. If €, = £, = € then for every chirotope o such that {([o],) > 0,
there exist sequences of points P and P’ with chirotope o such that ¢p,.q = Op' Q-

We now have all the ingredients to prove Theorem 3.

Proof of Theorem 3. We begin by proving the consequence of (i) and (ii). The space
(K,dp) is a compact Hausdorff space, so (ii) implies that Lx is compact and (i) implies
that the map is a bijection with its image. Any continuous bijection from a Hausdorff space
to a compact space is a homemorphism.

We now prove (ii). Let dry (p1,t2) := supy |u1(A) — pe(A)], where the supremum
is taken among all measurable sets A, denote the total variation distance between two
probability measures p; and po. It is classical that dry (u¥, p5) < kdry(u1, p2) so in
particular |[p(w, ux) — p(w, pr/)| < |wldry (pK, 1t). Hence it is enough to show that
drv (K, pgr) < 2dpnm (K, K') for some nondegenerate affine transformation g. Without
loss of generality we can assume that K C K’ C rK where r = edsm (KK Since K C K’
the supremum sup 4 |ux (A) — pk(A4)| is attained by A = K. Indeed, for every measurable
set A, the signed measure pug(A) — pr/ (A) = ar';i(c‘:?(K) — ar:;(c’:?g,{/) does not decrease by
substituting A by A’ = AN K, and among subsets of K this signed measure does not decrease
by substituting A by a superset. Hence dry (ux,pr) = 1 — ;f;((g,)) < ] - areal®)
1-— T% < 2Inr. The last inequality is true provided r < 1, which is the case.

area(rK) —

Finally we prove item (i). Let K and K’ be two convex bodies such that {x = £x/. By
Lemma 12, there exists triangles 7" and 1" such that ¢7 . + = ¢717 4., ¢/, where t and t’ are
points chosen uniformly at random from K and K’ respectively. Define the signed area of an
ordered triangle as its area multiplied by its orientation (i.e. it is positive if the triangle is
CCW oriented and negative otherwise) and denote it by area”. Remark that the relative
signs of the triangles depend only on the chirotope o’ of {t1, 2, t3,t}. By Lemma 11, for every
t € K the homomorphism ¢7,,, ¢+ € Ujgr|—4 Hom™ (.A"l,R) is enough to reconstruct the
relative area” with respect to T' of each triangle in ¢y, ts, t3,t. Using barycentric coordinates
and T as an affine basis:

area” (t,to,t3) area” (t1,t,t3) area” (ty,t, 1)

= * * * t )
area” (t1,t2,1t3) LT area (t1,t2,t3) 2T area (t1,t2,t3) 3

area(T) *
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we recover t from ¢p,,, ;. Writing ¢ in this way for every homomorphism in the support
of ¢r ., ¢ we reconstruct the convex body K. Analogously, writing ¢’ using 7" as an affine
basis and ¢ ., + to compute the relative areas for every homomorphism in the support of
AT s 17, We Teconstruct K'. Since AT st a0 @7, ¢ are identical, K’ is the image of
K under the affine map taking T to T”. |

4.2 Proof of Proposition 4

It is perhaps tempting, when searching for a measure representing a given limit ¢, to take
a sequence of random order types ry from ¢, with lim, . |w,| = o0, take for each n a
realization P, of w, and expect that the empirical measure up, := \Pilnl > sep, 0s converges
to a measure representing ¢. The next lemma gives necessary and sufficient conditions for
this approach to work (due to space constraint we defer the proof to the journal version):

» Lemma 13. Let ¢ be a limit of order types. There exists a measure pu for which lines are
negligible and such that P(w, ) = ¢(w) for all w € O if and only if there exists a sequence of
point sets { P tnen whose order types converge to £ and such that for any € > 0 the following
two conditions hold:

(i) there exists R > 0 such that for n large enough, all but at most a fraction € of P, lies
within distance R from the origin.

(ii) for any line h C R?, there exists § > 0 such that for n large enough, the fraction of
points from P, within distance § from h is at most €,

The condition of Lemma 13 is both necessary and sufficient, and allows us to prove that
£ cannot be represented by a compactly supported measure.

Proof of Proposition 4. Let R}, be a point set of size N = n? sampled according to ©.

Order the points of R, on the boundary of d(conv(RY},)) following the counterclockwise
orientation. Denote this set by out(RY) := {s1,s2,...,8m} and order its complement in
some arbitrary fashion and denote it by in(RY) := {t1,t2,...,tN_m]-

