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An Energy Efficient Trajectory Tracking Controller for Car-like
Vehicles using Model Predictive Control

Mauro Salazar1,2, Andrea Alessandretti2,3, A. Pedro Aguiar4 and Colin N. Jones2

Abstract— A Model Predictive Control (MPC) strategy for
energy efficient motion control of car-like vehicles is presented.
First, a nonlinear control law for trajectory tracking is derived
and used to design a trajectory tracking MPC controller with
convergence guarantees to a desired position trajectory. Then,
assuming electric propulsion, a performance index reflecting
the energy consumption of the vehicle is derived and combined
with the stabilizing stage cost of the MPC controller. The
resulting strategy drives the vehicle through energy efficient
trajectories around the desired one. The distance between the
closed-loop trajectories and the desired one provided by the
user is guaranteed to be ultimately bounded. Numerical results
show the effectiveness of the proposed control strategy for the
case of a car driven through flat land or mountainous territory.

I. INTRODUCTION

This paper addresses the energy efficient trajectory track-
ing control problem for car-like vehicles, by designing a
controller that considers the joint minimization of a tracking
error and an index of consumption of the vehicle.

In most of the literature found in the field of energy
efficient control, optimization problems are set and solved
targeting an energy consumption minimization. In [1], [2],
[3] over-actuated vehicles are approached with a hierarchical
control structure, combining a high-level dynamic Sliding
Mode Control with a low-level Energy Efficient Control Al-
location (EECA) scheme which explicitly considers torque-
dependent efficiency functions. In [4] these techniques are
tested with the implementation of a longitudinal speed
tracking controller in an electric ground vehicle, compar-
ing adaptive, KKT-based and rule-based EECAs. Another
one-dimensional motion case is considered in [5], where
constrained optimal control problems are first formulated to
maximize the cruising range of the ground vehicle mod-
eled in [6] and minimize its traveling time, and are then
approximated and reformulated in a nonlinear parametric
optimization form, which is simpler to solve. The problem
of driving a wheeled robot from one point to another on a
two-dimensional plane is approached in [7], by employing
the A∗ algorithm to find the energetically optimal path. The
problem of online minimum-energy trajectory planning on a
straight line path for three wheeled omni-directional mobile
robots is presented in [8], with an efficient algorithm based
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on Pontryagin’s minimum principle, designed to minimize
the energy drawn from the batteries. All these approaches
deal with the consumption minimization question, using it
as a unique objective function.

This paper adopts a dual target approach, with the aim to
jointly minimize the vehicle consumption and the tracking
error. The design is performed considering an under-actuated
car-like vehicle and exploiting the result [9] to guarantee
convergence of the tracking error to an ultimate bound with
size proportional to the desired energy saving.

The structure of this paper is as follows. Section II reports
some results from the literature, which are used in Section IV
to design a trajectory tracking MPC for the dynamical model
of a car-like vehicle presented in Section III. In Section V an
effective algebraic approximation of the power consumption
is derived and subsequently used to define the economic
performance index. Numerical results show the effectiveness
of the proposed strategy on an energy efficient trajectory
tracking control of a vehicle navigating in flat land and
mountainous territory.

II. BACKGROUND

In this section the definition of the MPC optimization
problem is presented together with results from [10] for
the design of an MPC with convergence guarantees to a
steady-state using a given auxiliary control law. Thereafter
the results from [9] are reported in order to combine the
stage cost designed using [10] with an economic stage cost,
whilst still guaranteeing ultimate boundedness of the closed-
loop state trajectories.

A. MPC Optimization Problem

Consider a nonlinear continuous time system of the form

ẋ(t) = f(x(t),u(t)), ∀t ≥ 0, x(0) = x0 (1)

with x(t)∈Rn as the state vector and u(t)∈Rm as the input
vector, which is constrained for all t ≥ 0 as u(t) ∈ U ⊆
Rm, where U denotes the input constraint set. To define the
MPC optimization problem P(z), the trajectory considered
on the time interval [t1, t2] is denoted by x([t1, t2]), whereas
the notation x(·;z) is used to show the explicit dependence
of the state trajectory on the optimization parameter z. For
the sake of simplicity, the dependence on time is dropped
whenever it is clear from the context.

