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Abstract

The increased popularity of online social networks and globalised Inter-
net access have affected the way people share content. The information
that users willingly share in these websites can be used for various
purposes, from building consumer models for advertising, to inferring
personal information that could be invasive.

In this thesis, we use Twitter and Instagram timelines to infer which
venue types the user frequents. We show that for some venue types,
there is a specific vocabulary associated to these venues.

In order to study the information leak that occurs in these social net-
works, we present an information score function which estimates the
informative value contained in a shared content item, with respect to
an inference task. This measure is validated using a framework which
actively chooses content with a high information score. We show that
by doing this, we can, in some cases, attain a better performance in the
inference task than when using the full timeline of the user.
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Chapter 1

Introduction

User privacy has been a topic that increasingly gained traction with the rise
of online social networks (OSNs). In 2011, the World Economic Forum set
out on a multiyear project to study the nature and impact of private personal
data.

Recent successful initial public offerings (IPOs) and high market valuations
underline the value of OSNs. However, the relation between the number of
registered users, their activities online, and these valuations is not entirely
clear. Furthermore, although the value of personal data is well accepted,
there have not been many studies which concretely assign a tangible com-
mercial value to social profiles.

It has been shown in several studies that user characteristics, such as per-
sonal traits [11] or future route intentions [15], can be inferred from their
profiles in online social networks.

In this thesis, we use profiles from different OSNs to infer which types of
venues a user is likely to visit. With this, we aim to study three fundamental
questions:

1. Does adding several profiles from different OSNs give a more accurate
representation of the user?

2. Can we quantify the amount of information that a piece of shared
content carries, with respect to a concrete inference task?

3. Can we provide an estimate of the value of a user’s profile for the
social network it belongs to?

1



1. Introduction

1.1 Background information

1.1.1 Social networks

Online social networks are platforms or websites which allow users to com-
municate, connect with other users and share content. While originally
OSNs focused on the first two aforementioned aspects, nowadays the term
OSN also includes platforms which are primarily user-centric, where users
can broadcast personal thoughts and content.

With the increased popularity of OSNs, their impact on the user online pres-
ence is visible. In 2010, [12] find that online social networks are among the
top visited websites for a large population of users.

Thus, due to their prevalence and abundance in personal content, OSNs can
be used to study how human society behaves at a large scale [13].

A description of the OSNs used in this thesis follows.

Twitter

Twitter is a microblogging platform. It is currently ranked as the 2nd largest
OSN, with approximately 310 million active users monthly [4].

The main content of Twitter comes in tweets, which are posts limited to 140
characters. These can contain text, media (video or images), links to external
websites, references to other users and hashtags (words starting with # which
are used to mark keywords or topics in a tweet). The collection of a user’s
tweets is called a timeline. In addition to the user’s timeline, there is also a
(optional) description of the user, a user profile picture, list of followers and
a list of users that the user follows.

Instagram

Instagram is a photo sharing platform. It is currently ranked as the 7th

largest OSN, with an estimated 100 million active users monthly [4].

The main content type of Instagram are photos or videos that the user can
post. In addition to the photo, the user can add a textual description and
share these posts on other OSNs.

Foursquare

Foursquare is a location service platform. Its community is comprised of
more than 55 million users worldwide [6].

The main content of Foursquare are check-ins. Check-ins correspond to
venues that the user has visited. In addition to the venue name, there is
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1.2. Motivation

more information available, such as location and venue type. With nearly
500 types of venues, these can range from specific restaurant types to out-
door places.

1.1.2 eCommerce and advertisement

Given the pervasive nature of the Internet in everyday life, advertising also
started shifting from traditional channels - such as newspapers or television,
to the online medium.

Websites sell advertisement spots to businesses. Adwords by Google, or Ya-
hoo!Advertising by Yahoo! are examples of such services. These platforms
offer different packages for businesses. For instance, in the context of search-
ing through these web search services, businesses can buy certain keywords
to which their websites will be shown first in the results page.

Twitter Ads is an advertising platform which allows businesses to advertise
within the Twitter platform. A business interested in starting an advertising
campaign on Twitter can choose a tailored advertising package based on
their campaign objective. This could be gaining followers, website clicks
and conversions, tweet engagement, etc... [21].

For the objective of Website clicks and conversions, Twitter Ads offers the
the possibility to target Twitter users in several ways: user interests, keywords,
followers and television interests.

Pricing models

The way advertising platforms generate revenue is by selling the advertise-
ment spots. There are three main pricing models for online display advertis-
ing, which are introduced below [26]:

• Cost-per-click (CPC): the pricing model is based on the number of
times the advertisement (ad) is clicked.

• Cost-per-action (CPA): the pricing model is based on the number of
specific actions performed by the user (e.g. purchases, filling a form,
etc.) which are directly linked to the advertisement.

• Cost-per-impression (CPI): the pricing model is based on the number
of users who view the ad.

1.2 Motivation

Motivating the first research question, we want to understand whether users
in certain OSNs are more prone to share personal content than in other
OSNs.
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1. Introduction

Secondly, we want to study how much information about the user is un-
intentionally being exposed through shared content. For example, in the
context of venue type visits, if a user shares a venue check-in, it is relatively
easy to infer, algorithmically, which venue types the user has visited. How-
ever, if the user shares some content without explicitly mentioning a place,
as shown in Figure 1.1, it might still contain information about a potential
behaviour or visit intention.

In particular, we want to understand whether there is a certain vocabulary
on a user’s Twitter and Instagram timelines which are related to visits to
certain venue types.

Third, we want to study the possibility of, programmatically, finding the
content which contains the highest information value for a given task, within
the timeline of a user.

As an example, consider two tweets from the same user:

a) Lol should start heading to the gym #fitness

b) Great sunny day!

It it clear that tweet a) provides us more information about the user’s intent
of visiting a venue than tweet b).

Thus, it is our objective to build a score function which will give an informa-
tion score to a shared content item. From the example before, we expect this
measure to give a higher score to example a) than example b) in the task of
inferring ”Does the user visit the gym?”.

Finally, having established such a score function, the next objective is to
provide an estimate of how much information a user is giving away by
sharing content which is seemingly void of commercial value. In order to
do this, we attribute an estimated monetary value to a user’s timeline on
a hosting online social network, which is given by whether content can be
effectively advertised to the user, given their online foot-print.

Figure 1.1: Tweet expressing user’s habits or lifestyle.
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1.3. Problem statement

1.3 Problem statement

1.3.1 Cross OSN inference

To gauge how much information can be obtained on habits or lifestyle
of users through their online footprint, we look at whether it is possible
to predict venue type visits of a user, which are logged on Foursquare,
given their Twitter or Instagram feed. Let V be the set of venue types we
want to predict and U a set of users. Assume we have a set of functions
{ fA}A∈V , fA : U → {0, 1} which are defined in the following way:

fA(u ∈ U ) =
{

1 if user has visited A
0 if user has not visited A.

We then use the user’s OSN timelines to infer these functions.

1.3.2 Information content

The second problem we are concerned with is understanding the informa-
tion content of a single post from the timeline of a user. Intuitively, we
expect some posts to give more information about the user, with respect to
a certain inference task. First, we test this hypothesis by making venue type
predictions on the user’s incomplete timeline. As we add information about
the user, we expect the prediction’s accuracy to increase.

