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Abstract

The Universal Serial Bus (USB) specification is a popular standard for
communication between computers and their peripherals. Today, a
variety of devices support the USB interface, ranging from mass storage
to personal healthcare products. Although these devices may contain
sensitive information, they are often security-agnostic (e.g., they send
data to the host in plaintext). The commercial nature of these devices
often implies that modifying them (or their accompanying software) is
impractical.

In this thesis, we investigate the security of the USB communication
stack. We discuss the effects of the compromise of hardware or soft-
ware components in the stack and show that various attacks (e.g. im-
personation of USB devices) are possible even if an adversary does not
control the host OS. To prevent these attacks, we propose a solution
consisting of two parts: a USB device access control module and a se-
cure USB bridge. The USB device access control module uses security
mechanisms existing in modern operating systems to prevent access
from unauthorized or altered software. The secure USB bridge acts as
a proxy between a USB device and the host, providing a secure chan-
nel between them. Our design is compatible with existing commodity
products without further modification. We show the feasibility of re-
alizing our solution through a prototype implementation of the secure
USB bridge and evaluate its performance.
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Chapter 1

Introduction

The Universal Serial Bus (USB) specification has been a popular standard
for communication between computers and peripherals. Today, a large num-
ber of devices support the USB interface. The industry is now shipping
more than 3 billion USB devices a year [1], ranging from keyboards, mice,
to flash-based storage drives, smart phones, and healthcare devices. With
the proliferation of USB, users are storing more data in USB devices, which
may include sensitive data such as personal medical information. However,
some USB products are designed without security considerations. For ex-
ample, we have discovered a commercial blood pressure meter which sends
out the measurements of patients using an unencrypted protocol [2]. Addi-
tionally, the devices and their accompanying software are often provided by
manufacturers as-is and are therefore impractical to modify.

To interact with USB devices, users typically use software applications, pro-
vided either by their manufacturers or the operating system. Unfortunately,
security-agnostic USB products expose their communication with comput-
ers to potential attacks. For example, in [3], implementation flaws were dis-
covered in an automated external defibrillator (AED) with a USB program-
ming interface and its accompanying software, allowing the AED firmware
to be maliciously reprogrammed by an adversary. In addition, the lack of
message-level security allows an adversary in the communication channel
to intercept and insert data, posing a threat to both the USB device and
the software application. Hardware adversaries such as USB sniffers and
fuzzers [4] exist to passively eavesdrop or actively modify transmitted data.
Software adversaries may also interfere with the communication by exploit-
ing vulnerabilities of the underlying operating system.

Efforts in securing USB communication have mostly been focused on USB
mass storage devices such as USB flash memory or hard disk drives by
providing data encryption and user authentication [5, 6]. On the other
hand, any other USB device which potentially exchanges data with software
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should also provide security guarantees. Additionally, securing software
applications on the computer from USB-related attacks is also an important
issue.

This research aims at investigating threats surrounding general USB com-
munication, both to the device and its application. We explore possible
attack vectors in the USB communication environment to identify adversary
models and their capabilities. Our objective is to provide communication
security for a generic USB device and its software, while also specifying and
enforcing software policies on the computer to prevent malicious software
from interfering with the communication.

Our solution consists of two parts:

• A USB software access control module, which uses the existing tech-
nologies for discretionary/mandatory access control and integrity ver-
ification in the OS to allow only authorized and unaltered software to
access the USB device.

• A secure USB bridge, which acts as a proxy for a generic USB device
to communicate with the host computer. The bridge creates a secure
channel between the device and the host such that their communica-
tion provides message integrity and confidentiality.

This solution is transparent to both the USB device and its application, and
is suitable for a generic, security-agnostic USB product. Most importantly,
no modification is required on the USB device or its application.

Based on our design, we implement a prototype secure USB bridge and a
Linux kernel module to serve as a proof-of-concept realization of secured
USB communication. We measured the performance of our implementa-
tion with commodity USB devices. When encrypting communication (for
message confidentiality) using RC4, our prototype bridge decreases the per-
formance by 82.5% for file reading and 74.2% for file writing operations;
when the bridge uses AES encryption, the performance decreases by 90.8%
and 80.7% respectively. Based on a series of benchmarks, we evaluate the
feasibility of our solution and discuss our findings.

This thesis begins by highlighting some background information on the USB
specification and the Linux USB software stack in Chapter 2. In Chapter 3
we investigate related work to secure a communication between USB de-
vices and host computers. We present our problem statement in Chapter
4. Chapter 5 analyses the attack surface in our system model based on var-
ious adversary capabilities. Based on the analysis, we propose our solution
in Chapter 6. Chapter 7 covers the implementation and evaluation of the
prototype bridge. We conclude our study in Chapter 8.
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Chapter 2

Background

In this chapter, we first provide a highlight of the USB specification which
is essential to the comprehension of this thesis. As a case study, we inves-
tigate how USB support is implemented in modern operating systems by
examining the Linux USB host subsystem.

2.1 USB Specification

USB is a standard for communication between computers and electronic de-
vices, introduced in 1996 and maintained by the USB Implementers Forum
(USB-IF) [7]. The standard defines hardware connector specifications and
communication protocols between a USB host computer and a USB periph-
eral device. All USB devices are connected to the host controller through
USB hubs. The USB standard has progressed from version 1.0 to 1.1, 2.0,
and the latest USB 3.0. For the scope of our study, we focus on USB 2.0,
which is currently the most widely version supported by hardware manu-
facturers.

2.1.1 Device Classification

A USB device is categorized using a three-level classification defined by USB-
IF, which consists of: a base class, a subclass, and a protocol. Base on this
classification, the host computer OS often contains generic drivers which
are developed for each device type such that they can communicate with
devices regardless of their manufacturers. This classification information is
stored in the device and sent to the host computer when it is plugged in.
Table 2.1 shows some popular predefined base classes. Complete base class
information as well as definitions of subclasses and protocols can be found
in [7].
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2.1. USB Specification

Base Class Description

0x01 Audio
0x03 Human Interface Device
0x06 Image
0x07 Printer
0x08 Mass Storage
0x09 USB Hub
0x0B Smart Card
0x0E Video
0x0F Personal Healthcare
0x10 Audio/Video Composite
0xE0 Wireless Controller
0xFF Vendor Specific

Table 2.1: Common base classes defined by USB-IF

2.1.2 Device Hierarchy

The USB standard allows a single device to perform multiple functions; e.g.,
a keyboard integrated with a USB hub. Devices with multiple functions
are known as composite devices. The USB specification utilizes a hierarchi-
cal tree-like data structure which defines each of these functions in detail. A
USB device hierarchy consists of a top level device as the root, which contains
numerous configurations from which the host chooses to activate one. Each
configuration provides power demand information, as well as the number of
interfaces this configuration offers when its active. Each interface represents
a particular function, such as the keyboard or the USB hub in the previous
example, and contains information on the endpoints used for this interface.
Endpoints, as the name indicates, are the communication endpoint with
which the host exchanges data, and are the terminal nodes in the hierar-
chy. The endpoints can be further classified into two types: IN endpoints,
from which the host receives data, and OUT endpoints, to which the host
transmits data. When a configuration is active, all of its specified interfaces
and their corresponding endpoints are available for communication with the
host. For example, a composite device functioning as a wireless dongle and
a flash drive would expose the two functions as two independent interfaces
in a single configuration, each defining their own sets of endpoints to com-
municate with the host computer. An example hierarchy tree is provided in
Figure 2.1.

To assist the USB host computer in learning its functional hierarchy, the de-
vice reveals structural information through descriptors that the host queries.
Descriptors are data structures with predefined data fields that contain in-
formation essential to the host. Based on the hierarchy of the USB device,
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2.1. USB Specification

Figure 2.1: USB peripheral hierarchy. Each node is represented by a descrip-
tor which will be sent to the USB host during the enumeration process.

there are five types of descriptors.

