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Prediction uncertainties in the Cape Cod reserving method

Annina Saluz*
Department of Mathematics, RiskLab, ETH Zurich, 8092 Zurich, Switzerland

Abstract
The Cape Cod (CC) method was designed by Bühlmann and Straub in order to overcome some
shortcomings of the chain ladder (CL) method. Owing to its simplicity and because of the advantages
over the CL method, the CC method has become a well-established method in practice. In this paper
we consider a distribution-free stochastic model for the CC method. Within this model we give the
parameter estimates and we derive estimates for the conditional mean square error of prediction for the
CC method. In addition, we derive an estimate for the uncertainty in the claims development result.

Keywords
Cape Cod method; Claims reserving; Mean square error of prediction; Claims development result

1. Introduction

The Cape Cod (CC) method was developed by Bühlmann & Straub (1983). A derivation of the CC
method is published in Straub (1988). In the CCmethod the reserve of an accident year is the product of an
estimate of the expected ultimate claim and the estimated “still-to-come” factor of the corresponding
accident year. The estimate of the expected ultimate claim is the product of the premium and an estimate
for the loss ratio. For the estimation of the “still-to-come” factor, it is further assumed that there is a
development pattern, which is the same for all accident years. Hereby, the development pattern describes
the proportion of claims that evolve up to a certain development year relative to the ultimate claim amount.

The CC method was designed in order to overcome some shortcomings of the chain ladder (CL)
method, which is one of the most popular claims reserving methods. The CL predictor of the ultimate
claim is obtained by multiplying the current claims amount of an accident year (i.e. the claims
amount known so far) by a product of development factors. Hence, the CL predictors of the ultimate
claims are directly proportional to the current claims amount and therefore, if the current claims
amount is zero or an outlier, the CL prediction gives unsatisfactory results. This is in particular the
case for long-tailed lines of business in recent accident years. Moreover, the CL method is very
sensitive to changes in individual claim numbers. Finally, the CL method is purely based on the
claims data and it disregards the information in the premiums. These shortcomings are addressed by
the CC method. The CC method is more robust than the CL method and, in contrast to the CL
method, the CC method incorporates the information contained in the premiums.

The CC method is also closely related to the Bornhuetter–Ferguson (BF) method (Bornhuetter &
Ferguson, 1972). As in the CC method, the BF reserve of an accident year is the product of an
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estimate of the expected ultimate claim and the estimated “still-to-come” factor of the corresponding
accident year. For the estimation of the latter one also assumes that there is a development pattern,
which is the same for all accident years. The estimate of the expected ultimate claim is given by an
unbiased a priori estimate. The a priori estimate is assumed to be independent from the data of
the corresponding accident year and it is not adjusted during the claims development. Often the a
priori estimate is the product of the earned premium and an a priori estimate for the loss ratio.
On the other hand, the loss ratio in the CC method is estimated from the data and hence it
depends on the claims development. In the past, the development pattern for the BF method
was often estimated by the development pattern resulting from the CL method. However, Mack
(2006) criticises the use of the CL development pattern in the BF method, because the CL method
assumes a multiplicative connection between past and future loss amounts, whereas the BF method
establishes an additive connection (independence). Moreover, the incorporation of the a priori
estimates in the BF method is a fundamental difference to the CL method. Hence, Saluz et al.
(2011) argue that this additional information should also be incorporated in the estimates of the
development pattern and that the use of the CL development pattern is inconsistent with the BF
philosophy.

In a numerical example Bühlmann & Straub (1983) use the CL development pattern for the CC
method. However, they remark that the estimation of the development pattern is still unsolved.
Similar to the BF method, we think that an estimate of the development pattern for the CC method
should incorporate the additional information available from the premiums, too.

Owing to its simplicity, the CC method is a well-established method in practice. However, in current
literature there is no formula for the estimation of the prediction uncertainty in the CC method (see
Dal Moro & Lo, 2014). In this paper we consider a stochastic model for the CC method and we
derive estimates for the development pattern within this model. The incorporation of the information
from the premiums in the estimation of the development pattern is consistent with our model
assumptions. In order to quantify prediction uncertainty we derive an estimate for the conditional
mean square error of prediction (MSEP) of the CC reserve and we give an estimate for the uncer-
tainty in the one-year claims development result (CDR).

Organisation of the paper: in the remainder of this section we introduce the notation and we review
the CC, CL and BF method. In section 2, we consider a distribution-free model for the CC method.
In this model we calculate a development pattern that incorporates the information from the
premiums and we derive estimates for the prediction uncertainty of the ultimate claim and for
the uncertainty in the CDR. In section 2.2, we consider a distributional model and we show that in
this special case the parameter estimates given in the distribution-free model can be derived with
maximum likelihood (ML) estimation. A numerical example is given in section 3.

1.1. Notation and data structure

We denote the cumulative claims (cumulative payments or incurred losses) in accident year i∈ {0,… , I}
at the end of development year j∈ {0,… , J} by Ci,j>0 and we assume J≤ I. Let Xi,j = Ci,j−Ci,j−1 denote
the incremental claims, where we set Ci,−1 = 0. The summation over an index starting from 0 is denoted
with a square bracket, for example:

C½k�;j ¼
Xk
i¼ 0

Ci;j; 0≤k≤ I; 0≤ j≤ J:
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We assume that all claims are settled after development year J and therefore the total ultimate claim of
accident year i is given by Ci,J. At time I we have information in the upper left trapezoid/triangle:

DI ¼ Ci;j : i + j≤ I; j≤ J
� �

;

and our goal is to predict the lower right triangle Dc
I ¼ fCi;j : i + j> I; i≤ I; j≤ Jg. An illustration of the

data is given in Table 1.

We define the outstanding loss liabilities for accident year i at time I by

Ri ¼ Ci;J�Ci;I�i ¼
XJ

j¼ I�i + 1

Xi;j; I�J + 1≤ i≤ I; (1.1)

and the total outstanding loss liabilities are defined by R ¼PI
i¼ I�J + 1 Ri. For accident years

i = 0,… , I− J the ultimate claim Ci,J is known at time I and hence Ri = 0, i = 0,… , I− J.

Remark 1.1 If Ci,j denote cumulative payments then formula (1.1) gives the “true” outstanding loss
liabilities. For incurred losses Ci,j the “true” outstanding loss liabilities are given by

Ri ¼ Ci;J�Ci;I�i +Ci;I�i�Cpaid
i;I�i; I�J + 1≤ i≤ I; (1.2)

with Cpaid
i;j denoting the cumulative payments of accident year i up to development year j. Note that

the additional term Ci;I�i�Cpaid
i;I�i is observable at time I and has no impact on the claims prediction

problem. Therefore, we only consider the outstanding loss liabilities as defined in (1.1).

The budgeting and planning process in an insurance company gives information on the premium
level of each accident year. Often premium levels are adjusted to business cycles. For instance, in soft
markets, the premium level is often increased by a certain percentage. We denote the earned on-level
premium for accident year i by νi, 0≤ i≤ I. This means that νi is the earned premium, adjusted for
business cycles, such that the expected loss ratio is the same for all accident years. These adjustments
are based on the information from the budgeting and planning process, which should be available in
a company. In periods of a stable premium level, the earned premiums can be used for the on-level
premiums νi. Otherwise, if it is for instance known that the premiums of an accident year are

Table 1. Claims development triangle.

The observations are given in the upper left triangle/trapezoid DI. The lower right
triangle Dc

I needs to be predicted.

Prediction uncertainties in the CC reserving method
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increased by a certain percentage owing to soft market conditions, then the on-level premiums are
corrected for this increase. Mack (2006) also derives a procedure for the calculation of on-level
premiums from the data. However, with the procedure of Mack (2006) the resulting on-level pre-
miums depend on the data DI. Here, we assume that the calculation of the vi’s does not incorporate
the data in the triangle and that the vi’s can be considered as known constants.

In order to simplify notation we denote the index of the last observed development year in accident
year i by ιðiÞ ¼ minðI�i; JÞ.

