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Abstract

Nano particles play a very significant role in the field of optics. Because of

their small size, highly localized fields can be obtained. The interaction of

light with metallic nano particles exhibits a unique phenomenon called plas-

monic resonances, which is due to the coherent oscillation of free electrons.

Thanks to advances in manufacturing methods, plasmon resonances have

found many applications such as second harmonic generation and sensors.

However, investigating them numerically is not straight forward. Due to

their small size in comparison to the wavelength, local refinement is essen-

tial. Another issue is the dispersive material of nano particles. Dependency

of optical constants on the frequency, makes time domain methods rather

complicated. In this dissertation, we use finite element method (FEM)

to solve Maxwell’s equations in frequency domain. Using finite element

method, one can simply apply local refinements. And, since it is a fre-

quency domain approach, we can use it to model dispersive materials.

The performance of nano particles is measured using different techniques.

One of the most popular measurement quantities is the light intensity at

far distances. Far field can also be computed numerically. Since finite el-

ement method provides solutions for electromagnetic fields only within a

limited domain around the scatterer, one needs to use Near-field to far-field

mapping techniques to obtain field values at far distances. For structures

located in free space, there are well known methods to evaluate the far field.

In the presence of a substrate the far-field functional consists of different

asymptotic terms including surface waves. In Chapter 2, we investigate all

contributions closely and show that the spherical wave is the only important

term at far distances. A closed form representation is given based on the

Green’s function of a dipole over a half space. The far-field functional is

stated in terms of both volume and boundary integrals. When finite element

methods are used to solve Maxwell’s equations approximately, the volume-
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based expression is more accurate than the boundary integral. We confirm

the validity of our results by performing several numerical experiments and

compare them with other numerical and experimental results.

Despite the rapid progress in the field of nano particles, they have not yet

been very successful in commercialization due to losses and high sensitivity

of plasmonic particles to fabrication based perturbations. Nano particles

are always subject to defects which can significantly affect their behavior.

Thus, it is important to know how much the performance of the particle is

sensitive to changes in the shape. To study the sensitivity of the far-field

pattern or of any other output functional which describes the performance

of plasmonic nano-particles with respect to shape perturbations, one needs

to perform shape sensitivity analysis. Shape sensitivity analysis is based on

evaluating the shape gradient of the output functional with respect to the

shape. Shape functionals in electromagnetic problems, e.g. the far-field pat-

tern, depend on the shape of the domain and are constrained by Maxwell’s

equations. As discussed in Chapter 3, shape gradients of PDE constrained

shape functionals can be stated in two equivalent ways. Both rely on solu-

tions of state and adjoint boundary value problems (BVPs). One involves

integrating their traces on the boundary of the domain, while the other one

evaluates integrals over the volume. Since constraints in electromagnetic

problems are vector fields, the procedure of evaluating shape gradients gets

rather complex.

Usually, the state and adjoint problems can only be solved approximately,

for instance, by finite element method. However, when used with finite el-

ement solutions, the equivalence of the two formulations of shape gradient,

i.e. the volume form integral and the boundary form integral, breaks down.

In Chapter 3, we proved that volume based expressions enjoy faster con-

vergence rates than boundary integrals in a finite element setting. We also

established some numerical experiment to confirm this statement.

In Chapter 4, we investigate how local perturbations affect the performance

of nano-particles. So, we employ cubic B-splines to represent local defor-

mations of the structure, and derive sensitivity probings over the surface of

the scatterer. We also define a sensitivity representative function over the

surface of the scatterer based on local sensitivity measurements. Several

numerical experiments are conducted to investigate the shape sensitivity of

different output functionals for different geometry settings.
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Zusammenfassung

Nanopartikel spielen eine wichtige Rolle in der Optik. Aufgrund ihrer gerin-

gen Grösse können stark lokalisierte Felder erzeugt werden. Durch die Wech-

selwirkung von Licht mit metallischen Nanopartikeln wird das einzigartige

Phänomen der plasmonischen Resonanzen hervorgerufen. Der Grund für

dieses Phänomen liegt in der kohärenten Oszillation von freien Elektronen.

Dank der Fortschritte bei Herstellungsprozessen werden plasmonische Res-

onanzen mittlerweile an vielen Orten eingesetzt. Zur Anwendung kommen

sie zum Beispiel bei Frequenzverdopplungen und Sensoren. Dennoch ist

die numerische Berechnung von plasmonischen Resonanzen anspruchsvoll.

Aufgrund der kleinen Grösse der Partikel im Vergleich zur Wellenlänge sind

lokale Verfeinerungen unumgänglich. Eine weitere Schwierigkeit stellt das

dispersive Material der Nanopartikel dar. Die Frequenzabhängigkeit op-

tischer Konstanten macht Methoden im Zeitbereich zu einer komplizierten

Angelegenheit. In der vorliegenden Dissertation verwenden wir Finite El-

emente Methoden (FEM) zur Lösung der Maxwell-Gleichungen im Fre-

quenzbereich. Ein Vorteil der Verwendung von FEM ist die einfache Um-

setzbarkeit lokaler Verfeinerungen. Die Betrachtung im Frequenzbereich

ermöglicht die Modellierung dispersiver Materialien.

Die Güte von Nanopartikeln wird durch verschiedene Techniken gemessen.

Eine der gängigsten Messgrössen ist die Lichtintensität in grosser Distanz,

genannt Fernfeld. Das Fernfeld kann auch numerisch berechnet werden. Da

mit FEM das elektromagnetische Feld nur innerhalb einer kleinen Umge-

bung um den Streukörper herum berechnet werden kann, werden Transfor-

mationstechniken vom Nah- auf das Fernfeld benötigt, um Auswertungen

in grosser Distanz zu ermöglichen. Für Strukturen im freien Raum gibt

es etablierte Auswertungsmethoden für das Fernfeld. Das Fernfeldfunk-

tional besteht bei vorhandenem Substrat aus verschiedenen asymptotischen

Termen, einschliesslich Oberflächenwellen. Im zweiten Kapitel betrachten

wir die einzelnen Terme eingehend und zeigen, dass nur die Beiträge der
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sphärischen Welle zum Fernfeld beitragen. Eine geschlossene Darstellung

dieses Beitrages lässt sich basierend auf der Greenschen Funktion eines

Dipols über einem Halbraum herleiten. Das Fernfeldfunktional besteht aus

Volumen- sowie Randintegralen, wobei der volumenbasierte Ausdruck durch

FEM genauer approximiert wird als der randwertbasierte. Wir bestätigen

die Gültigkeit unseres Ansatzes anhand mehrerer numerischer Experimente

und vergleichen die Resultate mit anderen Methoden sowie experimentellen

Messungen.

Trotz der schnellen Fortschritte der Nanopartikelforschung konnten Nanopar-

tikel bisher nicht erfolgreich kommerziell eingesetzt werden. Grund dafür

sind Verluste beim Herstellungsprozess und die hohe Sensitivität von plas-

monischen Partikeln gegenüber geringen Fabrikationsabweichungen. Nanopar-

tikel unterliegen stets gewissen Störungen, welche ihr Materialverhalten

stark beeinflussen. Deshalb ist es wichtig bestimmen zu können, welche

Auswirkungen Veränderungen der Form des Partikels haben. Um die Sen-

sitivität des Fernfeldes oder anderen Ausgabefunktionalen untersuchen zu

können, muss eine Formsensitivitätsanalyse durchgeführt werden. Formsen-

sitivitätsanalysen basieren auf der Berechnung des Formgradienten des Aus-

gabefunktionals. Elektromagnetische Formfunktionale, wie zum Beispiel

das Fernfeld, hängen von der Form des Gebietes ab und müssen die Maxwell-

schen Gleichungen als Zwangsbedingung erfüllen. In Kapitel 3 zeigen wir,

dass Formgradienten von Formfunktionalen mit PDE-Zwangsbedingungen

auf zwei verschiedene Arten dargestellt werden können. Diese sind äquiv-

alent und basieren auf Lösungen von state und adjoint Randwertproble-

men (RWP). Für eines der RWP ist die Integration der Spur über den

Rand des Gebietes vonnöten, während das andere RWP ein Volumenintegral

beinhaltet. Da sich Zwangsbedingungen in elektromagnetischen Fragestel-

lungen auf Vektorfelder beziehen, ist die Auswertung des Formgradienten

aufwendig.

Im Allgemeinfall können die Lösungen der state und adjoint RWP nur

näherungsweise bestimmt werden, zum Beispiel mit FEM. Dennoch müssen

die beiden Darstellungsformen für den Formgradienten, genauer gesagt die

Darstellung über das randbasierte bzw. das volumenbasierte Integral, für

die diskretisierte FEM Lösung nicht mehr zwangsläufig äquivalent sein.

In Kapitel 3 zeigen wir, dass die volumenbasierte Formel im Zusammen-

hang mit FEM zu höheren Konvergenzraten führt als die randbasierte Iden-
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tität. Weiter führen wir numerische Experimente durch, welche den Beweis

bestätigen.

In Kapitel 4 untersuchen wir den Einfluss von lokalen Störungen auf die

Eigenschaften von Nanopartikeln. Wir verwenden kubische B-Splines um

die lokalen Deformationen der Struktur zu beschreiben und erhalten Sensi-

tivitätssondierungen auf der Oberfläche des Streukörpers. Weiter definieren

wir eine repräsentative Sensitivitätsfunktion auf dessen Oberfläche, basierend

auf lokalen Sensitivitätsmessungen. In mehreren numerischen Experimenten

untersuchen wir die Formsensitivität verschiedener Ausgabefunktionale für

diverse Geometrien.

3





Contents

1 Introduction 1

1.1 Maxwell’s equations and weak forms . . . . . . . . . . . . . . 6

1.2 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . 9

2 Far field investigation in the presence of substrate 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Green’s functions . . . . . . . . . . . . . . . . . . . . . 13

2.2.2.1 Dipole in free space . . . . . . . . . . . . . . 14

2.2.2.2 Dipole over a semi-infinite surface . . . . . . 19

2.2.3 Branch cuts . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Asymptotic analysis . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 saddle . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Branch point contribution . . . . . . . . . . . . . . . . 31

2.3.3 Pole contribution . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Integration end point contribution . . . . . . . . . . . 35

2.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Far-field closed form . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 NGSolve implementation . . . . . . . . . . . . . . . . . . . . . 42

2.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.1 Dipole over a substrate . . . . . . . . . . . . . . . . . 49

2.6.2 Nanoparticle over a substrate . . . . . . . . . . . . . . 53

3 Shape Gradient: Evaluation and Approximation 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Shape gradients . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5



Contents

3.3 Derivation of shape gradient . . . . . . . . . . . . . . . . . . . 62

3.3.1 Scalar problems . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Electromagnetic shape functional . . . . . . . . . . . . 70

3.4 Approximation of shape gradients . . . . . . . . . . . . . . . . 79

3.4.1 Scalar Problem . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2 Maxwell problem . . . . . . . . . . . . . . . . . . . . . 80

3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 95

4 Sensitivity analysis for scattering problems 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Numerical Approximation of the Shape Gradient . . . . . . . 104

4.3 Function Representative of the Shape Gradient . . . . . . . . 106

4.4 NGSolve implementation . . . . . . . . . . . . . . . . . . . . . 107

4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5.1 Nano antenna consisting two gold spheres . . . . . . . 112

4.5.2 Nano antenna consisting two rectangular blocks in

free space . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5.3 Nano antenna consisting two rectangular blocks over

a substrate . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.4 Nano antenna consisting two rectangular blocks with

displaces arms . . . . . . . . . . . . . . . . . . . . . . 117

4.5.5 Nano antenna consisting two rectangular blocks with

gap along the longer edge . . . . . . . . . . . . . . . . 117

4.5.6 Groove antenna . . . . . . . . . . . . . . . . . . . . . . 118

4.5.7 Silver brick . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Conclusion 125

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography 135

Curriculum Vitae 143

6



1 Introduction

Optics is the science of light and vision. Several optical devices such as

mirrors, lenses, and prisms have been known and used since ancient times.

It is said that Archimedes used giant mirrors to set fire to Romans ships

in 212 B.C. [36]. Nero, the Roman Emperor, watched fights of gladiators

through a lens magnifier [19]. Another interesting historic report of optical

instruments is the Lycurgus cup [26]. The cup which is a Roman glass cup,

shows different colors under the illumination of light (see Figure 1.1).

The behavior of most of the ancient optical devices was first explained by

Figure 1.1: Lycurgus cup (British Museum [26]) which is made by adding nano
particles of gold and silver to the glass. Due to the interaction of light
with tiny metal nano particles, the color of the glass changes under
the natural light illumination.

Euclid in 300 B.C. [19, 36]. He stated that light travels along straight lines

and will reflect from a smooth surface. His theory is known as basics of

geometrical optics.

Geometrical optics was expanded by several scientists until the 17th cen-

tury [44]. In 1670, Issac Newton proposed that light could be made of

particles called corpuscles, i.e. light is composed of colored particles which

can be separated using a prism. In his book on optics [52], he considered

various concepts for describing the light, and also strongly improved the

Euclid’s concept. Newton’s theorem was not accepted right away and there

were criticisms. In 1690, Huygens proposed the wave behavior of light. He
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1 Introduction

claimed that when light hits a surface, every point on the surface behaves

like a point source emitting spherical wave [1]. Since he considered some

sort of longitudinal scalar waves, he was not able to explain effects, e.g.

polarization, that could be explained by Newton’s optics.

Although various theories of Newton, Huygens and others could explain

several effects and were useful constructing optical instruments, interesting

observations such as Lycurgus cup remained unexplained. In 1831, Michael

Faraday introduced the electromagnetic field concept and found the law of

electromagnetic induction [20]. In 1865, a Scottish mathematician, James

Clerck Maxwell summarized Faraday’s work in terms of mathematical for-

mulas [45]. He showed that electromagnetic waves travel at the same speed

as light, which means the light is also an electromagnetic wave. This phe-

nomenon led to using radio frequency (RF) waves. Radio waves which are

in the 3KHz-300GHz frequency range are mostly used for communication

and broadcasting purposes. Several instruments, such as radio antennas,

are used to send and receive RF waves. Still for large RF devices, one can

use ray optics, but in resonance areas a study based on Maxwell’s equations

is unavoidable.

By rapid progress of technology, the need for higher data rates of com-

munication revived the topic of optics. In 1966, optical fibers were first

proposed by George Hockham from England based on the idea of total

internal reflection [31]. In the field of optical imaging, however, classical

optical instruments like lenses, microscopes, and telescopes were still suffer-

ing from the diffraction limit of resolution which is typically around half a

wavelength. The diffraction limit exists as long as only the far-field behav-

ior of the device is considered. Due to the existence of evanescent fields in

the vicinity of an object, one can obtain more information in the near-field

region. Based on this, a new era in Near-field scanning techniques started.

The initial idea was proposed by Edward Hutchinson Synge in 1928 [67]. In

1972, Ash and Nicholas made the firs scanning near field microscope using

an electromagnetic wave with the wavelength of 3cm [5]. The first optical

scanning near field microscope was patented by Pohl in 1984 [58].

To improve the performance of the near field microscopy, substantial field

localization in the near field is needed. Near-field enhancement can be

tuned by manipulating the shape and the material properties of particles.

2



Dielectric materials can exhibit high resonances when they are illuminated

by light. The size of resonant dielectric particles is around half a wave-

length. Much smaller particle size and consequently higher resolution can

be achieved using metal nano particles.

Metal nano particles, can exhibit a very interesting phenomenon called plas-

monic resonances. Plasmon resonances are due to the coherent oscillation of

free electrons in the metal with the electromagnetic field. The behavior of

the Lycurgus cup can be explained by this phenomenon. Within the glass

of the cup, there are tiny sparkles of gold and silver which interact with

light and exhibit plasmonic resonance effects.

The strange behavior of metals under the illumination of light remained

unexplained until the 20th century. In 1902, an American physicist, Robert

William Wood, observed a pattern of dark and light bands when shining

polarized light on a metal-backed grating [74, 75]. Later in 1952, there were

more experiments by Bohm and Pines on collective oscillations of free elec-

trons in metals [8–10].

Matel nano particles can also be used as antennas. Similar to classical an-

tennas, nano antennas are metal particles which are resonating. However,

there are important differences between classical and plasmonic antennas.

The main difference is the size. Plasmonic antennas can be much smaller

than half a wavelength, whereas in classical antennas the size is around λ/2

for obtaining a good performance. The second difference arises from the

fact that metals like gold and silver show plasmon resonances in a limited

frequency range. Within the plasmon resonance spectra, metals are dis-

persive materials rather than a perfect electric conductor (PEC), i.e. their

material properties depend on the frequency. Due to dispersive material

properties, plasmonic nano antennas are not scalable. Consequently, the

system of Maxwell’s equations must be solved for each frequency.

Deriving simple formulas for the design of plasmonic antennas, similar to

those in classical antenna books, is not possible. Numerical methods must

be used to approximate the solution. There are two main categories of

numerical methods for computational electromagnetics: time domain and

frequency domain. Since the material properties are strongly frequency

dependent in plasmonic particles, frequency domain approaches are more

suitable.

There are several frequency domain methods like finite elements method

3



1 Introduction

(FEM) [48], method of moments (MoM) [30], boundary elements method

(BEM) [66], and multiple multipole method (MMP) [4]. For optical nano

particles, FEM is one of the most promising methods due to the following

reasons

• Curved elements,

• Local mesh refinement,

• higher order finite elements,

• hp refinement.

In this dissertation we use FEM both in 2D and 3D to solve Maxwell’s

equations. In 2D we use Lehrfem which is a home made library of Seminar

of Applied Math department at ETH, and it is based on Matlab. In 3D

we use NGSolve developed by Joachim Schoeberl at Vienna University of

Technology 1. NGSolve is an open source C++ library. We developed our

routines for far-field and shape sensitivity analysis based on NGSolve.

As mentioned before, the behavior of optical nano particles is highly de-

pendent on their shape. Recent developments in nano fabrication, such as

electron beam lithography (EBL) and focused ion beam (FIB) enable us

to have good control over the shape of the fabricated structure. In EBL a

focused beam of electrons are used to draw a specific pattern on the struc-

ture either by direct milling or through forming a mask and lithography

techniques. FIB techniques use beams of ions which are accelerated and

deflected in order to remove material on specific locations of the sample

directly without using mask or a resist in order to pattern the substrate

[60]. However, there are still production based perturbations which are

inevitable. Figure 1.2, taken from PhD dissertation of Takumi Sannomia

[59], shows SEM images of four fabricated particles from different angle and

compares them with the original structure. The SEM images reveal how

fabrication process introduces perturbations to the particle.

To study the effect of domain variations on the performance of the struc-

ture, one needs to perform sensitivity analysis [21–23, 63]. This can be don

1http://sourceforge.net/projects/ngsolve
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Figure 1.2: Magnified SEM images of four particles with different observation an-
gles [59].

by calculating the shape gradient of a certain output functional. The out-

put functional measures a physical quantity of the problem. In the case of

nano optics, the performance of a structure is often studied using far-field

measurements. In literature, the far field analysis is usually preformed for

structures surrounded by air for the reason of simplicity. However, nano-

particles are mounted on a substrate in most cases. At optical frequencies,

one cannot neglect the impact of the substrate on the performance of a

nano antenna. In this dissertation, the far-field formula is derived in the

presence of a substrate and contributions of different terms on the field at

far distances are discussed. We also discussed derivation of shape gradients

for Maxwell far-field pattern. The obtained expression is used to investigate

the shape sensitivity of several optical nano particles
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1 Introduction

1.1 Maxwell’s equations and weak forms

The optical properties of nano particles are described by Maxwell’s equa-

tions [45]

∇× e(r, t) = −∂tb(r, t) ,

∇× h(r, t) = ∂td(r, t) + j(r, t) ,

∇ · b(r, t) = 0 ,

∇ · d(r, t) = ρe(r, t) ,

(1.1)

where e(r, t) and h(r, t) represent the electric and magnetic fields at time

t and position r = (x, y, z) in the space. We further introduce the electric

flux density d(r, t), the magnetic flux density b(r, t), the electric current

density j(r, t), and the scalar electric charge density ρe(r, t).

In the simple case of linear, time independent, homogeneous, and isotropic

materials (without chirality), material equations (also known as constitutive

relations) are used to couple the system of equations above

d(r, t) = ε e(r, t),

b(r, t) = µ h(r, t),

j(r, t) = ji(r, t)+ σ e(r, t),

(1.2)

where ε, µ, and σ are the permittivity, permeability, and electric conductiv-

ity of the material, respectively. The impressed current density is denoted

by ji(r, t).

All field components are assumed to exhibit a harmonic dependency on

time. Then, time harmonic fields are introduced as

f(r, t) = Re (F(r, ω) exp(−iωt)) , (1.3)

where ω is the angular frequency, and F(r, ω) is a time harmonic field.

Maxwell’s equations for a piecewise constant material can then be rewritten

in frequency domain in terms of time harmonic fields

∇×E(r) = iωµ(r) H(r) , (1.4)

∇×H(r) = −iωεc(r) E(r) + Ji(r) , (1.5)

6



1.1 Maxwell’s equations and weak forms

∇ · (µ(r) H(r)) = 0 , (1.6)

∇ · (ε(r) E(r)) = − i
ω
∇ · Ji(r) , (1.7)

where εc = ε+i σω , i.e. the conductivity is included in a complex permittivity

εc. For the reason of simplicity we henceforth write only ε which can be

real or complex. Note that, in optics µ is usually real and equal to the

permeability of free space µ0.

By coupling (1.4) and (1.5), the second order Maxwell system is obtained

as follows

∇×∇×E− k2(r)E = iωµJi , (1.8)

where k2(r) := w2 ε(r)µ is the wavenumber.

In scattering problems, the excitation occurs via an incident field Ei, which

means there are no impressed currents Ji = 0. The scatterer is a bounded

domain Ωs with a Lipschitz boundary ∂Ωs. The incident field is a solution

of the Maxwell’s equations in the domain outside the scatterer. A typical

example for the incident field in the free space is a plane wave

Ei = pi e
ikir , (1.9)

where pi and ki are the polarization and the wavevector of the incident

field, respectively (|ki| = k0 the wavenumber of free space).

The total electric field consists of the incident field Ei and the scattered

field Es

E = Es + Ei. (1.10)

The final form of the boundary value problem (BVP) for the scattering

problem is 
∇×∇×E− k2(r)E = 0 r ∈ R3 ,

Jγt (E)K = 0 r ∈ ∂Ωs ,

Jγt (∇×E)K = 0 r ∈ ∂Ωs ,

((∇×Es)× r̂ − ik(r) Es) = 0 r →∞ ,

(1.11)
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where r = |r|, r̂ = r
r , and γt is the tangential trace [48, Page 57]. By J·K

we denote the discontinuity across the interface ∂Ωs. The condition on the

scattered field at infinity is called Silver Müller radiation condition [49].

To solve the frequency domain Maxwell’s equations (1.11) using finite

elements method, one needs to derive the variational form which is the

stationary point of variational integrals. Since energy integrals are defined

within a bounded domain, we define the domain Ω with a boundary ∂Ω

such that Ωs ⊂ Ω := {r ∈ R3 : |r| < R}, where R > 0 (see Figure

1.3). The natural function space for the electric field within domain Ω

is E ∈ H(curl; Ω) [48, Sec. 4.1].

The variational formulation of (1.11) is obtained by testing (1.11) with a

function W ∈ H(curl; Ω) and finding E ∈ H(curl,Ω) as the solution to∫
Ω

∇×E · ∇ ×W − k2(r) E ·W dr (1.12)

=

∫
∂Ω

((∇×E)× n̂) ·W ds(r) ∀W ∈ H(curl,Ω) ,

where W is the complex conjugate of W. By n̂, we denote the unit vector

outward normal to ∂Ω.

Figure 1.3: Domain definition for the scattering problem.

The boundary integral on the right hand side of (1.12) is not well defined

on the finite element space. To fix this issue, the Dirichlet-to-Neumann

8
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(DtN) operator (also named Calderon Map) is used [48, Ch. 9, Sec. 4]{
DtN : H−1/2(Div; ∂Ω)→ H−1/2(Div; ∂Ω),

g 7→ (∇×Eout)× n̂ ,
(1.13)

where Eout denotes the electric field outside of Ω, i.e., it solves the exterior

Dirichlet problem for the second order Maxwell’s equation in the region

{r ∈ R3 : |r| > R} with n̂ × Eout|∂Ω = g. Substituting DtN in (1.12), we

have∫
Ω

∇×E · ∇ ×W − k2(r) E ·W dr−
∫
∂Ω

DtN[E] ·W ds(r) (1.14)

=

∫
∂Ω

((∇×Ei)× n̂) ·W −DtN[Ei] ·W ds(r) ∀W ∈ H(curl,Ω) .