• Device descriptors, representing the device. The vendor and product
IDs are specified here, as well as the classification information. The
classification may also be empty, suggesting a composite device, in
which case each function class is stored in its respective interface de-
scriptors.

• Configuration descriptors, representing a configuration. The power
requirements and the number of interfaces when this configuration is
active.

• Interface descriptors, representing an interface. This descriptor con-
tains the USB classification specific to this interface as well as the num-
ber of endpoints available. For composite devices, the classification
information of each function is also specified here.

• Endpoint descriptors, representing an endpoint. The endpoint ad-
dress, ranging from 1 to 15, and the direction of data transmission
(IN or OUT) is specified here. Additionally, the endpoint descriptor
also specifies the maximum number of bytes which the endpoint can
transmit or receive at a time.

• String descriptors, storing an array of strings to which data fields in
the above descriptors may refer. For example, the device descriptor
contains a field specifying the device manufacturer name, which is an
integer index to the array of strings defined here.

The USB host requests these descriptors from the device during the enumer-
ation process to configure the host-side driver. By default, an endpoint zero
is always available and is dedicated to host-device communication during
enumeration.

5



2.1. USB Specification

2.1.3 Device Enumeration

USB communication is host-driven. Namely, data is only sent from the de-
vice upon request by the host. The USB host computer contains a USB
host controller, which is commonly implemented as a hardware chip or di-
rectly integrated into the south bridge of the motherboard with a USB host
firmware.

When a USB device is plugged in, the host initiates the driver enumeration
process to identify the device and load the corresponding driver. In detail,
the USB hub notifies the host that a new device is attached. The host then
communicates with the device to identify the supported speeds, acquire its
descriptors and finally assigning the device a unique address on the bus. The
device class, vendor and product information contained in the descriptors
act as the primary reference for the host computer to load the proper device
driver. The driver communicates with the device through the USB stack of
the OS, exposing the device resources in a logical level to the user, such as a
webcam or storage space.

2.1.4 Communication Types

As previously mentioned, communication with the USB device involves
sending and receiving data to and from endpoints. The host communicates
with endpoint zero to obtain essential information such as USB descriptors
during the enumeration step. After the endpoints of the interfaces are iden-
tified, the host sends tokens to them to initiate various types of data transfer.

The USB standard defines the following four data transfer types. Each end-
point takes upon one of these types.

• Control transfers. The host may use control transfers to acquire in-
formation, such as the USB descriptors, from the device during enu-
meration. Control transfers may also be used for any miscellaneous
configuration requests defined by a USB vendor. Messages transferred
during control transfers are specially formatted as setup packets. Each
setup packet consists of either a standard command to the device (e.g.,
fetching a descriptor or assigning a device configuration) or a product-
specific command defined by the vendor. During control transfers, an
additional data field of variable length may also be associated with
the setup packet. This field may be filled either by the host to send
specific data to the device or by the device to contain its response (e.g.,
the device descriptor) to the command in the setup packet.

• Bulk transfers. The bulk transfer is the basic method of transmission
and is typically used for high-volume data communication such as
printing documents or storing files in mass storage. Bulk transfers
guarantees data delivery but provides no dedicated bandwidth.

6



2.1. USB Specification

• Interrupt transfers. When a device requires the attention of the host,
an interrupt transfer is used to send data. Since the communication
is host-driven, the host should regularly poll to check if any inter-
rupt data is available from the device. Interrupt transfers guarantee
an upper-bound on the latency of transmission and provide error de-
tection and retransmission mechanisms. A HID peripheral such as a
mouse often uses interrupt transfers to achieve instantaneous response
for the sake of smooth user experience.

• Isochronous transfers. Devices providing data with a limited time
window of validity may use isochronous transfers to send it. Exam-
ples include streaming video from a webcam or streaming audio from
a microphone. Isochronous transfers do not provide guaranteed deliv-
ery. However, for timely delivery of data, the host reserves a portion
of the USB bandwidth for isochronous transfers.

2.1.5 Data Packet Format

The USB specification defines protocols for data packets exchanged between
the host and the device. Each data packet contains information about the
transfer and its corresponding data. The header information consists of the
following fields.

• The SYNC field, a coded sequence used for data alignment and clock
synchronization on the recipient hardware.

• The Packet field, containing the following information.

– Packet identifier (PID), data type tokens (IN, OUT, Start-of-Frame,
and SETUP) and various handshake information.

– Function address (ADDR), containing the address of the function
assigned by the host after enumeration.

– Endpoint address (ENDP), containing the endpoint number of the
function.

– Frame number, a counter for the number of data frames trans-
ferred.

– Data, the actual data to be transferred.

– Cyclic redundancy check, allowing error checking of all fields ex-
cept the PID field.
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2.1. USB Specification

(a) Downstream broadcasting.
The hub broadcasts down-
stream data packets to all
down connected downstream
ports.

(b) Upstream forwarding. The
hub forwards data from one
downstream port to the up-
stream port.

(c) Idle. All connectivity is dis-
abled and no data packet is
routed.

Figure 2.2: Hub connectivity illustration. The hub contains one upstream
port (green) and multiple downstream ports (four in blue) as well as its
routing logic (gray). In this scenario, three of the downstream ports are
connected with USB devices.

2.1.6 Data Connectivity

Now we introduce the actual routing of data packets in the USB specification.
Recall that all USB devices are connected to the host computer through USB
hubs. The host controller exposes a root hub which serves as the first tier in
the USB topology. A USB hub contains an upstream port, connected to the
host side, and potentially multiple downstream ports, which are connected
to devices. Routing logic built in the USB hub forwards data between the up-
stream and downstream ports in different ways depending on the direction
of the data packets.

Figure 2.2 illustrates three states the hub may take upon during message
transmission. When data packets are detected from the upstream port, the
hub broadcasts them to all downstream ports. Devices connected to the
downstream ports are responsible for observing the function address (ADDR)
field and discarding any packets other than the ones which match their
assigned address during enumeration. Before enumeration is complete, the
default address for the device is 0, to allow enumeration over its default
endpoint zero. When the hub detects data sent from a downstream port, it
enables only its connection with the upstream port and forwards the data
packet. As a result, no other downstream ports on the hub observes the data
packet. An idle state is also defined for the USB hub in the absence of data
packets from both the upstream and the downstream ports. In this case the
USB hub disables all connectivity and awaits the detection of data packets
from either end.
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2.2. Linux USB Host Subsystem

Figure 2.3: The Linux USB host software stack

2.2 Linux USB Host Subsystem

The Linux kernel supports USB host-side communication via two main com-
ponents, usbcore, the central framework for USB communication, and a
USB host controller driver, used to control a vendor-specific USB host con-
troller in hardware to actually communicate with USB devices. usbcore pro-
vides a unified programming interface for software to access USB devices
and interacts with host controller drivers, which is specific to various USB
host controller manufacturers. The usbcore module exposes USB function-
ality through kernel-space functions for kernel-space software and a virtual
file system (vfs) known as the USB File System (usbfs) for user-space ap-
plications. Figure 2.3 provides an overview of the USB subsystem and its
interaction with USB software.