1.2. CL method

The CL prediction of the ultimate claim Ci,J of accident year i> I− J is given by

ĈCL
i;J ¼ Ci;ιðiÞ

YJ�1

j¼ ιðiÞ
f̂j; where f̂j ¼

C½I�j�1�;j + 1
C½I�j�1�;j

: (1.3)

The CL reserve is given by

R̂CL
i ¼ Ci;ιðiÞ

YJ�1

j¼ ιðiÞ
f̂j�1

0@ 1A ¼ Ci;ιðiÞ
YJ�1

j¼ ιðiÞ
f̂j 1�

YJ�1

j¼ ιðiÞ
f̂�1
j

0@ 1A
¼ ĈCL

i;J 1�β̂CLιðiÞ
� �

:

The CL development pattern

β̂CLj ¼
YJ�1

k¼ j

f̂�1
k ; 0≤ j≤ J�1; β̂CLJ ¼ 1; (1.4)

is an estimate of the development pattern βj, 0≤ j≤ J, which describes the percentage of claims that
evolve up to development year j relative to the ultimate claim.

There are different stochastic models that justify the use of the CL algorithm. A distribution-free
model was suggested by Mack (1993).

As mentioned above, the proportionality of the CL predictor to the current claims amount Ci,ι(i) is
sometimes problematic in long-tailed lines of business for recent accident years. Note that the f̂j for
late development years are based on few observations. A change of C0,J has a multiplicative impact
on the prediction of the ultimate claims of all accident years. Therefore, the CL method is very
sensitive to changes of individual numbers.

1.3. CC method

The CC predictor (see Bühlmann & Straub, 1983) for the ultimate claim Ci,J is given by

ĈCC
i;J ¼ Ci;ιðiÞ + νiq̂ 1�β̂ιðiÞ

� �
; (1.5)

where

q̂ ¼
PI

i¼ 0 Ci;ιðiÞPI
i¼ 0 νiβ̂ιðiÞ

: (1.6)
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Moreover, β̂ιðiÞ is an estimate of βι(i). As above, the development pattern βj, 0≤ j≤ J, describes the
percentage of claims that evolve up to development year j relative to the ultimate claim. Note that
for each i

q̂i ¼
Ci;ιðiÞ
νiβ̂ιðiÞ

is an estimate for the loss ratio q and hence q̂ is a weighted average loss ratio with the weights νiβ̂ιðiÞ.

In the original article of Bühlmann & Straub (1983) it is mentioned that the estimation of the
development pattern βj is an unsolved problem. In practice the development pattern is often esti-
mated by the CL development pattern given in (1.4). In this case the CC predictor of the ultimate
claim can be written as

ĈCC
i;J ¼ Ci;ιðiÞ + νiq̂β̂CLιðiÞ

YJ�1

j¼ ιðiÞ
f̂j�1

0@ 1A;

that is, we replace the diagonal element Ci,ι(i) in the CL prediction

ĈCL
i;J ¼ Ci;ιðiÞ

YJ�1

j¼ ιðiÞ
f̂j ¼ Ci;ιðiÞ +Ci;ιðiÞ

YJ�1

j¼ ιðiÞ
f̂j�1

0@ 1A;

by the more robust value

νiq̂β̂CLιðiÞ ¼ νiβ̂
CL
ιðiÞ

PI
i¼0 Ci;ιðiÞPI
i¼ 0 νiβ̂

CL
ιðiÞ

:

Therefore, one can interpret the CC method as an application of the CL algorithm to these more
robust diagonal values (see Wüthrich & Merz, 2008). On the other hand, if we take formula (1.5),
the CC method is close to the BF method in which the predictor of the ultimate claim is given by

ĈBF
i;J ¼ Ci;ιðiÞ + μ̂i 1�β̂ιðiÞ

� �
; (1.7)

where μ̂i is an unbiased a priori estimate of the expected ultimate claim E[Ci,J]. In the BF method μ̂i is
usually an estimate that incorporates information from the earned premiums pi. In this case it is
assumed that for each accident year an a priori estimate for the loss ratio q̂i is available and
μ̂i ¼ piq̂i. The loss ratio estimates q̂i are typically assumed to be independent from the data of the
corresponding accident year i (see, for instance Mack, 2008; Alai et al., 2010; Saluz et al., 2011).
These a priori estimates q̂i are known at the beginning of each accident year and they are not adjusted
during the claims development. In contrast to the BF method, the loss ratio q in the CC method is
estimated from the data DI. Moreover, the CC method assumes a constant loss ratio, which means that
the earned premiums pi need to be adjusted to on-level premiums vi. Instead of assuming the availability
of unbiased a priori estimates of E[Ci,J], the CC method assumes that the expected ultimate claims are
known up to a constant factor. In the BF predictor (1.7) we further note the additive relation with the
current claims amount Ci,ι(i). This additive relation leads to a reserve estimate:

R̂BF
i ¼ μ̂ið1�β̂I�iÞ;

which does not directly depend on Ci,ι(i). The BF method typically assumes independence between past
and future claims (see Mack, 2008). In contrast, the CL predictor given in (1.3) and the corresponding
reserve are directly proportional to Ci,ι(i). Owing to this different relation (additive or multiplicative),
Mack (2006) criticises the use of the CL development pattern in the BF method and suggests different
estimates. Saluz et al. (2011) argue that the information from the a priori estimates should be

Prediction uncertainties in the CC reserving method
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incorporated in the estimation of the development pattern in the BF method and derive corresponding
estimators based on ML considerations. For the CC method we suggest similar estimators that
incorporate the premiums νi. The suggested estimators are derived from the best linear unbiased
estimators. In section 2.2 it will be seen that under the assumption that incremental claims are
overdispersed Poisson (ODP) distributed, these estimators coincide with the ML estimators.

In order to quantify the uncertainties in the CC predictions we will consider second moments.
The conditional MSEP for accident year i> I− J, given DI, is given by

MSEPCi;J j DI ðĈCC
i;J Þ ¼E Ci;J�ĈCC

i;J

� �2����DI

� �

¼ð1:5ÞE
XJ

j¼ I�i +1

Xi;j�νiq̂ 1�β̂I�i

	 
 !2
������DI

24 35:
Similarly, for aggregated accident years we want to estimate

MSEPPI

i¼ I�J + 1
Ci;J j DI

XI
i¼ I�J + 1

ĈCC
i;J

 !
¼ E

XI
i¼ I�J + 1

Ci;J�ĈCC
i;J

� � !2
������DI

24 35:
In order to estimate the conditional MSEP a stochastic model will be introduced in the following
section.

2. Stochastic model for the CC method

2.1. CC method in a distribution-free model

For the estimation of the prediction uncertainty in the CC method we assume the following
underlying distribution-free model.

Model Assumptions 2.1 (CC model) Incremental claims Xi,j are independent and there exist positive
parameters q, σj

2, 0≤ j≤ J, and a development pattern γ0,… , γJ, with
PJ

j¼ 0 γj ¼ 1 such that

E½Xi;j� ¼ νiqγj and VarðXi;jÞ ¼ νiqσ2j

for 0≤ i≤ I and 0≤ j≤ J.

Note that γj denotes the incremental development pattern γj = βj− βj − 1, 1≤ j≤ J, and γ0 = β0.
Further, we remark that the expected loss ratio q is the same for all accident years. This means that
the premiums νi are “on-level” premiums as explained below Remark 1.1.