Definition 1 (Open Loop MPC Problem):
Given a vector z and the horizon length T > 0, the open-
loop MPC optimization problem P(z) consists in finding



the optimal control trajectory ū∗([0,T ]) that solves

J∗T = min
ū([0,T ])

JT (z, ū([0,T ]))

s.t. ˙̄x(τ) = f(x̄(τ), ū(τ)), ∀τ ∈ [0,T ]
x̄(0) = z, x̄(T ) ∈Xa

ū(τ) ∈U , ∀τ ∈ [0,T ] ,

where

JT (z, ū([0,T ]))︸ ︷︷ ︸
Finite horizon cost

=
∫ T

0
l(x̄(τ), ū(τ))︸ ︷︷ ︸

Stage cost

dτ + m(x̄(T ))︸ ︷︷ ︸
Terminal cost

.

The finite horizon cost JT (·) is composed by the stage cost
l : Rn×Rm → R+, and the terminal cost m : Rn → R+,
defined over the auxiliary terminal set Xa ⊆ Rn. The stage
cost is decomposed as

l(x,u) = ls(x,u)︸ ︷︷ ︸
stabilizing stage cost

+ le(x,u)︸ ︷︷ ︸
economic stage cost

, (2)

where the stabilizing stage cost ls : Rn×Rm→R+ is the one
used in Tracking MPC to enforce convergence to the chosen
equilibrium point, and the economic stage cost le : Rn×
Rm → R is an arbitrary function that we would also like
to minimize. Given that the system is time invariant, the
open-loop state and input trajectories are considered, without
loss of generality, over the interval [0,T ]. We denote by
ka : Xa → U a feasible auxiliary control law defined
over the terminal set. In a sampled-data approach the MPC
control law is defined as

u(t) = kMPC(x(t)) := ū∗(t−btc;x(btc)) , (3)

where btc := max{ti ∈T : ti ≤ t}.

B. Stable MPC with an Auxiliary Control Law

Consider the following results from [10], where the as-
sumptions for convergence to a steady-state of the Tracking
MPC are recovered using le(·) = 0, λ (·) = 0, and ls(0,0) = 0.
Moreover, we consider X = Rn.

Assumption 1: f(·) is locally Lipschitz continuous in the
region of interest and f(0,0) = 0. �

Assumption 2: The optimization problem P(x0) admits a
feasible solution. �

Assumption 3 (Sufficient Conditions for Convergence):
(i) The sets Xa ⊆ Rn and U ⊆ Rm are compact and

(0,0) ∈ int(Xa)× int(U ).
(ii) The stage cost is lower bounded by a class K∞ function

α(·), i.e. α(‖x‖) ≤ ls(x,u), ∀(x,u) ∈ Rn×U .
(iii) The function m(·) is positive semi-definite and contin-

uously differentiable away from the origin.
(iv) There exists a feasible control law ka :Rn→Rm, defined

over the terminal set Xa, such that, for the closed-loop
system (1) with u(t) = ka(x), the state and input vectors
are such that x(t) ∈ Xa and u(t) ∈ U , respectively,
and the cost decrease condition ṁ(x) = ∂

∂x f(x,u) ≤
−ls(x,ka(x)) holds for all the x 6= 0 and x0 ∈Xa. �

Assumption 4 (Known auxiliary law): Suppose that a fea-
sible control law ka : Xa → U together with a certificate

of exponential stability of the origin of the closed-loop
system with u(t) = ka(t,x) ∈ U are given. Let the cer-
tificate be a continuously differentiable Lyapunov function
Va : Rn → R+, with the positive constants k1, k2, k3 and
a such that k1‖x‖a ≤ Va(x) ≤ k2‖x‖a , d

dt Va(x) ≤ −k3‖x‖a

hold for all x∈Xa :=L (Va,r) = {x : Va(x)≤ r} with r≥ 0.
�

Assumption 5 (Bound on stage cost): The control law
from Assumption 4 and the stage cost ls(·) are such that
ls(x,ka(x)) ≤ ∑

