Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes

Journal Article

Author(s):
Little, Susan H.; Vance, Derek; McManus, James; Severmann, Silke

Publication date:
2016-03

Permanent link:
https://doi.org/10.3929/ethz-b-000113977

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Geology 44(3), https://doi.org/10.1130/g37493.1
Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes

Susan H. Little1,2, Derek Vance2, James McManus3, and Silke Severmann4

1Department of Earth Science and Engineering, Imperial College London, London SW7
2BP, UK
3Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland
4Department of Geosciences, University of Akron, Akron, Ohio 44325-4101, USA
5Department of Marine & Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8521, USA

ABSTRACT

Zinc is an essential micronutrient and its concentration and isotopic composition in marine sediments represent promising tracers of the ocean carbon cycle. However, gaps remain in our understanding of the modern marine cycle of Zn, including an explanation of the heavy Zn isotopic composition of seawater relative to the known inputs, and the identity of a required ‘missing sink’ for light Zn isotopes. Here we present Zn isotope data for organic- and trace metal-rich continental margin sediments from the east Pacific margins, which together provide the first observational evidence for the previously hypothesized burial of light Zn in such settings. In turn, this light Zn output flux provides a means to enrich the seawater dissolved pool in heavy isotopes. The size and isotopic composition of the margin sink is controlled by the uptake of Zn into organic matter in the photic zone and the fixation of this pool, probably in the form of Zn-
sulfides, in sediments. An estimate of its significance to the overall Zn oceanic mass balance, both in terms of flux and isotopic composition, indicates that such settings can fulfill the requirements of the missing Zn sink. Taken together, these observations have important implications for the interpretation of Zn isotope data for marine sediments in the geologic record.

INTRODUCTION

Zinc is utilized in almost 100 Zn-specific enzymes across all five kingdoms of life (U.S. NRC, 2000). Its significance in the oceanic realm stems primarily from its role as a cofactor in two key enzymes: carbonic anhydrase, involved in carbon fixation, and alkaline phosphatase, active in phosphorus uptake and cycling (Sinoir et al., 2012). Under certain conditions, Zn may limit primary production (Morel et al., 1994). Its importance as a micronutrient, combined with procedural and analytical advances and the sampling capacity of the GEOTRACES program (SCOR Working Group, 2007), has motivated a new generation of studies of the modern oceanic cycling of Zn and its isotopes (e.g., Little et al., 2014; Zhao et al. 2014; Conway and John, 2014; John and Conway, 2014; Roshan and Wu, 2015; Janssen and Cullen, 2015).

Zinc isotopes offer insight both into the processes controlling water column Zn distributions, and constraints on its global oceanic mass balance. Furthermore, the likely strong biological control on dissolved Zn availability has motivated the use of δ⁶⁶Zn as a tracer of past ocean productivity (Kunzmann et al., 2012). However, there remains a considerable gap in our understanding of the modern Zn oceanic mass balance (Little et al., 2014), which limits our interpretation of paleo-Zn isotope data. An isotopically light sink is required both to balance the marine Zn budget, and to explain the isotopically
heavy composition of dissolved Zn in the modern ocean with respect to the primary Zn
inputs (seawater ~0.5‰; cf. rivers, dust, hydrothermal fluids and sediments, all ≤0.3‰;
see Fig. 1). In this study we present new Zn isotope data for organic-rich sediments from
several oxygen-deficient sites along the east Pacific margin. These data provide the first
observational evidence of a hypothesized light sink for Zn buried in organic-rich
sediments (Little et al., 2014; Zhao et al., 2014).

SITES AND SAMPLING
We studied samples from well-characterized sites from the north- and south-
eastern Pacific margin (Table 1, Fig. DR1). They include four California borderland
basins (Santa Barbara, Santa Monica, San Nicolas and Tanner Basins), three sites from
along the Mexican margin (Magdalena, Soledad Basin and Pescadero slope), and one site
at the center of the intense oxygen minimum zone (OMZ) along the Peru margin. All
three margins are slope-dominated, characterized by upwelling-driven productivity.
Taken together, they encompass a range of reducing (low oxygen) conditions and
diagenetic environments found along an open ocean margin (Table 1).