2.1.1. Parameter estimation
Under Model Assumptions 2.1 the best linear unbiased estimate for γj is given by

~γrawj ¼ X½I�j�;j
qν½I�j�

:

In general, the ~γrawj ’s do not sum up to 1 and hence we consider the normalised development pattern

γ̂j ¼
~γrawjPJ
k¼ 0 ~γ

raw
k

:
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Note that the normalised development pattern γ̂j does not depend on the unknown loss ratio q, that
is, we have

γ̂j ¼
~γrawjPJ
k¼ 0 ~γ

raw
k

¼ γ̂rawjPJ
k¼ 0 γ̂

raw
k

¼ γ̂rawj

β̂rawJ

; (2.1)

where

γ̂rawj ¼ X½I�j�;j
ν½I�j�

(2.2)

and β̂rawj ¼ Pj
k¼ 0 γ̂

raw
k . The cumulative development pattern βj is then estimated by

β̂j ¼
Xj
k¼ 0

γ̂k ¼ β̂rawj

β̂rawJ

: (2.3)

The best linear unbiased estimator for q based on the observations Xi,j, i + j≤ I, j≤ J, is given by

~q ¼
PJ

j¼ 0

PI�j
i¼ 0 Xi;j

γj
σ2jPJ

j¼ 0

PI�j
i¼ 0 νi

γ2j
σ2j

: (2.4)

If we insert the estimates (2.1) for the γj’s in ~q we obtain

b~q ¼
PJ

j¼ 0

PI�j
i¼ 0 Xi;j

X½I�j�;j=ν½I�j�
β̂rawJ σ2jPJ

j¼ 0 ν½I�j�
X2

½I�j�;j

�
ν½I�j�ð Þ2

β̂rawJð Þ2σ2j

¼ β̂rawJ ¼ q̂; (2.5)

where q̂ was defined in (1.6). The third equality in (2.5) is derived as follows:

q̂ ¼ð1:6Þ
PI

i¼0 Ci;ιðiÞPI
i¼ 0 νiβ̂ιðiÞ

¼ð2:1Þ
PI

i¼0 Ci;ιðiÞP
i + j≤ I;
j≤ J

νi
X½I�j�;j=ν½I�j�

β̂rawJ

¼ β̂rawJ

PJ
j¼ 0 X½I�j�;jPJ

j¼ 0 ν½I�j�
X½I�j�;j
ν½I�j�

¼ β̂rawJ ¼ b~q: ð2:6Þ

Hence, in the CC model 2.1 the use of the CC loss ratio estimate (1.6) can be justified by a derivation
from the best linear unbiased estimate of q. Under Model Assumptions 2.1 we therefore use the
following estimates

γ̂j ¼
X½I�j�;j
ν½I�j�PJ

l¼0
X½I�l�;l
ν½I�l�

¼ γ̂rawj

β̂rawJ

;

q̂ ¼
PI

i¼ 0 Ci;ιðiÞPI
i¼ 0 νiβ̂ιðiÞ

¼
XJ
l¼0

X½I�l�;l
ν½I�l�

¼ β̂rawJ : ð2:7Þ

Note that the loss ratio q̂ corresponds to the multiplicative normalisation factor β̂rawJ of the non-
normalised development pattern given in (2.2). For the CC reserve and ultimate prediction for
accident years i> I− J we then have

R̂CC
i ¼ νiq̂ð1�β̂I�iÞ ¼ νiβ̂

raw
J 1� β̂rawI�i

β̂rawJ

 !
¼ νiðβ̂rawJ �β̂rawI�i Þ; (2.8)

ĈCC
i;J ¼ Ci;I�i + R̂CC

i : (2.9)

Prediction uncertainties in the CC reserving method
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From (2.8) we note that the loss ratio estimate q̂ in R̂CC
i can be omitted if the development pattern is

not normalised.

Remark 2.2

∙ In order to incorporate a tail development γ̂J +1 one should normalise the raw development pattern
γ̂rawj such that for the normalised development pattern γ̂j ¼ γ̂rawj =c we obtain

XJ
j¼0

γ̂j ¼
XJ
j¼ 0

γ̂rawj

c
¼ β̂rawJ

c
¼ β̂J ¼ 1�γ̂J +1;

where c denotes the normalising constant. Therefore, we obtain γ̂j ¼ γ̂rawj =c ¼ γ̂rawj ð1�γ̂J +1Þ=β̂rawJ .
Inserting γ̂j in (2.4) one gets the estimate

q̂ ¼ β̂rawJ

1�γ̂J +1
:

For the reserves one obtains in this case:

R̂CC
i ¼ νiq̂ 1�β̂I�i

	 
 ¼ νi
β̂rawJ

1�γ̂J + 1
�β̂rawI�i

 !
:

Here, the tail development γ̂J +1 is assumed to be given by an expert.

∙ The representation (2.8) of the CC reserve with the non-normalised development pattern β̂rawJ

substantially simplifies the analysis of prediction uncertainty. For instance, for the non-normalised
development pattern one can explicitly calculate the covariances Covðβ̂rawj ; β̂rawk Þ, 0≤ j, k≤ J. For
the normalised development pattern this is not possible because of the random variables in the
denominators.

∙ In the BF method the estimation of the development pattern suggested by Mack (2008) is also
based on estimators of the form

~γrawj ¼ X½I�j�;j
μ½I�j�

; where μi ¼ E½Ci;J�; 0≤ i≤ I:

However, the unknown μi are replaced by the a priori estimates μ̂i, which possibly incorporate non-
constant a priori loss ratios q̂i. In contrast to CC, the BF reserve cannot be rewritten as simply as the
CC reserve (2.8). For BF, a normalised development pattern has to be used. Moreover, in the
prediction error of the BF reserve the uncertainties in the a priori estimates need to be incorporated.

For the estimation of the conditional MSEP we further need estimates for qσj
2. Denote by Yi,j the

“incremental loss ratios” Yi,j = Xi,j/νi. Observe that

VarðYi;jÞ ¼
qσ2j
νi

;

and qσj
2 is the variance of Yi,j per unit of νi. An unbiased estimator for qσj

2, j≠ I, is given by

dqσ2j ¼ 1
I�j

XI�j

i¼ 0

νi
Xi;j

νi
�γ̂rawj

� 2

; 0≤ j≤ J; j≠ I: (2.10)
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In the case where I = J an estimate for qσJ
2 is obtained with the extrapolation from Mack (1993):

dqσ2J ¼min dqσ2J�1;
dqσ2J�2;

dqσ22J�1dqσ2J�2

0@ 1A ¼ min dqσ2J�2;
dqσ22J�1dqσ2J�2

0@ 1A:

2.1.1. Prediction uncertainty
Under Model Assumptions 2.1 we have for the conditional MSEP of accident year i> I− J, given DI:

MSEPCi;J j DI ðĈCC
i;J Þ ¼ E

XJ
j¼ I�i +1

Xi;j�νiq̂ 1�β̂I�i

	 
 !2
������DI

24 35
¼

XJ
j¼ I�i + 1

VarðXi;jÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
PVi

+ ν2i q 1�βI�ið Þ�q̂ 1�β̂I�i

	 
	 
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼PEEi

; ð2:11Þ

where PVi is the process variance of accident year i, which describes the randomness of the Xi,j, and
PEEi the parameter estimation error, which describes the uncertainties in the parameter estimates.
The conditional MSEP can be estimated as follows:

Estimate 2.3 (MSEP, CC model) Under Model Assumptions 2.1 the conditional MSEP of the CC
predictor ĈCC

i;J given in (2.9) is estimated bydMSEPCi;J j DI
ĈCC

i;J

� �
¼ cPVi + dPEEi;

where cPVi and dPEEi are given by

cPVi ¼
XJ

j¼ I�i + 1

νi
dqσ2j; dPEEi ¼ ν2i

XJ
j¼ I�i + 1

dqσ2j
ν½I�j�

; (2.12)

and wheredqσ2j is given in (2.10). For aggregated accident years the corresponding conditional MSEP
is estimated by

dMSEPPI

i¼ I�J + 1
Ci;J j DI

XI
i¼ I�J + 1

ĈCC
i;J

 !
¼

XI
i¼ I�J +1

dMSEPCi;J j DI
ĈCC

i;J

� �
+ 2

X
I�J +1≤ i<k≤ I

dPEEi;k;

where dPEEi;k is given by

dPEEi;k ¼ νiνk
XJ

j¼ I�i + 1

dqσ2j
ν½I�j�

; i<k:

The derivation of Estimate 2.3 is given in Appendix A.