Kernel-space device drivers for common USB devices such as keyboards,
mice, and mass storage, communicate with USB devices using kernel-space
functions provided by usbcore [8]. USB Request Blocks (URBs) are basic
elements to initiate data transfer with USB devices, consisting of essential
information including
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2.2. Linux USB Host Subsystem

• USB device information

• Transfer type and various settings

• Pointers to memory space either containing the data to transmit or the
buffer prepared to store received data

• A completion handler function, invoked after the USB transfer is com-
pleted

Kernel modules may also make use of Linux memory I/O primitives such as
Direct Memory Access (DMA) or Scatter/Gather data structures to improve
the efficiency of transmission [9]. DMA relieves the burden on the CPU for
data copying by delegating communication between the main memory and
the USB host controller to an external DMA controller. The Scatter/Gather
data structure allows transferred data to be stored in non-contiguous mem-
ory space.

With various helper functions to initiate a URB data structure, kernel-space
USB drivers pass the URB data structure to the kernel function (named
usb submit urb) to schedule the transfer. After the transfer completes suc-
cessfully or fails due to errors, the completion function is called to post-
process the transmission and execute clean-up routines. To user-space, ker-
nel USB drivers ultimately expose USB device functionality through device
files in the file system, which may be accessed by user-space programs. For
example, Linux webcam drivers abstract the low-level USB communication
specifics and provide the device files /dev/video* for user-space webcam
software to access using ioctl calls [10].

In the absence of a kernel-space driver for a particular USB device, user-
space software may still interact, using ioctl, with USB devices by accessing
the usbfs, which directly exposes USB devices as device files. The usbcore

module processes requests sent through usbfs and creates URB requests
similar to those issued by kernel-space drivers. In this case, the user-space
software is responsible for implementing the communication protocols to
communicate with the device. Software libraries such as libusb [11] provide
an abstraction layer to these device files and allow easier access for user-
space software.
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Chapter 3

Related Work

3.1 USB Security

The widespread use of external computer peripherals has raised security
awareness regarding their impact on overall system security [12]. Particu-
larly, the popularity of USB in the consumer electronics market has led to
security research in USB devices. In [13], the authors introduce multiple
ways of compromising a host computer such as abusing auto-run features
in the OS to automatically execute malware or exploiting host USB drivers
by unexpected protocol messages. In [14], the author explores possibilities
of programmable HID devices sending mouse or keyboard signals to the
host computer to issue administrative commands or execute malicious pro-
grams. Hidden channels were identified in [15], which allow a USB device
and a host computer program to collude and leak host-side information.
For example, malicious software may send personal information found in
the host computer to a malicious USB keyboard using special sequences of
change notifications for Caps Lock, Num Lock and Scroll Lock states. To
prevent against attacks from malicious devices, it has been suggested that
in a security-sensitive environment, USB devices be audited and whitelisted
when plugged into the computer, allowing only recognised devices to inter-
act with host drivers [16].

Another aspect in USB security lies in identifying potential attacks over the
communication channel between a legitimate USB device and a host [3].
Generally, USB devices capable of exchanging sensitive data should imple-
ment security features to ensure message integrity or confidentiality. How-
ever, studies have shown that these secure protocols, although existent, have
not been able to provide high security guarantees due to design and imple-
mentation flaws. In [17], the authors investigated communication between
personal health record devices and their corresponding device applications,
and identified vulnerabilities in password storage and during authentication
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3.2. Software Security

processes. Furthermore, these devices often contain backdoor functions for
emergency purposes, allowing partial data access without password authen-
tication but posing as a threat to personal information privacy. In [18], some
commercially available USB flash drives with data encryption features were
analysed, revealing weaknesses in communication protocols and retrieving
access passwords. As a solution, various USB communication protocols have
been proposed to provide secure user authentication [19]. Secure commu-
nications specifically for USB mass storage devices have also been explored
and evaluated for their performance impact [5, 6]. Additionally, in [20], a
patent was filed disclosing a mechanism which makes use of trusted execu-
tion environments in the host computer to process sensitive USB traffic.

Previous efforts, as mentioned above, explore security issues for specific USB
devices. However, there has been limited research in analysing security of
a communication environment consisting of generic USB devices and their
software applications, which is addressed by this thesis.

3.2 Software Security

There has been extensive research in providing a secure environment to pro-
tect legitimate applications and enforcing policies during software execution.
Here we classify these techniques into three categories: launch-time, run-time,
and post-execution software security.

3.2.1 Launch-time Security

Before execution, the system (the entity that loads the binary) must decide
whether the binary is allowed to run. Efforts can be classified into blacklisting
and whitelisting, as listed below.

• Blacklisting

– Antivirus software currently available in the market provides de-
tection of malware such as rootkits, worms, and quarantines sus-
pect malware to prevent user execution. The software functions
by scanning the computer and searching for known malware sig-
natures collected in a database. In some cases, certain heuristics
are also used to identify possible zero-day attacks [21, 22].

• Whitelisting

– Verified kernels like Coyotos [23] and seL4 [24] are efforts to con-
struct small and trustworthy kernels through development with
formal methods, providing a reliable basis for software execution.
However, their stress on formally-proven reliability and does not
scale well for use in modern OSes.

12



3.2. Software Security

– Trusted computing techniques aim at guaranteeing code integrity.
Fail-stop mechanisms can be designed to prevent software execu-
tion whenever its integrity measurement is inconsistent with that
of a known good state [25, 26, 27, 28].

– In the particular case with device drivers, authenticating driver
software based on their signatures allows only legitimate vendor
drivers to be loaded into the system. This mechanism is currently
employed in modern Microsoft Windows operating systems [29].
Moreover, all modern operating systems make efforts to include
drivers of most devices in the kernel or a trusted repository for
installation [30, 31]. Regardless of these safeguards, users inter-
vention are often required to allow loading of unauthenticated
drivers. As a result, the threat of malware infection still remains
due to user negligence.

3.2.2 Run-time Security

Run-time security measures address two issues: protecting the system envi-
ronment and ensuring correct software execution [32]. The common solution
to achieving either goal is isolation. In the former case, a sandbox is often
created to envelop an application from unwanted access to the host envi-
ronment. In the latter case, guaranteeing platform integrity can normally
be ensured by applying the measures described previously to ensure a safe
execution environment, thereby creating a Trusted Computing Base (TCB).
Furthermore, there have been efforts to reduce the code size of the TCB such
that the system can be booted with some compromised components yet still
guarantee correctness of program execution.

• Sandboxing

– Virtualization and hypervisors such as VirtualBox [33] and Xen
[34] allows users to create individual virtual environments in
which untrusted applications may run in isolation from other sys-
tem software.

– Program shepherding [35] is a method for monitoring control
flow transfers during program execution, and specifically 1) re-
stricts executions of code, 2) restricts control transfers, and 3) en-
forces software policies.

– Information flow control [36, 37] is similar to program shepherd-
ing but focuses on containing the transfer of important data. Trusted
software modules oversee the exchange of sensitive data with un-
trusted software to ensure confidentiality and integrity.
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3.2. Software Security

– Mandatory access control, which is implemented by software like
AppArmor [38] and SELinux [39], restricts privileges of individ-
ual software based on custom defined rules and constraints.

– SUD [40] is an effort to secure the Linux kernel by migrating
kernel-space drivers to user-space such that malicious drivers do
not compromise the kernel. In addition, further constraints are
imposed to restrict device hardware from accessing memory by
using existing components like the IOMMU.

• Trusted Computing Base Minimization

– Flicker [41] allows applications to run in trusted virtualized en-
vironments provided by modern Intel and AMD processors, ef-
fectively removing the need to trust a potentially compromised
operating system. This method requires modification of the appli-
cation and constant use of the physical Trusted Platform Module
(TPM), which is often slow [42].

– TrustVisor [43] is an improvement of Flicker which is a hypervisor
that utilizes a software dynamic root of trust on guest virtualiza-
tions. This removes the computational overhead of cryptographic
functions in the TPM.