1.2 Outline of the dissertation

In Chapter 2, a thorough investigation of the asymptotic behavior of the far-

field functional in the presence of the substrate is presented. The Green’s

function in free space and in a half space is derived in Section 2.2. It is

shown that the Green’s function in the presence of a substrate can be ob-

tained using an appropriate superposition of plane wave expansions. Each

of the plane waves is reflected and transmitted in the presence of the sub-

strate. The asymptotic form of the Green’s function is then obtained at

far distances in Section 2.3. It is shown that only spherical waves play a

significant role in the far-field values, while surface waves decay exponen-

tially. In Section 2.4, the final far-field functional is formulated in terms of

Green’s functions. Since volume integrals are better approximated in the

finite elements space, we reformulate the far field formula in terms of vol-

ume integrals. In Section 2.6, far-field patterns of several plasmonic nano

particles are analyzed.

In Chapter 3, the shape sensitivity analysis is discussed. In Section 3.3,

shape gradients of 2D and 3D problems are obtained, and it is shown that

shape gradients can be represented in terms of both boundary and volume

integrals. In the following section, the effect of the finite element discretiza-

tion on the approximation of shape gradients is discussed. It is shown that

9
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volume integrals often display a faster convergence than the boundary in-

tegrals. The numerical results in Section 3.5 also confirm the theory.

In Chapter 4, the shape sensitivity representative for Maxwell’s equations is

derived. B-spline basis functions are used to perturb the shape locally. Sev-

eral numerical experiments are performed to show the sensitivity represen-

tative of far-field or near-field measurements. Finally Chapter 5, concludes

the dissertation.
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2 Far field investigation in the

presence of substrate

This Chapter is partly published in SAM-report [35]. Ralf Hiptmair and

Christian Hafner contributed in derivation of asymptotic forms and final

volume formula.

2.1 Introduction

In many electromagnetic scattering problems, the key quantity of concern

is the radiation pattern at far distances. For example, in antenna measure-

ments the receiver is usually located far away from the sender. Numerical

methods such as Finite Elements or Finite Differences provide the solution

to Maxwell’s equations within some finite region of space, i.e. the field in-

side the computational domain.

Field values at far distances can be obtained using a post-processing proce-

dure called near-field to far-field mapping. This mapping is a linear func-

tional of the near-field solution. Procedures of far-field calculations for

structures in free space are well known. However, for structures located

above a substrate, calculations are more challenging. There have been many

investigations about dipole radiation above a half space [14, 16, 24, 38, 55].

Sommerfeld obtained the first formula for a dipole oriented vertically above

a planar and lossy plane [64, 65]. The asymptotic evaluation for source and

observation points located near the planar surface revealed the contribution

of two terms: spherical waves and surface waves [76]. Sommerfeld claimed

that surface waves can be used for long distance radio wave transmission

due to their slower radial decay along the Earth’s surface. However, consid-

ering other contributions to the far-field formula shows that surface waves

decay exponentially along lossy interfaces. Sommerfeld’s results were the
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2 Far field investigation in the presence of substrate

basis of many other investigations [70, 71, 73].

In this chapter we present an asymptotic analysis for outgoing electromag-

netic waves and derive a closed form for the field of a dipole over a substrate

at far distances. We generalize the dipole results to derive a final form for

the near-field to far-field mapping using the Huygens principle.

Far-field functionals are stated in terms of a boundary integral over a surface

surrounding the scatterer. Since boundary integrals are not well-defined on

the natural variational space, we reformulate the far-field mapping in terms

of a volume integral. Volume integrals are continuous on the energy space

of the variational formulation. As a matter of fact, for Galerkin solutions,

the formulation with the volume-based expression is more appropriate than

boundary-integrals for calculating the far-field functional.

To investigate the validity of our results, we analyze the far-field and the

near-field patterns of different structures and compare them with other nu-

merical and experimental results.

2.2 Basics

2.2.1 Potentials

Maxwell’s equations in (1.4)-(1.7) comprise of two unknown vector fields.

In this section we reduce the number of unknowns to one vector and one

scalar field by introducing potentials. The derivation of vector potential is

based on the fact that B(r) is divergence free. A divergence free field can

be expressed as the rotation of a vector field A(r)

H =
1

µ
∇×A. (2.1)

It can also be shown that:

E = iωA−∇φe, (2.2)

where φe(r) : R3 → C is a scalar function. A and φe are known as vector

and scalar potentials of an electric source.

To define unique A and φe, we need to put constraints on ∇ ·A. We can
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use the Lorenz gauge condition as following ([55], [16])

∇ ·A = iωµεφe. (2.3)

Hence, the electric field can be rewritten as:

E = iω

(
A +

1

k2
∇ (∇ ·A)

)
, (2.4)

where, k2 = ω2µε is the wavenumber.

By coupling equations (2.1) and (2.2), using (2.3), one can derive the vector

Helmholtz equation for A

∆A + k2A = −µJi . (2.5)

There are three scalar Helmholtz equations embedded in (2.5). One stan-

dard technique to solve a second order inhomogeneous partial differential

equation such as the scalar Helmholtz equation, is to integrate over the

volume of source function using the solution to the point source (which is

known as Green’s function). In the next section, we will study the Green’s

function for the scalar Helmholtz equation.

2.2.2 Green’s functions

The scalar Green’s function g0 for the scalar Helmholtz equation is obtained

by considering a point source at r′ = (x′, y′, z′)

∆g0(r, r′) + k2 g0(r, r′) = δ(r− r′). (2.6)

Note that the Green’s function has to satisfy radiation conditions.

Proposition 1. (Sommerfeld radiation condition)The solution to (2.6) in

unbounded free space must fulfill the radiation condition at infinity

lim
r→∞

r

(
∂g0

∂r
− ikg0

)
= 0, (2.7)

where r = |r|.
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2 Far field investigation in the presence of substrate

As soon as g0(r, r′) is known, the vector potential can automatically be

obtained by an integration over volume V , where the source term exists

A(r) =
∫
V
µJi(r

′) g0(r, r′) dr′. (2.8)

The electromagnetic field distribution of an electric dipole oriented in

the direction ˆ̀ (|ˆ̀| = 1) can be obtained by introducing the vector Green’s

function G0(r, r′, ˆ̀) = g0(r, r′)ˆ̀ and using (2.1) and (2.4), we have

GE(r, r′, ˆ̀) = iωµ
(
G0(r, r′, ˆ̀) + 1

k2∇(∇ ·G0(r, r′, ˆ̀))
)
,

GH(r, r′, ˆ̀) = −∇×G0(r, r′, ˆ̀),

(2.9)

where GE(r, r′, ˆ̀) and GH(r, r′, ˆ̀) are electric and magnetic fields observed

at r = (x, y, z) from an electric dipole located at r′ = (x′, y′, z′).

Our main concern in this chapter is the far-field calculation of structures

located either in free space or over a semi-infinite dielectric domain. In

Section 2.3, it is shown that GE(r, r′, ˆ̀) is essential for far-field calculations.

So, the rest of this section is dedicated to the derivation of Green’s functions

in free space and half space.

2.2.2.1 Dipole in free space

Theorem 1. The fundamental solution to (2.6) in free space which has a

physical interpretation is [16, Sec. 1.3.4],

g0(r, r′) =
exp(ik|r− r′|)

4π|r− r′|
. (2.10)

Obviously, g0(r, r′) satisfies the radiation condition (2.7).

The spatial Fourier transformation of (2.10) in x and y directions in

Cartesian coordinate system can be obtained by the Weyl identity [73, Eqn.
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1]

g0(r, r′) = (2.11)

i

8π2

∫ +∞

−∞

∫ +∞

−∞
exp(i(kx(x− x′) + ky(y − y′)))e

i kz(kx,ky)|z−z′|

kz(kx, ky)
dkx dky ,

where k = (kx, ky, kz) is the wave vector such that |k| = k, so kz(kx, ky) =√
k2 − (k2

x + k2
y). The square root makes kz a double valued number. The

standard square root branch cut along the positive real axis is used to treat

the double valued numbers (see Section 2.2.3).

In Cartesian coordinates, plane waves eik·r are the solutions of the homoge-

neous Helmholtz equation. As a matter of fact, (2.11) is usually called the

plane-wave expansion of g0(r, r′).

To reduce the number of integrals in (2.11), one can use cylindrical waves

instead of plane waves. The cylindrical wave expansion of (2.10) is called

the Sommerfeld identity [65, Page 242]

g0(r, r′) =
i

4π

∫ +∞

0

kρJ0(kρρ̄)
exp(ikz(kρ) |z − z′|)

kz(kρ)
dkρ. (2.12)

where ρ̄ = |(x, y)− (x′, y′)|, kz(kρ) =
√
k2 − k2

ρ, and J0(kρρ̄) is the zero

order Bessel function of the first kind. Similar to (2.11), kz(kρ) is double

valued and is the source of branch points at kρ = ±k (see Section 2.2.3).

For subsequent applications, it is more useful to have the integration range

from −∞ to +∞ in (2.12). For this end, we put

J0(kρρ̄) =
1

2

(
H

(1)
0 (kρρ̄) +H

(2)
0 (kρρ̄)

)
(2.13)

where H
(1)
0 (kρρ̄) and H

(2)
0 (kρρ̄) are zero order Hankel functions of the first

and the second kind, respectively. Using the change of variables k̂ρ = −kρ
and keeping in mind that H

(2)
0 (−kρρ̄) = −H(1)

0 (kρρ̄), we have∫ +∞

0

kρH
(2)
0 (kρρ̄)

exp(ikz(kρ) |z − z′|)
kz(kρ)

dkρ = (2.14)
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2 Far field investigation in the presence of substrate

∫ 0

−∞
k̂ρH

(1)
0 (k̂ρρ̄)

exp(ikz(k̂ρ) |z − z′|)
kz(k̂ρ)

dk̂ρ .

Remark 1. If the range of kρ in (2.12) is to be extended to kρ = −∞, one

must take into account that a branch point singularity at kρ = 0 arises from

the Bessel function. To preserve the integrand single valued in the complex

kρ plane, we introduce a branch cut along the negative real kρ axis (see Fig-

ure 2.1).

Finally, we obtain

g0(r, r′) =
i

8π

∫
P̄ρ

kρH
(1)
0 (kρρ̄)

exp(ikz(kρ) |z − z′|)
kz(kρ)

dkρ. (2.15)

By P̄ρ we denote the integration contour in the complex kρ plane as depicted

in Figure 2.1. The integration contour is off the negative real axis due to

the branch cut of Hankel function.

Remark 2. Both integrals (2.11) and (2.15) are singular at branch point

kz = 0. To keep integrands analytic, the integration contour must avoid

singular points. So, P̄ρ have to go around the branch cut for the sake of

analyticity (see Sections 2.2.3 and 2.3.2).

Remark 3. The integrals in (2.11) and (2.15) are improper. They will

converge only if exp(ikz |z − z′|) converges to zero as the integration pa-

rameters approach +∞ or −∞. To fulfill this condition, it is necessary to

impose Im kz > 0. In Section 2.2.3, we discuss thoroughly how the selection

of branch cuts helps us to keep the imaginary part of kz always positive along

the integration contour.

The branch cuts in (2.15) can be removed by introducing the complex

angle w ∈ C:

kρ = k sinw. (2.16)
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Figure 2.1: Integration contour in the complex kρ plane (avoiding singularity of
Hankel function).

In Section 2.2.3 it is shown that kz(kρ) is no more double valued in the

complex w plane

kz(w) = ±k cosw . (2.17)

Based on the discussion in Section 2.2.3, at kρ = 0 we have kz = k. So, we

choose kz(w) = +k cosw to make kρ = 0 correspond to w = 0.

In terms of w, (2.15)is

g0(r, r′) =
i k

8π

∫
P̄w

sinw H1
0 (kρ̄ sinw)e(ikz(w)|z−z′|)dw, (2.18)

where P̄w is the transformed integration path in the w plane. For real values

of k we obtain from (2.16)

kρ = k(sin(Rew) cosh(Imw) + i cos(Rew) sinh(Imw)) . (2.19)

Thus, P̄w lies on

Im kρ = k cos(Rew) sinh(Imw) = 0 , (2.20)
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which implies the following
If Imw = 0 then Im kρ = 0 & − k ≤ Re kρ ≤ k,

If Rew =
π

2
then Im kρ = 0 & Re kρ ≥ k,

If Rew =
−π
2

then Im kρ = 0 & Re kρ ≤ −k .

(2.21)

Similar to (2.11) and (2.15), the integral in (2.18) is improper. Conse-

quently, the direction of P̄w must be chosen in such a way that Im kz(w) > 0.

Using (2.17), one can simply show that Im kz = −k sin(Rew) sinh(Imw) for

real values of k. In order to keep the imaginary part of kz always positive

along P̄w we must have the followings

• If Rew = π
2

the contour folds down towards Imw < 0.

• If Rew = −π
2

the contour folds up towards Imw > 0.

The final form of P̄w is shown in Figure 2.2.

Figure 2.2: Integration contour in the complex w plane, avoiding the branch cut
singularity of Hankel function.
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2.2.2.2 Dipole over a semi-infinite surface

Figure 2.3 shows a dipole located at r′ over a semi-infinite domain (sub-

strate). Ω1 := {r ∈ R3 : z > 0} and Ω2 := {r ∈ R3 : z < 0}. (ε1, µ1) and

(ε2, µ2) are the material properties of Ω1 and Ω2, respectively.

Assumption 1. In this dissertation, we consider non magnetic (µα =

permeability of free space µ0), loss-free (Im εα = 0) or lossy (Im εα > 0)

dielectrics. For the sake of simplicity, we assume Re εα ≥ 0. α = 1, 2

specifies different coefficients for different subdomains Ωα

We also introduce k1 = n1 k0 and k2 = n2 k0 as wavenumbers in Ω1 and

Ω2 (k0 = ω
√
ε0µ0 is the wavenumber in free space). By n1 =

√
ε1
ε0

and

n2 =
√

ε2
ε0

we denote refraction indices of non-magnetic materials.

Figure 2.3: Dipole located over a semi-infinite dielectric domain.

The best way to find the solution to (2.6) in the presence of a substrate

is to start with the solution in free space. As already mentioned, the in-

tegrand in (2.11) is a linear superposition of plane waves. Plane waves in

the presence of a semi-infinite dielectric domain can be decomposed into

transverse electric (TE) and transverse magnetic (TM) modes [16, Ch.2].

The electric field of a TE mode is perpendicular to the plane of incidence,

whereas, the magnetic field of a TM mode is perpendicular to the plane of

incidence. The plane of incidence is a plane spanned by vectors k and n,
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where n is the unit vector normal to the substrate. In the configuration

shown in Figure 2.3 we have n = ẑ. We also assume that k is not parallel

to n.

A TM wave incidence on a half space is depicted in Figure 2.4. The

z component of the incident electric field is Eiz = E0 e(i(kxx+kyy−kz1z)).

k1 = (kx, ky, kz1) and k2 = (kx, ky, kz2) both belong to R3 such that

|k1| = k1 and |k2| = k2.

Figure 2.4: TM wave incidence on a semi-infinite dielectric half space.
(Ei(r),Hi(r)), (Er(r),Hr(r)), and (Et(r),Ht(r)) are the incident, re-
flected, and transmitted fields, respectively.

Proposition 2. ([55, Sec. 2.8.1]) Consider an incident TM wave over a

semi-infinite half space shown in Figure 2.3 with Eiz = E0 e
(i(kxx+kyy−kz1z)).

Then the longitudinal component of the total field is

TM :



Ez(r) =E0 e
(i(kxx+kyy−kz1z))

−RTM (kx, ky) E0 e
(i(kxx+kyy+kz1z))

r ∈ Ω1,

Ez(r) = TTM (kx, ky) E0 e
(i(kxx+kyy−kz2z)) r ∈ Ω2,

Hz(r) = 0 r ∈ Ω1 ∪ Ω2,
(2.22)
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where RTM (kx, ky) and TTM (kx, ky) are reflection and transmission coeffi-

cients of TM modes, respectively

RTM (kx, ky) =
ε1kz2−ε2kz1
ε1kz2+ε2kz1

,

TTM (kx, ky) = 1 +RTM (kx, ky).

(2.23)

Proposition 3. ([55, Sec. 2.8.1]), Consider an incident TE wave over a

semi-infinite half space shown in Figure 2.3 with Hi
z = H0 e

(i(kxx+kyy−kz1z)).

Then the longitudinal component of the total field is

TE :



Ez(r) = 0 r ∈ Ω1 ∪ Ω2,

Hz(r) =H0 e
(i(kxx+kyy−kz1z))

+RTE(kx, ky) H0 e
(i(kxx+kyy+kz1z))

r ∈ Ω1,

Hz(r) = TTE(kx, ky) H0 e
(i(kxx−kyy−kz2z)) r ∈ Ω2,

(2.24)

with reflection and transmission coefficients RTE and TTE:

RTE(kx, ky) =
kz1−kz2
kz1+kz2

,

TTE(kx, ky) = 1 +RTE(kx, ky).

(2.25)

Note that kz1(kx, ky) =
√
k2

1 − k2
x − k2

y and kz2(kx, ky) =
√
k2

2 − k2
x − k2

y

both are double valued functions and must be treated using branch cuts

(see Section 2.2.3).

In order to expand the field of a dipole oriented in direction ˆ̀ above a

substrate using plane waves, one must choose the correct mode of plane

waves. Based on what discussed already the longitudinal component of the

electric field of a dipole GE(r, r′, ˆ̀) · ẑ must be expanded using TM waves,

and similarly the longitudinal component of the magnetic field of a dipole

GH(r, r′, ˆ̀) · ẑ must be expanded in terms of TE waves.
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Assumption 2. Green’s functions derived in this chapter are for dipole

located in upper half space, i.e. r′ ∈ Ω1. A similar procedure can be used to

calculate g0(r, r′) for r′ ∈ Ω2.

Using (2.11), one can derive the plane wave expansion of the scalar

Green’s function in the presence of a planar dielectric half space in terms

of either TM or TE mode expansion for |z| > z′

g0(r, r′) =



i

8π

∫ +∞

−∞

∫ +∞

−∞

e(i(kx(x−x′)+ky(y−y′)+kz1 (kx,ky)z))

kz1(kx, ky)
r ∈ Ω1 ,[

e(−ikz1 (kx,ky)z′) + f(kx, ky)e(ikz1 (kx,ky)z′)
]
dkx dky

i

8π

∫ +∞

−∞

∫ +∞

−∞

e(i(kx(x−x′)+ky(y−y′)−kz2 (kx,ky)z))

kz1(kx, ky)
r ∈ Ω2 ,

ekz1 (kx,ky)z′(1 + f(kx, ky)) dkx dky

(2.26)

where f(kx, ky) = −RTM (kx, ky) for TM modes, and f(kx, ky) = RTE(kx, ky)

for TE modes.

In terms of cylindrical waves (2.26) for |z| > z′ is (derivation procedure

is similar to (2.15))

g0(r, r′) =



i

8π

∫
P̄ρ

kρ H
(1)
0 (kρρ̄)

kz1(kρ)
e(ikz1 (kρ)z) r ∈ Ω1 ,[

e(−ikz1 (kρ)z′) + f(kρ)e
(ikz1 (kρ)z′)

]
dkρ

i

8π

∫
P̄ρ

kρ H
(1)
0 (kρρ̄)

kz1(kρ)
e−i(kz2 (kρ)z) r ∈ Ω2 ,

e(i(kz1 (kρ)z′))(1 + f(kρ)) dkρ
(2.27)

where ρ̄ = |(x, y)− (x′, y′)|, kz1(kρ) =
√
k2

1 − k2
ρ and kz2(kρ) =

√
k2

2 − k2
ρ.

Double valued functions kz1(kρ) and kz2(kρ) are the sources of branch cuts
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at kρ = ±k1 and kρ = ±k2 in both half spaces (see Section 2.2.3). f(kρ) is

derived in a similar way to f(kx, ky) just by considering kz1(kρ) and kz2(kρ)

instead of kz1(kx, ky) and kz2(kx, ky), respectively.

In terms of the complex angle w, (2.27) |z| > z′ is

g0(r, r′) =



i k1

8π

∫
P̄w

sinw H1
0 (k1ρ̄ sinw)e(ikz1 (w) z)[

e(−ikz1 (w) z′) + f(w)e(ikz1 (w) z′)
]
dw

r ∈ Ω1 ,

i k2

8π

∫
P̄w

sinw H1
0 (k2ρ̄ sinw)e(−ikz2 (w) z)

e(ikz1 (w)z′)(1 + f(w)) dw

r ∈ Ω2 ,

(2.28)

where 
kz1(w) = +k1 cosw

kz2(w) = k1

√
ε2
ε1
− sin2 w

r ∈ Ω1, (2.29)

 kz1(w) = k2

√
ε1
ε2
− sin2 w

kz2(w) = −k2 cosw

r ∈ Ω2. (2.30)

kz2(w) and kz1(w) are the origins of branch cuts in Ω1 and Ω2, respec-

tively (see Section 2.2.3). f(w) is derived in a similar way to f(kx, ky)

just by considering kz1(w) and kz2(w) instead of kz1(kx, ky) and kz2(kx, ky),

respectively.

2.2.3 Branch cuts

In this section we discuss some issues regarding branch point singularities

and branch cuts within integrals (2.27) and (2.28).
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2 Far field investigation in the presence of substrate

(a) (b)

Figure 2.5: Integration path in the complex kρ plane for a (a) loss-less (b) lossy
material.

The integrand in (2.27) contains branch point singularities at kρ = ±k1

and kρ = ±k2 which arise from kz1 =
√
k2

1 − k2
ρ and kz2 =

√
k2

2 − k2
ρ,

respectively [2]. In loss-less materials, the branch points in kρ plane lie on

the integration path. Then the integration path must be displaced around

singularities (see Figure 2.5a). By introducing a slight loss in materials, k1

and k2 have small positive imaginary parts, thus the branch points are no

more on the real axis. Typical integration paths in the complex kρ plane for

loss-less and lossy materials are shown in Figures 2.5a and 2.5b, respectively.

Branch cuts originating from double valued functions in a complex plane,

e.g. kz1 and kz2 , provide a mean to pass from one Riemann sheet to the other

[2]. Signs of Im kz1 , and Im kz2 in different regions of the kρ plane depend

on Riemann sheet junctions or branch cuts. To ensure the boundedness of

integrands in (2.27) when kz1 |z−z′| → ∞ or kz2 |z−z′| → ∞, it is necessary

to impose conditions Im kz1 > 0 and Im kz2 > 0. As a matter of fact, the

boundedness of radiation integrals is closely related to branch cuts.

The selection of branch cuts is arbitrary, but cuts along contours Im kzα = 0

or Re kzα = 0 (α = 1, 2) are very useful. If one chooses branch cuts along

Im kzα = 0, then Im kzα > 0 in the whole top Riemann sheet, and the

sign of Re kzα changes when kρ crosses the cuts. In [24, Sec. 5.3b], it has

been thoroughly argued that Im kzα = 0 and Re kzα = 0 are along the

hyperbola Re kρ Im kρ = Re kα Im kα for |Re kρ| < Re kα and |Re kρ| >
Re kα, respectively. As depicted in Figure 2.6, selecting branch cuts along

Im kzα > 0 guaranties the boundedness of integrals.
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2.2 Basics

Another issue concerning branch point cuts, is the integrand analyticity.

(a) (b)

Figure 2.6: Different choices of branch cuts in the complex kρ plane. (a) Branch
cuts are along Im kz1 = 0. So, Im kz1 > 0 on the entire top Riemann
sheet, Re kz1 > 0 on unshaded regions, Re kz1 < 0 on shaded regions.
(b) Branch cuts are along Re kz1 = 0. So, Re kz1 > 0 on the entire top
Riemann sheet, Im kz1 > 0 on shaded regions, Im kz1 < 0 on unshaded
regions.

To keep the integrand analytic over the integration contour, we must deform

the contour such that it goes around branch cuts and does not intersect with

cuts (see Figure 2.7a).