We then find a function which, given a post and the inference task at hand,
can return an information score of the post. We validate the usefulness of
this score by measuring the classifier’s performance increase in the inference
task over random post sampling.

1.4 Thesis goals and contributions

A summary of the key contributions of this thesis follows:

• Novel data set: Due to the nature of the problem, there was no data
set publicly available that fitted our needs. We assemble the data set
from scratch which contains profiles of the same user across different
OSNs. To our knowledge, a data set of this type has not been publicly
released in the past.

• Cross OSN inference: We study the effects of using user information
from more than one social network to better model the user.

• Content information score: We formulate a score function to quantify
the value of shared content, from the perspective of improving the per-
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1. Introduction

formance in the inference task and providing new information about
the user and present an evaluation method.

1.5 Outline

The remainder of this thesis is structured as follows:

In Chapter 2, we present related work to this thesis. In particular, we de-
scribe various contributions in social network inference and cross social net-
work modelling, as well as some basic theoretical background.

In Chapter 3, we present the methods used in this thesis. Firstly, the cross
network inference task is formalized. Secondly, we formulate the informa-
tion score function and present the evaluation framework to validate this
measure. Thirdly, we propose a simple pricing model for the user profile,
derived from pricing models in advertising.

In Chapter 4, the data set collection procedure is described and a description
of the data set used throughout the experiments is provided.

In Chapter 5, the results of the experiments are presented.

Finally, in Chapter 6, the main conclusions of this thesis and future work is
discussed.
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Chapter 2

Literature review

In this chapter we present an overview of different research efforts that fall
under the area of this thesis and a provide a short introduction to mathemat-
ical methods which will be used throughout the thesis.

2.1 Inferring OSN user behaviour

With the emergence of the field of Computational Social Science, many sci-
entists have looked at OSNs as a primary source for human data.

We observe that commonly, authors have limited their study to a single so-
cial network. There is a vast amount of papers which study the information
content contained in user profiles in different OSNs. For example, in [8] and
[18], the authors use Twitter to predict the personality of users in the light
of the Big Five personality model. The features used in both papers were not
derived from the content of the tweets but from metrics such as number of
followers and following, number of mentions, number of hashtags, etc...

In [11], the authors correlate Facebook likes to personality traits, again us-
ing the Big Five personality model, as well as other sensitive personal at-
tributes such as sexual orientation, ethnicity, religious and political views,
intelligence, and so on. Instagram has not been featured much in academic
research yet, but some attempts to understand its contents and user types
are presented in [9].

From the perspective of studying cross-OSN user behaviour, the authors in
[5] study the macro-scale patterns of activity across Twitter and Pinterest1,
in particular, how users distribute their activity across the sites and the dis-
semination of content from one site to another.

1Pinterest is another OSN which primarily allows users to ”pin” media content, such as
videos, images and so on, to their pin board and serves as a content aggregator.
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2. Literature review

2.2 Background in methods

In this section, a short introduction of concepts is provided for the sake of
completeness.

2.2.1 Classification

Given an input set X and a set K = {k j}w
j=1 of classes, the goal of classifica-

tion is to assign an input element x ∈ X to a class k j, based on a training set
of data containing elements whose class membership is known.

A concrete implementation of an algorithm which performs classification
is known as a classifier. Formally, a trained classifier can be defined as
C : X → {k1, ..., kw}, a function that maps input data X to a class in K.

The particular choice of a concrete classifier is often dependent on the type
of input data and problem to be solved. A good source for more information
is [2].

2.2.2 Vector space models

A vector space model is an algebraic model commonly used in Information
Retrieval (IR) tasks, where text documents and queries are represented as
vectors in the term space. The basis of this vector space is given by a set of
terms.

Formally, let V be a vector space in Rn and T = {t1, ..., tn} be a set of linearly
independent vectors in V. A document D can be represented by the vector
(w1, w2, ..., wn), where a weight wi is related to whether the ith term appears
or not in document D.

There are several ways to compute the weights wi. One of the most used
ways is the term frequency inverse document frequency (TF-IDF) weighting.
More information about this can be found in [16].

Curating the term vocabulary

It is often the case that some sort of curation is performed in the raw term vo-
cabulary to determine the appropriate term vocabulary. The most common
methods are the following:

• Stop Word removal: removes words which are too common in the
language and thus, have little discriminating value (e.g. a, an, and, the,
to, with...);

• Normalization: maps words which point to the same concept but
might have different spelling (e.g. anti-discriminatory, antidiscrimi-
natory→ antidiscriminatory);

8



2.2. Background in methods

• Case folding: reduces all letters to lower case (e.g. Ferrari→ ferrari);

• Stemming: reduces inflected (or sometimes derived) words to their
word stem, base or root form using a heuristic. This does not guarantee
that the word stem is a word (e.g. cats→ cat, ponies→ poni);

• Lemmatization: groups together different inflected forms of a word
using a vocabulary and morphological analysis of words (e.g. cats →
cat, ponies→ pony). A popular corpus for lemmatization is WordNet
[23].

2.2.3 Balancing unbalanced data sets

When applying machine learning algorithms to real world problems, it is
often to encounter problems where the classes of labels are not balanced,
i.e. some classes occur much less frequently than others. This becomes a
problem because traditional performance measures, such as accuracy, do
not represent the real performance of the classifier. Consider a unbalanced
problem where 98% of the examples belong to class A and only 2% to class
B. The classifier’s accuracy would be 98% by just predicting class A in all
examples [1].

When dealing with imbalanced data sets, sampling techniques have been
used to counter the effect of these data sets. There are two ways to sample:

• Under-sampling the majority class

• Over-sampling the minority class

While random oversampling can sometimes cause over-fitting, under-sampling
can remove important examples from the data set. In survey [10], the author
notes that there is no major improvement when using more sophisticated
methods to over-sample the majority class (or under-sample the minority
class) over randomly selecting elements to duplicate (or remove). However,
there were no methods which introduced artificial data (such as SMOTE) in
the evaluation.
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Chapter 3

Methods

The methods used in the thesis are presented in this chapter. In Section 3.1,
the method to perform cross OSN inference is described. In Section 3.2 we
describe the methodology used to quantify information in shared content
items, construct the information score function and propose the evaluation
method. In Section 3.3 we describe a simple pricing model for a social pro-
file, based on advertising pricing models. The methods for data set creation
are outlined in Chapter 4.

3.1 Cross OSN inference

In this section, we describe the method to perform cross OSN inference,
where we use different OSNs (separately or in groups) to quantify the dif-
ferences between the types of content shared, in the task of predicting user
visits to different types of venues.

Let U be a set of users. A user is determined by the set of his profiles on
q considered OSNs. However, because in practice we only work with the
timelines of these OSN profiles, we can define a user u by the set of his q
associated timelines (on the considered OSNs), thus: u = {Su

k }
q
k=1. When the

user we are referring to is obvious from the context, we drop the over-script
notation.

In this thesis, we use the set of posts from these profiles to estimate the
probability of user u visiting venue A given a set of posts M. This probability
is denoted by pu(A|M), where A is ”user u visits venue type A” and M is a
set of posts from user u.

