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Abstract

This thesis reports on novel experiments in the field of quantum state
engineering and preparation using a single trapped 40Ca+ ion. It also
covers the laser system, optical setups, experimental characterizations
and theoretical study for the 9Be+ ions. In addition, a newly set-up
mixed-species ion trap and imaging system are described.

We demonstrate the generation of squeezed Schrödinger’s cat states by
applying a state-dependent force (SDF) to a single trapped ion initialized
in a squeezed vacuum state. Using SDF technique allows us to directly
measure the phase coherence and quadratures of the initial squeezed
wavepacket by monitoring the spin-motion entanglement. The evolution
of the number states of the oscillator is measured as a function of the
duration of the force. In both experiments, we observe clear differences
between displacements aligned with the squeezed and anti-squeezed axes.
Coherent revivals of the squeezed Schrödinger’s cat state are observed
after separating the wavepackets by more than 19 times the ground state
root-mean-square extent, which corresponds to 56 times the r.m.s. extent
of the squeezed wavepacket along the displacement direction. To our
knowledge, this is the largest cat state created in any technology so far.

The beryllium laser system built as part of this thesis is designed to per-
form a high-fidelity control of beryllium qubits. The new 235 nm laser
source is first described and used for loading beryllium ions. For quan-
tum control of the ion, we generated 1.9 Watts of continuous-wave ultra-
violet light at 313 nm, which may help towards fault-tolerant quantum
computation. Using these sources, the control of beryllium is described,
including the ground state cooling and a long-lived quantum memory.
The coherence time of the 9Be+ qubit with a first-order magnetic-field-
independent hyperfine transition is measured to be ≈ 1.5 seconds.

This work provides basic techniques for quantum control of both ion
species in the same experimental setup as well as developing new tools
for quantum state engineering, quantum metrology and quantum infor-
mation processing.

This is the first edition of the thesis, released on Monday 27th July, 2015.
This is the second edition of the thesis with corrections according to
examiners’ comments, released on Monday 1st February, 2016.
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Zusammenfassung

Diese Dissertation dokumentiert neuartige Experimente mit einzelnen
gefangenen 40Ca+ Ionen im Forschungsfeld der Quantenzustandspräpa-
ration. Sie behandelt ausserdem ein Lasersystem, den optischen Auf-
bau, die experimentelle Charakterisierung, sowie theoretische Studien für
9Be+ Ionen. Zusätzlich werden eine neu aufgebaute Ionenfalle und ein
Abbildungssystem für Ionenkristalle verschiedener Spezies beschrieben.

Wir demonstrieren die Erzeugung gequetschter Schrödingers-Katzen Zu-
stände durch die Anwendung einer zustandsabhängigen Kraft auf ein in
einem gequetschten Grundzustand initialisierten, gefangenen Ion. Die
Verwendung der Methode der zustandsabhängigen Kraft erlaubt es uns,
durch die Beobachtung der Verschränkung zwischen Spin- und Bewe-
gungszustand direkt die Phasenkohärenz und Quadraturen des gequet-
schten Wellenpakets zu messen. Die Entwicklung der Fock-Zustände
des Oszillators wird als Funktion der Dauer der zustandsabhängigen
Kraft gemessen. In beiden Experimenten beobachten wir deutliche Unter-
schiede für den Versatz entlang der gequetschten und der anti-gequetschten
Achse. Kohärente Wiederkehr der gequetschten Schrödinger-Katzen-Zu-
stände nach einer Separation der Wellenpakete von mehr als 19 mal der
Ausdehnung des Grundzustandswellenfunktion wird beobachtet (quadratis-
cher Mittelwert). Dies entspricht einer Separation von 56 mal der Aus-
dehnung des gequetschten Wellenpakets (quadratischer Mittelwert) ent-
lang der Richtung des Versatzes. Nach unserem Wissen ist dies der
grösste Katzen-Zustand der bisher, unabhängig von der angewandten
Technologie, erzeugt wurde.

Das Lasersystem für Beryllium, gebaut als Teil dieser Arbeit, wurde
entworfen, um Kontrolle hoher Güte von Beryllium-Ionen auszuüben.
Die neue 235 nm Laserquelle wird zuerst beschrieben und verwendet um
Beryllium-Ionen zu laden. Für Quantenkontrolle erzeugen wir 1.9 W
an Dauerstrich-Ultraviolett-Licht bei 313 nm, was hilfreich für fehler-
tolerantes Quanten-Rechnen sein könnte. Die Kontrolle von Beryllium
mit Verwendung dieser Quellen wird beschrieben, inklusive Grundzus-
tandskühlen und eines langlebigen Quantenspeichers. Die Kohärenzzeit
eines 9Be+ Qubits mit einem in erster Ordnung magnetfeldunabhängigen
Übergang in der Hyperfeinstruktur wurde zu ≈ 1.5 Sekunden gemessen.

Diese Arbeit beschreibt grundlegende Techniken zur Quantenkontrolle
von beiden Ionenspezies im selben experimentellen Aufbau sowie die En-
twicklung neuer Techniken zum Erzeugen von Quantenzuständen, der
Quantenmeteorologie und der Quanteninformationsverarbeitung.

ii



Acknowledgements

It has been a great privilege to work in Trapped Ion Quantum Information
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Chapter 1

Introduction

Quantum mechanics provides an accurate description of the behavior of ob-
jects typically at atomic length scales. The physical phenomena predicted
by quantum mechanics have also been verified in the experiment to an ex-
tremely high accuracy. Experimental control of quantum systems is very
difficult to pursue because the quantum systems can easily lose their quan-
tum properties as soon as they interact with the environment. The work
on studies of the fundamental interaction between light and matter was con-
siderably grown up since the mid-1980s. There were many advances and
techniques being made and developed in this research field over the past 30
years. Particularly there was a field of research recognized by the Nobel Prize
to Serge Haroche and David J. Wineland “for ground-breaking experimen-
tal methods that enable measuring and manipulation of individual quantum
systems”. Both experimental pioneers independently invented and developed
a variety of experimental techniques for measuring and controlling individual
particles. Their works provide this field of research a foundation towards build-
ing a new type of computer based on quantum physics. Besides the atomic
systems that Haroche and Wineland use, control of the quantum states for
realizing quantum computing or quantum simulation is also widely pursued in
many different kinds of physical systems, for example, photons, atoms in op-
tical lattices, quantum dots, superconducting circuits, and nuclear magnetic
resonance [Ladd 10, Buluta 09, Georgescu 14]. Among all the possible can-
didates for implementing a practical quantum computing, trapped ions are
still one of the most promising technologies [Häffner 08]. The ions are well
isolated from the environment, so quantum states can be stored robustly in
the internal and motional states (with a long coherence time). These ions can
be precisely and rapidly controlled using near resonant optical or microwave
fields. The stored quantum information can be transferred between ions us-
ing collective quantized motion of the ions which interact strongly through
Coulomb forces [Cirac 95, Wineland 98], or alternatively one can also transfer
quantum information using photons in a trapped ion based quantum network
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1. Introduction

[Duan 10, Northup 14]. In the following, three main subjects that we would
like to address using trapped atomic ions will be introduced.

1.1 Quantum Computation

The basic element in classical computer is the bit, which can be either 0 or 1.
In quantum computer, this term is called the quantum bit or qubit. The qubit
is a two-level quantum system, which are labeled with 0 and 1. However, a
qubit also allows to exist in a coherent superposition state, both 0 and 1 at
the same time [Schrödinger 35, Nielsen 00]. An operation on such a qubit acts
on both values simultaneously. As a result, increasing the number of qubits
exponentially increases the “quantum parallelism” that we obtain from the
system.

A number of key advances have been developed in the theory of quantum com-
putation, the first was that a controllable quantum system could simulate the
properties of another quantum system much faster than classical computers,
by Richard Feynman in 1982 [Feynman 82]. Perhaps, the most important dis-
covery was made by David Deutsch in 1985 [Deutsch 85], where he formulated
a description for a quantum Turing machine and presented a fully quantum
model for computation, the universal quantum computer. In 1994 Peter Shor
discovered a quantum algorithm for prime factorization in polynomial time
[Shor 94]. The same problem running on a classical computer would scale ex-
ponentially with the size of the problem. In 1995, Barenco et al. showed that
a set of gates consisting of all single-qubit gates and the two-qubit entangling
gate (controlled NOT gate) is universal [Barenco 95]. That means all unitary
operations on arbitrarily n qubits can be decomposed with these gates. They
carefully analyzed the number of the above gates required to implement other
quantum gates like generalized Deutsch-Toffoli gates [Deutsch 89], which plays
an important role in many proposals of quantum computation.

In the same year (1995), Cirac and Zoller proposed a scheme of implementing
a two-qubit controlled-NOT gate with trapped ions [Cirac 95]. The first experi-
mental demonstration was realized by Schmidt-Kaler et al. [Schmidt-Kaler 03].
However, an alternative method for realizing a two-qubit entangling gate is to
apply a spin-state-dependent force on two or more ions simultaneously which
was proposed in 1999 [Mølmer 99, Sørensen 99, Solano 99, Milburn 00] and
then implemented by several groups [Sackett 00, Haljan 05b, Benhelm 08a,
Home 06a, Leibfried 03b]. This type of gate has some useful features namely
that it does not require individual addressing of the ions and it can work
without cooling the ions to the motional ground state, both of which are the
technical requirements for the Cirac-Zoller gate operation. Many trapped-ion
groups throughout the world are still trying to push the gate fidelity to meet
the fault-tolerant threshold (10−4) for realization of quantum computation
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1.2. Quantum Simulation

[Benhelm 08a, Brown 11, Harty 14].

1.2 Quantum Simulation

Quantum simulation is one of the branches in quantum information science.
It is very similar to the idea that Richard Feynman pointed out in 1982
[Feynman 82]. Simulating certain quantum systems, for instance quantum
many-body systems, is intractable with classical computers. The best algo-
rithms for their exact simulation require computational resources that grow
exponentially with the number of particles. This kind of problem not only
appears in solid-state physics, but also in chemistry, material science and
even biology [Zeng 12]. One promising approach to overcome this problem is
the quantum simulation in which one could catch more insight into complex
quantum dynamics by using precise control of a controllable quantum system
to simulate the behavior of another quantum system. Quantum simulations
would not only provide new results that cannot be obtained from classical
computers, but also allow us to test and simulate physical models.

Many theoretical proposals have shown that the trapped-ion quantum simu-
lator could help tackle difficult problems in condensed-matter physics, for in-
stance Hubbard models [Deng 08], spin models [Jané 03, Porras 04, Deng 05,
Bermudez 09, Edwards 10, Kim 11], quantum phase transitions [Retzker 08,
Ivanov 09, Giorgi 10], and disordered systems [Bermudez 10]. It would also
have applications in understanding other fields like Dirac particles [Lamata 07,
Casanova 10, Casanova 11], cosmological models [Alsing 05, Menicucci 10], as
well as nonlinear interferometry [Leibfried 02, Hu 12, Lau 12].

There have been several experimental realizations of quantum simulation with
trapped ions [Blatt 12, Schneider 12]. For example, in 2008 simulation of a
quantum magnet with trapped ions was demonstrated [Friedenauer 08]. In
2010 a quantum simulation of the 1-D Dirac equation using a single trapped
ion was performed [Gerritsma 10], and then another counter-intuitive predic-
tion of the Dirac equation, the Klein paradox, was observed [Gerritsma 11]. In
2011, Lanyon et al. demonstrated quantum simulation in a digital way with
trapped ions [Lanyon 11]. A number of quantum simulations for quantum
phase transitions and spin models have also been realized [Kim 09, Kim 10,
Islam 11, Britton 12, Islam 13]. Recently, quasiparticle dynamics was ob-
served in a quantum many-body system of trapped atomic ions [Jurcevic 14,
Richerme 14], and the trapped ions have been used to engineer an effective
system of interacting spin-1 particles [Senko 15]. These research works suggest
that trapped-ion systems are powerful for quantum simulations.

Those quantum simulation schemes demonstrated have primarily been consid-
ered in closed quantum systems [Berry 07], i.e. isolated systems that cannot
exchange energy with their surroundings and do not interact with other quan-

3



1. Introduction

tum systems. However, in real-life situations, if we are interested in the phys-
ical properties of a quantum system, we need to deal with this system as an
open quantum system which does exchange energy with its surroundings. For
example, in experiments with quantum dots an open quantum system exists
because a single electron spin interacts with a nuclear spin bath due to the
material of the quantum dot. While quantum simulation experiments have
been demonstrated with coherently controlling the dynamics of a quantum
system, how to perform quantum simulation for an open-quantum system by
engineering the coupling to an environment becomes an attractive research
topic [Blatt 12].

For the trapped-ion system a toolbox for simulating an open quantum system
has been reported in [Barreiro 11]. Usually the dynamics of an open quantum
system in the Markovian regime is described by a master equation in which the
dissipative dynamics of the system coupled to an environment is involved. As
shown in [Barreiro 11], the trapped ion systems allow the realization of such
master equations. The idea is to divide the trapped ions into “system” and
“environment” ions. The ancilla ion is coupled to the vacuum modes of the
radiation field through the optical pumping. Using the combination of single
qubit and entangling gate operations for the ions, this provides a powerful
toolbox to build a given dissipative dynamics of a master equation.

1.3 Quantum State Engineering

The preparation of nonclassical states of quantum systems is of interest be-
cause these nonclassical states cannot be described by classical physics, and
their properties reveal some of the intriguing features of quantum mechanics.
In the field of quantum optics, nonclassical states are usually quoted in the
context of nonclassical states of light. Here we are interested in the generation
and measurement of nonclassical states of ion’s motion in a quantum harmonic
oscillator as well as their possible applications.

The most common nonclassical states of the harmonic oscillator are probably
the Fock (or called number) states, the coherent states, the squeezed states,
and the Schrödinger’s cat states. Their properties are widely discussed in
many textbooks and literature [Gerry 05]. Especially the squeezed states and
the Schrödinger’s cat (SC) states expose important non-intuitive elements
of quantum mechanics. The squeezed states are at the limit of the Heisen-
berg uncertainty principle, with one part of the state compressed to below
its natural limit while the other expands to compensate. The SC states and
their decay provide the closest realization to date of Schrödinger’s well known
thought experiment [Monroe 96, Hempel 13]. The other key quantum state is
the entangled states, which are useful resources in quantum physics, quantum
cryptography and quantum computation [Nielsen 00].
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1.4. Our Work

Experimental realizations of generation of these nonclassical states are typi-
cally done with coherently control of the system [Meekhof 96]. However, the
decoherence of these states may occur, arising from the coupling between the
system and the environment and imperfect control of the experiments. A
dissipative way of quantum state preparation is another approach in which
controlled couplings to an environment can be used to engineer the dynamics
of the system to reach the steady state of the dissipative process. Theoretical
work has shown the potential for using such engineered dissipation for quan-
tum harmonic oscillator state synthesis [Cirac 93b, Poyatos 96, Carvalho 01]
and for universal quantum computation [Verstraete 09]. Experimentally, these
techniques have been implemented to generate entangled superposition states
of qubits in atomic ensembles [Krauter 11], trapped ions [Barreiro 11, Lin 13],
and superconducting circuits [Shankar 13]. Our group also experimentally
demonstrated the generation of quantum harmonic oscillator states by reser-
voir engineering [Kienzler 15a].

1.4 Our Work

Motivated by those advantages of the trapped ion systems and the interesting
problems in quantum physics mentioned above, we seek to a new possibility for
experimental realization of high-fidelity quantum control of a quantum system.
In our group, we plan to investigate quantum simulations of open quantum
systems and perform quantum information processing using a new approach
which involves two species of ion (beryllium and calcium). The advantage of
using mixed-species ions is that these can be perfectly individually addressed
due to the large wavelength difference between the transitions in each ion.
While optical transitions in beryllium ions are at wavelengths around 313 nm,
the transition wavelengths in calcium are all above 393 nm. This means that
we can individually manipulate each ion species with a wide range of light
fields without disturbing the internal states of the other. This has been shown
to have significant advantages in quantum information processing [Jost 09,
Home 09, Hanneke 09] and frequency metrology [Chou 10].

The information is encoded in the internal (electronic) states of the ion. Beryl-
lium (9Be+) and calcium (40Ca+) ions are different types of qubit. The 9Be+

ion is called “hyperfine qubit” where two sublevels of a ground state within
the hyperfine structure are used to encode the information and the spacing of
such two sublevels is in the range of gigahertz. For 40Ca+ ions the informa-
tion is stored in one of the ground and metastable states of the fine structure,
where the qubit transition frequency is in the optical range. This is called an
“optical qubit”.

Each type of qubit has their own advantages and weakness. For the 9Be+ qubit,
we can find a pair of states that is insensitive to the first-order magnetic field
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1. Introduction

fluctuations, which is one of the dominant sources inducing the decoherence,
so the quantum information can be preserved for a long time. If such a qubit
is manipulated using two-photon Raman transitions, the coupling to the ion’s
motion can be varied by changing the laser beam configurations, but the fun-
damental limit is the spontaneous photon scattering from the excited state
that the two Raman beams are coupled to. Alternatively this qubit can be
controlled with microwaves [Ospelkaus 11] to avoid the use of lasers. For the
40Ca+ qubit, the lifetime of the metastable state is around one second (natural
linewidth in a hundred of millihertz level), which means very good laser fre-
quency stability is needed for controlling such a qubit. Since the time scale of
the gate operations and the qubit readout is much shorter than the lifetime of
the the metastable state, the spontaneous emission from the metastable state
can be negligible, resulting in an excellent gate and readout fidelity. However
there is no magnetic-field-independent states that can be chosen so active mag-
netic field stabilization is helpful. Designing and building the experiments for
the aforementioned research topics are extremely challenging but most of the
basic techniques required have been developed in the past few years.

1.5 Thesis Layout

This thesis describes the work that has been carried out at ETH Zürich in
order to perform flexible and high-fidelity control of mixed-species ion chains
for quantum information science. In this thesis, quantum control of calcium
and beryllium ions are described. Apart from the experimental side, theo-
retical studies of some properties of both ion species are also presented. We
used our system to realize quantum harmonic oscillator state synthesis and
create superpositions of distinct squeezed oscillator wavepackets that are en-
tangled with a pseudo-spin encoded in the electronic states of a single calcium
ion. The squeezed wavepacket entangled states are analogous to the well
known Schrödinger’s cat states. This is the first time that these squeezed
Schrödinger’s cat states are created.

Chapter 2 is a theoretical study of beryllium ions. Calculations of the energy
levels of hyperfine structures, finding the first-order magnetic-field-independent
qubits and derivations of the coherent quantum control via stimulated Raman
transitions are shown. Qubit initialization and readout error are analyzed in
detail. A brief introduction to the two-qubit quantum gates and the discus-
sions of their error sources are given in this chapter for the long-term plan.

Chapter 3 focuses on some specific subjects of calcium ions. Most of the cal-
cium setups and characterizations are covered in the thesis of Daniel Kienzler
[Kienzler 15b]. First, generation of 40Ca+ ions using the two-photon photoion-
ization scheme is described. Due to a relatively high magnetic field we use,
it makes the energy level splittings larger than the linewidth of the excited
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states and thus more laser beams to control the ion efficiently are required.
The simulation solving the optical Bloch equations for a multi-level atomic
system is given for finding suitable laser parameters, such as the intensity and
the detuning.

The ion trap and the imaging system used for mixed-species ion chains are
given in Chapter 4. An overview of ion trapping principles and the segmented
ion trap which is used for the work covered in the thesis are described. Design-
ing an imaging system with near-diffraction-limit resolution is challenging for
two different wavelengths. The design procedure and features of the imaging
system for two species of ions are described in detail.

Chapter 5 describes the laser systems and optical setups for ionization, cooling
and quantum state manipulation of beryllium ions. The wavelengths required
for the lowest-energy transitions for excitation from the ground state of both
the beryllium ion and the beryllium atom are in the ultraviolet region, at
313 and 235 nm respectively. The nonlinear frequency conversion techniques
are employed to produce these UV wavelengths of light. The beam lines for
delivering the light to the ions as well as the laser frequency stabilizations are
also presented in this chapter.

Since the experimental systems are newly set up, many basic experimental
techniques are used to characterize the system and the qubit. Chapter 6 shows
the experimental methods and the measurement results mainly for beryllium
ions in order to understand the system better. The procedure of calibration
and optimization of experimental parameters is described. One of the major
concerns of working with a mixed-species ion chain is that the equilibrium
positions of the ions in the crystal change in the presence of additional stray
fields. The influence of the stray fields on the ion in our trap must be un-
derstood well. A detailed study of compensating the stray fields is discussed
using a single ion.

Although many works presented here are related to beryllium ions, several
techniques are developed for calcium ions too. Chapter 7 describes the main
achievement that we experimentally demonstrate spin–motion entanglement
and state diagnosis with squeezed oscillator wavepackets [Lo 15]. By apply-
ing an internal-state-dependent force to a single trapped ion initialized in
a squeezed vacuum state, we are able to observe the squeezed nature di-
rectly and then generate squeezed Schrödinger’s cat states. The squeezed
wavepacket entangled states are verified to be coherent by reversing the ef-
fect of the state-dependent force, resulting in recombination of the squeezed
wavepackets, which we measure through the revival of the spin coherence. To
prepare squeezed states of motion we use a newly developed technique called
reservoir engineering. These methods allow us to synthesize various quantum
harmonic oscillator states [Kienzler 15a].

7



1. Introduction

The last chapter summaries the work and briefly describes a couple of probable
experiments that can be performed using the system constructed.
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Chapter 2

The 9Be+ Qubit

The ion species we use in our experiments are beryllium and calcium. The
discussions of the calcium ion will be given in Chapter 3. Beryllium ions have
previously been using for experiments of quantum computation [Leibfried 03b],
quantum state engineering [Meekhof 96], robust quantum memory [Langer 05],
quantum logic spectroscopy [Schmidt 05], precise spectroscopy [Wineland 83],
and quantum simulations [Britton 12]. In this chapter, I first describe the
relevant atomic structure of 9Be+. Since we use two hyperfine ground states
to store and manipulate quantum states, I show how to theoretically obtain
a pair of levels whose frequency separation has zero first-order dependence on
the magnetic field for which the fluctuation is one of the principal problems in
the laboratory. I then describe how we initialize the system to a well defined
state and how we read out the final state after the quantum manipulations.
A detailed analysis of measurement error is given. I explain the stimulated
Raman transitions which we use to do the coherent control of the beryllium
ion, and the basics of quantum gate operations. Finally, I discuss the errors
in quantum gates due to off-resonant spontaneous photon scattering.

2.1 Atomic Structure

Beryllium ions have similar electrical structures to alkali neutral atoms, with
a single valence electron. The 9Be+ ion is the lightest ion species which is
commonly trapped with an advantage of strong confinement in the trap, re-
sulting in high oscillation frequencies. The energy level diagram is shown in
Fig. 2.1. The fine structure is a result of the coupling between the orbital
angular momentum L of the outer electron and its spin angular momentum
S. The total electron angular momentum is then given by J = L + S, and the
magnitude of J must lie in the range |L − S| ≤ J ≤ L + S. For the ground
state, L = 0 and S = 1/2, so J = 1/2 and it has no fine structure. For the first
excited state (P state), L = 1 and S = 1/2, so J = 1/2 or J = 3/2. Since the
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Figure 2.1: The energy level diagram of 9Be+ ions. The frequency splitting
between P1/2 and P3/2 states is 197.2 GHz. The hyperfine splittings in S1/2,
P1/2 and P3/2 are 1.25 GHz, 237 and < 1 MHz respectively. The wavelengths
required to drive S ↔ P transitions are all in the vicinity of 313 nm. In the
later chapter we will describe how to generate these ultra-violet wavelengths
by using nonlinear optics techniques.
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energy of any particular level is shifted according to the value of J , the excited
P state is split into two components, 2p 2P1/2 and 2p 2P3/2, with a splitting of
197.2 GHz [Bollinger 85]. The 2s 2S1/2 ↔ 2p 2P1/2 and 2s 2S1/2 ↔ 2p 2P3/2

transitions are the components of a fine-structure doublet, and can be driven
via electric dipole radiation in the vicinity of 313 nm. The excited state has
a lifetime of 8.2 ns, corresponding to a natural linewidth γ = 2π × 19.4 MHz.
In spectroscopic notation, these states (2s 2S1/2, 2p 2P1/2 and 2p 2P3/2) will
be labeled as S1/2, P1/2 and P3/2 for simplicity.

The nuclear spin of the 9Be+ ion is I = 3/2 and thus it possesses hyperfine
structure, which is a result of the coupling of J with the nuclear angular
momentum I. This interaction leads to a splitting of the levels into states
with a total angular momentum given by F = J + I. In the S1/2 state, the
hyperfine splitting is 1.25 GHz [Wineland 83]; the hyperfine splittings in the
excited P1/2 state and P3/2 state are 237 MHz [Bollinger 85] and less than 1
MHz respectively [Poulsen 75]. Each hyperfine manifold, for example F = 1
manifold in S1/2 state, is degenerate at zero magnetic field. In the presence of
magnetic fields, this degeneracy is broken by the Zeeman effect. For quantum
control, we use two Zeeman states in the S1/2 state as the quantum bit (qubit).
In principle, we can choose any pair of levels for the qubit, but certain pairs
are better for the quantum information processing than others since they have
much longer coherence time. These will be discussed in Chapter 2.2.

2.2 Hyperfine Structure and Field-Independent Qubits

The hyperfine structure is a result of the coupling of J with the total nuclear
angular momentum I. The Hamiltonian that describes the total system, in-
cluding hyperfine interaction and the atomic interaction with the magnetic
field, is

Htot = Hhfs +HB

Hhfs = hAhfsI ·J
HB = µB(gSS + gLL + gII) ·B. (2.1)

For Hhfs, h is the Planck’s constant, and Ahfs is called the hyperfine constant
and has an unit of frequency. The operators I and J are dimensionless. In our
discussions if we take the magnetic field to be along the z-direction, which is
considered to be along the atomic quantization axis, HB can be written as

HB = µB(gSSz + gLLz + gIIz)Bz (2.2)

where µB is the Bohr magneton, and the quantities gS , gL, and gI are the
electron spin, electron orbital and nuclear g-factors, respectively. If the energy
shift due to the magnetic field is small compared to the fine-structure splitting,
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2. The 9Be+ Qubit

then J is a good quantum number and Eq. (2.2) becomes

HB = µB(gJJz + gIIz)Bz

Here, the Landé factor gJ is given by

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.3)

The Hhfs term described above only considers the interaction of the nuclear
and electron magnetic dipoles. In general, the interaction between the nu-
clear and electron angular momenta can be expanded in a multipole series
so the higher-order corrections become quite involved, for example, the elec-
tric quadrupole interaction, magnetic octupole interaction, etc [Woodgate 80].
These interactions cause a shift of the hyperfine structure levels. In our case, to
more accurately determine the energy levels of P3/2 state we take the electric-
quadrupole term into account. We should notice that this electric-quadrupole
interaction is only applicable for the states with I, J > 1/2. Combining two
terms, the Hamiltonian for the hyperfine structure is

Hhfs = hAhfsI ·J

+hBhfs
3(I ·J)2 + 3

2(I ·J)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(2.4)

where Bhfs is is the electric-quadrupole hyperfine constant.

Now we can compute the expectation values for the given total Hamiltonian
Htot = Hhfs + HB to obtain the energy levels as a function of applied mag-
netic fields. When the Zeeman interaction is small compared to the hyperfine
interaction, the total angular momentum F = I+J and mF , which is the pro-
jection of F on z-axis, are good quantum numbers to use because the Zeeman
interaction here is treated as a perturbation. In the opposite case where the
magnetic field is very strong such that the Zeeman interaction dominates, the
eigenstates are well described by the |I,mI ; J,mJ〉 basis (we will use |mI ,mJ〉
for simplicity). However, for intermediate fields, where the Zeeman interac-
tion neither perturbs nor dominates the hyperfine interaction, the system is
in general difficult to calculate analytically. In general one must numerically
diagonalize the Hamiltonian Htot. There is an exception coming about in
hyperfine structure when J = 1/2 (e.g. S1/2 and P1/2 states). In this case,
the hyperfine Hamiltonian (Eq. (2.4)) is given only by the magnetic-dipole
term and the energy levels can be solved analytically, which is so-called the
Breit-Rabi formula [Woodgate 80]. I will focus on how to calculate the energy
levels by diagonalizing the Hamiltonian so here I skip the detailed derivations
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Figure 2.2: 9Be+ S1/2 (ground) state hyperfine structure in an exter-
nal magnetic field. The parameters used in the calculation are Ahfs =
−625.008837048 MHz, gL = 1, gS = 2.0023193043622, gJ obtained from
Eq. (2.3), gI = gJ × 2.134779853 × 10−4, µB = 9.27400968 × 10−24 J/Tesla
[Yerokhin 08, Puchalski 09].

of the Breit-Rabi formula and only show the result [Woodgate 80]:

E|F,mF 〉 = − ∆Ehfs

2(2I + 1)
+ gIµBmFB

±∆Ehfs

2

(
1 +

4mFx

2I + 1
+ x2

)1/2

(2.5)

where ∆Ehfs = Ahfs

(
I + 1

2

)
and x = µB(gJ−gI)B

∆Ehfs
. For the beryllium ions, the

minus sign applies to the F = 1 manifold, the plus sign applied to F = 2
manifold, and Ahfs can be found in [Yerokhin 08, Puchalski 09]. To avoid the
discontinuity in evaluating Eq. (2.5) the more direct formula

E|F,mF 〉 = − ∆Ehfs

2(2I + 1)
+ gIµBmFB +

∆Ehfs

2
(1 + x)

is used for the state mF = (I + 1/2). The physical picture behind the Breit-
Rabi formula for quantum information processing is that it allows us to identify
a pair of levels where the differential energy shift with respect to magnetic field
vanishes to the first order. The main advantage of using such a transition as
a qubit is that any small fluctuation in magnetic field does not influence the
qubit frequency to the first order such that the qubit which stores the quantum
information has a relatively long coherence time [Langer 05].
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Figure 2.3: 9Be+ P1/2 (excited) state hyperfine structure in an external mag-
netic field. The hyperfine constant Ahfs used in the calculation is −117.919
MHz [Yerokhin 08, Puchalski 09] and the rest are the same as for Fig. 2.2.

As mentioned above, the general way of calculating the energy levels of hyper-
fine states is to numerically diagonalize the total Hamiltonian. In order to do
that, one needs to calculate the matrix elements for given computational basis.
For convenience, here we only show the matrix elements using the Hamilto-
nian in Eq. (2.1) for S1/2 and P1/2 states, and the matrix elements for the
electric-quadrupole interaction for the P3/2 state are given in Appendix A.
Recalling the basic relations in quantum mechanics, we have

I ·J = IzJz + IxJx + IyJy

= IzJz +
I+J− + I−J+

2

If now we choose the strong-field basis, the diagonal matrix elements are

〈mI ,mJ |Htot|mI ,mJ〉 = hAhfsmImJ + µB(gJmJ + gImI)B

and also the off-diagonal matrix elements are

〈mI + 1,mJ − 1|Htot|mI ,mJ〉 =

hAhfs

2

√
(J −mJ + 1)(J +mJ)(I +mI + 1)(I −mI)

〈mI − 1,mJ + 1|Htot|mI ,mJ〉 =

hAhfs

2

√
(J +mJ + 1)(J −mJ)(I −mI + 1)(I +mI)
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Figure 2.4: 9Be+ P3/2 (excited) state hyperfine structure in an external mag-
netic field. The hyperfine splitting is already small in the low-field regime so it
is not obvious that the levels are grouped according to the value of F , but they
are grouped according to mJ (from top to bottom: mJ = 3/2, 1/2, -1/2 and
-3/2) as the magnetic field increases. The parameters used in the calculation
are Ahfs = −1.015 MHz and Bhfs = −2.299 MHz [Yerokhin 08, Puchalski 09].

Using the eigenvalue solver in numerical software, we can easily obtain the
energy levels of hyperfine states in the presence of applied magnetic fields.

The energy levels for S1/2, P1/2 and P3/2 states as a function of magnetic fields
are shown in Figs. 2.2, 2.3, and 2.4 respectively, ranging from the weak-field
(Zeeman) regime through the strong-field regime. Although these spectrum
are numerically solved by diagonalizing the Hamiltonian, for the states with
J = 1/2 the Breit-Rabi formula can be applied and produce the same results as
well. However, it does not apply to the P3/2 state in which the level structure
is more complicated.

To determine which transition in S1/2 state is more desirable to use to per-
form quantum information processing experiments, we differentiate each en-
ergy level in Fig. 2.2 with respect to the B-field. Figure 2.5 shows the results.
The first crossing point (at non-zero field) occurs at 119.4428 Gauss (G) for
the |S1/2, F = 2,mF = 0〉 ↔ |S1/2, F = 1,mF = 1〉 transition and the second
crossing is at 119.6390 G for the |S1/2, F = 2,mF = 1〉 ↔ |S1/2, F = 1,mF =
0〉 transition, showing these transitions are field-independent to the first or-
der. The Ion Storage Group at NIST has demonstrated the qubit coherence
time up to 15 seconds [Langer 05] using a field-independent transition. The
magnetic field we use in our group is around 119.45 G.
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Figure 2.5: Differential of energy ∂E/∂B versus B for the S1/2 ground state
of 9Be+ ions. Each crossing point is a first-order field-independent transition
that occurs when ∂E/∂B is equal for both states. In our experiment, we can
use the first and the second field-independent transitions as the qubit states.

Here we define the bright state as |b〉 ≡
∣∣S1/2, F = 2,mF = 2

〉
, which is

coupled to the state
∣∣P3/2, F

′ = 3,m′F = 3
〉

and used for the qubit readout
(see Chapter 2.4), and encode the two-level field-independent qubit (FIQ) as
|↑〉 ≡

∣∣S1/2, F = 1,mF = 1
〉

and |↓〉 ≡
∣∣S1/2, F = 2,mF = 0

〉
. If we work

with a standard field-dependent qubit (FDQ), those states are chosen as
|↑〉 ≡

∣∣S1/2, F = 1,mF = 1
〉

and |b〉 = |↓〉 ≡
∣∣S1/2, F = 2,mF = 2

〉
(see Fig.

2.6). More experimental characterizations will be discussed in Chapter 6.

2.3 Qubit Initialization

In 2000, David DiVincenzo summarized five requirements that any candidate
quantum computer implementation must satisfy and two additional criteria
for quantum communication [DiVincenzo 00]. These are called DiVincenzo
criteria. From previous discussions about the 9Be+ qubit transition, we have
satisfied the first DiVincenzo criteria, a scalable physical system with well
characterized qubits. I will introduce how we meet the second criteria, the
ability to initialize the state of the qubits to a well-defined state. We carry
out this via optical pumping process. In the experiment, we use circularly
polarized σ̂+ laser light propagating along the direction of the magnetic field
since this is the only way of producing a purely σ̂+ light. The σ̂+ laser light
optically pumps the internal state of the ion into |F = 2,mF = 2〉 state
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Figure 2.6: The energy splittings of 9Be+ ions at B = 119.45 Gauss and
the required laser beams for cooling, detection and repumping. The bright
state used for qubit readout is |S1/2, F = 2,mF = 2〉. At this magnetic
field the frequency splitting of the two-level field-independent qubit (FIQ) is
1.2074958 GHz.
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2. The 9Be+ Qubit

in the S1/2 ground state. The implementation consists of four laser beams
overlapped in space with different frequencies at 313 nm. As shown in Fig.
2.6, they are 1) The near-resonant “Blue Doppler” (BD) beam red detuned γ/2
(γ = 2π × 19.4 MHz, the natural linewidth of the excited state as mentioned
in Chapter 2.1) from the |S1/2, F = 2,mF = 2〉 ↔ |P3/2, F

′ = 3,m′F = 3〉
cycling transition. 2) The “BD Detuned” (BDD) beam tuned 600 MHz to the
red of the cycling transition. 3) The “Red Doppler F1” (RDF1) beam tuned
slightly red of |S1/2, F = 1,mF = 1〉 ↔ |P1/2, F

′ = 2,m′F = 2〉, which pumps
the population out of F = 1 manifold into |S1/2, F = 2,mF = 2〉 state. 4)
The “Red Doppler F2” (RDF2) beam tuned slightly red or on resonance of
|S1/2, F = 2,mF = 1〉 ↔ |P1/2, F

′ = 2,m′F = 2〉, which serves as repumping
for the population not in |S1/2, F = 2,mF = 2〉 state.

The BDD beam is responsible for pre-cooling very hot ions while loading or
after collisions with thermal background gas. Because this beam is far detuned
from resonance, it requires higher power than others in order to broaden the
transition. The parameters used in our experiments are the laser power of
approximately few hundreds µW in ≈ 60 µm beam waist and the pulse length
of 3.5 ms. We found that if the laser power of this beam is too high, the line
shape of the transition becomes too broad such that the cooling efficiency
would be decreased and the ions can not be crystalized. The BD beam serves
the Doppler cooling after the pre-cooling stage. Typically the time of Doppler
cooling is around 700 µs in our case. The intensity of the Doppler beam is set
to slightly below half of the saturation intensity (≈ 2.5 µW in 60 µm waist
in our case). The saturation intensity is about 0.76 mW/mm2 for 9Be+ ion.
The RDF1 and RDF2 beams assist optical pumping for F = 1 and F = 2
manifolds when performing the resolved sideband cooling (see Chapter 6.4).
The duration used for the optical pumping is around 5 µs with a certain optical
power (see Chapter 6.3). It is worth noting that the high power BDD beam
is also sufficient for optically pumping the F = 1 manifold even though it is
≈ 400 MHz off-resonant from |S1/2, F = 1〉 ↔ |P3/2,mJ = 3/2〉 transitions.
During the loading process, we could only use BD and BDD beams without
RDF1 and RDF2 beams.

After the ion has been prepared in |S1/2, F = 2,mF = 2〉 state, there are
two ways of preparing the ion in |S1/2, F = 1,mF = 1〉 state for driving the
field-independent transition. First, we can apply a π-pulse directly on the
|S1/2, F = 2,mF = 2〉 ↔ |S1/2, F = 1,mF = 1〉 transition. Or we could
use a combination of RDF2 beam with a Raman pulse that drives |S1/2, F =
2,mF = 2〉 ↔ |S1/2, F = 2,mF = 1〉 transition such that the ion can be
dissipatively pumped in |S1/2, F = 1,mF = 1〉 state.