Sediment cores were collected using a multi-corer as described previously
(McManus et al., 2006). Cores from the Mexico and Peru margins have low bottom water
oxygen concentrations and cover a range of diagenetic regimes from ferruginous to
sulfidic (Table 1, McManus et al., 2006; Chong et al., 2012). The borderland basins have
a broader range in bottom water oxygen contents and include settings that are typically
manganese to ferruginous (Table 1).

ANALYTICAL METHODS
For bulk concentration and isotope measurements, 100–500 mg of powdered sediment was treated with dilute nitric acid to dissolve carbonate, digested in a 3:1 mix of concentrated HF and HNO₃, and treated three times with concentrated HNO₃ to re-dissolve fluoride salts before final dissolution in 7M HCl. An aliquot of the total digest solutions was taken for elemental analysis on a Thermo Element 2 at the University of Bristol or ETH Zürich (for accuracy and precision data, see Little et al. (2014, 2015)).

For isotope analysis, further aliquots were spiked with a superscript 64Zn superscript 67Zn double spike to achieve sample-spike ratios of close to unity (Bermin et al., 2006). These Zn fractions were purified via anion exchange (Bermin et al., 2006) and analyzed on a Neptune (Bristol) or Neptune Plus (ETH) MC-ICP-MS using previously published protocols (Archer and Vance, 2004; Little et al., 2014). Two-sigma external reproducibility on δ⁶⁶Zn analyses was estimated via double spike analysis of a secondary isotope standard, IRMM 3702, which gave δ⁶⁶Zn = 0.30 ± 0.06‰ relative to Lyons-JMC (n = 163 over 24 months). Other uncertainties are given as 2SD unless stated.

Organic carbon data are calculated as the difference between total carbon and inorganic carbon. Total carbon and sulfur were analyzed on a PerkinElmer Series 11 CNHSO Analyzer, and inorganic carbon was measured on a UCI Inc. Coulometrics CMS130 Coulometer.

RESULTS

No analytically discernable depth dependent variation in bulk sediment δ⁶⁶Zn values was observed for the sites we sampled (Fig. 2). δ⁶⁶Zn bulk in the California and Mexican margin sites were consistently lighter than the lithogenic average (0.27 ± 0.07‰ (1SD); Fig. 1, Table DR1), at −0.05–0.15‰. No resolvable isotopic variation was
observed among the California Borderland basins (0.11 ± 0.08‰), which together encompass a broad range in bottom water oxygen conditions (Table 1). Of the Mexican margin sites, the Magdalena margin site is distinct, exhibiting greater Zn enrichment reflected in higher Zn/Al values (by mass, expressed as ppm/wt%) and a slightly heavier δ66Znbulk than the Pescadero slope and Soledad basin (Magdalena: 0.12 ± 0.02‰, cf. Soledad/Pescadero: 0.01 ± 0.06‰). The Magdalena site represents an open ocean, unrestricted margin (Table 1). In this regard, it most closely resembles the Peru margin site, where mean δ66Znbulk is significantly different and isotopically heavier, at 0.32 ± 0.06‰.