We use a binary classifier for this classification task of predicting if user goes
to venue type A or not. The features are extracted from the timelines. Time-
lines can be seen as a text containing posts as sentences. We map these texts
to a vector space model and use a TD-IDF representation. The TD-IDF term
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3. Methods

vocabulary is, in principle, generated from terms of all the timelines. We
use the AdaBoost algorithm with decision trees as weak learners as our clas-
sifier, because it generally works well without much parameter adjustment
[3]. The classifier is trained on the timelines of a subset of users and tested
on the remaining users’ timelines. The classifier’s performance is evaluated
under 10 fold cross-validation. Let C denote the trained classifier as this will
be used further on.

We compare a classifier’s performance, when trained on one single OSN at
a time and when trained using all timelines across all considered OSNs, i.e.⋃q

k=1 Sk.

To evaluate the classifier’s performance when using data from different
OSNs, we use the Wilcoxon Signed-Rank test, a non-parametric test for
paired samples, to test whether there are significant differences in the classi-
fier’s performance. We can do this because we fix the cross-validation folds
before we choose which OSN (or set of OSNs) to be used in the classifier’s
training and testing phases.

3.2 Measuring information content

The second objective of this thesis is to find a function which quantifies the
information content in a post. The information contained in a post can be
modelled in two ways:

• Relevance of the post with respect to the inference task;

• Novelty of the post with respect to the user’s previously seen content.

We want to model these two distinct quantities: relevance of a post as being
dependent on the current post and on a trained classifier, and novelty of the
post, which depends only on the current post and on the previously seen
posts.

We model the information content as a convex combination between these
two quantities, thus introducing a modelling parameter λ ∈ [0, 1]. Let us
define the information score function I : Rn × Rn × C → R+, where n
denotes the dimension of the feature space and C a trained classifier.

I(post, user timeline, classifier) = λ novelty(post, user timeline)
+ (1− λ) relevance(post, classifier)

(3.1)

As expected, I depends on a current post, previously seen posts and a clas-
sifier C.

12



3.2. Measuring information content

3.2.1 Novelty

For a fixed user u ∈ U , let ~s1, ~s2 ∈ Rn be the vector of features of shared
content s1, s2 ∈ Su

k , user u’s timeline in one the considered OSNs. ~s1,~s2 ∈ Rn

can be, for instance, elements of a vector space model.

Informally, the function novelty : Rn ×Rn → R+ for shared content items~s
should have the following properties:

1. Two elements should have novelty 0 if one is contained in the other.

2. Two elements should have small novelty if they are similar.

3. Two elements should have high novelty if they are very distinct.

The cosine distance is a standard measure for document dissimilarity in
Information Retrieval. It is defined as follows:

cosine distance = 1− ~s1 · ~s2

‖~s1‖‖~s2‖
(3.2)

For two vectors ~s1, ~s2 belonging to a normed vector space, it returns 1 −
cos(ω) where ω is the angle between the two vectors. Although it fulfils (2)
and (3), (1) is left unfulfilled, which is important for our novelty score.

The proposed function to measure novelty is the following: Let ν: Rn ×
Rn → R+, be a non-symmetric function defined by:

ν(~s1, ~s2) =

n
∑

i=1
1[s1,i 6= s2,i ∧ s2,i = 1]

n
∑

i=1
1[s2,i 6= 0]

(3.3)

This function compares vector ~s2 to ~s1 and provides the percentage of dimen-
sions which are non-zero in ~s2 but zero in ~s1. This models the new terms
appearing from ~s2 over ~s1 if these belong to a vector space model.

3.2.2 Relevance

Measuring the relevance of shared content can be thought of as finding
out which shared content contains features (in our case, words) that are
important for the classifier.

In ensemble methods, where decision trees are used as the base classifiers,
a function which is often used to describe feature importance is the Gini
Importance (Ig).

13



3. Methods

In the next paragraphs, we will provide an intuition of how the Gini Impor-
tance is calculated. For a more formal treatment of this topic, we refer to
[20] and [17].

Let us consider an ensemble method with trees as base classifiers. For a
node τ, the impurity of τ measures how well classes are separated. Ideally,
all examples in a node should belong to the same class, i.e impurity would
be zero for this node.

A measure of impurity is the Gini Impurity i(τ). For a feature θ and the node
split threshold tθ on the variable θ, we can calculate the decrease in Gini
Impurity ∆i(τ). The classifier aims to find the pairs (θ, tθ) which minimize
∆i(τ). The decrease in Gini Impurity given θ, a node τ and a tree T is
∆iθ

(τ, T). The Gini Importance for a feature θ is thus given by:

Ig(θ) = ∑
T

∑
τ

∆iθ
(τ, T). (3.4)

The Gini Importance indicates how often a particular feature θ was selected
for a split, and how large its overall discriminative value was for a particular
classification problem.

In this work, we estimate the relevance of a post by summing up the Gini
Importances of the words contained in a post:

relevance(post) = ∑
θ∈post

Ig(θ) (3.5)

3.2.3 Evaluation method

In this section we set up the framework to evaluate the information score
function introduced above.

Given a user u ∈ U , we produce an estimate of the probability of u visiting
venue type A, as in Section 3.1, given a subset of posts M ⊆ ⋃q

k=1 Sk of his
timelines, denoted as pu(A|M). We emphasize that M does not necessarily
contain the entire timeline Sk.

We train a classifier as described in Section 3.1. For every test user u, we
initiate the procedure by randomly sampling ni posts from his timeline Sk
of length nk

l and create the truncated timeline. Then, at each iteration, we
sample a constant number d of posts from his timeline, add them to the
truncated timeline and make a prediction using truncated timeline1. We it-
erate this process until user u has no more posts left (or until the truncated

1Rigorously speaking, we convert the truncated timeline to a TF-IDF representation first
before we use it to make a prediction.

14



3.3. Pricing model

timeline reaches a fixed amount of posts). Thus, we obtain an ordered se-
quence of predictions: (y0, y1, ..., ynend), where nend represents the number of
iterations. If d = 1, i.e. we add one post at a time, then nend = nk

l − ni (if we
add all posts).

An example code is shown in Algorithm 1.

Algorithm 1 Evaluation method

1: function Evaluation method(classi f ier, user, ni)
2: timeline← user’s timeline
3: truncated timeline← RandomlySample(timeline, ni)
4: y0 ← classifier.predict(truncated timeline)
5: remaining posts← timeline \ truncated timeline
6: while remaining posts > 0 do
7: post← Sample(remaining posts, d)
8: remaining posts← remaining posts \ post
9: truncated timeline← truncated timeline ∪ post

10: yi ← classifier.predict(truncated timeline)
11: i← i + 1
12: end while
13: return (y1, y2, ..., ynend)
14: end function

We evaluate the performance of the information score by defining a sam-
pling function which samples posts with higher information scores and com-
pare the classifier’s performance to when we randomly sample posts.

For simplicity, assume we fix k i.e. we fix the OSN we are considering,
we add 1 post per iteration and we start with 0 initial posts. Because users
might have different timeline lengths, we average the results in the following
way: the maximum timeline length nlmax is calculated. Then, for each user
whose timeline is shorter than nlmax , we duplicate the last prediction ynend

and generate a sequence of predictions of length nlmax for each user.