– CARMA [44] exploits the Cache-as-RAM mechanism on Modern
CPUs, which is originally used to load the memory controller dur-
ing bootstrap, and uses it as an isolated execution environment
for generic software. As a result, the correctness of the applica-
tion relies on the integrity of the CPU. However, this solution
depends on specific hardware setup.

– TRESOR [45] is a patch to the Linux kernel which implements
the AES encryption algorithm and key management solely on the
processor, thereby also excluding the memory from the TCB. TRE-
SOR makes use of the CPU support for AES-NI instructions for
AES encryption but is not applicable to generic software applica-
tions.

• Specialized security hardware is also another direction in research.

1. AEGIS [46] is a processor architecture which contains physical
random functions and off-chip memory protection mechanisms.
However, the requirement for special hardware for these solutions
does not fit our user environment, which consists of general per-
sonal computers.
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3.2. Software Security

3.2.3 Post-execution Security

After software has completed execution, an intuitive solution to guarantee-
ing correctness is often done by comparing the system state with a known
good state. With the help of the TPM, we may perform remote attestation [47],
which proves to an external entity the integrity of the system.

Another more extreme solution which shifts the reliance on a single com-
puter to multiple computers is secure multi-party computation [48], from which
a correct computation result can be generated through cryptographic proto-
cols and consensus despite the existence of compromised computers. This
solution aims at computation correctness through redundancy, and are there-
fore infeasible for general personal computing.

15



Chapter 4

Problem Statement

After introducing background information, this chapter provides an overview
discussion of our problem. We begin by introducing the system model of
USB communication in a general setting and identify the goals of the ad-
versary. Based on the system model and adversary goals, we outline the
objectives of our thesis.

4.1 System Model

Generally, a USB communication between a device and a host computer
consists of the following components.

• A USB device provided by a vendor, later referred to as the device.

• A computer, later referred to as the host, which runs an OS supporting
both the device and its application. In our study, we focus on the Linux
OS.

• A software application which communicates with the device, later re-
ferred to as the device application. This includes user applications and
device drivers included in the host or provided by the vendor of the
device.

The interaction between the host computer is depicted in Figure 4.1.

In this environment, a typical use case includes the following steps.

1. As an optional step, the user first installs the device driver.

2. The user plugs the device into the computer.

3. The user starts the device application.

4. The user interacts with the device through the device application.

16



4.2. Goals of the Adversary

USB Device

Device application

Host computer

Figure 4.1: The system model for general USB communication, consisting of
the USB device, the device application, and the host computer.

The Linux kernel USB subsystem, as introduced in Section 2.2, provides the
abstraction for software applications to interact with the USB device. The
device application may interact with the device through kernel-space device
drivers or the usbfs virtual file system.

4.2 Goals of the Adversary

From the security perspective, we differentiate between two types of mali-
cious goals of the adversary.

• Steal information. The adversary may wish to passively obtain sensi-
tive data from the communication between the device and the device
application. The sensitive data could be, for example, medical records
of a patient stored on a USB personal healthcare device. Information
stealing can be achieved by eavesdropping the USB data transferred
during communication. In addition, an unsecured communication
protocol also allows the adversary the possibility of communicating
directly with the device or its application.

• Interfere with communication. In contrast to the passive attack of
stealing information, the adversary may intend to perform an active
attack by interfering with the messages exchanged between the end-
points. For example, in the case of a personal healthcare device, bogus
personal records may be sent to the device application. Erroneous con-
figurations may also be sent to the device to affects its proper functions.
The adversary may achieve this by compromising certain components
of the system, or communicate directly with the endpoints if the com-
munication protocol is insecure.

17
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4.3 Thesis Objectives

In this thesis, we investigate potential security issues with USB communi-
cation. We first survey previous work, as summarized in Chapter 3, on
the security of USB communication and discuss their differences with this
study. We then identify the attack surface under the system model with a
Linux-based host computer, and analyse all possible attacks the adversary
may perform to achieve her goals as well as the feasibility of various attacks.
Based on the feasibility analysis, we define a realistic model of adversary
capabilities, and provide a solution to ensure communication security for
generic security-agnostic USB device and their applications under this threat
model.

18



Chapter 5

Security Analysis of Linux USB
Communication

In this chapter, we provide definitions of attacks by the adversary, and dis-
cuss how they can be realized in the USB communication stack such that the
adversary may achieve her goals defined in Section 4.2.

5.1 Definition of Attacks

To achieve the goals as previously defined, the adversary utilizes the follow-
ing five attack primitives over the communication.

• Eavesdropping

• Modification

• Insertion

• Deletion

• Impersonation

The first four attacks assumes that two legitimate endpoints1 have estab-
lished connection and started communicating. We now continue to the
defining these attacks.

We break down communication to single-direction message transmissions
between legitimate endpoints A and B, namely, the device and its applica-
tion, or the application and the device respectively; the adversary is repre-
sented by E. The attack primitives are illustrated in Figure 5.1.

1We use the term endpoint here to refer to the entities on either end of a communication
channel. This is not to be confused with the endpoint defined in the USB specification.
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A BE
(a) Eavesdropping

A BE
(b) Modification

(c) Insertion (d) Deletion

A BE
id = 'A'

(e) Impersonation

Figure 5.1: The attack primitives for message eavesdropping, modification,
insertion, and deletion. An variant of the insertion attack is the imperson-
ation attack, in which the adversary sends false identity information to one
endpoint. Dotted lines imply that the entity may or may not be active in the
communication session.

Eavesdropping

Eavesdropping is the act of obtaining messages exchanged between two end-
points while they communicate with each other.

• Endpoint A sends x ∈ Σ

• Endpoint B receives x

• Adversary E receives x

Modification

Modification is defined to be modifying messages sent between endpoints
such that a message received at the destination endpoint is different from
the one sent from the source endpoint.

• Endpoint A sends x ∈ Σ

• Endpoint B receives x̂, where x̂ 6= x.

Insertion

Insertion is defined as a synthesis of a message to send to one endpoint,
misleading it to interpret the synthesised message as originated from the
source endpoint currently in communication.
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5.2. Feasibility of Attacks

• Endpoint A does not send any message.

• Endpoint B receives x.

Deletion

Deletion is defined to be the elimination of a message during transit such
that a message sent from a source endpoint does not reach its destination
endpoint.

• Endpoint A sends x.

• Endpoint B does not receive any message.

Impersonation

Impersonation is defined as the adversary establishing a communication
channel independent of a legitimate endpoint with the other endpoint while
claiming itself as be legitimate. Note that with impersonation attacks, only
the targeted endpoint needs to exist.

5.2 Feasibility of Attacks

After identifying the different types of attacks, we investigate how they can
be accomplished by the adversary.

From the Linux host USB subsystem introduced in Section 2.2, the following
components could be controlled by the adversary.

• A malicious device

• Compromised physical connection between the device and host

• Compromised user account in the host OS

• Compromised host OS kernel

• Compromised host hardware

These different levels of system compromise grants the adversary various
capabilities to mount the attacks defined in Section 5.1. We discuss the
feasibility of these attacks and their requirements. Table 5.1 overviews the
capabilities of the adversary in these different levels. We further base the
following discussions on how attacks can be achieved. The summary of
these dicussions are shown in Tables 5.2, 5.3, and 5.4.
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5.2. Feasibility of Attacks

Controlled Entity Essential Components Achievable Attacks
Malicious device A USB device which is

connected to the host
Impersonation of device,
eavesdropping data
from host, and inserting
data to host

Physical connection USB cables, hubs Any

Host User-level
privileges

User-space resources
such as files, envi-
ronment variables, or
runtime memory space

Potentially any attack,
depending on how the
resources used by the de-
vice application can be
exploited

OS Kernel-space resources
such as modules and
the USB subsystem

Any

Hardware CPU, memory compo-
nents, USB host con-
trollers, etc.