For some experiments in which the ion needs to be cooled close to the motional
ground state for the qubit initialization [Cirac 95, Meekhof 96], Raman side-
band cooling is used. It is performed on |S1/2, F = 2,mF = 2〉 ↔ |S1/2, F =

18
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1,mF = 1〉 transition at 1017.9946 MHz, followed by a final repumping pro-
cess to prepare the ion in |S1/2, F = 2,mF = 2〉 state. Sideband cooling
technique can provide the ion in the motional ground state with > 99 % fi-
delity [Wineland 98]. The experimental results are given in Chapter 6.4.

The infidelity of the ion’s internal state initialization (here we are interested
in |S1/2, F = 2,mF = 2〉 state preparation) arises from the impurity of po-
larization of the RDF1 and RDF2 beams because this optical pumping is the
final stage prior to any quantum operation. It is worth studying the prepara-
tion error given some impurity in the polarization. We consider the optical
pumping rate out of |S1/2, F = 2,mF = 2〉 state due to the impure polar-
ization in RDF2. The frequency of this beam is closest to the resonance of
|S1/2, F = 2,mF = 2〉 ↔ |P1/2〉 transition so it can easily pump the population
away from |S1/2, F = 2,mF = 2〉 state with non-σ̂+ light.

In the following analysis we assume that RDF2 beam has a small amount of
σ̂− and π̂ polarization components. The optical pumping rate from the initial
state i to the final state f through a single excited state is

Γi→f =
γ

2

s0

1 + s0 + 4δ2/γ2
ci→f (2.6)

where γ is the natural linewidth, δ is the laser detuning from the excited
state, and ci→j is the coupling coefficient between states i and j, which can
be calculated from the coefficients of eigenvector when solving the eigenvalue
problem of Eq. (2.1). s0 = I/Isat is the saturation parameter, where I is the

intensity of the laser beam and Isat = ~ω3γ
12πc2

is the saturation intensity for which
ω is 2π times the transition frequency and c is the speed of light. For an ion
in |S1/2, F = 2,mF = 2〉, it can be excited to |P1/2, F

′ = 2,m′F = 2〉 state by
absorbing π̂ polarized light. Then it will emit σ̂+ photons and decay to either
|S1/2, F = 2,mF = 1〉 or |S1/2, F = 1,mF = 1〉 state. The total coupling
coefficient for this scattering event is

∑
j ci→j = 2/9, which is the sum over a

product of the transition probabilities. The total coupling coefficient for the
scattering through |P1/2, F

′ = 2,m′F = 1〉 state driven by σ̂− polarized light
is also 2/9. Both coupling coefficients are independent of the magnetic field.
The optical pumping from |S1/2, F = 2,mF = 1〉 to |S1/2, F = 2,mF = 2〉
state has a coupling coefficient of ∼ 1/18. Given an admixture of both π̂ and
σ̂− polarizations in the RDF2 beam, denoted with επ and εσ− , the optical
pumping rates from Eq. (2.6) are

Γσ− =
γ

2

εσ−s0

1 + s0 + 4δ2
σ−/γ

2

2

9

Γπ =
γ

2

επs0

1 + s0 + 4δ2
π/γ

2

2

9

The optical pumping rate with an ideal RDF2 beam (δ = 0) is

Γσ+ =
γ

2

s0

1 + s0

1

18
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2. The 9Be+ Qubit

Here we ignore the RDF2 beam acting on |S1/2, F = 1,mF = 1〉 ↔ |P1/2〉
transition due to far off-resonance. Therefore the error in initialization (steady
state) can be evaluated as follows:

einit =
Γπ

Γσ+

+
Γσ−

Γσ+

=
4(1 + s0)επ

1 + s0 + 4δ2
π/γ

2
+

4(1 + s0)εσ−

1 + s0 + 4δ2
σ−/γ

2

For the 9Be+ ion working on the field-independent qubit at B = 119.45 G,
δπ = 2π× 102.8 MHz and δσ− = 2π× 142.7 MHz. Assuming εσ− = επ = 0.1%
and the saturation parameter s0 = 1, the error in initialization is einit ≈
7.6× 10−5. The more general method to determine the initialization error is
to solve the rate equation for all allowed transitions.

2.4 Qubit Readout

For trapped-ion experiments qubit read-out is performed by state-dependent
fluorescence, which measures the projection of the state vector along a given
axis. This technique was proposed by Dehmelt et al. [Dehmelt 75] and first
demonstrated by Wineland et al. [Wineland 80]. It utilizes a closed transition
or so-called a cycling transition in the internal states of the ion. When exciting
a cycling transition, the ion behaves like a two-level system. Performing this
kind of projective measurement collapses the ion’s wavefunction in either one
of its computational basis states. If one of the computational basis states is
involved in the cycling transition, many photons can scatter without leaving
the transition and the fluorescence can be collected. In the opposite situation,
if the ion’s wavefunction collapses to the basis state that does not participate
in the cycling transition, only the background photons will be measured. For
the 9Be+ ion, we use the BD beam, which has been mentioned in Chapter
2.3, as the detection beam, but its frequency is tuned to be on resonance
of the |S1/2, F = 2,mF = 2〉 ↔ |P3/2, F

′ = 3,m′F = 3〉 or alternatively
|P3/2,mI = 3/2,mJ = 3/2〉 cycling transition.

2.4.1 Readout Error - Dark to Bright State Leakage

The main source of the read-out error is the leakage of the qubits initially in
the dark state into the closed transition by off-resonantly coupling to other ex-
cited states (other than the one in the closed transition) during measurement.
When this happens, the ion in dark state has a possibility entering the closed
transition and then starts scattering at a high rate. For a multi-level atomic
system like 9Be+ ions, the general treatment is to solve a rate equation for
all allowed scattering paths such that the time evolution of the probability of
the ion to be in any state can be calculated. The other advantage of the rate-
equation treatment is that we are able to investigate how to improve dark to
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2.4. Qubit Readout

bright state leakage by transferring the dark ion to the other hyperfine state
which is even “darker”.

The population in each hyperfine ground state is represented by a vector v.
For the 9Be+ ion, its length is 8. We define the rate matrix Γσ

+
in which the

matrix elements Γσ
+

i,j are the photon scattering rates from state |j〉 to state
|i〉 and σ+ in the superscript means that we assume the polarization of the
detection beam is purely σ+. These non-zero matrix elements Γσ

+

i,j can be
calculated using the Kramers-Heisenberg formula [Ozeri 05, Loudon 95]:

Γσ
+

i,j =
g2

4
γ

∣∣∣∣∣∑
m

a
(m)
i,j

∆m

∣∣∣∣∣
2

(2.7)

where g = Eµ
~ = γ

√
s0
2 is the single-photon Rabi frequency (E is the elec-

tric field amplitude of the laser beam, and µ = |〈P3/2, F
′ = 3,m′F = 3|d · σ̂+

|S1/2, F = 2,mF = 2〉| is the magnitude of the cycling transition electric-

dipole moment.), the coefficient a
(m)
i,j =

∑
q〈i|d · σ̂q|em〉〈em|d · σ̂+|j〉/µ2 is the

normalized transition strength from state |j〉 to state |i〉 through an interme-
diate state |em〉 and here we sum over different polarizations q of the emitted
light, ∆m is the detuning of the detection beam from the |j〉 ↔ |em〉 transi-
tion. We sum over m for all the excited states |em〉 in the P3/2 state. The P1/2

excited states are ignored in this case because they are ≈ 197 GHz away from
the frequency of the detection beam. When ∆m is comparable to half of the
power broadened linewidth, Eq. (2.7) breaks down and we have to include an
imaginary damping term, iγ/2, in the detuning [Loudon 95]. By adding this
damping term to the detuning, the Kramers-Heisenberg formula reproduces
the well-known total photon scattering rate in Eq. (2.6) for a two-level atom.

The time-dependent population transfer of each state is given by

∂vi
∂t

=
∑
j

Γσ
+

i,j vj − vi
∑
j

Γσ
+

j,i (2.8)

that can be written as a matrix form:

∂v

∂t
= Mσ+ ·v (2.9)

where Mσ+
= Γσ

+ −D(1T ·Γσ+
), 1 is a 8-by-1 matrix of ones, and D(x) is

a diagonal matrix with x in the diagonal elements. First, we solve Eq. (2.9)
using the Laplace transform approach. After taking the Laplace transform, it
yields

sV(s)− v(0) = Mσ+ ·V(s) (2.10)

where V(s) is the Laplace transform of v(t), v(0) is the initial condition, and
s is the Laplace transform variable. Therefore, the solution can be easily
obtained

V(s) = −(Mσ+ − s1)−1v(0) (2.11)
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2. The 9Be+ Qubit

where 1 is the identity matrix. For the given initial condition v(0), the time-
domain solution v(t) can be calculated by taking the inverse Laplace transform
of V(s). In the following, we show how to solve v(t).

We know from the control theory the term−(Mσ+−s1)−1 represents a transfer
function. The poles of the transfer function are the characteristic frequencies
of the system. Here we write a single term as a sum of partial fractions:[

(Mσ+ − s1)−1
]
i,j

=
pi,j(s)

q(s)

=
∑
k

b
(k)
i,j

s+ ωk
(2.12)

where q(s) =
∏
k(s+ωk) is the characteristic polynomial with roots −ωk (the

characteristic frequency), pi,j(s) is a polynomial in s, and

b
(k)
i,j = lim

s→−ωk

(s+ ωk)pi,j(s)

q(s)

=
pi,j(ωk)∏

l 6=k(ωl − ωk)
(2.13)

are constants assuming q(s) has no double roots that is the case for our detec-
tion system. Therefore, the time-domain solution is given by:

vi,j(t) =

8∑
k=1

b
(k)
i,j e
−ωkt (2.14)

These are rate equation solutions for the time-dependent populations of each
state. We are concerned with the probability of detecting the ion in the
|F = 2,mF = 2〉 state at time t with the ion initially in other hyperfine states
|j〉 at t = 0. It is given by

Pd→b(t) = vi=(2,2),j(t) =

8∑
k=1

b
(k)
i=(2,2),je

−ωkt. (2.15)

A more general case would be including the polarization impurities in the de-
tection beam. Ideally the polarization of the detection beam is purely σ+, but
it might have εσ− admixture of σ̂− polarization and επ admixture of π̂ polar-
ization. We define new rate matrices Γσ

−
and Γπ for σ̂− and π̂ polarization

components respectively. Their matrix element and corresponding matrix M
(Mπ and Mσ−) are given by

Γσ
−
i,j =

g2

4
γ

∣∣∣∣∣∑
m

c
(m)
i,j

∆m

∣∣∣∣∣
2

, Γπi,j =
g2

4
γ

∣∣∣∣∣∑
m

d
(m)
i,j

∆m

∣∣∣∣∣
2

Mσ− = Γσ
− −D(1T ·Γσ−), Mπ = Γπ −D(1T ·Γπ)
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2.4. Qubit Readout

where c
(m)
i,j =

∑
q〈i|d · σ̂q|em〉〈em|d · σ̂−|j〉/µ2 and d

(m)
i,j =

∑
q〈i|d · σ̂q|em〉〈em|

d · π̂|j〉/µ2. Because we solve a differential equation with the same form as
Eq. (2.9), we have to find a new matrix M, which now is the sum over all the
polarization components and can be defined as

M =
1

(1− εσ− − επ)2 + ε2
σ− + ε2π

[
(1− εσ− − επ)2Mσ+

+ ε2σ−Mσ− + ε2πM
π
]

(2.16)
Following the same procedures described above to solve ∂v

∂t = M ·v for given
initial conditions, the time-dependent populations of each state can be calcu-
lated.

We can now study the read-out error a bit further by looking at the distribution
of photon counts for the dark state ion. This information is useful if we are
going to optimize the qubit readout fidelity. We have seen from Eq. (2.15) that
the probability of scattering from a dark state into the bright state is the sum
over exponential terms. Therefore for a qubit initially in the dark state, we
expect the probability distribution of collected photons to be a convolution of
Poisson and exponential distributions [King 99]. We introduce a general way
which can apply to different cases based on the derivations given by Acton et
al. [Acton 05] and Langer [Langer 06].

Using Eq. (2.15), the probability that the ion leaves the dark state to the
bright state between t and t+ dt is given by

|Ṗd→b(t)dt| =
8∑

k=1

b
(k)
i=(2,2),jωke

−ωktdt (2.17)

When the dark ion goes into the bright state at time t, the collected photons
will obey Poisson statistics with a mean given by

λ(t) = λbg + (1− t

τD
)λ0 (2.18)

where λ0 = γcτD is the mean of the bright photon distribution (without back-
ground), and λbg = rbgλ0 is the mean of the background photon distribution.
τD is the detection time, γc = ζ γ2

s0
1+s0

is the rate of collecting photons in the
closed transition in which ζ is the total detection efficiency, and rbg is the rate
of collecting background photons normalized by γc. We desire to transform
from a probability distribution Ṗd→b(t)dt to a probability distribution of Pois-
sonian means, g(λ)dλ. We use Eq. (2.18) to get t(λ) and then substitute into
Eq. (2.17). This yields the probability that the collected photons from a dark
ion produces a Poisson distribution with mean λ:

g(λ)dλ =

{
−
∑

k b
(k)
i=(2,2),j

ωk
γc
e
−ωk
γc

(λbg+λ0−λ)
dλ, λbg < λ ≤ λbg + λ0

1−
∑

k b
(k)
i=(2,2),je

−ωkτD , λ = λbg
(2.19)
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2. The 9Be+ Qubit

Here when λ = λbg, it means that the dark ion never enters the bright state,
and the probability that the dark ion behaves like Poisson statistics with mean
λbg is 1− Pd→b(τD).

Therefore, the probability of detecting n photons when starting in the dark
state is simply the convolution of the density of means g(λ) with the Poisson

distribution P (n|λ) = e−λλn

n! :

pdark(n|j) =

(
1−

∑
k

b
(k)
i=(2,2),je

−ωkτD
)
P (n|λbg)−∫ λbg+λ0

λbg

e−λλn

n!

∑
k

b
(k)
i=(2,2),j

ωk
γc
e
−ωk
γc

(λbg+λ0−λ)
dλ

= P (n|λbg)−
∑
k

b
(k)
i=(2,2),je

−ωkτD
(
P (n|λbg) +

ωke
−ωk
γc
λbg

γcn!

∫ λbg+λ0

λbg

eωkλ/γce−λλndλ

)
We can rewrite the above equation in terms of incomplete Gamma function
as follows:

pdark(n|j) = P (n|rbgγcτD)−
∑
k

b
(k)
i=(2,2),je

−ωkτD
(
P (n|rbgγcτD) +

ωkγ
n
c e
−ωkτDrbg

(γc − ωk)n+1

[
P(n+ 1, (γc − ωk)(1 + rbg)τD)

− P(n+ 1, (γc − ωk)rbgτD
])

(2.20)

where P(a, x) ≡ 1
(a−1)!

∫ x
0 e
−yya−1dy is the incomplete Gamma function nor-

malized such that P(a,∞) = 1.

2.4.2 Readout Error - Bright to Dark State Pumping

Similarly, the ion in the bright state can be optically pumped into a dark state
due to imperfect detection beam polarization. This will cause the measure-
ment error. If the polarization of the detection beam has a small fraction of π̂
(σ̂−) polarization, the bright state (|S1/2, F = 2,mF = 2〉) can off-resonantly
couple to the |P3/2,mJ = 1/2〉 (|P3/2,mJ = −1/2〉) state with the detuning
of ≈ 225 (450) MHz for the magnetic we use (see Fig. 2.6) and then decay
to a dark state. In the experiment, the detection beam is aligned parallel to
the magnetic field in order to have purely σ̂+ light. However, if the optical
alignment is not perfect, the polarization that the ion sees may contain π̂ and
σ̂− components. We can reduce imperfect polarizations by tilting and rotat-
ing the quarter-wave plate in front of the vacuum chamber by minimizing the
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2.4. Qubit Readout

amount of dark photon counts on the histogram for the ion prepared in the
bright state.

This optical pumping process from the bright state to a dark state can be
theoretically analyzed using the methods similar to that in the previous section.
Here we are interested in the time-dependent population change in the |F =

2,mF = 2〉 state, which is Pb(t) = vi=(2,2),j=(2,2)(t) =
∑8

k=1 b
(k)
i=(2,2),j=(2,2)e

−ωkt

from Eq. (2.15). The probability density for the ion in the bright state between
t and t+ dt is given by

|Ṗb(t)dt| =
8∑

k=1

b
(k)
i=(2,2),j=(2,2)ωke

−ωktdt (2.21)

If the ion leaves the bright state at time t, the collected photon will exhibit
Poisson statistics with a mean given by

λ(t) = rbgγcτD + γct (2.22)

The probability that the collected photons from a bright ion produces a Pois-
son distribution with mean λ:

g(λ)dλ =

{ ∑
k b

(k)
i=(2,2),j=(2,2)

ωk
γc
e
ωk
γc

(λbg−λ)
dλ, λbg ≤ λ < λbg + λ0∑

k b
(k)
i=(2,2),j=(2,2)e

−ωkτD , λ = λbg + λ0

(2.23)

Here when λ = λbg + λ0, the bright ion never leaves the bright state, and the
probability that the bright ion follows Poisson statistics is Pb(t).

As before, the overall photon probability distribution will be a convolution of
Poisson and exponential distributions. However the process is now reversed
that after some time the bright ion is pumped into a dark state and emits no
more photons. The probability of detecting n photons when starting in the
bright state is:

pbright(n) =
∑
k

b
(k)
i=(2,2),j=(2,2)e

−ωkτDP (n|(1 + rbg)γcτD) +

∑
k

b
(k)
i=(2,2),j=(2,2)

ωkγ
n
c e

ωkτDrbg

(γc + ωk)n+1

[
P(n+ 1, (γc + ωk)(1 + rbg)τD)

− P(n+ 1, (γc + ωk)rbgτD

]
(2.24)

where the first term is the Poisson distribution from never leaving the cycling
transition and the second term is the the distribution from pumping to a dark
state.

2.4.3 Simulation Results and Discussion

Here we have provided a theoretical study about the qubit readout errors. In
Chapter 6, we will give the discussions for the simulations, accompanying with
experimental results.
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|1

| 2

| 3
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r

b

Figure 2.7: Energy level diagram for two-photon stimulated Raman transi-
tions. The “blue” Raman beam couples levels |3〉 and |1〉 with a single-photon
detuning ∆b = ωb − ω31. The “red” Raman beam couples levels |3〉 and |2〉
with a single-photon detuning ∆r = ωr − ω32. The two-photon detuning is
defined as δ = ∆b −∆r.

2.5 Stimulated Raman Transitions

Since we encode the qubit into two of the hyperfine ground states, the qubit ma-
nipulations and coherent operations are realized by two-photon stimulated Ra-
man transitions. We consider the energy level structure in the Λ-configuration,
as shown in Fig. 2.7, where two ground states, | ↓〉 ≡ |1〉 and | ↑〉 ≡ |2〉, are
coupled to an excited state |e〉 ≡ |3〉 by two laser fields. These states have en-
ergies ~ω1, ~ω2, and ~ω3 respectively corresponding to an atomic Hamiltonian
Ĥ0 = ~ω1|1〉〈1|+~ω2|2〉〈2|+~ω3|3〉〈3|. The |1〉 ↔ |3〉 and |2〉 ↔ |3〉 transitions
are dipole allowed transitions. The two monochromatically laser fields are la-
beled with Ei = ε̂iEicos(ki · r − ωit + φi) for i ∈ {b, r}. Here, Ei and ε̂i are
the amplitude and the polarization of the electric field, ki is the wave vector,
r is the position of the ion, and ωi and φi are the frequency and the phase
of the laser respectively. The goal is to show that under certain conditions,
the internal states and motional states of the ion can be coherently controlled
between states |1〉 and |2〉 without significantly populating the excited state.
This is effectively mapped to a two-level system.

The electric field interacts with the atomic dipole, given by d = er, which
can be expressed in terms of the atomic eigenstates and the dipole matrix
elements µa,b = 〈a|d|b〉:

d = µ1,3|1〉〈3|+ µ3,1|3〉〈1|+ µ2,3|2〉〈3|+ µ3,2|3〉〈2| (2.25)

We have used the property that states |1〉, |2〉 and |3〉 have opposite parity
such that 〈1|d|1〉 = 〈2|d|2〉 = 〈3|d|3〉 = 0. The dynamics of the system is
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2.5. Stimulated Raman Transitions

governed by the full Hamiltonian for the three-level atom and classical fields:

Ĥ = ~ω21|2〉〈2|+ ~ω31|3〉〈3|+ d ·
∑
i

Ei

= ~ω21|2〉〈2|+ ~ω31|3〉〈3|+

~g∗b |1〉〈3|
1

2

(
ei(kb · r−ωbt+φb) + e−i(kb · r−ωbt+φb)

)
+

~gb|3〉〈1|
1

2

(
ei(kb · r−ωbt+φb) + e−i(kb · r−ωbt+φb)

)
+

~g∗r |2〉〈3|
1

2

(
ei(kr · r−ωrt+φr) + e−i(kr · r−ωrt+φr)

)
+

~gr|3〉〈2|
1

2

(
ei(kr · r−ωrt+φr) + e−i(kr · r−ωrt+φr)

)
(2.26)

where we define the single-photon Rabi frequencies as gb ≡ Eb〈3|d · ε̂b|1〉
~ and

gr ≡ Er〈3|d · ε̂r|2〉
~ , and define ω21 = ω2 − ω1 and ω31 = ω3 − ω1 by setting

the energy of |1〉 state to zero. We then transform the Hamiltonian to an

appropriate rotating frame via the transformation Ĥrot = ÛĤÛ † − i~Û dÛ†

dt

with the unitary operator Û = ei((ωb−ωr)|2〉〈2|+ωb|3〉〈3|)t. Equation (2.26) can be
written as

Ĥrot = −~∆|3〉〈3| − ~δ|2〉〈2|+

~
g∗b
2
|1〉〈3|e−i(kb · r+φb) + ~

gb
2
|3〉〈1|ei(kb · r+φb) +

~
g∗r
2
|2〉〈3|e−i(kr · r+φr) + ~

gr
2
|3〉〈2|ei(kr · r+φr) (2.27)

where ∆ = ∆b = ωb−ω31 the single-photon detuning, δ = ∆b−∆r is the two-
photon detuning in which ∆r = ωr−ω32, and we have made the rotating-wave
approximation (RWA) in which the high-frequency oscillating terms (e±i2ωbt

and e±i2ωrt) are omitted. The general form of the state

|ψ〉 = c1(t)|1〉+ c2(t)|2〉+ c3(t)|3〉

obeys the Schrödinger equation

i~
d

dt
|ψ〉 = Ĥrot|ψ〉

yielding equations of motion for the population amplitudes as follows:

iċ1 =
g∗b
2
c3e
−i(kb · r+φb) (2.28)

iċ2 = −δc2 +
g∗r
2
c3e
−i(kr · r+φr) (2.29)

iċ3 = −∆c3 +
gb
2
c1e

i(kb · r+φb) +
gr
2
c2e

i(kr · r+φr) (2.30)
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This Λ-system has a simple solution for large single-photon detuning ∆ �
gb, gr, δ. Since ∆ is much larger than other time scales in the problem, to
the lowest order in gb,r/∆ the excited state amplitude will be constant, with

c3 =
gbc1e

i(kb · r+φb) + grc2e
i(kr · r+φr)

2∆
(2.31)

Substituting c3 back to Eqs. (2.28) and (2.29), we obtain the evolution of the
probability amplitude for the two ground states

iċ1 =
|gb|2

4∆
c1 +

g∗bgre
−i((kb−kr) · r+φb−φr)

4∆
c2 (2.32)

iċ2 =
gbg
∗
re
i((kb−kr) · r+φb−φr)

4∆
c1 + (−δ +

|gr|2

4∆
)c2 (2.33)

These equations are equivalent to the equations of motion for a two level
system with a Rabi frequency

Ω =
gbg
∗
r

2∆
ei((kb−kr) · r+φb−φr), (2.34)

which is also called effective Rabi frequency for the Raman transition, Raman
frequency or two-photon Rabi frequency, and AC Stark shifts

δsb =
|gb|2

4∆
(2.35)

δsr =
|gr|2

4∆
(2.36)

induced from the detuned laser fields. After rewriting Eqs. (2.32) and (2.33),
we get

iċ1 = δsbc1 +
Ω∗

2
c2 (2.37)

iċ2 =
Ω

2
c1 + (−δ + δsr)c2 (2.38)

The above equations of motion can be viewed as resulting from the Hamilto-
nian

Ĥ = ~δsb|1〉〈1|+ ~(−δ + δsr)|2〉〈2|+
~
2

(Ω|2〉〈1|+ Ω∗|1〉〈2|) (2.39)

Basically the AC Stark shift terms can be removed by re-defining the energy
level reference. To calculate the dynamics of a standard two-level system,
again we choose the zero energy level in the middle of two states and introduce
a detuning like δ′ = δ − δsr + δsb such that Eq. (2.39) can be rewritten as

Ĥ = −~δ′|2〉〈2|+ ~
2

(Ω|2〉〈1|+ Ω∗|1〉〈2|) (2.40)
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Using the unitary operator Û = e−iδ
′|2〉〈2|t and transferring Eq. (2.40) to a

new rotating frame, the resulting Hamiltonian is

ĤI =
~
2

Ω0

(
|2〉〈1|ei(∆k · r+∆φ)e−iδ

′t + |1〉〈2|e−i(∆k · r+∆φ)eiδ
′t
)

(2.41)

where Ω0 = |Ω| = gbg
∗
r

2∆ , ∆k = kb−kr, and ∆φ = φb−φr. This form is like the
Hamiltonian for a two-level system in the interaction picture. The dynamics
of the system is the well-known Rabi oscillations, where the time evolution of
the population of the state behaves like a sinusoidal function at a rate given
by the Rabi frequency Ω0.

2.5.1 Multiple Excited States

The techniques for treating the three-level system are also applicable to the
case in which the ground states are coupled to multiple excited states. Essen-
tially this always happens in real atoms or ions. To illustrate how to extend
the three-level calculation to multiple excited states, we consider an ion with
two ground states (qubit states) as before and many excited states |e〉. Each
excited state is coupled to |1〉 by the field Eb and coupled to |2〉 by the field
Er. Equation (2.27) is modified to be

Ĥrot = −~
∑
m

∆m|em〉〈em| − ~δ|2〉〈2|+

~
∑
m

g∗b,em
2
|1〉〈em|e−i(kb · r+φb) + ~

∑
m

gb,em
2
|em〉〈1|ei(kb · r+φb) +

~
∑
m

g∗r,em
2
|2〉〈em|e−i(kr · r+φr) + ~

∑
m

gr,em
2
|em〉〈2|ei(kr · r+φr)(2.42)

The derivation is basically the same as before, except for the summation of
the excited states and the dependence of the detunings from different excited
state. Following the same procedure above, we find that the Raman Rabi
frequency and AC Stark shifts are now given by

|Ω| = Ω0 =
∑
m

gb,emg
∗
r,em

2∆

=
EbEr
2~2

∑
m

〈2|d · ε̂r|em〉〈em|d · ε̂b|1〉
∆m

(2.43)

and

δsb =
∑
m

|gb,em |
2

4∆m
=
E2
b

4~2

∑
m

|〈em|d · ε̂b|1〉|2

∆m
(2.44)

δsr =
∑
m

|gr,em |
2

4∆m
=
E2
r

4~2

∑
m

|〈em|d · ε̂r|2〉|2

∆m
(2.45)
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2. The 9Be+ Qubit

2.5.2 Ion’s Motion

In the previous section we have showed that we can coherently drive the popu-
lations between two ground internal states of an ion by using two laser beams
detuned from an excited state with a beatnote frequency close to the energy
level splitting of the qubit. For the other degree of freedom, because the ion is
strongly confined in a harmonic potential, its motion is quantized. Therefore,
we can take the motional effects into account by adding the harmonic oscillator
Hamiltonian Ĥosc = ~ωzâ†â to the base Hamiltonian Ĥ0, where we only con-
sider ωz, the vibrational frequency along the z axis. The motional-dependent
term in Eq. (2.41) needs to be modified as ∆k · r→ ∆kz ẑ = η(â†+ â) in which
we only consider the motion in z-axis. Here η = ∆kzz0 is the Lamb-Dicke pa-

rameter and z0 =
√

~
2mωz

is the root mean squared extent of the oscillator

ground state wavepacket.

Applying the transformation e−iĤosct/~ĤIe
iĤosct/~ to Eq. (2.41) and making

use of Baker Campbell Hausdorff formula, the interaction Hamiltonian in the
interaction picture is

Ĥ ′I =
~
2

Ω0 |↑〉 〈↓| exp{iη(âe−iωzt + â†eiωzt)}ei(φ−δ′t) + h.c. (2.46)

where ‘h.c.’ means the hermitian conjugate of the first term, and ∆φ, |1〉
and |2〉 in Eq. (2.41) have been replaced with φ, |↓〉, and |↑〉 respectively.
Depending on the laser detuning δ′, the interaction Hamiltonian couples ion’s
internal and motional states (|↓, n〉 and |↑, n+ s〉, where s is an integer and
|n〉 are the eigenstates of the harmonic oscillator).

Rabi Frequencies

With the closure relation, an arbitrary operator Ô can be expressed in the
form Ô =

∑
n,n′ |n′〉〈n′|Ô|n〉〈n| such that Eq. (2.46) can be written as

Ĥ ′I =
∑
n,n+s

~
2

Ω0〈n+ s|eiη(âe−iωzt+â†eiωzt)|n〉| ↑, n+ s〉〈↓, n|ei(φ−δ′t) + h.c.

=
∑
n,n+s

~
2

Ω0〈n+ s|D̂(iηeiωzt)|n〉| ↑, n+ s〉〈↓, n|ei(φ−δ′t) + h.c. (2.47)

where D̂(α) = eαâ
†−α∗â denotes the displacement operator. We then deter-

mine the matrix elements of displacement operator. For n+ s ≥ n (s ≥ 0), we
can show the result in the following by applying the Baker-Campbell-Hausdorff
formula and basic properties of the annihilation operator:

〈n+ s|D̂(α)|n〉 = e−|α|
2/2〈n+ s|eαâ†eα∗â|n〉

= e−|α|
2/2αs

√
n!

(n+ s)!
Lsn(|α|2),
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2.5. Stimulated Raman Transitions

where Lsn(|α|2) are the generalized Laguerre polynomials. Analogously, for
n+ s ≤ n (s ≤ 0), we obtain

〈n+ s|D̂(α)|n〉 = e−|α|
2/2(−α∗)−s

√
(n+ s)!

n!
L−sn+s(|α|

2),

At the end, it turns out that Eq. (2.47) is

Ĥ ′I =
∑
n,n+s

~
2

Ωn+s,ni
|s|| ↑, n+ s〉〈↓, n|ei(sωz−δ′t+φ) + h.c. (2.48)

in which

Ωn+s,n = Ω0e
−η2/2η|s|

√
n<!

n>!
L|s|n<(η2) (2.49)

where n< (n>) is the lesser (greater) of n+ s and n [Wineland 98]. The time
evolution for the general state

|Ψ(t)〉 =
∞∑
n=0

c↓,n(t)| ↓, n〉+ c↑,n(t)| ↑, n〉 (2.50)

can be calculated by solving the Schrödinger equation with the Laplace trans-
form method, yielding the solution[

c↑,n+s(t)
c↓,n(t)

]
= U sn

[
c↑,n+s(0)
c↓,n(0)

]
(2.51)

with

U sn =

[
e−i(δs/2)t

[
cos
(
X
2 t
)

+ i δsX sin
(
X
2 t
)]
−iΩn+s,n

X ei(φ+|s|π/2−δst/2)sin
(
X
2 t
)

−iΩn+s,n

X e−i(φ+|s|π/2−δst/2)sin
(
X
2 t
)

ei(δs/2)t
[
cos
(
X
2 t
)
− i δsX sin

(
X
2 t
)] ]

(2.52)

where δs = δ′−sωz and X =
√
δ2
s + Ω2

n+s,n. This time-domain solution shows

the generalized form of Rabi flopping between states | ↓, n〉 and | ↑, n+ s〉.

Lamb-Dicke Approximation

Once the ions are cold, experiments are carried out in the Lamb-Dicke (LD)
regime where the extension of the ion’s wavefunction is much smaller than
1/k. When the condition for the LD regime is satisfied, the exponent in Eq.
(2.46) can be expanded to the first order in η, resulting in

Ĥ ′I,LD =
~
2

Ω0σ̂+{1 + iη(âe−iωzt + â†eiωzt)}ei(φ−δ′t) + h.c. (2.53)

where σ̂+ ≡ |↑〉 〈↓| and σ̂− ≡ |↓〉 〈↑| are the spin flip operators. There are three
different types of coupling forming the basic coherent operations for all the
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2. The 9Be+ Qubit

Ion motion Internal states 

Coupled system: ladder structure 

Figure 2.8: A two-level system coupled to a harmonic oscillator results in the
ladder structure. Three types of couplings (carrier, blue sideband, and red
sideband drives) are shown.

quantum information and quantum computation experiments using trapped
ions. 1) When δ′ = 0, the Hamiltonian is simplified to

Ĥcar =
~
2

Ω0

(
σ̂+e

iφ + σ̂−e
−iφ
)

(2.54)

which is called the carrier Hamiltonian and only drives the transition between
two internal states without coupling to the ion’s motion. 2) When δ′ = −ωz,
the Hamiltonian becomes

Ĥrsb =
~
2

Ω0η
(
âσ̂+e

iφ + â†σ̂−e
−iφ
)

(2.55)

This Hamiltonian is called the first red sideband Hamiltonian and equivalent
to the famous Jaynes-Cummings Hamiltonian in quantum optics. It drives
| ↓, n〉 ↔ | ↑, n − 1〉 transition with Rabi frequency Ωn−1,n = Ω0

√
nη. 3)

When δ′ = ωz, which is the counterpart of the second type of coupling, the
Hamiltonian is simplified to

Ĥrsb =
~
2

Ω0η
(
â†σ̂+e

iφ + âσ̂−e
−iφ
)

(2.56)

This is the first blue sideband Hamiltonian or called anti-Jaynes-Cummings
Hamiltonian, coupling | ↓, n〉 and | ↑, n + 1〉 with Rabi frequency Ωn+1,n =
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2.6. Quantum Gates

Ω0

√
n+ 1η. Figure 2.8 shows the ladder structure of a two-level system cou-

pled to a harmonic oscillator and the three types of couplings are indicated.
With proper use or certain combination of these coherent operations, one can
perform a variety of experiments with trapped ions.

2.6 Quantum Gates

Although we haven’t realized the two-qubit gate operations in our experiments
yet, in this Section I will introduce the theoretical background of single-qubit
and two-qubit gates using 9Be+ ions. The reasons are that we have performed
some theoretical studies for the gate error analysis (see next Section) as well
as set up the apparatus that can be used for implementing the two-qubit gates
(see Chapter 5).

2.6.1 Single-Qubit Quantum Gates

The single-qubit gate operations are implemented using the stimulated Raman
transition described previously with two co-propagating Raman beams. The
advantage of the co-propagating Raman beams is that the difference of two k
vectors is close to zero, (kb − kr) ≈ 0, which means this action is insensitive
to the ion’s motion (∆k · r is extremely small.). For the resonant carrier
transitions (δ′ = 0 and s = 0), Eq. (2.51) is simplified to[

c↑,n(t)
c↓,n(t)

]
= R̂(θ, φ)

[
c↑,n(0)
c↓,n(0)

]
(2.57)

with

R̂(θ, φ) =

[
cos
(
θ
2

)
−ieiφsin

(
θ
2

)
−ie−iφsin

(
θ
2

)
cos
(
θ
2

) ]
(2.58)

where θ ≡ Ω0t and φ = ∆φ = φb − φr in the case of stimulated Raman
transitions. The rotation matrices R̂(π, φ) and R̂(π/2, φ) are a π-pulse and a
π/2-pulse respectively with a phase φ. The θ is varied by the laser pulse dura-
tion for a given Rabi frequency (laser intensity). The phase can be controlled
by the differential phase between the two Raman beams generated from stable
microwave sources. With suitable settings, we are able to perform arbitrary
rotations about any axis on the Bloch sphere.

2.6.2 Two-Qubit Quantum Gates

The final element of the universal gate set is the two-ion entangling gate. Since
we encode the quantum information onto the ion’s spin states, an entangling
operation is completed between two ions’ spin states. The efficient way to
obtain the entanglement of two ions is through their collective motion.
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2. The 9Be+ Qubit

In this Section, I will mainly explain two gate operations using a state de-
pendent force (SDF) as well as discuss some experimental issues. Both gates
basically work in the same way but in different computational basis. The
first one is the conditional phase gate in z basis of the spin states, namely
the geometric phase gate (Z-phase gate or σz gate) [Leibfried 03b, Roos 08];
the second is called Mølmer-Sørensen gate (MS gate or σφ gate) [Mølmer 99,
Benhelm 08a, Roos 08] operating in the basis other than z. The main idea
is that the force acting on the two ions creates internal-state dependent dis-
placement in the position-momentum (x−p) phase space. After completion of
the force application, the trajectory of particular two-qubit states is a closed
loop in the phase space while acquiring a state-dependent geometric phase
proportional to the area of the loop. This geometric phase can lead to an
entanglement between spin states.

Geometric Phase Gate

For 9Be+ ions, the two-qubit operations are also performed using stimulated
Raman transitions. Here the geometric phase gate uses a pair of non coprop-
agating Raman beams illuminating on two ions. The frequency difference
between the two Raman beams δ = ωa − ωb is set close to one of the vibra-
tional frequencies of the ion chain. The fields couple each of the spin states
via an the excited state with a large detuning ∆ compared to the qubit split-
ting frequency ω↑↓ (See Fig. 2.9). With this arrangement, states |↓〉 and |↑〉
are not coupled by the laser beams because the beatnote frequency δ is far
away from the qubit transition frequency ω↑↓. Thus we can think that tran-
sitions |↓〉 ↔ |e〉 and |↑〉 ↔ |e〉 are two independent two-level systems. The
Hamiltonian for one of the two-level systems can be written as

Ĥ = ~ωe↓ |e〉 〈e|+
~g∗a
2
|↓〉 〈e|

(
ei(ka · r−ωat+φa) + e−i(ka · r−ωat+φa)

)
+

~ga
2
|e〉 〈↓|

(
ei(ka · r−ωat+φa) + e−i(kb · r−ωat+φa)

)
+

~g∗b
2
|↓〉 〈e|

(
ei(kb · r−ωbt+φb) + e−i(kb · r−ωbt+φb)

)
+

~gb
2
|e〉 〈↓|

(
ei(kb · r−ωbt+φb) + e−i(kb · r−ωbt+φb)

)
(2.59)

Applying the RWA and adiabatic elimination of the excited state, the Hamil-
tonian in an appropriate rotating frame is

ĤI = ~
[
δs↓ +

Ω↓
2

(
ei(∆k · r−δt+∆φ) + h.c.