In w plane, we only have one branch point singularity. To discuss this

more clearly, we focus on the first integration in (2.28). A similar procedure

can be applied for the radiation integral in Ω2. The transformation (2.16) is

2π periodic with respect to Rew. Thus, the entire kρ plane can be mapped

into various adjacent sections of width 2π in the w plane. For the sake of

simplicity, we only consider the interval −π < Rew < π. For a loss-less

material, (2.29) boils down to

Im kz1 = −k1 sin(Rew) sinh(Imw) . (2.31)

It is easy to see that Im kz1 > 0 for

{
− π < Rew < 0 and Imw > 0

0 < Rew < π and Imw < 0
.
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2 Far field investigation in the presence of substrate

(a) (b)

Figure 2.7: Integration path in the complex (a) kρ plane (b) w plane goes around
branch cuts to avoid singularities and to guaranty that integrands are
analytic.

As a matter of fact, (2.16) maps the two-sheeted kρ plane (with respect

to kz1) into adjacent regions in the w plane, that is kz1 =
√
k2

1 − k2
ρ = 0

is no more double valued and no branch cut arises from it. However,

kz2 = k1

√
η − sin2 w is still a source of a branch cut which originates from

the branch point sinwb =
√
η (η = ε2

ε1
). Similar to P̄ρ, the integration

contour in w plane must avoid branch cuts to ensure that integrands are

analytic. Figure 2.7b shows the deformation of P̄w along the branch cut.

2.3 Asymptotic analysis

Theorem 2. ([16, Sec. 1.4],Huygens’ principle) Let Ωs be a finite domain

which contains all the electromagnetic sources. Furthermore, consider a

closed surface Γ which surrounds Ωs (see Figure 2.8). Then the scattered

field distribution on Γ can be extended to the scattered field outside the

surface Γ

E(r) · ˆ̀=
1

iωµ

∫
Γ

(∇r′ ×E(r′)) ·
(
GE(r, r′, ˆ̀)× n̂(r′)

)
− (2.32)(

∇r′ ×GE(r, r′, ˆ̀)
)
· (E(r′)× n̂(r′)) ds(r′),
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2.3 Asymptotic analysis

where ∇r′ denotes the derivatives with respect to r′, and n̂ is the outward-

pointing normal vector on Γ. By GE(r, r′, ˆ̀) we denote the electric field of

an electric dipole, oriented in direction ˆ̀ and located at r′, observed at point

r.

(2.32) is also known as representation formula [51, Ch. 3, Thm. 3.1.1].

In the case of a scattering problem Ωs is the scatterer which contains all

sources of the scattered field.

Figure 2.8: The scatterer Ωs is shown as a shaded region bounded by ∂Ωs. The
integral in (2.32) is calculated over the contour Γ

Equation (2.32) can be simplified when the observation point is located

far away from the scatterer, i.e. kr → ∞. Since (2.32) relies basically on

the electric field distribution of an electric dipole GE(r, r′, ˆ̀), the primary

emphasis is on investigating the far-field behavior of a single dipole in free

space and in semi-infinite half space. The Green’s function for free space is

implicitly embedded inside the formulation for the half space. Henceforth,

we mainly discuss the half-space problem. Among three forms of the scalar

Green’s function represented in (2.26), (2.27), and (2.28), we use (2.28),

since it has a reduced number of branch cuts.

Remark 4. If the function f(x) is asymptotically equivalent to g(x) in the

limit x→ x0, that is lim
x→x0

f(x)
g(x) = 1, we write [50, Pgae 4]

f(x) ∼ g(x) as x→ x0. (2.33)
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2 Far field investigation in the presence of substrate

To put (2.28) in a proper form for the asymptotic analysis, we do one

more step of simplification and employ the large-argument approximation

of the Hankel function for far-field observation points

H1
n(z) =

√
2

πz

(
ei(z−

nπ
2 −

π
4 ) +O

(
1

z

))
for |z| � n | arg z| < π. (2.34)

One can also show that

ρ̄ = |ρ− ρ′| ∼ ρ− ρ′ cos(φ− φ′) as ρ→∞ , (2.35)

where ρ = |(x, y)|, ρ′ = |(x, y)|, (x, y) = ρ(cosφ, sinφ), and (x′, y′) =

ρ′(cosφ′, sinφ′).

Using (2.34) and (2.35), we rewrite (2.28) as

g0(r, r′) ∼ C(r, r′)

∫
P̄w

V(w, r, r′)erψ(w,r,r′) dw as r →∞ , (2.36)

where C(r, r′) = ei
π
4

8π

√
2kα

πr sin θ (α = 1, 2 specifies different coefficients for

different subdomains Ωα), and

ψ(w, r, r′) =


ik1 cos(w − θ) r ∈ Ω1,

ik2 cos(w − θ) r ∈ Ω2,

(2.37)

V(w, r, r′) =



√
sinw e−ik1r

′ sinw sin θ′ cos(φ−φ′)[
e(−ik1 coswz′) + f(w)e(ik1 coswz′)

]
r ∈ Ω1,

√
sinw e−ik2r

′ sinw sin θ′ cos(φ−φ′)

e(ikz1 (w)z′)(1 + f(w)) r ∈ Ω2.

(2.38)
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2.3 Asymptotic analysis

Note that (r, θ, φ) and (r′, θ′, φ′) are the spherical coordinates of r and r′,

respectively, where r = |r|, θ is the longitudinal angle with respect to the z

axis, and φ is the azimuthal angle in the x-y plane. One must note that, the

double valued square root
√

sinw has the same branch cut as the Hankel

function.

Now that (2.36) has the suitable form for asymptotic evaluations, we discuss

the following additive contributions to the asymptotic analysis of radiation

integrals in the complex plane:

• Saddle point contribution

The stationary phase method is used to derive it [50, Ch. 4].

• Critical point contributions

There are three types of critical points:

– branch point singularity

– pole singularity

– integration end points.

The far-field asymptotics of each contribution can be determined us-

ing the method of steepest descent [50, Ch. 3] and [7, Ch. 7].

2.3.1 Saddle point contribution

To keep the procedure clear, we only discuss (2.36) in Ω1. Similar calcula-

tions can be used for the integration in Ω2.

The integral in Ω1 has only one first order saddle point at ws = θ

ψ′(ws) = 0 and ψ′′(ws) 6= 0 . (2.39)

where ψ′ and ψ′′ mean the first and the second derivatives of ψ with respect

to w, respectively. The steepest-descent path (P̄s) through the saddle point

lies on Imψ(w) = const, that is Imψ(w) = Imψ(ws). If the medium is

loss-less, then the Steepest Descent Path (SDP) is:

Imψ(w) = k1 cos(Rew − θ) cosh(Imw) = k1 . (2.40)

Directions of the SDP at the saddle point are −π4 and 3π
4 [7, Sec. 7.2, table

7.1]. For this problem, integration contours must be along a direction which
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2 Far field investigation in the presence of substrate

conserves the boundedness of integrands when r → ∞. The phase term in

(2.36) is

r ψ(w) = rk1 [sin(Rew − θ) sinh(Imw) + i cos(Rew − θ) cosh(Imw)] .

(2.41)

In order to have bounded integrands for observation points located away

from the scatterer we must have

sin(Rew − θ) sinh(Imw) < 0, (2.42)

which means  0 < Rew − θ < π

2
→ Imw < 0 ,

− π

2
< Rew − θ < 0 → Imw > 0 .

(2.43)

Consequently, we choose P̄s along −π4 and keep P̄w and P̄s in those regions

of the w plane that (2.42) is fulfilled (see Figure 2.9).

Figure 2.9: Integration contours in the complex w plane. P̄s is the steepest descent
path (SDP).

Theorem 3. ([50, Ch. 3, Page 50]) if V(w, r, r′) does not have any singu-

larity at w = ws, then the asymptotic form of the radiation integral (2.36)
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2.3 Asymptotic analysis

along the SDP is

gs(r, r
′) = C(r, r′)

∫
P̄s

V(w, r, r′)erψ(w,r,r′) dw

∼ C(r, r′)

√
−2π

rψ′′(ws)
V(ws, r, r

′)erψ(ws,r,r
′) for r →∞

(2.44)

=



eik1r

4πr
e−ik1(sin θ cosφ x′+sin θ sinφ y′)[

e−ik1 cos θ z′ + f(θ)eik1 cos θ z′
]

r ∈ Ω1 ,

eik2r

4πr
e−ik2(sin θ cosφ x′+sin θ sinφ y′)

e
−ik2

√
ε1
ε2
−sin2 θz′

(1 + f(θ)) r ∈ Ω2 .

The result obtained above is valid as far as no singularity exists in the

vicinity of the saddle point. In Section 2.3.3, it will be shown that a pole

singularity shows up near the saddle point under some special conditions.

In this case, the final result for integrating along the SDP changes. More

details are given in Section 2.3.3.

2.3.2 Branch point contribution

As explained in Section 2.2.3, the integrand in (2.36) has only one branch

cut. In Ω1, kz2 = k1

√
η − sin2 w is the cause of a branch cut at sin(wb) =

√
η. For a special observation angle θb, the branch point wb lies on P̄s.

Using (2.40), we derive θb as

θb = Rewb − cos−1

(
1

cosh(Imwb)

)
. (2.45)

If θ > θb the branch point intersects with the SDP. For an intersected wb,

we surround the branch cut with an appropriate contour P̄b in order to keep

the integrand analytic (see Figure 2.10).
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2 Far field investigation in the presence of substrate

Theorem 4. The asymptotic form of the radiation integral (2.36) along the

contour P̄b is [38]:

gb(r, r
′) = C(r, r′)

∫
P̄b

V(w, r, r′)erψ(w,r,r′) dw

∼ C(r, r′)
V0
√
π

(r|ψ′(wb)|)
3
2

erψ(wb) for r →∞ , (2.46)

where V ∼ V0

√
(w − wb), w → wb.

Using Theorem 4, one can derive gb(r, r
′) for TM modes as follows

gb(r, r
′) =



e−i
π
4

4π

√
k1

r η sin θ
e−ik2(cosφ x′+sinφ y′) r ∈ Ω1,

exp(ik1(
√

1− η(z + z′) +
√
ηρ))U(θ − θb)[

k1(
√

1− η r sin θ −√η r cos θ)
] 3

2 (1− η)
1
4

ei
3π
4

4π

√
k2

r η sin θ
e−ik1(cosφ x′+sinφ y′) r ∈ Ω2 .

exp(ik2(
√

1− η−1z +
√
η−1ρ))U(θ − θb)[

k2(
√

1− η−1 r sin θ +
√
η−1 r cos θ)

] 3
2

(1− η−1)
1
4

(2.47)

where U(x) =

{
1 x > 0

0 x < 0
, and η = ε2

ε1
.

2.3.3 Pole contribution

In (2.36), f(w) possesses one pole singularity which must be taken into

account in the case that it intersects the SDP. For the TM mode, we have

f(w) =
η cosw −

√
η − sin2 w

η cosw +
√
η − sin2 w

. (2.48)
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2.3 Asymptotic analysis

Figure 2.10: Integration contours in the complex w plane. wb is the branch point
and P̄b surrounds the branch cut.

Thus, the pole singularity for the radiation integral in Ω1 lies on
√
η − sin2 wp =

−η coswp. It can be shown that [24, Ch. 5]

coswp = − 1√
1 + η

(2.49)

and

sinwp =

√
η

1 + η
. (2.50)

Remark 5. wp lies on the SDP for the special observation point θp which

can be derived using the same procedure as for θb in Section 2.2.3

θp = Rewp − cos−1

(
1

cosh(Imwp)

)
. (2.51)

Theorem 5. As a result of residue theorem, the pole contribution in the

radiation integral (2.36) under the condition wp 6= θp is

gp(r, r
′) = i2πC(r, r′)Resw=wp(V(w, r, r′)erψ(w,r,r′))U(θ − θp) (2.52)

Remark 6. It can be shown that wp crosses the contour only under the

condition that the loss of substrate material is much bigger than that in Ω1
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2 Far field investigation in the presence of substrate

(|η| � 1 and arg η → π/2), and also the observation point is located on the

substrate θ = π/2 [24, Ch. 5]. Under this condition and using (2.49), the

pole is located at

wp =
π

2
+

1
√
η
. (2.53)

The pole derived in (2.53) lies near the saddle point (ws = θ = π
2 ).

Therefor, (2.44) is no more the correct form of integrating along the SDP.

One must consider the effect of the singularity in the vicinity of the saddle

point. For this end, we introduce a more generalized form of integration

along the SDP, g∗s (r, r′) which is different from gs(r, r
′) when wp = ws

g∗s (r, r′) =

{
gs(r, r

′) wp 6= ws,

gsp(r, r
′) wp = ws.

(2.54)

Theorem 6. ([24, Sec. 4.4]) The asymptotic form of the radiation integral

(2.36) along the SDP, when a pole singularity exists in the vicinity of the

saddle point (wp = θ), is

gsp(r, r
′) ∼ C(r, r′)erψ(wp,r,r

′)

[
i2a
√
πe−rb

2

Q(ib
√
r) +

√
π

r
T (0)

]
for r →∞,

(2.55)

and

a = lim
w→wp

[(w − wp)V(w, r, r′)] , b =
√
ψ(ws, r, r′)− ψ(wp, r, r′),

h =

√
−2

ψ′′(ws, r, r′)
, T (0) = hV(ws, r, r

′) +
a

b
,

Q(y) =

∫ ∞
y

e−x
2

dx.
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2.3 Asymptotic analysis

Under the assumptions θ = π/2, |η| � 1 and arg η = π/2 (2.55) becomes

gsp(r, r
′) ∼



eik1r

2πr
e−ik1(cosφ x′+sinφ y′) r ∈ Ω1,1 + i

√
π
k1r

2|η|
e−

k1r

2|η| − i2

√
k1r

2|η|
e−

k1r

2|η|

∫ −i√ k1r

2|η|

0

e−x
2

dx



eik2r

2πr
e−ik1(cosφ x′+sinφ y′) r ∈ Ω2.1 + i

√
π
k2r

2|η|
e−

k2r

2|η| − i2

√
k2r

2|η|
e−

k2r

2|η|

∫ −i√ k2r

2|η|

0

e−x
2

dx


(2.56)

2.3.4 Integration end point contribution

Equation (2.37) in Ω1 shows that

Imψ(w, r, r′) = cos(Rew) sinh(Imw) sin(θ)− sin(Rew) sinh(Imw) cos(θ).

(2.57)

Using (2.57) and Figure 2.10, one can easily see that the end points of con-

tours P̄ , P̄s, and P̄b at |w| → ∞ are situated in regions wherein eik1ψ(w,r,r′) →
0. In other words no contributions arise from end points. The same argu-

ment applies to the integration in Ω2.

2.3.5 Discussion

The final form of the scalar Green’s function far away from the dipole source

in the presence of a substrate is obtained by putting together all the con-

tributions discussed earlier

g0(r, r′) = g∗s (r, r′) + gb(r, r
′). (2.58)

Each term on the right hand side of (2.58) decays with a different rate with

respect to the distance of the observation point r from r′. Using (2.44) and

(2.47), one can see that gs(r, r
′) and gb(r, r

′) decay according to 1
r and 1

r2 ,
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2 Far field investigation in the presence of substrate

respectively. In the case of having the pole contribution, there is a term

decreasing as 1√
r

(see Equation (2.56)).

• Saddle point contribution

Taking a closer look at (2.44) reveals that gs(r, r
′) comprises direct

wave and reflected wave contributions in Ω1 and the transmitted wave

in Ω2. The first term on the right hand side of (2.44) in Ω1 is the

spherical wave propagating directly from the source point to the ob-

servation point. This term is identical with the field of a dipole located

in free space observed at far distances. The second term on the right

hand side of (2.44) in Ω1 can be interpreted as the reflected wave

from the interface which is multiplied by the reflection coefficient.

Finally, the saddle point contribution in Ω2 resembles a transmitted

wave through the interface. The amplitude of the transmitted wave

contains the factor 1 + f(θ) which is identical to the transmission

coefficient. gs(r, r
′) can also be obtained directly through ray optics,

which means that the direct and the reflected waves are observed at

points located in the same half space as the source, whereas the trans-

mitted wave is received inside the other half space.

• Branch point contribution

The result shown in (2.47) reveals that gb(r, r
′) does not have that

much effect on the final Green’s function due to the faster decay

of 1
r2 in comparison with gs(r, r

′). If the material is lossy, gb(r, r
′)

even decays exponentially. However, there are some exceptions, worth

being taken into account:

– medium 1 loss-less, medium 2 lossy and θ → π
2

gs(r, r
′) has no exponential decay in Ω1 whereas gb(r, r

′) de-

creases in both lateral and longitudinal directions in Ω1. As a

result, gs(r, r
′) dominates gb(r, r

′).

In Ω2, gs(r, r
′) has exponential decay in radial direction, how-

ever, gb(r, r
′) decreases only in z direction. This means that

gb(r, r
′) dominates gs(r, r

′) in Ω2 when ρ� z or in other words

θ → π
2 .
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2.4 Far-field closed form

– medium 1 lossy, medium 2 loss-less and θ → π
2

gs(r, r
′) has exponential decay in Ω1, while gb(r, r

′) decays only

in longitudinal direction. As a result, gb(r, r
′) dominates gs(r, r

′)

in Ω1 when ρ � z or in other words θ → π
2 . In Ω2, it is only

gb(r, r
′) which features from exponential decay.

– θ → π
2 and z′ → 0

In this case, the ray-optical part vanishes and lower order terms,

O( 1
r2 ), in the asymptotic expansion of gs(r, r

′) become impor-

tant. Under this condition, the gb(r, r
′) contribution is compa-

rable to the contribution of gs(r, r
′).

• Pole contribution

The Equation (2.56) has different terms with different decay rates

on the right hand side. As explained in Section 2.3.3, the effect of

pole singularity only matters when the medium 2 is highly lossy and

the medium 1 is loss-less. So, the first term on the right hand side

of (2.56) is the same as (2.44) when the substrate is highly lossy.

The second term on the right hand side of (2.56) resembles surface-

waves because it decays as 1√
r
. However, this term does not play any

significant role in the field observed at far distances because of the

fast exponential decay.

2.4 Far-field closed form

In this section, we use the results obtained in the previous section and de-

rive a closed form formulation for far-field value for scattering problems.

As explained in Section 2.3, the dominant contribution to g0(r, r′) at far

distances when θ 6= 0, θ 6= π
2 arises from the saddle point contribution

(2.44), which means that the Green’s function decays according to 1
r as

r →∞.

Based on (2.32), we need GE(r, r′, ˆ̀) to derive the scattered field at far

distances in the direction ˆ̀. Using (2.44), one can easily show that for ˆ̀= r̂

the value of GE at r →∞ decays with the order 1
r2 , i.e. the radial compo-

nent of the far-field pattern decays faster than other terms. Consequently,

electromagnetic fields at far distances have only components in polar and
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2 Far field investigation in the presence of substrate

azimuthal directions (θ̂ and φ̂), that is the energy flux in the far-field area

propagates only along the radial direction.

Proposition 4. The electric field observed at far distances when θ 6= 0 and

θ 6= π
2 , has the following asymptotic form in direction ˆ̀

E(r) · ˆ̀=
exp(ikαr)

r

(
E∞(r̂) · ˆ̀+O

(
1

r

))
as r →∞ , (2.59)

where α = 1, 2, r̂ = r/r, and

E∞(r̂) · ˆ̀=

∫
Γ

(∇r′ ×E(r′)) ·
(
G∞(r̂, r′, ˆ̀)× n̂(r′)

)
ds(r′)

−
∫

Γ

(∇r′ ×G∞(r̂, r′, ˆ̀)) · (E(r′)× n̂(r′)) ds(r′),

(2.60)

G∞(r̂, r′, ˆ̀) =



ˆ̀

4π
e−ik1(sin θ cosφ x′+sin θ sinφ y′)[

e−ik1 cos θ z′ + f(θ)eik1 cos θ z′
]

r ∈ Ω1 ,

ˆ̀

4π
e−ik2(sin θ cosφ x′+sin θ sinφ y′)

e
−ik2

√
ε1
ε2
−sin2 θz′

(1− f(θ)) r ∈ Ω2 .

(2.61)

We must note that E∞(r̂), which is independent of the observation dis-

tance r, is known as the far-field pattern.

As mentioned already, the electric field at far distances, has no component in

the radial direction, i.e. E∞(r̂) has only components in θ̂ and φ̂ directions.

For ˆ̀ = θ̂, (2.9) shows that GH(r, r′, ˆ̀) · ẑ = 0, which means that only the

TM wave expansion must be used. Similarly, for ˆ̀= φ̂, GE(r, r′, ˆ̀) · ẑ = 0,

then the TE wave expansion must be applied.

Proposition 5. (2.60) is valid for any Lipschitz surface Γ around the scat-

terer.
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2.4 Far-field closed form

Proof. Consider a subregion Ωf between two closed paths Γi and Γo around

the scatterer (see Figure 2.11). Using Green’s formula we have∫
Ωf

(∇r′ ×∇r′ ×E(r′)) ·G∞(r̂, r′, ˆ̀) dr′ =∫
Ωf

(∇r′ ×E(r′)) · (∇r′ ×G∞(r̂, r′, ˆ̀)) dr′

−
∫
∂Ωf

(∇r′ ×E(r′)) ·
(
G∞(r̂, r′, ˆ̀)× n̂(r′)

)
ds(r′) ,

(2.62)

and

∫
Ωf

(∇r′ ×∇r′ ×G∞(r̂, r′, ˆ̀)) ·E(r′) dr′ =∫
Ωf

(∇r′ ×E(r′)) · (∇r′ ×G∞(r̂, r′, ˆ̀)) dr′

−
∫
∂Ωf

(∇r′ ×G∞(r̂, r′, ˆ̀)) · (E(r′)× n̂(r′)) ds(r′) .

(2.63)

We also know that

∇r′ ×∇r′ ×E(r′)− k2
α E(r′) = 0,

∇r′ ×∇r′ ×G∞(r̂, r′, ˆ̀)− k2
α G∞(r̂, r′, ˆ̀) = 0.

(2.64)

Subtracting (2.63) from (2.62) and using (2.64), we have∫
∂Ωf

(∇r′ ×E(r′)) ·
(
G∞(r̂, r′, ˆ̀)× n̂(r′)

)
ds(r′)

−
∫
∂Ωf

(∇r′ ×G∞(r̂, r′, ˆ̀)) · (E(r′)× n̂(r′)) ds(r′) = 0.

(2.65)

Since ∂Ωf = Γo ∪ Γi, we can rewrite the identity above as follows

39



2 Far field investigation in the presence of substrate

∫
Γo

(∇r′ ×E(r′)) ·
(
G∞(r̂, r′, ˆ̀)× n̂(r′)

)
ds(r′)

−
∫

Γo

(∇r′ ×G∞(r̂, r′, ˆ̀)) · (E(r′)× n̂(r′)) ds(r′)

=

∫
Γi

(∇r′ ×E(r′)) ·
(
G∞(r̂, r′, ˆ̀)× n̂(r′)

)
ds(r′)

−
∫

Γi

(∇r′ ×G∞(r̂, r′, ˆ̀)) · (E(r′)× n̂(r′)) ds(r′).

(2.66)

Figure 2.11: Volume-based far-field integration region.

Proposition 6. The far-field pattern representation using a volume integral

is [48, Section 13.6]

E∞(r̂) · ˆ̀=

∫
Ωf

∇r′ ×E(r′) · ∇r′ ×
(

Ψ(r′)G∞(r̂, r′, ˆ̀)
)
dr′

−
∫

Ωf

∇r′ × (Ψ(r′)E(r′)) · ∇r′ ×G∞(r̂, r′, ˆ̀) dr′ ,

(2.67)
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2.4 Far-field closed form

where Ωf is a subregion between two closed paths Γi and Γo around the

scatterer (see Figure 2.11), and Ψ ∈ H1(Ωf ) is a cutoff function such that

Ψ|Γi ≡ 1 , and Ψ|Γ0 ≡ 0 . (2.68)

Proof. Considering Γ = Γi, one can write (2.60) in the following way

E∞(r̂) · ˆ̀=

∫
Γi

(n̂(r′)×∇r′ ×E(r′)) · (Ψ(r′)G∞(r̂, r′, ˆ̀)) ds(r′)

−
∫

Γi

(
n̂(r′)×∇r′ ×G∞(r̂, r′, ˆ̀)

)
· (Ψ(r′)E(r′)) ds(r′) .

(2.69)

The first term on the right hand side of (2.69) can be rewritten as∫
Γi

(n̂(r′)×∇r′ ×E(r′)) · (Ψ(r′)G∞(r̂, r′, ˆ̀)) ds(r′) =∫
Ωf

(∇r′ ×∇r′ ×E(r′)) · (Ψ(r′)G∞(r̂, r′, ˆ̀)) dr′ (2.70)

−
∫

Ωf

(∇r′ ×E(r′)) · (∇r′ × (Ψ(r′)G∞(r̂, r′, ˆ̀))) dr′.