v
i=1 ai‖x‖i, ∀x ∈ Xa, where ν ∈ N∗ and

ai ∈ R.
Proposition 1: Consider system (1) in closed-loop with

the auxiliary control law from Assumption 4 and let As-
sumption 5 hold. Then, the terminal cost function

m(x) =
v

∑
i=1

ai

(
k2

k1

)i/a ak2

ik3
‖x‖i

and the terminal state Xa satisfy Assumption 3 (iii)-(iv). �
The Assumptions 1-3 are the ones used in Tracking MPC
(le(·) = 0), to show convergence to the origin.

Theorem 1 (Convergence of Tracking MPC, e.g., [10]):
Consider the constrained system (1) in closed-loop with
(3) and suppose that Assumptions 1-3 hold. Then, the state
vector x(t) converges to 0 as t→∞ with region of attraction
consisting of the set of states x for which P(x), introduced
in Definition 1, admits a feasible solution. �

C. Ultimately Bounded MPC with Economic Stage Cost

The following assumption and theorem are taken from [9].
Assumption 6 (Bound on the Economic Stage Cost):

The norm of the economic stage cost le(·), evaluated
along the closed-loop state and input trajectories, is
uniformly bounded by a strictly positive constant value, i.e.
‖le(x(t),u(t))‖ ≤ B, ∀t ≥ 0 with B > 0. �

Theorem 2 (Ultimate Boundedness): Consider system (1)
in closed-loop with (3), where l(·) is decomposed as in (2),
and suppose Assumptions 1-3 and 6 hold. Then, for every x0
that satisfies Assumption 2 the closed-loop state trajectory is
uniformly bounded over time, i.e. ‖x(t)‖ ≤ c ∈ R+, ∀t ≥ 0,
and converges to an ultimate bound with size proportional to
the value of B from Assumption 6, i.e. there exists a finite
time T̄ ≥ 0 and a constant U > 0 such that

‖x(t)‖ ≤U, ∀t ≥ T̄ , (4)

where for every desired value of U > 0 there exists a bound
B > 0 so that (4) holds. �

III. VEHICLE MODEL

In this section, a dynamical model of a car-like vehicle is
presented.

A. Equation of Motion

A common model used to describe car-like vehicles, which
shares the same kinematic properties, is the bicycle model
shown in Fig.1 (e.g. [11], page 26, Table 2.1). The kinematic
model has as state variables the position of the center of mass
in the inertial reference frame p = (x,y)T, the orientation
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Fig. 1. Graphic representation of the bicycle model.

of the vehicle ϕ and the steering angle δ , which can be
replaced by the slip-angle β = tan−1

(
lr
l tan(δ )

)
, where the

distances lr and l are defined in Fig. 1. The dynamical model
is derived neglecting the inertia of the system, considering
the non-holonomic constraints between wheels and ground,
and including the velocity of the center of mass v as an
additional variable and its acceleration a as input. The state
equations of the system can be described by

ṗ = R(x)
(

v
0

)
, ϕ̇ =

v
lr

sinβ ,

v̇ = u1 , β̇ = u2 ,

(5)

with state vector x = (x,y,ϕ,v,β )T, control input u = (a, β̇ )T

and rotation matrix defined as

R(x) =
(

cos(ϕ +β ) −sin(ϕ +β )
sin(ϕ +β ) cos(ϕ +β )

)
.

Note that the model (5) does not explicitly consider the forces
acting on the vehicle. However, they can be obtained from
the state and input vector, as shown in the subsequent section.