)]
|↓〉 〈↓| (2.60)

where ∆k = ka−kb, ∆φ = φa−φb, δs↓ = |ga|2+|gb|2
4∆ is the time-averaged Stark

shift on the level |↓〉 and Ω↓ =
gag∗b
2∆ is the time-varying Stark shift due to the
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2.6. Quantum Gates

Figure 2.9: The energy levels and laser arrangements used for the geometric
phase gate implementation, where ∆� ω↑↓. The drawing is not to scale.

variation in the intensity created by the interference of two beams. Summing
up both two-level systems, we obtain the total Hamiltonian for a single ion as
follows:

ĤI = ~
[
δs↓ +

Ω↓
2

(
ei(∆k · r−δt+∆φ) + h.c.

)]
|↓〉 〈↓|+

~
[
δs↑ +

Ω↑
2

(
ei(∆k · r−δt+∆φ) + h.c.

)]
|↑〉 〈↑| (2.61)

In our case it must consider multiple excited states such that the Rabi fre-
quency and Stark shift terms need to be modified based on the analysis in
Chapter 2.5.1:

Ωq =
EaEb
2~2

∑
m

〈q|d · ε̂a|em〉〈em|d · ε̂b|q〉
∆m

(2.62)
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2. The 9Be+ Qubit

and

δsq =
∑
j=a,b

E2
j

4~2

∑
m

|〈em|d · ε̂j |q〉|2

∆m
(2.63)

where q ∈ {↓, ↑}. By carefully choosing the polarizations for the two Ra-
man beams, the time-averaged Stark shifts (δs↓ and δs↑) can be made equal
such that there is no net time-averaged Stark shift between states |↓〉 and |↑〉
[Wineland 03, Leibfried 03b]. If one makes Ω↓ 6= Ω↑, a differential Stark shift
will result in a differential force between the two spin states. In the exper-
iment, the goal is to make |Ω↓ − Ω↑| as large as possible. In the following
discussions, we will ignore δs↓ and δs↑ terms because both do not affect the
final result.

Using the same mathematical treatments in Chapter 2.5.2 for ion’s motion,
we find that the interaction Hamiltonian (Eq. (2.61)) with Lamb-Dicke ap-
proximation is

Ĥ ′I,LD =
∑
q=↑,↓

~
2

Ωq{1 + iη(âe−iωzt + â†eiωzt)}ei(∆φ−δt)|q〉〈q|+ h.c.

After we simplify the equation and skip the fast oscillating terms by RWA,
the remaining term is

Ĥ ′I,LD =
∑
q=↑,↓

~
2
iηΩq

(
â†ei[(ωz−δ)t+∆φ] − âe−i[(ωz−δ)t+∆φ]

)
|q〉〈q| (2.64)

When N ions are trapped in the same potential, there are N vibrational modes
in each principal axis. For two ions, the two modes in the axial direction are the
center-of-mass (COM) mode where two ions oscillate in phase and the stretch
mode where the ions oscillate out of phase. Application of the gate operation
to two ions on the stretch mode (the motional heating for this mode is lower
[Leibfried 03b]) can be analyzed by summing over the individual Hamiltonian
(Eq. (2.64)):

ĤI = (+1)Ĥ
′(1)
I,LD + (−1)Ĥ

′(2)
I,LD

=
∑
j=1,2

∑
q=↑,↓

~
2
iη(−1)j−1Ωqj

(
â†ei[(ωz−δ)t+φj ] − âe−i[(ωz−δ)t+φj ]

)
|qj〉〈qj |

=
∑
q=↑,↓

(
Fq1,q2zs

2
â†ei(ωz−δ)t +

F ∗q1,q2zs

2
âe−i(ωz−δ)t

)
|q1q2〉〈q1q2| (2.65)

where Fq1,q2zs = i~η(Ωq1e
iφ1 − Ωq2e

iφ2) in which zs is the root mean squared
extent of the ground state wavepacket for the stretch mode and Fq1,q2 is the
spin-state-dependent force on both ions associated with the computational
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2.6. Quantum Gates

basis |q1q2〉. For Eq. (2.65) it is important to notice that 1) the motional
mode is common to both ions; 2) The phase φj = (∆k · ẑ)zj + ∆φ is different
for two ions because they are in different locations (zj denotes the location
of the jth ion along the z-axis). We can see that the optical phase difference
φ1 − φ2 determines the phase difference between the forces. However if two
ions are spaced by an integer multiple of the effective optical wavelength λeff =
2π/|∆k| ≈ 215 nm, they experience the same phase of the optical field, i.e.
φ1 = φ2. The differential force would be determined by the the magnitude
and the sign of Ωq1 and Ωq2. This implies that when two spin states are the
same there is no differential force. On the other hand, when the spin states are
anti-aligned each ion would experience different forces because Ω↓1 6= Ω↑2 and
Ω↓2 6= Ω↑1; 3) Once the ion-ion separation is adjusted to fulfill the condition
mentioned above, then the sign of the individual Hamiltonian depends on
which vibrational mode is driven. The sign of the Hamiltonian for the second
ion is negative due to the use of the stretch mode.

We desire to calculate the time evolution for ĤI . The matrix elements Hq1,q2 =
Fq1,q2zs

2 â†ei(ωz−δ)t+
F ∗q1,q2zs

2 âe−i(ωz−δ)t are the motional parts corresponding to
each computational eigenstate and are only located in the diagonal of the
Hamiltonian matrix. Hq1,q2 does not commute with itself at different times.
However for a very short time interval ∆t the evolution of a wavefunction can
still be written as |Ψ(t + ∆t)〉 = exp

(
− i

~Hq1,q2∆t
)
|Ψ(t)〉. It can be found

that

exp

(
− i
~
Hq1,q2∆t

)
= exp

(
∆αâ† −∆α∗â

)
= D̂(∆α)

where D̂(α) is the displacement operator and the small displacements ∆α =
− i

2~Fq1,q2zse
i(ωz−δ)t∆t for which the real and the imaginary parts can be un-

derstood as its position and momentum parts in phase space. By repeatedly
using the relation D̂(α)D̂(β) = D̂(α + β)exp [iIm(αβ∗)] [Walls 94], we are
able to add all the infinitesimal displacements to construct the time-evolution
operator, resulting in

Û(t) = D̂

(
N∑
i=1

∆αi

)
exp

iIm
 N∑
j=2

∆αj

(
j−1∑
k=1

∆αk

)∗
= D̂(α)exp

(
iIm

∮
α∗dα

)
= D̂(α)exp(iΦ) (2.66)

with

α =

∫
dα = − i

2~

∫ t

0
Fq1,q2zse

i(ωz−δ)t′dt′

=
Fq1,q2zs

2~(ωz − δ)

(
1− ei(ωz−δ)t

)
(2.67)
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2. The 9Be+ Qubit

For the gate time τgate = 2π/(ωz − δ), we can see that the motional mode
returns to its initial state (α(τgate) = 0) and its trajectory in phase space is
a closed circle. The geometric phase that is acquired at the end of the gate
time will be

Φ = Im

∫ τ

0
α∗[dα/dt′]dt′ =

π

2

(
Fq1,q2zs
~(ωz − δ)

)2

(2.68)

Therefore, we know that Φ is a function of Fq1,q2, depending on the internal
state of the ion. As we discussed above, to have a differential force on two
ions is achieved by choosing a certain qubit pair and proper light polarizations
of the Raman beams. This type of gate was implemented by Leibfried et al.
[Leibfried 03b] in which they used the qubit states |↑〉 ≡ |F = 1,mF = −1〉
and |↓〉 ≡ |F = 2,mF = −2〉 and the polarizations ε̂b = (σ̂++σ̂−)/

√
2 and ε̂r =

(σ̂+−σ̂−)/
√

2, yielding Ω↓ = −2Ω↑ at low magnetic fields [Wineland 03]. If the
experiment is performed with the magnetic field at 119.45 G, the differential
force is smaller. When Φ = π/2, the outcome of the gate operation is

|↑1↑2〉 → |↑1↑2〉
|↑1↓2〉 → ei

π
2 |↑1↓2〉

|↓1↑2〉 → ei
π
2 |↓1↑2〉

|↓1↓2〉 → |↓1↓2〉

Combined with some single-qubit rotations, we can obtain the final states
equivalent to the results of a CNOT gate. Unfortunately the geometric phase
gate works inefficiently for the field-independent qubits because the differential
Stark shift of the pairs of the qubit state (Ω↓ ∼ Ω↑) is tiny.

Mølmer-Sørensen Gate

The other gate scheme proposed by Mølmer and Sørensen [Mølmer 99] is anal-
ogous to the geometric phase gate except it operates in a rotated basis and
involves spin flips. The state-dependent force in this case is generated by si-
multaneously driving the blue and red motional sidebands of the spin-flip tran-
sition with equal and opposite detunings ±δ′ in Eq. (2.53) [Roos 08, Lee 05].
Two possible configurations are sketched in Fig. 2.10. The resulting interac-
tion Hamiltonian can be written in the Lamb-Dicke approximation as

Ĥ ′I,LD = −~
2
ηΩσ̂π

2
−φS

(
â†ei[(ωz−δ

′)t+φM ] + âe−i[(ωz−δ
′)t+φM ]

)
(2.69)

where σ̂φ ≡ cos(φ)σ̂x+sin(φ)σ̂y is a rotated Pauli matrix in the xy-plane, φS =
1
2(φB +φR) is the phase associated with the spin state, and φM = 1

2(φB−φR)
is the phase associated with the motion. φB and φR are the phases of the
Raman laser field for driving the blue and red sideband transitions. Here we
have ignored three off-resonant terms. The most significant one of them drives
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First type Second type 

Figure 2.10: Two types of scheme that can be used to realize the MS gate
operations.

the carrier transition off-resonantly that would cause more problems because
its coupling strength is 1/η larger than the sideband coupling strength. In
practice, this effect can be strongly suppressed by shaping the laser pulses
[Roos 08, Benhelm 08a].

Following the same approach as for the geometric phase gate, we sum over the
individual Hamiltonian for each ion so that we can write down an equation
similar to Eq. (2.65) except that the computational basis has changed, mean-
ing a differential force is now applied to the eigenstates of the spin operator
σ̂π

2
−φS ⊗ σ̂π2−φS . We can then calculate the dynamics of the system for the

gate. Detailed derivations can be found in [Lee 05, Roos 08]. In a general case
this gate scheme will produce the following outcome

|↑1↑2〉π
2
−φS → |↑1↑2〉π

2
−φS

|↑1↓2〉π
2
−φS → ei

π
2 |↑1↓2〉π

2
−φS

|↓1↑2〉π
2
−φS → ei

π
2 |↓1↑2〉π

2
−φS

|↓1↓2〉π
2
−φS → |↓1↓2〉π

2
−φS

In the case when two ions are anti-aligned, each ion experiences an equal
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2. The 9Be+ Qubit

force but in opposite direction, such that after the application of the gate a
geometric phase is accumulated. For other cases, the phase might be only
acquired by the ions aligned in the same direction.

If we take a specific example setting φS = 0 (more discussions are given in
the next paragraph), the time-evolution operator for the MS gate is ÛMS(t) =

exp
(
−iπ8 Ŝ

2
y

)
, where Ŝy = σ̂

(1)
y − σ̂(2)

y for working with the stretch mode. As

a result, we obtain the above truth table in the σ̂y ⊗ σ̂y basis. Written in the
σ̂z ⊗ σ̂z basis is shown below

|↑1↑2〉 →
1√
2

(|↑1↑2〉 − i |↓1↓2〉)

|↑1↓2〉 →
1√
2

(|↑1↓2〉+ i |↓1↑2〉)

|↓1↑2〉 →
1√
2

(|↓1↑2〉+ i |↑1↓2〉)

|↓1↓2〉 →
1√
2

(|↓1↓2〉 − i |↑1↑2〉)

where the global phase e−iπ/4 is omitted. This gate has been implemented with
a fidelity of 99.3 % using a quadrupole transition (optical qubits) in 40Ca+ ion,
where they used the COM mode instead [Benhelm 08a]. The groups at NIST
and Maryland also realized this type of gate operation using stimulated Raman
transitions [Gaebler 12, Haljan 05a].

Experimental Issue - Phase Coherence

As we have seen before, after completion of the gate the spin states of the
two ions are entangled and are not entangled with any motional state. This
implies that next gate operations do not have memory of the motional phase
from the previous one, but the spin phase from previous gates is retained
in the internal states of the qubits. Thus the spin phase needs to be stable
throughout the whole quantum computational experiment and certainly both
spin and motional phases have to be stable during a gate operation. In this
section we would like to investigate these phases and how to minimize the
effect of phase fluctuations on the coherence of the entangled state [Lee 05].

In Eq. (2.69), the spin phase φS = (φB+φR)/2 determines the spin orientation
to which the differential force is applied and the motional phase φM = (φB −
φR)/2 determines the direction of the trajectory of the motional mode in phase
space. To be clear, we show two possible configurations for achieving the MS
gate with the stimulated Raman transition. Figure 2.10(a) shows the standard
configuration, where the red sideband is driven with two laser frequencies ωr
and ωa and φR = φr−φa, and for the blue sideband drive two frequencies are
ωb and ωa so φB = φb−φa; The second laser arrangement is illustrated in Fig.
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2.10(b), where the frequency difference of ωr and ωb is twice the frequency
splitting of the qubit with φB = φb − φa and φR = φa − φr. It is noted that
the sign of φR in the second case is changed because ωa > ωr referred to the
definitions in Chapter 2.5. φa, φb, and φr depends on the optical setup of
the Raman beams and the phase that we apply to the AOM (Acousto-optic
modulator, which is used to tune the laser frequency in tens of MHz range).
Usually the phase of the AOM modulation can be controlled very stably. The
main concern is the the beam path difference between two arms of the Raman
beam setup in which one arm called A provides ωa frequency component and
the other called B generates ωb and ωr frequency components. The phase
difference between two Raman beams will be kAxA− kBxB related to φB and
φR.

Let’s look at Fig. 2.10(a), the spin phase is calculated to be φS = φb+φr−2φa
so it is sensitive to the beam path fluctuations between arm A and B. This
is called “phase sensitive geometry”. Reversely, for the configuration shown
in Fig.2.10(b) the spin phase is φS = φb − φr, which is very small because
φb and φr come from the same optical path and all the fluctuation will be
common for both such that they cancel out in φS [Haljan 05b]. This is called
“phase insensitive geometry”. However the phase fluctuations due to changes
in the path length difference is now imposed on the motional phase φM . If
the motional phase fluctuates during the gate operation, the trajectories of the
motional mode in phase space will rotate by an random angle depending on the
change of φM . Therefore as long as φM does not change during the application
of the gate the result will remain independent of the motional phase. The
discussions above are about the beam path fluctuations and the next question
would be how to make the relative φM phase the same or stable seen by two
ions. This can be achieved by tuning the trapping potential appropriately such
that the distance between two ions is an integer or half-integer multiple of the
effective optical wavelength (the same as the geometric phase gate). With
this adjustment two ions can see the same φM . Experimentally it will require
stable beam pointing on the ions and stable DC electrode voltage [Langer 06].

2.7 Off-Resonant Spontaneous Photon Scattering

In the previous sections, we describe the requirements and tools about how to
perform quantum control with 9Be+ ions. However owing to imperfect control
of the experiment and intrinsic properties of quantum physics, it is important
to understand what may cause the decoherence of quantum information stored
in the ions. For example, the classical noise like laser intensity fluctuations,
laser frequency drifts, and unstable laser phases, can lead to decoherence of
the qubit. In principle, these types of classical noise can be controlled to levels
below a certain threshold. On the other hand, there is a fundamental source
of decoherence arising from the spontaneous photon scattering as the ion in-
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Raman Inelastic 

Photon Scattering: 

Rayleigh Elastic 

Photon Scattering: 

Excited states 

D >> g  

Figure 2.11: Illustration of two different photon scattering processes. The
detuning of the Raman beams ∆ is much larger than the natural linewidth of
the excited states γ.

teracts with the quantum vacuum field [Wineland 98, Ozeri 07]. The photon
scattering process for an ion can be categorized by two types: 1) Raman in-
elastic photon scattering; 2) Rayleigh elastic photon scattering. Both types
of photon scattering mechanism for 9Be+ ions have been theoretically and
experimentally studied by the Ion Storage Group at NIST [Ozeri 05, Uys 10]
and more explanations can be found in [Ozeri 07].

In this section, we only shortly introduce two types of the photon scattering
process and then show some simulation results. The mechanism of both scat-
tering events is illustrated in Fig. 2.11. Initially the ion is prepared in a
superposition of two hyperfine ground states. After it interacts with an off-
resonant laser beam (in our case, it’s Raman beams), the ion has a probability
being excited to the excited states and then the photon scattering occur.

For the Raman inelastic photon scattering the ion ends up in different internal
states. If the frequency of the scattering photon is higher than that of the
laser, the final state of the ion is the lower state, which is not a superposition
state. It’s the same that if the frequency of the scattering photon is lower
than that of the laser, the final state of the ion is the higher state, also not
a superposition. So the Raman scattering essentially projects the ion’s state
and destroys the coherence of superposition. In some sense, this process can
be thought of a far-off-resonance optical pumping.

For the Rayleigh elastic photon scattering, the post-scattering state of the ion
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does not change, meaning that the energy of the incident photon is conserved
and the only change may be its direction. If the ion is initially prepared in a
hyperfine superposition, the final state after the Rayleigh scattering process
remains a coherent superposition and the scattered photon does not take away
information about the quantum state of the ion. However, if the two hyperfine
states have different Rayleigh scattering rates, the Rayleigh decoherence could
be dominant even in the presence of the decoherence induced from the Raman
scattering [Uys 10].

We consider a non-resonant laser field E = ε̂Ecos(k · r − ωt + φ), where
ε̂ ≡ ε+σ̂

+ + ε0π̂ + ε−σ̂
− is the polarization component of the light satisfy-

ing the normalization condition
∑

k∈{+,0,−} ε
2
k = 1. σ̂+ (σ̂−) is right (left)

circularly polarized with respect to the quantization axis, which is defined as
the direction of the magnetic field, and π̂ component is parallel to the mag-
netic field. The rate of the photon scattering event from states |i〉 to |f〉 can
be calculated using the Kramers-Heisenberg formula [Ozeri 05, Loudon 95]:

Γi,f =
g2

4
γ
∑

q

∣∣∣∣∣∣a
(1/2)
i→f
∆

+
a

(3/2)
i→f

∆−∆F

∣∣∣∣∣∣
2

(2.70)

where g = Eµ
~ = γ

√
s0
2 is the single-photon Rabi frequency (E is the electric

field amplitude of the laser beam, and µ = |〈P3/2, F
′ = 3,m′F = 3|d · σ̂+|S1/2

, F = 2,mF = 2〉| is the magnitude of the cycling transition electric-dipole mo-

ment.), the coefficient a
(J)
i→f =

∑
e∈J〈f |d · σ̂q|e〉〈e|d · ε̂|i〉/µ2 is the normalized

transition amplitude from state |i〉 to state |f〉 through an intermediate state
|e〉 and here we sum over all the excited states |e〉 that belong to P1/2 and P3/2

states respectively. ∆ is the laser detuning from the S1/2 ↔ P1/2 transition
and ∆F is the frequency difference of P1/2 and P3/2 states. It is worth noth-
ing that we consider the scattered photons with different polarizations do not
interfere and thus we sum over different polarizations q of the scattering light
after taking the modulus square of the amplitude. The only situation that the
scattering photons can interfere is the emitting photons from P1/2 and P3/2

states decaying to the same final state with the same polarization due to a
coherence between two P states1. The Raman scattering rate ΓRaman is then
given by summing over all the rates where i 6= f for all the final states |f〉 as
follows:

ΓRaman =
∑
f 6=i

Γi,f (2.71)

The Rayleigh scattering rate is given by [Uys 10]

ΓRayleigh =
g2

4
γ
∑

q

∣∣∣∣∣
(
a

(1/2)
u→u
∆

+
a

(3/2)
u→u

∆−∆F

)
−
(
a

(1/2)
d→d
∆

+
a

(3/2)
d→d

∆−∆F

)∣∣∣∣∣
2

(2.72)

1Private communication with NIST group.
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where u and d stand for the qubit states |↑〉 and |↓〉. When the qubit states
have different normalized transition amplitudes, or they have roughly equal
transition strength but opposite sign, then the Rayleigh scattering rate can
be comparable to the Raman scattering rate or even larger. Essentially both
Raman and Rayleigh scattering rates can be written in an analytical form
[Langer 06], but in here we try to avoid the redundant mathematics.
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Figure 2.12: The calculated probability to scatter a Raman photon during
a π rotation as a function of Raman detuning from the P1/2 state. Two
different qubits are considered here. FDQ: |↑〉 ≡

∣∣S1/2, F = 1,mF = 1
〉

and
|↓〉 ≡

∣∣S1/2, F = 2,mF = 2
〉

and FIQ: |↑〉 ≡
∣∣S1/2, F = 1,mF = 1

〉
and |↓〉 ≡∣∣S1/2, F = 2,mF = 0

〉
. The polarizations of light used are ε̂b = ε̂r = −1

2 σ̂
+ +

1√
2
π̂ + 1

2 σ̂
−. The laser powers and beam waist are fixed in the simulation.

Given the Raman and Rayleigh scattering rates, we are interested in the spon-
taneous scattering error during the gate operations. We can estimate this
error by considering the probability of scattering event to occur during a gate
time. First of all, we start from the single-qubit gate for which we just consider
a π-pulse. The duration τπ required to perform a π rotation is determined
by the relation π = |Ω|τπ, where |Ω| is the Raman Rabi frequency defined in
Eq. (2.43). In some literatures τπ can be found to be π = 2|Ω|τπ due to a
factor of 2 difference in the definition of the Rabi frequency, but different ways
of defining the Rabi frequency will not affect the results. The probability of
scattering a photon through the Raman scattering process during the π time
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is given by

P S
err =

1

2

(
Γ↑,bRaman + Γ↑,rRaman + Γ↓,bRaman + Γ↓,rRaman

)
τπ (2.73)

=
π

2|Ω|

(
Γ↑,bRaman + Γ↑,rRaman + Γ↓,bRaman + Γ↓,rRaman

)
(2.74)

Here we assume that the qubit stays in |↑〉 and |↓〉 states for the same amount
of time so we take the average of the scattering rate of the two qubit states.
Each qubit state experiences both blue and red Raman beams. Figure 2.12
shows the spontaneous scattering error for the field-dependent qubit (|↑〉 ≡
|S1/2, F = 1,mF = 1〉 and |↓〉 ≡ |S1/2, F = 2,mF = 2〉) and the field-
independent qubit (|↑〉 ≡ |S1/2, F = 1,mF = 1〉 and |↓〉 ≡ |S1/2, F = 2,mF =
0〉) versus different Raman detunings. It is found that the probability to scat-
ter a Raman photon gets down to ∼ 10−5 when ∆ � ∆F . This suggests
that we can increase the detuning to reduce the Raman scattering probability,
however the π time will be longer using the same laser power. There is no
such thing as a free lunch. To maintain the same Rabi frequency (the same π
time) and to reduce the Raman scattering error, we require more laser power
which is technically challenging in general. In [Ozeri 07] the authors quantify
what power is needed for a given spontaneous scattering error with different
species of ions.

The two-qubit quantum gate is a key element for quantum computation and
so far the error of the two-qubit gate operation is still higher than the fault-
tolerant threshold. Here we show how to calculate the spontaneous scattering
probability during the Mølmer-Sørensen gate operation for example. Since im-
plementing the MS gate with 9Be+ ions requires three beams (see Fig. 2.10(a)),
the probability of scattering a photon through the Raman scattering process
during the gate time τgate is given by

PMS
err = 2× 1

2

(
Γ↑,rRaman + Γ↑,bRaman + Γ↑,aRaman +

Γ↓,rRaman + Γ↓,bRaman + Γ↓,aRaman

)
τgate (2.75)

where the factor of 2 accounts for two ions, the factor of 1
2 comes from the

same consideration for the single-qubit gate, and the gate time is given by
τgate = 2π/|ωz − δ′|. For a gate operation, the Rabi frequency is set such that
ηΩ ≈ |ωz − δ′|/2, thus τgate ≈ π/(ηΩ). The Raman scattering probability
during the MS gate duration as a function of detuning is plotted in Fig. 2.13.
In the simulation, we keep the laser power fixed and assume a Lamb-Dicke
parameter of η = 0.25. The laser beam polarizations used are ε̂b = ε̂r =

1√
2
σ̂+ + 1√

2
σ̂− and ε̂a = −1

2 σ̂
+ + 1√

2
π̂+ 1

2 σ̂
−. We can see that the spontaneous

scattering error also drops as the detuning is larger. The calculated errors for
single- and two-qubit gates as well as the relative gate time are summarized in
Table 2.1. If we demand the errors on the < 10−3 level for a MS gate, the laser
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detuning must be larger than 500 GHz red from the P1/2 state. If we want
to maintain the same Rabi frequency and reduce the error by increasing the
laser detuning, we would require more laser power in each Raman beam given
by the relative Rabi frequency ratio. This is why a high power laser source
is useful in order to be able to perform fault-tolerant quantum computation
(see Chapter 5.3). It is worth noting that if one performs a two-qubit gate
consisting of one beryllium and one calcium ion for which the calcium qubit
is driven by the 729 nm quadrupole transition, the Raman scattering error
due to spontaneous emission can be reduced by factor of 2, compared to the
same operation using two beryllium ions, because this error source is only
contributed from the beryllium ion.
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Figure 2.13: The calculated probability to scatter a Raman photon during
a π rotation as a function of Raman detuning from the P1/2 state. Two
different qubits are considered here. FDQ: |↑〉 ≡ |F = 1,mF = 1〉 and |↓〉 ≡
|F = 2,mF = 2〉 and FIQ: |↑〉 ≡ |F = 1,mF = 1〉 and |↓〉 ≡ |F = 2,mF = 0〉.
The polarizations of light used are ε̂b = ε̂r = 1√

2
σ̂+ + 1√

2
σ̂− and ε̂a = −1

2 σ̂
+ +

1√
2
π̂ + 1

2 σ̂
−. The laser powers and beam waist are fixed in the simulation.

Until now, we have not considered the effect of Rayleigh scattering on the
gate errors. These discussions are widely covered in [Ozeri 07]. The Rayleigh
scattering is elastic so there is no energy transfer between the photon and the
internal degree of freedom of the ion. The main effect of this type of scattering
process is a momentum kick on the ion’s motion because the ion experiences
a recoil from the scattering photon. For the single-qubit gate, the two Ra-
man beams are usually set up in a co-propagating configuration such that it
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is insensitive to ion’s motion. Therefore, we can say Rayleigh scattering has
a negligible effect during the single-qubit gate operation. On the other hand,
the Rayleigh scattering has more influence on the two-qubit gate. The recoil
from the scattering photons perturbs the trajectory of ions’ motion in phase
space. Once the trajectory is distorted in phase space, not a complete circle
anymore, this causes gate errors [Ozeri 07].

∆ (GHz)
MS gate Raman π-pulse Relative
scattering error scattering error gate time

-600 5.74× 10−4 3.42× 10−5 6.015

-500 7.88× 10−4 4.69× 10−5 4.384

-400 1.10× 10−3 6.85× 10−5 3.005

-300 1.80× 10−3 1.10× 10−4 1.877

-200 3.50× 10−3 2.06× 10−4 1.000

-100 9.20× 10−3 5.50× 10−4 0.374

100 2.80× 10−2 1.70× 10−3 0.123

200 6.87× 10−1 4.10× 10−2 0.005

300 9.00× 10−3 5.35× 10−4 0.384

400 3.40× 10−3 2.03× 10−4 1.015

500 1.80× 10−3 1.08× 10−4 1.897

600 1.10× 10−3 6.79× 10−5 3.030

Table 2.1: The calculated results for the gate errors with respect to different
detunings. In the simulation, the field-independent qubit is used, and we
fix the laser power (10 mW in each Raman beam) and the laser beam waist
(w = 30 µm). The polarizations of the light used for the MS gate are ε̂b =
ε̂r = 1√

2
σ̂+ + 1√

2
σ̂− and ε̂a = −1

2 σ̂
+ + 1√

2
π̂+ 1

2 σ̂
−, and for the single-qubit gate

are ε̂b = ε̂r = −1
2 σ̂

+ + 1√
2
π̂ + 1

2 σ̂
−. The gate error becomes large at ∆ = 200

GHz because this positive detuning from P1/2 state is very close to P3/2 state
(∆F = 198 GHz). The relative gate time shown here is the same for MS and
sinlge-qubit gates, independent of the polarizations.
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Chapter 3

The 40Ca+ Qubit

The other ion species used in our group is calcium. Calcium ions have been
used to perform a plenty of beautiful experiments [Blatt 12, Home 06a] and
shown to be a well suited qubit candidate for quantum information science
[Blatt 08]. For practical implementations, the laser sources required for control
of calcium ions are all commercially available1. The calcium ion has many
isotopes [Lucas 04a] in which we are in particular interested in the 40Ca+ ion
because its properties are most well-known, and it is easier to work with due
to zero nuclear spin and it has maximum natural abundance.

In this chapter I will describe my main contributions to the calcium project,
and the rest of the details about 40Ca+ ions can be found in [Kienzler 15b].
First, I will introduce how to generate 40Ca+ ions using the two-photon pho-
toionization scheme. The atomic structure of 40Ca+ ions, the required laser
sources and how we identify the qubit are shortly discussed. Since we use
a magnetic field of 119.45 G for the 9Be+ ion in order to work with a field-
independent qubit, this leads to the energy level splitting of the 40Ca+ ion
larger than the natural linewidth of the states. Under the circumstances, to
efficiently control the 40Ca+ ion requires more laser beams to address the tran-
sition than usual, this makes the system more complex than many previous
setups. Therefore, we try to find optimal working parameters, like the laser in-
tensity and detunings, by solving the optical Bloch equations for a multi-level
atomic system. The results will be presented in the end.

3.1 Photoionization of Neutral Calcium Atoms

Photoionization has several advantages compared to electron bombardment
[Lucas 04a], for example photoionization is isotope selective such that only
the desired isotope of the ion species is loaded into the trap, there is no

1Toptica Photonics AG, http://www.toptica.com/
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charging problem on the trap caused by the use of electron beams, and the
efficiency of using photoionization is much higher, requiring lower densities
of neutral atoms. The ionization energy of neutral calcium atoms is approx-
imately 6.11 eV, corresponding to the required laser wavelength of 202.8 nm.
This deep UV light is very hard to produce. In the typical experimental
setup, generation of calcium ions is performed by a two-photon photoioniza-
tion method. Two-photon photoionization of calcium for loading in a Paul
trap was first demonstrated using laser light at 272 nm [Kjaergaard 00], later
another approach was implemented using near 423 nm and 376 nm light in-
stead [Gulde 01, Schuck 10]. The first approach needs a complicated laser
system, by comparison the second technique is easier to manage because we
can get the laser sources directly from laser diodes or from simple frequency
conversion.

40Ca+  Ca 

4p 1P1 

4s 1S0 
2S1/2 

2P1/2 

2P3/2 

375 nm 

423 nm 

Continuum 

202.8 nm 

2D3/2 

2D5/2 

397 nm 
729 nm 

866 nm 

854 nm 

732 nm 

393 nm 

850 nm 

Figure 3.1: Left: Energy levels and light wavelengths used in the photoioniza-
tion process of neutral calcium. Right: Energy level diagram and transition
wavelengths of 40Ca+ ions.

The energy levels and laser wavelengths used in the photoionization process
of neutral calcium atoms is depicted in Fig. 3.1. In the first stage, we shine a
laser at 422.7915 nm driving the transition from the ground 4s 1S0 state to the
4p 1P1 excited state. The linewidth of this dipole transition is 2π× 34.7 MHz,
the laser frequency has to be tuned close to the resonance to enhance the
excitation rate. Since the photoionization beam is ≈ 30◦ to the normal of
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the neutral calcium atomic beam, the laser frequency is Doppler shifted by
≈ 400 MHz in the reference frame of the atoms. One can check what the laser
frequency should be by observing the neutral fluorescence from the calcium
atoms. When the laser frequency is close to the atomic transition, we could
see the atom cloud fluorescing on a camera. The 423 nm light is obtained
by the second harmonic generation (SHG) from an 846 nm diode laser using
a periodically poled potassium titanyl phosphate (PPKTP) waveguide chip.
Here we monitor the frequency of the pump light on a wavelength meter. The
SHG is performed within a compact fiber-in fiber-out module provided from
AdvR (see Fig. 3.2). The temperature of the PPKTP waveguide needs to
be controlled and stabilized to fulfill the phase matching condition. With
an input power of roughly 100 mW at 846 nm, we are able to get maximally
4 mW output at 423 nm which includes the loss in the input and output fiber
connectors. The saturation intensity of the 4s 1S0 ↔ 4p 1P1 transition is
0.6 mW/mm2 so the optical power required to drive this transition is only
10 µW with a beam waist of 70 µm. The 423 nm light power is sufficient for
three trapped ion setups in our group. At the second stage of the photoioniza-
tion process, the laser just needs high enough photon energies to excite the ion
to a continuum state so the laser frequency is not that critical. Here we use a
free running laser at 375 nm that is a simple laser module directly controlled
by a computer. Typically the loading time of the ion is around a couple of
minutes. The details of the atomic oven, which is used to produce the neutral
calcium atoms, and the loading process can be found in [Kienzler 15b].

Figure 3.2: 846 nm to 423 nm frequency conversion module. It is a simple fiber-
in and fiber-out device for which the temperature of the PPKTP waveguide
chip inside needs to be stabilized for achieving the phase matching condition.
The SHG temperature coefficient of the module is ≈ 0.06 nm/oC.
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3.2 Atomic Structure

Calcium ions have similar electrical structures to alkali neutral atoms, with a
single valence electron. The energy level diagram of the 40Ca+ ion and the
corresponding transition wavelengths are shown in Fig. 3.1. It has a ground
state 2S1/2, and two excited states 2P1/2 and 2P3/2. In addition calcium ions
have the low-lying 2D3/2 and 2D5/2 metastable states. This makes the odd-
isotope of calcium ions difficult to use, and therefore we use an isotope with
zero nuclear spin instead, which is the 40Ca. Shown in Fig. 3.1, the 2S1/2 ↔
2P1/2, 2S1/2 ↔ 2P3/2, 2P1/2 ↔ 2D3/2, 2P3/2 ↔ 2D3/2 and 2P3/2 ↔ 2D5/2

transitions are dipole-allowed, where the lifetime of the 2P1/2 and 2P3/2 is ∼
7 ns (the natural linewidth ∼ 2π× 22.7 MHz) [Jin 93], whereas the 2D3/2 and
the 2D5/2 states are metastable with a lifetime of ∼ 1.1 s [Barton 00]. As we
can see, the advantage of the calcium ion is that the laser sources required to
drive all the possible transitions are all commercially available. All the laser
frequencies are stabilized and locked to a reference cavity using the Pound-
Drever-Hall technique [Drever 83].

Because of the lack of hyperfine structure in the 40Ca+ ion, the energy level
shift is linearly proportional to the applied magnetic field, given by ∆E =
µBgJmJB, where µB = h · 1.399624 MHz/G is the Bohr magneton, gJ is the
Landé g-factor, mJ is the quantum number of the total angular momentum
projected on the z-axis, and B is the magnetic field. The energy splittings of
each state with B = 119.45 G and the transition wavelengths relevant for this
thesis are shown in Fig. 3.3.

In order to produce fluorescence from calcium ions as is required for Doppler
cooling an ion and qubit readout, we use a combination of 397 nm and 866 nm
light. The dynamics of the fluorescence generation is complicated by the
presence of interference effects between the two light fields, and due to the
large energy level splitting in the magnetic field of 119.45 G (these energy
level splittings are larger than the natural linewidth of the transition). In
order to find optimal settings for our lasers, we set up simulations of the
S1/2, P1/2 and D3/2 states using the master equation treatment where the ion
interacts with classical electromagnetic fields while undergoing spontaneous
emission. The details will be introduced in the next Section.

All coherent quantum operations make use of the quadrupole transition be-
tween these levels at 729 nm. The qubit states are encoded in the internal
electronic states |S1/2,mJ = 1/2〉 and |D5/2,mJ = 3/2〉 that has lower sensi-
tivity to magnetic field fluctuations compared to other qubit candidates while
having a high coupling strength for our chosen beam direction [Kienzler 15b].
Compared to the qubit states we use in 9Be+ ions, the one in 40Ca+ is called
an optical qubit which only relies on a single-photon transition. The main
advantage of using an optical qubit for quantum computation is that there
is no fundamental problem of the spontaneous emission during the coherent
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3.2. Atomic Structure
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40Ca+ Energy Level Splittings 

Figure 3.3: Transition wavelengths used in the experiments and the energy
level splittings in an external magnetic field of 119.45 G. The qubit states are
chosen from two internal electronic states |S1/2,mJ = 1/2〉 and |D5/2,mJ =
3/2〉, labeled with green.

operations as long as the time interval of the operations is shorter than the life-
time of the D5/2 states. However, using an optical qubit needs very good laser
frequency stability due to the narrow linewidth of the metastable state. In our
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3. The 40Ca+ Qubit

case the qubit coherence time is also limited by magnetic field fluctuations.

The qubit initialization is carried out by both the 854 nm laser light that re-
pumps the population from the D5/2 state back to the S1/2 and the 397 nm
light that resets the population from |S1/2,mJ = −1/2〉 to |S1/2,mJ = 1/2〉
through the P1/2 excited state. The 397 nm light used in the qubit initializa-
tion is vertically polarized for which the ion experiences both σ̂+ and σ̂− polar-
ization components according to our beam configurations (see Fig. 5.2). If the
laser frequency is tuned on resonance for the σ̂+ component, then the σ̂− com-
ponent is about 446 MHz blue detuned with respect to its transition. Hence,
the effect of this off-resonant drive on the qubit initialization process can be
ignored to first order when using the 397 nm power below one saturation in-
tensity. The saturation intensity for each dipole transition is calculated with
the formula Isat = ~ω3Γ

12πc2
× 10−3 mW/mm2. They are Isat = 0.466 mW/mm2

for the 397 nm transition and Isat = 0.003 mW/mm2 for both 866 nm and
854 nm transitions.