2.1.2. Conditional MSEP of the one-year CDR
So far we have considered the prediction of the outstanding liabilities at time I. At the end of
accounting year I we have an additional diagonal of observations in the claims triangle/trapezoid and
the predictions of the ultimate claims are updated according to this new information. The one-year
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CDR is the difference between two successive predictors of the ultimate claim (see, for instance Merz
& Wüthrich, 2008). More precisely, we define the CDR for accounting year I+ 1 and for accident
year i by

CDRðI +1Þ
i ¼ ĈðIÞ

i;J �ĈðI +1Þ
i;J ; (2.13)

where ĈðkÞ
i;J , k = I, I+ 1, denotes the prediction of Ci,J at time k. Under the CC model 2.1 we have for

I− J+ 1≤ i≤ I

ĈðIÞ
i;J ¼ Ci;I�i + νiq̂ðIÞ 1�β̂ðIÞI�i

� �
¼ Ci;I�i + νi β̂ðIÞrawJ �β̂ðIÞrawI�i

� �
; (2.14)

ĈðI +1Þ
i;J ¼ Ci;I�i + 1 + νiq̂ðI +1Þ 1�β̂ðI + 1ÞI�i +1

� �
¼ Ci;I�i + 1 + νi β̂ðI +1ÞrawJ �β̂ðI + 1ÞrawI�i +1

� �
; (2.15)

where q̂ðkÞ ¼ β̂ðkÞrawJ , k = I, I+ 1, and

β̂ðkÞrawj ¼
Xj
l¼0

γ̂ðkÞrawl ; with γ̂ðkÞrawj ¼ X½k�j�;j
ν½k�j�

: (2.16)

Similarly, we define the CDR for aggregated accident years at time I +1 by

CDRðI +1Þ ¼
XI

i¼ I�J +1

CDRðI +1Þ
i :

At time I we predict CDRi
(I+ 1) by 0 as we consider ĈðIÞ

i;J as best estimate based on the available
information at time I. New solvency regulations such as the Swiss Solvency Test (FINMA, 2006)
require additional risk capital for protection against possible shortfalls in this one-year CDR. In
order to quantify uncertainties in the CDRs we consider second moments given by

MSEPCDRðI + 1Þ
i j DI

ð0Þ ¼ E CDRðI + 1Þ
i

� �2����DI

� �
;

MSEPCDRðI + 1Þ j DI
ð0Þ ¼ E CDRðI + 1Þ

� �2����DI

� �
:

In Appendix A the following estimators for these conditional MSEPs are derived:

Estimate 2.4 (MSEP CDR, CC model) Under Model Assumptions 2.1 the conditional MSEP of the
CDR of accident year i given in (2.13) is estimated by

dMSEPCDRðI + 1Þ
i j DI

ð0Þ ¼ νi
dqσ2I +1�i

ν½i�
ν½i�1�

+ ν2i
XJ

j¼ I + 2�i

dqσ2j νI + 1�j

ν½I�j�ν½I +1�j�
;

where the dqσ2j’s are given in (2.10). For aggregated accident years the corresponding conditional
MSEP is estimated by

dMSEPCDRðI+1Þ jDI
ð0Þ ¼

XI
i¼ I�J+1

dMSEPCDRðI+1Þ
i jDI

ð0Þ+2
X

I�J+1≤ i<k≤ I

νiνk

dqσ2I+1�i

ν½i�1�
+
XJ

j¼ I+2�i

dqσ2jνI+1�j

ν½I�j�ν½I+1�j�

 !
:

In order to compare the formula given in Estimate 2.4 with the formula for the conditional MSEP of
the predictor for the ultimate claim given in Estimate 2.3, we rewrite Estimate 2.4 as follows

dMSEPCDRðI + 1Þ
i j DI

ð0Þ ¼ νi
dqσ2I + 1�i + ν

2
i

dqσ2I +1�i

ν½i�1�
+ ν2i

XJ
j¼ I +2�i

dqσ2j
ν½I�j�

νI + 1�j

ν½I + 1�j�
:
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Note that the conditional MSEP of the CDR considers only the first term of cPVi, which corresponds to
the variance in the next diagonal. For the parameter estimation error the first term is fully incorporated
and all other terms in dPEEi are scaled down by the factors νI+1− j/ν[I+1− j]<1. Similar relations are
observed in the case of the CL method (see Merz & Wüthrich, 2008; Bühlmann et al., 2009).

2.2. ODP model

A special case of Model Assumptions 2.1 is obtained by assuming that the incremental claims are
ODP distributed with constant dispersion parameter ϕ. Note that incremental claims are in this case
assumed to be positive.

Model Assumptions 2.5 (ODP model) Incremental claims Xi,j are independent and ODP distributed
with

E½Xi;j� ¼ νiqγj and VarðXi;jÞ ¼ ϕνiqγj ¼ ϕE½Xi;j�
for 0≤ i≤ I and 0≤ j≤ J, where γ0,… , γJ, ϕ and q are positive parameters and

PJ
j¼0 γj ¼ 1.

The ODPmodel is well known in claims reserving and was for instance used in England&Verrall (2002).

Theorem 2.6 Under Model Assumptions 2.5 the ML estimates for q and γj coincide with the
estimates given in (2.1) and (2.7).

Proof: The log-likelihood function is given by

lDI ¼
X

i + j≤ I;j<J

1
ϕ

Xi;j log νi + logðqγjÞ
� �

�νiqγj
� �

+ r

+
XI�J

i¼0

1
ϕ

Xi;J log νi + log q�
XJ�1

j¼ 0

qγj

 ! !
�νi q�

XJ�1

j¼ 0

qγj

 ! !
;

where r is a term that does not depend on the parameters q and γ0,γ1,… , γJ. Note that the ML
estimate for q yields

q̂ ¼
PI

i¼ 0 Ci;ιðiÞPI
i¼ 0 νiβ̂ιðiÞ

; (2.17)

which is the formula for the CC loss ratio estimate given in (1.6). The ML estimate for γj, 0≤ j< J, is
given by the equation

γ̂j ¼
X½I�j�;j

ν½I�j�q̂ +
X½I�J�;J

γ̂J
�ν½I�J�q̂

;

where γ̂J ¼ 1�PJ�1
j¼0 γ̂j. The equation for γ̂j can be rewritten as

γ̂j ¼
X½I�j�;j

ν½I�j�q̂ + κ
; (2.18)

where κ ¼ X½I�J�;J
γ̂J

�ν½I�J�q̂>�ν½I�J�q̂ ensures that
PJ

j¼ 0 γ̂j ¼ 1. We insert the estimates γ̂j in the ML
equation for q and obtain

q̂ ¼
PI

i¼ 0 Ci;ιðiÞPI
i¼0 νi

PιðiÞ
j¼ 0

X½I�j�;j
ν½I�j�q̂ + κ

: (2.19)
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It follows that X
i + j≤ I;
j≤ J

Xi;j ¼
XI
i¼ 0

Ci;ιðiÞ ¼ð2:19Þ
q̂
X

i + j≤ I;
j≤ J

νi
X½I�j�;j

ν½I�j�q̂ + κ

¼ q̂
XJ
j¼ 0

ν½I�j�
X½I�j�;j

ν½I�j�q̂ + κ
;

and hence

0 ¼
XJ
j¼0

X½I�j�;j 1� q̂ν½I�j�
ν½I�j�q̂ + κ

� 
¼
XJ
j¼ 0

X½I�j�;j
κ

ν½I�j�q̂ + κ
¼ κ

XJ
j¼ 0

γ̂j ¼ κ:

From κ = 0 and the constraint
PJ

j¼ 0 γ̂j ¼ 1 it follows with (2.18) that

q̂ ¼
XJ
j¼ 0

X½I�j�;j
ν½I�j�

;

and from (2.6) we know that q̂ also satisfies the ML equation (2.17). We conclude that the ML
estimates for q and for the γj’s under Model Assumptions 2.5 are given by