In the same way the second term is∫
Γi

(n̂(r′)×∇r′ ×G∞(r̂, r′, ˆ̀)) · (Ψ(r′)E(r′)) ds(r′) =∫
Ωf

(∇r′ ×∇r′ ×G∞(r̂, r′, ˆ̀)) · (Ψ(r′)E(r′)) dr′ (2.71)

−
∫

Ωf

(∇r′ ×G∞(r̂, r′, ˆ̀)) · (∇r′ × (Ψ(r′)E(r′))) dr′.

Subtracting (2.71) from (2.70) and keeping in mind that∇×∇×E−k2E = 0

and ∇r′ ×∇r′ ×G∞(r̂, r′, ˆ̀)− k2G∞(r̂, r′, ˆ̀) = 0 we retrieve (2.67).

Formula (2.67) is based on volume integral which is continuous on the

energy space H(curl) [48, Page 387]. Since continuous functions enjoy the

super convergence, we use (2.67) for our numerical experiments.
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2 Far field investigation in the presence of substrate

2.5 NGSolve implementation

Our experiments are based on the finite element library NGSolve developed

by Joachim Schoeberl at the Vienna University of Technology. We use

NETGEN, which is a mesh generating library embedded in NGSolve, to

make our meshes. The unbounded computational region is truncated using

a box Perfectly Matched Layer (PML)[48, 69]. Figure 2.12 shows a typical

geometry setting that we use in our simulations. We divide the solution

domain Ω to two subdomains. The PML domain ΩPML, which contains

the outer layer to truncate the solution domain, and the physical domain

Ωp = Ω \ΩPML. We use the PML layer with the thickness of 70nm, and

the absorption coefficient α = 1 [17]. The far-field integration region Ωf
is considered to be the domain between two spheres around the scatterer,

such that ro and ri are radii of the outer and the inner spheres, respectively

(see Figure 2.12). We also consider the cutoff function as following

Ψ =


r2 − r2

o

r2
i − r2

o

r ∈ Ωf ,

0 r 6∈ Ωf .

(2.72)

Figure 2.12: A typical solution domain used to model scattering problems.
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2.5 NGSolve implementation

Since inside the PML we can only have the scattered field, the Maxwell’s

equations are
∇̃ × ∇̃ ×E− k2(r)E = 0 r ∈ Ωp ∪ ΩPML ,

Jγt (E)K = γt (Ei) r ∈ ∂ΩPML ,

Jγt(∇̃ ×E)K = γt(∇̃ ×Ei) r ∈ ∂ΩPML ,

γt(∇̃ ×E) = 0 r ∈ ∂Ω ,

(2.73)

where ∇̃ denotes the derivative with respect to the complex system of coor-

dinates which is used to absorb the wave inside the PML [48, Sec. 13.5.3].

By testing (2.73) with W ∈ H(curl,Ω), we find E as the solution to

∫
Ω

∇̃ ×E · ∇̃ ×W − k2(r) E ·W dr (2.74)

=

∫
∂ΩPML

((
∇̃ ×Ei

)
× n̂

)
·W ds(r) ∀W ∈ H(curl,Ω) .

Since E is discontinuous along ∂ΩPML, we introduce an offset function

Eo ∈ H(curl,Ω) such that

γt (Eo) = γt (Ei) r ∈ ∂ΩPML , (2.75)

and consider E = Eq + α(r) Eo, where Eq ∈ H(curl,Ω) and α(r) ={
1 r ∈ Ωp

0 r ∈ ΩPML

.

So, Eq is the solution to the following equation

a0(Eq,W) = `0(W)− a1(Eo,W) , (2.76)

where a0, a1 : H(curl,Ω) × H(curl,Ω) 7→ C and `0 : H(curl,Ω) 7→ C are

sesquilinear and linear forms defined on H(curl,Ωp ∪ ΩPML) such that

a0(u1,u2) =

∫
Ωp∪ΩPML

∇̃ × u1 · ∇̃ × u2 − k2(r) u1 · u2 dr , (2.77)
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2 Far field investigation in the presence of substrate

a1(u1,u2) =

∫
Ωp∪ΩPML

α(r)
(
∇̃ × u1 · ∇̃ × u2 − k2(r) u1 · u2

)
dr ,

(2.78)

`0(u2) =

∫
∂ΩPML

((
∇̃ ×Ei

)
× n̂

)
· u2 ds(r) . (2.79)

Let Xh ⊂ H(curl,Ω) be the finite element space such that bj ∈ Xh

are basis functions of Xh, j = 1, . . . , N , with N = dimXh. Any function

u ∈ H(curl,Ωp ∪ ΩPML) can be interpolated in Xh as the following

uh(r) =

N∑
j=1

gjbj(r). (2.80)

We also define the coefficient-vector of uh and the stiffness-matrix of the

sesquilinear form a0 with respect to the basis {bj}Nj=1 as g = (g1, . . . , gN )T

and Ã0 = (a0(bj ,bi))
N
i,j=1, respectively 1. The identity (2.76) can be writ-

ten in discrete setting as follows

Ã0 gq = f0 , (2.81)

f0 = f1 − Ã1 go ,

where f1 = (`0(bj))
N
j=1, and Ã1 is the stiffness matrix of the sesquilinear

form a1. By gq and go we denote coefficient vectors of Eh
q and Eh

o , respec-

tively.

We use 3rd order Nedelec finite elements on a quasi-uniform tetrahedral

mesh to solve (2.76) using NGSolve. To assemble the Galerkin matrices Ã0

and Ã1, we use the sesquilinear-form integrators of NGSolve PML curlcurledge

and PML massedge , respectively. Similarly, to assemble f1, we use the

linear form integrator of NGSolve neumannedge .

#Interpolating coef_ui = E_i

#within the coefficient vector

#(gridfunction) "uinc"

numproc setvalues npSV

1From now on, all the coefficient vectors and stiffness matrices in this section are with
respect to the basis {bj}Nj=1.
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2.5 NGSolve implementation

-gridfunction=uinc -coefficient=coef_ui

#Interpolating "coef_ui_bd = \gamma_t E_i"

#on the boundary of PML within

#the coefficient vector (gridfunction) "go".

numproc setvalues npSV2

-gridfunction=go -coefficient=coef_ui_bd

-boundary

#Defining the sesquilinear form a0.

#The coefficient "lam" is equal to one in

#the whole solution domain.

#The piecewise constant coefficient "rho"

#is equal to values of wavenumbers

#in each subdomain.

define sesquilinearform a0 -fespace=v -noprint

-noprintelmat

PML_curlcurledge lam

PML_massedge rho

#Defining the sesquilinear form a1.

#The piecewise constant coefficient "lam1"

#is equal to zero in PML region and equal

#to one in the rest of the solution domain.

#The piecewise constant coefficient "rho1"

#is equal to zero in PML region and equal

# to values of wavenumbers in the rest of

#subdomains.

define sesquilinearform a1 -fespace=v -noprint

-noprintelmat

PML_curlcurledge lam1

PML_massedge rho1
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2 Far field investigation in the presence of substrate

#Defining th right hand side vector "f"

#(the linear form):

#Adding "f1" to f using neumannedge integrator

#"F_neumann =(\ curl \VE_i)\times \hat n" on

#the boundary of PML

define linearform f -fespace=v

neumannedge F_neumann

#Using numproc "JumpDiriUpdate" to add the term

#"A1*go" to "f"

numproc JumpDiriUpdate npD

-sesquilinearform=a1 -gridfunction=go

-linearform=f

#Defining the "multigrid" preconditioner

define preconditioner c

-type=multigrid -sesquilinearform=a

-ds_order =1 -smoother=block -blocktype =21

numproc bvp np1

-sesquilinearform=a -linearform=f

-gridfunction=u -maxsteps =20000

-noprint -solver=cg -prec=1e-10

-preconditioner=c

To calculate the far-field integral (2.67), we use the sesquilinear form

af : H(curl,Ω)×H(curl,Ω) 7→ C, which is defined as follows

af (u1,u2) =

∫
Ωf

∇× u1 · ∇ × u2 dr . (2.82)
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2.5 NGSolve implementation

Based on (2.67), the far field is

E∞ · ˆ̀= gT1 Ãf g2 − gT3 Ãf g4 , (2.83)

where g1, g2, g3, and g4 are coefficient vectors of Eh
s = Eh

q − Eh
i , Ψh Gh

∞,

Ψh Eh, and Gh
∞, respectively. By Ãf we denote the Galerkin matrix of af

in (2.82).

The computation cost of our algorithm is mainly due to computing Eq.

Particularly costly are assembling Galrkin matrix Ã0 and solving (2.81).

The complexity of the matrix inversion depends on the dimension of finite

element space but it can be reduced by preconditioning A0 and then using

iterative solvers. We use conjugate gradient method together with multigrid

preconditioner to solve the linear system of equations.

To compute far-field within an aperture, we only need to assemble Ãf and

g1 once, and update g2, g3, and g4 for each value of θ and φ. However,

when iterating over a range of frequencies, one needs to solve (2.81) for

each frequency. We use the Message Passing Interface (MPI) for parallel

computation of far-field within a frequency range.

Here is a part of our C++ code to calculate the far field

Complex FF_Calculation ()

{

/*Getting the vector of grid functions g1 and

g2*/

BaseVector & Vg1=g1->GetVector ();

BaseVector & Vg2=g2->GetVector ();

/*Multiplying the matrix of a_f sesquilinear

form by Vg2

==> temp_B=a_f*Vg2 */

BaseVector & temp_B =*Vg2.CreateVector ();

a_f ->GetMatrix ().Mult(Vg2 ,temp_B);

/* FF1 = Vg1^T * temp_B */

Complex FF1 =

S_InnerProduct <Complex >( Vu_Scattered ,temp_B);
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2 Far field investigation in the presence of substrate

/* Getting the vector of grid functions g3 and

g4 */

BaseVector & Vg3=g3->GetVector ();

BaseVector & Vg4=g4->GetVector ();

/*Multiplying the matrix of a_f sesquilinear

form by Vg4

==> temp_A=a_f*Vg4 */

BaseVector & temp_A =*Vg4.CreateVector ();

a_F ->GetMatrix ().Mult(Vg4 ,temp_A);

/* FF2 = Vg3^T * temp_A */

Complex FF2 =

S_InnerProduct <Complex >(Vg3 ,temp_A);

Complex FF=FF1 -FF2;

return FF;

}

48



2.6 Numerical results

2.6 Numerical results

2.6.1 Dipole over a substrate

In the first numerical experiment, we consider an electric dipole, oriented in

the direction normal to the substrate and located at the distance z′ = 0.5λ

from the substrate (see Figure 2.3). By λ we denote the wavelength in free

space. The material properties are ( ε1ε0 ,
µ1

µ0
) = (1, 1) and ( ε2ε0 ,

µ2

µ0
) = (2, 1)

in domains z > 0 and z < 0, respectively (ε0 and µ0 are the permittivity

and permeability of free space). To avoid the singularity of the dipole field

solution at the position of the dipole, we consider a sphere around the dipole

and solve Maxwell’s equations for the total field in the exterior region (see

Figure 2.13a).

(a) (b)

Figure 2.13: An electric dipole located at z′ = 0.5λ, perpendicular to the sub-
strate. ε1

ε0
= 1 and ε2

ε0
= 2 are the relative permittivities for z > 0

and z < 0, respectively. (a) The finite element solution to the elec-
tric field component in the x̂ direction. (b) The far-field pattern for
φ = 0 and 0 < θ < π

2
.

Figure 2.13b shows a close agreement between the far-field pattern cal-

culated by (2.67) and the method of multiple multipoles (MMP) [4]. MMP

is a boundary discretization method based on the field expansion using a

series of basis fields. Since the far-field pattern calculation has not been

implemented in MMP, we put the observation point at far distances, e.g.
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0
0

0.2

0.4

0.6

0.8

1

θ

|E
∞

|2

 

 

Mesh with 1045348 DoFs

Mesh with 226240 DoFs

π/6 π/2π/3

Figure 2.14: Comparison of the far-field pattern calculated within two different
finite element meshes. The electric dipole is perpendicular to the
substrate ( ε1

ε0
= 1 and ε2

ε0
= 2).

r = 1000λ. The finite element method used to solve Maxwell’s equations

employs 226246 degrees of freedom (DoFs). Differences between two results

decrease asymptotically by refining the finite element mesh and increasing

the number of expansions and matching points in the MMP method.

We repeat the calculations for the dipole over the substrate using a dif-

ferent mesh. This time we use a finer mesh with 1045348 DoFs. Based on

results shown in Figure 2.14, the far-field pattern is almost independent of

the mesh size. The volume based far-field expression is a smooth functional

which averages errors over the integration region. Consequently, the local

errors arising from the mesh do not have a significant effect on the final

result. This fact is due to the higher order convergence of continuous linear

output functionals of Galerkin solutions.

Based on Proposition 5 the far-field pattern must be independent of the

integration path. To investigate this fact, we consider three different an-
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Figure 2.15: The far-field pattern calculated using three different integration re-
gions. Integration domains are annuli with inner radius ri and the
outer radius ro. The electric dipole is perpendicular to the substrate
( ε1
ε0

= 1 and ε2
ε0

= 2), and the mesh has 226246 DoFs.

nuli with (ro, ri) = (1.16λ, 0.71λ), (λ, 0.66λ) and (0.83λ, 0.66λ) as far-field

integration regions (ro and ri are the outer and inner radii of the annulus,

respectively) and simulate the structure using a mesh with 226246 DoFs.

The results confirm our expectation and are close to each other (see Figure

2.15). The slight differences between results arise from the fact that we

plug in the FEM solution in (2.67) . When the finite element solution is

employed instead of the exact solution to evaluate the far-field formula, the

path independence breaks down.

For code validation, we consider the same material properties for the sub-

strate as free space, ( ε1ε0 ,
µ1

µ0
) = ( ε2ε0 ,

µ2

µ0
) = (1, 1). Under this assumption, we

have the well-known problem of a dipole in free-space (see Figure 2.16a). For

a dipole in free-space there exists an analytic solution E∞(r̂) = − iωµ4π sin θ θ̂

(see [28, Page 447]). Figure 2.16b compares the far-field pattern of a dipole

51



2 Far field investigation in the presence of substrate

(a) (b)

Figure 2.16: An electric dipole in free-space, located at z′ = 0.5λ and oriented
in direction ẑ. (a) The finite element solution to the electric field
component in the x̂ direction. (b) The far-field pattern for φ = 0
and 0 < θ < π

2
.

in free-space derived by (2.67) with the analytic solution for φ = 0 and

0 < θ < π
2 .
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2.6.2 Nanoparticle over a substrate

In this section, we analyze plasmon resonances of gold nanoparticles in

the presence of a glass substrate (see Figure 2.17a) . Reto Gianini in his

dissertation had measured the scattering spectra of several cylindrical gold

NPs (nanoparticles)[27]. In the first part of this section, we try to reproduce

the results discussed in [27, Section 3.2]. The nanoparticle is an elliptical

gold cylinder. The three principal axes of the cylinder are a, b, and h (see

Figure 2.17b).

(a) (b)

Figure 2.17: (a) Cylindrical nanoparticle mounted on a glass substrate with (b) 3
principal axes a, b, and h.

As shown in [27, Section 3.1], the dipolar resonance of the structure de-

pends on the direction of the excitation. To investigate this phenomenon,

we illuminate the structure with an incident electric field parallel to one of

the in-plane axes (a-axis or b-axis).

As mentioned earlier, the NP and the substrate are made of gold and

glass, respectively. The refractive index of glass is n2 ≈ 1.5. However, gold

is a dispersive material within the spectrum of visible light. There have

been several measurements to derive the optical constants of gold [39, 56].

In this thesis, we use the data given in [39].

In [27], the field is collected through an objective lens with the opening

angle of α = 74◦ and centered on the z-axis. In order to come close to this

experiment, we consider the following integration as the far-field measure-
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ment

Q(λ) =

∫
Ωlens

|E∞(r, λ)|2dr (r →∞) . (2.84)
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Figure 2.18: Skin depth of gold.

(a) (b)

Figure 2.19: The absolute value of the scattered field of a cylindrical NP with
elliptical footprint (a, b, h) = (132, 95, 110)nm. The incident electric
field is parallel to (a) a-axis (b) b-axis.
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Figure 2.20: Normalized energy flux of a cylindrical NP with an elliptical footprint
(a, b, h) = (132, 95, 110) nm. The incident electric field Ei(r) is either
parallel to the a-axis or b-axis.The measurement results are obtained
from [27, Figure 3.1].

where Ωlens is the area of the objective, λ is the wavelength in free space

and Q(λ) is the the energy flux through the lens. To determine the mesh

size, we keep in mind that gold is a lossy material, and the electromagnetic

field decays rapidly inside it. There is a measure called skin depth to show

how deep the electromagnetic field can penetrate inside the conductor [40,

Section 5.14]. The mesh size must be small enough to model the wave

attenuation within the skin depth. The smallest skin depth of gold in the

range of λ = [500 : 900] nm is 59 nm (see Figure 2.18). So, we choose the

biggest mesh size ∆h ≈ 50nm in our simulations (see Figure 2.19).

Figure 2.20 shows the normalized Q(λ) of a cylindrical NP with elliptical

footprint, (a, b, h) = (132, 95, 110) nm. The Figure compares the results

calculated by (2.67) with measurement results reported in [27, Figure 3.1].

Both measurements and calculations show the resonance-frequency shift by

changing the direction of the incident electric field. Based on calculations,

λa = 660 nm and λb = 610 nm correspond to plasmon resonance frequencies

when the incident electric field is parallel to a-axis or b-axis, respectively.

As it is shown in Figure 2.20, shapes of resonance curves are the same for

measurements and simulation results. However, there is a frequency shift
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Figure 2.21: Normalized energy flux of a cylindrical NP with an elliptical
footprint (a) (a, b, h) = (132, 132, 110) nm and (b) (a, b, h) =
(132, 160, 110) nm. The incident electric field Ei(r) is either par-
allel to the a-axis or b-axis.

between them. The disagreement between measurements and simulations

can be due to different facts:

• The shape inaccuracy of fabricated NPs:

Shape uncertainty is inevitable during the fabrication procedure. This

causes changes in the size of NPs which has a direct effect on the

resonance frequency. To investigate the effect of the axis size on

the performance of NP, we change the size of b-axis to 132nm and

160nm while the sizes of a and h axes are fixed. λb shifts to the right

by increasing the axis size, whereas λa remains almost constant (see

Figures 2.21a and 2.21b). Based on this experiment, any changes in

the the shape of NP has a direct effect on the resonance frequency.

• Material properties of gold:

Material properties of gold depend on the sample preparation pro-

cedure. The data given by [39, 56] are based on measurements on

specific conditions which are not fully adequate in our experiments.

To see how sensitive Q(λ) is to the gold characteristics, we repeat the

calculations for the elliptical footprint (a, b, h) = (132, 95, 110)nm us-

ing the data given by Palik [56] and compare them with the results

based on Johnson and Christy [39]. As one can see, the resonance

frequency is not affected significantly by the changes in the gold data
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Figure 2.22: Normalized energy flux of a cylindrical NP with elliptical footprint
(a, b, h) = (132, 95, 110)nm calculated (a) using different databases
for optical constants of gold (b) by lenses with different opening angle
(α) and centered at different angles with respect to the z-axis (β).

obtained from different measurements, but the shape of the resonance

curve changes (see Figure 2.22a). From the curve obtained using Pa-

lik’s data, one even might think that a second resonance is present

near 700nm. But this is only because of material properties.

• The size and the location of the objective:

The effect of the size and the position of the objective on the nor-

malized energy flux is investigated using lenses centered at different

angles with respect to the z-axis β, and with different opening angles

α. The results show that Q(λ) is almost independent of the objective

lens parameters (see Figure 2.22b).

Based on the discussion above, the shape inaccuracy of fabricated NPs

plays the most significant role in causing differences between simulation and

measurement results.

The size effect has been studied even more closely in [27, Figure 6.1]. It

shows how the resonance frequency of different cylindrical NPs depends

on the size of the in-plane axis. The b-axis is kept constant and the a-

axis changes 80 < a < 190nm. We repeat the same experiment with the

elliptical foot print, b = 120nm and h = 20nm and compare them with

measurements (see Figure 2.23). As one can see, a good agreement between

simulations and measurements is observed. λb reduces rapidly for small
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2 Far field investigation in the presence of substrate

values of in-plane axial ratio (ab < 1), but it remains almost constant for

axial ratios bigger than 1 (See Figure 2.23a). However, λa increases by

increasing the a-axis size (see Figure 2.23b).
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Figure 2.23: Dependence of the resonance frequency on the size of principal axis.
The footprint is elliptical and (a, b, h) = (80 : 190, 120, 20) nm. The
incident electric field is parallel to (a) b-axis and (b) a-axis. The
measurement results are from [27, Figure 6.1].
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3 Shape Gradient: Evaluation and

Approximation

This chapter has been partly published in BIT journal [34]. Ralf Hiptmair

had contributed in the theory part to derive shape gradients and prove

Theorem 9. Alberto Paganini contributed closely in the simulation part.

3.1 Introduction

Shape calculus studies the differentiation of shape functionals with respect

to the variation of a domain they depend upon. Derivations of shape gra-

dients for scalar problems have been studied thoroughly during the last

decades [21–23, 61, 63]. Shape calculus has also become important as a

key tool in the field of optimization, where it supplies the so-called shape

gradient, i.e. the first derivative of a functional with respect to a shape, for

use in the framework of descent methods [12, 42, 57, 63].

The first part of this chapter, is associated to the derivation of shape gra-

dients for PDE constraint shape functionals. The PDE constraint which is

called the state problem, can be any boundary value problem. We restrict

ourselves to second order-elliptic BVPs, and in the 3D case we specifically

consider Maxwell’s equations for scattering problems which is the main fo-

cus of this thesis. We use the Lagrangian approach to derive the shape

gradient based on solutions of adjoint and state problems.

Derivation of shape gradients for Maxwell’s equations gets more complicated

due to the regularity preservation [13, 15]. In Section 3.3.2, it is discussed

that we need to use the covariant transformation in order to guarantee

that solutions of adjoint and state problems in the mapped domain are still

H(curl; Ω) functions.
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3 Shape Gradient: Evaluation and Approximation

We obtain shape gradients in two equivalent ways, (i) as expressions involv-

ing traces of state and adjoint solutions on the boundary of the domain,

and (ii) by means of volume integrals on the domain. The situation resem-

bles the result for far-field functional in Chapter 2. In equation (2.60) and

(2.67) we represent the far-field functional in terms of boundary and volume

integrals, respectively. There are other examples of output functionals de-

pending on solutions of BVPs for second-order elliptic PDEs which can be

stated as integrals either over boundaries or over parts of the domain, e.g lift

functionals for potential flow [29] and electromagnetic force functionals [46].

Both formulas give the same result if exact solutions of BVPs are inserted,

but when applied to discrete solutions, they fail to give the same answer.

More strikingly, the volume integrals often display much faster convergence

and provide superior accuracy compared to their boundary based counter-

parts. This makes a crucial difference, because we can benefit from superb

convergence, when evaluating continuous functionals for Galerkin solutions

[6, Sec. 2]. This made us suspect that similar effects could be observed

for the different expressions for shape gradients and their use with finite

element solutions. Hence, in the second part of this chapter, we investigate

the a priory convergence estimates for boundary and volume integrals in

both 2D and 3D problems. We also conduct some numerical experiments

to study convergence rates of different representations of the shape gradi-

ent whithin different geometries in 2D. The numerical results confirm the

theoretical expectations.

3.2 Shape gradients

Let Ω ⊂ Rd, d = 2, 3, be an open bounded domain with piecewise smooth

boundary ∂Ω, and let J (Ω) ∈ R be a real-valued quantity of interest associ-

ated to it. One is often interested in the shape sensitivity, which quantifies

the impact of small perturbations of the domain shape on the value J (Ω).

For this purpose, we model perturbations of the domain Ω through maps

of the form

TV(r) :

{
Rd → Rd

r→ r + V(r) ,
(3.1)
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3.2 Shape gradients

where r ∈ Rd denotes the location and V is a vector field in C1(Rd;Rd).
It can be proven that the map (3.1) is a diffeomorphism for ‖V‖C1 < 1 [3,

Lemma 6.13]. Therefore, it is natural to consider J (Ω) as the realization of

a shape functional, a real map

J : A → R ,

defined on the family of admissible domains

A :=
{
TV(Ω) ;V ∈ C1(Rd;Rd) , ‖V‖C1 < 1

}
.