3.3 Optical Bloch Equations for an Eight-Level Atomic
System

As mentioned before, the application of the 866 nm and 397 nm light fields is
responsible for the Doppler cooling and the qubit readout, requiring a high
rate of photon scattering. Therefore, how to obtain fluorescence from the
ion as much as possible becomes an important issue in the experiment. For
the trapped ion groups who work with the calcium ions, we use a relatively
high magnetic fields of 119.45 G. This makes the resonance fluorescence more
difficult to control due to large energy level splittings. In this case, we use more
laser beams with different frequencies and polarizations. Meanwhile we need
to avoid the dark resonance generated from two laser fields due to quantum
interference effects. Here we set up a numerical simulation for an eight-level
atomic system by solving the optical Bloch equations. By doing so, we are
able to find optimal parameters for our laser settings.

The energy levels involved in the problem are shown in Fig. 3.4. We denote
the levels from |1〉 to |8〉, which are the Zeeman sublevels in S1/2, P1/2 and
D3/2 states. The 397 nm laser field contains two frequencies with the po-
larization π̂ and σ̂+/σ̂− for each frequency. The 866 nm light field has two
frequency components as well and both are circularly polarized. The optical
setups are described in [Kienzler 15b]. Here we focus on the simulations. The
Hamiltonian describing the total system is given by
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3.3. Optical Bloch Equations for an Eight-Level Atomic System

334.70 
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133.65 MHz 

B = 119.45 Gauss 

446 

Splitting: 

111.31 MHz 
223.4 

Splitting: 

334.70 MHz 

Figure 3.4: The energy levels used in the simulation of optical Bloch equa-
tions. The frequency and polarization of the laser beams are shown. For the
simulations, we define ∆397σ+ ≡ ω397σ+− (ω8−ω1), ∆397π ≡ ω397π− (ω8−ω2),
∆866σ− ≡ ω866σ− − (ω8 − ω6), and ω866σ+ = ω866σ− + ωAOM. It should be
noted that the laser configurations in the real situation are much more com-
plicated than that we consider in the simulation. The frequency ω866σ+ =
ω866σ− + ωAOM that couples the |8〉 ↔ |4〉 transition is not purely σ̂+ polar-
ized and also has the σ̂− polarization component. Therefore, for example the
|8〉 ↔ |6〉 transition is not only driven by one frequency component (ω866σ−)
but also driven by ω866σ− + ωAOM. This would make the problem quite hard
to solve.
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3. The 40Ca+ Qubit

Ĥ = Ĥa + Ĥl

=

8∑
a=1

~ωa|a〉〈a|+ d ·
∑
i

Ei (3.1)

where Ĥa is the atomic Hamiltonian and Ĥl is the Hamiltonian of the in-
teractions mediated by the applied light fields. The dipole operator d is
defined as a form similar to Eq. (2.25), Ei = ε̂iEicos(ki · r − ωit + φi)
for i ∈ {397σ+, 397π, 866σ+, 866σ−} are the monochromatically laser fields,
where Ei and ε̂i are the amplitude and the polarization of the electric field, ki
is the wave vector, r is the position of the ion, and ωi and φi are the frequency
and the phase of the laser respectively. The spatial dependence ki · r can be
neglected using the dipole approximation. The laser phase is not crucial in
the following discussions so we drop it. Therefore the matrix elements of the
interaction term (Ĥl)mn = 〈m|Ĥl|n〉 can be written as

(Ĥl)17 = (Ĥl)71 = ~Ω397πcos(ω397πt)

(Ĥl)18 = (Ĥl)81 = ~Ω397σ+cos(ω397σ+t)

(Ĥl)28 = (Ĥl)82 = ~Ω397πcos(ω397πt)

(Ĥl)37 = (Ĥl)73 = ~Ω866σ+cos(ω866σ+t)

(Ĥl)48 = (Ĥl)84 = ~Ω866σ+cos(ω866σ+t)

(Ĥl)57 = (Ĥl)75 = ~Ω866σ−cos(ω866σ−t)

(Ĥl)68 = (Ĥl)86 = ~Ω866σ−cos(ω866σ−t)

where the Rabi frequency is Ωi ≡
Ei〈J ′,m′J |d · ε̂i|J,mJ 〉

~ . Here we do not consider
the transition |2〉 ↔ |7〉 driven by the 397σ− light because its frequency is 446
MHz off-resonant from the level |7〉. We choose the zero energy point at level
|8〉 and then transfer the Hamiltonian Ĥ into a rotating frame by using the
operator

Û = exp

[
− i
(
ω397σ+ |1〉〈1|+ ω397π|2〉〈2|+ (ω866σ+ − ω397π + ω397σ+)|3〉〈3|

+ω866σ+ |4〉〈4|+ (ω866σ− − ω397π + ω397σ+)|5〉〈5|+ ω866σ− |6〉〈6|+

(ω397σ+ − ω397π)|7〉〈7|
)
t

]

After the application of the rotating wave approximation and some algebraic
simplification, the matrix elements of the Hamiltonian in an appropriate ro-
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3.3. Optical Bloch Equations for an Eight-Level Atomic System

tating frame are

(Ĥrot)17 = (Ĥrot)71 =
~Ω397π

2
(Ĥrot)18 = (Ĥrot)81 =

~Ω397σ+

2

(Ĥrot)28 = (Ĥrot)82 =
~Ω397π

2
(Ĥrot)37 = (Ĥrot)73 =

~Ω866σ+

2

(Ĥrot)48 = (Ĥrot)84 =
~Ω866σ+

2
(Ĥrot)57 = (Ĥrot)75 =

~Ω866σ−

2

(Ĥrot)68 = (Ĥrot)86 =
~Ω866σ−

2

(Ĥrot)11 = ~∆397σ+ (Ĥrot)22 = ~∆397π

(Ĥrot)33 = ~
(
−∆397π + ∆397σ+ + ∆866σ− + ωAOM −

2

5
u

)
(Ĥrot)44 = ~

(
∆866σ− + ωAOM −

8

5
u

)
(Ĥrot)55 = ~

(
−∆397π + ∆397σ+ + ∆866σ− + ωAOM +

6

5
u

)
(Ĥrot)66 = ~∆866σ− (Ĥrot)77 = ~

(
∆397σ+ −∆397π +

4

3
u

)
where the laser detunings are defined as follows: ∆397σ+ ≡ ω397σ+ − (ω8−ω1),
∆397π ≡ ω397π− (ω8−ω2) and ∆866σ− ≡ ω866σ−− (ω8−ω6), and we introduce
a parameter u = µBB

~ = 2π × 1.3994 × B MHz to simplify the expression.
The frequency ω866σ+ = ω866σ− + ωAOM, where ωAOM is the frequency shifts
by using an acousto-optic modulator (AOM). The quantity gJu is the energy
splitting between two Zeeman levels (for example ω6 = ω4 + 2gJ(D3/2)u.). To
calculate the Rabi frequency given the laser parameters from the laboratory,
we use the equation in [King 08]

Ωi =

√
3λ3γP

2~cπ3w2
0

(−1)J
′+J+J>−mJ

√
2J ′ + 1

(
J ′ k J
m′J q mJ

)
where λ is the wavelength, γ is the spontaneous decay rate of the excited state,
P and w0 are the power and the 1/e2 beam waist of the laser light respectively,

J> is the larger of J ′ and J . The matrix

(
J ′ k J
m′J q mJ

)
is the Wigner 3-j

symbol. For photons, the angular momentum k = 1 and q ∈ {−1, 0, 1} is
associated with the polarizations of the light field {σ̂−, π̂, σ̂+}.

Until now, our discussions have been about a closed quantum system, which
evolves unitarily. However, the reality is that the ion can also decay from
an excited state in the absence of any applied laser field - the spontaneous
emission, arising from the atom interaction with the vacuum modes of the
field. To account for spontaneous decay and dephasing processes, we resort
to the density matrix approach that provides a tool to efficiently describe a
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3. The 40Ca+ Qubit

quantum system interacting with its environment [Cohen-Tannoudji 92]. The
equation of motion is expressed by

dρ

dt
= − i

~

[
Ĥrot, ρ

]
+ L(ρ) (3.2)

where ρ is the atomic density matrix for an eight-level system and L(ρ) is the
Louvillian operator accounting for spontaneous decay and dephasing effects,
and has the form

L(ρ) = −1

2

∑
m

(
L̂†mL̂mρ+ ρL̂†mL̂m − 2L̂mρL̂

†
m

)
(3.3)

where the damping operators L̂m describe different decay and dephasing pro-
cesses. Equation (3.2) is known as the master equation in the Lindblad form
and can be used to study the evolution of open quantum systems coupled to
Markovian reservoirs like the vacuum modes of the field.

The total spontaneous emission rates of P1/2 → S1/2 and P1/2 → D3/2 are
written as

γPS = γ71 + γ72

= γ81 + γ82

γPD = γ73 + γ74 + γ75

= γ84 + γ85 + γ86

where γmn is the decay rate from the level |m〉 to |n〉 and can be calculated
with

γmn =
ω3
mn

3πε0~c3
|〈m|d|n〉|2 (3.4)

where ωmn is the atomic transition frequency and |〈m|d|n〉| is related to the
Clebsch-Gordon coefficient of the transition |m〉 ↔ |n〉. The corresponding
damping operators are L̂PS =

√
γPS |S〉〈P | and L̂PD =

√
γPD|D〉〈P |.

However in the Zeeman-split multi-level system we need to meticulously de-
termine the operator L̂m due to the presence of not only the optical coherence
effects (e.g. coherence between level |1〉 and |8〉) but also the coherence ef-
fects between two Zeeman sublevels (e.g. coherence between level |1〉 and |2〉)
[Cohen-Tannoudji 77]. This means that the spontaneous decay (damping) op-
erator splits into three operators for three different possible polarizations of
the emitted photons. The one for P1/2 → S1/2 are given by

L̂PSσ+ =
√
γPS

√
2

3
|1〉〈8| (3.5)

L̂PSπ =
√
γPS

(√
1

3
|1〉〈7| −

√
1

3
|2〉〈8|

)
(3.6)

L̂PSσ− = −√γPS

√
2

3
|2〉〈7| (3.7)
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3.3. Optical Bloch Equations for an Eight-Level Atomic System

This shows the coherence ρ12 is coupled to ρ78 through the π-photon tran-
sitions, yielding the damping of the Zeeman coherence 〈1|dρdt |2〉 = −1

3γPSρ78

which was calculated and explained by Cohen-Tannoudji [Cohen-Tannoudji 77].
For P1/2 → D3/2, the relevant Lindblad operators are

L̂PDσ+ =
√
γPD

(√
1

2
|3〉〈7|+

√
1

6
|4〉〈8|

)
(3.8)

L̂PDπ = −√γPD

(√
1

3
|4〉〈7|+

√
1

3
|5〉〈8|

)
(3.9)

L̂PDσ− =
√
γPD

(√
1

2
|5〉〈7|+

√
1

6
|6〉〈8|

)
(3.10)

In general there are also processes which decrease the coherences without
changing the populations. These are typically incorporated into the master
equation by setting dephasing rates. One source to cause such decoherence is
the finite laser linewidth. The damping operators can be expressed by

L̂397 =
√
γ397 (|1〉〈1|+ |2〉〈2|) (3.11)

L̂866 =
√
γ866 (|3〉〈3|+ |4〉〈4|+ |5〉〈5|+ |6〉〈6|) (3.12)

where γ397 and γ866 are the linewidth of the 397 nm and 866 nm laser fields
respectively.

To solve Eq. (3.2), we use the methods given in [Oberst 99]. One can con-
vert the N -by-N density matrix into a N2-by-1 vector and then simplify the
equation ending up with the form

dρ

dt
= M · ρ (3.13)

where M is a matrix with a dimension of N2 × N2. The matrix elements of
M are given by

Mrs,kj = − i
~

(
H̃rkδjs − H̃†jsδrk

)
+
∑
m

(Lm)rk(L
†
m)js (3.14)

where H̃ = H − i
2~
∑

m L̂
†
mL̂m and (r, s, k, j) are indices from 1 to 8 in our

case. These differential equations are called optical Bloch equations. Given
the initial condition ρ(0), the time-dependent solution, ρ(t), can be calculated
with

ρ(t) = eMtρ(0) (3.15)

This method is quite time consuming. However, if we are only interested in
the steady state of the dynamics, ρ(∞) is a constant, a more efficient way of
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3. The 40Ca+ Qubit

calculating it is by replacing one of the Bloch equations with the normalization
condition

∑8
i=1 ρii = 1 such that the steady-state solutions can be obtained

by solving a system of linear equations [Oberst 99]. We desire to have the
populations in P1/2 state (ρ77 + ρ88) as high as possible, meaning that more
photons can scatter.

Results and Discussions

In the experiments, we typically use 7.5 µW with a beam waist of 70 µm for
both 397 nm detection beams, corresponding to near one saturation intensity,
and 20− 30 µW with the same beam waist for both 866 nm laser beams that
is highly saturated for this transition. Figure 3.5 shows the steady-state popu-
lations in the P1/2 state as a function of the detuning of the 866 nm laser light
for different detuning settings of the 397 nm beams. The maximum P1/2 state
population and the position of dark resonances strongly depends on the de-
tunings of the 397 nm beams. We can see that there are four dark resonances
formed by the Λ-type system, from left to right |2〉 − |8〉 − |6〉, |1〉 − |8〉 − |6〉,
|2〉 − |8〉 − |4〉, and |1〉 − |8〉 − |4〉.
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Figure 3.5: The P1/2 state populations as a function of 866 nm laser detuning.
The parameters used here are ∆397π = −26 MHz and ∆397σ+ = −10 MHz for
red dashed line; ∆397π = −8 MHz and ∆397σ+ = 8 MHz for green dash-dot
line; ∆397π = −16 MHz and ∆397σ+ = 0 MHz for blue solid line. All three
settings make the frequency difference between two 397 nm laser beams the
same. ωAOM is fixed at 212 MHz for all cases. The laser linewidth is assumed
to be 685 kHz for both wavelengths. There are four dark resonances and each
is formed by a Λ-type system, see texts.

Figure 3.6 shows the steady-state populations in the P1/2 state as a function
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3.3. Optical Bloch Equations for an Eight-Level Atomic System

of the detuning of the 397 nm laser light. This type of spectrum can be
measured by scanning the reference cavity used to lock the frequency of the
397 nm laser so both frequency components are scanned in common. Here
both 397 nm laser beams have a frequency difference of 16 MHz to avoid the
dark resonance created by themselves. For the red curve in Fig. 3.6, we choose
∆866σ− = 25 MHz. The green curve is obtained by setting ∆866σ− = 80 MHz.
Although the red curve has a higher maximum population, we prefer to use
the setting of the green one, making the 866 nm laser far blue detuned from
the resonance. The reasons are that the dark resonances in the red curve are
located on both sides of the main resonant peak, for which the one on the left
would affect the Doppler cooling, and the linewidth of the red curve is narrower
so if the laser frequency of the detection beam is chosen to be on the resonance
peak, then it is more sensitive to the frequency fluctuations. The experimental
result is shown in Fig. 3.6(b) for comparison, i.e. the experimental parameters
might be different from those used in the simulation.
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Figure 3.6: The P1/2 state populations as a function of 397 nm laser detuning.
(a) The parameters used here are ∆866σ− = 25 MHz for the red curve and
∆866σ− = 80 MHz for the green one. Other parameters are the same as those
in Fig. 3.5. (b) The experimental result is shown for comparison. This is
similar to the green curve in (a) because the 866 nm laser frequency is set to
be far blue detuned as described in the text.

The frequency of each 397 nm polarization component can be scanned by using
a high-bandwidth AOM. Depending on the center frequency of the AOM, the
scanning range is usually ±15− 20 % of the center frequency without losing
diffraction efficiency. Figure 3.7 shows the P1/2 state populations versus the
detuning of the 397 nm σ+ beam. The dark resonance at ∆397σ+ = −14 MHz
is generated from the 397 nm σ+ and π components. The second dark reso-
nance at ∆397σ+ ≈ 25 MHz is formed by the 397 nm σ+ and the 866 nm σ+
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3. The 40Ca+ Qubit

components when we choose ∆866σ− = 80 MHz and ωAOM = −212 MHz. As
we can learn from the simulation results (Figs. 3.5, 3.6 and 3.7), the position
of the dark resonances depends on the detuning of both laser beams. There-
fore, the parameters we use for the experiments are compromise between high
populations in the P1/2 state and avoiding a dark resonance.
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Figure 3.7: The P1/2 state populations as a function of 397 nm σ̂+ laser
detuning. (a) The parameters used here are ∆866σ− = 80 MHz and ∆397π =
−14 MHz. Other parameters are the same as those in Fig. 3.5. (b) The
experimental result is shown for comparison. The profile on the right part is
relatively lower than the simulation result. This might be due to the decrease
of the AOM diffraction efficiency when the AOM’s frequency is close to the
boundary of the scannable range.
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Chapter 4

Ion Trap and Imaging System

In our group, we aim for a high-fidelity control of a mixed-species ion chain
for implementing quantum information processing and quantum simulation.
Building up a new experimental system for two ion species is quite challenging.
The experimental setup consists of five parts, which are the ion trap placed in a
ultra-high vacuum chamber, the voltage waveforms for transporting, splitting
and combining the ions, the imaging system for fluorescence detection and
qubit readout, the laser systems for manipulating the ions, and the computer
control system for controlling the experiments. All the apparatus needs to
take very careful design and should be suitable for two ion species. In this
chapter, I will introduce the trapping principles and then the ion trap which
we use for the works covered in the thesis. The trap was designed and built
by Daniel Kienzler [Kienzler 15b]. The design and features of the imaging
system for both species of ions will be discussed in detail. In the end, I will
shortly mention the computer control system that we used to program the
experimental sequence and handle the laser pulses. The technologies that
have been developed in the past few years will enable us to realize flexible
control of trapped ions for quantum physics studies.

4.1 Ion Trap

4.1.1 Trapping Principles

Three-dimensional confinement of charged particles requires a potential en-
ergy minimum at some point in space and the corresponding force is pointing
toward that minimum in all three dimensions. Such confinement can be cre-
ated with electric fields. It follows F = −∇U , where U = qΦ is the potential
energy. In general Φ takes a quadratic form in the Cartesian coordinates as
Φ(x, y, z) = Φ0

R2 (Ax2 + By2 + Cz2), where A, B, and C are constants, and R
is the normalizing factor. However, it is not possible to trap charged particles
with only the static electric fields according to Earnshaw’s theorem. A simple
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4. Ion Trap and Imaging System

explanation is that if Φ has to satisfy Laplace’s equation ∇2Φ = 0, we must
need A + B + C = 0. It is possible to trap in two dimensions with A,B > 0
for q > 0, but the third dimension will be anti-trapping (C < 0). The solution
is to use the time-varying fields instead.

The potential used for a linear Paul trap [Wineland 98] near the center has a
following form:

Φ(x, y, z, t) = ΦRF + ΦDC

=
1

2
V0 cos (ΩRFt)

(
x2 − y2

R2

)
+
κU0

2

(
2z2 − x2 − y2

)
(4.1)

where V0 cos (ΩRFt) is the potential applied to the diagonally opposite RF
electrodes which are placed a distance R from the axis of the trap and re-
sponsible for the confinement in the radial plane (x and y directions), and U0

is the static potential applied to the DC electrodes in order to provide axial
confinement of the ions (z direction). κ is the geometry factor. The equations
of motion for an ion with mass m and charge q are given by

ü =
F

m
=
qE

m
= − q

m

∂Φ

∂u
, u ∈ {x, y, z} (4.2)

Along the z direction, the ion’s motion is simple harmonic motion with the os-
cillation frequency ωz =

√
2κqU0/m. In the x and y directions, the equations

of motion can be transformed to the standard form of the Mathieu differential
equation as follows:

d2u

dξ2
+ (au + 2qu cos (2ξ))u = 0, u ∈ {x, y} (4.3)

where ξ = ΩRFt
2 , ax = ay = 4qκU0

mΩ2
RF

is a measure of the strength of the static

potential, and qx = −qy = 2qV0

mΩ2
RFR

2 quantifies the strength of the RF potential.

Equation (4.3) can be solved by using the Floquet theorem [Leibfried 03b,
Wineland 98]. Typically, we have the condition au < qu � 1 so the solution
to the first order in au and qu is given by

u(t) = Au cos

(
βu

ΩRF

2
t

)[
1 +

qu
2

cos (ΩRFt)
]

(4.4)

where Au is determined by the initial condition and βu =
√
au + q2

u/2. Under
the conditions au < qu � 1, we can see that the frequency βuΩRF/2 � ΩRF.
The first term which has a larger amplitude and slower motion (frequency
at βuΩRF/2) is the “secular” motion of the ion, and the second term with a
smaller amplitude and faster motion (frequency at ΩRF) is called the “micro-
motion”. When the confinement in x and y directions is much stronger than
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the axial confinement, the secular motional frequency can be approximated
by

ωu '
|qu|
2
√

2
ΩRF =

qV0√
2mΩRFR2

, u ∈ {x, y}. (4.5)

In our case, due to a complex trap geometry Equation (4.1) can not be used to
describe the total potential. The degeneracy of the two secular frequencies can
be broken by adding an axial trapping potential. The RF potential which pro-
vides radial confinement is cylindrically symmetric. Once we have the static
field for the axial confinement, this potential is overlaid on radial component
and deforms the net potential seen by the ion, breaking the cylindrical sym-
metry [Amini 11]. When designing a trap, the condition ωx,y < ΩRF/5 should
be satisfied in order to ensure stability.

Pseudopotential Approximation

The pseudopotential approximation [Dehmelt 68] is a heuristic approach that
gives an insight into the radial confinement as well as provides a useful tool for
the simulation of ion traps. We consider an ion with mass m and charge q in
an oscillating electric field E(u, t) = E(u) cos (ΩRFt), where u = xx̂+yŷ+zẑ is
the position vector. Under the assumption that the mean ion position changes
negligibly in duration 2π/ΩRF, the equation of motion can be written as

∂2uµ
∂t2

=
qE(u)

m
cos (ΩRFt) (4.6)

This is actually the equation of motion for the ion’s micromotion, and its
solution is

uµ = − qE(u)

mΩ2
RF

cos (ΩRFt) (4.7)

The pseudopotential Φpseudo governed from the kinetic energy of the ion is
now given by

qΦpseudo = 〈KE〉 =
1

2
m〈vµ〉2 =

q2|E(u)|2

4mΩ2
RF

(4.8)

From ΦRF in Eq. (4.1), we are able to calculate E(u) for a linear RF trap,

which is E(u) = −V0
2 ∇

(
x2−y2

R2

)
= −V0

(
xx̂−yŷ
R2

)
. Therefore the pseudopoten-

tial for a linear RF trap is

qΦpseudo =
q2V 2

0

4mΩ2
RFR

4

(
x2 + y2

)
=

1

2
m(ω2

xx
2 + ω2

yy
2) (4.9)

We obtain the secular frequency ωx = ωy = qV0√
2mΩRFR2 , which agrees with the

solution of the Mathieu equation in the limit au, q
2
u � 1.
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4.1.2 Micromotion

If the pseudopotential at the equilibrium position of an ion is not zero, the
ion will have micromotion oscillating at the RF driving frequency. There are
two types of micromotion in Paul traps: 1) Complex trap structures or not
well aligned trap electrodes can have a residual component of the RF field in
the axial direction. In this case, the minimum of the pseudopotential is not
zero. Since this effect is caused by the trap itself, we name this kind of mi-
cromotion as “intrinsic” micromotion [Amini 11]. 2) In the presence of stray
electric fields at the pseudopotential minimum, this stray field displaces the
equilibrium position of an ion away from the center. This type of micromo-
tion can be nulled by applying compensation fields to extra electrodes and is
called “excess” micromotion. The extra electrodes should be allowed to have
independent control of the compensation fields along each radial principal axis.
However, for a given stray field the displacement will be different for ions with
different mass such that a mixed-species ion chain would not co-align along
the axial direction (illustrated in Fig. 4.1). This will lead to a change of the
mode structure such that the mode’s amplitude and frequency are changed.
Therefore it is very important to know how to compensate the stray field com-
pletely when working with two species of ions [Home 13]. Several methods
have been tried out for the calcium and beryllium ion individually. These
techniques and measurement results will be discussed in Chapter 6.

E-field 

Trap axis (z-axis) 

40Ca+ 9Be+ 

Figure 4.1: Owing to a stray E-field, a two-species ion crystal is displaced
in the radial plane from the pseudopotential minimum, resulting in excess
micromotion. The heavier mass ions get larger displacements because they
experience weaker confinement from the pseudopotential.

4.1.3 Three-Dimensional Segmented Linear Paul Trap

In our group, a segmented linear Paul trap is used to simultaneously trap
both beryllium and calcium ions. The general goal is relevant for scaling
up quantum information processing based on trapped ions as well as flexible
control of both ion species. The ion trap used for the experiments of this
thesis is shown in Fig. 4.2. The trap was designed and fabricated by Daniel
Kienzler. Detailed design considerations and recipe for making the trap can
be found in his thesis [Kienzler 15b]. Here I only summarize the new features
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of the trap.

Figure 4.2: A three-dimensional segmented linear Paul trap. This is made
of laser machined alumina wafers with electroplated gold. The picture shown
here is that all trap wafers are assembled on the filterboard.

The main part of the trap consists of four gold plated alumina wafers, as
shown in Fig. 4.3(a). The middle two wafers form the linear Paul trap, for
which both the RF electrodes and DC electrodes reside at two opposite corners
of the typical four-rod quadrupole configuration. We design and optimize a
segmented structure for DC electrodes, providing two zones for loading ions,
three zones for quantum control, and two zones for shuttle and separation of
ion strings (Fig. 4.3(b)). Two loading zones are located at both ends of the
trap, where one beryllium and one calcium atomic oven are installed. This
gives us more flexibility for two-species ion loading. The other benefit is that
if the oven on one side is broken or empty, we still have a backup.

Three experimental zones could be used to realize a simple version of the “quan-
tum charge-coupled device (QCCD) architecture” [Kielpinski 02] in which the
ion string loaded in a segmented trap can be transported to different zones
for cooling/storage/qubit readout, and the quantum control can be performed
in specific zones. Between two experimental zones, there is a zone consisting
of three electrodes which are used to shuttle, separate and combine the ions.
The electrode widths are optimized to achieve highest confinement during the
process of splitting the ion chain [Home 06b, Kienzler 15b].

Typically two bias electrodes are used in order to null stray electric fields
transverse to the trap axis that induce the excess micromotion. With this
approach only one point along the trap axis can be optimally compensated.
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Mask Wafer 

Mask Wafer 

(a)

L1 L2 E1 E2 E3 S  S  S  S  S  S  

Shim 1 2 3 4 5 6 7 

RF Electrode 

Shim 1 2 3 4 5 6 7 

(b)

Figure 4.3: Schematic diagram of the 3-D segmented trap. (a) Cut transverse
to the trap axis. (b) Cut along the trap axis. L: loading zone, S: shuttling
and splitting zone, and E: experimental zone. The width of the L, S, and
E electrodes are 500 µm, 155 µm, and 300 µm. All the gaps between two
electrodes are 20 µm. (These CAD drawings are made by Daniel Kienzler)

However the stray field can not be guaranteed to be the same at different points
on the trap axis. Therefore a segmented bias wafer is used on both sides of
the trap. Each shim electrode has seven segments, shown in Fig. 4.3(b), such
that we can compensate the excess micromotion in different regions. The use
of these shim electrodes to minimize the micromotion is discussed in Chapter
6.6.

4.1.4 DC Voltage Source

The axial confinement is achieved by applying a set of voltages to segmented
DC electrodes that create a trapping potential. Changing the voltage on
each DC electrode is able to move the ion along the axial direction. In our
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group, we have two approaches for the DC voltage source. The first one is the
use of AD5371 DAC board1. The AD5371 board contains 40-channel 14-bit
DACs. The device provides buffered voltage outputs with a maximum span
of 20 V. In our case, we restrict the output voltage range between −10 V
and +10 V. This device is divided into five groups of eight DACs. Three
offset DACs allow the output range of the groups to be adjusted. This board
can be controlled through the SPI interface. Initially the communication to
this device was implemented by Ben Keitch. The idea was that the computer
control system directly controls the AD5371 board with an intermediate buffer
board, but eventually we decided to use an Arduino Uno board2, which is a
microcontroller board based on the ATmega328 chip3, to control the DAC
channels. This provides a stable and reliable solution for the DC voltages.
However, it is not fast enough for performing voltage updates within a single
experimental sequence.

For this reason, a high-speed and low noise DAC board has been designed and
constructed in our group. It is called Direct Ethernet Adjustable Transport
Hardware (DEATH). For the readers who are interested, all the details about
the design, specifications and characterizations of DEATH can be found in
Ludwig de Clercq’s thesis [de Clercq 15]. Currently, we are using DEATH for
the DC electrodes and still using AD5371 for the shim electrodes.

4.2 Imaging System

The imaging system in the trapped ion experiments plays an important role
because it is responsible for imaging the ions which are trapped, and collecting
photons during the qubit readout. The system should be near diffraction
limited in order to resolve single trapped particles which are a few microns
apart. In the following, I will describe how we set up our imaging system in
detail.

Requirements

We desire to have two high numerical-aperture (NA) objectives in the vacuum
chamber for imaging trapped ions and collecting the fluorescence emitted from
them. These two in-vacuum objectives are movable along three dimensions
such that we can image the ions in different zones as well as adjust the focal
length and height of the objective. Some specifications we required for the
high NA objective design are listed below:

• Compatible with UHV.

1Analog, www.analog.com
2Arduino, www.arduino.cc
3www.atmel.com/Images/doc8161.pdf
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• Ion-objective distance: 30 mm. This is determined by the optical access
to the ion.

• NA: 0.45, corresponding to ' 5.3% of 4π solid angle.

• Field of view: 100 microns

• Depth of focus: 20 microns

• Magnification: 40

• Total working distance: 1 meter

Design

Designing a high NA objective with near-diffraction-limit resolution is chal-
lenging for two different wavelengths. The design program we use in the
group is Zemax, which integrates all the features required to conceptualize,
design, optimize, analyze, tolerance, and document any optical system. It is
widely used in the optics industry as a standard design tool. The version we
have is for design of a sequential optical system.

Sequential ray-tracing could be used to model almost all imaging systems.
It is fast, flexible, and easy to optimize. The “sequential” means that rays
are traced through a pre-defined sequence of surfaces while traveling from
the object surface to the image surface. The starting point of designing such
an objective, which satisfies the above criteria, is to refer to other groups’
setup [Benhelm 08b, Hijlkema 07, Alt 02]. They used a multi-lens system to
compensate the aberrations of one surface with the aberrations of other ones.
This is because single spherical lenses always introduce spherical aberrations.

We start from a system with five lenses, where the initial radii of curvature
of lens surfaces and lens thickness are obtained from commercially available
products, and then try to optimize the radii of curvature of the lens surfaces
and the distances between the lenses. However, the problem we faced was
that we couldn’t optimize the objective for both wavelengths at the same time.
The final design and lens manufacturing were made by Sill Optics, where they
apply the function of “Multi-Configuration” in Zemax, which we were not
aware of, to simultaneously optimize the imaging system for the wavelengths
of 313 nm and 397 nm. Two additional lenses are placed in each imaging
path outside the vacuum chamber in order to reduce the back-focal distance
and calibrate the image quality, as shown in Figs. 4.3(a) and 4.3(b) for the
schematic diagrams. The multi-lens in-vacuum objective is common for both
wavelengths. The NA in the final design is 0.41, corresponding to ' 4.4% of
4π solid angle. The total working distance is one meter for both. The detailed
lens data can be found in Appendix B.

The in-vacuum objective is “designed” as an infinity-corrected optical system,
in which a light beam from a object passes through the objective lens which
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Figure 4.3: The imaging system design. (a) The layout of the lens design for
313 nm light field. (b) The layout of the lens design for 397 nm light field. (c)
Simulated spot diagram for 313 nm light field. (d) Simulated spot diagram
for 397 nm light field. Three objects are set 200 µm apart.
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does not form an image and enters as an infinity parallel beam in the additional
image forming lenses (though in our case the objective does not make a perfect
infinity parallel beam, see below). In a finite correction optical system, the
objective lens forms an image by itself. An infinity-corrected objective lens
has the following advantages: 1) A magnification remains the same when the
distance between the objective lens and the additional lens is changed. 2)
If a flat plate like the viewport in our case is inserted between the objective
lens and the additional lens, the parfocal point is unchanged and delivers no
image shifts. The two advantages mentioned are significant for configuring a
near-diffraction-limited optical system as well as for designing a microscope
optical system.

Figures 4.3(c) and 4.3(d) show the simulation results of both imaging systems
respectively. The objects are set to a separation of 200 µm and it forms the
image of 5 µm apart, which is what we should expect because the magnifica-
tion is 1/40 (in reverse). All the image spots are within the airy disk, which
is a black circle at the center and is an indication of the diffraction limit. By
reversing the whole system (see Figs. 4.3(a) and 4.3(b)), this is the real situa-
tion where the two ions are now the objects with 5 µm apart. The image also
matches our specifications and we are able to resolve both ions, as shown in
Figs. 4.3(c) and 4.3(d).

We then examine how sensitive the focal point is in order to understand the
alignment tolerances of the system. We can simulate the spot diagram at
different positions crossing the focus. Figures 4.3(a) and 4.3(b) show that it
is quite sensitive if we try to adjust the distance between the ion and the
objective. As we can see, with a defocus of 10 µm, the image is already much
larger than the airy disk. Conversely, if we fix the ion-objective distance, the
tolerance of moving the image plane is in the range of millimeters, as shown
in Figs. 4.3(c) and 4.3(d).

Construction

Figure 4.4 shows the assembly of the in-vacuum objectives. There are two
identical imaging systems in our setup, located on two sides of the trap. On
one side the objective can image from zone L1 to the center of the trap; on
the other side, the imaging region is from zone L2 to the center. The total
movable range of the vacuum bellows is around 3 mm.

Inside the chamber, the objective is screwed in an aluminum mechanical
mount. The whole part is mounted on the flexible vacuum bellows, as shown
in the CAD drawing (see Fig. 4.5). As mentioned above, we need the capa-
bility to adjust the objective in three dimensions, including the height, the
focal distance, and the axial direction along the trap. Therefore, we attach
a three-dimensional translation stage to the bellows. A motorized translation
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Figure 4.3: Reversed imaging system. (a) The layout of the lens design for
313 nm light field. (b) The layout of the lens design for 397 nm light field. (c)
Simulated spot diagram for 313 nm light field. (d) Simulated spot diagram
for 397 nm light field. Three objects are set 5 µm apart, which is a typical
ion-ion spacing.
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Figure 4.3: Simulated spot diagrams for the defocus. (a) for 313 nm light field.
(b) for 397 nm light field. Reversed the system, and the defocus effect is less
sensitive, shown in (c) for 313 nm and (d) for 397 nm.
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Ion Position 

Figure 4.4: Two identical objectives are set up in the vacuum can and a
cartoon of where the ions should be. The trap is not mounted in the vacuum
chamber and is not shown here.

stage is used for the axial direction for the fine and fast tuning of the position.
The other two axes are manually controlled.

Figure 4.6 shows the schematic diagram of a single imaging system. Outside
the vacuum, both wavelength light fields pass through a vacuum viewport
and hit a dichroic beamsplitter4. The diameter of the dichroic beamsplitter
is 3 inches and is mounted 45◦ with respect to the optical table. The light
field at 313 nm from beryllium ions reflects from the dichroic mirror and the
397 nm light field from calcium ions is transmitted. On each arm, there is
a pair of lenses as mentioned before, followed by a flip mirror (not shown in
the schematics) to guide the light field into a camera or a photomultiplier
tube (PMT). Additionally, we insert a dichroic filter5 to filter out the 866 and
854 nm scattering light during the qubit readout.

The camera we choose to image the ions is iXon X3 DU897 Electron multi-
plying CCD from Andor. It has a pixel number of 512×512 with each pixel
size of 16× 16 µm2. A magnification of 40 onto a pixel size of 16 µm should
give us 12.5 pixels between ions for two ions 5 µm apart. Obtained from the
simulation, the diffraction limit is around 1 µm in diameter (double the airy
radius), and the image would produce a spot size of 40× 1/16 = 2.5 pixels.
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In-vacuum 
lenses 

Flexible 
bellow Translation 

stages 

Figure 4.5: Drawing of the assembly of the in-vacuum objectives. Two objec-
tives are mounted on the vacuum bellows separately inside the chamber. A
three-dimensional translation stage is attached to the vacuum bellows outside
the chamber. The ion trap is placed between the objectives, not shown here.
(Figure by courtesy of Daniel Kienzler)

First Steps

We unfortunately did not measure the transmission of all the optical elements
for 313 and 397 nm light fields. It would be good if we know how much loss we
have when performing the qubit readout. Before we tried loading ions, some
works have been done as follows. First, we have to get the position of the
objective right because as described above the distance between the objective
and the ion is critical. Here we shine and monitor both 313 and 397 nm light
on the trap electrodes simultaneously as shown in Fig. 4.7. By doing so,
we could align the position of the imaging system well for both beam paths.
In the end, the object is moved back to compensate for the distance of the
electrode front surface and the location of the ion.

4Altechna, www.altechna.com
5Semrock, FF01-405/150, alternatively FF01-390/18, which filters out the 423 nm light

too.
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Figure 4.6: Schematics of the whole imaging system on one side of the trap.
The second imaging system on the other side is identical to this.

Image 313 nm light Image 397 nm light 

Figure 4.7: Illuminating 313 and 397 nm laser fields on the electrode simulta-
neously for aligning the imaging system.

Second, in order to observe the neutral fluorescence from the calcium atoms
at 423 nm, we can use the same imaging system. According to the Zemax sim-
ulation, the diffraction limited resolution can also be achieved for the 423 nm
light field by translating the objective by 0.32 mm backwards. Figure 4.8
shows the atom cloud fluorescing at 423 nm on the calcium camera.