γ̂j ¼
X½I�j�;j
ν½I�j�PJ

l¼0
X½I�l�;l
ν½I�l�

¼ γ̂rawj

β̂rawJ

; q̂ ¼
PI

i¼ 0 Ci;ιðiÞPI
i¼ 0 νiβ̂ιðiÞ

¼
XJ
l¼0

X½I�l�;l
ν½I�l�

¼ β̂rawJ ;

as in (2.1) and (2.7), which proves the claim. □

As the parameter estimates are as in (2.1) and (2.7), we can use Estimate 2.3 for the estimation of the
conditional MSEP, we just need to replace the estimates for qσj

2, 0≤ j≤ J, by some estimates for ϕqγj.
As in Wüthrich & Merz (2008) we suggest to estimate ϕ with the help of Pearson residuals:

ϕ̂ ¼ 1
j DI j � ðJ + 1Þ

X
i + j≤ I
j≤ J

ðXi;j�νiγ̂rawj Þ2
νiγ̂rawj

; (2.20)

where j DI j denotes the number of observations in DI. Replacing the estimates dqσ2j by ϕ̂γ̂rawj in
Estimate 2.3 we obtain the following estimators:

Estimate 2.7 (MSEP, ODP model) Under Model Assumptions 2.5 the conditional MSEP of the CC
predictor ĈCC

i;J given in (2.9) is estimated by

dMSEPCi;J j DI
ĈCC

i;J

� �
¼ cPVi + dPEEi ¼ ϕ̂R̂CC

i + ν2i ϕ̂
XJ

j¼ I�i +1

X½I�j�;j

ν½I�j�
	 
2;

where ϕ̂ and R̂CC
i are given in (2.20) and (2.8). For aggregated accident years the corresponding

conditional MSEP is estimated by

dMSEPPI

i¼ I�J + 1
Ci;J j DI

XI
i¼ I�J + 1

ĈCC
i;J

 !
¼

XI
i¼ I�J +1

dMSEPCi;J j DI ĈCC
i;J

� �
+ 2

X
I�J +1≤ i<k≤ I

dPEEi;k

¼
XI

i¼ I�J + 1

dMSEPCi;J j DI
ĈCC

i;J

� �
+ 2

X
I�J +1≤ i<k≤ I

νiνkϕ̂
XJ

j¼ I�i +1

X½I�j�;j

ν½I�j�
	 
2:

Analogously an estimator for the uncertainty in the one-year CDR is obtained from Estimate 2.4 by
replacing dqσ2j by ϕ̂γ̂rawj , with ϕ̂ given in (2.20).
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Remark 2.8

∙ Under Model Assumptions 2.5, if μi = νiq, 0≤ i≤ I, are considered as unknown parameters and if the
μi’s and γj’s are both estimated by ML estimation then it is well-known that the resulting development
pattern is the CL development pattern (see e.g. Mack, 1991; Renshaw & Verrall, 1998). The result
goes back to Hachemeister & Stanard (1975). For the estimation of the correlations in the CL
development pattern one can therefore use the Fisher information matrix. This approach is also used
by Alai et al. (2010) to derive an estimate for the conditional MSEP in the BF method in the case
where the CL development pattern is used. However, in the CCmethod the premiums are assumed to
be known and hence ignoring this information for the estimation of the development pattern is not
consistent with the CC assumptions and thus we do not consider this case in more detail.

∙ Taylor (2002) remarks that the assumption of a constant dispersion parameter is often not realistic
in practice. In Model Assumptions 2.5 the assumption of a constant dispersion parameter ϕ can be
replaced by using a different dispersion parameter ϕj for each development year. The derivation of
the ML estimates in this case is completely analogous and leads to the same estimates for the
development pattern and the loss ratio. Further, the estimator (2.10) for qσj

2 gives in this case an
estimator for qϕjγj. Therefore, if we use (2.10) for the estimation of the variance parameters qϕjγj,
we obtain the estimators given in Estimates 2.3 and 2.4 for the conditional MSEPs. Hence, in this
case we have the same formulas as in the distribution-free CC model 2.1.

3. Example

To illustrate the results, we apply the method to a data set from Wüthrich & Merz (2008), which is
given in Appendix B. As explained below Remark 1.1, in a company premiums should be adjusted
based on the information from the budgeting and planning process. As we do not have information
from the budgeting and planning process we assume that the earned premiums given in Appendix B
can be used as on-level premiums.

We calculate the reserves, process standard deviation, parameter estimation error and conditional MSEP
for the CC model 2.1 and for the ODP model 2.5. Results from the CC model 2.1 are summarised in
Table 2. The corresponding parameter estimates are given in Table 3 and the loss ratio estimate is given
by q̂ ¼ β̂rawJ ¼ 0:674. The coefficient of variation of a reserve estimate R̂i is estimated as

dCoVa R̂i

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidMSEPRi j DI R̂i

� �r
R̂i

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidMSEPCi;J j DI Ĉi;J

� �r
R̂i

:

For the CC model 2.1 we also calculate the uncertainty in the CDR given by Estimate 2.4 and we
compare these numbers with the conditional MSEP of the ultimate claim (see Estimate 2.3). The
results are given in Table 4. Note that

dMSEPCDRðI + 1Þ j DI
ð0Þ

dMSEPPI

i¼ I�J + 1
Ci;J j DI

PI
i¼ I�J + 1

Ĉi;J

 !
0BBBB@

1CCCCA
1
2

¼ 89:4% ;

which means that most of the uncertainty in the prediction of the ultimate claim amount is contained
in the next accounting year. As stated in Merz & Wüthrich (2008), this is to be expected for a
triangle with short-tailed development. In the claims triangle of our example the development is
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very short. Most of the claims evolve in the first two development years. This can be observed when
considering the normalised development pattern γ̂j given in Table 5.

The results obtained from the ODP model 2.5 are given in Table 6. As shown in section 2.2, the
reserves and development pattern are the same as in the CC model 2.1. In the ODP model 2.5 we
have a constant dispersion parameter ϕ for all development years. The estimates ϕ̂γ̂rawj for the
variance parameters ϕqγj should be compared with the corresponding estimates dqσ2j for qσj2 in the
CC model 2.1 (see Tables 3 and 7). As ϕ̂γ̂rawj >>dqσ2j for late development years (see Tables 3 and 7),
the process standard deviation and the parameter estimation error in early accident years are much
higher in this model compared with the CC model 2.1 (see Tables 2 and 6). However, for the total
over all accident years the process standard deviations in the CC model 2.1 (Table 2) are higher than
in the ODP model 2.5 (Table 6). As stated in Remark 2.8, the assumption of a constant dispersion
parameter is often not appropriate. With the estimates dqσ2j given in (2.10) we define

ϕ̂j ¼
dqσ2j
γ̂rawj

; j ¼ 0; ¼ ; J: (3.1)

Note that ϕ̂j gives an estimate for a dispersion parameter ϕj that varies between development years.
In our example these dispersion parameters are given in Table 8. The estimate ϕ̂ of the dispersion

Table 2. Results CC model 2.1: reserves, process standard deviation (PV1/2), parameter estimation error (PEE),
conditional MSEP and coefficient of variation (CoVa) according to Estimate 2.3.

i Reserves PV1/2 PEE1/2 MSEP1/2 CoVa (%)

1 15,209 175 172 245 1.6
2 25,619 684 486 840 3.3
3 35,874 2,596 1,481 2,989 8.3
4 90,234 7,556 3,836 8,474 9.4
5 166,584 29,088 13,300 31,984 19.2
6 314,665 67,560 28,248 73,227 23.3
7 528,056 80,012 32,234 86,261 16.3
8 1,200,821 152,676 55,740 162,533 13.5
9 4,240,563 393,823 135,844 416,594 9.8
Total 6,617,625 436,215 201,730 480,602 7.3

Table 3. CC model 2.1: parameter estimates (2.2) and (2.10).

j γ̂rawj (%) dqσ2 j
0 39.49 9,760
1 19.58 8,585
2 4.67 1,172
3 1.51 132
4 1.01 251
5 0.49 52
6 0.37 3.5
7 0.08 0.45
8 0.08 0.03
9 0.10 0.002
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parameter in the ODP model 2.5 is given by ϕ̂ ¼ 21; 611 (see (2.20)). The variability of the estimates
ϕ̂j given in Table 8 also suggests that the assumption of a constant dispersion parameter is too
restrictive.