3.3 Pricing model

In this section we propose a pricing model to estimate a commercial value
of a profile to its hosting OSN.

One way online social networks generate revenue is by selling advertise-
ment spots to businesses. The typical models to price advertisement cam-
paigns are the following: Cost-Per-Impression (CPI), Cost-Per-Click (CPC)
and Cost-Per-Action (CPA). In the CPI billing system, businesses are charged
every time the ad is viewed by a user, whereas in the CPC/CPA billing sys-
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tem, the business is only charged when the user interacts with an ad (e.g.
clicks or performs an action).

Traditionally, research has focused on estimating the revenue that these ad-
vertising platforms can generate. In this thesis we are interested in estimat-
ing the value of a particular profile with respect to its hosting OSN, based
on the revenue the OSN makes on advertising materials to their users.

For the CPI billing system, estimating the value of a profile with respect to
its hosting OSN is relatively simple:

E[profile value] = p(user sees ad) · CPIad

Where CPIad is the agreed price between service and business and p(user sees ad)
is given by the probability of the user seeing the ad: 1

# of users .

For the CPC/CPA billing system, the expected revenue for the OSN for an
ad is given by E[revenue] = pad(click) ·CPCad. We can use this to define the
quantity which we are interested in: E[profile value] = pad(click) · CPCad
(or as a proportion of E[revenue]). Instead of estimating pad(click) using a
Click-Through-Rate, which is usually dependent on ad properties [19], we
can estimate pad(click) per user, based on their online foot-print.

For venue type related advertisements, for example, for a particular type of
restaurant or sports facility, we can obtain an estimate of the user’s interests
based on the probability of the user visiting certain venue types, using the
classifiers built previously. We use the estimated probability defined earlier,
pu as a proxy for probability of interest and thus, of clicking on a related ad.
We propose that pad(click) = αpu(Y|B), where Y denotes ’user visits related
venue type’ and B a set of posts by the user. Thus, yielding:

E[profile value] = α1 pu(Y|B) · CPCad

E[profile value] = α2 pu(Y|B) · CPAad.

α1, α2 ∈ [0, 1] can be thought of how much we trust on this proxy probability
pu(Y|B).

Some efforts have been made towards compensating users due to their pri-
vacy loss [14]. While our proposed model does not take privacy loss into
consideration, this idea is discussed in Chapter 6, Section 6.1
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Chapter 4

Data set

In this chapter, the method to create the data set is described, insights from
the collected data set are given and how we use the data collected is ex-
plained.

4.1 Data set creation

Due to the nature of our task, it is necessary to use a fairly unique data set.
For this reason, we create a data set from scratch. The requirements for this
data set creation are the following:

1. Finding accounts in different social networks for the same person;

2. Possibility of gathering a considerable amount of data.

We use the Twitter Search API to search for users who cross-post content to
find their corresponding profiles in other social networks. The Search API
allows queries containing regular expressions, enabling us to look for URLs
which correspond to the user’s posts in other OSNs. Then, using the API
from the corresponding OSN, we can find the user’s screen name and crawl
their profile. A visual depiction of this process can be found in Figure 4.1.

The cross posting volume in December 2014 for different social networks
can be found in Table 4.1. Some OSNs incentivise users to cross-post more
than others.

The online social networks featured in our data set are Twitter, Foursquare
and Instagram. They were chosen due to the volume available through the
Twitter API search and how open their corresponding APIs were.

Data was collected in January and February 2015. We scanned around 2000
profiles but only 618 users fulfilled the criteria of actively using the 3 selected
OSNs and posting predominantly in English. From these 618 profiles, we
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4. Data set

Figure 4.1: Using Twitter search to find user cross-posting activity

OSN Volume per minute
Instagram ∼550
Facebook ∼170
Foursquare ∼70
Pinterest ∼30

Table 4.1: New tweets per minute that link to posts in different OSNs

have approximately 1.1 million tweets, 18000 Instagram pictures and 99000
Foursquare check-ins. In the next section, we give more insights into the
data set.

18



4.2. Data set insights

4.2 Data set insights

Using the notation introduced in Chapter 3, user u ∈ U is defined by
{S1, S2, S3}, (q = 3). For easier readability, we rename these variables so
that a user u is defined by: {T, I, F}, where T corresponds to user’s Twitter
timeline, I to the user’s Instagram timeline and F to the user’s Foursquare
timeline1.

Given user u ∈ U , their twitter timeline T contains the set of tweets {t1, t2, ...,
tnT}, where nT denotes the number of tweets in their timeline. Similarly, I
contains the set of Instagram pictures {i1, i2, ..., inI} and F the corresponding
set of venue check-ins { f1, f2, ..., fnF}. Figure 4.2 shows the distribution of
nT, i.e. the number of tweets per user. Figure 4.3 shows the distribution
of nI , the number of Instagram posts per user and Figure 4.4 shows the
distribution of nF, the number of check-ins per user.

Figure 4.2: Histogram of number of tweets per user

The Twitter API restricts the access to 3200 tweets per profile (including
1In reality, the Foursquare timeline is the set of venues visited by the user which have

been also posted on Twitter.
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4. Data set

Figure 4.3: Histogram of number of Instagram posts per user

retweets) [22], because we exclude direct retweets from our data set, the ma-
jority of the Twitter profiles we collect contain between 3000 to 3200 tweets.
For each Instagram profile, we recover the 33 most recent Instagram posts
due to API restrictions. For each Foursquare profile, we recover the check-
ins which were cross-posted on the retrieved Twitter timeline.

Each check-in has plenty of information associated to the venue, as it can
be found in [7]. In this thesis, we work with venue types. Venue types are
hierarchically organised in three layers. For example, one of the main cate-
gories of venue types is Arts & Entertainment, which is parent to Aquarium,
Arcade, Museum, and so on. Under Museum, there are Art Museums, History
Museums, and so on. The distribution of main venue types visited by users
can be seen in Figure 4.5. The distribution of the subcategories of the main
category Arts & Entertainment can be seen in Figure 4.6.
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4.3. Classification specification

Figure 4.4: Histogram of number of check-ins per user

4.3 Classification specification

In this section we describe how we use the described data set to generate
the data set to be used by the classifier described in Section 3.1.

4.3.1 Feature space generation

User features are generated from their corresponding OSN timelines. The
timelines are represented by TF-IDF vectors. The posts in Twitter or Insta-
gram often contain slang, made-up or misspelled words, memes, links or
replies to other users. Because of these, we curate the term vocabulary:

1. All links and mentions (other user’s nicknames) are removed.

2. English stop words are removed.

3. Words which occur less than 5 times across all timelines and users are
removed (to account for misspellings, links which were not removed
or noisy tokens, and reduce computational burden).
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4. Data set

Figure 4.5: User distribution across main categories

Figure 4.6: User distribution across subcategories of Arts & Entertainment

4. Words which are recognized are reduced to their base (lemmatized
using WordNet corpus).
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4.3. Classification specification

4.3.2 Label assignment

Let V be the set of venues we are interested in working with, A ∈ V be a
particular venue type and u be a user. The label lA(u) is 1 if u has visited
venue type A and 0 otherwise.
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Chapter 5

Experimental results

In this chapter we describe the experimental results using the data set pre-
sented in Section 4.2.