Ion Imaging

After the laser systems (see Chapter 5) and the control system (see Section
4.3) were prepared and ready to use, we successfully loaded a two-species ion
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Figure 4.8: Neutral calcium fluorescence at 423 nm is observed by translating
the objective by 0.32 mm.

chain in the segmented ion trap. As shown in Fig. 4.9, the ion chain contains
two calcium ions and one beryllium ion. They were imaged simultaneously
on separate cameras. On the calcium camera, the picture shows two calcium
ions, and the dark region in the middle is where the single beryllium ion is
located. The details of loading process can be found in Chapter 6.

9Be+ ion 

40Ca+ ions 

Mixed-species ion chain 

9Be+  40Ca+  40Ca+  

Figure 4.9: Pictures of two 40Ca+ ions and one 9Be+ ion trapped simultane-
ously in the same potential well. The calcium camera shows the image of two
trapped 40Ca+ ions, and a dark 9Be+ ion in the middle can not be observed.
The beryllium camera shows a single trapped 9Be+ ion surrounded by the two
dark 40Ca+ ions.

Figure 4.10 shows the image of an ion string, where we can see each ion has
a fan-shaped tail. We notice that the image quality is very sensitive to a
tilt to the objective. This effect is then examined in the simulation. We
consider a case in which the objective has a tilt of 0.2◦. Figure 4.10 shows
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the simulated spot diagram for the calcium arm, for which I set three objects
with 5 µm apart. It can be seen that the resulting image also has a tail and
is not circularly symmetric anymore. The direction of the tail depends on
where the objective is tilted. Consequently, we need to take special care of
the objective during the vacuum bake-out and mounting of the components
in order to avoid any tilt. This slightly image distortion does not cause severe
problems in our experiments.
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Figure 4.10: (a) Image of three 40Ca+ ions. There is a dark ion in the trap,
and each ion has a fan-shaped tail. (b) Simulation of the spot diagram in case
the objective is tilted. The parameter used here is the tilted angle of 0.2◦.
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Photon Detection

We use PMTs from Hamamatsu6, and the model we have is H10682-210. It
has an active area of 8 mm in diameter. The count sensitivity at 397 nm and
313 nm is 6×105 and 4×105 s−1pW−1, respectively. These values have taken
the quantum efficiency and collection efficiency into account. As a result, the
total detection efficiency of the PMT per photon is 30 % for 397 nm and is
around 26.5 % for 313 nm .

The total detection efficiency ζ used in Chapter 2.4 can be calculated with

ζ = effective solid angle 4.4%×
PMT quantum efficiency 26.5%×
assuming 15% loss in optics and windows (1− 15%)

' 0.01

We can now estimate the mean photon number which is collected during the
qubit readout if the ion is in the bright state. In the case of beryllium ions,
from Eq. (2.6) we have the photon scattering rate Γ = γ/6 with s0 = 0.5.
So the mean photon number we detect can be estimated by N = ζτDΓ ' 40
photons with the duration of the detection pulse τD = 200 µs. For calcium
ions, Γ = γρP1/2

, where ρP1/2
is the P1/2 state populations, and we can see from

the simulation results in Chapter 3.3 the maximum ρP1/2
under our working

conditions is around 0.1. Therefore, the mean photon number we can collect
during the calcium qubit readout is N ' 30. Both estimations agree with
what we observe in the experiment. We use this detection time of 200 µs in
order to better distinguish the ion being dark or bright. A more careful study
about the qubit readout fidelity of 9Be+ ions is given in Chapter 6.2.

4.3 Experimental Control

The experiments we are doing in our group require a high level of control. In
general, well-controlled laser frequency and phase, the duration of the laser
pulse, voltage waveforms, and digital acquisition of data are necessary. To
accommodate all of the required capabilities, we employ a field programmable
gate array (FPGA) based experiment controller for use in the experiments
with trapped ions.

The core of the computer control system uses the ML507 evaluation plate-
form7, which contains Virtex-5 FPGAs and a PowerPC 440 processor. The
FPGA-based control system can produce a timing-critical pulse sequence. It
is convenient to program and powerful, where the users write a pulse sequence

6Hamamatsu, www.hamamatsu.com
7Xilinx, www.xilinx.com
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in C/C++. The ML507 board is controlled via ethernet through a graphical
user interface (GUI) on a standard PC. The GUI software we use is called
“Ionizer”, which allows users to set the parameters and run the experiments.
It was originally developed by NIST Ion Storage Group and further improved
by Ben Keitch, Vlad Negnevitsky and Matteo Marinelli. The codes of the
GUI software were written in QT and C++.

The laser pulse duration is controlled by a TTL pulse (transistor-transistor
logic) output from FPGA. The TTL pulse controls RF-switches, which switch
on and off RF signals passing to the AOM in the laser setup. The laser
frequency, phase and amplitude are modulated with the RF signal which is
sent into the AOM from direct digital synthesizer (DDS) boards8.

As a temporary solution used in our phase of experiments, the DDS boards
are preloaded with frequency, phase and amplitude settings. They allow a
TTL signal for a DDS channel to switch to another setting, where the phase
is referenced to the first setting. These RF signals are sent to the AOMs for
modulating the frequency, phase and amplitude of the laser in an experimental
sequence. The limitations are that we can not update parameters (except
time) during a sequence, there are only two profiles per DDS channel, and it
uses an USB connection, which is slow. In this temporary setup, the phase
switched between two DDS profiles is not coherent, and the starting phase of
the first pulse of a DDS channel is random and the following pulses have a
absolute phase reference to the first one if we keep running the same profile.

The whole computer control system is now upgraded, including the firmware
of the DDS board and the FPGA board. Now the new system is much more
flexible and powerful. The phase, frequency and amplitude sent to one AOM
can be changed only with one DDS channel while running an experimental
sequence, which we could not do in the past. This will facilitate more complex
experiments in the future.

8Enterpoint, Milldown DDS board, www.enterpoint.co.uk
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Chapter 5

Beryllium Laser Systems

Lasers are used for ionization, cooling and quantum state manipulation of ions.
A stable and controllable laser system is an indispensable part for all of the
experiments with trapped ions or atoms. In our group, since we work with two
species of ions, more wavelengths and setups are involved in the laser systems.
During my PhD, I developed laser systems and setup all the beam lines for
control of beryllium ions. In this chapter, I will first describe an overview of
our laser setup configuration and then focus on the work that I have done.
Some of the sections are covered in our publication [Lo 14]. The calcium
laser systems used in our group include contributions from many people. The
details can be found in [Kienzler 15b, Sepiol 12, Lindenfelser 11].

One of the major challenges of working with beryllium is that the lowest-
energy transitions for excitation from the ground state of both the ion and
the atom require wavelengths in the ultraviolet (UV) region of the spectrum,
at 313 and 235 nm respectively (Fig. 5.1). As a result, most experiments
performed until now have required frequency doubled dye lasers for control of
the ion. Photoionization of neutral beryllium has been previously performed
using a frequency-quadrupled pulsed Titanium-Sapphire laser [Blakestad 10].
These laser systems are expensive and complex, motivating the use of alter-
native approaches. Here I will present a new setup for generating continuous-
wave (CW) 235 nm light for photoionization of beryllium atoms based on two
stages of frequency doubling of light from a diode laser. In addition, for con-
trolling beryllium ions, we follow the approach demonstrated by Wilson et al.
[Wilson 11] to generate three desired UV wavelengths at 313 nm starting from
four infrared (IR) fiber-laser sources. The latter complements recent develop-
ments using telecom lasers at 1565 nm [Vasilyev 11] or diode lasers at 626 nm
[Ball 13], with the advantage that the powers we achieve are far higher. I will
present how we stabilize the frequency of the 313 nm light. Once the light
at the fundamental laser frequency has been generated, it is delivered to the
ions via acousto-optic modulators (AOMs) for frequency fine-tuning and laser
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Figure 5.1: Relevant level schemes in beryllium. Left: two-photon ionization
process by resonant excitation from 1S0 to 1P1 in neutral 9Be. Right: 9Be+

energy levels addressed during trapping and manipulation.

pulse control. I will describe three AOM beam line setups for control of beryl-
lium ions, including cooling/detection beams, repumping beams, and Raman
beams.

5.1 Overview

Our vacuum chamber has 6 optical ports which can be accessed by the laser
beams. A schematic of the laser arrangements is shown in Fig. 5.2. We
combine calcium and beryllium laser beams on the dichroic beamsplitter which
is the same as the one in the imaging system. This dichroic beamsplitter is
designed for 397 nm and 313 nm light fields. It also works for all the calcium
laser wavelengths with some power loss. However, the coating of this dichroic
beamsplitter does not reflect 235 nm light. For Port 1, we use a dichroic
beamsplitter1 for which the reflection band is from 230 to 325 nm and the
transmission band is from 380 nm to near-infrared. The calcium laser beams
entering from this port are linearly polarized. For the horizontal polarization
component, the ion experiences π̂ polarized light. If the laser is vertically
polarized, the ion will experience a superposition of σ̂+ and σ̂−.

For the cooling, detection, and repumping beams applied to beryllium ions,
we require pure σ̂+ polarized light. This requirement can only be fulfilled by

1Semrock FF347-Di01, www.semrock.com
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Figure 5.2: Laser beam configurations near the vacuum chamber.

sending the laser beam parallel to the magnetic field. Here we use Port 2, as
shown in Fig. 5.2. The 729 nm laser beam for calcium qubit manipulations
uses the same port, but the polarization of this beam is not critical for our
particular choice of beam direction relative to the magnetic field [Roos 00b].

The Raman beams for controlling the beryllium qubit are illuminated from
Port 3 and 4. To drive a single-qubit rotation, two co-propagating Raman
beams are sent from Port 3. Implementation of sideband cooling or a two
qubit gate with beryllium ions needs two Raman beams perpendicular to each
other or counter-propagated, where the difference of two k vectors is non-zero.
Therefore, one beam is sent from Port 3 and the other one is sent from Port
4.

Apart from the regular setup described above, the additional 397 nm laser
beam in Port 4 is used for electromagnetically-induced-transparency (EIT)
cooling [Roos 00a], and we retro-reflect the two co-propating Raman beams
from Port 1 to demonstrate parallel single-qubit quantum operations using
transported ions [de Clercq 15].

5.2 Laser Source at 235 nm

Ionization of neutral beryllium atoms requires an energy of 9.3 eV, correspond-
ing to a wavelength of 133 nm. Since this wavelength lies in the vacuum UV,
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Figure 5.3: First SHG stage: 940 to 470 nm. Notation: L, lens; QWP, quarter-
wave plate; HWP, half-wave plate; Mi, cavity mirrors; PBS, polarizing beam-
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maintaining fiber; α, full-opening angle. Also shown are the locking electronics.
For details, see text.

it is desirable to remove the electron using a two-photon excitation scheme.
The photoionization cross-section is enhanced if the first stage of excitation
is performed on resonance with an allowed transition in the neutral atom
[Kjaergaard 00, Lucas 04b]. Furthermore, resonance-enhanced photoioniza-
tion is convenient in that it is species selective. For these reasons we choose to
use two photons at 235 nm, the first of which is resonant with the 1S0 ↔ 1P1

transition of neutral beryllium (Fig. 5.1, left). In what follows we describe our
235 nm laser source, obtained by means of two stages of second-harmonic gen-
eration (SHG) starting from a commercial 940 nm diode laser with a tapered
amplifier (TA)2.
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5.2. Laser Source at 235 nm

5.2.1 First SHG Stage: 940 to 470 nm

The first stage of frequency doubling converts 940 into 470 nm light. A
schematic of the experimental setup is shown in Fig. 5.3. The Toptica TA unit
can deliver up to 1.4 W at 940 nm. We first pass this light through a single-
mode (SM) fiber to clean up the spatial mode, resulting in up to 700 mW
which can be sent to a bowtie cavity for power build-up. The frequency con-
version is performed using a periodically-poled potassium titanyl phosphate
(PPKTP) crystal, chosen due to its high non-linearity and transparency at
both 940 and 470 nm. The PPKTP crystal3 has a 5.95 µm poling period and
is temperature stabilized close to 21◦C for quasi-phase matching (QPM).

The cavity was designed by Joseba Alonso. The cavity’s geometry is opti-
mized to achieve high conversion efficiency while minimizing the dependence
of the second-harmonic output power on the short arm optical length (M3-
M4) [Wilson 11]. QPM is intrinsically free of walk-off (the Poynting and
propagation vectors of the second-harmonic field are parallel), so a value for
the Boyd-Kleinmann focusing parameter of ξ = 2.84 should yield the maxi-
mum conversion efficiency [Boyd 68]. This parameter is defined as ξ ≡ lc/b,
with lc the crystal length and b = 2πnωw

2/λ the confocal parameter of the
laser beam. Here nω is the refractive index of the crystal sampled by the
input light (of wavelength λ) and w the waist size of the beam in the crys-
tal. Based on previous observations of thermal lensing effects in a similar
system operated at 922 nm by Le-Targat et al. [Targat 05], we designed the
cavity for a larger waist of w = 50 µm (ξ = 0.98) to reduce the intensity
of the generated blue light inside the crystal. The curved mirrors introduce
astigmatism to the beam, which we minimize by using a small opening an-
gle α ≈ 11◦ (see Fig. 5.3), limited by geometric constraints imposed by the
mirror-mounts. The transmission of the input coupling mirror M1 was chosen
to be T1 = 14.5 % in order to account for the expected cavity losses, and thus
achieve an optimal impedance matching to the cavity for a predicted input
power of P940 = 600 mW. More details of the cavity design are given in Table
5.1.

The length of the cavity is locked to the pump laser using the Pound-Drever-
Hall (PDH) technique [Drever 83]. The 940 nm diode is phase-modulated at
15.6 MHz via a bias-tee input to the diode current. The light reflected from
the cavity is collected by a fast photodiode and the signal is demodulated
and filtered. The error signal thereby produced is used to feed back on the
piezoelectric stack to which M2 is glued.

The results for this first stage of frequency doubling are shown in Fig. 5.4,
including both the second-harmonic output power P470 and the ratio η470 =

2Toptica, www.toptica.com
3Raicol Crystal Ltd., raicol.com
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Figure 5.4: Measured net power at 470 nm (triangles, referred to the right axis)
and the power ratio of the 940→ 470 nm doubling cavity (circles, referred to
the left axis) as a function of the pump power. The solid line corresponds to
the theoretical prediction of η470 based on Eq. (C.5) in the Appendix C. To
the right of the vertical line the cavity becomes unstable (see text).

P470/P940 as a function of the input power P940. The solid line results from the
theoretical calculation using the theory given by Le-Targat et al. [Targat 05],
which generalized the seminal work of Boyd and Kleinmann [Boyd 68] to a
situation including an optical cavity [Freegarde 01]. Our calculations use the
cavity parameters and the crystal properties provided by the manufacturer.
These are displayed in Tables 5.1 and C.1. The theory is summarized in the
appendix.

It is worth noting that, as was observed previously in a similar system operated
at 466 nm [Targat 05], the output power is limited by thermal lensing induced
by absorption of the 470 nm light in the crystal. Our cavity becomes unstable
for P470 > 400 mW. For stable operation, we set P940 ≈ 500 mW and obtain
P470 ≈ 350 mW (η470 ≈ 70 %).

5.2.2 Second SHG Stage: 470 to 235 nm

The 470 nm light generated in the first SHG stage is sent through a 30 m long
polarization-maintaining (PM) fiber (OZ Optics) to a neighboring laboratory.
The output mode of the fiber is matched to the spatial mode of the second
bowtie cavity with a two-lens telescope, and the polarization is cleaned using
a polarizing beam-splitter (PBS) cube (see Fig. 5.5). Input-coupling losses
and absorption in the fiber result in a maximum value of ≈ 140 mW of light
incident on the 470→235 nm cavity.
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5.2. Laser Source at 235 nm

Table 5.1: Details of the cavities for SHG of 470 and 235 nm light. All mirror
coatings were provided by Layertec GmbH. wh,v are the horizontal and vertical
beam waists.

940→470 nm 470→235 nm

Crystal Material PPKTP BBO
Phase-matching QPM (type I) CPM (type I)

Dimensions 1× 2× 30 mm3 4× 4× 10 mm3

Phase-matching angles θ/φ 90/0◦ 58.15/0◦

Surfaces AR coated @ 940 nm Brewster-cut (59.25◦)
Temperature stabilization 0.1◦C (@ 21◦C) Not stabilized

Mirrors Radius of curvature M3 & M4 100 mm 38 mm
Reflectivity M1 85.5 % 99.0 %
Coating M2-M4 Sputter Ion-beam sputter

Cavity Long arm length 399 mm 320 mm
Crystal-mirror distance 50 mm 18 mm
Full opening angle (α) 11.0◦ 33.8◦

Mean waist short/long arm 50/212 µm 18/145 µm
Elipticity short/long arm (wh/wv) 0.99/0.96 1.53/1.00

Full spectral range (FSR) 560 MHz 805 MHz
Linewidth 43 MHz 2.7 MHz

Finesse (F) 13 300
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Figure 5.5: Second SHG stage: 470 to 235 nm. Labels are as in Fig. 5.3. For
details, see text.
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Figure 5.6: Measured net power at 235 nm (triangles, referred to the right axis)
and the power ratio of the 470→235 nm doubling cavity (circles, referred to
the left axis) versus the pump power at 470 nm. The solid line corresponds
to the theoretical prediction of η235 based on Eq. (C.5) in the Appendix C.

For this SHG stage we use a BBO crystal (Castech Inc.) Brewster-cut for
470 nm which achieves critical type-I phase matching (CPM) at an angle of
58.15◦. This cavity was also designed to optimize the conversion efficiency
of the frequency doubling while being insensitive to changes in the positions
of the focusing mirrors M3 & M4 [Wilson 11]. By contrast with the first
frequency-doubling stage, the use of angle phase-matching intrinsically results
in walk-off which limits the length of the conversion region of the crystal. The
optimized cavity parameters are given in Table 5.1. The length of the cavity
is also stabilized using the PDH method in order to keep it on resonance
with the pump laser. Since the modulation frequency applied to the diode
laser (15.6 MHz) is comparable to the linewidth of the 940→470 nm cavity,
the 470 nm light also exhibits modulation sidebands at 15.6 MHz and can be
directly used for the PDH locking scheme.

Figure 5.6 shows the UV output power P235 along with the power ratio η235 =
P235/P470 as a function of the input power P470. Note that we define P235 and
η235 in terms of the net second-harmonic power at the output of the cavity.
With P470 ≈ 140 mW, we obtain P235 ≈ 28 mW (η235 ≈ 20 %). Considering
the 22 % reflection at the output surface of the Brewster-cut BBO crystal,
the total UV light generated is ≈ 36 mW. The theoretical curve is calculated
using the values given in Table C.1, yielding Γeff ≈ 1.6× 10−4 W−1. The level
of agreement between the measured values of η235 and those predicted by the
theory is reasonable given the assumptions made in the theory, which include
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5.3. Laser Source at 313 nm

perfect phase-matching of a circular beam and no absorption in the crystal
(see Table C.1).

The counter-propagating fundamental mode of a bowtie cavity can be excited
by any back-reflecting element in the cavity, which can lead to considerable
back-circulating power if the finesse F of the cavity is high [Hemmerich 90].
In the 470→235 nm cavity, we observe that light is emitted along a direction
which is consistent with this effect. This leads to a reduction in η235 and an
unstable output power. The back-circulation could likely be eliminated by
reducing the reflectivity of M1 if required [Hemmerich 90]. Since photoioniza-
tion does not require high stability or high power, we have currently chosen
not to pursue this.

The power we achieve is comparable to the average power of the pulsed laser
used in [Blakestad 10], and considerably higher than values which have been
previously used to perform photoionization of other atomic species [Lucas 04b,
Kjaergaard 00]. The 1S0 ↔1P1 transition of neutral beryllium atoms has a
saturation intensity of 8.9 mW/mm2, corresponding to 70 µW for a beam
waist of 50 µm.

5.3 Laser Source at 313 nm

Quantum control experiments using beryllium ions require near resonant light
for Doppler cooling and optical pumping and, in our case, a far-detuned Ra-
man laser for coherent manipulations [Wineland 98]. As shown in Fig. 5.1
(right), the wavelengths of the 2S1/2 ↔ 2P3/2 and 2S1/2 ↔ 2P1/2 transitions
are at 313.133 nm and 313.197 nm, respectively. We have chosen to operate
our Raman laser system at a wavelength between 313.221 and 313.322 nm,
detuned to the red of the 2P1/2 manifold by between −380 and −70 GHz.
Small detunings allow for lower power for a given Raman transition rate, but
lead to more spontaneous scattering of photons which will induce errors in the
quantum state manipulation. Therefore, for high-fidelity control of a quantum
system, a large detuning from the excited state is preferable [Ozeri 07]. The
laser systems to generate all three wavelengths are shown schematically in Fig.
5.7.

5.3.1 SFG Stage: Infrared to 626 nm

To produce the three UV wavelengths we require, we start from four fiber
lasers4 at 1550.65 nm, 1050.56 nm, 1551.44 nm and 1050.98 nm which can be
thermally tuned over a range of 80 GHz and fine-tuned over ±150 MHz by
means of an internal piezoelectric element. The laser outputs (PM fibers)
are terminated with an integrated beam-collimation system, producing beams

4NP Photonics, www.npphotonics.com
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Figure 5.7: Setup for generating three wavelengths at 313 nm for Doppler
cooling, optical pumping and coherent manipulations of beryllium ions. No-
tation: DBS, dichroic beam-splitter; EOM, electro-optic modulator; PC fiber,
photonic-crystal fiber; the rest are as in Fig. 5.3. The locking electronics
and focusing lenses are not shown. The wavelengths indicated for the Raman
setup are approximately in the middle of the range of operation. For details,
see text.

of diameters between 3 and 4 mm. The sum-frequency generation (SFG) is
performed using magnesium-oxide-doped periodically-poled lithium niobate
(MgO:PPLN) crystals5. Each crystal contains three different poling periods
of around 11.5 µm on strips 1 mm wide which run down the length of the
4 cm long crystal. The PPLN crystals are maintained at a constant operating
temperature in order to achieve the phase-matching condition for maximizing
the conversion efficiency. In our case, we obtain maximal 626 nm output
power for temperatures close to 180◦C, stabilized to within ±0.01◦C. In order
to access the highest non-linear coefficient of the crystal, the polarization axis
of the light is parallel to the thickness of the crystal.

The 1050.56 nm light is shared between the cooling and repumping setups
(Fig. 5.7). The power ratio can be tuned by rotating the half-wave plate in
front of the PBS. The same mechanism applies for the 1551.44 nm laser, which
is split between the repumping and Raman setups. In all three setups, two of
the fiber-laser outputs (pump beams) are overlapped using a dichroic element
after passing through independent beam-shaping telescopes (not shown in the
figure) that focus the beam to an optimal waist inside the crystal. The beam
waist that maximizes the conversion efficiency was experimentally found to

5Covesion Ltd., www.covesion.com
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Figure 5.8: Net power of 626 nm light measured at the output as a function of
the product of pump powers (triangles, referred to the right axis). Also shown
(circles, referred to the left axis) is the sum-frequency-generation efficiency per
unit length of the crystal.

be 58± 5 µm at the center of the crystal. This is larger than the 40 µm
predicted from the Boyd-Kleinmann theory. A possible explanation for this
difference could be phase mismatch or imperfect spatial-mode overlap arising
from absorption-induced heating in the crystal [Batchko 98].

All SFG setups exhibit similar performance. For the Raman light (SFG of the
1050.98 nm and 1551.44 nm) the output power for different products of the
pump powers is plotted in Fig. 5.8. We have generated up to 7.2 W of red
light at 626.54 nm using pump powers of 8.5 W at 1050.98 nm and 8.3 W at
1551.44 nm. Also shown is the conversion efficiency per unit length

ΓSFG =
P626

P1051P1551lc
, (5.1)

which characterizes the performance of the non-linear crystal. We find a maxi-
mum value of ΓSFG ≈ 3.5 % W−1cm−1, which is reduced to≈ 2.5 % W−1cm−1

at the highest output power, possibly due to absorption-induced heating in
the crystal. To test whether these effects are more prominent in the IR or the
visible light, we measured ΓSFG for different combinations of pump powers
with a constant product P1050.98 × P1551.44, which would be expected to pro-
duce the same amount of red light. The results (see Fig. 5.10) show that the
conversion efficiency is lowest when P1551.44 > P1050.98. The Pearson correla-
tion coefficients Rλ between ΓSFG and the pump powers are R1050.98 ≈ −0.5
and R1551.44 ≈ −0.9, indicating that the absorption of the 1551.44 nm light
contributes most to thermal effects.
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Figure 5.9: Temperature dependence of the Raman sum frequency generation
setup. The 626 nm power is normalized to 1. The PPLN nonlinear crystal is
mounted in the oven and the temperature is controlled with a PID-regulated
thermoelectric in a step of 0.01◦ (a) High pump powers. (b) Low pump powers.

We also measure the temperature dependence of the SFG in the Raman setup
with two different pump power settings. Figure 5.9 shows the experimental
results, where the 626 nm power is normalized to 1 for both cases. We can see
that with high pump powers the temperature of getting maximum conversion
efficiency goes down. This can be explained by the fact that higher pump
power heats up the nonlinear crystal more strongly. So we should set the tem-
perature lower in order to fulfill the phase-matching condition. The observed
asymmetry in the case of high pump powers is due to spread of the wavevec-
tors in the focused beam, since the phase-matching conditions are fulfilled at
different temperatures for different wavevector components of the pump beam
[Schuck 10, Gibson 98].

At an output power of ≈ 7 W the drift was observed to be below 0.2 % per
hour over 10 hours of operation. After running this system for more than a
year at a variety of input and output powers, we have seen little change in the
conversion efficiency, and no realignment of the optical components has been
required.

Since the detection and repumping beams must provide light resonant with
the 2S1/2 ↔ 2P3/2 and 2S1/2 ↔ 2P1/2 transitions, the absolute frequencies of
these lasers must be actively stabilized. The transition linewidths are γ/2π ≈
19.4 MHz, so we aim for frequency stability on the level of a megahertz. To
that end, a small portion of the 626 nm light is picked off and sent through an
optical fiber to a Doppler-free saturated-absorption-spectroscopy setup with
an iodine cell [Demtroeder 82, King 99]. This will be discussed later in this
chapter. However, in the Raman setup the stability of the absolute frequency
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Figure 5.10: Conversion efficiency per unit length of the crystal measured
for different pump powers. The dashed lines correspond to combinations of
P1551.44 and P1050.98 with a constant product. The data points were taken
along these curves.

is not as critical due to the large detuning from resonance, and the natural
stability of the fiber lasers (which we have measured to drift by less than
60 MHz over a day) is sufficient for our purposes.

5.3.2 SHG stage: 626 to 313 nm

The beams from the SFG setups are coupled into high-power SM fibers and
sent to frequency doubling cavities for conversion to 313 nm. The coupling
efficiency is ≈ 90 % in the repumping and cooling setups excluding the loss in
the fiber collimators (5 m long SM fibers6). This is because the high quality
Gaussian modes of the pump beams produced by the fiber lasers is trans-
ferred to the 626 nm light. Measurement of the spatial mode of the output
626 nm light is shown in Fig. 5.11, measured with a beam profiler. The power
transmitted through the fibers saturates at ≈ 2 W due to stimulated Brillouin
scattering [Agrawal 07]. It is interesting that we observe the frequency of the
reflected light from the fiber is shifted by 27 GHz, which is measured with a
wavelength meter. In order to avoid this problem in the Raman setup, where
we require higher powers, we use a photonic-crystal fiber7. The limitation is
in this case the coupling efficiency into the fiber, which is ≈ 60 %.

6OZ Optics, www.ozoptics.com
7NKT Photonics, www.nktphotonics.com
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Figure 5.11: The beam profile of the 626 nm light measured with a beam
profiler.

SHG from 626 to 313 nm is performed in all three cases using a BBO crystal
Brewster-cut for 626 nm with a phase-matching angle of 38.35◦. The crystals
are placed in bowtie cavities (FSR ≈ 845 MHz and F ≈ 275) for pump-power
enhancement. The beam waists in the BBO crystals are 36.7 (23.6) µm for
the horizontal (vertical) direction. The design and properties of the doubling
cavities are very similar to those reported by [Wilson 11] except that we use
a Pound-Drever-Hall rather than Hänsch-Couillaud scheme to stabilize the
cavity length. In order to generate the required modulation for the PDH sta-
bilization, we pass the 626 nm beams through electro-optic phase modulators
(Qubig) placed directly after the PPLN crystals and driven at frequencies
closed to 125 MHz. All of the SHG conversion setups are similar, so below we
give explicit details for the Raman setup, for which we work with the highest
powers.

Figure 5.12 shows the 313 nm output power P313 and the power ratio η313 =
P313/P626 as a function of the power P626 coupled into the Raman doubling cav-
ity. As before, P313 and η313 are defined in terms of the net second-harmonic
power delivered by the system. The maximum output power obtained is
≈ 1.95 W, with P626 ≈ 3.8 W (η313 ≈ 52 %). Including the 20 % reflection at
the output facet of the Brewster-cut BBO crystal, overall ≈ 2.4 W at 313 nm
are produced. The parameters for the theoretical calculation of Eq. (C.5) are
given in Table C.1.

In order to characterize the long-term performance of the UV light production,
we have monitored the stability of the 313 nm power. For these tests, output
powers up to P313 ≈ 1 W (P626 ≈ 2.2 W) were used. Observed drifts were
below 0.5 % per hour during 8 hours of continuous operation.
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Figure 5.12: Measured net power at 313 nm (triangles, referred to the right
axis) and the power ratio of the 626→313 nm Raman doubling cavity (circles,
referred to the left axis) versus the input power at 626 nm. The solid line
corresponds to the theoretical prediction of η313 based on Eq. (C.5) in the
Appendix C.

5.4 Iodine Spectroscopy

Since the detection and repumping beams provide light resonant with the
2S1/2 ↔ 2P3/2 and 2S1/2 ↔ 2P1/2 transitions of the beryllium ion, the ab-
solute frequencies of these lasers must be actively stabilized. The transition
linewidths are γ/2π ≈ 19.4 MHz, so we aim for frequency stability on the
level of a megahertz. To that end, precision spectroscopy can be used to
provide a very stable frequency reference for a laser. Here we do not sta-
bilize the frequency of 313 nm light directly. Instead a small portion of
the 626 nm light is picked off and sent through a single-mode fiber to a
Doppler-free saturated absorption spectroscopy setup with an iodine vapor
cell [Demtroeder 82, King 99].

The optical setup is shown in Fig. 5.13. The 626 nm light out of fiber first
passes through a half-wave plate and a PBS, where the half-wave plate is used
to clean up the polarization of the light and make sure the transmitted power
is maximum. Then the beam is focused into an AOM, followed by another
lens collimating the beam. It is passed through a quarter-wave plate and
reflected from a mirror. The polarization of the light in the second pass has
changed from horizontally polarized to vertically polarized by passing through
quarter-wave plate twice. It is then picked off from the reflection port of the
PBS. This double-pass configuration is different from the one we use for the
UV light (see next Section) since the AOM for this wavelength can take any
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Figure 5.13: The optical setup for the iodine saturated absorption spec-
troscopy. For details, see text.

polarization with no change in the diffraction efficiency. This double-pass
AOM produces a frequency offset of ∆f = −2 × 388.5 MHz and allows us to
change the frequency offset between the laser light and the iodine lock. The
beam reflected from the PBS passes through a 5-mm thick glass window (ap-
proximately 5 % reflectance per surface). Two weak reflected beams are the
probe and reference beams for the saturated absorption spectroscopy. The
transmitted beam, which is called pump beam, has more power and passes
through another single-pass AOM. The radio frequency applied to this AOM
is fa = 80 MHz, which is added to the light and is frequency modulated at
15 kHz with a frequency deviation of 125 kHz8. By frequency modulating the
pump beam, we are able to detect the resulting variation signal at the modu-
lation frequency using standard phase-sensitive detection techniques, yielding
the error signal. We also monitor the frequency of the pump beam transmitted
through the glass window in the end, as shown in Fig. 5.13.

The saturated absorption spectroscopy is performed with iodine molecules in
a 10 cm-long glass vapor cell. The probe beam is counter-propagated and
overlapped with the pump beam inside the iodine cell. The strong pump
beam “burns a hole” in the velocity class that it interacts with, saturating
iodine populations. When the laser is at a right frequency, both probe and
pump beams interact with molecules with the same velocity class along the
beam axis. Because of the hole burning, only few molecules can be excited
by the probe beam. Therefore when we measure the probe signal, there is
less absorption. This effect only happens in a very small frequency range
around the transition frequency and allows saturated absorption spectroscopy

8This is the maximum deviation given by the Rohde&Schwarz SMC100A RF signal
generator depending on the set RF frequency.
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Figure 5.14: (a) The Doppler-free saturated absorption profile as we scan the
laser frequency. (b) The derivative of the absorption resolved from a lock-in
amplifier. It has a sharp zero-crossing and can be used as the error signal for
frequency locking.

to achieve sharp frequency resolution. If the laser frequency is scanned, a
normal Doppler-broadened absorption profile is observed with a sharp peak
at a transition frequency. On the other hand, the reference beam is just
traveled through the iodine cell so the photodiode only measures a Doppler-
broadened absorption profile. Both the probe and reference beams are sent
to a New-Focus Nirvana auto-balanced photodiode, which subtracts common-
mode changes such as the laser intensity fluctuations. The output is only
the narrow and Doppler-free saturated absorption signal and is then sent to
a lock-in amplifier for demodulation. In the end we obtain the derivative of
the Doppler-free saturated absorption signal, which has a steep zero-crossing
at the maximum of the input signal and can be used as the error signal for
frequency locking. The 626 nm light can be locked to one of the molecular
hyperfine features of the iodine vapor. Feedback control of the laser frequency
is performed using the piezoelectric element in one of the fiber lasers.

Figure 5.14(a) shows the Doppler-free saturated absorption signal from the
photodiode as we sweep the piezo of the 1550.65 nm fiber laser and Fig. 5.14(b)
shows its derivative resolved from the lock-in amplifier. Each peak in Fig.
5.14(a) is a hyperfine feature in one of the iodine lines. For the beryllium
detection setup, we lock the 626 nm light to the line #961 of the “Iodine
atlas” [Gerstenkorn 78]. Since the piezoelectric element in our fiber laser can
only be scanned around ±150 MHz, this is not broad enough to observe all
the hyperfine features of this specific line. Therefore I take the measurement
results from Brian King’s thesis [King 99], where they used the same iodine
line as we do. The spectrum of the iodine line #961 is shown in Fig. 5.15,
where the laser frequency is locked to hyperfine feature “g”, for which the
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Figure 5.15: Portion of the iodine spectrum of the line #961. Features “o”
through “u” are not shown. Due to some technical limitations, we can not
measure this broad range of the spectrum. This figure is taken from Brian
King’s thesis [King 99]. The laser frequency is locked to hyperfine feature “g”.

frequency we measured is 478.6976− 478.6977 THz. Once the laser frequency
is locked, we measure that the frequency drift is less than 1 MHz during a day
using the ion. For the repumping setup, the design of beam lines is the same as
the other, except the AOMs’ driving frequencies are different. Here the radio
frequencies driving the double-pass AOM-1 and the single-pass AOM-2 are
115 and 100 MHz respectively. We lock the laser frequency to the hyperfine
feature “a” of the iodine line #954, as shown in Fig. 5.16 for the full spectrum
(taken from [King 99]). The frequency is read to be 478.5991 THz from the
wavelength meter.
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Figure 5.16: Complete iodine spectrum of the line #954. This figure is taken
from Brian King’s thesis [King 99]. The repumping laser is locked to feature
“a”.

5.5 Beryllium Doppler Cooling/Detection Beam Lines

In Chapter 2.3 and 2.4, we have described that the pre-cooling and Doppler
cooling processes are carried out by the “Blue Doppler Detuned” (BDD) beam
tuned 600 MHz to the red of the |S1/2, F = 2,mF = 2〉 ↔ |P3/2, F

′ = 3,m′F =
3〉 cycling transition, and the near-resonant “Blue Doppler” (BD) beam, which
is red detuned γ/2 (γ = 2π × 19.4 MHz, the natural linewidth of the excited
state) from the same transition. Qubit readout performed by state-dependent
fluorescence uses the BD beam with the frequency tuned to the resonance of
the cycling transition.

The laser beam line is schematically shown in Fig. 5.17. The 313 nm light
generated from the frequency doubling cavity is vertically polarized and has
frequency f0. It’s first passes through a continuously running double-pass
AOM-1. This deflected beam is focused onto a right-angle prism9 and passed
a second time through AOM-1. In total, the laser frequency is shifted by
+80× 2 MHz, resulting in f1 = f0 + 160 MHz. The retro-reflected beam is
displaced vertically from the incident beam so it can be picked off with a mirror
after the double-pass setup. Around 10 % of the light is then picked off for the
intensity stabilization, for which the error signal produced is used to feed back
to the RF power supplied to the AOM-1. Then the main laser beam is sent
to a tunable double-pass AOM-2 and a fixed-frequency double-pass AOM-3.
The AOM-2 provides the frequency shift from +160× 2 to +240× 2 MHz,

9Altechna, with fluoride coatings at 313 nm, which has much higher damage threshold
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Figure 5.17: Blue Doppler (BD) beam line. The two frequency components
in the BD beam line (BD and BDD) are generated with three AOMs. The
beam line is combined with the Red Doppler (RD) beam line prior to being
sent to the trap. For details, see text.

generating the laser frequency required for BD and detection beams. In our
case, the frequency of the BD beam is f2 = f1 + 424 MHz and the frequency
of the detection beam is f2 = f1 + 430 MHz after passing through the AOM-
2 twice. The BDD (pre-cooling) beam is formed in a similar manner using
AOM-3, which takes the zeroth-order beam from the AOM-2. We apply the
frequency of 80 MHz to the AOM-3 and use its minus first-order diffraction,
providing f3 = f1 − 160 MHz = f0, which is equal to 600 MHz red detuned
with respect to the cycling transition frequency. The power of laser pulses is
adjusted by controlling the AOM diffraction efficiency which depends on the
RF power supplied to it. When the RF power is turned off completely, the
AOM does not diffract light, meaning the laser pulse is off. Both AOM-2 and
AOM-3 serve as a switch for the cooling and detection beams.