DISCUSSION

Lithogenic versus ‘Bioauthigenic’ Zn

Evaluation of the Zn flux from seawater into margin sediments requires a correction for the lithogenic (terrigenous) component of the sediment. Zinc is present at ~70 ppm in upper continental crust (Rudnick and Gao, 2003) and often at higher concentrations in shale (Wedepohl, 1991). The correction is made by assuming a homogenous Zn/Al ratio and isotopic composition of the lithogenic component, (Zn/Al)lith and δ66Zn_lith, and using the measured Al concentration of the sample (Al_sample) as a tracer of the terrigenous component, to calculate its lithogenic Zn fraction (X_lith) as follows:

\[X_{\text{lith}} = \frac{((\text{Zn/Al})_{\text{lith}} \times \text{Al}_{\text{sample}})}{\text{Zn}_{\text{sample}}} \] (1)

where Zn_sample is the total Zn concentration of the sample. The non-lithogenic, or ‘bioauthigenic’ component of the sediment, X_auth, which includes both authigenic
(chemically precipitated) and biogenic (cellular and/or skeletal) Zn, can then be simply calculated:

\[X_{\text{auth}} = 1 - X_{\text{lith}}, \quad (2) \]

The isotope ratio of this bioauthigenic Zn fraction can then be calculated as follows:

\[\delta^{66}\text{Zn}_{\text{auth}} = (\delta^{66}\text{Zn}_{\text{bulk}} - \delta^{66}\text{Zn}_{\text{lith}} \times X_{\text{lith}}) / X_{\text{auth}} \quad (3) \]

where \(\delta^{66}\text{Zn}_{\text{bulk}} \) is the measured isotope value of the sample. Finally, the bioauthigenic or ‘excess’ Zn concentration, \(Zn_{\text{XS}} \), can be calculated:

\[Zn_{\text{XS}} = Zn_{\text{sample}} - Al_{\text{sample}} \times (Zn/Al)_{\text{lith}}. \quad (4) \]

In the absence of measurements of local lithogenic materials from the east Pacific margin we use global average lithogenic values. The isotopic composition of lithogenic Zn \((\delta^{66}\text{Zn}_{\text{lith}}) \) is 0.27 ± 0.07‰ (1SD, \(n = 50 \), Figure 1, Table DR1). We assume a Zn/Al ratio of \(8.4 \times 10^{-4} \) (the most recent upper continental crust estimate; Rudnick and Gao, 2003), and assign it a 1SD uncertainty of ± \(1 \times 10^{-4} \). We then use a Monte-Carlo approach to evaluate the uncertainties on calculated \(\delta^{66}\text{Zn}_{\text{auth}} \) values. The uncertain variables \(((Zn/Al)_{\text{lith}}, \delta^{66}\text{Zn}_{\text{lith}}, \text{and } \delta^{66}\text{Zn}_{\text{bulk}}) \) were forced within their assigned uncertainties (1SDs of 1, 0.07‰, and 0.03‰ respectively) using normally-distributed pseudo-random numbers, and the \(\delta^{66}\text{Zn}_{\text{auth}} \) calculation performed 100,000 times. \(\delta^{66}\text{Zn}_{\text{auth}} \) values for each sample and site were then calculated as the mean and 2SD of these 100,000 iterations (Table DR2). The lithogenic correction is most significant and has a larger associated uncertainty for those samples with a high \(X_{\text{lith}} \) fraction and/or a large difference between \(\delta^{66}\text{Zn}_{\text{lith}} \) and \(\delta^{66}\text{Zn}_{\text{bulk}} \) (Figs. DR1, DR2). Nevertheless, strikingly light \(\delta^{66}\text{Zn}_{\text{auth}} \) values are calculated for several of the sites, with values as low as \(-0.40 \pm \)
0.37‰ (Pescadero slope, Table DR2). The validity of these calculated values remains to be tested, for example, through targeted sequential leaching of the non-lithogenic Zn pool.

Margin Sediments: An Important Sink for Light Zn Isotopes

The principal finding of this study is the presence of an isotopically light Zn fraction in oxygen-poor, organic-rich margin sediments (Fig. 3). The presence of this light Zn is likely the result of one or a combination of two processes: (1) biological uptake or (2) authigenic mineral precipitation.