Table 4. CC model 2.1: uncertainty in the CDR according to Estimate 2.4 anddMSEP1=2
CDRðI + 1Þ

i j DI
ð0Þ= dMSEP1=2Ci;J j DI

Ĉi;J

� �
for comparison with Estimate 2.3.

i dMSEP1=2
CDRðI + 1Þ

i j DI
ð0Þ % of total uncertainty

1 245 100
2 813 97
3 2,886 97
4 7,943 94
5 30,845 96
6 66,215 90
7 48,072 56
8 138,473 85
9 382,113 92
Total 429,567 89.4

Table 5. Normalised development pattern given in (2.1) and CL development pattern.

j γ̂j (%) γ̂CLj (%)

0 58.62 58.96
1 29.06 29.04
2 6.94 6.84
3 2.24 2.17
4 1.50 1.44
5 0.72 0.69
6 0.54 0.51
7 0.12 0.11
8 0.11 0.10
9 0.15 0.14

Table 6. Results ODP model 2.5: reserves, process standard deviation (PV1/2), parameter estimation error (PEE),
conditional MSEP and coefficient of variation (CoVa) according to Estimate 2.7.

i Reserves PV1/2 PEE1/2 MSEP1/2 CoVa (%)

1 15,209 18,130 17,780 25,393 167.0
2 25,619 23,530 20,246 31,041 121.2
3 35,874 27,843 21,489 35,172 98.0
4 90,234 44,159 27,869 52,218 57.9
5 166,584 60,000 33,988 68,958 41.4
6 314,665 82,463 40,870 92,035 29.2
7 528,056 106,826 47,701 116,992 22.2
8 1,200,821 161,092 63,570 173,182 14.4
9 4,240,563 302,725 108,952 321,734 7.6
Total 6,617,625 378,170 290,414 476,815 7.2
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For comparison we further give the results obtained with Mack’s CL method (Mack, 1993) in
Table 9. These results can be found in Wüthrich & Merz (2008). In Table 5 we compare the CL
development pattern to the normalised development pattern given in (2.1). In this example the
development patterns are very similar.

The CL reserves are substantially lower than the CC reserves (see Tables 2 and 9). From the data
triangle, we observe that the diagonal values Ci,ι(i) are rather low for accident years 6–8. The relative
differences in the reserves of CC and CL are also the highest for these accident years.

As in Wüthrich & Merz (2008) we plot the individual loss ratios Ci;ιðiÞ=ðνiβ̂ιðiÞÞ and compare it to the
estimated loss ratio q̂ ¼ 0:674 (see Figure 1). The picture also shows that the diagonal claims Ci,ι(i) in
accident years 7 and 8 are rather low. On the other hand, it is possible that the premium level was
increased in these accident years. In a company, information from the budgeting and planning

Table 7. ODP model 2.5: parameter estimates (2.2) and ϕ̂ as in (2.20).

j γ̂rawj (%) ϕ̂γ̂rawj

0 39.49 8,535
1 19.58 4,231
2 4.67 1,010
3 1.51 326
4 1.01 219
5 0.49 105
6 0.37 79
7 0.08 17
8 0.08 16
9 0.10 22

Table 8. Parameter estimates (3.1) for comparison with ϕ̂ ¼ 21; 611 calculated from (2.20).

j 0 1 2 3 4 5 6 7 8 9
ϕ̂j 24,712 43,854 25,071 8,772 24,824 10,746 943 573 40 2

Table 9. CL results according to Mack (1993).

i Reserves PV1/2 PEE1/2 MSEP1/2 CoVa (%)

1 15,126 191 187 267 1.8
2 26,257 742 535 914 3.5
3 34,538 2,669 1,493 3,058 8.9
4 85,302 6,832 3,392 7,628 8.9
5 156,494 30,478 13,517 33,341 21.3
6 286,121 68,212 27,286 73,467 25.7
7 449,167 80,077 29,675 85,398 19.0
8 1,043,242 126,960 43,903 134,337 12.9
9 3,950,815 389,783 129,769 410,817 10.4
Total 6,047,061 424,379 185,024 462,960 7.7
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process should be used to adjust the premiums in this case. The decision whether one rather relies
on the given diagonal values (by using CL) or whether one trusts the premium information more
(by using CC), needs to be based on further information on the data and the quality of the on-level
premiums.

4. Conclusion

In this paper we studied the CC method in a stochastic framework. We derive parameter estimates
for the development pattern and the loss ratio within the considered stochastic model. The resulting
estimates allow to rewrite the CC reserve in a simple form as given in (2.8). Moreover, we derive
closed formulas for the conditional MSEP of the ultimate claim as well as for the uncertainties in the
one-year CDR. Although the CC method is well established in practice, such formulas cannot be
found in current literature (see Dal Moro & Lo, 2014). We further remark that most contributions
on the CDR in current literature are in the context of the CL method.

In this paper the relations between the ultimate uncertainties and the uncertainties on a one-year
horizon are highlighted, too. In the numerical example it is observed that most of the uncertainty lies
in the next accounting year. Such observations are typical for short-tailed lines of business (see Merz
& Wüthrich, 2008).

4.1. Limitations and possible extensions

In our stochastic model we have assumed that on-level premiums are known. In practice, such
on-level premiums are not always available, and the calculation of on-level premiums can be afflicted
with uncertainties. As an alternative to on-level premiums, Bühlmann & Straub (1983) also allow for
varying loss ratio estimates given by

q̂i ¼
P

i2Si Ci;ιðiÞP
i2Si νiβ̂ιðiÞ

;

Figure 1. Individual loss ratios Ci;ιðiÞ
νi β̂ιðiÞ

and q̂ ¼ 0:674.
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where the set Si⊂ {0,1,… ,I} needs to be chosen in such a way that the years in Si are comparable
with accident year i in terms of the expected loss ratio. This means that only the premiums vk, k 2 Si,
need to be adjusted to the same level. However, if non-constant loss ratios are used, then the
estimation of the development pattern and the prediction uncertainties needs to be adjusted. The
simple representation of the CC reserves given in (2.8) does then no longer hold. Such adjustments
and a corresponding stochastic model could be addressed in future research.

Further, we showed in Remark 2.2 how an externally given tail development can be incorporated
in the estimation of the reserves. Future research could investigate how such tail development
estimators can be obtained and how the incorporation of such tail developments affects prediction
uncertainties.
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Appendix A

Derivations of the estimators

Derivation of Estimate 2.3

For the conditional MSEP of accident year i≥ I− J we have

MSEPCi;J j DI ĈCC
i;J

� �
¼ E Ci;J�ĈCC

i;J

� �2����DI

� �

¼ð2:9ÞE Ci;I�i +
XJ

j¼ I�i +1

Xi;j�Ci;I�i�R̂CC
i;J

 !2
������DI

24 35

¼ð2:8ÞE
XJ

j¼ I�i + 1

Xi;j�νiqð1�βI�iÞ + νiqð1�βI�iÞ�νi β̂rawJ �β̂rawI�i

� � !2
������DI

24 35
¼

XJ
j¼ I�i + 1

VarðXi;jÞ + ν2i β̂rawJ �β̂rawI�i�qð1�βI�iÞ
� �2

ðA:1Þ

+ 2νi qð1�βI�iÞ�β̂rawJ �β̂rawI�i

� �
E

XJ
j¼ I�i + 1

Xi;j�νiqð1�βI�iÞ
 !�����DI

" #

¼
XJ

j¼ I�i + 1

νiqσ2j|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
PVi

+ ν2i

XJ
j¼ I�i +1

γ̂rawj �qγj
� � !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PEEi

;

where the mixed term in the second line of equation (A.1) vanishes owing to the independence
between (Xi,j)j = I − i + 1,… ,J and DI. We estimate the process variance PVi by inserting the parameter
estimates given in (2.10):

cPVi ¼
XJ

j¼ I�i + 1

νi
dqσ2j:
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For the estimation of the parameter estimation error of accident year i we observe that γ̂rawj

is an unbiased estimator for qγj (this follows from (2.2)). We approximate parameter estimation
error by taking the average overall possible observations DI, that is, we consider the expected
value