Any

Table 5.1: Summary of the capabilities of the adversary under various levels
of compromise

A malicious device

Consider the case where the adversary is a malicious USB device (except
for a USB hub) plugged into the host computer. Given an insecure commu-
nication protocol between the legitimate device and its application, she can
replicate insecure communication protocols and therefore achieve imperson-
ation attacks by pretending to be a legitimate device while communicating
with the device application.

As an instance, the malicious device is plugged into the computer along
with the legitimate device. The device application starts and observes two
compatible devices available for use. The attack would be successful if the
malicious device is selected, either with or without user intervention.

Recall in Section 2.1.6, the USB hubs broadcasts all data sent from the host
to all downstream devices, placing the responsibility of ignoring unrelated
data on USB devices. As a result, the malicious device may eavesdrop on
USB data sent from the host by recording all traffic received, regardless
of the values in the function address field. When dealing with upstream
data sent from devices to the host, USB hubs forwards data packets without
verification from downstream ports to the host whenever available. This
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5.2. Feasibility of Attacks

grants the adversary the potential to mount insertion attacks on the host by
sending out data packets to the host with a forged function address and
endpoint address.

Other attacks, namely, eavesdropping data sent from other devices, inserting
data to devices, modifying or deleting data sent from either the host or the
device would not be accomplished due to the lack of connectivity defined
by the specification of USB hubs.

Compromised connection between the device and host

The physical connection, including the USB cables and USB hubs, can be
compromised by the adversary through techniques from basic wire-tapping
to controlling a USB hub. In this event, all attacks can be achieved if the
communication protocol is insecure. The adversary processes all traffic be-
tween the device and its application and trivially achieves eavesdropping,
modification, insertion, and deletion of USB traffic. Additionally, she may
also actively send bogus messages to either end and achieve impersonation
attacks.

Compromised user account in the host OS

The device application is executed by a user, and uses a set of resources in the
host OS to which the user is granted access. These resources may include
the following.

• Files such as pipes, dynamically-linked libraries, software configura-
tions, special files mapping to system states and components

• Environment variables

• System calls

• Memory

Compromising these resources may be achieved if the adversary has the ac-
cess rights to them under the discretionary access control model in Linux, or
if the adversary succeeds in an application level exploit to escalate her priv-
ileges. Once a resource accessed by the device application is compromised
by the adversary, she can potentially attack the device as well as the applica-
tion. The level of threats depends on the resources used by the application.
Here we provide a few examples.

• A dynamically-linked library file which provides functions for hand-
shaking, reading from, or writing to the device may be replaced with
a malicious version. The malicious library may either passively store
all messages transmitted, or actively modify, insert, and delete mes-
sages. In addition, impersonation attacks on the application can also
be achieved by creating a bogus instance of a USB device.
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5.2. Feasibility of Attacks

• Environment variables, should they be used to contain configurations
of the device application, can also be altered to disrupt its execution.
A poor application design might read the USB device file path stored
from an environment variable. By changing the this value, the adver-
sary can redirect its communication to a malicious USB device and
achieve an impersonation attack.

• The run-time memory of an application is often a major target of soft-
ware attacks. One example would be exploiting the software vulnera-
bilities, such as buffer overflow, to execute arbitrary code. In the case
where the software is bug-free, the adversary may also attach debug-
gers like gdb to the runtime execution and modify the stack and heap
memory. Consider the example of the device application opening the
USB device node file using the open system call, where the arguments
are stored in the stack memory. By modifying the file path in gdb,
the adversary may have the application open another device without
triggering a warning, thereby performing a successful impersonation
attack. Generally, when the adversary attaches gdb to a running ap-
plication, its stack and heap memory space are open for modification,
and any variables used by the application can be altered to achieve any
attack possible.

We listed some example methods which may be employed by an adversary
with the necessary access rights to compromise the components. Other re-
sources such as signals or network sockets, if compromised, may also pose
a threat to the correct execution of the device application.

Note that in addition to attacking the device application, the adversary may
even simply execute a malicious application of its own and communicate
with the device, thereby achieving an impersonation attack while the legit-
imate device application is either blocked from accessing the device or not
even executing.

Compromised host OS kernel

The host computer OS kernel is the heart of the software that provides the
device application an execution environment to communicate with the de-
vice. The major component involved in the kernel is the USB subsystem. If
the kernel is compromised, any attack is possible. Here we lists some attacks
that combined will cover all those we have defined.

• The kernel module usbmon provides an interface where all USB mes-
sages are stored for debugging purposes. A malicious takeover of the
kernel could imply sending these privileged data to a remote storage.

• The usbcore, which handles all USB communication in Linux, can be
compromised by the adversary to achieve any attack.
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5.2. Feasibility of Attacks

• A compromised kernel may start any user level program, including a
malicious version of the device application, to communicate with a le-
gitimate device, thus achieving an impersonation attack on the device
endpoint.

• System calls provide an interface for user-space applications to interact
with the OS kernel. Should their functions be altered, the adversary
may also accomplish certain attacks. Impersonation attacks can be per-
formed by modifying the open system call, which is used to open USB
device nodes. Eavesdropping, modification, insertion, and deletion
attacks can be achieved by modifying the ioctl, read, write system
calls.

Generally, if the OS of a host computer is compromised by the adversary,
any attack we have defined is possible.

Compromised host hardware

All attacks are achievable when important USB hardware is compromised.
If the adversary controls a USB host controller, then she may easily eaves-
drop, modify, insert, or delete messages sent to USB devices. Even forging
a fake device to the OS as well as sending arbitrary messages to the device
is possible, thus achieving impersonation attacks.
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5.2. Feasibility of Attacks

Attack Adversary Implementation

Eavesdrop Generic way:
1. If device application is running, kill it
2. Replace driver with malicious version, install
malicious USB subsystem, or modify application
resources (libraries, environment variables,
configurations) to covertly eavesdrop, modify, insert
or delete data
3. If the device application was killed, restart it

To eavesdrop, use usbmon

Modify
Insert
Delete

Impersonate Impersonate application: release any claim on USB
interface, load malicious module or application
Impersonate device: forge device file, load malicious
driver

Table 5.4: Implementing attacks as the administrator (root) of the host OS.
Note that since the adversary in this scenario is given root privileges, we
combine the discussion of application execution privileges and execution
space of device drivers.
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5.3. Refined Adversary Model

5.3 Refined Adversary Model

As discussed in the previous text, security issues of USB communication
stems from the fact that various compromised components in the system
model allow the adversary to perform attacks in different ways. We now
establish an adversary model for our problem to define the scope of the
research.

The adversary as a malicious USB device or part of the physical connection
to the host computer poses a viable threat to the computer. Considering
the limited previous work on generic USB communication security, we are
interested in finding a solution to this problem.

For adversaries on the host computer with access to the OS kernel (this in-
cludes adversaries in user space with root privileges), solutions already exist
to provide isolated execution environments for software such that applica-
tions can be protected from attacks from the OS. For solutions employing
TCB minimization, the isolated execution environment would have to in-
clude any resource from the OS that is accessed by the device application,
which significantly increases the code size of the isolated environment and
therefore contradicts the original intent of minimizing trusted code size. Ad-
ditionally, all USB software would require modification of its source code to
make use of modern isolated execution technologies, which is impractical
to implement on commodity USB products. On the other hand, for isolated
execution based on hypervisors, the entire OS of the host computer has to
be re-installed, which is also infeasible to realize. To provide a solution for
generic USB devices, device applications, and the use case in the general
system model, we therefore assume that the OS of the host computer is
trusted and is not compromised by the adversary. This allows us to focus
our research on the security of USB communication.