Biological uptake may be accompanied by the preferential incorporation of light Zn isotopes by phytoplankton (John et al., 2007) and this signature may be preserved in the resultant organic-rich sediment. An apparent correlation of δ^{66}Zn$_{\text{auth}}$ with C_{org} content (Fig. 3a) may hint at such a surface ocean (uptake) control. However, a similar pattern emerges for δ^{66}Zn$_{\text{auth}}$ plotted versus total S (Fig. 3b), and there is no simple relationship between δ^{66}Zn$_{\text{auth}}$ and Zn/Al (Fig. 2), suggesting that the processes contributing to δ^{66}Zn$_{\text{auth}}$ are complex. Despite evidence for biological Zn isotope fractionation in cultures (John et al., 2007), a biological, kinetic isotope effect is rarely evident in recent upper ocean water column data, particularly in micronutrient-limited regimes like the Southern Ocean (Zhao et al., 2014). Scavenging of Zn by particulate matter has instead been proposed to explain upper water column Zn isotope distributions (John and Conway, 2014). Scavenging favors the heavy Zn isotope (John and Conway, 2014), however, and cannot be invoked to explain the light signature in margin sediments.

Alternatively, isotopic fractionation of Zn may occur during authigenic mineral precipitation, associated with the breakdown of, or desorption from, the carrier phase.
One such plausible mechanism is the precipitation of isotopically light authigenic ZnS phases (e.g., Fujii et al., 2011). Authigenic ZnS precipitation has been proposed to occur under certain conditions in the water column, associated with reducing microenvironments around biogenic particles (Conway and John, 2015; Janssen and Cullen, 2015). In other locations, contingent upon the location of redox fronts, ZnS precipitation may occur in sediments. Irrespective of the locus of sulfide precipitation, a corresponding heavy pool of dissolved Zn would be generated in the deep water or surface sediments, consistent with the observed isotopically heavy global seawater composition (~0.5‰). Apparently contrary to this view, however, light dissolved δ⁶⁶Zn values and elevated Zn concentrations have been observed in the water column along both continental margins in the North Atlantic as well as in the oxygen-poor San Pedro Basin off California (Conway and John, 2014; 2015). Neither Atlantic margin is strongly reducing, thus this data is not likely to be relevant to the sulfidization hypothesis.

Conway and John (2015) explain light Zn in the San Pedro basin either through release of biogenic Zn, or redissolution of (water column) colloidal sulfide particles on periodic flushing of the deep basin with oxygenated water. While the latter may be consistent with the predictions in this study, further clarity awaits renewed efforts to obtain reliable Zn porewater data from similar settings.

We hypothesize that the markedly heavier Zn isotopic composition at the Peru margin site reflects near-complete (quantitative) Zn uptake from surface waters with a local isotopic composition distinctly lighter than the global average, as is observed in the North Atlantic (Conway and John, 2014), and quantitative trapping of this Zn in the strongly reducing sediment pile. The Peru upwelling region is micronutrient-limited (Fig.
DR1; e.g., Bruland et al., 2005). Such limitation is likely reflected in very low Zn concentrations in surface waters (indicating quantitative uptake). Furthermore, similar micronutrient-limited regions elsewhere in the ocean appear not to fractionate Zn isotopes (Zhao et al., 2014).