E½PEEi� ¼ ν2i Var
XJ

j¼ I�i + 1

γ̂rawj

 !
:

Further, γ̂rawj depends only on the data from development year j and therefore the ðγ̂rawj Þj¼ 0;¼ ; J are
independent. Moreover, we have

Var γ̂rawj

� �
¼Var

PI�j
l¼0 Xl;j

ν½I�j�

 !
¼ 1

ν½I�j�
	 
2XI�j

l¼0

VarðXl;jÞ

¼ 1

ν½I�j�
	 
2XI�j

l¼0

νlqσ
2
j ¼ qσ2j

ν½I�j�
: ðA:2Þ

We therefore obtain

E½PEEi� ¼ ν2i Var
XJ

j¼ I�i + 1

γ̂rawj

 !
¼ ν2i

XJ
j¼ I�i + 1

Var γ̂rawj

� �
¼ ν2i

XJ
j¼ I�i +1

qσ2j
ν½I�j�

:

Hence we estimate the parameter estimation error by

dPEEi ¼ ν2i

XJ
j¼ I�i +1

dqσ2j
ν½I�j�

;

which yields the estimator dMSEPCi;J j DI
ĈCC

i;J

� �
given in Estimate 2.3.

Next we consider the conditional MSEP of aggregated accident years given by

MSEPPI

i¼ I�J + 1
Ci;J j DI

XI
i¼ I�J +1

ĈCC
i;J

 !
¼ E

XI
i¼ I�J +1

Ci;J�ĈCC
i;J

� � !2
������DI

24 35
¼

XI
i¼ I�J + 1

MSEPCi;J j DI ðĈCC
i;J Þ + 2

X
i<k

E Ci;J�ĈCC
i;J

� �
Ck;J�ĈCC

k;J

� ����DI

h i
:

As in the case of a single accident year, we use (2.8) and (2.9) to rewrite

Ci;J�ĈCC
i;J ¼

XJ
j¼ I�i +1

Xi;j�νi β̂rawJ �β̂rawI�i

� �
:
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For the mixed terms E Ci;J�ĈCC
i;J

� �
Ck;J�ĈCC

k;J

� ����DI

h i
, i<k, we then obtain

E Ci;J�ĈCC
i;J

� �
Ck;J�ĈCC

k;J

� ����DI

h i

¼ E
XJ

j¼ I�i +1

Xi;j�νi β̂rawJ �β̂rawI�i

� � ! XJ
j¼ I�k +1

Xk;j�νk β̂rawJ �β̂rawI�k

� �0@ 1A������DI

24 35

¼ E
XJ

j¼ I�i +1

Xi;j

 ! XJ
j¼ I�k +1

Xk;j

0@ 1A������DI

24 35�E
XJ

j¼ I�i + 1

Xi;j

�����DI

" #
νk β̂rawJ �β̂rawI�k

� �

� νi β̂rawJ �β̂rawI�i

� �
E

XJ
j¼ I�k+ 1

Xk;j

������DI

24 35 + νi β̂rawJ �β̂rawI�i

� �
νk β̂rawJ �β̂rawI�k

� �

¼ νiνkq
2ð1�βI�iÞð1�βI�kÞ�νiqð1�βI�iÞνk β̂rawJ �β̂rawI�k

� �
� νi β̂rawJ �β̂rawI�i

� �
νkqð1�βI�kÞ + νi β̂rawJ �β̂rawI�i

� �
νk β̂rawJ �β̂rawI�k

� �
;

where we used the independence of the incremental claims Xi;j. This expression can be rewritten as
follows

E Ci;J�ĈCC
i;J

� �
Ck;J�ĈCC

k;J

� ����DI

h i
¼ νiνkqð1�βI�iÞ qð1�βI�kÞ� β̂rawJ �β̂rawI�k

� �� �
� νiνk β̂rawJ �β̂rawI�i

� �
qð1�βI�kÞ� β̂rawJ �β̂rawI�k

� �� �
¼ νiνk qð1�βI�iÞ� β̂rawJ �β̂rawI�i

� �� �
qð1�βI�kÞ� β̂rawJ �β̂rawI�k

� �� �
:

Therefore, we need to estimate for i<k

PEEi;k ¼ νiνk β̂rawJ �β̂rawI�i�qð1�βI�iÞ
� �

β̂rawJ �β̂rawI�k�qð1�βI�kÞ
� �

¼ νiνk
XJ

j¼ I�i +1

γ̂rawj �qγj
� � ! XJ

l¼I�k +1

γ̂rawl �qγl
	 
 !

:

We approximate PEEi,k by its expected value

E½PEEi;k� ¼ νiνkCov
XJ

j¼ I�i +1

γ̂rawj ;
XJ

l¼I�k +1

γ̂rawl

 !

¼ νiνk
XJ

j¼ I�i + 1

Var γ̂rawj

� �

¼ðA:2Þ νiνk
XJ

j¼ I�i +1

qσ2j
ν½I�j�

; i<k;
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and estimate PEEi,k by

dPEEi;k ¼ νiνk
XJ

j¼ I�i +1

dqσ2j
ν½I�j�

; i< k:

Therefore we derived the formulas given in Estimate 2.3. □

Derivation of Estimate 2.4:

From (2.14) and (2.15) we obtain for I +1 − J≤ i≤ I

CDRðI +1Þ
i ¼ ĈðIÞ

i;J �ĈðI +1Þ
i;J

¼ �Xi;I +1�i + νi β̂ðIÞrawJ �β̂ðIÞrawI�i �β̂ðI + 1ÞrawJ + β̂ðI + 1ÞrawI +1�i

� �
¼ �Xi;I +1�i + νi

XJ
j¼ I + 1�i

γ̂ðIÞrawj �
XJ

j¼ I + 2�i

γ̂ðI + 1Þrawj

 !
:

Note that

γ̂ðI +1Þrawj ¼ð2:16Þ X½I +1�j�;j
ν½I +1�j�

¼ ν½I�j�
X½I�j�;j +XI +1�j;j

ν½I�j�ν½I +1�j�

¼ γ̂ðIÞrawj

ν½I�j�
ν½I +1�j�

+
XI +1�j

ν½I +1�j�
:

Hence we obtain for I+ 1− J≤ i≤ I

CDRðI +1Þ
i ¼ �Xi;I +1�i + νi γ̂ðIÞrawI +1�i +

XJ
j¼ I +2�i

γ̂ðIÞrawj 1� ν½I�j�
ν½I +1�j�

� 
�XI + 1�j;j

ν½I + 1�j�

�  !