We focus on a refined adversary model to design our solution. The adver-
sary we consider in this thesis is composed of the following.

• Malicious hardware. The adversary may control malicious USB de-
vices, USB hubs, cables, and even the USB host controller on the host
computer.

• Malicious software with regular user privileges with access rights to
certain secure-agnostic USB devices and device applications.
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Chapter 6

Design of a Secure USB
Communication Stack

We introduce the solution to our problem by first specifying the require-
ments based on our refined adversary model, followed by the design which
fulfils them. Finally, we analyse the security of our architecture and dis-
cusses how it prevents various attacks under our adversary model.

6.1 Requirements

We first identify the requirements for our design of a secure communication
environment against the adversary model mentioned in 5.3.

Requirement 1 The solution should ensure authorized access to the device from
the host computer.

This requirement is essential to prevent the software adversary from com-
promising the communication between the device and application.

Requirement 2 The solution should provide a secure communication channel which
provides message confidentiality and integrity to messages that are exchanged be-
tween the device and application.

The fulfilment of this requirement prevents the hardware adversary from
compromising the communication between the device and the device ap-
plication to achieve eavesdropping, modification, insertion, deletion, and
impersonation attacks.

Requirement 3 The device and the device application are not changed.

Considering the infeasibility of modifying the hardware of the device and
software of the device application for generic USB products, the design
should provide the security guarantees described in the first two require-
ments independently from the USB product implementation.
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6.2. Design

Figure 6.1: Solution design. Green marks the USB device access control mod-
ule (and its associated software) which uses existing access control mecha-
nisms in the OS to allow only authorized device applications to access the
device. Blue components belong to the secure USB bridge solution which en-
sures communication channel security. Red boxes represent trusted regions
in the environment.

6.2 Design

To fulfil the requirements, our design introduces various components into
the original system model, as shown in Figure 6.1. The design consists of
the following two parts.

• USB Device Access Control Module. The USB device access control
module uses existing DAC, MAC, and software integrity checks in the
host OS to control access to USB devices from software applications.

• Secure USB Bridge. The secure USB bridge, which establishes a shared
secret with the host computer and communicates with the host OS to
provide message confidentiality and integrity over the communication
channel. The host OS uses a secure USB bridge pairer software to es-
tablish the shared secret with the bridge, and communicates with the
bridge securely using a secure USB relay module.
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MoonBook

Original/unchanged protocol

Secure communication

Authorized and unaltered
device applicationUSB Device

Secure USB Bridge Host Computer

Figure 6.2: Illustration of the secured communication channel between the
bridge and host computer.

To make use of the solution, the user now interacts with the device through
the application in the following steps.

1. Optionally, the user installs the device driver and the device appli-
cation using the secure USB software installer, which measures the
various features of the device application such as the hash of the exe-
cutable file.

2. The user attaches the bridge to the host computer.

3. The secure USB bridge pairer is executed to establish a shared secret
between the bridge and relay through a key exchange protocol. After
successful pairing, the bridge now waits for the device to be connected.

4. The user attaches the device to the bridge.

5. The bridge enumerates the device to obtain basic device information
and exposes a USB instance containing the device information to the
connected host computer.

6. The user starts the device application, which is granted access by the
USB device access control module based on a series of access control
checks and integrity verifications.

7. The user uses the device application to communicate with the device,
during which the bridge and relay encapsulates communication be-
tween the USB subsystem and the bridge in a secure channel.

The resulting secured communication environment is illustrated in Figure
6.2.

We now describe how the USB device access control module (control module)
and the secure USB bridge (bridge) are designed.
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6.2.1 USB Device Access Control Module

To avert attacks from malicious software, we propose a solution to enforce
access control policies on the host computer OS based on whitelisting. The
solution stores information about programs which are authorized to access
USB devices through an initial setup step, and verifies the program state
during launch-time. This prevents unauthorized or altered software from
accessing the USB device.

The existing discretionary access control (DAC) in the OS is insufficient for
preventing malicious software from accessing USB devices, since an applica-
tion access to system resources is granted/denied based solely on the access
rights associated with the user. As a result, mandatory access control (MAC)
has to be introduced to restrict access of applications to only a subset of all
resources based on predefined policies. In Linux, implementations of MAC
include as AppArmor [38], SELinux [39], TOMOYO Linux [49], and SMACK
[50], which are all part of the Linux kernel. Linux MAC implementations
make use of the Linux Security Modules [51] framework to restrict resource
access from applications based on access policy rules, either predefined dur-
ing installation or added by administrators.

In addition to MAC, the USB device access control module also verifies
the integrity of applications before they access resources in the OS. Various
approaches for software whitelisting and fail-stop mechanisms have been
widely investigated and designed [25, 26, 27, 28]. These solutions allow the
execution of an application only if the integrity of its executable is verified.

To provide a tighter access control, the control module combines the well-
established use of DAC, MAC and integrity fail-stop mechanisms. A Secure
USB Software Installer registers an application to a USB device which it is al-
lowed to access and measures the application files and system environment
for future integrity verification. As an example, measurement of files and
system environment may include hashes of files or certificates. The regis-
tration and application information is stored in an access control database
which is only accessible by the kernel. Whenever an application accesses a
USB device, the control module fetches the its registered information in the
database and allows access only if all of the following conditions are met.

• The user account is granted access to the USB device.

• The device application is granted access to the USB device.

• The integrity of the device application is verified.

Under this mechanism, it is therefore important to identify outstanding fea-
tures of device software such that a comprehensive measurement of its legit-
imate state can be obtained for integrity verification. This is orthogonal to
this thesis and is therefore considered as future work.
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6.2.2 Secure USB Bridge

To achieve communication security, we encapsulate the original communi-
cation protocols between the device and application in a secure channel.
Specifically, we establish a secure channel in their communication to provide
confidentiality and integrity. In addition, the secure communication chan-
nel does not modify the device and application, according to Requirement
3. Therefore, we introduce the secure USB bridge solution which actually
consists of the following entities.

• The Secure USB Bridge, referred to as the bridge, which is connected
between the USB device and the host computer

• A software module called the Secure USB Relay, later referred to as the
relay, on the host computer

Since many USB devices, such as mass storage or digital imaging devices,
communicate with the host computer with high data rates in the order of
a few megabytes per second, we adopt symmetric encryption to secure
data communication. This requires a shared secret known only between
the bridge and relay, and we therefore introduce an initialization phase for
secret establishment.

A software module called the Secure USB Bridge Pairer, later referred to
as the pairer, is used to establish a shared secret between the relay and
the bridge using key exchange protocols, such as the Diffie-Hellman key
exchange [52]. To prevent adversaries from disrupting the protocol (e.g.,
man-in-the-middle attacks), messages exchanged between the bridge and
relay must be verified for their authenticity. This can be achieved, for exam-
ple, using digital signatures based on public key cryptography or password-
authenticated key exchange protocols. The sequence diagram for the pairing
process is shown in Figure 6.3.

After a shared secret is established between the bridge and the relay, the
actual USB communication between the device and application is enabled.
The same key is used for secure communication of any devices that may be
attached to the bridge after the key exchange. When the device is sending
data, the bridge encrypts and sends it to the relay. Upon reception, the
relay on the host computer decrypts the ciphertext, verifies its integrity and
forwards the resulting plaintext to the device application. Similarly, when
the device application sends data to the device, the relay encrypts the data
and sends it to the bridge. The bridge decrypts the ciphertext, verifies its
integrity, and forwards it to the USB device in its original plaintext format.