We calculate an average Pacific margin δ^{66}Zn$_{auth}$ composition weighted by Zn$_{XS}$ concentrations (Table DR2) and margin area (Table 1) of 0.12‰. If the Peru margin site is considered exceptional, and is excluded, this value decreases to −0.09‰. The global significance of this margin sink to oceanic mass balance depends on the magnitude of the Zn flux into margin sediments. Comparing the continental margin organic C deposition rate with the Zn/C ratio in plankton yields a preliminary flux estimate. Reported Zn/C ratios in phytoplankton vary widely (0.008 – 0.11 mmol Zn/ mol C: Twining and Baines, 2013). The mean of compiled values is 0.036 mmol Zn/ mol C (Little et al., 2015). Jahnke (2010) estimates organic C deposition along the east pacific margins to be 2.28×10^{12} mol/yr, and globally to be 15.6×10^{12} mol/yr. Taking these estimates at face value, we calculate a Pacific margin Zn deposition rate of 0.8×10^8 mol/yr, and a global rate of 5.6×10^8 mol/yr. Such a flux would make margin sediments of equal or greater significance to the global oceanic mass balance compared to the oxic sink via sorption to Fe-Mn oxides, and is of the same order of magnitude as the projected missing Zn sink (3×10^8 mol/yr; Little et al., 2014). This approximation assumes that the Zn is solely supplied to sediment via cellular uptake, and that it is retained (e.g., in a sulfide phase) in the sediments following degradation of the organic matter. If some other means of Zn supply (e.g., direct diffusion from bottom waters, scavenging, or water column sulfide precipitation) is significant, then the sink may be larger. On the other hand, diffusion of
Zn back to the water column would reduce the flux magnitude. Nevertheless, to first order, the data presented in this study strongly support the hypothesis that modern continental margin sediments represent a significant isotopically light sink for Zn.

CONCLUSIONS

This study provides a means to explain the isotopically heavy Zn isotopic composition of seawater; that is, removal of light Zn isotopes to organic-rich continental margin sediments. In addition, we move a step closer to a quantitative understanding of the modern oceanic mass balance of Zn. A general framework can be envisaged whereby Zn is delivered to the deep ocean or sediment in organic matter, which may (or may not) be isotopically fractionated from the input value (typically of ~0.3‰). Once in the reducing deep ocean or sediment, the Zn is sequestered in authigenic precipitates, either quantitatively, or partially. If sequestration is non-quantitative, there is potential for isotope fractionation, for example via precipitation of light Zn sulfides. Thus, it does not follow that the most sulfidic regime should necessarily exhibit the largest Zn isotope fractionation.

Isotopically heavy marine sediment Zn isotope ratios (Fig. 1) have previously been hypothesized to record biological processing in the surface ocean (e.g., Kunzmann et al., 2012). The implication of this study, supported by recent water column data and experimental studies (e.g., Bryan et al., 2014), is that this view may need to be revised. Instead, authigenic mineral formation in reducing environments may be the driver of the present-day heavy isotopic composition of seawater. Future studies should examine the transformation of biogenic Zn into more stable phases under different depositional redox conditions, both beneath highly productive margins and in locations with moderate to low
primary productivity, where anoxia is the result of restricted circulation (e.g., the Black Sea). Such studies will provide the basis for future application of Zn isotopes as a proxy for the past environment.

ACKNOWLEDGMENT

We thank three reviewers for comments that clarified our thinking, and improved the manuscript. Many thanks to Annie Hartwell for the carbon and sulfur analyses. This project work was supported by SNF - Project 200021_153087 to DV. The University of Akron supported JM’s participation in the project. A Leverhulme Trust Early Career Fellowship supports SL at Imperial College. Sample collection was supported by a number of NSF grants to JM, including OCE-0624777 and OCE-0219651. Gratitude is extended to colleagues William Berelson and Gary Klinkhammer for their contributions to cruises where some of these samples were collected.

REFERENCES CITED

FIGURES

Figure 1. Range of compiled data sets (Table DR1) illustrating the natural variability in δ^{66}Zn in the marine realm, divided into the inputs to and outputs from the ocean. Where sufficient data exists, mean and 1SD are given as a symbol and thick black line. Shaded gray bars emphasize the respective isotopic compositions of the lithogenic and seawater
reservoirs. Mean and 1SD of measured bulk δ^{66}Zn for margin sediments from this study are shown as two points, representing the Peru margin and all other sites.