To remind the reader, we use a user’s Twitter and Instagram timelines to
infer user venue type visits.

5.1 Measures of classifier performance

To measure classifier performance we use Recall, Precision, Accuracy, Speci-
ficity and F1 score, defined as:

Recall =
TP

TP + FN
(5.1)

Precision =
TP

TP + FP
(5.2)

Accuracy =
TP + TN

TP + FN + TN + FP
(5.3)

Specificity =
TN

TN + FP
(5.4)

F1 score = 2
Precision · Recall

Precision + Recall
(5.5)

Where TP denotes true positives, FP denotes false positives, TN denotes
true negatives and FN denotes false negatives.

Because our data set has imbalanced classes, we optimize our results for the
F1 score instead of accuracy.
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5. Experimental results

5.2 Inference

We select 40 venue types to test our methods on. These venue types are
selected based on the percentage of the population that has visited them.
We restrict this percentage to lie between (approximately) 25% to 35% such
that there are enough positive examples to train the classifier on, but that
they are still specific enough to have a distinct vocabulary associated to
them. For example, venue types such as Restaurant, Coffee Shop and Bar are
not included in these 40 venues because a larger percentage of users have
visited them, but venue types such as Japanese Restaurant, Gastropub and
Wine Bar are included.

For the first task, we do not do any further discrimination, in terms of which
venue types are more interesting to predict from a commercial point of view.
The table with the 40 venues and their corresponding positive class percent-
ages can be found in the Table A.1.

For the set of the selected 40 venue types V , we build 40 classifier’s (one per
venue type) as described in Section 3.1. We build the feature spaces from
Twitter and Instagram timelines using TF-IDF representation and measure
the classifiers’ performances at predicting ’user goes to venue type A’ for A ∈
V .

The classifiers’ performance, over 10-fold cross-validation and averaged across
the 40 venues, can be found in Table 5.1.

Table 5.1: Average classifier performance using different data sets. Results
are averaged over 10 fold cross-validation.

Accuracy Precision Recall Specificity F1 Score
Twitter 69.6 49.8 40.7 81.9 44.7

Twitter+Instagram 69.9 50.4 40.3 82.5 44.7

Adding the Instagram data did not change the classifier’s performance sig-
nificantly1. However, there are a few venues in which the F1 score im-
provement was statistically significant under the Wilcoxon signed-rank test
(α = 0.05). This can be seen in Table 5.2. There was one venue in which the
performance degradation was statistically significant, as shown in Table 5.3.

We can also find the vocabulary which is highly correlated with the positive
label. In Figure 5.1 we can see examples of the top performing classifiers
for venue types Gym, Gastropub and Spiritual Center and one of the worst
performing ones (Concert Hall), using both data sets.

1Due to the reduced size of the Instagram data set, the result using classifiers that were
trained and tested only on Instagram data are not included in this thesis.
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5.2. Inference

(a) Gym classifier using Twitter data
(b) Gym classifier using Twitter and Insta-
gram data

(c) Gastropub classifier using Twitter data
(d) Gastropub classifier using Twitter and
Instagram data

(e) Spiritual Center classifier using Twitter
data

(f) Spiritual Center classifier using Twitter
and Instagram

(g) Concert Hall classifier using Twitter
data

(h) Concert Hall classifier using Twitter
data

Figure 5.1: Word clouds showing words which are most correlated with the
positive label of each classifier. 27



5. Experimental results

Table 5.2: Venues in which using Instagram data improved the performance
most over using just Twitter data. The value to the left corresponds to Twit-
ter only data, whereas the value to the right corresponds to Twitter and
Instagram data.

Venues Accuracy Precision Recall Specificity F1 Score
Gym 65.7 | 70.7 53.0 | 61.6 46.4 | 51.6 76.6 | 81.8 49.5 | 56.2

Cocktail Bar 68.0 | 71.0 51.5 | 58.3 41.9 | 46.8 80.4 | 83.2 46.2 | 51.9

Table 5.3: Venues in which using Instagram data degraded the performance
most over using just Twitter data. The value to the left corresponds to Twit-
ter only data, whereas the value to the right corresponds to Twitter and
Instagram data.

Venues Accuracy Precision Recall Specificity F1 Score
Performing
Arts Venue

63.7 | 61.3 48.2 | 44.8 43.2 | 37.2 75.3 | 74.9 45.6 | 40.6

The full results can be found in the the Appendix, in Table A.2. We per-
formed experiments with oversampling the minority class, but as the results
were not useful we omit these experiments from the thesis.

5.3 Progressive Inference

In the following section we present the results from the method described
in Algorithm 1, when sampling posts randomly. For each test user, we add
25 posts randomly sampled from their timeline at every iteration. Further-
more, for each user, we run the described method 10 times to account for
randomness.

Figure 5.2 shows the classifiers’ performance change over all 40 venues.
After approximately 60 iterations (1600 posts), the F1 score across the 40
venues.

There are venue types which attain a stable F1 score quicker than others.
We make an informal split of the evaluated venue types in terms of being
quickly learned, slowly learned and hard to learn, based on how many iterations
it takes for the F1 score to stabilize and how it changes when more posts are
added. This split is solely made for readability purposes of the following
graphs.

In Figure 5.3, we show the performance of classifiers for some venue types
which are quickly learned.
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5.4. Measuring information content

Figure 5.2: Classification performance averaged over 40 venue types. At
each iteration, 25 posts are randomly selected from the test user’s timeline,
added to the truncated timeline and the truncated timeline is classified.

In Figure 5.4, we show the performance of classifiers for some venue types
which are learned slower.

In Figure 5.5, we show the performance of classifiers for some venue types
which are hard to learn.

5.4 Measuring information content

In this section, we present the results of the method described in Algorithm
1, but this time using the function which samples posts based on their infor-
mation score. At each iteration, the remaining posts are re-ranked in terms
of their information score and the top posts are added to the truncated time-
line.

The setup of the experiment is the following:

• Iteration 1–10: Sample 1 post at a time.
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5. Experimental results

Figure 5.3: Example of quickly learned venue types. Y axis represents the F1
score.

• Iteration 11–14: Sample 10 posts at a time.

In total, we add 50 tweets which are actively selected and we measure the
classifiers’ performance in this reduced test set. The setup is done in this
way so that the task is computationally tractable for the given time. Fur-
thermore, we restrict the analysis to a pre-selected list of venues, which are
commercially interesting or can reflect a behaviour or a habit of a user.

The list of pre-selected venues is the following: Church, Gym, Resort, Lounge,
Gastropub, Sports Bar, Concert Hall, Automobile Shop.

Table 5.4 summarizes the average performance of the classifiers. The indi-
vidual classifiers can be found in the appendix in Table A.3 to Table A.10.

We can see that for different λ’s we can beat the baseline.

In Figures 5.6, 5.7 and 5.8 and we can see the performance of different clas-
sifiers when we actively sample which posts to include in the test set next
while varying the parameter λ from the information score, which regulates
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5.4. Measuring information content

Figure 5.4: Example of slowly learned venue types. Y axis represents the F1
score.