The sensitivity of J (Ω) with respect to the perturbation direction V can

be expressed through the Eulerian derivative of the shape functional J in

the direction V, that is,

dJ (Ω;V) := lim
s↘0

J (Ts·V(Ω))− J (Ω)

s
. (3.2)

It goes without saying that it is desirable that (3.2) exists for all possible

perturbation directions V. It is therefore natural to define a shape functional

J to be shape differentiable at Ω if the mapping

dJ (Ω; ·) : C1(Rd;Rd)→ R, V 7→ dJ (Ω;V)

defined by (3.2) is linear and bounded on C1(Rd;Rd).

Remark 7. In literature, perturbations as in (3.1) are known as pertur-

bations of the identity. From a differential geometry point of view, this

approach is less general than the so called velocity method, which is, for

instance, introduced in [21, Ch. 4]. However, both methods lead to the same

formula for the shape gradient, which merely takes into account first order

perturbations of the shape functional J [21, Ch. 9, Thm 3.2].

We are particularly interested in PDE constrained shape functionals of

the form

J (Ω) =

∫
Ω

j(u) dr , (3.3)

where u is the solution to the state problem, an elliptic equation with

Neumann, Dirichlet, or transmission boundary conditions.
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3 Shape Gradient: Evaluation and Approximation

3.3 Derivation of shape gradient

A PDE contrained shape functional can be treated as an equality constraint

control problem. Using Lagrangian multipliers to derive the shape gradient

yields a dual variable which is the solution to the adjoint problem [21, Ch.

10]. In this section, we concentrate on the derivation of shape gradients for

two generic examples. The first one considers a shape functional constrained

with an scalar state problem. We discuss the procedure for equations with

Dirichlet and Neumann boundary conditions. The second example deals

with 3D Maxwell’s equations. In this case, we treat a physical scattering

problem with transmission boundary condition.

3.3.1 Scalar problems

Let the scalar function u be the solution to the state problem, a scalar elliptic

equation with Neumann or Dirichlet boundary conditions{
L(u) = f in Ω ,

u = g or ∂u
∂n = g on ∂Ω .

(3.4)

Functions f and g are assumed to belong to L2(Rd) (H1(Rd) in the case of

the Neumann BVP) and H2(Rd), respectively, and they are identified with

their restrictions onto Ω and ∂Ω.

We consider the following PDE constrained shape functional

J (Ω) =

∫
Ω

j(u) dr , (3.5)

where j : R→ R.

Explicit formulas for the Eulerian derivatve of J (Ω) can be derived. It

can be shown that the obtained formulas involve integrals of u, the solution

to (3.4), and of p, the solution to the adjoint problem1

{
L(p) = j′(u) in Ω ,

p = 0 or ∂p
∂n = 0 on ∂Ω ,

(3.6)

1For simplicity, we assume that the operator L is self-adjoint.
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3.3 Derivation of shape gradient

where j′ is the derivative of j with respect to u. As different L results

in different shape gradients, we provide dJ for a model state problem in

proposition 7.

Proposition 7. Let u be the solution to the following PDE{
−∆u+ u = f in Ω ,

u = g or ∂u
∂n = g on ∂Ω .

(3.7)

then the shape gradients of the PDE constrained shape functional (3.5) for

Dirichlet and Neumann BVPs read

dJ (Ω;V) =

∫
Ω

(
∇u · (DV + DVT )∇p− fV · ∇p

+ divV(j(u)−∇u · ∇p− up) (3.8)

+ (j′(u)− p)(∇g · V)−∇p · ∇(∇g · V)

)
dx,

and

dJ (Ω;V) =

∫
Ω

(
(∇f · V)p+∇u · (DV + DVT )∇p

+ divV(fp+ j(u)−∇u · ∇p− up)
)
dx

+

∫
∂Ω

(∇g · V)p+ gpdivΓ V ds(r) , (3.9)

respectively. By p we denote the solution to the following adjoint problem{
−∆p+ p = j′(u) in Ω ,

u = 0 or ∂u
∂n = 0 on ∂Ω .

(3.10)

Proof. We start the proof with Dichlet BVP.

Similar to the procedure in [21, Ch. 10, Sec. 5], we define the following

Lagrangian form

L (Ω, v, q, ξ) :=

∫
Ω

j(v) + (∆v − v + f)q dr +

∫
∂Ω

ξ(g − v) ds(r) , (3.11)
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3 Shape Gradient: Evaluation and Approximation

where functions v, q and ξ are in H2(Rd). Performing integration by parts,

the Lagrangian can be rewritten as

L (Ω, v,q, ξ)

=

∫
Ω

j(v)−∇v · ∇q − v q + f q dr +

∫
∂Ω

∂v

∂n
q + ξ(g − v) ds(r) ,

=

∫
Ω

j(v) + (∆q − q)v + f q dr +

∫
∂Ω

∂v

∂n
q − ∂q

∂n
v + ξ(g − v) ds(r) ,

where n is the unit normal vector to the surface ∂Ω.

The saddle point of L (Ω, ·, ·, ·) is characterized by setting the Frechet deriva-

tive of L with respect to v, q and ξ to zero〈
∂L (Ω, v, q, ξ)

∂v
, φ

〉
Ω

=

〈
∂L (Ω, v, q, ξ)

∂q
, φ

〉
Ω

=

〈
∂L (Ω, v, q, ξ)

∂ξ
, φ

〉
∂Ω

= 0

(3.12)

for all φ ∈ H2(Rd), which, leads to{
−∆v + v = f in Ω ,

v = g on ∂Ω ,
(3.13a){

−∆q + q = j′(v) in Ω ,

q = 0 on ∂Ω ,
(3.13b)

ξ = − ∂q
∂n

on ∂Ω . (3.13c)

Thus, for Ω fixed we have

J (Ω) = inf
v∈H2(Rd)

sup
q,ξ∈H2(Rd)

L (Ω, v, q, ξ) , (3.14)

because

J (Ω) = L (Ω, u, q, ξ) ∀ q, ξ ∈ H2(Rd) .

Recall that the material derivative of a generic scalar function f with

respect to the deformation TV is defined as

ḟ := lim
s↘0

fs − f
s

.
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3.3 Derivation of shape gradient

where fs = f ◦ Ts·V .

To compute the Eulerian derivative of J (Ω), the Correa-Seeger theorem can

be applied on the right-hand side of (3.14) [21, Ch. 10, Sec. 6.3], so that

a formula for dJ (Ω) can be obtained by evaluating the Eulerian derivative

of the Lagrangian (3.11) in its saddle point. For TV(r) := r + V(r), the

Lagrangian in the transformed domain reads

L (Ts·V(Ω), v, q, ξ) =∫
Ts·V(Ω)

j(v)−∇v · ∇q − v q + f q dr +

∫
Ts·V(∂Ω)

∂v

∂n
q + ξ(g − v) ds(r) =∫

Ω

(
j(vs)−∇vs ·DT−1

s·V DT
−T
s·V ∇q

s − vs qs + fs qs
)
|detDTs·V |dr

(3.15)

+

∫
∂Ω

(
∂vs

∂n
qs + ξs(gs − vs)

)
‖M(Ts·V) · n‖Rdds(r) ,

where DTs·V is the Jacobian matrix of Ts·V , and M(Ts·V) is the cofactor

matrix of the Jacobian.

It can be shown that [63, Ch. 2]
(detDTs·V) = 1 + s ∇ · V +O(s2)

‖M(Ts·V) · n‖Rd = 1 + s ∇tV +O(s2)

s→ 0 , (3.16)

where ∇t V = ∇ · V − 〈DV · n , n 〉.
Plugging (3.16) into (3.15), one can derive the Eulerian derivative of L as

follows

lim
s↘0

L (Ts·V(Ω), v, q, ξ)−L (Ω, v, q, ξ)

s
=

=

∫
Ω

(
j′(v)v̇ −∇v̇ · ∇q −∇v · ∇q̇ +∇v · (DV +DVT )∇q

− v̇ q − v q̇ + ḟ q + f q̇ +∇ · V (j(v)−∇v · ∇q − v q + fq)
)
dr

+

∫
∂Ω

∂̇v

∂n
q +

∂v

∂n
q̇ + ξ(ġ − v̇) + ξ̇(g − v) +∇t V

(
∂v

∂n
q + ξ(g − v)

)
ds(r)
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3 Shape Gradient: Evaluation and Approximation

=

∫
Ω

j′(v)v̇ + ∆q v̇ − q v̇ dr +

∫
Ω

∆v q̇ − v q̇ + f q̇ dr

+

∫
∂Ω

∂̇v

∂n
q + ξ̇(g − v) +∇t V

(
∂v

∂n
q + ξ(g − v)

)
ds(r)

+

∫
Ω

∇v · (DV +DVT )∇q + ḟ q +∇ · V (j(v)−∇v · ∇q − v q + fq) dr

+

∫
∂Ω

ξ(ġ − v̇)− ∂q

∂n
v̇ ds(r) .

So, in the saddle point defined by (3.13), we have

lim
s↘0

L (Ts·V(Ω), v, q, ξ)−L (Ω, v, q, ξ)

s
= (3.17)

=

∫
Ω

∇v · (DV +DVT )∇q + ḟ q +∇ · V (j(v)−∇v · ∇q − v q + fq) dr

+

∫
∂Ω

− ∂q
∂n

ġ ds(r)

=

∫
Ω

(
∇v · (DV +DVT )∇q + ḟ q + (j′(v)− q)ġ −∇q · ∇ġ

+∇ · V (j(v)−∇v · ∇q − v q + fq)
)
dr .

Given that ḟ = ∇ f ·V and ġ = ∇ g ·V [63, Page 99], we apply an additional

integration by parts on ḟ q and rewrite (3.17) as follows

lim
s↘0

L (Ts·V(Ω), v, q, ξ)−L (Ω, v, q, ξ)

s
=∫

Ω

(
∇v · (DV + DVT )∇q − fV · ∇q + divV(j(v)−∇v · ∇q − vq)

+ (j′(v)− q)(∇g · V)−∇q · ∇(∇g · V)

)
dx.

For Neumann BVPs, we use a similar approach as the Dirichlet BVP and

define the following Lagrangian form

L(Ω, v, q) :=

∫
Ω

j(v) + (∆v − v + f)q dr +

∫
∂Ω

(g − ∂v

∂n
) q ds(r) ,
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3.3 Derivation of shape gradient

=

∫
Ω

j(v)−∇v · ∇q − vq + fq dr +

∫
∂Ω

gq ds(r) , (3.18)

=

∫
Ω

j(v) + (∆q − q)v + fq dr +

∫
∂Ω

gq − ∂q

∂n
v ds(r) .

Its saddle point is characterized by{
−∆v + v = f in Ω ,

∂v
∂n = g on ∂Ω ,

(3.19a){
−∆q + q = j′(v) in Ω ,

∂q
∂n = 0 on ∂Ω .

(3.19b)

The Lagrangian in the transformed domain reads

L (Ts·V(Ω), v, q, ξ) =∫
Ts·V(Ω)

j(v)−∇v · ∇q − v q + f q dr +

∫
Ts·V(∂Ω)

g q ds(r)

=

∫
Ω

(
j(vs)−∇vs ·DT−1

s·V DT
−T
s·V ∇p

s − vs qs + fs qs
)
|detDTs·V |dr

(3.20)

+

∫
∂Ω

gs qs ‖M(Ts·V) · n‖Rdds(r) .

Using (3.39), we obtain the Eulerian derivative of (3.18) in the saddle point

defined by (3.19) as follows

lim
s↘0

L (Ts·V(Ω), v, q, ξ)−L (Ω, v, q, ξ)

s
=∫

Ω

∇v · (DV +DVT )∇q + ḟ q +∇ · V (j(v)−∇v · ∇q − v q + fq) dr

+

∫
∂Ω

ġq +∇t V (gq) ds(r) ,

which after exploiting the identity ḟ = ∇f · V reads

lim
s↘0

L (Ts·V(Ω), v, q, ξ)−L (Ω, v, q, ξ)

s
=
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3 Shape Gradient: Evaluation and Approximation

∫
Ω

(
(∇f · V)q +∇u · (DV + DVT )∇q + divV(fq + j(u)−∇u · ∇q − uq)

)
dx

+

∫
∂Ω

(∇g · V)q + gq divΓ V ds(r) .

Proposition 8. ([21, Ch. 9, Thm 3.6], Hadamard structure theorem) Let

J be a real-valued shape functional within domain Ω ∈ Rd with smooth

boundary ∂Ω. Then dJ (Ω; ·) admits a representative g(Ω) in the space of

distributions Dk(∂Ω)

dJ (Ω;V) = 〈g(Ω), γ∂ΩV · n〉Dk(∂Ω) , (3.21)

where γ∂ΩV · n is the normal component of V on the boundary ∂Ω.

To derive g, we need to reformulate (3.8) and (3.9) in terms of boundary

integrals using integration by parts. For Dirichlet BVP, we use the following

vector calculus identity

∇u ·
(
DV +DVT

)
∇p−∇ · V (∇u · ∇p) =

∇ · (∇u (V · ∇p) +∇p (V · ∇u)− V(∇u · ∇p))−∆p(V · ∇u)−∆u(V · ∇p) ,

and rewrite (3.8) as follows

dJ =

∫
∂Ω

∂u

∂n
(V · ∇p) +

∂p

∂n
(V · ∇u)− V · n (∇u · ∇p) ds(r) (3.22)

−
∫

Ω

p (V · ∇u) + u (V · ∇p) + u p∇ · V dr

+

∫
Ω

(j′(u)− p)V · ∇g −∇p · ∇(V · ∇g) dr

+

∫
Ω

j′(u)∇u · V + j(u)∇ · V dr .

For the second integral in (3.22) we have

p (V · ∇u) + u (V · ∇p) + u p∇ · V = ∇ (u p) · V + u p∇ · V = ∇ (u pV) .
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3.3 Derivation of shape gradient

Then∫
Ω

p (V · ∇u) + u (V · ∇p) + u p∇ · V dr =

∫
∂Ω

u pV · n ds(r) = 0 .

Using integration by parts, the third integral will be∫
Ω

(j′(u)− p)V · ∇g −∇p · ∇(V · ∇g) dr =∫
Ω

(∆ p − p + j′(u)) V · ∇g dr −
∫
∂Ω

∂p

∂n
V · ∇g ds(r) =

∫
∂Ω

∂p

∂n
V · ∇g ds(r) .

The fourth integral in (3.22) can be simplified as∫
Ω

j′(u)∇u · V + j(u)∇ · V dr =

∫
Ω

∇j(u) · V + j∇ · Vdr

=

∫
Ω

∇ (j(u)V) dr =

∫
∂Ω

j(u)V · n ds(r) .

Finally, using boundary conditions on u and p, and exploiting identities

above, we derive the boundary integral representation for the shape gradient

as follows

dJ (Ω;V) =

∫
∂Ω

(V · n)

(
j(u) +

∂p

∂n

∂(u− g)

∂n

)
ds(r) . (3.23)

For the Neumann BVP, the boundary integral representative of (3.9)

can be obtained by following similar steps as for the Dirichlet BVP, and

exploiting the following integration by parts on the boundary∫
∂Ω

(∇(gp) · V + gp∇tV) ds(r) =

∫
∂Ω

(
∂gp

∂n
+ κ gp

)
V · n ds(r) , (3.24)

where κ is the mean curvature of ∂Ω. The final result reads

dJ (Ω;V) =

∫
∂Ω

V · n
(
j(u)−∇u · ∇p− up+ fp+

∂gp

∂n
+ κ gp

)
ds(r) .

(3.25)

However, the step (3.24) must be corrected in the presence of nonsmooth

boundaries based on Remark 8.
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3 Shape Gradient: Evaluation and Approximation

Remark 8. In general, the shape gradient does not feature the Hadamard

structure (3.21) if the boundary is piecewise smooth only. For instance, in

the presence of corners in 2D, Formula (3.24) and eventually (3.25) have

to be corrected by adding the term∑
i

p(ai)g(ai)V(ai) · [[τ(ai)]] , (3.26)

where the ai denote the corner points and [[τ(ai)]] is the jump of the tan-

gential unit vector field in the corner ai [63, Ch. 3.8]. No correction has to

be made to formula (3.23).

3.3.2 Electromagnetic shape functional

As a 3D case of study, we investigate the electromagnetic wave scattering

problem within the geometry setting of Figure 3.1, and try to derive the

shape gradient of an output functional with respect to perturbations of the

scatterer boundary ∂Ωs.

Here, we are mainly interested in an output functional that measures the

far-field flux

J =

∫
Ωlens

|E∞|2 dr̂ , (3.27)

where

E∞(r̂) · ˆ̀=

∫
Ωf

∇×E(r) · ∇ ×
(

Ψ(r) G∞(r̂, r, ˆ̀)
)

(3.28)

−∇× (Ψ(r) E(r)) · ∇ ×G∞(r̂, r, ˆ̀) dr

=

∫
Ωf

∇×E(r) · (∇Ψ(r)×G∞(r̂, r, ˆ̀))

−∇×G∞(r̂, r, ˆ̀) · (∇Ψ(r)×E(r)) dr .
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3.3 Derivation of shape gradient

Figure 3.1: The general setting of electromagnetic scattering problem. The far
field integration region Ωf is shown in orange. The outer region shown
in white is Ωo, and by Ωi we denote the interior part which consists
of blue and gray regions. The scatterer is depicted by gray color.

Note that the electric field E solves the second order Maxwell’s equation
∇×∇×E− k2(r) E = 0 r ∈ R3,

Jγt (E)K = 0 r ∈ ∂Ωs,

Jγt (∇×E)K = 0 r ∈ ∂Ωs,

((∇×Es)× r̂ − ik(r) Es) = 0 r →∞.

(3.29)

By testing (3.29) with W ∈ H(curl,Ω), we find E ∈ H(curl,Ω) as the

solution to∫
Ω

∇×E · ∇ ×W − k2(r) E ·W dr−
∫
∂Ω

DtN[E] ·W ds(r) =∫
∂Ω

((∇×Ei)× n̂) ·W −DtN[Ei] ·W ds(r) ∀W ∈ H(curl; Ω).

(3.30)
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3 Shape Gradient: Evaluation and Approximation

As explained in Section 2.4, Ψ is the cutoff function such that Ψ(r)|Γi ≡
1 , and Ψ(r)|Γo ≡ 0. By Γi and Γo we denote the inner and outer bound-

aries of domain Ωf , respectively (see Figure 3.1)

For the theory part in Section 3.4, we need to assume that the cutoff

function is smooth enough and ∇Ψ is compactly supported in Ω (see As-

sumption 3). However, for numerical simulations in Chapter 2 and 4, we

simply use the very simple case depicted in (2.72)

Assumption 3. We choose the cutoff function such that Ψ ∈ C3 and
Ψ = 0 r ∈ Ωo ,

Ψ = 1 r ∈ Ωi ,

∇Ψ = 0 r ∈ Γi ∪ Γo .

(3.31)

Based on Assumption 3, ∇Ψ is smooth and also compactly supported in

Ω. So, we can do one more step of integration by part on (3.28) and rewrite

the far field as follows

E∞(r̂) · ˆ̀=

∫
Ωf

κf (r, r̂) ·E(r) dr , (3.32)

where

κf (r, r̂) = ∇× (∇Ψ(r)×G∞(r̂, r, ˆ̀))−∇×G∞(r̂, r, ˆ̀)×∇Ψ(r) .

Using Assumption 3, we see that κf : R3 → R3 belongs to C1 and is also

compactly supported in Ω. So, we can replace the integration over Ωf in

(3.32) by the integration over domain Ω.

Finally, the derivative of J with respect to E is

〈∂J
∂E

, δE〉 = Re

∫
Ω

δE(r) · G(E, r) dr , (3.33)

where

G(E, r) =

∫
Ωlens

κf (r, r̂1)

∫
Ω

E(r2) · κf (r2, r̂1) dr2 dr̂1 .

To start the procedure of deriving the shape gradient of (3.27), we must

note that J is real valued while the constraint (3.30) is complex valued,
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3.3 Derivation of shape gradient

therefore the standard Lagrangian approach can not be applied. Following

[43], we define the Lagrangian as

L (Ω,U,P) = Re

{
J (U) +

∫
Ω

∇×U · ∇ ×P− k2(r) U ·Pdr (3.34)

−
∫
∂Ω

DtN[U] ·P−DtN[Ei] ·P + ((∇×Ei)× n̂) ·P ds(r)

}
,

where functions U and P are in H(curl; Ω).

Similar to (3.12), we obtain the saddle point of (3.34) for U, P ∈ H(curl,Ω)

as solutions to

State problem:∫
Ω

∇×U · ∇ ×W − k2(r) U ·W dr−
∫
∂Ω

DtN[U] ·W ds(r) =∫
∂Ω

((∇×Ei)× n̂) ·W −DtN[Ei] ·W ds(r) ∀W ∈ H(curl,Ω) ,

(3.35a)

Adjoint problem:

Re

{∫
Ω

∇×P · ∇ ×W − k2(r) P ·W dr−
∫
∂Ω

DtN∗[P] ·W ds(r)

−
∫

Ω

G(U) ·W dr

}
= 0 ∀W ∈ H(curl,Ω) ,

(3.35b)

where DtN∗ is the adjoint DtN operator such that 〈DtN[A] , B 〉∂Ω =

〈A , DtN∗[B] 〉∂Ω, where A, B ∈ H(curl,Ω) and 〈A,B 〉∂Ω =
∫
∂Ω

A·B ds(r).

Lemma 1. Let u ∈ Y (Ω) and u : Ω 7→ C, be the solution to the following

variational formulation for all v ∈ Y (Ω)

Re {a(u, v)− `(v)} = 0 ,
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3 Shape Gradient: Evaluation and Approximation

where a : Y × Y 7→ C and ` : Y 7→ C are sesquilinear and linear forms

defined on Y (Ω). Then u is the solution to the following weak form for all

v ∈ Y (Ω)

a(u, v)− `(v) = 0 ,

Proof. If arg(a(u, v)− `(v)) = ϕ, then

e−iϕ(a(u, v)− `(v)) = a(u, e−iϕv)− `(e−iϕv)

= Re
{
a(u, e−iϕv)− `(e−iϕv)

}
= 0 .

Using Lemma 1 and (3.35b) we find P ∈ H(curl,Ω) as the solution to∫
Ω

∇×P · ∇ ×W − k2(r) P ·W dr−
∫
∂Ω

DtN∗[P] ·W ds(r) (3.36)

=

∫
Ω

G(U) ·W dr ∀W ∈ H(curl,Ω).

The corresponding strong form of (3.36) for P ∈ C2 is
∇×∇×P− k2(r)P = G(E) r ∈ Ω ,

Jγt
(
P
)
K = 0 r ∈ ∂Ωs ,

Jγt
(
∇×P

)
K = 0 r ∈ ∂Ωs ,

∇×P× n̂ = DtN*[P] r ∈ ∂Ω .

(3.37)

To derive the Eulerian derivative of (3.34), we first need to state an

Assumption on V and also introduce the covariant transformation.

Assumption 4. The perturbation V ∈ C1(R3,R3) vanishes on ∂Ω and

inside Ωf .
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3.3 Derivation of shape gradient

Lemma 2. The covariant transformation (pull back)

ΨV :

{
H(curl;TV(Ω)) 7→ H(curl; Ω) ,

F 7→ DTTV (F ◦ TV) ,

ΦV :

{
H(div;TV(Ω)) 7→ H(div; Ω) ,

F 7→ detDTV
(
DT−1
V (F ◦ TV)

)
,

∇×ΨV(F) = ΦV
(
∇V × F

)
,

is an isomorphism [32]. By ∇V we denote the derivative in the transformed

domain.

Using Lemma 2, we define the material derivative of the vector function

F with respect to the deformation TV as

Ḟ := lim
s↘0

Fs − F

s
,

where Fs = Ψs·V(F).

The Lagrangian in the transformed domain is

L (Ts·V(Ω),U,P) = Re

{
J (U) +

∫
Ts·V(Ω)

∇×U · ∇ ×P− k2(r) U ·Pdr

−
∫
∂Ω

DtN[U] ·P−DtN[Ei] ·P + ((∇×Ei)× n̂) ·P ds(r)

}
= Re

{
J (Us) +

∫
Ω

∇×Us · DTs·V
detDTs·V

DTTs·V
detDTs·V

∇×P
s |detDTs·V |

−
∫

Ω

k2(r) Us · DT−Ts·V DT−1
s·V P

s |detDTs·V |dr

−
∫
∂Ω

DtN[Us] ·Ps −DtN[Ei] ·P
s

+ ((∇×Ei)× n̂) ·Ps
ds(r)

}
.