The bridge should be directly connected to the device to alleviate concerns of
malicious intermediate hardware such as USB sniffers. A sequence diagram
illustrating the communication between the device and application after the
adding the bridge and the relay is shown in Figure 6.4.
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Device Secure Bridge USB Subsystem Driver/Application

Attach

Enumerate

Bridge info

Key generation

Key exchange

Key Exchange ProtocolKey Exchange Protocol

Shared keyDerive key

Shared key

PairingPairing

Figure 6.3: Pairing process between the enhanced host OS and the secure
bridge. After pairing, a shared secret is generated for efficient secure com-
munication.
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Device Secure Bridge USB Subsystem Driver/Application

Attach

Query

Device info

Attach device

Encrypted query

Encrypted device info

Device connected

Request

Encrypt

Encrypted request

Decrypt, verify

Request

Reponse

Encrypt

Encrypted response

Decrypt, verify

Response

Secure Message ForwardingSecure Message Forwarding (iterates until device disconnection)

Figure 6.4: Secure communication between the device and an authorized
driver/application. Here the security of messages are implied by the shared
secret established between the secure bridge and the host OS during the
pairing process.
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6.3 Security Analysis of Our Design

Our USB device access control module aims at preventing the software ad-
versary, discussed in 5.3, from achieving any of the the attacks defined in
5.1. The secure USB software installer measures the device application dur-
ing installation. The control module makes use of existing solutions for
DAC, MAC, and software integrity verification to prevent unauthorized ac-
cess of the device from an unregistered or altered device application. These
security features fulfil Requirement 1.

We now discuss the secure USB bridge design to aim at fulfilling Require-
ment 2. The secure key exchange protocol ensures that no entity may derive
the shared key without the knowledge of the secret on either the bridge or
the host. Additionally, the shared key is secure against man-in-the-middle at-
tacks since the host and bridge verify the authenticity of the messages which
they receive during the pairing process. As a result, the encrypted commu-
nication channel protects against passive adversaries from obtaining mean-
ingful information by eavesdropping. The integrity checks of decrypted
messages performed by the bridge and relay further prevents insertion and
modification attacks from an active adversary. Impersonation attacks being
an instance of insertion attacks, are also prevented.

However, our solution does not resolve insertion or impersonation attacks
from the device side of the bridge, which may require techniques such as
device identification. Minimally, we need to be able to write an identifier
to the device, which is not supported by many USB devices and therefore
remains a limitation of our solution.

For deletion attacks, the adversary in the secure communication channel
may still be able to deny the transmission of encrypted messages. For ex-
ample, a malicious hub may simply refuse to route the encrypted messages
to the bridge or the host. Our solution therefore does not address denial-
of-service attacks by the adversary, though such attacks would result in the
disruption of communication which is often noticeable by the user.
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Chapter 7

Implementation and Evaluation

Given that there has already been significant research on software security,
as discussed in Chapter 3, we focus on realizing the design of the secure
USB bridge. Realizing such a channel in a generic way is a challenge be-
cause there are several types of USB devices each with their own speed and
performance requirements. Moreover, even devices of the same class differ
with one another in the way they define interfaces and endpoints.

We implemented a prototype implementation of the secure USB bridge us-
ing the BeagleBone [53] development board with an ARM Cortex-A8 [54]
microprocessor produced by Texas Instruments [55]. The board consists of
a USB controller supporting Direct Memory Access (DMA) and exposes a
USB host-side port to connect to USB devices as well as a USB device-side
port which connects to a USB host such as a computer. By connecting the
host-side port to the USB device and the device-side port to the computer
running the device application, the development board can act as a proxy for
the USB device which processes the communicated data. We implemented
a bare-metal software module using the StarterWare library [56] (i.e., it does
not run on an OS) on the development board to forward data between the
device and the host computer.

For the host computer, we use a Lenovo ThinkPad T420 laptop running
Ubuntu 11.10, with specifications listed in Table 7.1. We implement a kernel
module on the host OS to act as the relay which communicates with the
bridge.

For cryptographic operations during implementation, we used PolarSSL [57]
for its compatibility with bare-metal platforms.

The following sections discuss how key exchange and message encryption
are implemented.
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Lenovo ThinkPad T420

CPU Intel Core i7-2620M @ 2.7GHz
Memory 4GB
OS Ubuntu Linux 11.10
Kernel version 3.0.0.26-generic-pae

Table 7.1: The host computer specifications

7.1 Key Exchange

For the key exchange phase, we adopt the Diffie-Hellman key exchange
protocol with RSA signatures (DHE-RSA [58]) for the messages transferred
between two parties. The bridge and the relay each generates a 1024-bit
RSA keypair. The bridge is given the public key of the relay; similarly, the
relay is given with the public key of the bridge. This allows the bridge and
the relay to verify the authenticity of the messages exchanged during the
Diffie-Hellman key exchange process.

The bridge, upon attachment to the host computer, first exposes itself as a
USB device with one configuration containing a bridge handshake interface.
The bridge handshake interface consists of one endpoint for IN type bulk
transfers and one endpoint for OUT type bulk transfers. Since USB devices
are passive, the bridge waits for the host computer to initiate the pairing
process.

On the host side, we implement a user-space program which initiates the
pairing process. This program is executed with root privileges to prevent ac-
cess from software adversaries with as defined in 5.3. The program proceeds
as follows.

1. Generating Diffie-Hellman parameters.

• The modulus prime number p

• The generator prime number g

• A randomly chosen secret integer a

• The key contribution A = ga mod p

2. Obtain hash hA of p|g|A using SHA1. 1

3. Sign hA with its private key to obtain sA.

4. Send p|g|A|sA to the USB bridge handshake interface OUT endpoint.

1The | symbol is the concatenation operation.
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USB Bridge Host Computer

Generate DH parameters
01 p, g, a, A = ga mod p
sA = sign(SHA1(p|g|A))

p, g, A, sA

Verify sA
Generate DH parameters
01 b, B = gb mod p
sB = sign(SHA1(B))

B, sB

Verify sB

S = Ab mod p S = Ba mod p

Figure 7.1: An example sequence of successful pairing under our imple-
mented DHE-RSA protocol for key exchange between the bridge and the
host computer.

5. Obtain the bridge key contribution B′ and the signature of its hash s′B
from its response.

6. If the authenticity of the Diffie-Hellman contribution passes verifica-
tion, derive the shared secret Sa = (B′)a mod p. Otherwise report
failure and terminate execution.

The bridge passively waits for the data to be sent into its OUT endpoint. It
proceeds as follows.

1. Wait until data is received through the OUT endpoint.

2. Unpack the message to obtain p′, g′, A′, and s′A.

3. Obtain hash h′A of p′|g′|A′ using SHA1.

4. If the signature s′A is verified with the public key of the host, proceed.
Otherwise, the message is discarded and the bridge returns to Step 1.

5. Generate its Diffie-Hellman parameters.

• A randomly chosen secret integer b.

• The key contribution B = (g′)b mod p′.

• Obtain hash hB of B using SHA1.
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• Sign hB with its private key to obtain sB.

• Place B|sB in the buffer of the USB bridge handshake interface IN
endpoint for the host to read.

• Derive the shared secret Sb = (A′)b mod p′.

If a key exchange session is successful, then

p′ = p
g′ = g
A′ = A = ga

B′ = B = gb

which implies an identical shared secret key is established.

Sb = (A′)b mod p′

= gab′ mod p
= (B′)a mod p
= Sa

As an example, a successful execution of the key exchange protocol during
the bridge-relay pairing process is illustrated in Figure 7.1. Failures in data
interpretation or signature verification would reset the protocol state of both
the bridge and relay.