The main advantage of our setup is that the Doppler cooling and detection
beams need very low power so in the pre-cooling stage the zeroth-order beam
from the AOM-2 still has a lot of power, which can be used for the stronger
pre-cooling beam. After the pre-cooling step, AOM-3 is switched off. There-
fore no far-detuned frequency component can affect the ion in the subsequent
experiment, and the BD beam power remains unchanged. One example is
that the Ion Storage Group at NIST observed that in a different setup the
leakage light of the BDD and BD beams could cause a systematic Stark shift
of the qubit transition [Langer 06]. These two frequency components (f2 and
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5.6. Beryllium Repumping Beam Lines

f3) of light are overlapped after the double-pass setup and then combined
with the repumping beams on a 50/50 beamsplitter. In the beam path prior
to the beamsplitter, we use a 50-µm pinhole to shape the beam profile as
well as to make sure BD and BDD beams are well overlapped. Lastly one
arm is guided into the loading zone, and the light of the other arm is shone
into the experimental zone through Port 2, see Fig. 5.2. To create the σ̂+

polarization, a quarter-wave plate is placed immediately after a Glan-Laser
α-BBO polarizer10 and before the final focusing lens, which has a focal length
of 200 mm. One technical issue, which should be noticed, is that all the AOMs
we use for the 313 nm light11 only deflect light with a high efficiency when the
polarization of the incident beam is perpendicular to the mounting surface
of the AOM. This is the reason for the retro-reflective arrangement using a
right-angle prism.

The saturation intensity is about 0.76 mW/mm2 for 9Be+ ion. In the experi-
ment, the intensity of the detection (Doppler cooling) beam is set to roughly
half (below half) of the saturation intensity (≈ 3 µW in 60 µm waist in our
case). The BDD beam needs higher power than others because its frequency
is far detuned from resonance. The laser power used is approximately 200 µW
with roughly the same beam waist as the BD beam. The typical experimental
parameters are: around 240 mW of 626 nm light is measured directly after
the SM fiber output, about 120 mW at 626 nm is delivered to an iodine spec-
troscopy setup, 100 mW red light is sent to the frequency doubling cavity,
and around 9 mW at 313 nm is generated. Each AOM has approximately
75 %− 85 % single-pass diffraction efficiency.

5.6 Beryllium Repumping Beam Lines

As described in Chapter 2.3 and 2.4, the “Red Doppler F1” (RDF1) beam
coupled to the |S1/2, F = 1,mF = 1〉 ↔ |P1/2, F

′ = 2,m′F = 2〉 transition and
the “Red Doppler F2” (RDF2) beam driving the |S1/2, F = 2,mF = 1〉 ↔
|P1/2, F

′ = 2,m′F = 2〉 transition are responsible for optically pumping to the
|S1/2, F = 2,mF = 2〉 state.

The beam layout is illustrated in Fig. 5.18. The 313.197 nm light (frequency
f0) generated from the frequency doubling cavity is split using a polarizing
beamsplitter (PBS, which is a Glan-Laser polarizer) establishing the RDF1
and RDF2 beam lines. The power ratio between these two branches can be
adjusted by the half-wave plate in front of the PBS. The reflected light from the
PBS is sent to two double-pass AOMs (AOM-1 and AOM-2) with a frequency
shift of +188× 2 MHz in each, resulting in the frequency of f2 = f0+752 MHz.
This is used for the RDF2 beam. For the transmitted light from the PBS, the

10Thorlabs, GLB10-UV
11IntraAction, www.intraaction.com
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Figure 5.18: Red Doppler (Repumping) beam line. The RD beam line consists
of the RDF1 beam and the RDF2 beam separated by 1112 MHz, which is
close to the frequency splitting between |S1/2, F = 1,mF = 1〉 and |S1/2, F =
2,mF = 1〉 states at the magnetic field of 119.45 G. The beam line is combined
with the Blue Doppler (BD) beam line prior to being sent to the trap. For
details, see text.

polarization is corrected with a half-wave plate before it is sent to the double-
pass AOM-3. This AOM-3 subtracts 360 MHz from f0 providing the frequency
component for the RDF1 beam (f3 = f0−360 MHz). The frequency difference
between RDF1 and RDF2 beams is ∆f = f2− f3 = 1112 MHz, which is close
to the frequency splitting of 1120 MHz between |S1/2, F = 1,mF = 1〉 and
|S1/2, F = 2,mF = 1〉 states at the magnetic field of 119.45 G. Experimentally,
we do not set the frequency difference ∆f exactly the same as the atomic
splitting frequency because if ∆f = 1120 MHz these two beams will form a
dark resonance, which creates a coherent population trapping (CPT) or an
EIT effect. We have observed this phenomenon in the experiment and the
optical pumping efficiency is reduced significantly. The RDF1 and RDF2
beams are switched on and off using the AOM-3 and AOM-2 respectively and
are combined on a 50/50 beamsplitter. In the setup shown here, we inevitably
lose 50 % of power in each beam (In principle, we can use the beams output
from two ports of the beamsplitter in two different trapped zones such that we
do not waste 50 % of the power, but then the setup will need to be changed.).
Prior to the combined BD/RD beam lines, we also align the overlap of the
RDF1 and RDF2 beams and shape the beam profile with help of a 30-µm
pinhole. The red light power used in this beam line is very similar to what we
have in the BD beam lines. We can obtain more than 400 µW in both RDF1
and RDF2 beams, which is much higher than the saturation intensity.
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Finally, the BD/BDD and RDF1/RDF2 beams are carefully aligned to over-
lap on the 50/50 beamsplitter. Each output from the beamsplitter contains
light from any or all of these frequencies. By switching the RF power to the
above-mentioned AOMs, we can control which light is shone onto the ion. The
light going to both loading and experimental zones will be identical and syn-
chronous. When working with ions in the experimental zone, we block the
loading beam to avoid any scattering light.

5.7 Beryllium Raman Beam Lines

The frequencies required to drive the Raman transition for beryllium qubit
manipulations span a range of ≈ 1000− 1400 MHz. Especially three vari-
ous frequency differences are concerned: 1) To initialize the field-independent
qubit (FIQ), we drive a Raman π-pulse coherently transferring all the pop-
ulation from the |S1/2, F = 2,mF = 2〉 state to the |S1/2, F = 1,mF = 1〉
state. The frequency difference between two Raman beams is 1018 MHz. 2)
The frequency splitting of two Raman beams to drive the FIQ is 1207 MHz.
3) Before the measurement, it is necessary to shelve the dark state ion, the
| ↓〉 ≡ |S1/2, F = 2,mF = 0〉 state in FIQ, to |S1/2, F = 1,mF = −1〉 state, in
order to improve the read-out fidelity. The splitting frequency required for the
shelving pulse is 1370 MHz. More discussions of each operation are covered
in Chapter 2.

There are two sets of Raman beams, the co-carrier (CC) and the Co-90 beams.
The CC beams are aligned such that they co-propagate, making transitions
driven by this beam pair insensitive to the ion’s motion. For the Co-90 beams,
two Raman beams are set up perpendicular to each other, and ∆k points
along the axial mode of motion.

The Raman setup is depicted in Fig. 5.19. The CC and Co-90 beams originate
from the same frequency doubling cavity. The 313 nm light is passed through
a continuously running AOM, in which the zeroth-order diffracted beam is
picked off and sent to a photodiode for intensity stabilization. The zeroth-
order beam is focused into a 25-µm pinhole for cleaning the optical spatial
mode and is then split into two paths by the PBS. The power in each path
can be tuned by rotating the half-wave plate before the PBS. The transmit-
ted beam passes through a tunable double-pass AOM-1. This chosen AOM
model, a so-called high-bandwidth deflector AOM, features a similar diffrac-
tion efficiency in the radio frequency range from 250 MHz to 350 MHz. After
this double-pass setup, the laser frequency becomes f1 = f0 + 2 × fa, where
f0 and fa are the frequency of the incident beam and the radio frequency
that is applied to the AOM respectively. The light reflected from the PBS is
sent to a tunable double-pass AOM-2, which has the same specifications as
AOM-1. The only dissimilarity is that here the minus first-order diffraction is
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Figure 5.19: Raman beam line. Two types of setups are shown. The first type
is the setup we have currently. The second type is still in a testing stage. It
is a phase insensitive configuration. For details, see text.
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used. The resulting frequency of this beam is f2 = f0 − 2 × fa. As a result,
the frequency difference between these two beams can be set to any frequency
in the range from 1000 to 1400 MHz. For the CC drive, these two beams
are combined on a PBS (not shown in the figure) and delivered to the trap
perpendicular to the B-field (Port 4 in Fig. 5.2).

For the Co-90 beam configuration, the laser beam after the double-pass AOM-
2 is sent to the single-pass AOM-3, where the flip mirror is removed (see Fig.
5.19). In the setup, we focus the beam into the AOM-3. The aim is that for
the MS gate operations we can apply two radio frequency tones to the AOM-3
at the same focusing point on the ion. Basically, a point object, which is
focusing point in the AOM, is imaged to the ion. It is also possible to supply
only one radio frequency tone to the AOM-3. The frequency shift of the light
picked up by the AOM-3 can be compensated by the AOM-2 due to its high
bandwidth and a double-pass setup. We should be aware that the first-type
setup shown here is sensitive to the optical phase fluctuations arising from the
beam path length difference (see Chapter 2.6.2 for theoretical discussions).
So we try to shorten the total beam path length and make the path length
difference between two Raman beams as small as possible.

In this setup, we typically work with an input power of 350 mW at 626 nm
to the doubling cavity, obtaining ≈ 90 mW 313 nm light. Due to power losses
in the pinhole (nearly 40 %) and other optical elements as well as 80 % AOM
diffraction efficiency in single pass, we have around 10 mW for each Raman
beam measured before delivering to the trap. If we want to make the optical
power balanced in the Co-90 configuration, we have to set the power unequal
in each branch by rotating the half-wave plate in order to account for the
power loss in the AOM-3.

Another approach would be to use the so-called “phase insensitive” geome-
try for implementing a two-qubit gate operation. If we recall the theoretical
discussions in Chapter 2.6.2, the phase insensitive configuration requires the
frequency difference of two Raman beams twice the frequency splitting of the
qubit (' 2.4 GHz). Typically to produce this large frequency shift with a
single AOM is technically difficult, and it is unattainable at UV wavelengths.
Therefore, we think of a possibility to achieve this large frequency splitting
using the same AOMs we have. The second type setup shown in Fig. 5.19
should work, though we only tested AOMs’ diffraction efficiency. The beam
line before the PBS remains unchanged. The reflected beam from the PBS is
then split into two paths by a 50/50 beamsplitter. Both AOM-1 and AOM-2
are placed side by side in an opposite orientation. Owing to the advantage
of a large active aperture of the AOM, both beams ∼ 1.5 cm apart can pass
through. We just consider one beam for now. When it passes through AOM-1,
the minus first-order deflected beam has −fa frequency shifts. The frequency
of this beam is then shifted−fa again in the AOM-2, followed by a mirror retro-
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reflecting the beam. Meanwhile, the same amount of frequency is added to the
other beam. Each beam passes twice through each AOM so this quad-pass
AOM setup can produce a frequency difference between two Raman beams
in the range from 2000 to 2800 MHz, which satisfies our requirement. From
the test performed using 200 MHz AOMs, the overall diffraction efficiency for
each beam is ≈ 40 %. After the quad-pass setup, two beams could be sent to
the trap from the Port 4. For a two-qubit operation, one needs the transmit-
ted beam from the PBS, but in this path additional AOMs are required for
switching on and off this beam and tuning the frequency. It is then sent to
the ion through the other port. This type of setup has more limitations, one
example is the construction of CC beams, and we would need to further think
about the experimental setups to make them useable.

110



Chapter 6

9Be+ Qubit Control and Measurement

In order to understand the performance of the new experimental system that
we have built, we rely on some basic techniques to characterize it. This chap-
ter provides characterization measurements mainly for a single beryllium ion.
The measurements for a single 40Ca+ ion are given in Daniel Kienzler’s thesis
[Kienzler 15b]. Several methods are used for the micromotion compensation
and applied to both ion species. These experimental techniques and calibra-
tions are useful tools and the first steps towards high-fidelity qubit manipula-
tions.

6.1 Ion Loading

To demonstrate the combined use of our photoionization and cooling laser
systems, we load beryllium ions into a micro-fabricated segmented trap. As
a source for 9Be+ production we make use of a beryllium wire tightly coiled
around a tungsten wire. The tungsten is heated by running an electrical
current through it, which in turn heats the beryllium up [Blakestad 10]. Neu-
tral atoms are desorbed in this way, and then collimated to travel through the
trapping area envisioned for loading. The neutral atom beam is illuminated si-
multaneously with 235 nm light (for two-photon photoionization process) and
two σ̂+-polarized 313 nm beams. The first one is red detuned by ≈ 10 MHz
from the

∣∣S1/2, F = 2,mF = 2
〉
↔
∣∣P3/2, F

′ = 3,m′F = 3
〉

ion transition for
Doppler cooling. The second is driven at higher power and is red-detuned by
≈ 600 MHz for efficient cooling during the loading process (when ions are most
energetic) as well as repumping. The trapped ions are monitored throughout
the process by means of a CCD-camera with which we image 9Be+ ions flu-
orescence at 313 nm (See Fig. 4.9). For loading, the electric current applied
to the beryllium oven is 0.63 A (2 V), with which we can load a single ion in
less than 2 minutes. We use powers of 235 nm light in the range of 70–80 µW
with an estimated beam waist of 50 µm. Photoionization of 9Be+ atoms with
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6. 9Be+ Qubit Control and Measurement

the 235 nm light should be more efficient than ionization with an electron
gun. This continuous-wave laser with such a short wavelength could lead to
electrically charging the trap electrodes so careful shaping and positioning of
the beam are necessary in order to load ions reliably in the trap.

n
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Figure 6.1: Typical photon number histogram for a single trapped ion with
200 µs detection time. This plot contains 20000 single-shot measurements in
total. We use a threshold to determine whether the ion is in a bright state
or dark state. When the ion is dark, no photon can be detected so ideally it
behaves like a Poisson distribution with a mean close to zero (the region below
the threshold). If the ion is bright, we are able to collect a lot of fluorescence
following the Poisson distribution as well (the region above the threshold).

6.2 Qubit Readout/Fluorescence Detection

For the 9Be+ ion, a projective measurement for the qubit readout is per-
formed using the

∣∣S1/2, F = 2,mF = 2
〉
↔
∣∣P3/2, F

′ = 3,m′F = 3
〉

cycling tran-
sition to detect the probability of the ion being in the bright state |b〉 =∣∣S1/2, F = 2,mF = 2

〉
. In our experiments, as discussed in Chapter 4.2 if the

ion is in the bright state |b〉, we are able to collect on average 40 photons
within a 200 µs detection time on a photo-multiplier tube (PMT), as shown
in Fig. 6.1. With the same detection interval the background photon count for
the ion being in the dark state is around 0.13, which comes from the scattering
light of the detection beam.

For each data point in the projective measurement, we repeat the experiment
several hundred times to get the statistics and then use this to estimate the
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Figure 6.2: Simulation of the probability of a 9Be+ ion being in∣∣S1/2, F = 2,mF = 2
〉

state at time t given different initial starting states
when the detection beam intensity is set to 0.5 saturation. The calculated
based on Eq. (2.15). (a) Ideal case, where the detection beam is purely σ̂+

polarized. (b) 5 % admixture of both σ̂− and π̂ polarization components in
the detection beam. The use of 5 % admixture, which is much higher than
the realistic value, and a longer time scale is to show the population leakage
from the bright to dark state.
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6. 9Be+ Qubit Control and Measurement

probability of the qubit of being |↓〉 or |↑〉. The statistics of the collected pho-
tons for both bright and dark states of the ion obeys a Poisson distribution.
Figure 6.1 shows the typical histogram obtained for a single trapped 9Be+ ion.
If the qubit is measured in a superposition of bright and dark, the histogram
will look like Fig. 6.1. We then use a sum of two Poisson distributions to
fit the histogram which contains all the data in order to get two mean pho-
ton numbers (bright and dark means). There are two ways to determine the
probability P (↓) for each data point: 1) For given means, we can fit the his-
togram with a weighted sum of two Poisson distributions and use the weights.
2) From the means, the threshold that is used to distinguish the qubit being
bright or dark can be determined. For each data point, if the photon count in
the single-shot measurement is above the threshold, set this measurement to
1; otherwise it’s 0. In both cases, the results of N experiments is then binomi-
ally distributed. We can then calculate the probability. Given a probability
P , the error bar is the statistical uncertainty of a binomial distribution and is
defined as a standard error of the mean (S.E.M.), which is

S.E.M. =

√
P (1− P )

N
(6.1)

6.2.1 Readout Error Analysis

In Chapter 2.4, we have described that the main source of the read-out error is
the leakage of the qubits initially in the dark state into the cycling transition by
off-resonant coupling to other excited states (other than the one in the closed
transition) during measurement. The second source is that an ion in the bright
state can be optically pumped into a dark state due to imperfect detection
beam polarization. Figure 6.2 shows the probability of a 9Be+ ion to be in∣∣S1/2, F = 2,mF = 2

〉
state at time t given different initial conditions, plotted

using Eq. (2.15). In Fig. 6.2(a), we consider an ideal case where the detection
beam is a purely σ̂+ light (εσ− = επ = 0) and the saturation parameter is
set to s0 = 0.5. The simulated results with imperfect detection polarizations
are plotted in Fig. 6.2(b) for which we use 5 % admixture of both σ̂− and π̂
polarizations (εσ− = επ = 5 %) and the same saturation parameter as in (a).
We can see that after some time the population in state

∣∣S1/2, F = 2,mF = 2
〉

is transferred to other hyperfine states due to the depumping by the σ̂− and
π̂ polarized light. For the ion initially in the

∣∣S1/2, F = 2,mF = 2
〉

state, the
population is transferred to the

∣∣S1/2, F = 1,mF = 1
〉

state with a highest
probability. In a good polarizer, the polarization impurity can be suppressed
to below 10−4 but this is not easily achievable for light passing through vacuum
windows. For a cautious estimate, with 1 % admixture of both σ̂− and π̂
polarizations, 2× 10−4 of the population is lost in a 200 µs detection time.

We experimentally examine the readout error by driving single qubit rota-
tion on the carrier transition using co-propagating Raman beams. Two dif-
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Figure 6.3: The Rabi flopping curve performed on the FDQ.

ferent qubit candidates are employed. 1) The field-dependent qubit (FDQ):
|↑〉 ≡

∣∣S1/2, F = 1,mF = 1
〉

and |b〉 ≡
∣∣S1/2, F = 2,mF = 2

〉
. 2) The field-

independent qubit (FIQ): |↑〉 ≡ |S1/2, F = 1,mF = 1〉 and |↓〉 ≡ |S1/2, F =
2,mF = 0〉.

The sequence of the experiment is that the ion is initially prepared in the |b〉
state by optical pumping (see Chapter 6.3) and then a Raman pulse is applied
for different pulse durations, followed by the projective measurement. Figure
6.3 shows the data performed on the FDQ with a detection time of 120 µs. The
dark state of the FDQ is |↑〉. After a π-pulse transferring all the population
to the dark state, we see that the first minimum of the Rabi flopping curve
(π-pulse time) still has a probability P (↓) of around 2 %. This might be
an indication of population leakage from the dark to the bright state due to
the off-resonant excitation or infidelity in the π-pulse. If we compare with the
simulation results in Fig. 6.2(a), at 120 µs the state

∣∣S1/2, F = 1,mF = 1
〉

has
some probabilities (≈ 2.5 %) entering the cycling transition and contributing
to the photon counts.

To work with the FIQ, we need to apply a Raman π-pulse after the optical
pumping to |b〉 in order to initialize the qubit in the |↑〉 state. Before the
qubit readout, we apply another Raman π-pulse bringing the population in
|↑〉 back to the bright state |b〉 for detection. Figure 6.4 shows the results of
an intermediate probe pulse, which drives Rabi oscillations on the FIQ. The
dark state in FIQ is

∣∣S1/2, F = 2,mF = 0
〉
. We can see that after a π-pulse

there is a probability of around 8 % detecting photons, which is also close to
the theoretical prediction as shown in Fig. 6.2(a) at 120 µs.
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Figure 6.4: The Rabi flopping curve performed on the FIQ without shelving
the dark state ion. For details, see text.

6.2.2 Improving Readout Fidelity Through Shelving

From the simulation and experimental results shown above, we can see after
some time the ion initially in other hyperfine states can enter the cycling
transition with a certain probability due to off-resonant pumping. However
this repumping of the dark state ion can be suppressed by transferring the
population to another state which is even darker. The darker state would
require more scattering events than that the original dark state needs to get
into the cycling transition. The basic idea is illustrated in Fig. 6.5. If the dark
state is in

∣∣S1/2, F = 1,mF = 1
〉
, although the detection beam is off-resonantly

driving this state to P3/2 transition, only one scattering event can lead to
pump the population into the bright

∣∣S1/2, F = 2,mF = 2
〉

state. In contrast,
if the dark state is in

∣∣S1/2, F = 1,mF = −1
〉
, the detection beam is further off

resonant and also it takes a minimum of three scattering events to pump this
state into the bright state. From Fig. 6.2 we see that with a fixed detection
time the ion in the

∣∣S1/2, F = 1,mF = −1
〉

state has a lowest probability to
be pumped to the bright state. Therefore prior to detection we can shelve the
state |↓〉 ≡

∣∣S1/2, F = 2,mF = 0
〉

for FIQ to state
∣∣S1/2, F = 1,mF = −1

〉
to

improve the readout fidelity. Results from Rabi oscillations on the FIQ using
shelving are shown in Fig. 6.6. We perform the single qubit rotation on
the FIQ, but a shelving Raman π-pulse is applied before the qubit readout.
Thus the population in |↓〉 is transferred to the state

∣∣S1/2, F = 1,mF = −1
〉

for shelving. The contrast compared to Fig. 6.4 is significantly improved.
We also notice that the bright state is still not perfectly bright. This might
be due to imperfect polarizations in the detection beam as well as imperfect
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6.2. Qubit Readout/Fluorescence Detection

Figure 6.5: Shelving the dark state of the ion for enhancing the readout fidelity.
If the dark ion is in state

∣∣S1/2, F = 1,mF = 1
〉
, it only needs one scattering

event to enter the cycling transition by the off-resonantly driving within the
detection time. By comparison the state

∣∣S1/2, F = 1,mF = −1
〉

has a less
probability to be pumped into the bright state because it requires more than
three scattering events during the detection interval.

population transfer from
∣∣S1/2, F = 1,mF = 1

〉
to
∣∣S1/2, F = 2,mF = 2

〉
.

6.2.3 Optimal Detection Time for Readout Fidelity

One can optimize the readout fidelity by choosing an appropriate experimental
parameters. Before we go into the details, we look at the simulation results
for the distribution of photon counts. Figure 6.7(a) plots the probability
distribution for an ion initially in different dark states |j〉 using Eq. (2.20).
The parameters used for this plot are listed in the figure caption. Because the
ion should ideally be dark, the probability at n = 0 is near 1, which is not
displayed in the figure. However, it shows that there are some probabilities of
detecting many photons due to the dark to bright state leakage.

The probability distribution for the bright state ion (Eq. (2.24)) is shown
in Fig. 6.7(b). We can see without the imperfect polarizations the photon
counts exhibit a Poisson distribution with a given mean. If we take some
polarization impurities into account, the bright state will start being opti-
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Figure 6.6: The Rabi flopping curve performed on the FIQ by the use of the
shelving scheme for the dark state ion. The shelving Raman pulse transfers
the dark state ion from

∣∣S1/2, F = 2,mF = 0
〉

to
∣∣S1/2, F = 1,mF = −1

〉
state

in order to improve the readout error. We can compare to Fig. 6.4 to see the
improvement.

cally pumped to a dark state and the probability of getting lower counts in-
creases. According to the selection rules, the bright state ion can be only
pumped into

∣∣S1/2, F = 1,mF = 1
〉

and
∣∣S1/2, F = 2,mF = 1

〉
through the∣∣P3/2,mJ = 1/2

〉
and

∣∣P3/2,mJ = −1/2
〉

states by π̂ and σ̂− polarized light.
Because the transition driven by the π̂ polarization components is closer to res-
onance than the σ̂− polarized transition, we calculate the worst case assuming
all of the impure polarization is π̂.

The expected total histogram for a single ion is the sum of pbright(n) and
pdark(n|j) with a given probability of the ion being bright P (|b〉). It is written
as

ptotal = P (|b〉)pbright(n) + (1− P (|b〉))pdark(n|j) (6.2)

where pdark(n|j) is from Eq. (2.20) and pbright(n) is from Eq. (2.24). Pre-
viously we have mentioned how the typical histogram looks like. The bright
state scatters many photons, whereas the dark state scatters a much smaller
number of photons. Experimentally, we collect fluorescence for a fixed de-
tection time τD. Afterwards we set a threshold for the number of collected
photons nc such that if more than nc photons have been collected, we deter-
mine that the ion is projected into the bright state. Likewise, if we collect less
than nc photons, we claim that the ion was projected into a dark state.

The probability of falsely determining a bright ion being dark is given by

118



6.2. Qubit Readout/Fluorescence Detection

Number of collected photons

0 10 20 30 40 50 60

P
ro

b
a
b
ili

ty
 (

d
a
rk

 i
o
n
)

0

0.002

0.004

0.006

0.008

0.01
|2,-2〉

|2,-1〉

|2,0〉

|2,1〉

|1,1〉

|1,0〉

|1,-1〉

(a)

Number of collected photons

0 10 20 30 40 50 60

P
ro

b
a
b
ili

ty
 (

b
ri
g
h
t 
io

n
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b)

Figure 6.7: Theoretical photon count histogram for an ion that starts in: (a)
different dark states; and (b) the bright state. Parameters used for both plots
are s0 = 0.5, rbg = 0, ζ = 0.01, and τD = 200 µs. In (a), it shows that no
matter where the initial dark state is, after some time the ion always has a
probability to enter the cycling transition and then contributes photon counts.
This will induce readout error.

∑nc
n=0 pbright(n). Likewise, the probability of falsely determining that an

ion in the dark state |j〉 is bright is given by
∑∞

n=nc+1 pdark(n|j) = 1 −∑nc
n=0 pdark(n|j). The measurement error is defined as the average of these two.

It is obvious that the error is a function of τD and nc, depending on state |j〉
as well. From the discussions before, we know that

∣∣S1/2, F = 1,mF = −1
〉

is
the optimum dark state, and then we are concerned with how to minimize the
measurement errors by searching for optimum τD and nc. Several numerical
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methods can be applied to calculate the minimum error. If we restrict nc ≥ 5,
with the detection efficiency ζ = 0.01 and the saturation parameter s0 = 0.5
the minimum error of 1.5 × 10−4 can be achieved at the detection time of
104 µs, which should be combined with the use of shelving technique.

Using standard optical setup for measurements and shelving the dark state ion
to a “darker” hyperfine state, we can in principle obtain measurement errors
below the fault-tolerance threshold [Steane 03, Knill 05]. If one would like to
improve the readout fidelity, the alternative technique is the measurement via
photon arrival times. Instead of collecting the photon numbers using a fixed
detection time, here the arrival times of the photons {tk} are recorded into
the measurement system. The advantage is that there is more information
in the set {tk} than in the number of photons detected. The theoretical
background of this technique and how to implement it were well explained in
[Langer 06, Myerson 08]. The author shows that in the presence of background
photons they can achieve approximately a factor of 3 improvement in the
average error using the photon arrival times versus counting the number of
collected photons with a fixed detection time.

6.3 Optical Pumping

Optical pumping is usually used to reset/initialize the qubit in the |S1/2, F =
2,mF = 2〉 state and is achieved by applying the RDF1 and RDF2 beams,
coupled to the |S1/2, F = 1,mF = 1〉 ↔ |P1/2, F

′ = 2,m′F = 2〉 and the
|S1/2, F = 2,mF = 1〉 ↔ |P1/2, F

′ = 2,m′F = 2〉 transitions respectively1. To
investigate the dynamics of the optical pumping process, one can solve rate
equations for all allowed transitions. In the simulation we set the frequency
difference between RDF1 and RDF2 beams to 1112 MHz and the intensity of
each beam to 5 saturation intensities. Figure 6.8 shows the time evolution
of the probability for an ion initially in different states being pumped to the
|S1/2, F = 2,mF = 2〉 state. We can see that around 3 µs is sufficient for
the optical pumping from either the |S1/2, F = 2,mF = 1〉 or the |S1/2, F =
1,mF = 1〉 state since only one photon scattering event is required.

Experimentally the way we optimize the optical pumping efficiency is that we
apply a Raman π-pulse transferring all the populations from the |S1/2, F =
2,mF = 2〉 state to |S1/2, F = 1,mF = 1〉 state, followed by an optical
pumping pulse, where both RDF1 and RDF2 beams are switched on simul-
taneously. We scanned the frequency of the RDF1 or RDF2 beam such that
we can choose an appropriate frequency to avoid a dark resonance formed by
two beams. Once the dark resonance is created, the population is trapped
in the |S1/2, F = 2,mF = 1〉 and |S1/2, F = 1,mF = 1〉 states, and is not

1Without using these two beams, the high-power far-detuned BDD beams, coupled the
S1/2 and P3/2 states, can also serve as a repumping beam, see Chapter 2.3.
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Figure 6.8: Rate equation simulation of the optical pumping for an ion initially
in different states being pumped to the

∣∣S1/2, F = 2,mF = 2
〉

state.

pumped back to the |S1/2, F = 2,mF = 2〉 state. Figure 6.9 shows the AOM
frequency scan of the RDF2 beam when the AOM frequency of the RDF1
beam is set to 180 MHz (the experimental setup is shown in Chapter 5.6)
and the pulse duration of the RDF1 and RDF2 beams is set to 3 µs. The
dip at 190.2 MHz indicates the dark resonance. Therefore, we use 188 MHz
for the AOM frequency for the RDF2 beam, resulting in 1112 MHz frequency
difference between RDF1 and RDF2.

Figure 6.10 shows the population in the |↓〉 ≡
∣∣S1/2, F = 2,mF = 2

〉
state as

a function of the optical pumping duration before and after the optimization
of laser frequency using the same optical power. To get a characteristic time
scale for the optical pumping process, we fit the data in Fig. 6.10(a) with the
form A(2−e−t/τ1−e−t/τ2), where A, τ1 and τ2 are fit variables. Because a dark
resonance is created in this case, we find that we should use two exponential
terms to obtain a better fit, giving two time scales τ1 = 0.6 µs and τ2 = 23 µs.
In Fig. 6.10(b), the data are fitted with this form A(1 − e−t/τ1), yielding
τ1 = 0.54 µs. After the optimization, the optical pumping is more efficient.
We choose 5 µs as the optical pumping duration in the experiments such that
≈ 99.99 % of the population are pumped to the

∣∣S1/2, F = 2,mF = 2
〉

state.
Compared to the simulation, this is still a bit longer than the theoretical
prediction. It is possible that there is a common frequency offset for both
RDF1 and RDF2 beams, for example if we lock the 626 nm laser frequency
to the wrong iodine hyperfine feature, so both beams have some detunings
to the transition frequencies. Or we over estimated the laser intensity of the
pumping beams in the simulation. The switching time of the AOMs might
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Figure 6.9: RDF2 AOM frequency scan. There is a dark resonance created
with the RDF1 beam, where the frequency difference between two beams is
similar and equal to the energy level splitting of
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states.

also limit the optical pumping time (but not at the several µs level).
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Figure 6.10: The optical pumping process (a) before and (b) after optimization.
For details, see text.
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6.4 Resolved Sideband Cooling

After pre- and Doppler cooling, the ion is cooled to a temperature of TD '
~γ/(2kB) when the laser detuning is set to −γ/2. Here γ = 2π × 19.4 MHz
is the natural linewidth of the transition and kB is the Boltzmann constant.
For 9Be+ ions, Tmin ' 0.47 mK. The mean energy of the ion is given by
〈E〉 ' kBT = ~ωm(〈n〉 + 1/2), where ωm is the ion’s vibrational frequency.
Therefore, the minimal phonon number is equal to

〈n〉 =
1

2

(
γ

ωm
− 1

)
(6.3)

For a single 9Be+ ion, the typical axial frequency we use in our experiment is
ωz ≈ 2π × 3− 4 MHz, so 〈n〉 ' 2− 3.

One can use the resolved sideband Raman cooling method to further cool
the motion of the ion to the ground state. Cooling to the motional ground
state is not only a requirement for some experiments [Cirac 95, Monroe 95b,
Meekhof 96]. Once the frequency splittings between the vibrational levels of
the oscillator is larger than the linewidth of the relevant atomic transition, the
spectral sidebands are well-resolved. As a result, when absorbing on the first
sideband, energy conservation requires that the motional state change by the
one quanta along with the electronic state transition.

The procedure is listed below:

1. Begin with the ion in the state |↓〉 |n〉, which ion’s motion has a thermal
distribution.

2. Apply a π-pulse on the red sideband via stimulated Raman transitions,
which drives |↓〉 |n〉 → |↑〉 |n− 1〉 transition.

3. Reset the ion to |↓〉 |n− 1〉 by using the optical pumping which couples
state |↑〉 |n− 1〉 to the excited state. In the Lamb-Dicke regime, the
motional state does not change during the repumping process. Thus,
the ion has reduced its vibrational energies by about one quanta.

4. Repeat Step 2 and 3.

After many cycles, it is possible to find the ion in the motional ground state
with a high probability.

In our experiments, the resolved sideband cooling is performed with the field-
dependent qubit, where |↑〉 ≡ |S1/2, F = 1,mF = 1〉 and |↓〉 ≡ |S1/2, F =
2,mF = 2〉 states are used (see Chapter 2.2). Because the ion’s motion is in
a thermal distribution after Doppler cooling, around 50 % of motional states
that the ion is occupied are greater than the mean phonon number 〈n〉 calcu-
lated above. The Rabi frequency driving the |↓〉 |n〉 → |↑〉 |n− 1〉 transition
is different based on the starting motional state (see Eq. (2.49)). In order

123



6. 9Be+ Qubit Control and Measurement

to perform the sideband cooling more efficiently, we vary the duration of the
red-sideband pulse during the cooling process. First we check the π-time
(τπ = π/|Ωrsb|) of the Rabi flop trace on the red sideband measured directly
after Doppler cooling. This gives us roughly the duration of the initial red-
sideband pulse (τi). The duration of the final pulse (τf ) can be estimated
from the π-time of the carrier Rabi flops divided by the Lamb-Dicke parame-
ter. The duration of the red-sideband pulse in the nth cooling cycle is given

by τn =
(
τf−τi
N n+ τi

)
, where N is the number of the cooling cycle. In our

case, N = 30 is sufficient to cool the ion close to the ground state.
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Figure 6.11: Motional sideband absorption spectrum of a single 9Be+ ion after
resolved sideband cooling. Here only the axial mode is cooled. The vibrational
frequency of this mode is 2.7 MHz. The inferred mean phonon number 〈n〉
after the sideband cooling is approximately 0.03± 0.01 using Eq. (6.4).

When an ion is in electronic state |↓〉 and has a thermal state distribution,
the mean phonon number 〈n〉 can be determined by the ratio of the transition
probabilities to P (↑) for the red and blue sidebands, given by

〈n〉 =
P↑,rsb/P↑,bsb

1− P↑,rsb/P↑,bsb
(6.4)

where P↑,rsb (P↑,bsb) is the probability that the ion in the |↑〉 state after exci-
tation on the red (blue) sideband [Leibfried 03a]. This is independent of pulse
duration, Rabi frequency, and Lamb-Dicke parameter [Turchette 00a]. The
ratio P↑,rsb/P↑,bsb can be inferred from a frequency scan over both sidebands
while keeping the Rabi frequency and pulse duration constant. Figure 6.11
shows the blue and red sideband spectrum immediately after the ground state
cooling. We measured the probability of the ion being in |↓〉 state. Assuming
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6.5. Spin Coherence - Robust Quantum Memory

the laser pulse is a square profile, the data are fitted with the following form

P (↓) = a+ b
Ω2

sb

Ω2
sb + ∆2

sin2

(
1

2

√
Ω2

sb + ∆2 t

)
(6.5)

where ∆ is the laser detuning with respect to the sideband transition. The
Rabi frequency for the sideband transition Ωsb, and the parameters a and b
are fit variables. For the red sideband drive, there is no excitation if the ion
is in the electronic state |↓〉 and motional ground state |n = 0〉. The mean
phonon number 〈n〉 ' 0.03± 0.01 after the sideband cooling.

6.5 Spin Coherence - Robust Quantum Memory

A qubit with long coherence time is an excellent standing point for quantum
information processing. In ion trap experiments, one of the principal prob-
lems in the laboratory is that the magnetic field fluctuates [Barrett 04]. As
discussed in Chapter 2.2, we can use a first-order magnetic-field-independent
transition in order to obtain a long-lived qubit.

Ramsey interval (µs)

0 50 100 150

C
o
n
tr

a
s
t

0

0.2

0.4

0.6

0.8

1

Figure 6.12: Contrast versus Ramsey interval TR. Each data point represents
the fitted contrast C for a phase scan for different TR. The red curve is a
weighted least-squares fit to the data using a Gaussian decay form.

To characterize the spin coherence, we perform a Ramsey experiment. The
field-independent qubit (FIQ) we use is encoded as |↑〉 ≡

∣∣S1/2, F = 1,mF = 1
〉

and |↓〉 ≡
∣∣S1/2, F = 2,mF = 0

〉
. 2) For the field-dependent qubit (FDQ),

those states are chosen as |↑〉 ≡
∣∣S1/2, F = 1,mF = 1

〉
and |b〉 = |↓〉 ≡
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6. 9Be+ Qubit Control and Measurement

∣∣S1/2, F = 2,mF = 2
〉
. Coherent rotations between states |b〉 ↔ |↑〉 for FDQ

and |↓〉 ↔ |↑〉 for FIQ can be represented on the Bloch sphere (see Eq. (2.58)).
The ion is Doppler cooled and prepared in the state |↓〉. The Ramsey sequence
is the following: we apply the rotation R̂(π2 , 0), creating the superposition
state |Ψ1〉 = 1√

2
(|↓〉 − i |↑〉), and wait for the Ramsey interval TR. During

the wait time, the state evolves to |Ψ2〉 = 1√
2
(eiφD |↓〉 − i |↑〉). The phase

φD =
∫ TR

0 (ωR(t) − ω0(t))dt, where ωR is the two Raman beams’ frequency
difference and Ω0 is the qubit transition frequency. The frequency driving the
AOM for the Raman beams is derived from a stable 1 GHz frequency refer-
ence which is locked to a rubidium clock. The qubit transition frequency might
drift due to the magnetic field fluctuations. After a certain Ramsey interval, a
second π/2-pulse is then applied with φ varied, providing the rotation R̂(π2 , φ).
In the end, we perform a projective measurement for the probability of being
in |↓〉, yielding

P (↓) =
1

2
(1− cos(φD + φ)) (6.6)

The experiment is repeated many times and for different φ. The measured
P (↓) should behave like a cosine wave. Any fluctuation in φD during many
measurements, either generated by an unstable local oscillator or an unstable
qubit frequency, can reduce the contrast of the obtained signal. We then fit
the data using the function f = 1

2(a− b cos(φD + φ)), where the parameter a
allows for an offset in the fit (very close to 1), b is the amplitude of the cosine
wave, and φD is flowing for an offset in phase. The contrast of the Ramsey
experiment is determined by C = |b|.