(3.38)
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3 Shape Gradient: Evaluation and Approximation

Using Tailor expansion, one can simply show that [63, Ch. 2]
(detDTs·V)−1 = 1− s ∇ · V +O(s2)

DT−1
s·V = I − s DV +O(s2)

s→ 0, (3.39)

where I is the identity matrix.

Plugging (3.39) into (3.38), one can derive the Eulerian derivative of (3.34)

as follows

lim
s↘0

L (Ts·V(Ω),U,P)−L (Ω,U,P)

s
=

Re

{∫
Ω

G(U) · U̇ dr +

∫
Ω

∇× U̇ · ∇ ×P +∇×U · ∇ × Ṗ

+∇×U · (DV + DV>)∇×P−∇ · V(∇×U · ∇ ×P)

− k2(r)
(
U̇ ·P + U · Ṗ−U · (DV + DV>)P +∇ · V(U ·P)

)
dr

−
∫
∂Ω

DtN[U̇] ·P + DtN[U] · Ṗ−DtN[Ei] · Ṗ + ((∇×Ei)× n̂) · Ṗ ds(r)

}
.

So, in the saddle point defined by (3.35), we derive the shape gradient as

follows

dJ (V,Ω) = Re

(∫
Ω

∇×E · (DV + DV>) ∇×P + k2 E · (DV + DV>) P

−∇ · V (∇×E · ∇ ×P + k2(r) E ·P)dr

)
. (3.40)

Rewriting (3.40) in terms of boundary integrals using vector calculus is

not so straight forward as in the scalar case. So, we do similar steps as in

[21, Ch. 10, Sec.5.6], and use the following formula

d

ds

∫
Ts·V(Ω)

F (s, r) dr

∣∣∣∣∣
s=0

=

∫
∂Ωs

JF (0, r)KV · n̂ ds(r) +

∫
Ω

∂F

∂s
(0, r)dr.

(3.41)
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3.3 Derivation of shape gradient

Using Assumption 4, we obtain

d

ds
L (Ts·V(Ω),U,P) = Re

{∫
∂Ωs

J∇×U · ∇ ×P− k2(r) U ·PKV · n̂ ds(r)

+

∫
Ω

∇×U′ · ∇ ×P− k2(r) U′ ·Pdr

+

∫
Ω

∇×U · ∇ ×P
′ − k2(r) U ·P′dr

}
,

(3.42)

where

U′ =
d

dt
U ◦ T−1

V = −(∇×U)× V − ∇(V ·U) ,

(3.43)

P′ =
d

dt
P ◦ T−1

V = −(∇×P)× V − ∇(V ·P) .

Now we perform one more step of integration by parts on second and third

integrals in (3.42)

d

ds
L (Ts·V(Ω),U,P) = Re

{∫
∂Ωs

J∇×U · ∇ ×P− k2(r) U ·PKV · n̂ ds(r)

+

∫
Ω

∇×∇×U ·P′ − k2(r) U ·P′dr

+

∫
∂Ωs

J(γt(∇×U) × n̂) · P
′
K ds(r)

+

∫
Ω

∇×∇×P ·U′ − k2(r) P ·U′dr

+

∫
∂Ωs

J(γt(∇×P) × n̂) · U′K ds(r)

}
.

(3.44)

At saddle point (3.29) and (3.37), the second and fourth integrals on the

right hand side of (3.44) are zero. We also have the following continuity

conditions along the surface of the scatterer
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

Jγt(E)K = 0 r ∈ ∂Ωs,

Jγt(P)K = 0 r ∈ ∂Ωs,

Jγt(∇×E)K = 0 r ∈ ∂Ωs,

Jγt(∇×P)K = 0 r ∈ ∂Ωs,

J∇×E · n̂K = 0 r ∈ ∂Ωs,

J∇×P · n̂K = 0 r ∈ ∂Ωs.

(3.45)

Using (3.45), we have

dJ = −Re

{∫
∂Ωs

Jk2(r) E ·PKV · n̂ ds(r)

+

∫
∂Ωs

J(γt(∇×E) × n̂) · ∇(V ·P)K ds(r)

+

∫
∂Ωs

J(γt(∇×P) × n̂) · ∇(V ·E)K ds(r)

+

∫
∂Ωs

J(γt(∇×E) × n̂) ·
(
(∇×P)× V

)
K ds(r)

+

∫
∂Ωs

J(γt(∇×P) × n̂) · ((∇×E)× V)K ds(r)

}
.

Using the Green’s identity and also continuity conditions in (3.45), we

rewrite the second integral as follows∫
∂Ωs

J(γt(∇×E)× n̂)· ∇(V·P)K ds(r) = −
∫
∂Ωs

J∇t·(γt(∇×E)× n̂) P·n̂KV·n̂ ds(r) .

The third integral can also be simplified similar to the second integral.

Since the fourth and the fifth integrals are zero due to the continuity con-

ditions in (3.45), we get the following form for dJ

dJ = Re

{∫
∂Ωs

J∇t · (γt(∇×E) × n̂) P · n̂

+∇t · (γt(∇×P) × n̂) E · n̂− k2(r) E ·PKV · n̂ ds(r)

}
.
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3.4 Approximation of shape gradients

In this section we investigate the approximation of the shape gradient dJ .

As explained before, the shape gradient can be expressed in terms of volume

and boundary integrals. For exact solutions of adjoint and state problems

we have

dJ = dJ Vol = dJ Bdry , (3.46)

where dJ Vol and dJ Bdry are expressions in terms of volume and boundary

integrals, respectively. The operator dJ can be approximated by replac-

ing the finite element solutions of state and adjoint problems, which breaks

down the equality in (3.46). So, the natural question is, which form of shape

gradient expressions should be preferred for an approximation of dJ . To

answer this question, we discuss the scalar and Maxwell problem separately.

3.4.1 Scalar Problem

Here we recall resulats obtained in [34] for the scalar problem discussed in

Section 3.3.1. We introduce a family Vh of finite-dimensional subspaces of

H1
0 (Ω) and define uh ∈ g + Vh, ph ∈ Vh as Ritz-Galerkin solutions2 of (3.4)

and (3.6), respectively, that is,∫
Ω

∇uh · ∇vh + uhvh dx =

∫
Ω

fvh dx ∀ vh ∈ Vh , (3.47)∫
Ω

∇ph · ∇vh + phvh dx =

∫
Ω

j(uh)vh dx ∀ vh ∈ Vh . (3.48)

In particular, we let Vh be a family of H1 piecewise linear Lagrangian finite

element spaces built on simplicial meshes [11, Ch. II, Def. 5.1], and let h

designate the meshwidth.

Assumption 5. The Dirichlet BVP for the Laplacian is H2-regular [11,

Ch. II, Def. 7.1], that is, if a function w ∈ H1
0 (Ω) is the (unique) weak

2Note that ph is not a proper Ritz-Galerkin solution to (3.6), because the right-hand
side is perturbed.
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solution to the elliptic BVP{
−∆w + w = ρ in Ω ,

w = 0 on ∂Ω ,

for a function ρ ∈ L2(Ω), then w ∈ H2(Ω).

Assumption 6. The source function f and the boundary data g in (3.4) are

restrictions of functions in H1(Rd) and H3(Rd) to Ω and ∂Ω, respectively.

Theorem 7. Let u and p be the solutions of state and adjoint problem (3.4)

and (3.6), and let uh and ph be their Ritz-Galerkin approximations in the

sense of (3.47) and (3.48) by piecewise linear Lagrangian finite elements.

Furthermore, let Assumptions 5 and 6 be satisfied. Then3

|dJ (Ω;V)− dJ (Ω, uh, ph;V)Vol| ≤ C(Ω, u, p, f, g)h2‖V‖W 2,4(Ω) ,

where the constant C(Ω, u, p, f, g) depends on the domain Ω and its dis-

cretization, ‖u‖H2(Ω), ‖p‖H2(Ω), ‖f‖H1(Ω), and ‖g‖H3(Ω).

Theorem 8. Let uh and ph be Ritz-Galerkin linear Lagrangian finite ele-

ment approximations of the solutions u and p of (3.4) and (3.6), then

|dJ (Ω;V)− dJ (Ω, uh, ph;V)Bdry| ≤ Ch‖V · n̂‖L∞(∂Ω) ,

where h stands for the meshwidth, and C > 0 does not depend on h.

Proof of Theorem 7 and 8 are given by detail in [34].

3.4.2 Maxwell problem

In theorem 9, we also show that dJ (Ω,Eh,Ph;V)Vol enjoys superb conver-

gence for the Maxwell problem. Before getting to the theorem, we need

to take a closer look at the regularity of Maxwell’s transmission problem

within domains Ωs and Ωc = Ω\Ω̄s. According to [18], the study of the

3For the sake of readability, we use the same notation for scalar and vectorial Sobolev
norms.
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smoothness of solutions of{
∇× µ−1∇× u− ω2εu = F in Ω,

u× n̂ = 0 on ∂Ω,
(3.49)

for F ∈ L2(Ω) and ∇ · F ∈ L2(Ω), can rely on smoothness results for

2nd-order scalar elliptic PDEs ∇ · (ε∇ v) = f and ∇ · (µ−1∇w) = g for

f, g ∈ L2(Ω). The Sobolev regularity of u will be that of the sum of the

gradients of v and w. This can be shown based on the decomposition of u

into a H1-regular vectorfield and a gradient, see [18, Sec. 3]. If both µ and

ε are piecewise C2 and jump only across a single interface, then standard

elliptic regularity theory [47, Thm. 8.10] tells us that v and w will belong

to H2 both in Ωs and Ωc. Moreover, their corresponding H2-norms will be

bounded by the L2-norms of the source functions f and g. In terms of u

this permits us to conclude that u will be in H1(Ωs ∪ Ωc), such that

‖u‖H1(Ωs∪Ωc) + ‖∇×u‖H1(Ωs∪Ωc) ≤ C(Ω)(‖F‖L2(Ω)+‖∇·F‖L2(Ω)) , (3.50)

with a constant independent of F.

Since we could not find a concise statement of such a result in literature

that fits our setting, we make the assumption:

Assumption 7. Let k(r) be twice continuously differentiable (up to the

boundary) both in Ωs and Ωc and the function u ∈ H1(Ωs∪Ωc) and ∇×u ∈
H1(Ωs ∪ Ωc) be the solution to the following problem

∇×∇× u− k2(r)u = F r ∈ Ω ,

Jγt (u)K = 0 r ∈ ∂Ωs ,

Jγt (∇× u)K = 0 r ∈ ∂Ωs ,

∇× u× n̂ = DtN[u] r ∈ ∂Ω ,

(3.51)

for ∂Ωs, ∂Ω ∈ C2, F ∈ L2(Ω), and ∇ · F ∈ L2(Ω), then we have

‖u‖H1(Ωs∪Ωc) + ‖∇×u‖H1(Ωs∪Ωc) ≤ C(Ω)(‖F‖L2(Ω)+‖∇·F‖L2(Ω)) . (3.52)

Similar to the scalar case, we introduce Xh ⊂ H(curl,Ω) as the lowest

order edge elements space defined on a shape regular and quasi-uniform

81



3 Shape Gradient: Evaluation and Approximation

family of meshes. We also define Eh ,Ph ∈ Xh as finite element solutions

of (3.29) and (3.37), such that∫
Ω

∇×Eh · ∇ ×Wh − k2(r) Eh ·Wh dr−
∫
∂Ω

DtN[Eh] ·Wh ds(r)

=

∫
∂Ω

((∇×Ei)× n̂) ·Wh −DtN[Ei] ·Wh ds(r) ∀Wh ∈ Xh ,

(3.53)

∫
Ω

∇×Ph · ∇ ×Wh − k2(r) Ph ·Wh dr−
∫
∂Ω

DtN∗[Ph] ·Wh ds(r)

=

∫
Ω

Wh(r) · G(Eh, r) dr ∀Wh ∈ Xh .

(3.54)

Assumption 8. If a : H(curl,Ω)×H(curl,Ω) 7→ C is a sesquilinear form

given as the following

a(u , v) =

∫
Ω

∇× u · ∇ × v − k2(r) u · v dr−
∫
∂Ω

DtN[u] · v ds(r).

then for sufficiently small mesh width h, we assume4

C ‖uh‖ ≤ sup
vh∈Xh

|a(uh,vh)|
‖vh‖H(curl,Ω)

∀uh ∈ Xh , (3.55)

where C is independent of h (it only depends on Ω and the shape regularity).

We also recall that for any tetrahedral mesh Ωh with meshwidth h > 0

we have the following a priori interpolation error estimate [32, Thm. 3.14]

‖∇ × u−∇× Ihu‖L2(Ω) ≤ C h ‖∇ × u‖H1(Ωs∪Ωc) ,

4The discrete inf-sup condition is proven in [32, Thm. 5.2] for the Maxwell’s problem
with u× n̂ = 0 on the outer boundary. Here, we believe that the same result can be
obtained for the case with the DtN map on ∂Ω, by following the same lines as in [32,
Sec. 5.2].
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(3.56)

‖u− Ihu‖L2(Ω) ≤ C h (‖u‖H1(Ωs∪Ωc) + ‖∇ × u‖H1(Ωs∪Ωc)) ,

where Ihu is the lowest order edge interpolation of u.

We can extend (3.56) using standard finite element convergence estimate

[32, Ch. 5]

‖u− uh‖H(curl,Ω) ≤ C h (‖u‖H1(Ωs∪Ωc) + ‖∇ × u‖H1(Ωs∪Ωc)) . (3.57)

Remark 9. Note that, the error measured with respect to the L2(Ω) norm

does not decrease as h2 when the solution is approximated employing edge

elements [32, Ch. 5]

‖u− uh‖L2(Ω) ≤ C h (‖u‖H1(Ωs∪Ωc) + ‖∇ × u‖H1(Ωs∪Ωc))

Theorem 9. Let E and P be solutions of (3.29) and (3.37), and let Eh

and Ph be their lowest order edge element approximation as (3.53) and

(3.54). Furthermore, let assumption 7 be satisfied. Then, similar to

the scalar case, the volume formulation of the shape gradient converges

to the exact expression with the rate h2

|dJ (Ω;V)− dJ (Ω,Eh,Ph;V)Vol| ≤ C(Ω,E,P)h2 ‖V‖W 2,∞(Ω) ,

Proof. From the equality dJ (Ω;V) = dJ (Ω,E,P;V)Vol and using the tri-

angle inequality, we immediately get

|dJ (Ω;V)− dJ (Ω,Eh,Ph;V)Vol|

≤
(
|Re

∫
Ω

∇×E · (DV + DVT )∇×P

−∇×Eh · (DV + DVT )∇×Ph dr|

+ |Re

∫
Ω

k2 E · (DV + DVT )P− k2 Eh · (DV + DVT )Ph dr|

+ |Re

∫
Ω

∇ · V · (∇×E · ∇ ×P + k2 E ·P
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−∇×Eh · ∇ ×Ph − k2 Eh ·Ph) dr|
)
,

which results in

|dJ (Ω;V)− dJ (Ω,Eh,Ph;V)Vol| (3.58)

≤
(
|
∫

Ω

∇×E · (DV + DVT )∇×P

−∇×Eh · (DV + DVT )∇×Ph dr|

+ |
∫

Ω

k2 E · (DV + DVT )P

− k2 Eh · (DV + DVT )Ph dr|

+ |
∫

Ω

∇ · V · (∇×E · ∇ ×P + k2 E ·P

−∇×Eh∇×Ph − k2 Eh ·Ph) dr|
)
.

The proof boils down to bounding each integral in (3.58) by applying

standard finite element convergence estimate (3.56) and (3.57) and using

duality techniques.

To begin with, we split the first integral into

∫
Ω

∇×E·(DV + DVT )∇×P−∇×Eh · (DV + DVT )∇×Ph dr

(3.59)

=

∫
Ω

∇× (E−Eh) · (DV + DVT )∇×P dr

+

∫
Ω

∇×E · (DV + DVT )∇× (P−Ph) dr

+

∫
Ω

∇× (E−Eh) · (DV + DVT )∇× (P−Ph) dr .

To bound the first and the second integral on the right hand side of the

(3.59), we use duality techniques. For the first one we introduce the function
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u as the weak solution to the following BVP
∇×∇× u− k2(r)u = ∇×

(
(DV + DVT )∇×P

)
r ∈ Ω ,

Jγt (u)K = 0 r ∈ ∂Ωs ,

Jγt (∇× u)K = 0 r ∈ ∂Ωs ,

∇× u× n̂,= DtN∗[u] r ∈ ∂Ω ,

(3.60)

that is∫
Ω

∇× u · ∇ × v − k2 u · v dr−
∫
∂Ω

DtN∗[u] · v ds (3.61)

=

∫
Ω

∇× v · (DV + DVT )∇×P ∀v ∈ H0(curl,Ω) .

Using (3.52) and keeping in mind that the right hand side of (3.60) is

divergence free, we get

‖u‖H1(Ωs∪Ωc) + ‖∇ × u‖H1(Ωs∪Ωc) ≤ C
(
‖∇ ×

(
(DV + DVT )∇×P

)
‖L2(Ω)

)
.

(3.62)

By triangular inequality and product rule, we have

‖∇×((DV + DVT )∇×P)‖L2(Ω) (3.63)

≤ C
(
‖∇ × V‖W 1,∞‖∇ ×P‖L2(Ω) + ‖V‖W 1,∞‖∇ ×P‖H1(Ωs∪Ωc)

)
≤ C ‖∇ × V‖W 1,∞‖∇ ×P‖H1(Ωs∪Ωc) .

Using (3.61) and exploiting the Galerkin orthogonality of E− Eh to the

finite dimensional trial space Xh, we have∫
Ω

∇× (E−Eh) · (DV + DVT )∇×P dr = a(E−Eh,u)

= a(E−Eh,u− Ihu) .

Since a(·, ·) is continuous in L2(Ω), we have

|
∫

Ω

∇× (E−Eh) · (DV + DVT )∇×P dr|

85



3 Shape Gradient: Evaluation and Approximation

≤ C‖E−Eh‖H(curl,Ω)‖u− Ihu‖H(curl,Ω) .

Using (3.56) and (3.57), we conclude

|
∫

Ω

∇× (E−Eh) · (DV + DVT )∇×P dr|

≤ Ch2(‖E‖H1(Ωs∪Ωc) + ‖∇ ×E‖H1(Ωs∪Ωc))‖∇ × V‖W 1,∞‖∇ ×P‖H1(Ωs∪Ωc).

Similarly, for the second integral on the right hand side of (3.59) we intro-

duce the function u as the weak solution to the following problem
∇×∇× u− k2(r)u,= ∇×

(
(DV + DVT )∇×E

)
r ∈ Ω,

Jγt (u)K = 0 r ∈ ∂Ωs,

Jγt (∇× u)K = 0 r ∈ ∂Ωs,

∇× u× n̂ = DtN[u] r ∈ ∂Ω,

that is∫
Ω

∇× u · ∇ × v − k2u · v dr−
∫
∂Ω

DtN[u] · v ds

=

∫
Ω

∇× v · (DV + DVT )∇×Edr ∀v ∈ H0(curl,Ω) .

Similar to (3.63), we derive the following bound for function u

‖u‖H1(Ωs∪Ωc) + ‖∇ × u‖H1(Ωs∪Ωc) ≤ C ‖∇ × V‖W 1,∞‖∇ ×E‖H1(Ωs∪Ωc) .

(3.64)

Next, we note that for every vh ∈ Xh we have∫
Ω

∇× (P−Ph) · ∇ × vh − k2(P−Ph)vh dr −
∫
∂Ω

DtN∗[P−Ph] · vh ds

=

∫
Ω

(G(E) − G(Eh)) · vh dr

which implies

|
∫

Ω

∇× (P−Ph) · (DV + DVT )∇×E dr| = |a∗(P−Ph,u)|
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≤ |a∗(P−Ph,u− Ihu)|+ |
∫

Ω

(G(E) − G(Eh)) · Ihu dr| ,

where a∗(u,v) := a(v,u). Then, using continuity of a∗(·, ·) in L2(Ω),

|
∫

Ω

∇× (P−Ph) · (DV + DVT )∇×E dr| (3.65)

≤ C‖P−Ph‖H(curl,Ω)‖u− Ihu‖H(curl,Ω) + |
∫

Ω

G(E−Eh) · Ihu dr| .

Unlike the scalar problem in [34], we cannot use the continuity of G(E−Eh)

in L2(Ω) norm to bound the second term on the right hand side of (3.65).

As depicted in Remark 9, the error in L2(Ω) norm decreases as h. So, we

use duality technique once more to achieve higher convergence rates.

Based on (3.33), we have∫
Ω

G(E−Eh) · Ihu dr =

∫
Ω

(E(r) − Eh(r)) ·K (r) dr , (3.66)

where

K (r) =

∫
Ωlens

κf (r, r̂1)

∫
Ω

Ihu(r2) · κf (r2, r̂1) dr2 dr̂1 . (3.67)

To bound (3.66), we again use the duality technique and define q as the

weak solution to the following BVPs
∇×∇× q− k2(r)q = K r ∈ Ω,

Jγt (q)K = 0 r ∈ ∂Ωs,

Jγt (∇× q)K = 0 r ∈ ∂Ωs,

∇× q× n̂,= DtN∗[q] r ∈ ∂Ω,

(3.68)

that is∫
Ω

∇× q · ∇ × v − k2 q · v dr−
∫
∂Ω

DtN∗[q] · v ds (3.69)

=

∫
Ω

v ·K (r) dr ∀v ∈ H0(curl,Ω) .
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Since κ(r) is a smooth function in r, we use Assumption 7 and write

‖q‖H1(Ωs∪Ωc) + ‖∇ × q‖H1(Ωs∪Ωc) ≤ C
(
‖K ‖L2(Ω) + ‖∇ ·K ‖L2(Ω)

)
.

(3.70)

Using Cauchy-Schwarz inequality, we can show that

‖K ‖L2(Ω) + ‖∇ ·K ‖L2(Ω) (3.71)

≤ C ‖Ihu‖H(curl,Ω)‖κf (r, r̂1)‖W 1,∞(Ω×Ωlens)‖∇
rκf (r, r̂1)‖W 1,∞(Ω×Ωlens).

Then, using (3.64) to bound ‖Ihu‖H(curl,Ω),

‖K ‖L2(Ω) + ‖∇ ·K ‖L2(Ω) (3.72)

≤ C ‖∇ × V‖W 1,∞‖∇ ×E‖H1(Ωs∪Ωc)

‖κf (r, r̂1)‖W 1,∞(Ω×Ωlens)‖∇
rκf (r, r̂1)‖W 1,∞(Ω×Ωlens).

Using Galerkin orthogonality, continuity of a(·, ·), and (3.69), we have

|
∫

Ω

(E(r) − Eh(r)) ·K (r) dr| = |a(E − Eh,q)|

= |a(E − Eh,q− Ihq)|
≤ C‖E−Eh‖H(curl,Ω)‖q− Ihq‖H(curl,Ω).

So, based on (3.72), (3.56), and (3.57),

|
∫

Ω

(E(r) − Eh(r)) ·K (r) dr| (3.73)

≤ C h2 ‖∇ × V‖W 1,∞‖∇ ×E‖H1(Ωs∪Ωc)‖κf (r, r̂1)‖W 1,∞(Ω×Ωlens)

‖∇rκf (r, r̂1)‖W 1,∞(Ω×Ωlens)(‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo)).

In order to establish a bound for ‖P−Ph‖H(curl,Ω) in (3.65), we follow the

argument in the proof of Strang’s first Lemma. We use inf-sup condition in

Assumption 8, and get

C ‖Ph −wh‖H(curl,Ω) ≤ sup
vh∈Xh

a∗(Ph −wh,vh)

‖vh‖H(curl,Ω)
(3.74)
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≤ sup
vh∈Xh

a∗(Ph −P,vh)

‖vh‖H(curl,Ω)
+ sup

vh∈Xh

a∗(P−wh,vh)

‖vh‖H(curl,Ω)

≤ sup
vh∈Xh

∫
Ω
G(Eh −E) · vh
‖vh‖H(curl,Ω)

+ C‖P−wh‖H(curl,Ω).