¼ νiqγI +1�i�Xi;I + 1�i + νi γ̂ðIÞrawI +1�i�qγI +1�i

� �
+ νi

XJ
j¼ I +2�i

γ̂ðIÞrawj
νI +1�j

ν½I +1�j�
�XI +1�j;j

ν½I +1�j�

� 

¼ νiqγI +1�i�Xi;I + 1�i + νi γ̂ðIÞrawI +1�i�qγI +1�i

� �
+ νi

XJ
j¼ I +2�i

γ̂ðIÞrawj �qγj
� � νI +1�j

ν½I +1�j�
�XI + 1�j;j�νI + 1�jqγj

ν½I + 1�j�

� 
: ðA:3Þ

Therefore we have for the conditional MSEP

MSEPCDRðI + 1Þ
i j DI

ð0Þ ¼ E CDRðI + 1Þ
i

� �2����DI

� �

¼ νiqσ2I +1�i + ν
2
i γ̂ðIÞrawI + 1�i�qγI + 1�i

� �2
+ 2ν2i γ̂ðIÞrawI +1�i�qγI +1�i

� � XJ
j¼ I + 2�i

γ̂ðIÞrawj �qγj
� � νI + 1�j

ν½I + 1�j�

 !
ðA:4Þ
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+ ν2i E
XJ

j¼ I +2�i

γ̂ðIÞrawj �qγj
� � νI + 1�j

ν½I + 1�j�
�XI +1�j;j�νI + 1�jqγj

ν½I + 1�j�

�  !2
������DI

24 35; (A.5)

where we used that

0 ¼ νiE νiqγI + 1�i�Xi;I + 1�i
	 


γ̂ðIÞrawI +1�i�qγI + 1�i

� ����DI

h i
+ νiE νiqγI + 1�i�Xi;I +1�i

	 
 XJ
j¼ I + 2�i

γ̂ðIÞrawj �qγj
� � νI +1�j

ν½I +1�j�

�  !�����DI

" #

�νiE νiqγI +1�i�Xi;I + 1�i
	 
 XJ

j¼ I +2�i

XI + 1�j;j�νI +1�jqγj
ν½I +1�j�

�  !�����DI

" #
;

due to the independence of Xi;I + 1�i from ðXI +1�j;jÞj¼ I + 2�i; ¼ ;J and DI. For the conditional expected
value given in (A.5) we have

E
XJ

j¼ I +2�i

γ̂ðIÞrawj �qγj
� � νI +1�j

ν½I +1�j�
�XI + 1�j;j�νI +1�jqγj

ν½I +1�j�

�  !2
������DI

24 35
¼

XJ
j¼ I +2�i

γ̂ðIÞrawj �qγj
� �2 ν2I +1�j

ν½I +1�j�
	 
2 +

XJ
j¼ I +2�i

E
XI +1�j;j�νI + 1�jqγj

ν½I + 1�j�

� 2
" #

+ 2
X
j<k

γ̂ðIÞrawj �qγj
� �

γ̂ðIÞrawk �qγk
� � νI +1�jνI +1�k

ν½I +1�j�ν½I +1�k�
: ðA:6Þ

As in the case of the conditional MSEP of the ultimate claim, we approximate the unknown terms by
their expected values. Because of the independence of the ðγ̂rawj Þj¼ 0;¼ ;J, the expected values of the
terms in line (A.4) and (A.6) are 0. After replacing the unknown parameters by their estimates we get
the following estimatordMSEPCDRðI + 1Þ

i j DI
ð0Þ

¼ νi
dqσ2I + 1�i + ν

2
i
dVar γ̂ðIÞrawI +1�i

� �
+ ν2i

XJ
j¼ I + 2�i

dVar γ̂ðIÞrawj

� � ν2I + 1�j

ν½I + 1�j�
	 
2 +

dVarðXI +1�j;jÞ
ν½I +1�j�
	 
2

 !
;

where the variances Var γ̂ðIÞrawj

� �
and VarðXI +1�j;jÞ are estimated by inserting the parameter esti-

mates for qσ2j given in (2.10), that is:

dVar γ̂ðIÞrawj

� �
¼
dqσ2j
ν½I�j�

and dVarðXI + 1�j;jÞ ¼ νI +1�j
dqσ2j:

Therefore we arrive at the estimator

dMSEPCDRðI + 1Þ
i j DI

ð0Þ ¼ νi
dqσ2I + 1�i + ν

2
i

dqσ2I +1�i

ν½i�1�
+ ν2i

XJ
j¼ I +2�i

dqσ2j
ν½I�j�

ν2I +1�j

ν½I +1�j�
	 
2 +

νI + 1�j
dqσ2j

ν½I + 1�j�
	 
2

 !

¼ νi
dqσ2I + 1�i

ν½i�
ν½i�1�

+ ν2i
XJ

j¼ I +2�i

dqσ2j νI +1�j

ν½I�j�ν½I + 1�j�
;

as given in Estimate 2.4.
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Similarly, we have for aggregated accident years

MSEPCDRðI + 1Þ j DI
ð0Þ ¼

XI
i¼ I�J +1

MSEPCDRðI + 1Þ
i j DI

ð0Þ + 2
X
i<k

E CDRðI +1Þ
i CDRðI +1Þ

k

���DI

h i
:

With the representation of CDRi
(I +1) given in equation (A.3), it follows that for i< k

E CDRðI +1Þ
i CDRðI +1Þ

k

���DI

h i
¼ E νiqγI + 1�i�Xi;I +1�i

	 

νk �Xi;I +1�i�νiqγI + 1�i

ν½i�

� ����DI

� �
+ νiνk γ̂ðIÞrawI +1�i�qγI +1�i

� �
γ̂ðIÞrawI + 1�k�qγI + 1�k

� �
+ νiνk γ̂ðIÞrawI +1�i�qγI +1�i

� � XJ
j¼ I + 2�k

γ̂ðIÞrawj �qγj
� � νI +1�j

ν½I +1�j�

+ νiνk
XJ

j¼ I +2�i

γ̂ðIÞrawj �qγj
� � νI + 1�j

ν½I + 1�j�
γ̂ðIÞrawI +1�k�qγI +1�k

� �

+ νiνk
XJ

j¼ I +2�i

XJ
l¼I + 2�k

γ̂ðIÞrawj �qγj
� �

γ̂ðIÞrawl �qγl
� � νI + 1�jνI + 1�l

ν½I + 1�j�ν½I + 1�l�

+ νiνk
XJ

j¼ I +2�i

νI +1�j

ν½I +1�j�
	 
2 qσ2j :

Further we calculate

E νiqγI +1�i�Xi;I +1�i
	 


νk �Xi;I +1�i�νiqγI + 1�i

ν½i�

� ����DI

� �
¼ νk

νi

ν½i�
qσ2I + 1�i:

The mixed term E CDRðI + 1Þ
i CDRðI + 1Þ

k

���DI

h i
, i<k, is then approximated by its unconditional expected

value which yields

νk
νi

ν½i�
qσ2I + 1�i + νiνk

νiqσ2I + 1�i

ν½i�ν½i�1�
+ νiνk

XJ
j¼ I +2�i

qσ2j ν
2
I + 1�j

ν½I�j�ðν½I + 1�j�Þ2
+ νiνk

XJ
j¼ I +2�i

νI +1�j

ν½I +1�j�
	 
2 qσ2j

¼ νiνk
qσ2I +1�i

ν½i�1�
+

XJ
j¼ I +2�i

qσ2j νI + 1�j

ν½I�j�ν½I + 1�j�

 !
;

where we used the independence of the ðγ̂rawj Þj¼ 0;¼ ;J. After inserting the parameter estimates we
arrive at the formula given in Estimate 2.4. □

Annina Saluz
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Appendix B

Data

Table B.1. Cumulative payments Ci,j and premiums νi.

i/j 0 1 2 3 4 5 6 7 8 9 νi

0 5,946,975 9,668,212 10,563,929 10,771,690 10,978,394 11,040,518 11,106,331 11,121,181 11,132,310 11,148,124 15,473,558
1 6,346,756 9,593,162 10,316,383 10,468,180 10,536,004 10,572,608 10,625,360 10,636,546 10,648,192 14,882,436
2 6,269,090 9,245,313 10,092,366 10,355,134 10,507,837 10,573,282 10,626,827 10,635,751 14,456,039
3 5,863,015 8,546,239 9,268,771 9,459,424 9,592,399 9,680,740 9,724,068 14,054,917
4 5,778,885 8,524,114 9,178,009 9,451,404 9,681,692 9,786,916 14,525,373
5 6,184,793 9,013,132 9,585,897 9,830,796 9,935,753 15,025,923
6 5,600,184 8,493,391 9,056,505 9,282,022 14,832,965
7 5,288,066 7,728,169 8,256,211 14,550,359
8 5,290,793 7,648,729 14,461,781
9 5,675,568 15,210,363

Prediction
uncertainties

in
the

C
C
reserving

m
ethod
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