For each point s; € out(RY,) consider the total order on R}, \ {s;} induced by rotating a
semiline about s;, starting with the semiline at s;4;. This order is called the local sequence
of s;. It is well known and not hard to show that it is a chirotope invariant. In this case, the
local sequence of s; € conv(rn), iS (Sit1,8it2s -5 8 thythyy -+ oy hingen) Sj+15j425 - -+ Si—1),
where the order of the points in in(r,) depends on ¢, but this will be irrelevant. Denote
by j: out(RE) — out(RE) a function that assigns to s; the last element of out(RY) in
its local sequence before it reaches the elements of in(RY). Since the number of points in
in(RY) is distributed like a binomial with N trials and probability %, for each i the triangle
conv(si, (i), Sj(i)4+1) contains the points of in(RY,) with probability at least 1 — 2N%f(?f),
where f(t) is a continuous function that approaches 1 as t approaches 0 . By the union bound
this happens for all i with probability at least 1 — 5#% f(t). Let |j(i) — i| be the number of
vertices on out(RY) on a counterclockwise walk on d(conv(RY)). For each 4, the random
variable |j(i) — i is distributed like a binomial with N trials and probability §. Hoeffding
inequality implies that there exists an absolute constant C' > 0 such that,

. ) N 1
Pr{||](l)*l|*z|zc NlogN)} O<N2>
By the union bound,

Pr[\ﬁ @) — | — % > C\/W} -0 (Jif) .
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ov)

We can conclude that with high probability the image of j contains more than ( og N

points and that each triangle of the form conv(s;, s;(;), 5j(;)+1) contains in(Rf,).

Now assume for contradiction that p is a compactly supported measure representing
ls. Let ry be a random order type of size N = n? chosen according to /s. Let Ry, be a
set of N points sampled uniformly and independently from p. Since p represents ¢ the
order type of Ry, is distributed like r,,. Let rfl be the random order type of Rfl. Define
out(Ry) = {s},s5,...,s,} and in(Ry) := {t},t5, ..., tN_,}, analogously as we did for
of out(RY,) and in(RY) for Ry,. Since the distributions of order types rf and r, can be made
arbitrarily close in total variation distance by making ¢ small enough, we can conclude that
41| contains in(Ry).

On the other hand, if the support of y has finite perimeter, then the sum of the lengths
of the edges of out(Ry,) is also finite, hence the infimal length among such edges approaches
zero as n approaches infinity. Let ig be such that the edge s;(;,), Sj(i,)+1 realizes the infimal
length. Let h be the line spanned by s;, and s;;,). Given € < %, there exists d(e) > 0 such
that u(h + B(0)) < €/2 and hence, by the law of large numbers pgr, (h + B(d)) < € almost
surely. But we showed that conv[sgo,s;(io), 5j(io)'+1] contains in(Ry) with high probability,
which implies that pgr,, (h+ B(8)) > % — € with high probability, which is a contradiction. <

with high probability, for each 4, conv|s/, 3;‘(1')’ 3;(1')

4.3 Proof of Proposition 5

Recall that ¢, is the order type of k£ points in convex position. It is folklore that any set of n
points contains at least ICZTT (Z) subsets of k points in convex position, so for any limit of
order types £ we must have £(oy) > szm (due to space constraint we defer the proof to the
journal version). We first show that this bound is essentially attained by £g:

» Lemma 14. /(o) < 2—§+klogk.

Proof. Define a k-cup to be a sequence of points lying on the graph of a convex function, and
a k-cap to be a sequence of points lying on the graph of a concave function. Let ¢4 (k, P,)
be the fraction of k-tuples of P, forming a k-cup, and g_(k, P,,) be the fraction of k-tuples
of P, forming a k-cap. Since a k-tuple in convex position contains either a g—cup or a %—cap
the union bound gives p(og,wy) < ¢4 (£, P,) + ¢—(%, P,). By symmetry is enough to bound
q+(k, P,). Denote by Q4 (k, P,) the number of k-cups in P,. Since every k-cup containing

points from P? and P! contains at most one point from P},

Q+(kaPn+1) < Q+(k - 1»P7(1J)‘P7}u| + QJF(/{,PS) + QJr(kaPﬁ)

Note that Q(3,P,) < (2;) and Q4+ (k,Py) < 1. By induction on n + k we get that

Q+(k,P,) < 2”’“*%. With Stirling’s formula, we thus have ¢ (k, P,) < 2’%““0%’“ for n
large enough. |

We next bound from below p(¢g, 1) under some regularity assumptions on p. These
bounds are up to an undetermined constant; the fact that the rate of decay of p(og, p) is by
an order of magnitude slower than that of £z (o)) is enough, however, to ensure that for any
such p there exists some n such that p(og, 1) # £ (o), thus proving Proposition 5.

» Lemma 15. Let i be a measure over R? for which lines are negligible.

(i) If there exists an open set of positive p-measure on which u is absolutely continuous to
the Lebesgue measure then p(oy, ) > 22k logk+0(k),

(ii) If there exists an open set of positive u-measure on which p is absolutely continuous to
the length measure on a C? curve then p(oy, p) > 2-9%),
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The number of different order types in the plane is 2471°8™ up to multiplicative factors of
order 2°("1°87) [3Section 4]. Notice that the asymptotic bounds presented on p(oy, 1) both
for smooth curves and for the Lebesgue measure, imply that there exists a sequence of order

types wy such that i“ EZ:)) approaches zero as k approaches infinity. On the other hand, the
n

Lo (wi)
L (oK)

bounds for £ (o) imply that there exists an order type such that approaches infinity.
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