Since G is continuous in L2(Ω) norm, we have∫
Ω

G(Eh −E) · vh ≤ C‖E−Eh‖L2(Ω)‖vh‖H(curl,Ω). (3.75)

Then, using (3.74), (3.75), (3.56), and (3.57),

‖P−Ph‖H(curl,Ω) ≤ ‖P− IhP‖H(curl,Ω) + ‖IhP−Ph‖H(curl,Ω) (3.76)

≤ C‖P− IhP‖H(curl,Ω) + C‖E−Eh‖L2(Ω)

≤ C h (‖P‖H1(Ωs∪Ωo) + ‖∇ ×P‖H1(Ωs∪Ωo)

+ ‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo)) .

Consequently, we can bound (3.65) as follows

|
∫

Ω

∇×E · (DV + DVT )∇× (P−Ph) dr| (3.77)

≤ C h2 ‖∇ × V‖W 1,∞‖∇ ×E‖H1(Ωs∪Ωc){
‖P‖H1(Ωs∪Ωo) + ‖∇ ×P‖H1(Ωs∪Ωo) +

(
‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo)

)
(

1 + ‖κf (r, r̂1)‖W 1,∞(Ω×Ωlens)‖∇
rκf (r, r̂1)‖W 1,∞(Ω×Ωlens)

)}
.

Finally, we bound the third integral on the right hand side of (3.59) by

employing Cauchy-Schwarz inequality, (3.76), (3.56), and (3.57)∫
Ω

∇× (E−Eh) · (DV + DVT )∇× (P−Ph) dr (3.78)

≤ ‖V‖W 1,∞Ω‖E−Eh‖H(curl,Ω)‖P−Ph‖H(curl,Ω)

≤ C h2 ‖V‖W 1,∞(‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo))

(‖P‖H1(Ωs∪Ωo) + ‖∇ ×P‖H1(Ωs∪Ωo)

+ ‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo)).
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Along the same lines as before, we split the second integral on the right

hand side of (3.58) as follows∫
Ω

E · (DV + DVT )P−Eh · (DV + DVT )Ph dr (3.79)

=

∫
Ω

(E−Eh) · (DV + DVT )P dr

+

∫
Ω

E · (DV + DVT )(P−Ph) dr

+

∫
Ω

(E−Eh) · (DV + DVT )(P−Ph) dr.

To bound the first integral, we use duality technique and introduce u as the

weak solution to the following BVP
∇×∇× u− k2(r)u = (DV + DVT ) P r ∈ Ω,

Jγt (u)K = 0 r ∈ ∂Ωs,

Jγt (∇× u)K = 0 r ∈ ∂Ωs,

∇× u× n̂,= DtN∗[u] r ∈ ∂Ω,

(3.80)

that is∫
Ω

∇× u · ∇ × v − k2 u · v dr−
∫
∂Ω

DtN∗[u] · v ds (3.81)

=

∫
Ω

v · (DV + DVT )P ∀v ∈ H0(curl,Ω) .

Using Assumption 7, we have

‖u‖H1(Ωs∪Ωc) + ‖∇ × u‖H1(Ωs∪Ωc) (3.82)

≤ C
(
‖(DV + DVT )P‖L2(Ω) + ‖∇ · ((DV + DVT )P)‖L2(Ω)

)
≤ C(‖V‖W 1,∞(Ω)‖P‖L2(Ω) + ‖V‖W 2,∞(Ω)‖P‖L2(Ω) + ‖V‖W 1,∞(Ω)‖P‖H1(Ωs∪Ωc))

≤ C ‖V‖W 2,∞(Ω)‖P‖H1(Ωs∪Ωc).
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Using Galerkin orthogonality, continuity of a(·, ·) and (3.81),

|
∫

Ω

(E−Eh) · (DV + DVT )P dr| = |a(E−Eh,u)| (3.83)

= |a(E−Eh,u− Ihu)|
≤ C‖E−Eh‖H(curl,Ω)‖u− Ihu‖H(curl,Ω) .

Then, using (3.56), (3.57), (3.82), and Assumption 7

|
∫

Ω

(E−Eh) · (DV + DVT )P dr| (3.84)

≤ C h2 (‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo))‖V‖W 2,∞(Ω)‖P‖H1(Ωs∪Ωc).

To bound the second integral on the right hand side of (3.79), we again

use the duality technique
∇×∇× u− k2(r)u = (DV + DVT ) E r ∈ Ω,

Jγt (u)K = 0 r ∈ ∂Ωs,

Jγt (∇× u)K = 0 r ∈ ∂Ωs,

(∇× u)× n̂ = DtN[u] r ∈ ∂Ω,

(3.85)

that is∫
Ω

∇× u · ∇ × v − k2u · v dr−
∫
∂Ω

DtN[u] · v ds (3.86)

=

∫
Ω

v · (DV + DVT ) Edr ∀v ∈ H0(curl,Ω) .

Similar to (3.82), we have

‖u‖H1(Ωs∪Ωo) + ‖∇ × u‖H1(Ωs∪Ωo) ≤ C ‖V‖W 2,∞(Ω)‖E‖H1(Ωs∪Ωc).

Using (3.86), we have

|
∫

Ω

(P−Ph)·(DV + DVT )E dr| = |a∗(P−Ph,u)| (3.87)

≤ |a∗(P−Ph,u− Ihu)|+ |
∫

Ω

(G(E) − G(Eh)) · Ihu dr| .
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Using (3.56), (3.57), (3.73), and (3.71), we have

|
∫

Ω

(P−Ph) · (DV + DVT )E dr| (3.88)

≤ C h2 ‖V‖W 2,∞(Ω)‖E‖H1(Ωs∪Ωc){
‖P‖H1(Ωs∪Ωo) + ‖∇ ×P‖H1(Ωs∪Ωo) +

(
‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo)

)
(

1 + ‖κf (r, r̂1)‖W 1,∞(Ω×Ωlens)‖∇
rκf (r, r̂1)‖W 1,∞(Ω×Ωlens)

)}
.

For bounding the third integral on the right hand side of (3.79), we use

Cauchy-Schwarz inequality, (3.57), and (3.76)

|
∫

Ω

(E−Eh) · (DV + DVT )(P−Ph) dr| (3.89)

≤ ‖V‖W 1,∞Ω‖E−Eh‖L2(Ω)‖P−Ph‖L2(Ω)

≤ C h2 ‖V‖W 1,∞(‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo))

(‖P‖H1(Ωs∪Ωo) + ‖∇ ×P‖H1(Ωs∪Ωo) + ‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo)).

Again, we split the third integral on the right hand side of (3.58) to bound

it∫
Ω

∇ · V(∇×E · ∇ ×P + k2 E ·P−∇×Eh · ∇ ×Ph − k2 Eh ·Ph) dr

=

∫
Ω

∇ · V(∇× (E−Eh) · ∇ ×P + k2 (E−Eh) ·P) dr

+

∫
Ω

∇ · V(∇×E · ∇ × (P−Ph) + k2 E · (P−Ph)) dr

−
∫

Ω

∇ · V(∇× (E−Eh) · ∇ × (P−Ph) + k2 (E−Eh) · (P−Ph)) dr.

(3.90)
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We bound the first integral on the right side of (3.4.2) using duality tech-

nique. We introduce u as the weak solution to the following BVP
∇×∇× u− k2(r)u = ∇× ((∇ · V)∇×P) + k2 (∇ · V) P r ∈ Ω,

Jγt (u)K = 0 r ∈ ∂Ωs,

Jγt (∇× u)K = 0 r ∈ ∂Ωs,

∇× u× n̂,= DtN∗[u] r ∈ ∂Ω,
(3.91)

that is∫
Ω

∇×u · ∇ × v − k2 u · v dr−
∫
∂Ω

DtN∗[u] · v ds (3.92)

=

∫
Ω

∇ · V (∇× v · ∇ ×P + k2v ·P) ∀v ∈ H0(curl,Ω) .

Using Assumption 3.52, we have

‖u‖H1(Ωs∪Ωc) + ‖∇ × u‖H1(Ωs∪Ωc) ≤ ‖V‖W 2,∞ ‖∇ ×P‖H1(Ωs∪Ωc) (3.93)

Then, by (3.91), Galerkin orthogonality, continuity of a(·, ·), (3.56), and

(3.57),

|
∫

Ω

∇ · V(∇× (E−Eh) · ∇ ×P + k2 (E−Eh) ·P) dr| (3.94)

= |a(E−Eh,u)|
= |a(E−Eh,u− Ihu)|
≤ C‖(E−Eh)‖H(curl,Ω)‖(u− Ihu)‖H(curl,Ω)

≤ C h2 (‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo))‖V‖W 2,∞ ‖∇ ×P‖H1(Ωs∪Ωc).
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For the second integral on the right hand side of , we used the duality

technique again, and define u as the weak solution to the following BVP
∇×∇× u− k2(r)u = ∇× ((∇ · V)∇×E) + k2 (∇ · V) E r ∈ Ω,

Jγt (u)K = 0 r ∈ ∂Ωs,

Jγt (∇× u)K = 0 r ∈ ∂Ωs,

∇× u× n̂ = DtN[u] r ∈ ∂Ω,
(3.95)

that is∫
Ω

∇×u · ∇ × v − k2u · v dr−
∫
∂Ω

DtN[u] · v ds (3.96)

=

∫
Ω

∇ · V (∇× v · ∇ ×E + k2 v ·E) ∀v ∈ H0(curl,Ω) .

Based on Assumption 3.52, we have

‖u‖H1(Ωs∪Ωc) + ‖∇ × u‖H1(Ωs∪Ωc) ≤ ‖V‖W 2,∞ ‖∇ ×E‖H1(Ωs∪Ωc). (3.97)

Using (3.95), (3.37), and continuity of a(·, ·),

|
∫

Ω

∇ · V(∇×E · ∇ × (P−Ph) + k2 E · (P−Ph)) dr| (3.98)

= |a∗(P−Ph,u)|

= |a∗(P−Ph,u− Ihu) +

∫
Ω

(G(E) − G(Eh)) · Ihu dr|

≤ C‖P−Ph‖H(curl,Ω)‖u− uh‖H(curl,Ω) + |
∫

Ω

G(E−Eh) · Ihu dr| .

Using (3.76), (3.56), (3.57), (3.73), and (3.71) we have

|
∫

Ω

∇ · V(∇×E · ∇ × (P−Ph) + k2 E · (P−Ph)) dr| (3.99)

≤ C h2 ‖V‖W 2,∞(Ω)‖∇ ×E‖H1(Ωs∪Ωc){
‖P‖H1(Ωs∪Ωo) + ‖∇ ×P‖H1(Ωs∪Ωo) +

(
‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo)

)
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3.5 Numerical experiments

(
1 + ‖κf (r, r̂1)‖W 1,∞(Ω×Ωlens)‖∇

rκf (r, r̂1)‖W 1,∞(Ω×Ωlens)

)}
.

In the end, we use Cauchy-Schwarz inequality, (3.57), and (3.76) to bound

the third integral on the right hand side of (3.4.2)∫
Ω

∇ · V(∇× (E−Eh) · ∇ × (P−Ph) + k2 (E−Eh) · (P−Ph)) dr

≤ ‖V‖W 1,∞(Ω)‖E−Eh‖H(curl,Ω)‖P−Ph‖H(curl,Ω)

≤ C h2 ‖V‖W 1,∞(‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo))

(‖P‖H1(Ωs∪Ωo) + ‖∇ ×P‖H1(Ωs∪Ωo) + ‖E‖H1(Ωs∪Ωo) + ‖∇ ×E‖H1(Ωs∪Ωo)).

(3.100)

3.5 Numerical experiments

We numerically study the 2D problem of approximating the shape gradient

for the quadratic shape functional

J (Ω) =

∫
Ω

u2 dx,

for Ω ⊂ R2, under the scalar PDE constraint{
−∆u+ u = f in Ω ,

u = g on ∂Ω .
(3.101)

It is challenging to investigate convergence rates in the C1(Rd;Rd) dual

norm numerically. Therefore, we consider only an operator norm over a

finite dimensional space of vector fields in P3,3(R2), whose components are

multivariate product polynomials of degree three. Moreover, the C1(Rd;Rd)-
norm is replaced with the H1(Ω)-norm. By monitoring the following oper-

ator norm on different meshes which are generated through uniform refine-
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3 Shape Gradient: Evaluation and Approximation

ment, one can study convergence rates

errVol :=

(
max
V∈P3,3

1

‖V‖2H1(Ω)

|dJ (Ω;V)− dJ (Ω, uh, ph;V)Vol|2
)1/2

and

errBdry :=

(
max
V∈P3,3

1

‖V‖2H1(Ω)

|dJ (Ω;V)− dJ (Ω, uh, ph;V)Bdry|2
)1/2

To compute the values errVol and errBdry, we introduce a basis {Vi}mi=1,

m = 20, of P3,3(R2), and define the column vectors

zVol :=
(
dJ (Ω;Vi)− dJ (Ω, uh, ph;Vi)Vol

)m
i=1

,

zBdry :=
(
dJ (Ω;Vi)− dJ (Ω, uh, ph;Vi)Bdry

)m
i=1

.

Let M be the Gramian matrix of {Vi}20
i=1 with respect to the H1(Ω) inner

product, and consider the matrices AVol and ABdry defined by

{AVol}20
i,j=1 = zVol(zVol)T and {ABdry}20

i,j=1 = zBdry(zBdry)T ,

respectively. Then, errVol and errBdry can be obtained as the square roots

of the maximal eigenvalues of M−1AVol and M−1ABdry, respectively.

Although analytical values are in some cases computable, the reference

values dJ (Ω;V) are approximated by evaluating dJ (Ω, uh, ph;V)Vol on a

mesh with an extra level of refinement. This gives us much flexibility in the

selection of test cases (the same code can be used for different geometries

Ω, source functions f and g, and vector fields V).

In the implementation, we opt for linear Lagrangian finite elements on

quasi-uniform triangular meshes5. Integrals in the domain are computed by

a 7-point quadrature rule in each triangle and line integrals with a 6-point

5The experiments are perfomed in MATLAB and are based on the library LehrFEM
developed at ETHZ.
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3.5 Numerical experiments

(a) (b)

Figure 3.2: Plot of the solution u of the state problem in the computational do-
main Ω for the (a) first and the (b) second numerical experiment.

Gauss quadrature on each segment.

The first numerical experiment is constructed starting from the solu-

tion

u(x, y) = cos(x) cos(y)

and setting f and g accordingly. The computational domain is a disc with

radius
√
π (see Figure 3.2a). The predicted quadratic and linear convergence

with respect to the meshwidth h for formulas (3.8) and (3.23), respectively,

are evident in Figure 3.3a.

The second experiment is performed on a triangle with corners located

at (−π,−π), (π,−π), and (0, π) (see Figure 3.2b). The source function and

the boundary data are chosen as follows:

f(x, y) = x2 − y2 , g(x, y) = x+ y .

Again, the rates of convergence predicted in Theorems 7 and 8 are confirmed

by the experiment, see Figure 3.3b.
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Figure 3.3: Convergence study for the (a) first and the (b) second numerical ex-
periment. Obviously, Formula (3.8) is better suited for a finite ele-
ment approximation of the Eulerian derivative dJ (Ω;V) than Formula
(3.23).

The third numerical experiment is conducted on a domain which does

not guarantee H2-regularity of the state problem (3.4), see Figure 3.4a.

The source and the boundary functions, in polar coordinates, are f(x) =

r2/3 cos(2ϕ/3) and g(x) = 0, respectively. As expected, the convergence

rates deteriorate to fractional values due to the presence of a re-entrant

corner which, with an interior angle of size 2π · 60/61, affects the regularity

of the functions u and p.

In the fourth numerical experiment, we investigate the Neumann

problem and the accuracy of Formulas (3.9) and (3.25), for which we expect

results similar to the Dirichlet case. We consider the solution

u(x, y) = cos(x− 1) cos(y + 1)

and we choose f and g accordingly. The computational domain is a disc

with radius
√
π (see Figure 3.5, left). Surprisingly, we observe that Formula

(3.25) performs as well as Formula (3.9), showing quadratic convergence in

the meshwidth h, too (see Figure 3.6, left).

This surprising observation is not confined to smooth domains, as will be
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Figure 3.4: (a) Plot of the solution u of the state problem in the computational
domain Ω for the third numerical experiment, and (b) corresponding
convergence study. Due to the poor regularity of the functions u and
p, the convergence rate of dJ (Ω, uh, ph;V)Vol and dJ (Ω, uh, ph;V)Bdry

deteriorate.

(a) (b)

Figure 3.5: Plot of the solution u of the state problem in the computational do-
main Ω for the (a) fourth and the (b) fifth numerical experiment.
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Figure 3.6: Convergence study for the (a) fourth and (b) fifth numerical exper-
iment. The quadratic convergence of dJ (Ω, uh, ph;V)Bdry is unex-
pected.

demonstrated by our fifth numerical experiment. It investigates the

convergence for the Neumann case on a triangle with corners located at

(−π,−π), (π,−π), and (0, π) (see Figure 3.5, right). The source function

and the boundary data are set as follows:

f(x, y) = cos(x+ 1) cos(y − 1) , g(x, y) = cos(x− 1) cos(y + 1) .

Again, we observe that Formula (3.25), corrected according to Remark 8,

converges quadratically in the meshwith h (see Figure 3.6, right).

Nevertheless, the sixth numerical experiment, which studies the Neu-

mann boundary value problem again, shows that Formula (3.9) is superior

to (3.25) in terms of accuracy and convergence in case of domains which do

not guarantee H2-regularity, see Figure 3.7. The source and the boundary

functions are chosen as in the third numerical experiment.

Finally, all experiments are repeated considering the operator norm on the

subspace of multivariate polynomials of degree two instead of three. The

measured errors well agree with those reported above, see Figure 3.8. Thus,

the arbitrary choice of computing the operator norm on the finite dimen-
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Figure 3.7: (a) Plot of the solution u of the state problem in the computational
domain Ω for the sixth numerical experiment, and (b) corresponding
convergence study. Due to the poor regularity of the functions u and
p, the convergence rate of dJ (Ω, uh, ph;V)Vol and dJ (Ω, uh, ph;V)Bdry

deteriorate.

sional subspace of multivariate polynomial vector fields of degree three does

not seem to compromise our observations.
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Figure 3.8: Convergence study for the (a) first, (b) second , (c) third, (d) fourth,
(e) fifth and (f) sixth numerical experiment, when considering the
operator norm on the subspace of multivariate polynomials of degree
two. The results agree with those obtained with cubic polynomials.
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scattering problems

4.1 Introduction

During the last decades, plasmonic nano particles attracted interests due

to their localized field enhancement properties. The localized field can be

exploited, e.g. for amplifying Raman and fluorescence scattering [37, 53,

68, 72]. The effect of the shape and the size of nano particles on the perfor-

mance of the device has been studied thoroughly in literature [25, 41, 54].

Most simulations investigate only the impact of a limited number of geo-

metric parameters.

Any change of shape can have a significant effect on the behavior of the

structure. Since fabrication-based perturbations are inevitable, it is impor-

tant to study the sensitivity of the performance of a structure with respect

to small shape variations.

Shape sensitivity analysis studies how sensitive the output functional J is

with respect to variations of the domain shape. In electromagnetic scat-

tering problems, the shape functional measures a physical quantity of the

problem. It is important that the quantity has some practical meaning and

can be measured. For example in most of optical experiments the field value

at far distances is measured through a lens. So, we mostly use the far-field

functional provided in Chapter 2 as the PDE constrained shape functional

in this chapter.

The shape sensitivity is measured through the evaluation of the shape gra-

dient of J . In the previous chapter, we investigated the derivation of shape

gradients for scattering problems. In this chapter, we probe the shape gra-

dient using perturbations with local support over the surface of the scatterer

to see the effect of local changes of the shape on the output functional. Sec-
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ond order B-splines are used as probing perturbation fields.

To get a representation of the shape sensitivity over the surface of the scat-

terer, we use the Hadamard-Zolesio structure theorem to define a represen-

tative function g based on local shape gradients. We explicitly provide g for

different nano particles with different shape functionals. The gold or silver

nano particles are located either in free space or on a substrate.

4.2 Numerical Approximation of the Shape

Gradient

To derive dJ , we need to solve the variational problems (3.35a) and (3.36)

numerically. Similar to Chapter 2, we use NGSolve as a finite element

solver to find solutions of state and adjoint problems. In Section 4.4, we

discuss thoroughly about the procedure of using NGSolve to derive the

shape sensitivity.

Another issue that we need to address is the definition of the corresponding

vector field V. Our aim is to examine the sensitivity of the shape functional

with respect to local perturbations. Therefore, we consider only finitely

many vector fields Vn = {Vi}ni=1 (n = dim Vn) with compact support over

the surface of the scatterer ∂Ωs as probing perturbation functions1

Vi = Bi ˆ̀
i, (4.1)

where Bi is a tensor product B-spline of degree 2 centered on ri ∈ Ω. By
ˆ̀
i, we denote the direction of Vi (ˆ̀

i ∈ R3 and |ˆ̀i| = 1). Tensor product

B-splines are defined within boxes which are aligned with Cartesian coor-

dinates. Based on the Hadamard structure theorem for smooth surfaces,

dJ is uniquely determined by the normal component of V on ∂Ωs (see [21,

Ch. 9]). Therefore, we center B-splines on ri ∈ ∂Ωs, and set ˆ̀
i to be in the

direction normal to ∂Ωs at the point ri.

To simplify implementations, we locate ri on vertices of a mesh which

is independent of the FEM mesh. The B-spline mesh covers ∂Ωs and is

adapted to the shape of the surface. The size of the B-spline mesh must

1We assume that V = 0 on the outer boundary ∂Ω.
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Figure 4.1: Directions of B-splines assigned to r1 and r2 located on an edge and
on a corner, respectively.

be fine enough to model surface perturbations properly. In our simulations,

we observe that max(hB) = 3 max(hFEM) is a good choice (hB and hFEM

are element sizes of the B-spline mesh and the FEM mesh, respectively).

In Section 4.5, we give detailed plots of B-spline meshes adapted to each

structure.

To keep sensitivity probing local, one must choose the support of B-splines

∆SBi as small as possible. However, to be able to evaluate dJ accurately,

∆SBi must be big enough to comprise a sufficient number of elements of

FEM mesh. This means that ∆SBi is linked to the mesh width. According

to our experience, we found that ∆SBi = 4 hFEM (ri) is a good choice.

Another issue concerning B-spline mesh is the definition of ˆ̀
i along edges

or on corners. There are several ways to resolve this problem. One option

is to avoid corners and edges, i.e. to arrange the B-spline mesh such that

no vertex is located directly on the edge. Another option is to consider

the direction of ˆ̀
i as an average of normal vectors over the faces sharing

the corresponding edge or corner. Our solution is a combination of two

previous approaches. As shown in Figure 4.1, we assign more than one B-

Spline {Bi ˆ̀j
i}
q
j=1 at vertices which are located on edges or corners. The

number of B-splines q is equal to the number of faces that share the given

edge or corner. By ˆ̀j
i , we denote the normal direction on the j-th face

sharing the corresponding edge or corner.
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4.3 Function Representative of the Shape

Gradient

The derived values for shape gradients based on probing perturbations (4.1)

are defined locally on the surface of the scatterer. To obtain a representative

function g(∂Ωs) of dJ on the boundary ∂Ωs, we use the Hadamard-Zolesio

structure theorem [21, Ch. 9, Thm 3.6] which, for smooth ∂Ωs, guarantees

the existence of a function g : ∂Ωs → R such that∫
∂Ωs

(V · n̂) g ds(r) = dJ (Ω;V) ∀V ∈ C1(R3,R3). (4.2)

If the output functional measures the energy flux, then the dimension of g

is [ J
m4 ]. To compute g numerically, we discretize the function space of g and

define gh ∈ Yh as follows

gh(r) =

m∑
j=1

g̃j bj(r), (4.3)

where g̃j ∈ R, and bj ∈ Yh are continuous basis functions of Yh ⊂ H1(∂Ωs),

j = 1, . . . ,m, with m = dim Yh.

Using (4.2) and (4.3), we have

Ã g = f , (4.4)

where g = (g̃1, · · · , g̃m)
>

and f = (dJ (D;V1), · · · , dJ (D;Vn))
>

. By Ã we

denote a n×m matrix as follows

Ãij =

∫
∂Ωs

(Vi · n̂) bj ds(r). (4.5)

In order to be able to find gh, we need Yh to be large enough, i.e. m > n.

Under this assumption, the system of linear equations in (4.4) is underde-

termined. Using the least squares method, we define

X̃ := argmin
x∈Rm

‖Ãx− f‖Rn . (4.6)
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We must mention that X̃ is a set which can contain more than one element.