Figure 6.12 shows the extracted contrast for different Ramsey intervals per-
formed on the FDQ. The reduced contrast as the Ramsey interval gets longer
indicates spin decoherence. The spin decoherence can be modelled by a Gaus-
sian or an exponential decay depending on the spectral properties of the noise
[Home 06c]. We find that this data set can be fitted better with a Gaussian
decay form C(TR) = Ae−T

2
R/τ

2
s , where A is a constant and τs is the spin co-

herence time. We obtain A = 0.96 and τs = 105.5± 4.1 µs from the fit. The
Gaussian form suggests that the noise spectrum is dominated by slow fluc-
tuations compared to the Ramsey interval TR. In our case, the frequency
spectrum of the magnetic field noise are mainly peaked at 10 Hz, 110 Hz, and
50 Hz and its harmonics. It is also interesting to compare this spin coherence
time of FDQ to ≈ 160 µs which is the coherence time of the calcium ion per-
forming the same measurement. Because for the 40Ca+ ion the sensitivity of
the qubit transition frequency to the magnetic field is ≈ 1.12 kHz/mG and
for the 9Be+ FDQ, the transition frequency changes ≈ 1.76 kHz/mG around
B = 119.45 G, the beryllium FDQ coherence time is shorter than the calcium
one as we expect.
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Figure 6.13: The same Ramsey experiment working with the FIQ. The red
curve is a weighted least-squares fit to the data using a exponential decay
form C(TR) = Ae−TR/τs , and the black curve is the same fit to the data using
a Gaussian decay form C(TR) = Ae−T

2
R/τ

2
s . The fit results are A = 0.87 and

τs = 1.5± 0.8 seconds with the reduced χ2 ≈ 0.24 for the black curve, and
A = 0.88 and τs = 3.9± 0.8 seconds with the reduced χ2 ≈ 0.44 for the red
curve.

Figure 6.13 shows the same Ramsey experiment performed on the FIQ. It is
clearly seen that the spin coherence is improved about 4 orders of magnitude.
Here we use both a Gaussian and an exponential decay C(TR) = Ae−TR/τs

functions to fit this data set. In this case the frequency components of the
magnetic field noise are already larger than the inverse of the Ramsey interval
TR [Home 06c]. Obtained from two fits, A = 0.87 and τs = 1.5± 0.8 seconds
with the reduced χ2 ≈ 0.24 using the Gaussian decay form, and A = 0.88 and
τs = 3.9± 0.8 seconds with the reduced χ2 ≈ 0.44 using the exponential decay
function. The coherence time of the FIQ is much longer than the time scale
of any quantum operations for our experiments. In principle, we can further
improve this coherence time by calibrating the magnetic field more precisely
to reach the field-independent point and stabilizing the Raman beam paths
better. Active magnetic field stabilization might also help.

6.6 Micromotion Compensation

As mentioned in Chapter 4, two types of micromotion are present in Paul traps.
When working with two-species ion chain, the micromotion compensation be-
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6. 9Be+ Qubit Control and Measurement

comes even more crucial. Due to the mass difference, the stray fields distort
the equilibrium positions of the ions in the crystal such that the frequencies
and eigenvectors of the normal modes of the ion chain are changed. In this
section, we will show some methods that we have tried in order to understand
and null the micromotion for a single trapped ion in our 3-D segmented trap.

6.6.1 Intrinsic Micromotion

The first type of micromotion is called “intrinsic” micromotion [Amini 11],
which is caused by complex trap geometries or not well aligned trap electrodes
resulting in a residual component of the RF field present in the axial direction.
This can be modeled by considering a RF field (ERF cos (ΩRFt)) along the axial
direction. The treatment would be similar to Eq. (4.6), but now only the z
component is taken into account. The solution is given by

z = −zµ cos (ΩRFt) (6.7)

where zµ = qERF

mΩ2
RF

is the amplitude of the intrinsic micromotion. This reveals

that the intrinsic micromotion amplitude is mass dependent and is smaller for
heavier ions for the same trap conditions.

The intrinsic micromotion can not be nulled out by applying compensation
fields. We attempt to find a position where the intrinsic micromotion is mini-
mal by moving the ion along the axial direction. In the experiment we move
the ion along the axial direction by changing the voltage of the DC electrodes.
To measure the axial micromotion, we drive the Raman transitions using the
Co-90 beam configuration because the k-vector difference points along the ax-
ial mode of motion only. In the presence of the axial micromotion we can
drive a transition on the micromotion sideband when the frequency difference
between two Raman beams is tuned to be ω↑↓+nΩRF, where ω↑↓ is the qubit
transition frequency, n is an integer, and ΩRF is the frequency of the RF drive
of the trap. Here since the ion experiences a frequency-modulated laser field
due to the micromotion, the effective Rabi frequency in the Raman transition
(Eq. (2.34)) is scaled by the factor∑

n

∑
m

Jn(β)Jm(−β)ei(n−m)ΩRFt (6.8)

where Jn(β) is the Bessel function of the first kind, and β is the modulation
index. Its sign depends on the our laser setup configuration. In the case of the
Co-90 beams, both Raman beams get frequency modulated. For the carrier
transition (m = n) the effective Rabi frequency is scaled by

∑
n Jn(β)Jn(−β),

and for the first micromotion sideband (m = n± 1) the scaling factor is then∑
n Jn(β)Jn±1(−β). Figure 6.14 plots the scaling factor for the effective Rabi

frequency as a function of the modulation index for different micromotion
sidebands. In the experiment, once we move the ion to a new position, we
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6.6. Micromotion Compensation

apply a Raman pulse to drive Rabi flops on the carrier and the first micro-
motion sideband, and then record the π-time of each data set. Ideally, if
there is no micromotion (β = 0), we couldn’t observe any Rabi oscillation
on the micromotion sideband. Accordingly, we try to find a position where
the π-time for the micromotion transition is the longest. The measurement
results are shown in Fig. 6.15. We take the ratio of the carrier π-time to the
micromotion π-time versus different positions along the axial direction. The
minimum we measured is about one, showing that the modulation index is at
one of the crossing points of blue and red curves in Fig. 6.14. We did per-
form the same measurement on the second and third micromotion sideband
to gain more information after we took the data which is shown. However,
the modulation index depends on the RF power we put into the trap, and so
far we have not found a position without any intrinsic micromotion and the
minimum modulation index inferred from the experimental data is about one.
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Figure 6.14: Plot Eq. (6.8) as a function of modulation index β for the carrier
and first two sidebands. For the blue curve, the intrinsic micromotion can
influence the Rabi frequency driving the carrier transition depending on the
amplitude of β.

6.6.2 Excess Micromotion

The second type of micromotion is called “excess” micromotion, resulted from
stray electric fields at the pseudopotential minimum. The field displaces the
equilibrium position of an ion away from the pseudopotential minimum. This
type of micromotion can be nulled by applying compensation fields to extra
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Figure 6.15: The ratio of the carrier π-time to the micromotion π-time versus
different displacements along the axial direction. Ideally this ratio is zero if
there is no intrinsic micromotion.

electrodes (as shown in Chapter 4). These extra electrodes should have in-
dependent control of the compensation fields along each radial principal axis.
For a given stray field Edc, the displacement of the ion xd in the radial plane
from the trap center and the resulting excess micromotion amplitude xµ can
be calculated as [Berkeland 98]:

xd =
qEdc

mω2
x

(6.9)

xµ '
√

2
ωx

ΩRF
xd (6.10)

where ωx is the radial secular frequency and can be obtained from Eq. (4.5).
After algebraic simplifications with Eq. (4.5), we can find that xµ is indepen-
dent of mass although xd is different for different ion’s mass (heavier ions get
larger displacements).

Both excess and intrinsic micromotion can influence the efficiency of Doppler
cooling, ion fluorescence, and Raman transitions [Berkeland 98]. The reason
is that an ion with micromotion experiences a frequency-modulated laser field
due to the first-order Doppler shift. This modulation creates sidebands to the
laser frequency as seen by the ion at integer multiples of ΩRF. Therefore the
intensity of the laser beam is suppressed at the carrier frequency depending on
the strength of the modulation, which can be parametrized by an modulation
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index β. It is given by

β = k ·uµ = |k||uµ| cos (θ) (6.11)

where uµ = xµx̂ + yµŷ + zµẑ is the micromotion amplitude, k is the wave
vector of the laser beam, and θ is the angle between k and uµ. In the rest
frame of the ion, the laser field has the following form

E(t) = Re

{
E0e

ik ·u0

∞∑
n=−∞

Jn(β)e−iωl+in(ΩRFt+π/2)

}
(6.12)

where E0 and ωl are the amplitude and frequency of the electric field of the
laser beam, u0 is the ion’s position without any micromotion, Jn(β) is the
Bessel function of the first kind, n is an integer. As discussed in [Berkeland 98],
the steady-state population of the excited state for a two-level system is

Pe =

∞∑
n=−∞

(gJn(β)/2)2

(−∆ + nΩRF)2 + (γ/2)2 + (gJn(β))2/2
(6.13)

where g is the Rabi frequency, ∆ is the laser detuning with respect to the res-
onance frequency of the ion at rest and γ is the spontaneous decay rate of the
excited state. Without any micromotion β = 0, Equation (6.13) reduces to the
well-known steady state solution to the optical Bloch equations for a two-level
system [Foot 04]. This equation is only valid in the low laser intensity limit
(g � γ). We should also notice that if micromotion is perpendicular to the
laser beam direction, the modulation index will be zero and the micromotion
can not be probed. Figure 6.16 shows the the theoretical prediction for the
spectrum based on Eq. (6.13) as a function of the probe beam frequency. It
can be seen that the micromotion induces sidebands of the probing laser at
integer multiples of the RF driving frequency. When the modulation index
β = 1.43, the carrier and first micromotion sideband have equal strength. The
aim for the experiment is to have β as small as possible in order to minimize
the aforementioned influences to the ion.

Several methods are available to null the excess micromotion [Berkeland 98].
We diagnose the excess micromotion by three different approaches: 1) Fluores-
cence spectroscopy, 2) Micromotion mapping, and 3) RF tickle. In the work
of this thesis, the excess micromotion compensation is performed by apply-
ing the DC voltage to the shim electrodes which create compensation fields
along the vertical and horizontal directions. Figure 6.17 shows the side view
of the trap, where each side contains two shim electrodes (A&B or C&D).
Ideally the ion can be pushed back to the center from any position in the
radial plane. The vertical and horizontal compensation fields are generated
by α = (VA + VC)− (VB + VD) and β = (VA + VB)− (VC + VD) respectively,
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Figure 6.16: Effect of micromotion on the spectrum of Pe. Here various values
of modulation index β are plotted and the probe laser power is much lower
than the saturation intensity.
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Figure 6.17: The side view of the trap. α and β are the compensation fields
along the vertical and horizontal direction for nulling the stray fields and are
generated by applying DC voltages to the shim electrodes (A, B, C, and D).
The arrows indicate the direction of the field and do not scale to the field
strength.

resulting in the voltage of each shim electrode as follows:

VA =
α

4
+
β

4
(6.14)

VB = −α
4

+
β

4
(6.15)

VC =
α

4
− β

4
(6.16)

VD = −α
4
− β

4
(6.17)
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It should be noticed that the field in the horizontal direction (β) is ten times
stronger than that in the vertical direction (α) due to the trap geometry.

Fluorescence Spectroscopy
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Figure 6.18: The frequency scan of the detection beam. Three traces corre-
sponds to different shim voltages used for micromotion compensation. The
RF drive frequency is ΩRF ≈ 2π × 110 MHz in this case. In the presence of
micromotion, there is a sideband at the RF drive frequency. This AOM is
in a double-pass setup so the frequency should be doubled. The blue trace
shows that the micromotion is well compensated along the propagating direc-
tion of the laser beam. The green trace indicates that the modulation index
is around 1.43 since the carrier and first micromotion sideband have nearly
equal strength.

The first method we tried is the use of fluorescence spectroscopy with the
detection beam, as shown in Fig. 6.18. The frequency of the detection beam
is scanned using the AOM. Ideally we obtain a Lorentzian profile centered at
the atomic resonance as derived in Eq. (6.13) with β = 0. However in the
presence of micromotion we can see a sideband appeared at the RF driving
frequency. Owing to the limited bandwidth of the AOM, we are not able
to observe higher-order micromotion sidebands. To null the stray fields, we
apply voltages (α and β) on the shim electrodes, which generate compensation
fields, while setting the laser frequency at the micromotion sideband until
the sideband signal is minimized. This method is simple, but it can not
guarantee that the ion is really at the center of the pseudopotential because
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the micromotion is only minimized along the propagating direction of the
detection beam, which is at 45◦ with respect to the trap axis (see Fig. 5.2).
For this method, one can fully compensate the stray fields using three laser
beams which are illuminated to the ion from three directions perpendicular to
each other, so each laser beam is sensitive to micromotion along its direction
of propagation. However one axis is not accessible in our setup.

Micromotion Mapping
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Figure 6.19: The simulated pseudopotential in the radial plane with different
DC potential offsets. It can be seen that the principal axes in the x − y
plane are rotated depending on the DC potential offsets. This would affect
the micromotion as well as the efficiency of laser cooling.

In a 3-D segmented traps, it is possible to rotate the principal axes in the
radial (x− y) plane by applying different static voltages to the DC electrodes
(different DC potential offsets) [Madsen 06]. Normally the principal axes of
an ion trap are chosen for efficient laser cooling. If the laser wave vector k
has a component along each of the three principal axes, it can cool ion’s three
motional modes. Figure 6.19 shows simulation results of the superimposed
pseudo- and static potential in the radial plane for different DC potential off-
sets. Here we keep the axial frequency constant and only the DC potential
offset differs. As the radial principal axes are rotated, the shape and orien-
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tation of the total potential changes. In the experiment, we observe that
the required compensation field for minimizing the micromotion changes de-
pending on the DC potential offsets, or equivalently the rotation of the radial
principal axes. The measurement results for the 40Ca+ and 9Be+ ion are
shown in Fig. 6.20. For each DC potential offset, we picked a range of values
of α and performed a scan of β for each. Then we recorded the β value that
produces the maximal fluorescence. It shows that there is a crossing point
among different data sets. We think the α and β value at this point is the
optimal setting for micromotion compensation because it is independent of
the tilt of the radial principal axes. Nevertheless, this mapping method only
provides information about micromotion along the direction of the detection
beam.
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Figure 6.20: Mapping of the compensation fields for different DC potential
offsets (rotating the principal axes in the radial plane). (a) Work on a single
40Ca+ ion. (b) A single 9Be+ ion.

RF Tickle

The last approach, which is also the most precise one, is the RF tickle tech-
nique [Ibaraki 11]. The trap RF drive is amplitude modulated at ion’s secular
frequency. Once the ion is not at the RF null, this amplitude modulated RF
field can excite ion’s motion. This provides us a clean measurement that is
independent of the laser beam directions. The setup is illustrated in Fig. 6.21.
The modulation signal starts from two DDS channels. The outputs from DDSs
are mixed and then passed through a low-pass (LP) filter. The remaining sig-
nal m(t) only contains the few-MHz secular frequency component. The RF
signal driving the trap is the carrier signal that is split into two paths with
a power splitter (PS). The carrier signal in one path is multiplied with the
modulation signal in a mixer, and then combined with the carrier signal from
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the other path, resulting in an amplitude modulated signal. This modulated
signal is then sent to the resonator and has three components: the carrier
c(t) with frequency ΩRF and two sidebands with frequencies ΩRF + ωm and
ΩRF−ωm, where ΩRF and ωm are the frequency of the RF drive and the ion’s
secular motion. The advantage of this setup is that the power of the carrier
RF component remains unchanged with and without amplitude modulation
so the ion’s motional frequency is not affected by our micromotion detection.

DDS 1 

DDS 2 

RF Source 

LP filter 

PS PS 

Mixer 

Mixer 

To resonator 
( )c t

( )m t

( ) ( ) ( ) ( )y t c t m t c t 

( )c t

Figure 6.21: The setup for RF tickle measurement. PS: power splitter and LP
filter: low-pass filter. For details, see texts.
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Figure 6.22: Micromotion compensation using RF tickle technique. (a) Before
minimization of micromotion. We can see dips at two radial mode frequencies.
(b) After minimization of micromotion.

After the ion is Doppler cooled, the RF tickling signal is applied, followed
by the qubit readout. This measurement is only performed on the 40Ca+

ion. The motional frequency of the radial modes of the 9Be+ ion is too high
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Figure 6.23: The summary of the RF tickle measurement. We draw a cartoon
of the pseudopotential, which is tilted, and two principal axes of the radial
confinement for the ion. The α and β values for the points A, B, C, and D are
obtained from the 2-D scan. From which, we can calculate the required voltage
settings (α and β) at the crossing point M, where ideally is the pseudopotential
minimum.

(∼ 10 MHz) such that the sidebands of the modulated signal would be filtered
out by the resonator for which the half-power linewidth is around 1 MHz in
our case. One the other hand, if we null the stray fields such that the calcium
ion is at the pseudopotential minimum, the beryllium should be the same. We
first perform a frequency scan without applying any compensation field. The
spectrum is shown in Fig. 6.22(a). There are two dips corresponding to the
motional frequency of two radial modes. The next step is that we picked an α
value and perform a 2-D scan in which the y axis is the β value and the x axis
is the tickle frequency scanned over two radial modes2. For α = 7, it is found
that β = −1.03 can make the micromotion vanish for the weak radial mode.
This means the ion is either at the center of the pseudopotential or on the
principal axis of the strong radial confinement. For the same α, making the
micromotion vanish for the strong radial mode needs β = −0.05. Since two β

2Since when we change the shim voltage, the motional frequency of the ion slightly shifts.
Therefore 2-D scan is needed in this measurement. For some technical reasons, the raw 2-D
scan data was not recorded by the computer so it can not be shown here. Only the screenshot
pictures and notes were saved. These data shown were taken on 24.10.2014.
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6. 9Be+ Qubit Control and Measurement

values are not the same, so we can conclude that in the first case the ion is on
the principal axis of the strong radial confinement while the weak radial mode
can not be excited. In the latter one, the ion is on the principal axis of the
weak radial confinement. Next, we chose the other α = 10 and followed the
same procedures. The results are summarized in Fig. 6.23 for clarification.
We can determine a linear equation from two points on the principal axis
of strong radial confinement and two points on the principal axis of weak
radial confinement. The crossing point of these two linear equations will be
the pseudopotential minimum. After calculating α and β at the crossing point
and set them in the experiment, we repeated the RF tickle measurement again.
We found the micromotion is well compensated, as shown in Fig. 6.22(b).

6.7 Conclusions

In this chapter we began with the loading procedure for the 9Be+ ions. Ba-
sic techniques and calibrations required for 9Be+ qubit manipulations were
described. We demonstrated 9Be+ ion ground state cooling and created long-
lived quantum memories using first-order magnetic-field-independent hyper-
fine transitions. The results with 9Be+ qubits showed a coherence time of
≈ 1.5 s. In principle, this coherence time can be further improved by fine
tuning the magnetic field to get the field-independent point and stabilizing
the Raman beam path better, for example we can cover the setup with a box
to suppress the influence from the environment.

The most severe problem we faced was the micromotion of the ion. The
stray fields in the trap can cause a variety of problems for quantum control of
trapped ions especially for mixed-species ion chains. For the intrinsic (axial)
micromotion which can not be nulled with additional compensation fields, we
moved the ion along the axial direction trying to find a position where this
type of micromotion is minimum. However, there is no minimal point where
it is zero, probed with non-copropagating Raman beams (the wavevector dif-
ference along the axial direction)3. The excess micromotion can be minimized
by applying voltages to shim electrodes which generate compensation fields.
In our experiment, we tried three methods, in two of which we relied on the
fluorescence detection. The minimization of micromotion is only along the
propagating direction of the probe field, which is at 45◦ with respect to the
axial direction. In this case, the ion is not at the pseudopotential minimum
even after we have maximal fluorescence counts. The lighter beryllium ion has
much larger axial micromotion than the heavier calcium ion. The intrinsic mi-
cromotion always has a component projecting onto the propagating direction
of the probe field. Consequently, to cancel out this vector projection of the

3Meanwhile, we also notice that the group at NIST also has strong axial micromotion in
one of their traps. However they recently show that they can use the second micromotion
sideband to perform high-fidelity quantum control of multiple qubits.
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intrinsic micromotion on the probe field direction, different shim voltage set-
tings are required for two ion species. It is quite hard for us to find a common
shim voltage setting for both ion species. If we use the shim voltage setting
of the calcium ion, we lose the fluorescence from the readout of the beryllium
ion, and vice versa. The third method we used is the RF tickle. By amplitude
modulating the trap RF field and optimizing the shim voltage settings, we
could make the ion sit at the pseudopotential minimum. However, this opti-
mal shim voltage setting does not reflect on the fluorescence detection of the
beryllium ion due to the presence of intrinsic micromotion.

Our aim is to achieve high-fidelity control of two-species ion chains. Al-
though the calcium and beryllium ions have not been operated together, this
chapter combined with the characterizations for the calcium ion covered in
[Kienzler 15b] provides the basic elements we need for control of both species
of ions. Before writing the thesis, the beryllium ion system has been used
for demonstrating the single-qubit transport gate for the first time. The
details will be presented in Ludwig de Clercq’s forthcoming Ph.D. thesis
[de Clercq 15].
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Chapter 7

Squeezed Schrödinger’s Cat States

The creation and study of nonclassical states of spin systems coupled to a
harmonic oscillator has provided fundamental insights into the nature of de-
coherence and the quantum-classical transition. These states and their con-
trol form the basis of experimental developments in quantum information
processing and quantum metrology [Monroe 95a, Wineland 13, Haroche 13].
Two of the most commonly considered states of the oscillator are squeezed
states and superpositions of coherent states of opposite phase, which are com-
monly referred to as “Schrödinger’s cat” (SC) states. Squeezed states involve
reduction of the fluctuations in one quadrature of the oscillator below the
ground state uncertainty, which has been used to increase sensitivity in in-
terferometers [Collaboration 11, Aasi 13]. SC states provide a complemen-
tary sensitivity to environmental influences by separating the two parts of
the state by a large distance in phase space. These states have been cre-
ated in microwave and optical cavities [Vlastakis 13, Haroche 13], where they
are typically not entangled with another system, and also with trapped ions
[Monroe 96, McDonnell 07, Haljan 05a, Wineland 13], where all experiments
performed have involved entanglement between the oscillator state and the
internal electronic states of the ion. SC states have recently been used as sen-
sitive detectors for photon scattering recoil events at the single photon level
[Hempel 13].

This Chapter presents our recent results in which we use a single trapped
40Ca+ ion to combine for the first time highly squeezed states with superpo-
sitions of distinct atomic wavepackets commonly referred to as Schrödinger’s
cat states. This work demonstrates direct measurements on the squeezed state
of the ion, revealing key features of the squeezed nature in phase space. The
coherence of the squeezed Schrödinger’s cat states is verified by recombining
the squeezed wavepackets, which we measure through the revival of the spin
coherence. I will first review how to prepare the squeezed vacuum state of an
ion’s motion by reservoir engineering, a technique covered in more detail in the
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7. Squeezed Schrödinger’s Cat States

thesis of Daniel Keinzler [Kienzler 15b]. Then the creation and measurement
of the squeezed Schrödinger’s cat states will be presented. The results shown
in this chapter are covered in our recent publications [Kienzler 15a, Lo 15].

7.1 Dissipative Quantum State Preparation

7.1.1 Reservoir Engineering

Reservoir engineering is a method in which specially designed couplings be-
tween a system of interest and an environment, which is the vacuum modes
of the electromagnetic field, can be used to generate quantum superposition
states of the system as the steady state of the dissipative process. Follow-
ing the proposals [Cirac 93a, Poyatos 96], we have developed techniques to
prepare quantum harmonic states of a single trapped 40Ca+ ion, including
coherent states, squeezed states and displaced-squeezed states [Kienzler 15a].
Basically the process is implemented by introducing an artificial decay channel
for the spin states in form of an effective zero temperature reservoir, combined
with engineered spin-oscillator couplings.

In the analysis, we consider the system shown in Fig. 7.1(a), where the ion’s
motion is described by a quantum harmonic oscillator and the internal state
of the ion is restricted to a three-level system containing two long-lived qubit
states and one short-lived excited state. Two qubit states are denoted by
|↑〉 and |↓〉 driven by laser fields with a Rabi frequency Ω, and the state |e〉
represents the short-lived excited state of the ion with a spontaneous decay
rate of γ. The state |↑〉 can couple to the state |e〉 by a laser field with a
coupling strength (Rabi frequency) Ωe↑, generating an artificial decay channel
from |↑〉 to |↓〉. The effective spontaneous emission rate for the state |↑〉 is
given by γ↑ ≈ Ω2

e↑/γ [Haroche 06]. Here γ is supposed to be much larger than
the emission rate from |e〉 to |↑〉 and the Rabi frequency Ωe↑. In the Lamb-
Dicke regime, the effect of the photon recoil from the spontaneous emission
on the ion’s motional state can be neglected.

The dynamics of the whole system can be described by a master equation:

dρ

dt
= − i

~

[
Ĥ, ρ

]
+ L(ρ) (7.1)

where ρ is the total density matrix for the ion and Ĥ the general spin-motion
coupling Hamiltonian, given by

Ĥ =
~
2

Ω
(
K̂σ̂+ + K̂†σ̂−

)
(7.2)

where σ̂+ = |↑〉 〈↓| and σ̂− = |↓〉 〈↑| are the spin flip operators and K̂ (K̂†) is
a general motional annihilation (creation) operator. The Louvillian operator
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Ion motion Internal states (a) 

(b) Squeezed state preparation 

Figure 7.1: (a) The system we consider for dissipative quantum state prepara-
tion. (b) The transitions involved in the squeezed vacuum state preparation.
The blue (red) motional sideband is marked with blue (red) arrows. The decay
is labeled with dash lines. The steady state of the process is reached when
the total probability amplitude of exciting the state |↑, n〉 from |↓, n− 1〉 and
|↓, n+ 1〉 vanish.

L(ρ) describes the decay process with the form

L(ρ) = γ↑σ̂−ρσ̂+ −
γ↑
2

(ρσ̂+σ̂− + σ̂+σ̂−ρ) (7.3)

In general, solving this master equation is difficult and requires numerical
computations. We only consider a limiting case in which γ↑ � Ω the effective
qubit decay rate is much larger than the coupling strength. Therefore we can
adiabatically eliminate the spin population in |↑〉. By introducing the partial
matrix elements of the density operator ρ̂ij = 〈i| ρ̂ |j〉, where {i, j} ∈ {↑, ↓},
the density matrix can be re-written as

ρ̂ = ρ̂↓↓ |↓〉 〈↓|+ ρ̂↓↑ |↓〉 〈↑|+ ρ̂↑↓ |↑〉 〈↓|+ ρ̂↑↑ |↑〉 〈↑| (7.4)

These density operators ρ̂ij still act on the motional state of the ion. Insert-
ing Eq. (7.4) into Eq. (7.1), we can obtain four evolution equations for ρ̂ij
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7. Squeezed Schrödinger’s Cat States

[Haroche 06, Kienzler 15b]. After applying adiabatic elimination and some
algebraic simplification, the evolution equation for ρ̂↓↓ is

dρ̂↓↓
dt

=
Ω2

γ↑
K̂ρ↓↓K̂

† − 1

2

Ω2

γ↑

(
ρ↓↓K̂

†K̂ + K̂†K̂ρ↓↓

)
(7.5)

This shows that the evolution equation for the ion’s motion takes a Lindblad
form with a decay rate of Ω2

γ↑
. The Lindblad operator is expressed by L̂ =

Ω√
γ↑
K̂. The ion’s motion undergoes relaxation processes until it reaches the

final state |ψ〉 satisfying L̂ |ψ〉 = 0. This dissipative state preparation can
be easily understood in the resolved sideband cooling for which K̂ = â is
the annihilation operator of the harmonic oscillator, resulting a Hamiltonian
for the red sideband drive. After several dissipative pumping cycles, the ion
can be cooled to its motional ground state (â |0〉 = 0). However this method
can be extended to generate quantum superposition states of the harmonic
oscillator by engineering the operator K̂ [Kienzler 15a, Poyatos 96].

7.1.2 Squeezed Vacuum State Preparation

In the work on squeezed cats, we work with squeezed vacuum states. To obtain
these, we start with the relation â |0〉 = 0, where |0〉 is the ground state of
the harmonic oscillator. Now we introduce an unitary operator Û such that
Û âÛ †Û |0〉 = 0 is still valid. The state of interest is defined as |ψ〉 = Û |0〉 and
the general motional annihilation operator becomes K̂ = Û âÛ †.

The squeezed vacuum state |ξ〉 is defined by the action of the squeezing oper-

ator Ŝ(ξ) = e(ξ∗â 2−ξâ† 2)/2 on the motional ground state |0〉, where ξ = reiφs

with r and φs real parameters, which define the magnitude and the direc-
tion of the squeezing in phase space. In order to generate squeezed vac-
uum states as the desired state of the pumping process, we implement a
coupling Hamiltonian of the form given in Eq. (7.2), with the operator
K̂ = Ŝ(ξ)â Ŝ†(ξ) = cosh râ + eiφs sinh râ† . This requires simultaneous ap-
plication of laser fields resonant with both the red motional sideband transi-
tion (Ĥrsb = ~

2Ωr(σ̂+âe
iφr + h.c.)) and the blue motional sideband transition

(Ĥbsb = ~
2Ωb(σ̂+â

†eiφb+h.c.)). The ratio of the Rabi frequencies on these tran-

sitions gives the strength of the squeezing through r = tanh−1 Ωb
Ωr

while the
phase is given by the phase difference between the two frequency components
of the laser φs = φb − φr.

The squeezed state stabilization can also be understood as a quantum interfer-
ence process. Figure 7.1(b) shows the ladder structure involved in the squeezed
state pumping process. The blue (red) motional sideband couples the states
|↓, n− 1〉 (|↓, n+ 1〉) and |↑, n〉. The evolution stops when the total transition
probability amplitude is zero. The following condition must be fulfilled:

cn−1 〈↑, n| Ĥbsb |↓, n− 1〉+ cn+1 〈↑, n| Ĥrsb |↓, n+ 1〉 = 0 (7.6)
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7.2. Creation of Squeezed Schrödinger’s Cat States

Using the definitions of the Hamiltonian above, this condition can be simplified
to

cn−1Ωb

√
n+ cn+1Ωr

√
n+ 1 = 0 (7.7)

There are two sets of solution, one contains only even phonon states and the
other contains only odd phonon states. As we can see, only the even solution
includes the ground state of the harmonic oscillator so this case is consid-
ered here. Taking normalization into account, the solution of this recurrence
relation is [Gerry 05]

cn = c2m = (−1)m
√

(2m)!

2mm!

(eiφs tanh r)m√
cosh r

(7.8)

where r = tanh−1 Ωb
Ωr

, which is consistent with the one we obtained above.
Therefore the squeezed vacuum state is

|ξ〉 =
1√

cosh r

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimφs(tanh r)m |2m〉 (7.9)

The probability distribution p(n) is now given by

p(n) = p(2m) = |〈2m| ξ〉|2 =
(2m)!

22m(m!)2

(tanh r)2m

cosh r
(7.10)

p(n) = p(2m+ 1) = 0 (7.11)

The probability vanishes for all odd n.

7.2 Creation of Squeezed Schrödinger’s Cat States

7.2.1 Theoretical Description

We use state-dependent forces (SDFs) to create superpositions of distinct
squeezed oscillator wavepackets which are entangled with a pseudo-spin en-
coded in the electronic states of a single trapped ion. We will refer to these
states as squeezed wavepacket entangled states (SWES) in the rest of this
chapter.

A SDF is performed by simultaneously driving the red |↓〉 |n〉 ↔ |↑〉 |n− 1〉
and blue |↓〉 |n〉 ↔ |↑〉 |n+ 1〉 motional sidebands of the spin flip transition
[Monroe 96]. The resulting interaction Hamiltonian can be written in the
Lamb-Dicke approximation as

ĤD = ~
Ω

2
σ̂x

(
â† e−iφD/2 + â eiφD/2

)
, (7.12)

where Ω is the strength of the SDF, φD is the relative phase of the two light
fields, and σ̂x ≡ |+〉 〈+| − |−〉 〈−| with |±〉 = (|↑〉 ± |↓〉)/

√
2. For an ion
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prepared in |+〉, this Hamiltonian results in displacement of the motional state
in phase space by an amount α(τ) = −iΩe−iφD/2τ/2 which is given in units
of the r.m.s. extent of the harmonic oscillator ground state. An ion prepared
in |−〉 will be displaced by the same amount in the opposite direction. In the
following equations, we use α in place of α(τ) for simplicity. Starting from
the state |↓〉 |ξ〉, application of the SDF ideally results in the SWES

|ψ(α)〉 =
1√
2

(|+〉 |α, ξ〉 − |−〉 |−α, ξ〉) , (7.13)

where we use the notation |α, ξ〉 = D̂(α)Ŝ(ξ) |0〉 with the displacement oper-

ator D̂(α) = eαâ
†−α∗â . A projective measurement of the spin performed in

the σ̂z basis gives the probability of being |↓〉 as P (↓) = (1 + X)/2, where
X = 〈α, ξ| − α, ξ〉 = 〈−α, ξ|α, ξ〉 gives the overlap between the two displaced
motional states, which can be written as

X(α, ξ) = e−2|α|2(exp(2r) cos2(∆φ)+exp(−2r) sin2(∆φ)) (7.14)

where ∆φ = arg(α) − φs/2. When ∆φ = 0, the SDF is aligned with the
squeezed quadrature of the state, while for ∆φ = π/2, the SDF is aligned with
the anti-squeezed quadrature. At displacements for which X gives a measur-
able signal, monitoring the spin population as a function of the force duration
τ for different choices of ∆φ allows us to characterise the spatial variation of
the initial squeezed wavepacket [Hao-Sheng 05, Gerritsma 10, Casanova 12].
For values of |α|2 which are greater than the wavepacket variance along the
direction of the force, the state in Eq. (7.13) is a distinct superposition of
squeezed wavepackets which have overlap close to zero and are entangled with
the internal state. For r = 0 (no squeezing) the state reduces to the famil-
iar “Schrödinger’s cat” states which have been produced in previous work
[Monroe 96, McDonnell 07, Haljan 05a, Wineland 13]. For r > 0 the super-
posed oscillator states are the displaced-squeezed states [Caves 81, Yuen 76].

7.2.2 Experimental Details

The experiments make use of a segmented linear Paul trap with an ion-
electrode distance of ≈ 185 µm. Motional heating rates from the ground
state for a 40Ca+ ion in this trap have been measured to be 10± 1 quanta/s,
and the coherence time for the number state superposition (|0〉+ |1〉)/

√
2 has

been measured to be 32± 3 ms [Kienzler 15b]. This experiment uses a single
trapped 40Ca+ ion, which mechanically oscillates on its axial vibrational mode
with a frequency close to ωz/(2π) = 2.1 MHz. This mode is well resolved from
all other modes. The first step of each experimental run involves cooling all
modes of motion of the ion close to the Doppler limit using laser light at
397 and 866 nm. We encode a pseudo-spin system in the internal electronic
states |↓〉 ≡

∣∣S1/2,MJ = 1/2
〉

and |↑〉 ≡
∣∣D5/2,MJ = 3/2

〉
. This transition is
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resolved by 200 MHz from all other internal state transitions in the applied
magnetic field of 119.6 G. All coherent manipulations, including the squeezed
state preparation and the SDF, make use of the quadrupole transition between
these levels at 729 nm, with a Lamb-Dicke parameter of η ' 0.05 for the axial
mode. This is small enough that the experiments are well described using the
Lamb-Dicke approximation [Wineland 98]. A discussion of this approximation
is given in Chapter 7.2.4.

The state-dependent forces (SDFs) and the reservoir engineering in our exper-
iment require the application of a bichromatic light field. We generate both
frequency components using acousto-optic-modulators (AOMs) starting from
a single laser stabilized to an ultra-high-finesse optical cavity with a resulting
linewidth < 600 Hz (at which point magnetic field fluctuations limit the qubit
coherence). We apply pulses of 729 nm laser light using a double-pass AOM to
which we apply a single radio-frequency tone, followed by a single-pass AOM
to which two radio-frequency tones are applied. Following this second AOM,
both frequency components are coupled into the same single-mode fiber before
delivery to the ion. The double-pass AOM is used to switch on and off the
light. Optical pumping to |↓〉 is implemented using a combination of linearly
polarized light fields at 854 nm, 397 nm and 866 nm. The internal state of the
ion is read out by state-dependent fluorescence using laser fields at 397 nm
and 866nm.