B. Drag Forces and Electric Propulsion

Consider the case where the vehicle is powered by a DC
electric motor. From [12], the motor current I is governed
by the following dynamical equation

İ =−R
L

I− κλ

Lrw
vcos(β )+

1
L

Um ,

where L > 0 denotes the internal inductance, Rc > 0 the
internal resistance, κ > 0 the current-to-torque constant,
Um ∈ R the applied voltage, λ ≥ 1 the gear ratio, and
rw > 0 the wheel radius. Then, the driving force on the rear
wheels can be described by Fe =

κλ

rw
I. The acceleration of

the vehicle is a = 1
m (Fe cos(β )−Fd), where the drag force

Fd consists of rolling friction Fr, gravitational force Fg and
aerodynamic drag Fa, [12]. The rolling friction is modeled
as Fr = k0

2
π

arctan
(

v
kR

)
. Considering a vehicle moving on a

plane parametrized by (x, y, h(x,y)), the gravitational force
can be obtained as Fg = mgsin(α), where

α(x,y,ϕ,β ) = arctan

((
cos(ϕ +β )

sin(ϕ +β )

)T

∇h(x,y)

)
.

The aerodynamic drag is neglected. Hence the total drag
force is Fd(x,y,ϕ,v,β ) = Fr(v)+Fg(x,y,ϕ,β ).

IV. MPC FOR TRAJECTORY TRACKING
In this section a trajectory tracking MPC is derived for

the car-like vehicle model (5) presented in Section III-A.
More precisely, first by using backstepping we compute a
nonlinear auxiliary control law that stabilizes exponentially
fast to the origin of an error space. Then the exponential
stability properties of the auxiliary control law are exploited,
as illustrated in Section II-B, to design a trajectory tracking
MPC with convergence guarantees of the error vector to zero.

A. Auxiliary Law
Assuming a twice differentiable desired trajectory

pd : R+→R2, we define the following rotated tracking error

e := R(x)T(p(x)−pd(t))+ ε ,

where ε := (ε1,ε2)
T .

Lemma 1: Consider the system (5) in closed-loop with the
auxiliary control law

ka(t,e(t,x),ζ (t,x)) =

=

 (
(−1, 0)+

(
1, ε2

ε1

)
KS(ω)

)
e− kζ ζ +q2

− v
lr

sin(β )+
(

0, 1
ε1

)
(−Ke+RTṗd)

 ,

(6)
where

ζ :=v−
[
∆
−1]

1 (−Ke+RTṗd)

q2 :=[∆−1]1(−K(S(ω)ε +(v, 0)T−RTṗd)

−S(ω)RTṗd +RTp̈d)

∆ :=
(

1 −ε2
0 ε1

)
, S(ω) :=

(
0 −ω

ω 0

)
ω :=

v
lr

sin(β )+u2 , ê := (eT,ζ )T

K =KT positive definite, ε ∈ R∗+×R+ .

Then, the origin of the augmented error space ê∗ = 0 is
globally exponentially stable. �

Proof: It can be shown that ṘT = −S(ω)RT, where
S(·) is the skew-symmetric matrix operator defined as

S(ω) =

(
0 −ω

ω 0

)
and ω := ϕ̇ + β̇ = v

lr
sin(β )+u2. Thus the error dynamics

ė =−S(ω)RT(p−pd)+RT(ṗ− ṗd) =

=−S(ω)(RT(p−pd)+ ε)︸ ︷︷ ︸
e

+ RTṗ︸︷︷︸
(v, 0)T

−RTṗd + S(ω)ε︸ ︷︷ ︸
(−ε2, ε1)Tω

=

=−S(ω)e+
(

1 −ε2
0 ε1

)
︸ ︷︷ ︸

=∆

(
v
ω

)
−RTṗd .

Consider the candidate Lyapunov function of the form
V (e) = 1

2 eTe. In order to have a total time derivative of the
form V̇ (e) = eTė = −eTKe, with K = KT positive definite,
one would like to choose(

v
ω

)
=∆

−1(−Ke+RTṗd)=

( [
∆−1

]
1[

∆−1
]

2

)
(−Ke+RTṗd) ,



where [M]i denotes the i-th row of the matrix M. Notice that
ω = v

lr
sin(β )+ u2 and therefore the second input can be

chosen as

u2 =−
v
lr

sin(β )+
[
∆
−1]

2 (−Ke+RTṗd) .