To obtain a unique result, we use the H1-regularization and define g as an

element of X̃ which has the minimum norm

g = argmin
x ∈ X̃

‖x‖H, (4.7)

where ‖x‖H = x> H x. By H we denote a m × m matrix with Hij =∫
∂Ωs
∇tui · ∇tbj (∇t is the tangential gradient on the surface ∂Ωs).

Remark 10. The choice of H1 seminorm in (4.7) is arbitrary, however, we

experienced that employing L2-regularization creates artifacts. Employing

higher order regularizations might be too strong constraint.

4.4 NGSolve implementation

Simulations in this chapter are based on the NGSolve library. We are mainly

interested in the shape functionals that measure either the far-field or the

near-field pattern of gold or silver nano particles. Here, we explain the

procedure for the far-field functional which is more complex than the near-

field.

In experimental setups, a lens measures the power flux over Ωlens which is

proportional to the following functional

J (E,Ω) =

∫
Ωlens

|E∞(r̂)|2 dr̂ (r →∞) . (4.8)

where Ωlens is the area of the objective with the opening angle of α = 74◦

and centered on the z-axis. Based on Chapter 2, the far-field pattern E∞ in

the direction ˆ̀ at point r̂ can be obtained in terms of the Green’s function

G∞(r̂, r, ˆ̀)

E∞ · ˆ̀=

∫
Ωf

(∇×E(r)) · ∇ ×
(

Ψ(r)G∞(r̂, r, ˆ̀)
)

(4.9)

− (∇r ×G∞(r̂, r, ˆ̀)) · ∇r × (Ψ(r)E(r)) dr,

where E is the electric field, Ωf is a subregion between two closed paths Γi
and Γo around the scatterer (see Figure 3.1), and Ψ(r) is a cutoff function
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such that

Ψ(r)|Γi ≡ 1 , and Ψ(r)|Γ0
≡ 0. (4.10)

Since in our numerical simulations we do not perform convergence analysis

(see Section 3.3.2), we consider the simple cutoff function in (2.72).

To obtain dJ , we first need to solve state and adjoint problems. The

procedure to solve the state problem is already explained in Section 2.5.

The adjoint P is the solution to the following variational problem

∫
Ω

∇×P · ∇ ×W − k2(r) P ·W dr−
∫
∂Ωs

DtN∗[P] ·W ds(r)

=

∫
Ωlens

E∞ ·
〈
∂E∞
∂E

,W

〉
Ωf

dr ∀W ∈ H(curl,Ω)

(4.11)

Similar to the state problem, we use PML to truncate the solution domain of

the adjoint problem (see Section 2.5). We also use the same finite element

space Xh ∈ H(curl,Ω) with the basis {bj}Nj=1 as in Section 2.5 to solve

(4.11).

Finally, Equation (4.11) in terms of (2.77) will be

a0(W,P) = `adj(W) , (4.12)

where `adj : H(curl,Ω) 7→ C is the linear form

`adj(W) =

∫
Ωlens

`d(E, r̂) · `d(W, r̂) dr̂ , (4.13)

and by `d : H(curl,Ω)× R3 7→ C, we denote

`d(u, r̂),=

∫
Ωf

∇× u(r) · ∇ ×
(

Ψ(r)G∞(r̂, r, ˆ̀)
)

(4.14)

−∇×G∞(r̂, r, ˆ̀) · ∇ × (Ψ(r)u(r)) dr.

108



4.4 NGSolve implementation

Based on (4.12), we need to assemble the stiffness matrix of a0 with

respect to the basis {bj}Nj=1 just once and use it to solve both state and

adjoint problems.

To calculate (4.13), we use Gauss-Legendre quadrature rule with quadrature

points r̂i, i = 1, . . . ,M (M is the number of quadrature points). Then, we

discretize `d at each quadrature point with respect to the bases {bj}Nj=1.

To obtain the vector f id = (`d(bj , r̂i))
N
j=1, we first need to rewrite (4.14)

in a more suitable format which can easily be evaluated using NGSolve

integrators

`d = ad1(Ψ G∞,W) − ad2(G∞,W) − ad3(∇Ψ×∇×G∞,W) , (4.15)

where ad1 , ad2 , ad3 : H(curl,Ω)×H(curl,Ω) 7→ C are

ad1(u1,u2) =

∫
Ω

αd(r)∇× u1 · ∇ × u2 dr, (4.16)

ad2(u1,u2) =

∫
Ω

αd(r) Ψ(r)∇× u1 · ∇ × u2 dr,

ad3(u1,u2) =

∫
Ω

αd(r) u1 · u2 dr ,

and αd(r) =

{
1 r ∈ Ωf

0 r ∈ Ω/Ωf
.

Then, we can write the vector f id as follows

f id = Ãd1 gid1 − Ãd2 gid2 − Ãd3 gid3 , (4.17)

where Ãd1 , Ãd2 , and Ãd3 are stiffness matrices of bilinear forms ad1 , ad2 ,

and ad3 , respectively 2. By gid1 , gid2 , and gid3 we denote coefficient vectors of

Ψ(r) G∞(r, r̂i, ˆ̀), G∞(r, r̂i, ˆ̀), and ∇Ψ(r)×∇×G∞(r, r̂i, ˆ̀), respectively.

Since matrices Ãd1 , Ãd2 , and Ãd3 are independent of quadrature points r̂i,

we need to assemble them just once and use them to calculate f id for all

integration points.

The final form of the right hand side vector for adjoint problem is obtained

2All stiffness matrices and coefficient vectors in this chapter are with respect to the
basis {bj}Nj=1.

109



4 Sensitivity analysis for scattering problems

as follows

fadj =

M∑
i=1

wi
(
gTe f id

)
f id , (4.18)

where {wi}Mi=1 are the integration-rule weights and M is the number of

quadrature points. By ge we denote the coefficient vector of E which is

calculated by solving the state problem.

Here is a part of our code to assemble Ãd1 , Ãd2 , and Ãd3

/*Assembling the stiffness matrix of bilinear

form a_d1.

The bilinear form integrator bfi_a_d1 is

CurlCurlEdgeIntegrator

with piecewise constant coefficient "alpha"

which is equal

to one inside the far−field integration region

and zero elsewhere.*/

BilinearFormIntegrator *bfi_a_d1;

bfi_a_d1=new

CurlCurlEdgeIntegrator <3>(alpha);

a_d1 -> AddIntegrator (bfi_a_d1);

a_d1 -> Assemble(lh);

/*Assembling the stiffness matrix of bilinear

form a_d2.

The bilinear form integrator bfi_a_d2 is

CurlCurlEdgeIntegrator

with piecewise constant coefficient "Psi_alpha"

which is equal

to "\Psi" inside the far−field integration region

and zero elsewhere.*/

BilinearFormIntegrator *bfi_a_d2;

bfi_a_d2=new

CurlCurlEdgeIntegrator <3>( Psi_alpha);

a_d2 -> AddIntegrator (bfi_a_d2);

a_d2 -> Assemble(lh);

110



4.4 NGSolve implementation

/*Assembling the stiffness matrix of bilinear

form a_d3.

The bilinear form integrator bfi_a_d3 is

MassEdgeIntegrator

with piecewise constant coefficient "alpha"

which is equal

to one inside the far−field integration region

and zero elsewhere.*/

BilinearFormIntegrator *bfi_a_d3;

bfi_a_d3=new MassEdgeIntegrator <3>(alpha);

a_d3 -> AddIntegrator (bfi_a_d3);

a_d3 -> Assemble(lh);

Based on Section 3.3.2, the shape gradient for wave scattering problems

is

dJ = Re as(E , P) , (4.19)

where

as(u1 , u2) =

∫
Ω

∇× u1 · (DV + DV>) ∇× u2 + u1 · (DV + DV>) u2

−∇ · V (∇× u1 · ∇ × u2 + k2(r) u1 · u2)dr. (4.20)

So, after finite element discretization we have

dJ h = Re {gTe Ãs gp} , (4.21)

where gp is the coefficient vector of P which is obtained by solving the ad-

joint problem, and Ãs is the stiffness matrix of as.
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4.5 Numerical results

4.5.1 Nano antenna consisting two gold spheres

In the first experiment, we investigate a gold nano antenna consisting of

two identical spherical particles, shp-1 and sph-2, located in free space (see

Figure 4.2a). The surrounding domain is air with refractive index n1 = 1.

Similar to Chapter 2, we use the measured data provided by [39] to obtain

the optical constants of gold at a given frequency.

(a)
(b)

Figure 4.2: (a) Nano antenna consisting of two gold spheres with dimensions
(ra, d) = (50, 23)nm. (b) The absolute value of the electric field dis-
tribution at λ = 640nm.

The radii of spheres and the gap of the antenna are 50nm and 23nm,

respectively. In this experiment, we investigate the sensitivity of a functional

that measures the energy in the near-field

J =

∫
Ωm

|Es|2dr, (4.22)

where Es is the scattered field. The procedure for calculating shape gradi-

ents for the near-field functional is similar to the one for the far-field. Here,

Ωm is an annulus around the antenna with ri = 140nm and ro = 180nm as
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4.5 Numerical results

Figure 4.3: B-spline mesh over the upper arm of the nano antenna consisting of
two spherical gold particles

radii of the inner and the outer spheres centered at the middle point of the

gap area.

Figure 4.2b shows the absolute value of the electric field distribution at

the wavelength λ = 640nm with incident field Ei = exp(jk0x) ẑ (where k0

is the wavenumber of free space and ẑ is the unit vector in z direction). The

finite element method used to solve Maxwell’s equations employs 653296

degrees of freedom (DoFs). Since the structure is symmetric, we investigate

the sensitivity only over sph-1. The surface of sph-1 is covered by a B-spline

mesh as shown in Figure 4.3. 1427 B-splines are located on vertices of the

mesh. To derive the representative function g, we use a finite element mesh

with 1971 DoFs over the surafece of sph-1.

Figures 4.4a and 4.4b show the relative sensitivity
∣∣ g
J
∣∣ over the surface of

sph-1 from bottom view and top view, respectively. As it is obvious from

Figure 4.4, the bottom part of the sphere, which is in the gap area of the

antenna, is more sensitive than the upper part. This means that perturba-

tions in the gap area affect significantly the near field.
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(a) bottom view (b) top view

Figure 4.4: (a) The relative sensitivity representative
∣∣ g
J

∣∣ over the upper arm of
the antenna consisting of two spherical gold nano particles. The out-
put functional measures the energy flux of the near-field data within
an annulus around the antenna.

4.5.2 Nano antenna consisting two rectangular blocks in
free space

In the second experiment, we repeat similar simulations for an antenna

made of two rectangular gold blocks, brick-1 and brick-2 (see Figure 4.5a).

In our simulations we consider λ = 770nm, and Ei = exp(ik0(sin(π3 )x −
cos(π3 )z)) ŷ (where ŷ is the unit vector in the direction y). The finite element

method used to solve Maxwell’s equations employs 604595 DoFs. Similar

to the previous example, we perform the sensitivity analysis only on one of

the arms of the antenna brick-1.

The B-spline mesh (see Figure 4.6) exploits 1166 B-splines over the surface

of brick-1, and the finite element mesh used to discretize g has 1811 DoFs.

We solved the problem for both near-field and far-field functionals. The

near-field integration region Ωm in Equation (4.22) is shown as a region in

light blue in Figure 4.5a. The far-field integration region Ωf is the domain

between two spheres with ri = 140nm and ro = 180nm as radii of the

inner and the outer spheres, respectively. Figure 4.7 shows
∣∣ g
J
∣∣ for both

near-field and far-field functionals over the brick-1. Similar to the antenna
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(a)

(b)

Figure 4.5: (a) Gold nano antenna consisting of two brown rectangular-blocks
with dimensions (a, b, c, d) = (98.5, 40, 40, 25)nm. The blue domain
in the gap area Ωm shows the near-field integration region. (b) The
absolute value of the electric field distribution at λ = 640nm.

Figure 4.6: B-spline mesh over the right arm of the nano antenna consisting of
two rectangular blocks.

consisting of two spheres, both near-field and far-field functionals are the

most sensitive to changes in the left side of the brick-1 where is closer to

the gap. An interesting observation is that the far-field functional, unlike

the near-field one, is less sensitive to perturbations of edges and corners.

This means that despite the high field localization around corners, they do

not have significant effect on the far-field pattern, whereas the near-field is

highly affected by their shape.
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(a) (b)

Figure 4.7: The relative sensitivity representative
∣∣ g
J

∣∣ of (a) near-field (b) far-field
functionals over the right arm of the gold nano antenna consisting of
two rectangular blocks.

4.5.3 Nano antenna consisting two rectangular blocks over
a substrate

To see the effect of a substrate on g, we mount the antenna consisting of two

rectangular blocks on a glass substrate located at z < 0 with the refractive

index n2 = 1.5 (see Figure 4.8a). The size of the antenna, the wavelength,

and the incident field are the same as those in the previous experiment.

Let Γs be the face of brick-1 which touches the substrate. Probing functions

located on Γs perturb the surface of the substrate as well. This means that

the part of the substrate surface which is touching the antenna is no longer

flat after deformations.

The sensitivity representative function over the surface of brick-1 for the

far-field functional is shown in Figure 4.8b. As one can see, the presence

of the substrate causes g to increase on Γs. In other words, the output

functional becomes more sensitive to the shape of Γs.
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(a) (b)

Figure 4.8: (a) Gold nano antenna consisting of two rectangular particles with
dimensions (a, b, c, d) = (98.5, 40, 40, 25)nm on a glass substrate with
refractive index n2 = 1.5. (b) The relative sensitivity representative∣∣ g
J

∣∣ over brick-1. The output functional measures the energy flux of
the far-field.

4.5.4 Nano antenna consisting two rectangular blocks with
displaces arms

Now, we displace brick-2 by ∆x = 20nm in the x̂ direction (see Figure 4.9a).

The size of the antenna, the incident field, the working frequency, the out-

put functional, and the material of the substrate are the same as those in

the previous experiment. As shown in Figure 4.9b, the relative sensitivity

profile is also displaced in the direction x̂. Which means the position of the

antenna gap and the substrate are key elements in forming the sensitivity

representative for nano antennas.

4.5.5 Nano antenna consisting two rectangular blocks with
gap along the longer edge

For further experiments, we change the direction of the gap and put it along

the longer edge of bricks (see Figure 4.10). Dimensions, excitation, B-spline
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(a) (b)

Figure 4.9: (a) Gold nano antenna, consisting of two rectangular blocks, with
left arm displaced in x̂ direction. The dimensions are (a, b, c, d) =
(98.5, 40, 40, 25)nm, and ∆x = 20nm. The substrate material is glass
with refractive index n2 = 1.5. (b) The relative sensitivity represen-
tative

∣∣ g
J

∣∣ over brick-1. The output functional measures the energy
flux of the far-field.

mesh and mesh used for discretizing g are similar to those in previous ex-

periments. The finite element mesh used to discretize the state and the

adjoint problem has 631395 DoFs.

Figure 4.10b shows the sensitivity profile over the surface of brick-1. Simi-

lar to previous results the face which is closer to the gap area is the most

sensitive part of the antenna.

4.5.6 Groove antenna

We now repeat the previous experiment by making a short circuit between

two arms of the antenna and generating a V-groove nano-particle (see Figure

4.11a)[62]. The dimension of the antenna is (a, b, c) = (50, 150, 10)nm and

(d1, d2, d3) = (6, 6, 6)nm. The material of the nano-particle is silver, and the

excitation wavelength is λ = 500nm. The optical constants of the silver at

the given frequency is obtained using the data provided by [39]. The nano-

particle is mounted on a glass substrate with n2 = 1.5. The incoming wave
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(a) (b)

Figure 4.10: (a) Gold nano antenna, consisting of two rectangular blocks. The
gap area is along the longer edge a The dimensions are (a, b, c, d) =
(98.5, 40, 40, 25)nm. The substrate material is glass with refractive
index n2 = 1.5. (b) The relative sensitivity representative

∣∣ g
J

∣∣ over
brick-1. The output functional measures the energy flux of the far-
field.

is similar to the incident field in previous experiments. The finite element

method used to solve Maxwell’s equations employs 901860 DoFs.

The experiment investigates the sensitivity of far-field functional (4.8).

The B-spline mesh consists of 1225 B-splines over the surface of the groove

∂Ωs. To discretize g over ∂Ωs, we exploit a finite element discretization with

3862 DoFs. Figure 4.11b shows the normalized sensitivity profile over the

surface of the groove. As we were expecting, the area around the channel is

the most sensitive part. Based on [62], the V-groove behaves like a waveg-

uide based on Channel Plasmon Polariton (CPP) effect. The end parts of

the channel have less effect on the far-field pattern.

4.5.7 Silver brick

To see the effect of the channel on the sensitivity profile of the V-groove, we

remove the channel and simulate the single brick (see Figure 4.12a). The

dimensions and the excitation of the brick are the same as the V-groove

waveguide. The finite element mesh to solve the state and the adjoint
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(a) (b)

Figure 4.11: (a) The silver V-groove waveguide. The dimensions are (a, b, c) =
(50, 150, 10)nm and (d1, d2, d3) = (6, 6, 6)nm. The substrate mate-
rial is glass with refractive index n2 = 1.5. (b) The relative sensi-
tivity representative

∣∣ g
J

∣∣ over the V-groove. The output functional
measures the energy flux of the far-field.

problems has 469405 DoFs. The B-spline mesh consists of 1116 B-splines

and the finite element mesh to discretize g over the surface of the brick

has 3646 DoFs. As depicted in Figure 4.12b, the far-field pattern is mostly

sensitive to the central part of the brick. In the V-groove experiment, the

sensitivity representative g is extended along a greater distance over the

upper face of the brick. This can be due to the waveguiding charactristic of

the channel.

The effect of the finite element mesh on the sensitivity pattern is investi-

gated in the next experiment. We repeat the previous experiment using two

finer meshes with 886890 and 1163595 DoFs to discretize the state and the

adjoint problems. We keep all the other settings the same as in th previous

experiment. As shown in Figure 4.13, the sensitivity representative is not

affected significantly by the mesh resolution.
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(a) (b)

Figure 4.12: (a) The silver brick. The dimensions are (a, b, c) = (50, 150, 10)nm.
The substrate material is glass with refractive index n2 = 1.5. (b)
The relative sensitivity representative

∣∣ g
J

∣∣ over the silver brick. The
output functional measures the energy flux of the far-field.

The effect of the B-spline mesh resolution on g is investigated in the last

experiment. We increase the number of B-splines to 2126, and use the finite

element mesh with 469405 DoFs to solve state and adjoint problems. Based

on the result shown in Figure 4.14, the sensitivity pattern remains almost

the same when increasing the number of B-splines.
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(a) (b)

Figure 4.13: The relative sensitivity representative
∣∣ g
J

∣∣ over the silver brick ob-
tained using meshes with (a)886890, and (b)1163595 DoFs. The
number of B-splines used to investigate the sensitivity is 1116. The
output functional measures the energy flux of the far-field.

Figure 4.14: The relative sensitivity representative
∣∣ g
J

∣∣ over the silver brick. The
number of B-splines used to investigate the sensitivity is 2126. The
finite element mesh used to solve state and adjoint problems has
469405 DoFs. The output functional measures the energy flux of
far-field.
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4.6 Conclusion

In this chapter we used the shape gradient formula obtained in Chapter 3 to

find a sensitivity representative function over the surface of the structure.

B-Splines were used to deform the object locally.

Several numerical experiments were lunched to investigate the shape sensi-

tivity of different plasmonic nano antennas. Based on the obtained results,

the gap area is the most sensitive part, which means small perturbations

introduced in this region affects the performance of the nano-particle sig-

nificantly.

Shaping edges and corners is one of the main challenges during fabrication

process. However, our results showed that the far-field functional is not

highly sensitive to the shape of corners and edges.

The presence of a substrate is also another issue that can affect the sensi-

tivity of the particle. We also showed that the far-field pattern gets more

sensitive to perturbations of the face touching the substrate.
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5.1 Summary

In this dissertation, we have investigated the sensitivity of the performance

of plasmonic nano-particles with respect to fabrication-based perturbations.

The Maxwell equations were solved numerically using NGSolve, a C++ li-

brary based on finite elements method.

The performance of optical nano-particles is usually measured by field values

at far distances. Near-field to far-field mapping is a technique to indirectly

evaluate the values of electromagnetic fields at far distances. For objects

located in free space there is a closed formulation. The procedure gets more

challenging for layered media and had remained unsolved for a long time.

In Chapter 2, we presented a rigorous asymptotic study for the Green’s

function in semi-infinite half space, and we derived a closed form far-field

mapping technique. The mapping can be expressed either as a volume in-

tegration or as a boundary integration. It is advisable to use the volume

integration when the finite element method is used. Our numerical experi-

ments also show a very good agreement with other methods.

To investigate the sensitivity of the far-filed or of any other output func-

tional with respect to the shape of the structure, one needs to do shape

sensitivity analysis. Shape calculus is a technique to obtain the shape gra-

dient of an output functional with respect to the shape of the domain. The

shape gradient of shape differentiable PDE constrained shape functionals

can be expressed either as an integration over the volume or as an integra-

tion on the boundary. In Chapter 3, we derived both formulations for scalar

second order elliptic problems with Dirichlet and Neumann boundary con-

ditions. Theorems in Section 3.4 and numerical experiments in Section 3.5

confirm that it is advisable to evaluate the shape gradient through volume

integrals, when the finite element method is used. We also investigated the
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derivation of the shape gradient for 3D scattering problems. Since electro-

magnetic fields are vectors, the procedure gets rather complicated. Given

that the solution of the state problem is complex valued whereas the shape

functional is real valued, we used the generalized Lagrangian approach to

find the shape gradient. Covariant transformations were used to map from

the reference domain to the perturbed domain. Based on theorem 9, the

formulation based on volume integrals for Maxwell problem also enjoys su-

perb convergence, i.e. the error decays as h2. We investigated the proof by

extensive employment of duality technique.

In Chapter 4, we used shape gradients obtained for Maxwell’s equations

to perform sensitivity analysis. To perturb the domain locally, we used

tensor product B-splines. In the end, we derived a sensitivity represen-

tative function over the surface of the scatterer based on local sensitivity

measurements. Various numerical experiments were conducted to investi-

gate the sensitivity of different nano particles located in free-space or on

the substrate. Numerical experiments, showed that the far-field pattern

of nano-antennas is highly sensitive to the gap area. The sensitivity profile

changes significantly if we displace the gap. Another interesting observation

was that the presence of the substrate in the structure affects the sensitivity

profile. The far-field pattern gets more sensitive to the face of the antenna

touching the substrate. Based on our results, perturbations on corners or

along edges do not change far-field significantly.

5.2 Outlook

The research carried out under the scope of this dissertation can be contin-

ued in several directions. Some ideas are described here

• Conducting numerical experiments based on Maxwell’s equations to

compare convergence rates of volume-based and boundary-based shape

gradients. We expect that the results of numerical experiments also

verify the faster convergence of the volume-based approach.

• Performing shape optimizations for 3D electromagnetic scattering

problems based on shape gradients obtained in Chapter 3. To achieve

a better performance for optical components, a concrete 3D optimiza-

tion is advantageous.
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• It will be interesting to insert the shape gradients obtained in Chapter

3 into the shape optimization algorithm explained in [33].
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[3] Allaire and Grégoire. Conception optimale de structures. Springer-

Verlag, 2007.

[4] A. Alparslan and C. Hafner. Layered geometry green’s functions in the

multiple multipole program. J. Comput. Theor. Nanosci., 8(8):1600–8,

2011.

[5] E. A. Ash and G. Nichols. Super-resolution aperture scanning micro-

scope. Nature, 237:510–512, 1972.

[6] R. Becker and R. Rannacher. An optimal control approach to a pos-

teriori error estimation in finite element methods. Acta Numerica,

10:1–102, 2001.

[7] N. Bleistein. Mathematical methods for wave phenomena. Academic

Press, 1984.

[8] D. Bohm and D. Pines. A collective description of electron interactions.

i. magnetic interactions. Physical Review, 82(5):625, 1951.

[9] D. Bohm and D. Pines. A collective description of electron interactions:

Ii. collective vs. individual particle aspects of the interactions. Physical

Review, 85(2):338, 1952.

[10] D. Bohm and D. Pines. A collective description of electron interactions:

Iii. coulomb interactions in a degenerate electron gas. Physical Review,

92(3):609, 1953.

135



Bibliography

[11] D. Braess. Finite elements. Theory, fast solvers, and applications in

elasticity theory. Cambridge University Press, third edition, 2007.

[12] D. Bucur and G. Buttazzo. Variational methods in shape optimization
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