Table 5.4: Average classifier performance over the 8 venue types, for different
λ. The first row expresses the beginning of the simulation, when the trun-
cated timelines have only one post which was randomly sampled from the
corresponding timelines. The last row represents baseline, which is when
the posts are randomly sampled.

Iteration Accuracy Precision Recall Specificity F1 Score λ

0 65.8 0.0 0.0 99.6 0.0 -
50 69.3 46.8 41.7 80.5 41.9 0.0
50 69.1 48.6 41.2 80.7 42.0 0.2
50 70.5 50.7 41.9 82.4 43.8 0.4
50 69.1 49.1 41.5 80.6 43.1 0.5
50 70.0 53.6 42.1 81.8 44.9 0.6
50 69.0 47.0 38.1 82.2 40.2 0.8
50 68.1 29.2 8.7 96.3 12.6 1.0
50 71.8 81.6 22.1 97.4 34.8 -
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5. Experimental results

Figure 5.5: Example of hard to learn venue types. Y axis represents the F1
score.

the preference towards novelty or relevancy. The Baseline label denotes the
case where posts are randomly selected.

In Table 5.5, the highest ranked posts for different venue types are listed.
These are randomly sampled from the top ranked tweets for each venue
type classifier.

32



5.4. Measuring information content

Figure 5.6: F1 score of classifier Resort when actively choosing posts using
information score functions with different λ.
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5. Experimental results

Figure 5.7: F1 score of classifier Gym when actively choosing posts using
information score functions with different λ.
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5.4. Measuring information content

Figure 5.8: F1 score of classifier Church when actively choosing posts using
using information score functions with different λ.

35



5. Experimental results

Table 5.5: Top ranked posts using the designed information score func-
tion. The links and user mentions are omitted. Posts that contain links
to Instagram and Foursquare are denoted as [INSTAGRAMLINK] and
[FOURSQUARELINK], respectively. All other links are replaced by [LINK].

Venue Type Top Ranked Posts

Church

Saint Anthony (@ Cathedral of Saint Paul) [FOURSQUARELINK]

#teamCatholic #justbecause #meanwhileatoctane #icecubephoto-
shoot #youheardme #perfecticecube [INSTAGRAMLINK]

I’m at Church of Our Lady Of Perpetual Succour (Singapore) w/
3 others [FOURSQUARELINK]

Ready for a beautiful family day - first stop - church :) [INSTA-
GRAMLINK]

Gym

It’s cool to love to win, but it’s better to hate to lose. (@ Prairie
Life Health & Fitness)

When @USER sang happy birthday to me at the gym while on
the treadmill.

#outdoor #fitness better than #gym @USER

How Low-Cost Gyms like Planet Fitness Psychologically Manip-
ulate Members Into NOT Going To The Gym [LINK]

@USER got a nice 45 min workout in gym this morning in prep
for tomorrows tennis match..did light weights n cardio with
stretching

Resort

HELLO Good morning (at @CaesarsPalace Hotel Casino in Las
Vegas, NV) [FOURSQUARELINK]

My view ...good night (@ The @Cheesecake Factory in Las Vegas,
NV) [FOURSQUARELINK] [INSTAGRAMLINK]

I’m at Luxor Hotel Casino (Las Vegas, NV) w/ 6 others
[FOURSQUARELINK]

STAYING OVERNIGHT AT RESORT WORLD HOTEL LTR YAY
HEHEHEHEHE SHIOK

I’m at Treasure Island - TI Hotel & Casino (Las Vegas, NV) w/ 6
others [FOURSQUARELINK]
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Chapter 6

Conclusion

In this thesis, we investigate three fundamental questions. Firstly, we study
cross OSN inference by fixing one OSN (Foursquare) as the inference’s target
and making the inference using information from two other OSNs (Twitter
and Instagram). We can then understand the nature and information carried
by different OSNs.

With the objective to better understand the information content contained in
a single post within the timeline of a user and with respect to a particular
inference task, we formulate an information score function. It attributes a
score to a post based on its relevance towards a particular inference task and
novelty to the user’s previously seen timeline.

Finally, we seek to assign a tangible commercial value to a profile with re-
spect to its hosting OSN. We use pricing models which are generally used
to price an advertising campaign to price the user’s potential to generate
revenue for the OSN and take this as the profile’s value. We use the infor-
mation we inferred from users in the cross OSN inference task to model the
users’ interest in related ads and thus, the click probability on a related ad.

Instagram and Twitter have different information content. For example, for
some venue types, Instagram has a richer vocabulary than Twitter, leading
to an improvement in some classifiers performances, even though the Insta-
gram data set is much smaller than the Twitter data set1. A hypothesis is
that Instagram posts are, in general, more personal than tweets. Instagram
posts are mostly pictures taken by the user, whereas tweets can serve vari-
ous purposes: sharing personal content and opinions, reposting content and
chatter.

We also found that some venue types are more predictable than others. For
example, for venue types such as Gym, Church, Sushi Restaurant and Bars

1We are only able to recover up to 33 posts from Instagram per user, whereas we can
recover up to 3200 posts per user in Twitter
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6. Conclusion

(Gastropub, Sports Bar, Cocktail Bars) we were able to attain a reasonable per-
formance with our classifier. For other venue types, such as: Concert Hall,
Furniture / Home Store and Plaza, the classifier’s performance was signifi-
cantly worse. There might be several reasons for this, such as:

1. Not enough data;

2. Noisy labels (some venues - such as Home, should have nearly 100 %
of positive labels and not the 36 % described in the data set);

3. Some venues can be expected to have a more distinct vocabulary than
others.

Some venues are more prone to be broad-casted than others, for instance,
it could be that going to the gym is perceived as being more interesting
than going home. In other cases, the vocabulary might either be ambiguous
e.g. Resort and Hotel share a similar vocabulary, or not specific enough e.g.
vocabulary associated to Plaza.

When we randomly sample posts from a user’s timeline and make a pre-
diction using this truncated timeline, we observe that for some venue types
the performance curve is steeper than for others. We made an informal split
of venue types which are quick to learn, slow to learn and hard to learn. The
steepness is probably related to how frequently users visit these places. For
instance, it is expected that a user goes to a gym more often than a resort.
For the venues which are hard to learn, the lack of specific vocabulary might
be one of the causes, as well as temporal artifacts from the data set (majority
of the data is collected from Europe and North America during the months
of January and February 2015, so the venue type Ice Cream Shop might not
have a representative vocabulary which it would have had in the summer).

We show that the information score introduced in this study reflects the
relative importance of posts with respect to the inference task we are per-
forming. When actively selecting a subset of posts per user, we were able
to beat the baseline (of randomly sampling posts) for the 8 venues chosen
(Church, Gym, Resort, Lounge, Gastropub, Sports Bar, Concert Hall, Automobile
Shop). In addition, for some venue types (e.g. for Resort, Church and Sports
Bar), we can find a λ ∈ [0, 1] that regulates the novelty-relevance trade-off, and
attain a better classifier performance which outperforms using the users’ full
timelines.

6.1 Future work

There are several things that can be developed in the future.