Since the term v has its own dynamics and cannot be directly
determined by the input, we proceed in a backstepping
fashion by defining the backstepping variable

ζ := v−
[
∆
−1]

1 (−Ke+RTṗd)

with total time derivative

ζ̇ := u1−
[
∆
−1]

1 (−Kė−S(ω)RTṗd +RTp̈d)︸ ︷︷ ︸
=:q1

.

Considering the new Lyapunov function candidate

Va(e,ζ ) =
1
2
(eTe+ζ

2) ,

with first derivative
V̇a(e,ζ ) = eTė+ζ ζ̇ =

= eT

−S(ω)e−RTṗd + ∆

(
v
ω

)
︸ ︷︷ ︸

−Ke+RTṗd+(ζ , 0)T


+ζ (u1−q1) =−eTKe+ζ (u1−q1 +[e]1)

combined with u1 − q1 + [e]1 = −kζ ζ , where
q1 = [∆−1]1(−Kė−S(ω)RTṗd +RTp̈d), results in

V̇a(e,ζ ) =−eTKe− kζ ζ
2 ,

which is negative definite and ensures global exponential
stability of ê∗ = ((e∗)T,ζ ∗)T = 0, thus concluding the proof.

B. MPC Control Law
Building on the auxiliary control law derived in the

previous section and using the results from Section II-B, here
we proceed to design an MPC control law that drives the
vector ê to the origin. Thus, the results from the background
section are considered on the augmented error vector ê, as
it is done in [13] for the unicycle.

C. Stabilizing Stage Cost
The stabilizing stage cost is chosen as

ls(ê,u) = ‖ê(t,x)‖2
Q +‖u(t)−ka(t, ê(t,x))‖2

T , (7)

where ka(t, ê) is defined in equation (6), and ‖ê‖2
Q := êTQê

with Q = QT positive definite and T = TT positive semidef-
inite.

D. Terminal Cost
The Lyapunov function Va(·) satisfies Assumption 4 with

k1 = k2 = 1/2, a = 2 and k3 = max
{

λmax(K),kζ

}
and the

stabilizing stage cost satisfies Assumption 5 with v = 2,
a1 = 0 and a2 = λmax(Q), therefore, applying Proposition 1
results in the terminal cost as

m(ê) =
λmax (Q)

2max
{

λmax (K) ,kζ

}‖ê‖2 . (8)

E. Input Constraint Sets
The input constraint set is chosen to be

U =

[
−a0

(
1+

v
vmax

)
,a0

(
1− v

vmax

)]
×
[
−β̇max, β̇max

]
,

(9)
whose first component has the form of the speed-
to-torque lines of a DC motor and guarantees
v(t) ∈ [−vmax,vmax] ∀v0 ∈ [−vmax,vmax].

F. Terminal State Constraint Set
In order to satisfy Assumption 4 and exploit the conver-

gence guarantees of Theorem 1 from [10], the terminal set
is chosen to be a sublevel set of the Lyapunov function with
feasible associated state and input closed-loop trajectories.
Xa(t) is built implicitly, by constructing a terminal set for
ê(t,x) as Ea := {ê(t,x) : Va(ê)≤ r, ka(t, ê) ∈U } for some
r∈R+. Consider the system in closed-loop with the auxiliary
control law. Ideally, we would like to compute the largest
level set L (Va,r) with feasible associated state and input
closed-loop trajectory, i.e. with

r = max{r̄ ≥ 0 : ka(t, ê) ∈U , ∀ê ∈L (Va, r̄), t ≥ 0} .

Note that the condition ka(ê) ∈ U can be rewritten by
combining (9) with (6), as(

(−1, 0)+ [∆−1]1KS(ω)
)

e− kζ ζ +q2+

+a0
v

vmax
∈ [−a0,a0]

− v
lr

sin(β )+ [∆−1]2
(
−Ke+RT ṗd

)
∈
[
−β̇max, β̇max

]
.