Figure 2. Down-core variability in (A) Zn/Al (by mass, $\times 10^{-4}$) and (B) δ^{66}Zn_{bulk} for the three continental margin locations (California Borderland basins: triangles; Mexican sites: squares; Peru margin: circles). 2-sigma uncertainty on isotope measurements (0.06‰) is shown as a stand-alone error bar. Labeled gray-dashed vertical bars represent estimated (Zn/Al)$_{lith}$ and δ^{66}Zn$_{lith}$, with average deep seawater δ^{66}Zn for comparison.
Figure 3. a) Mean organic carbon (wt%) and b) Mean total S (wt%) versus mean calculated δ⁶⁶Zn auth values for each site. Error bars on C org and S values reflect the 2SD for the whole sediment core, as thus reflect depth-dependent variation. Uncertainties on δ⁶⁶Zn auth are calculated via a Monte Carlo simulation carried out as described in the text. For comparison, the mean and 1SD (Table DR1) of Fe-Mn oxide sediments are represented by a star.
GSA Data Repository item 2016xxx, xxxxxxxx, is available online at

www.geosociety.org/pubs/ft2015.htm, or on request from editing@geosociety.org or

Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude °N</th>
<th>Longitude °W</th>
<th>Margin area 10^4 km²</th>
<th>Sediment core m</th>
<th>OMZ m</th>
<th>Sill depth m</th>
<th>Basin depth m</th>
<th>Bottom-water O₂ µM</th>
<th>Diagenetic class</th>
<th>Sediment accumulation rate mg cm² yr⁻¹</th>
<th>Organic C burial flux mg cm² yr⁻¹</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peru Margin</td>
<td>-13.7</td>
<td>76.7</td>
<td>0.2</td>
<td>264</td>
<td>100–700</td>
<td>na</td>
<td>na</td>
<td>0–10</td>
<td>Ferr–Sulf</td>
<td>28</td>
<td>3.6 ± 0.4</td>
<td>f</td>
</tr>
<tr>
<td>Mexican Margin</td>
<td></td>
<td></td>
<td>0.1</td>
<td>500–1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soledad Basin</td>
<td>25.2</td>
<td>112.7</td>
<td>544</td>
<td>250</td>
<td>545</td>
<td>0</td>
<td>Sulf</td>
<td>50–90</td>
<td>3.7 ± 0.1</td>
<td>1, 2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pescadero slope</td>
<td>24.3</td>
<td>108.2</td>
<td>616</td>
<td>na</td>
<td>na</td>
<td>0.4</td>
<td>Ferr</td>
<td>77</td>
<td>-</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Magdalena</td>
<td>23.5</td>
<td>111.6</td>
<td>692</td>
<td>na</td>
<td>na</td>
<td>0.9</td>
<td>Ferr–Sulf</td>
<td>4–12</td>
<td>-</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>California Borderland Basins</td>
<td></td>
<td></td>
<td>0.1</td>
<td>200–1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>34.3</td>
<td>120.0</td>
<td>493</td>
<td>475</td>
<td>600</td>
<td>0–10</td>
<td>Ferr–Sulf</td>
<td>92</td>
<td>-</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Santa Monica</td>
<td>33.7</td>
<td>118.8</td>
<td>905</td>
<td>740</td>
<td>910</td>
<td>2–10</td>
<td>Ferr</td>
<td>16</td>
<td>0.7 ± 0.2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tanner Basin</td>
<td>33.0</td>
<td>119.7</td>
<td>1514</td>
<td>1160</td>
<td>1550</td>
<td>~30</td>
<td>Mn–Ferr</td>
<td>12</td>
<td>0.8 ± 0.1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>San Nicolas</td>
<td>32.8</td>
<td>118.8</td>
<td>1750</td>
<td>1100</td>
<td>1832</td>
<td>15–35</td>
<td>Mn</td>
<td>14</td>
<td>-</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

*Diagenic classifications are as follows: Sulf – sulfidic, Ferr – ferruginous, Mn – Mn-rich, sub-oxic.
1 McManus et al., 2006; 2 Chong et al., 2012; 3 Deutsch et al., 2014; 4 Hartnett et al., 1998; 5 Zheng et al., 2000