Because one of the terms of this information score function, relevance, is
dependent on the classifier, this informativeness score performance will de-
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6.1. Future work

pend, to some degree, on whether the classifier is correctly identifying rele-
vant words (features) or not. There is also a preference for longer posts in
the beginning of the selection process, because longer posts are more likely
to have a higher novelty score when the vocabulary that has been seen is
small. Something to consider for future work would be to have an adaptive
λ which depends on how many posts have been seen. Functions other than
linear ones can also be considered to better model the information score of
a post.

The feature space we use for inference task is always given by a vector space
model. There is a lot more information in a profile than just the user time-
line’s textual data, that could be included to better model the user. Further-
more, we do not model the conditional probability of user visiting venue
type A, having already visited venue type B. For example, it would make
sense to estimate the probability of user visiting a museum, knowing the
user has been to a arts venue.

We make an attempt to attribute a value to a user’s profile with respect to its
hosting OSN. We use simple pricing models which are known from pricing
advertising campaigns. However, one interesting aspect would be to include
a privacy loss term. Authors of [14] design a market-place for private data
exchange, where the user is compensated based on their privacy loss, calcu-
lated using differential privacy. One direction that could be explored would
be to use the introduced information score function to approximate the pri-
vacy loss of the user.

Going towards the direction of building a stand-alone application which
estimates the information leak in posts, a future task would be to validate
the information score for predicting venue type visits on timelines which do
not have Foursquare check-ins (or where the check-ins have been removed).
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Appendix A

Appendix A: Complete results

The full development of this thesis and results can be found in the GitHub
repository [24]. The Wiki of the project reports all results, including the
failed attempts, of this thesis [25].
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A. Appendix A: Complete results

Venue % Users visited

Spiritual Center 36.73
Home (private) 36.57

Other Great Outdoors 36.57
Gym 36.08

Neighborhood 36.08
Sports Bar 35.92

Lounge 35.60
Miscellaneous Shop 35.44
Salon / Barbershop 34.95

Performing Arts Venue 34.79
Supermarket 34.14

Sushi Restaurant 33.66
City 33.66

Nightclub 33.01
Cocktail Bar 33.01

Ice Cream Shop 33.01
Japanese Restaurant 32.69

Church 31.88
Dessert Shop 31.55

Gastropub 31.39
Brewery 30.91
School 30.42

Taco Place 29.77
Gas Station / Garage 28.64

Automotive Shop 28.48
Resort 27.99

Museum 27.51
Drugstore / Pharmacy 27.51

Deli / Bodega 27.02
Electronics Store 26.21

Concert Hall 26.21
Train Station 26.05

Wine Bar 26.05
Doctor’s Office 25.89

Furniture / Home Store 25.73
New American Restaurant 25.57

Beach 25.40
Plaza 25.08

Residential Building (Apartment / Condo) 24.92
Beer Garden 24.60

Table A.1: 40 selected venues and percentage of the positive class.
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Venue F1 Score Accuracy Precision Recall Specificity

City 47.33 | 50.98 67.31 | 69.10 51.76 | 54.59 43.59 | 47.81 79.35 | 79.77
Automotive Shop 45.14 | 40.96 72.32 | 70.38 51.48 | 45.79 40.19 | 37.04 85.14 | 83.73

Concert Hall 27.21 | 23.69 68.45 | 66.84 34.05 | 30.75 22.65 | 19.27 84.88 | 83.84
Cocktail Bar 46.22 | 51.90 67.99 | 71.06 51.52 | 58.30 41.91 | 46.77 80.38 | 83.15
Gastropub 50.76 | 42.96 71.03 | 65.53 53.91 | 45.28 47.95 | 40.86 81.46 | 77.16
Museum 43.44 | 38.33 71.85 | 70.22 48.34 | 44.13 39.44 | 33.87 84.11 | 84.00
Wine Bar 36.57 | 31.63 71.21 | 68.94 44.41 | 35.41 31.09 | 28.59 85.73 | 83.12

Spiritual Center 57.25 | 54.21 69.74 | 68.78 60.11 | 58.87 54.65 | 50.23 78.82 | 79.87
Lounge 50.10 | 53.18 68.29 | 68.94 57.16 | 58.18 44.59 | 48.97 81.18 | 80.53

Performing Arts Venue 45.56 | 40.65 63.74 | 61.32 48.15 | 44.78 43.23 | 37.21 75.29 | 74.88
Residential Building
(Apartment / Condo) 32.34 | 32.09 71.37 | 72.49 41.50 | 43.14 26.49 | 25.55 86.74 | 88.37

Dessert Shop 39.47 | 43.07 66.36 | 66.67 45.63 | 46.25 34.77 | 40.29 80.61 | 79.10
Beach 31.60 | 31.01 70.39 | 69.75 37.87 | 37.13 27.12 | 26.63 85.46 | 84.75

Brewery 51.08 | 46.92 72.96 | 69.58 59.63 | 51.50 44.68 | 43.09 86.30 | 81.77
Home (private) 50.09 | 51.75 64.88 | 66.03 51.26 | 53.81 48.98 | 49.85 73.98 | 74.78

Gym 49.48 | 56.18 65.67 | 70.70 53.04 | 61.62 46.36 | 51.62 76.64 | 81.84
Furniture / Home Store 33.27 | 32.08 70.22 | 69.75 40.41 | 38.10 28.27 | 27.71 84.97 | 84.51

Supermarket 56.69 | 55.74 71.86 | 73.00 60.21 | 62.64 53.55 | 50.21 81.51 | 84.87
Train Station 51.74 | 51.56 76.55 | 78.17 56.15 | 62.77 47.97 | 43.75 86.89 | 90.34

Miscellaneous Shop 44.10 | 48.31 64.08 | 65.53 49.14 | 52.15 39.99 | 45.00 77.19 | 76.75
Japanese Restaurant 49.39 | 48.40 67.81 | 68.46 51.34 | 53.17 47.58 | 44.42 77.49 | 80.19

Deli / Bodega 38.19 | 41.73 71.67 | 71.83 49.42 | 47.86 31.12 | 36.98 87.08 | 84.99
Sushi Restaurant 50.37 | 55.33 68.44 | 71.21 52.60 | 57.36 48.33 | 53.44 78.58 | 80.30

Other Great Outdoors 42.33 | 41.20 61.00 | 60.70 46.82 | 45.03 38.62 | 37.97 75.55 | 73.78
Drugstore / Pharmacy 54.00 | 55.12 77.04 | 77.67 61.62 | 61.04 48.06 | 50.25 88.22 | 87.93

School 42.46 | 43.43 66.16 | 68.43 45.36 | 48.96 39.91 | 39.01 77.31 | 81.20
Gas Station / Garage 52.26 | 54.76 75.41 | 77.54 57.27 | 62.12 48.06 | 48.96 86.87 | 88.64

Plaza 36.40 | 35.18 73.15 | 72.19 42.61 | 44.18 31.77 | 29.23 86.71 | 86.78
New American Restaurant 40.97 | 39.12 72.96 | 72.65 46.57 | 45.18 36.57 | 34.50 85.67 | 85.87