(10)
In order to make the inequalities (10) only dependent
on the vector ê, we proceed by bounding the com-
ponents that are function of time and state. Consider
the maximal velocity vmax, the maximal desired velocity
vd,max = maxt{‖ṗd(t)‖} and the maximal desired accel-
eration ad,max := maxt{‖p̈d(t)‖}. Then, the first input
constraint of (10) can be upper-bounded as(

(−1, 0)+ [∆−1]1KS(ω)
)

e− kζ ζ+

+[∆−1]1

(
−KS(ω)ε +KRTṗd +RTp̈d−S(β̇ )RTṗd

)
+

+

(
[∆−1]1

(
−K(1, 0)T−S(1)RTṗd

1
lr

)
+

a0

vmax

)
︸ ︷︷ ︸

≤kv:=|[∆−1]1K(1, 0)T |+‖[∆−1]1‖ vd,max
lr

+
a0

vmax

v

∈ [−a0,a0] ,
(11)

Combining (11) with v = ζ + [∆−1]1(−Ke + RT ṗd),
ωmax = vmax/lr + β̇max, ‖RTṗd‖ ≤ vd,max and
‖RTp̈d‖ ≤ ad,max leads to(∥∥[∆−1]1KS(ωmax)

∥∥+∥∥[∆−1]1Kkv
∥∥+1

)︸ ︷︷ ︸
=:γ

‖e‖+

+(kv + kζ )|ζ | ≤ a0−
∣∣[∆−1]1KS(ωmax)ε

∣∣
−
(∥∥[∆−1]1

∥∥kv +
∥∥[∆−1]1K

∥∥+∥∥∥[∆−1]1S(β̇max))
∥∥∥)vd,max

−
∥∥[∆−1]1

∥∥ad,max =: b1 .
(12)



Note that the set induced by (12), i.e. {ê : (12)}, con-
tains the ellipsoid S1 := {ê : êT P1ê ≤ b2

1}, where P1 :=
diag{γ2,γ2,(kv + kζ )

2}. We perform this approximation,
because it is easier to look for the largest r, such that
L (Va,r)⊆S1, i.e.

r1 =max
r
{r≥ 0 : L (Va,r)⊆S1}=

1
2

(
b1

max{γ,kv + kζ}

)2

.

The same approach is used for the second input constraint.
Inserting v = ζ +[∆−1]1(−Ke+RT ṗd) in the second inclu-
sion of (10), we obtain(

sin(β )
lr

, −1
)

∆
−1Ke− sin(β )

lr
ζ

−
(

sin(β )
lr

, −1
)

∆
−1RTṗd ∈

[
−β̇max, β̇max

]
.

In order to have a simpler form, where β is not present, we
use the fact that∥∥∥∥( sin(β )

lr
, −1

)
∆
−1
∥∥∥∥≤ ∥∥∥∥(−1

lr
, −1

)
∆
−1
∥∥∥∥ ,

for ε1 > 0 and ε2 ≥ 0, and ‖RTṗd‖ ≤ vd,max, leading to the
search of the largest L (Va,r) contained in the polytope

P2 :=
{

ê :
(
−
(

c1

lr
, 1
)

∆
−1K,

c2

lr

)
ê ∈ [−b2,b2],

c1,c2 ∈ {−1,1}
} ,

where b2 := β̇max −
∥∥∥(−1

lr
, −1

)
∆−1

∥∥∥vd,max and we use
the fact that [−b2,b2] is convex and sin(β ) ∈ [−1,1]. The
optimization problem

r2 = max
r
{r ≥ 0 : L (Va,r)⊆P2} ,

is equivalent to the geometric problem of finding the largest
ellipsoid 1/2êTê ≤ r2 inscribed in the polytope P2, which
has a closed form solution (see e.g. [14]). The feasibil-
ity of the auxiliary control law is ensured by choosing
r := min{r1,r2}, which results in the terminal set

Xa(t) = {x ∈ Rn : Va(ê(t,x))≤ r} . (13)