7.2.3 Experimental Results and Discussions

First Measurement

We apply the SDF directly after the squeezed vacuum state has been prepared
by reservoir engineering and the internal state has been prepared in |↓〉 by
optical pumping (in the ideal case, the ion is already in the correct state and
this step has no effect). Figure 7.2 shows the results of measuring 〈σ̂z〉 after
applying displacements along the two principal axes of the squeezed state
alongside the same measurement made using an ion prepared in the motional
ground state. In order to extract relevant parameters regarding the SDF and
the squeezing, we fit the data using P (↓) = (A + BX(α, ξ))/2, where the
parameters A and B account for experimental imperfections such as shot-to-
shot magnetic field fluctuations (see Chapter 7.2.5 for discussions). Fitting
the ground state data with r fixed to zero allows us to extract Ω/(2π) =
13.25± 0.40 kHz (here and in the rest of the paper, all errors are given as
s.e.m.). We then fix this in performing independent fits to the squeezed-state
data for ∆φ = 0 and ∆φ = π/2. Each of these fits allows us to extract
an estimate for the squeezing parameter r. For both the squeezed and anti-
squeezed quadratures we obtain consistent values with a mean of r = 1.08 ±
0.03, corresponding to 9.4 dB reduction in the squeezed quadrature variance.
The inset shows the spin population as a function of the SDF phase φD with
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Figure 7.2: Spin-population evolution due to spin-motion entangle-
ment. Projective measurement of the spin in the σ̂z basis as a function of
SDF duration. a, Forces parallel to the squeezed quadrature (red triangles). b,
An ion initially prepared in the motional ground state (blue circles). c, Forces
parallel to the anti-squeezed quadrature (green squares). The inset shows a
scan of the phase of the SDF for an initial squeezed state with the force dura-
tion fixed to 20 µs. Each data point is the result of > 300 repetitions of the
experimental sequence. The given error bars indicate one standard error of
the mean, and are generated under the assumption that the dominant source
of fluctuations is quantum projection noise.

the SDF duration fixed to 20 µs. This is also fitted using the same equation
described above, and we obtain r = 1.13± 0.03.

The loss of overlap between the two wavepackets indicates that a SWES has
been created. In order to verify that these states are coherent superpositions,
we recombine the wavepackets by applying a second “return” SDF pulse for
which the phase of both the red and blue sideband laser frequency components
is shifted by π relative to the first. This reverses the direction of the force
applied to the motional states for both the |+〉 and |−〉 spin states. In the
ideal case a state displaced to α(τ1) by a first SDF pulse of duration τ1 has
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Figure 7.3: Revival of the spin coherence. Spin populations as a function
of the duration of the second SDF pulse with the spin phase shifted by π
relative to the first pulse. a, Forces parallel to the squeezed quadrature. b,
Forces parallel to the anti-squeezed quadrature. In all cases an increase in
the spin population is seen at the time when the two motional states are
overlapped, which corresponds to the time τ1 used for the first SDF pulse.
The value of τ1 and the corresponding |∆α| calculated from the measured
Rabi frequency are written above the revival of each dataset. The fractional
error on the mean of each of the estimated |∆α| is approximately 3%. The
solid lines are fitted curves using the same form as using in the fits in Fig. 7.2
with the overlap function X(δα, ξ). The obtained values of r are consistent
with the data in Fig. 7.2. The definition of error bars is the same as in Fig.
7.2.

a final displacement of δα = α(τ1) − α(τ2) after the return pulse of duration
τ2. For τ1 = τ2, δα = 0 and the measured probability of finding the spin
state in |↓〉 is 1. In the presence of decoherence and imperfect control, the
probability with which the ion returns to the |↓〉 state will be reduced. In
Fig. 7.3 we show revivals in the spin coherence for the same initial squeezed
vacuum state as was used for the data in Fig. 7.2. The data include a range
of different τ1. For the data where the force was applied along the squeezed
axis of the state (∆φ = 0), partial revival of the coherence is observed for
SDF durations up to 250 µs. For τ1 = 250 µs the maximum separation of
the two distinct oscillator wavepackets is |∆α| > 19, which is 56 times the
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r.m.s width of the squeezed wavepacket in phase space. The amplitude of
revival of this state is similar to what we observe when applying the SDF
to a ground state cooled ion. The loss of coherence as a function of the
displacement duration is consistent with the effects of magnetic-field induced
spin dephasing and motional heating [Turchette 00b, Hempel 13]. When the
force is applied along the anti-squeezed quadrature (∆φ = π/2), we observe
that the strength of the revival decays more rapidly than for displacements
with ∆φ = 0. Simulations of the dynamics using a quantum Monte-Carlo
wavefunction approach including sampling over a magnetic field distribution
indicate that this is caused by shot-to-shot fluctuations of the magnetic field
(see Chapter 7.2.5).

Second Measurement

We are also able to monitor the number state distributions of the motional
wavepackets as a function of the duration of the SDF. This provides a sec-
ond measurement of the parameters of the SDF and the initial squeezed
wavepacket which has similarities with the homodyne measurement used in
optics [Breitenbach 97, Ourjoumtsev 07]. In order to do this, we optically
pump the spin state into |↓〉 after applying the SDF. This procedure destroys
the phase relationship between the two motional wavepackets, resulting in
the mixed oscillator state ρ̂mixed = (|α, ξ〉 〈α, ξ|+ |−α, ξ〉 〈−α, ξ|) /2 (we esti-
mate the photon recoil during optical pumping results in a reduction in the
fidelity of our experimental state relative to ρ̂mixed by < 3%, which would
not be observable in our measurements). The two parts of this mixture have
the same number state distribution, which is that of a displaced-squeezed
state [Caves 81, Yuen 76]. In order to extract this distribution, we drive Rabi
oscillations on the blue-sideband transition [Meekhof 96] and monitor the sub-
sequent spin population in the σ̂z basis. Figure 7.4 shows this evolution for
SDF durations of τ = 0, 30, 60 and 120 µs. For τ = 30 and 60 µs, the
results from displacements applied parallel to the two principal axes of the
squeezed state are shown (∆φ = 0 and π/2). We obtain the number state
probability distribution p(n) from the spin state population by fitting the
data using a form P (↓) = bt+ 1

2

∑
n p(n)(1+e−γt cos(Ωn,n+1t)), where t is the

blue-sideband pulse duration, Ωn,n+1 is the Rabi frequency for the transition
between the |↓〉 |n〉 and |↑〉 |n+ 1〉 states and γ is a phenomenological decay
parameter [Meekhof 96, Leibfried 03a]. The parameter b accounts for gradual
pumping of population into the state |↑〉 |0〉 due to frequency noise on our laser
[Di Fidio 00, Kienzler 15a]. It is negligible when p(0) is small. The resulting
p(n) are then fitted using the theoretical form for the displaced-squeezed states
(see Chapter 7.2.6). The number state distributions show a clear dependence
on the phase of the force, which is also reflected in the spin population evolu-
tion. Figure shows the Mandel Q parameters of the experimentally obtained
number state distributions, defined as Q = 〈(∆n)2〉/〈n〉 − 1 in which 〈(∆n)2〉
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Figure 7.4: Evolution of displaced-squeezed state mixtures. The ob-
served blue-sideband oscillations and the corresponding number state proba-
bility distributions for the SDF applied along the two principal axes of the
squeezed state and with different durations. a, Initial squeezed vacuum state.
b, d, f, Forces parallel to the squeezed quadrature. c, e, Forces parallel to
the anti-squeezed quadrature. For τ = 30 µs the obtained parameters are
consistent within statistical errors. For τ = 60 µs the displacement along the
anti-squeezed quadrature (e) results in a large spread in the number state
probability distribution, with the result that in the fitting r and α are pos-
itively correlated - the errors stated do not take account of this. We think
that this accounts for the apparent discrepancy between the values of r and
α obtained for τ = 60 µs. The green-dashed line in the inset of d and f is the
Poisson distribution for the same 〈n〉 as the created displaced-squeezed state
mixture, which is given by 〈n〉 = |α|2 + sinh2r [Caves 81]. Each data point
is the average of 500 repeats of the experimental sequence. The definition of
error bars is the same as in Fig. 7.2.

and 〈n〉 are the variance and mean of p(n) respectively [Mandel 79]. The solid
lines are the theoretical curves given by Caves [Caves 81] for r = 1.08, and are
in agreement with our experimental results. For displacements along the short
axis of the squeezed state (Fig. 7.4), the collapse and revival behaviour of the
time evolution of P (↓) is reminiscent of the Jaynes-Cummings Hamiltonian
applied to a coherent state [Haroche 06], but it exhibits a higher number of
oscillations before the “collapse” for a state of the same 〈n〉. This is surprising
since the statistics of the state is not sub-Poissonian. We attribute this to the
fact that this distribution is more peaked than that of a coherent state with
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7. Squeezed Schrödinger’s Cat States

the same 〈n〉, which is obvious when the two distributions are plotted over one
another (Figs. 7.4(d) and 7.4(f)). The increased variance of the squeezed state
then arises from the extra populations at high n, which are too small to make
a visible contribution to the Rabi oscillations. For the squeezing parameter in
our experiments sub-Poissonian statistics would only be observed for |α| > 3.
For τ = 120 µs we obtain a consistent value of r and |α| = 4.6 only in the
case where we include a fit parameter for scaling of the theoretical probability
distribution, obtaining a fitted scaling of 0.81± 0.10 (see Chapter 7.2.6). The
reconstruction of the number state distribution is incomplete, since we cannot
extract populations with n > 29 due to frequency crowding in the

√
n+ 1 de-

pendence of the Jaynes-Cummings dynamics. As a result, we do not include
these results in Fig. . Measurement techniques made in a squeezed-state basis
[Kienzler 15a] could avoid this problem, however these are beyond our current
experimental capabilities for states of this size.
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Figure 7.5: Mandel Q parameter for the displaced-squeezed states.
Shown are the results for displacements along the squeezed quadrature (red
triangles) and the anti-squeezed quadrature (green squares). All the values
are calculated from the experimental data given in Fig. 7.4, taking the prop-
agation of error into account. The solid lines are theoretical curves for dis-
placements along the squeezed (red) and anti-squeezed (green) quadratures
of an initial state with r = 1.08. The values of |α| are obtained from fits to
the respective p(n) (Fig. 7.4), with error bars comparable to the size of the
symbol. The point at |α| = 0 is the squeezed vacuum state.

7.2.4 Validity of Lamb-Dicke Approximation

The 729 nm laser beam enters the trap at 45 degrees to the z axis of the trap
resulting in a Lamb-Dicke parameter of η ' 0.05 for the axial mode. For

152



7.2. Creation of Squeezed Schrödinger’s Cat States

Re(α)

Im
(α

)

 

 

a

τ = 60 µs

−10 −5 0 5 10

−10

−5

0

5

10
0

0.02

0.04

0.06

0.08

Re(α)

 

 

c

τ = 120 µs

−10 −5 0 5 10

−10

−5

0

5

10
0

0.02

0.04

0.06

0.08

Re(α)

 

 

e

τ = 250 µs

−10 −5 0 5 10

−10

−5

0

5

10
0

0.02

0.04

0.06

0.08

Re(α)

Im
(α

)

 

 

b

τ = 60 µs

−10 −5 0 5 10

−10

−5

0

5

10
0

0.02

0.04

0.06

0.08

Re(α)

 

 

d

τ = 120 µs

−10 −5 0 5 10

−10

−5

0

5

10
0

0.02

0.04

0.06

0.08

Re(α)

 

 

f

τ = 250 µs

−10 −5 0 5 10

−10

−5

0

5

10
0

0.02

0.04

0.06

0.08

Figure 7.6: Quasi-probability distributions for displaced-squeezed
states in phase space using LDA and non-LDA: a, c, e, The simu-
lation results using LDA with different SDF durations. b, d, f, The results
simulated using the full Hamiltonian.

this Lamb-Dicke parameter, we have verified whether for displacements up to
|α| = 9.75 the dynamics can be well described with the Lamb-Dicke Approx-
imation (LDA). We simulate the wavepacket dynamics using the interaction
Hamiltonian with and without LDA. In the simulation, we apply the SDF to
an ion prepared in |↓〉 |ξ〉. The interaction Hamiltonian for a single trapped
ion coupled to a single-frequency laser field can be written as [Leibfried 03a]

ĤI =
~
2

Ω0σ̂+exp{iη(â e−iωzt + â† eiωzt)}ei(φ−δt) + h.c.,

where Ω0 is the interaction strength, σ̂+ = |↑〉 〈↓|, â and â† are motional
annihilation and creation operators, ωz is the vibrational frequency of the
ion, φ is the phase of the laser, and δ = ωl − ωa the detuning of the laser
from the atomic transition. In the laboratory, the application of the SDF
involves simultaneously driving both the blue and red sideband transitions
resonantly resulting in the Hamiltonian Ĥtot = Ĥbsb + Ĥrsb, where δ = ωz in
Ĥbsb and δ = −ωz in Ĥrsb. Starting from |↓〉 |ξ〉, the evolution of the state can
not be solved analytically. We perform a numerical simulation in which we
retain only the resonant terms in the Hamiltonian. Figure 7.6 shows the quasi-
probability distributions in phase space for chosen values of the SDF duration
τ . These are compared to results obtained using the LDA. For τ = 60 µs both
cases are similar, resulting in |α| ' 2.4. For τ = 250 µs the squeezed state
wavepackets are slightly distorted and the displacement is 4 % smaller for the
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7. Squeezed Schrödinger’s Cat States

full simulation than for the LDA form. Considering the levels of error arising
from imperfect control and decoherence for forces of this duration, we do not
consider this effect to be significant in our experiments.

7.2.5 Simulations for the Coherence of Squeezed Cats

After creating SWESs, we deduce that coherence is retained throughout the
creation of the state by applying a second SDF pulse to the ion, which re-
combines the two separated wavepackets and disentangles the spin from the
motion. The revival in the spin coherence is not perfect due to decoherence
and imperfect control in the experiment. One dominant source causing deco-
herence of the superpositions is spin decoherence due to magnetic field fluctua-
tions. We have performed quantum Monte-Carlo wavefunction simulations to
investigate the coherence of the SWES in the presence of such a decoherence
mechanism. We simulate the effect of a sinusoidal fluctuation of the magnetic
field on a timescale long compared to the duration of the coherent control se-
quence, which is consistent with the noise which we observe on our magnetic
field coil supply and from ambient fluctuations due to electronics equipment
in the room. The amplitude of these fluctuations is set to ' 2.2 mG, giving
rise to the spin coherence time of ≈ 180 µs which we have measured using
Ramsey experiments on the spin alone. Since the frequency of fluctuations
is slow compared to the sequence length, we fix the field for each run of the
simulation, but sample its value from a probability distribution derived from
a sinusoidal oscillation. In Fig. 7.7 we show the effect of a single shot taken
at a fixed qubit-oscillator detuning of 1.5 kHz, while in Fig. 7.8 we show the
average over the distribution. In both figures results are shown for the SDF
applied along the two principal axes of the squeezed vacuum state as well as
for the motional ground state using force durations of 60 and 120 µs. We also
show the results of applying the second SDF pulse resulting in partial revival
of the spin coherence. It can be clearly seen that when the SDF is applied
along the anti-squeezed quadrature, the strength of the revival decays more
rapidly, and P (↓) oscillates around 0.5. This effect can be seen in the data
shown in Fig. 7.3.

7.2.6 Number State Probability Distributions for the Displaced-
Squeezed State

For Fig. 7.4, we characterize the probability distribution for the number states
of the oscillator. This is performed by driving the blue-sideband transition
|↓〉 |n〉 ↔ |↑〉 |n+ 1〉 and fitting the obtained spin population evolution using

P (↓) = bt+
1

2

∑
n

p(n)(1 + e−γt cos(Ωn,n+1t)), (7.15)
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Figure 7.7: Coherence of cat states with fixed magnetic field noise:
The magnetic-field-induced energy-level-shift of 1.5 kHz is used in this simu-
lation. a, The duration of both SDF pulses is 60 µs. b, The duration of both
SDF pulses is 120 µs. Red-dashed and green-dash-dot curves show the SDF
aligned along the squeezed and anti-squeezed quadratures. The blue trace is
for the SDF applied to a ground state cooled ion.

where t is the blue-sideband pulse duration, p(n) are the number state probabil-
ities for the motional state we concern, and γ is an empirical decay parameter
[Meekhof 96, Leibfried 03a]. In the results presented here we do not scale this
decay parameter with n as was done by [Meekhof 96]. We have also fitted
the data including such a scaling and see consistent results. The Rabi fre-
quency coupling |↓〉 |n〉 to |↑〉 |n+ 1〉 is Ωn,n+1 = Ω0| 〈n| eiη(â†+â ) |n+ 1〉 | =

Ω0e
−η2/2ηL1

n(η2)/
√
n+ 1. For small n, this scales as

√
n+ 1, but since the

states include significant populations at higher n we use the complete form
including the generalized Laguerre polynomial L1

n(x). The parameter b in the
first term accounts for a gradual pumping of population into the state |↑〉 |0〉
which is not involved in the dynamics of the blue-sideband pulse [Di Fidio 00,
Kienzler 15a]. This effect is negligible when p(0) is small.

After extracting p(n) from P (↓), we fit it using the number state probability
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Figure 7.8: Coherence of cat states with a magnetic field fluctuation
distribution: Assuming the magnetic field exhibits a 50-Hz sinusoidal pat-
tern with an amplitude of 2.2 mG, this plot shows the simulation results by
taking an average over 100 samples on the field distribution. a, The duration
of both SDF pulses is 60 µs. b, The duration of both SDF pulses is 120 µs.
Definitions of the curve specification are the same as Fig. 7.7.

distribution for the displaced-squeezed state [Gerry 05],

p(n) = κ
(1

2tanh r)n

n! cosh r
exp

[
−|α|2 − 1

2
(α∗2eiφs + α2e−iφs) tanh r

]
×∣∣∣∣Hn

[
α cosh r + α∗eiφssinh r√

eiφs sinh 2r

]∣∣∣∣2
where κ is a constant which accounts for the infidelity of the state during
the application of SDF and the Hn(x) are the Hermite polynomials. The
direction of the SDF is aligned along either the squeezing quadrature or the
anti-squeezing quadrature of the state. Therefore, we set arg(α) = 0 and fix
φs = 0 and π for fitting the data of the short axis and the long axis of the
squeezed state, respectively. This allows us to obtain the values of r and |α|
for the state we created. For the cases of smaller displacements (from Figs.
7.4(a) to (e)), we set κ = 1. For the data set of |α| ' 4.6 (Fig. 7.4(f)), κ is
a fitting parameter which gives us a value of 0.81± 0.1. We note that in this
case 4 % of the expected population lies above n = 29 but we are not able to
extract these populations from our data.
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The Mandel Q parameter [Mandel 79], defined as

Q =
〈(∆n)2〉 − 〈n〉

〈n〉
.

where 〈n〉 and 〈(∆n)2〉 are the mean and variance of the probability distri-
bution. For a displaced-squeezed state these are given by Caves [Caves 81]
as

〈(∆n)2〉 =
∣∣∣α cosh r − α∗eiφssinh r

∣∣∣2 + 2 cosh2r sinh2r,

〈n〉 = |α|2 + sinh2r.

These forms were used to produce the curves given in Fig. 7.5.

7.2.7 Possible Applications
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Figure 7.9: Possible application of using SWESs for interferometry: a,
Use of squeezed state wavepackets. b, Use of ground state wavepackets. The
first SDF pulse is used to create a spin-motion entangled state. In the middle,
a small phase shift ∆θ is induced by shot-to-shot fluctuation in the oscillator
frequency before the application of the second SDF pulse, which recombines
the two distinct oscillator wavepackets.
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7. Squeezed Schrödinger’s Cat States

These novel states present new possibilities both for metrology and for con-
tinuous variable quantum information. For the sensitive measurements, an
example is illustrated in Fig. 7.9 where we compare an interferometry experi-
ment involving the use of a SWES versus a more standard Schrödinger’s cat
state based on coherent states. In both cases the superposed states have a
separation of |2α| obtained using a SDF. For the SWES this force is aligned
along the squeezed quadrature of the state. The interferometer is closed by
inverting the initial SDF, resulting in a residual displacement which in the
ideal case is zero. One form of noise involves a shot-to-shot fluctuations in
the oscillator frequency. On each run of the experiment, this would result in a
small phase shift ∆θ arising between the two superposed motional states. As
a result, after the application of the second SDF pulse the residual displace-
ment would be αR = 2iα sin(∆θ/2), which corresponds to the states being
separated along the P axis in the rotating-frame phase space. The final state
of the system would then be |ψ(αR)〉 with a corresponding state overlap given
by X(αR, ξ). Therefore the contrast will be higher for the SWES (Fig. 7.9(a))
than for the coherent Schrödinger’s cat state (Fig. 7.9(b)) by a factor

exp
[
−2 |αR|2 (e−2r − 1)

]
.

While in our experiments other sources of noise dominate, in other systems
such oscillator dephasing may be more significant.

In quantum information with continuous variables, the computational basis
states are distinguishable because they are separated in phase space by |∆α|
and thus do not overlap [Weedbrook 12, Gottesman 01, Bartlett 02]. The deco-
herence times of such superpositions typically scale as 1/|∆α|2 [Turchette 00b].
The use of states squeezed along the displacement direction reduces the re-
quired displacement for a given overlap by er, increasing the resulting coher-
ence time by e2r which is a factor of 9 in our experiments. We therefore expect
these states to open up new possibilities for quantum state engineering and
control.
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Chapter 8

Summary and Outlook

8.1 Summary

This thesis described work towards development of a system for investigations
of quantum information science with two species of ion. In close collaboration
with Daniel Kienzler and Ben Keitch, the ion trap, optics and computer con-
trol systems were set up. A number of theoretical studies and experimental
characterizations of beryllium ions were performed. Quantum states of motion
such as coherent states, squeezed states, and displaced-squeezed states have
been generated by a new method [Kienzler 15a, Kienzler 15b], and also entan-
glement of the spin and squeezed motion of a single ion have been created
[Lo 15]. Both experiments were carried out with a single calcium ion.

The initial step of all the experiments is the design, setup, calibration, and
characterization. The major concern of the trapped-ion quantum processor
is the scalability. How to increase the number of qubits while maintain-
ing high-fidelity control of them has drawn many research groups’ attention.
The architecture for a large-scale ion-trap quantum computer [Kielpinski 02,
Wineland 98] requires linear ion crystals which are composed of two ion species
and moved in segmented trap arrays. Our segmented trap was designed
towards this goal, where there are three experimental zones, two zones for
splitting/combining/transporting ions, and two zones for loading (Chapter 4).
Other new features were added to our trap design, for example the segmented
shim electrodes are used in order to compensate the stray fields in different
regions of the trap. The imaging system was also designed for monitoring and
detecting two ion species simultaneously that increases the flexibility for the
complex experiments, for example two ion species gates or quantum simulation
of an open quantum system.

We also constructed and characterized all-solid-state continuous-wave laser
systems for photoionization loading, cooling and quantum state manipulation
of beryllium ions [Lo 14]. The wavelength required for photoionization of
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neutral beryllium atoms (235 nm) is created by two stages of second-harmonic
generation (SHG) using PPKTP and BBO nonlinear crystals placed inside
resonant cavities. In the first stage, we have demonstrated stable generation
of 400 mW at 470 nm starting from 560 mW at 940 nm. In the second stage,
with 140 mW input to the cavity, an output power of 28 mW at 235 nm is
obtained. For quantum control of beryllium ions, three laser wavelengths
at 313 nm are produced by sum-frequency generation and subsequent SHG,
starting from four infrared fiber lasers. Up to 7.2 W at 626 nm have been
generated from 8.5 W at 1051 nm and 8.3 W at 1551 nm. The red light is then
frequency-doubled in bowtie cavities using BBO crystals. With an incident
power of 3.8 W, we obtain 1.9 W of UV light at 313 nm, which may help in
the long-term goal of fault-tolerant quantum computation using stimulated
Raman transitions because the difficulties derived from the trade-off between
spontaneous scattering and quantum-gate speed can be overcome with high-
intensity laser beams.

For the characterization of ions, most of the calcium part have been covered
in [Kienzler 15b]. In this thesis, we performed some diagnostic experiments
for the beryllium ion. First, the readout error was analyzed by performing
the Rabi flops on different qubit states. We found that a high readout fidelity
can be achieved with shelving the dark state ion to another “darker” state.
Second, the optical pumping efficiency was optimized and compared with the
theoretical predictions. Third, with an axial vibrational frequency of 2.7 MHz
we found that 98 % ground state preparation (〈n〉 = 0.02) after optimization
of the resolved sideband cooling can be achieved. Fourth, we performed the
Ramsey experiment to examine the coherence of the qubit. For the magnetic-
field-sensitive qubit, the coherence time is approximately 105 µs without any
magnetic field stabilization. A coherence time of ≈ 1.5 s was observed for the
field-independent qubit. These results provide a basis for future work with
multiple ions.

The main problem we had was the micromotion of the ion. For controlling a
mixed-species ion chain, the micromotion compensation is an important task.
We use different techniques to minimize the micromotion for both calcium and
beryllium ions and to understand its behavior in our trap. Because calcium
and beryllium ion have different intrinsic micromotion amplitude, it is not
possible to use the same shim voltage setting to minimize their micromotion
along the direction of the probe field, which is at 45◦ with respect to the
axial direction. Using the RF tickle method, we could find an optimal shim
voltage setting for the calcium ion. Under this situation, the calcium ion
should be at the pseudopotential minimum. However, this optimal setting
is not for beryllium fluorescence detection due to the projection of intrinsic
micromotion on the probe field direction.

The calcium ion has lower intrinsic micromotion, which does not influence
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the fluorescence detection too much, so we just need to minimize the excess
micromotion by applying additional compensation fields. The main result
covered in this thesis is the generation of squeezed Schrödinger’s cat states.
This novel quantum state is created for the first time. These relied on newly
developed techniques, dissipative quantum state preparation. Artificial dissi-
pation for the qubit is introduced to create an efficient irreversible damping
channel for the ion’s energy. By engineering the spin-oscillator coupling, this
results in effective relaxation of the motional state of the ion. This engi-
neered damping processes keep the final state, which is the steady state of the
dynamics, protected from other unwanted relaxation mechanisms. Using this
technique we were able to prepare the coherent, the squeezed vacuum, and the
displaced-squeezed states for an ion’s motion. This toolbox for generating and
protecting quantum harmonic oscillator states is transferrable to any physical
system and may facilitate quantum computation with continuous variables
[Gottesman 01].

In the second experiment based on the previous one, we demonstrated superpo-
sitions composed of squeezed wavepackets, which we generated by applying an
internal-state dependent force to a single trapped ion initialized in a squeezed
vacuum state with 9 dB reduction in the quadrature variance. This allowed
us to characterize the initial squeezed wavepacket by monitoring the onset of
spin-motion entanglement, and to verify the evolution of the number states
of the oscillator as a function of the duration of the force. In both cases, we
observed clear differences between displacements aligned with the squeezed
and anti-squeezed axes. We observed coherent revivals when inverting the
state-dependent force after separating the wavepackets by more than 19 times
the ground state root-mean-square extent, which corresponds to 56 times the
r.m.s. extent of the squeezed wavepacket along the displacement direction.
Aside from their fundamental nature, these states may be useful for quantum
metrology [Munro 02], quantum state engineering, or quantum information
processing [Weedbrook 12, Gottesman 01, Bartlett 02] in a new regime.

8.2 Outlook

Using the system that has been built, there are still plenty of interesting
experiments we can do. Here some ongoing and upcoming experiments are
listed:

The first one is the transport gate [Leibfried 07]. Typically quantum gate oper-
ations are implemented by shining laser pulses to the ions, which are statically
in space. The other way around, one can also keep the laser on at certain place
and transport the ions through it. For a large-scale trapped-ion quantum pro-
cessor, a big advantage of the transport gate scheme is that the complexity of
the laser systems could be significantly reduced. It may also allow for efficient
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use of one and the same laser beam in many parallel operations. Recently, we
demonstrated single-qubit gate operations as well as the Ramsey experiment
using transported calcium and beryllium ions individually [de Clercq 15]. The
two-qubit transport gates will be the next.

The second experiment we will pursue is relevant to quantum simulation of
an open quantum system. In the beginning we will start from a small-scale
quantum system, consisting of one beryllium ion and one calcium ion. The
quantum system is provided by the internal degree of freedom of beryllium
ion which we will couple to the motional degree of freedom represent the
environment, continuously damped the calcium ion. The motional degree of
freedom of beryllium ion is controlled by the calcium ion because the motional
states of two ions in the same trap are shared. For quantum simulations,
the ability to scatter photons from one “environment” ion (calcium) while
preserving internal states of the other “system” ion (beryllium) may allow us
to engineer controlled environments consisting of either the shared motional
states, or of the internal states of the “environment” ion species.

One possibility is to continuously cool the calcium ion, and simultaneously
couple the beryllium to the motion using either a Mølmer-Sørensen type cou-
pling or a Jaynes-Cummings interaction. This should lead to decoherence of
a qubit stored in the beryllium ion. The idea here is that we should be able
to vary the cooling (damping) rate of the environment and the coupling of the
beryllium ion to this environment in order to observe the transition between
Markovian and non-Markovian quantum dynamics. This means that one is
able to control the information flow between the system and the environment.
If the damping rate of the motional mode is made much smaller than the
coupling rate, the open quantum system will be in the non-Markovian regime,
meaning that the motion remembers the ion coupling to the quantum system.
By contrast, if the damping rate of the motional mode is larger than the cou-
pling rate, it induces Markovian processes in which the motion rapidly loses
information about the system-environment interaction. Many measures for
the degree of non-Markovian behavior of quantum processes in open systems
have been proposed [Wolf 08, Breuer 09, Rivas 10]. In our case, we still have
to investigate in detail how to measure the degree of non-Markovianity for the
beryllium spin.

The same techniques used in this experiment could be applied to an implemen-
tation of two-qubit gates using different atomic species [Ballance 15]. Perform-
ing an entangling gate on two species of ions is of interest for several reasons.
For trapped ion quantum repeaters made up of communication qubits and
memory qubits, the entanglement between the communication qubits from
two separate registers are created via the photonic channel, and then the
quantum information within the communication qubits is coherently mapped
to the memory qubits using standard entangling gate operations [Monroe 13].

162



8.2. Outlook

However, the communication qubits need to be well isolated from the mem-
ory qubits because the scattering light from the excitation laser acting on
the communication qubits might destroy the information stored in memory
qubits. The best solution might be to use two different ion species to avoid
the crosstalk. Even for quantum computation which does not necessarily re-
quire remote entanglement, the two species quantum gates are still useful in
the error correction codes, where we need entanglement between the primary
qubit with ancilla qubits, which are then measured by state-dependent fluores-
cence [Chiaverini 04]. For the same concern, the scattering light or the emitted
photons when performing the measurement on the ancilla qubits might disturb
the primary qubit. Therefore, using two atomic species can benefit the fidelity
of quantum operations.

The third future experiment is to measure the Wigner function of Schrödinger’s
cat states. So far all experiments on Schrödinger’s cat states performed us-
ing trapped ions have involved entanglement between the oscillator state and
the internal electronic states of the ion. The wavefunction has the form of
|ψ〉 = 1√

2
(|+〉 |α〉 − |−〉 |−α〉), where |±〉 are the eigenstates of σ̂x Pauli ma-

trix, and |±α〉 are the coherent states displaced to different directions. In
order to observe interference fringes characteristic of a quantum superposition
in the Wigner tomography [Deleglise 08, Vlastakis 13], the wavefunction writ-
ten in the σ̂z basis is |ψ〉 = 1

2 [|↑〉 (|α〉 − |−α〉) + |↓〉 (|α〉+ |−α〉)]. In principle,
we can decouple the motion from the spin by measurement. When we perform
a projective measurement on |↓〉, depending on whether we detect photons or
not we know the corresponding cat state. We can post select the events with-
out photon scattering, which means the cat is still alive, and then perform the
state tomography to reconstruct the Wigner function for the motional state.

The fourth experiment we plan to perform would be the use of a single beryl-
lium ion “qubit” interacting with an environment of calcium spins, which
with appropriate couplings could realize a spin-bath model [Prokofiev 00]. Al-
ternatively, interactions between the beryllium qubit and multiple motional
modes may be used to realize spin-boson physics [Porras 08]. Other areas of
investigation include the use of engineered environments for quantum state en-
gineering, for example multi-mode squeezed state preparation [Kienzler 15b]
and stabilizing Schrödinger’s cat states [de Matos Filho 96, Roy 15].

163





Appendix A

Matrix Elements for the
Electric-Quadrupole Interaction

As mentioned in Chapter 2.2, here shows the starting point how to obtain the
matrix elements for the electric-quadrupole interaction. The (I ·J)2 term in
Eq. (2.4) can be simplified as

(I ·J)2 = (IzJz)
2 +

1

2
(IzJz)(I+J− + I−J+) +

1

2
(I+J− + I−J+)(IzJz)

+
1

4
(I+J−)2 +

1

4
(I−J+)4 +

1

4
(I+I−J−J+) +

1

4
(I−I+J+J−)

To calculate the matrix elements, one can use the following relations

J±|J mJ〉 = ~
√

(J ±mJ + 1)(J ∓mJ)|J mJ ± 1〉
I±|I mI〉 = ~

√
(I ±mI + 1)(I ∓mI)|I mI ± 1〉
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Appendix B

Lens Data

Table B.1: The data of the lenses in the imaging system are provided. d is
the distance from the current surface to the next one.

Surface number Radius of curvature (mm) d 313 nm path (mm) d 397 nm path (mm)

Object (ion) Inf 30.918 30.918
1 Inf 5.985 5.985
2 -60.491 9.4 9.4
3 -29.501 0.223 0.223
4 -128.613 3.35 3.35
5 Inf 2.298 2.298
6 -117.496 7.2 7.2
7 -56.446 0.339 0.339
8 -290.973 6.25 6.25
9 -80.576 0.966 0.966
10 311.817 14 14
11 -118.789 0.5 0.5
12 Inf 42.038 42.038
13 Inf 6.35 6.35
14 Inf 650.602 697.495
15 -13.333 3 8.8
16 -19.66 30.398 60.211
17 11.657 6.6 6.6
18 9.934 180.751 98.244

Image (camera or PMT) Inf
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B. Lens Data
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Figure B.1: The lens layouts. The in-vacuum objective is common for beryl-
lium (313 nm) and calcium (397 nm) ions. Outside the vacuum, there is one
lens pair in each path.
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Appendix C

Second-Harmonic-Generation
Efficiency

Here we give the expressions used for the theoretical calculation of the second-
harmonic-generation efficiencies plotted in Figs. 5.4, 5.6 and 5.12. The values
for the relevant parameters are given in Table C.1.

We start from the original equations from Boyd and Kleinman [Boyd 68] and
rearrange them to formulate the conversion efficiency (in SI units [Risk 03])
as

Γeff =
P2ω

P 2
ω

=
16π2d2

eff

λ3ε0cnωn2ω
lce
−
(
βω+

β2ω
2
lc
)
× h(b, lc, βω, β2ω, σ, B) (C.1)

Here, P2ω is the SHG power and Pω the power in the fundamental wavelength
at the crystal (the circulating power if a cavity is used); deff is an effective
non-linear coefficient in units of m ·V−1 (related but not identical to parame-
ter d in [Boyd 68]); ε0 and c are the vacuum permittivity and speed of light,
respectively; λ is the pump wavelength, lc the crystal length, βω (β2ω) the ab-
sorption coefficient of the fundamental (second harmonic) light in the crystal,
and nω (n2ω) the refractive index of the crystal sampled by the light in the
fundamental (second harmonic) wavelength.

h is a dimensionless function which depends on lc, βω, β2ω, the confocal param-
eter b = 2πnωw

2/λ (where w is the waist radius of the pump beam, assumed
to be at the center of the crystal), the wavevector mismatch σ (scaled by b)
and the walk-off parameter B = ρ(θ, λ)

√
πlcnω/(2λ) where θ is the phase-

matching angle and

ρ(θ, λ) = arctan

 1−
(
no,2ω

ne,2ω

)2

cot θ +
(
no,2ω

ne,2ω

)2
tan θ

 (C.2)
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C. Second-Harmonic-Generation Efficiency

no,2ω (ne,2ω) is the refractive index for the second-harmonic light along the
ordinary (extraordinary) crystal axis.

The explicit expression for h is,

h =
1

4ξ

∫ ξ

−ξ
dτ ′
∫ ξ

−ξ
dτ

1

(1 + iτ)(1− iτ ′)
×

exp

{
− b

2

(
βω −

β2ω

2

)
(τ + τ ′) + iσ(τ − τ ′)− B2

ξ
(τ − τ ′)2

}
with ξ = lc/b.

In a cavity the relation between the circulating power Pω and the fundamental
power Pω,0 pumped into it is given by [Targat 05]

Pω
Pω,0

=
T1(

1−
√

(1− T1)(1− ε)(1− (Γeff + Γabs)Pω)
)2 (C.3)

where T1 is the transmission of the in-coupling mirror, ε the round-trip loss in
the cavity (excluding frequency conversion) and Γabs the absorption efficiency
of the frequency-doubled light. If this absorption takes place only in the crystal
and we consider the limit that frequency conversion occurs exclusively in its
center, we can make the approximation

Γabs ≈ Γeff

(
eβ2ωlc/2 − 1

)
(C.4)

The power ratio given in Figs. 5.4, 5.6 and 5.12 is the ratio between the
net power of the second-harmonic light at the output of the doubling cavity
P2ω,out and the fundamental power at the cavity input:

ηλ ≡
P2ω,out

Pω,0
=
P2ω(1−R2ω)

Pω,0
=
P 2
ωΓeff(1−R2ω)

Pω,0
(C.5)

where R2ω is the reflection of the second-harmonic light at the output surface
of the crystal. For the case of QPM in PPKTP and PPLN the second-harmonic
light propagates perpendicularly to the surface, so there is no reflection. How-
ever, in the 470→235 nm and 626→313 nm cavities, the incidence is not nor-
mal to the (Brewster-cut) surface and the polarization of the second-harmonic
light is along the vertical direction, so R2ω > 0 and not all the power gener-
ated in the doubled frequency is available at the cavity output. Equation (C.5)
can be solved with the expressions above given the cavity-related parameters
T1, ε and w; the crystal parameters lc, deff , nω,2ω, βω,2ω and R2ω; the phase-
matching parameters σ and θ; and the properties of the light matched into
the cavity, λ and Pω,0.
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Table C.1: Values used for calculating the expected conversion efficiency from
the frequency-doubling cavities. deff is the effective non-linear coefficient of
the crystals (for BBO, see Castech Inc. BBO Product information (2013).
http://www.castech.com). Perfect phase matching is assumed in all cases, no
absorption inside the BBO crystals and no walk-off inside the PPKTP.

940→470 nm 470→235 nm 626→313 nm

lc 30 mm 10 mm 10 mm
deff 9.5 pm/V 1.45 pm/V 2.08 pm/V

nω/n2ω 1.8361/1.9149 1.6810/1.6408 1.6676/1.5888
w 50 µm 17.9 µm 20.7 µm

βω/β2ω 0.3/14 m−1 0 0
R2ω 0 22 % 20 %
σ 0 0 0
B 0 18.9 16.4
ε 2 % 0.7 % 0.9 %
T1 14.5 % 0.9 % 1.6 %
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