Nightclub 45.64 | 48.58 66.65 | 69.24 48.91 | 54.66 42.79 | 43.72 78.72 | 82.24
Beer Garden 26.60 | 28.18 70.71 | 69.73 34.37 | 34.53 21.69 | 23.81 86.77 | 85.05

Electronics Store 40.74 | 35.01 73.14 | 72.50 48.05 | 46.25 35.36 | 28.17 86.69 | 87.68
Ice Cream Shop 38.07 | 43.01 62.47 | 65.21 42.05 | 46.97 34.77 | 39.67 76.00 | 77.91

Sports Bar 58.12 | 54.67 70.25 | 68.79 59.62 | 58.11 56.71 | 51.61 78.23 | 78.71
Neighborhood 48.07 | 48.56 63.44 | 65.71 49.28 | 54.32 46.92 | 43.91 72.63 | 77.85
Doctor’s Office 35.24 | 37.10 70.84 | 73.77 41.55 | 46.50 30.60 | 30.86 84.94 | 88.85

Resort 53.17 | 49.86 74.92 | 76.06 54.53 | 57.22 51.88 | 44.17 83.31 | 87.66
Taco Place 45.85 | 47.78 69.75 | 71.20 49.46 | 51.67 42.72 | 44.44 81.55 | 82.98

Church 54.60 | 57.18 74.92 | 75.26 64.05 | 63.96 47.57 | 51.71 87.96 | 87.07
Salon / Barbershop 45.14 | 44.76 65.85 | 64.73 50.57 | 50.27 40.77 | 40.33 78.98 | 78.04

Table A.2: Classifier’s performance on the 40 selected venues, averaged
across 10 cross-validation folds. The results correspond to the performance
using Twitter and Twitter+Instagram data, in the following form Twitter |
Twitter+Instagram.
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A. Appendix A: Complete results

Table A.3: Gym average classifier performance, for different λ in the infor-
mation score function. The first row represents the simulation that uses a
sampling function which is random.

Gym
Accuracy Precision Recall Specificity F1 Score λ

63.35 48.19 27.03 83.71 34.63 -
57.52 43.35 59.46 56.44 50.14 0.0
63.59 49.48 64.19 63.26 55.88 0.2
63.59 49.45 60.81 65.15 54.55 0.4
60.19 45.51 54.73 63.26 49.69 0.5
58.01 43.59 57.43 58.33 49.56 0.6
65.29 51.48 58.78 68.94 54.89 0.8
67.23 59.42 27.70 89.39 37.79 1.0

Table A.4: Resort average classifier performance, for different λ in the infor-
mation score function. The first row represents the simulation that uses a
sampling function which is random.

Resort
Accuracy Precision Recall Specificity F1 Score λ

70.15 100.00 0.81 100.00 1.60 -
73.06 64.44 23.39 94.44 34.32 0.0
74.27 69.57 25.81 95.14 37.65 0.2
76.70 74.14 34.68 94.79 47.25 0.4
76.21 73.21 33.06 94.79 45.56 0.5
78.40 76.92 40.32 94.79 52.91 0.6
73.06 61.02 29.03 92.01 39.34 0.8
69.90 0.00 0.00 100.00 0.00 1.0

Table A.5: Church average classifier performance, for different λ in the infor-
mation score function. The first row represents the simulation that uses a
sampling function which is random.

Church
Accuracy Precision Recall Specificity F1 Score λ

71.84 81.58 22.14 97.43 34.83 -
71.84 56.82 71.43 72.06 63.29 0.0
74.27 69.57 25.81 95.14 37.65 0.2
75.73 62.05 73.57 76.84 67.32 0.4
75.97 61.99 75.71 76.10 68.17 0.5
74.76 61.11 70.71 76.84 65.56 0.6
75.24 61.18 74.29 75.74 67.10 0.8
70.39 71.43 21.43 95.59 32.97 1.0
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Table A.6: Lounge average classifier performance, for different λ in the infor-
mation score function. The first row represents the simulation that uses a
sampling function which is random.

Lounge
Accuracy Precision Recall Specificity F1 Score λ

62.38 80.00 7.32 98.79 13.41 -
61.89 52.12 52.44 68.15 52.28 0.0
62.38 52.69 53.66 68.15 53.17 0.2
65.29 57.34 50.00 75.40 53.42 0.4
61.89 52.29 48.78 70.56 50.47 0.5
63.83 55.47 46.34 75.40 50.50 0.6
60.68 50.86 35.98 77.02 42.14 0.8
59.95 0.00 0.00 99.60 0.00 1.0

Table A.7: Gastropub average classifier performance, for different λ in the
information score function. The first row represents the simulation that uses
a sampling function which is random.

Gastropub
Accuracy Precision Recall Specificity F1 Score λ

68.20 33.33 2.34 97.89 4.38 -
65.78 45.70 53.91 71.13 49.46 0.0
66.99 47.22 53.12 73.24 50.00 0.2
68.93 50.00 52.34 76.41 51.15 0.4
70.39 52.21 55.47 77.11 53.79 0.5
68.45 49.22 49.22 77.11 49.22 0.6
66.02 45.16 43.75 76.06 44.44 0.8
69.42 66.67 3.12 99.30 5.97 1.0

Table A.8: Sports Bar average classifier performance, for different λ in the
information score function. The first row represents the simulation that uses
a sampling function which is random.

Sports Bar
Accuracy Precision Recall Specificity F1 Score λ

64.81 42.86 2.08 98.51 3.97 -
71.84 61.86 50.69 83.21 55.73 0.0
70.39 59.82 46.53 83.21 52.34 0.2
71.84 62.07 50.00 83.58 55.38 0.4
69.90 58.62 47.22 82.09 52.31 0.5
72.33 63.64 48.61 85.07 55.12 0.6
70.39 59.02 50.00 81.34 54.14 0.8
64.32 0.00 0.00 98.88 0.00 1.0
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A. Appendix A: Complete results

Table A.9: Automotive Shop average classifier performance, for different λ in
the information score function. The first row represents the simulation that
uses a sampling function which is random.

Automotive Shop
Accuracy Precision Recall Specificity F1 Score λ

72.33 46.88 13.39 94.33 20.83 -
67.48 13.33 3.57 91.33 5.63 0.0
68.93 25.00 7.14 92.00 11.11 0.2
70.87 37.50 10.71 93.33 16.67 0.4
66.02 24.07 11.61 86.33 15.66 0.5
70.87 40.00 14.29 92.00 21.05 0.6
69.42 30.56 9.82 91.67 14.86 0.8
69.17 36.36 17.86 88.33 23.95 1.0

Table A.10: Concert Hall average classifier performance, for different λ in the
information score function. The first row represents the simulation that uses
a sampling function which is random.

Concert Hall
Accuracy Precision Recall Specificity F1 Score λ

74.51 0.00 0.00 99.68 0.00 -
71.84 16.67 2.88 95.13 4.92 0.0
71.60 24.00 5.77 93.83 9.30 0.2
70.63 13.04 2.88 93.51 4.72 0.4
71.84 25.00 5.77 94.16 9.38 0.5
73.30 38.46 9.62 94.81 15.38 0.6
71.84 16.67 2.88 95.13 4.92 0.8
74.27 0.00 0.00 99.35 0.00 1.0
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