V. ECONOMIC MPC

The EMPC is designed by augmenting the stabilizing stage
cost ls(·) of the stable MPC obtained in Section IV with
an economic stage cost le(·). In order to use the results
of [9], reported in Section II-C, and thus guarantee ultimate
boundedness of the error trajectories, we need to fulfill
Assumption 6. Observe that Assumptions 1-3 are satisfied
with the designed stabilizing stage cost (7), terminal cost (8)
and terminal set (13). The economic stage cost is chosen to
be the power extracted from the battery Pb = ηbPDC, where
the motor power is PDC = UmI and the battery efficiency
is ηb =

1
ηd

if PDC ≥ 0 (discharge), ηc if PDC < 0 (charge).
Assuming fast motor dynamics, i.e. L≈ 0, the current and the
voltage can be described by the algebraic functions I = rw

κλ
Fe

and Um = Rcrw
κλ

Fe +
κλ

rw
vcos(β ), where Fe =

ma+Fd(x)
cos(β ) . From

this,

PDC(x,u) = Rc

(
rw(ma+Fd(x))

κλ cos(β )

)2

︸ ︷︷ ︸
Resistance Power

+(ma+Fd(x))v︸ ︷︷ ︸
Mechanical Power

.

(14)
It can be shown that the chosen approximation well describes
the real behavior of the motor. Finally, the motor power can
be combined with the battery efficiency to get the power
extracted from the battery, which is used to design the
economic stage cost as

le(x,u) = αePb(x,u) = αePDC(x,u)ηb , (15)

with αe as the weighting factor used to tune the impor-
tance of the power consumption in the MPC optimization
algorithm. Recall that (15) satisfies Assumption 6, as PDC is
bounded along the closed-loop state and input trajectories.

VI. SIMULATIONS

Simulations are made considering a radio controlled elec-
tric car without kinetic energy recovery system (i.e. ηc = 0
and ηd = 1). The nonlinear solver ACADO [15] is em-
ployed, and the simulator is implemented in MATLAB. Two
scenarios are chosen: a flat surface and a smooth surface
with a hill. In both cases the desired trajectory has the
sinusoidal form pd(t) = (vd,xt, Asin(νt))T. First, the stable
MPC is implemented, setting αe = 0. Subsequently this
weight is stepwise increased and at each step the simulation
is repeated.

A. Slalom on a Flat Surface

The results of the trajectory tracking simulation on the
flat surface are shown below. In Fig. 2, the desired and real
trajectories are shown for different values of αe, whereas in
Fig. 3 the mean error and the mean power consumption are
plotted as a function of the weight αe of the economic stage
cost.
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Fig. 2. Desired trajectory (black dashed) and vehicle trajectories with
αe = 0 (blue solid) and αe = 0.7 (red solid).
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Fig. 3. Mean tracking error and battery power.

B. Slalom on a Mountainous Surface

For this set of simulations a mound is placed on the desired
trajectory and therefore the gravity force plays an important
role in the energy consumption of the vehicle. As Fig. 4
reveals, the stable MPC is not affected by this new scenario.
On the other hand, the ultimately bounded EMPC chooses a
trajectory along an isoline of the mound, when the gradient
becomes too steep.
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Fig. 4. Desired trajectory (black dashed) and vehicle trajectories with
αe = 0 (blue solid) and αe = 0.7 (red solid) with isolines.Smooth Surface with a Hill- Mean Error and Power
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Fig. 5. Mean tracking error and battery power.

C. Discussion
In both scenarios, the use of the proposed strategy allowed

to save energy while still guaranteeing closed-loop bound-
edness around the desired trajectory. The expected relation
between energy saving and tracking error is shown in Fig. 3
and 5 for flat and mountainous territory, respectively.

VII. CONCLUSIONS
A nonlinear trajectory tracking control law for car-like

vehicles was derived and used to design a stable MPC. This
was then combined with an economic stage cost representing
the energy consumption of a vehicle driven by electric
propulsion. As expected, a higher bound on the economic
stage cost, resulting from a larger weighting factor, enlarged
the convergence region of the trajectory around the desired
one. The resulting strategy was proved to be an effective
energy efficient control algorithm with a tunable power
consumption weight, which allows to get the most satisfying
trade-off between tracking performance and energy saving.
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