7.2 Message Encryption

Based on Figure 6.4, after establishment of a shared secret, the bridge waits
for a USB device to connect to its host-side port. When a device is connected,
the bridge enumerates the device and obtains a copy of its descriptors. The
bridge then activates its device instance to the connected host computer,
providing (upon request) the copy of descriptors appended with an addi-
tional bridge interface to each configuration. The appended bridge interface
consists of a set of bulk IN/OUT endpoints, similar to that during bridge-
relay key-exchange, and is used for encrypted message transmission and
reception. As a result, after the host computer enumerates the new device
instance exposed by the bridge, the actual USB device information is passed
to the host. This enables successful detection of the original device and ex-
ecution of its driver or application. To avoid inadvertent communication
between host USB drivers and the bridge interface, we specify the USB class
of this interface as Vendor Specific (0xFF in Table 2.1).
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As discussed in Section 2.2, software which communicates with the USB de-
vice ultimately invokes the usb submit urb kernel function in the usbcore

module to send or receive messages in URB data structures. In our solu-
tion, the requests for USB data transfer are detected by hooking calls to
usb submit urb using jprobes [59]. The jprobes hook function manipu-
lates the data buffer, endpoint information, transmission type in the URB
structure to redirect traffic to communicate with the bridge interface. This
reduces the risk of the adversary distinguishing the traffic data based on its
endpoint addresses and transfer types.

Our implementation currently redirects control transfers after enumeration,
and any IN or OUT requests sent to device endpoints. Since the request
to any endpoint of the USB device is routed to the bridge interface, the
redirection logic appends the destination information and transfer type of
the original URB as header information to the data sent to the bridge. The
following describes a simple message forwarding protocol we implement
on the jprobes relay and the bridge for each type of transfer. The format of
data sent to the bridge for each type of transfer are shown in Figure 7.2.

When encrypting the message, we apply either RC4 or AES (in CTR mode)
encryption to the plaintext data, which consist of essential header informa-
tion prepended to the original USB message and a SHA1-128 hash of the
entire message. The decryption process consists of decrypting the cipher-
text and verifying its hash. Messages with invalid hashes after decryption
are ignored.

• Control transfers. Recall in Section 2.1.4 that a control transfer consists
of a setup packet and an associated buffer field containing data to be
sent to or received from the device. When the relay detects the control
transfer, it proceeds as follows.

1. Create a new data buffer, containing the concatenation of the
setup packet and the data buffer, prepended with header infor-
mation.

2. Encrypt the data buffer on the host and send it to the bridge OUT

endpoint.

3. Alter the current URB to request data from the bridge IN end-
point.

4. Decrypt received data on the host and place it into the original
URB data buffer

5. Invoke the URB completion handler originally specified by the
driver.

42



7.2. Message Encryption

The bridge, processes these control transfers as follows.

1. Decrypt the relay request and issue an actual control transfer re-
quest to the device.

2. Encrypt the data returned by the device and place them in the
buffer of the bridge OUT endpoint.

• IN token transfers. In the case with IN token transfers, the relay should
also indicate to the bridge which endpoint of the device is addressed
by the URB. The relay takes the steps similar to handling control trans-
fers, as listed below.

1. Create a new data buffer which consists of the header information,
appended by the size of the data buffer the URB is requesting (in
bytes).

2. Encrypt the data buffer on the host and sent it to the bridge OUT

endpoint.

3. Alter the current URB to request data from the bridge IN end-
point.

4. Decrypt received data on the host and place it into the original
URB data buffer.

5. Invoke the URB completion handler originally specified by the
driver.

The bridge handles IN requests accordingly.

1. Decrypt the relay request to obtain the device endpoint and issue
an IN request on the specified IN endpoint of the device.

2. Encrypt the data returned by the device and place them in the
buffer of the bridge OUT endpoint.

• OUT token transfers. Sending data to devices involves a simpler step
for the relay since no data is returned from the device. The relay takes
the following steps.

1. Create a new data buffer which consists of the header information,
appended by the size of the data buffer, and then the data to be
sent to the device.

2. Encrypt the new data buffer and send it to the bridge OUT end-
point.
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(a) Control transfers consisting of a SETUP request

(b) IN request

(c) OUT request

Figure 7.2: Packaged data sent by the relay to the bridge for each type of
URBs intercepted. ep represents the designated endpoint address. In the
case with IN requests, an additional parameter t, representing the type of
transfer (bulk, isochronous, interrupt) is also specified as additional infor-
mation for the bridge.

3. After transmission is confirmed from the host controller driver,
invoke the URB completion handler originally specified by the
driver.

The bridge proceeds as follows.

1. Decrypt the relay request and send the data to the endpoint spec-
ified by the header information.

With each URB request generated/modified, the relay assigns/substitutes
custom completion handler functions which perform clean-up and trigger
the original driver completion function. When handling IN request comple-
tions, the relay places the decrypted original data from the device into the
original buffer allocated by the driver.

To prevent disrupting USB devices which are not connected to the host via
the bridge, the relay module only intercepts URB requests which are sent to
a predefined list of devices which are known to be connected through the
bridge.

7.3 Preliminary Evaluation

Given the implementation of the prototype bridge and relay, we provide
a preliminary evaluation of its performance to observe the communication
overhead it introduces. We ran benchmarks using two devices: a USB bulk
device which contains a source and a sink for data transmission, and a USB
flash drive.
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Metrics

During communication we measure the time it takes for the software applica-
tion to transfer data. In addition, time measurements of data transmissions
are converted to throughput whenever applicable, which is calculated as:

throughput =
data size

transfer time

We also measure the time the relay spends in processing usb submit urb

requests, which represents the time spent on cryptographic operations, re-
ceiving the response, and necessary data processing. To get an insight into
the communication overhead caused by the bridge, we measure time on the
bridge when it processes a request from the relay. This involves host-side
I/O, device-side I/O and cryptographic operations.

Measurement Setup

We measured the performance of our implementation using the above men-
tioned metrics in the following four scenarios.

• Original connection without bridge or relay

• Connection through the bridge and relay with no encryption

• Connection through the bridge and relay with SHA1-RC4

• Connection through the bridge and relay with SHA1-AES

In each scenario, we tested our implementation using the bulk device (refer
to Section 7.3.1) and flash drive (refer to Section 7.3.2). Additionally, we
enabled data and instruction cache on the BeagleBone, as well as its DMA
functionalities when communicating with the device. However, the Beagle-
Bone DMA features between itself and the host computer is not enabled due
to unstable DMA implementation in StarterWare [60, 61, 62].

7.3.1 Bulk Device

We implemented a USB bulk device consisting of an interface with two end-
points: one OUT endpoint as a sink which receives any data sent from the
host, and one IN endpoint as a source which continuously sends bytes of
zeros to the host upon request. The device is implemented as a user-space
USB gadget under the Linux gadget framework [63] and runs on a Freescale
i.MX53 Quick Start Board [64].

From the host side, we wrote a simple program which reads or writes data
to or from the bulk device using libusb [11] and measures the transfer
time. For our experiments, we have conducted 1000 test iterations for each
individual setting.
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Figures 7.3 and 7.4 shows the performance of read and write operations for
various data sizes. In both cases we can observe that throughput saturates
for data transfer sizes larger than 8KB. For example, when the bridge is just
forwarding plaintext and has device-side DMA and cache enabled, the sat-
urated throughput for the reading and writing is 3.8MB/s and 2.5MB/s re-
spectively. In addition, the throughput decreases with the use of encryption
algorithms (RC4 and AES), which is consistent with literature [65]. More
specifically, throughput is highest for direct connection, followed by plain-
text message forwarding through the bridge and forwarding with using
SHA1-RC4 and SHA1-AES encryption. For example, in the case with SHA1-
RC4 and SHA1-AES encryption, the throughput for read operations is about
half and one fourth of that with direct connection, respectively. In the case
with write operations, the drop in performance appears more drastic, due
to the asymmetric performance of the bridge when communicating with the
host computer. Specifically, the bridge does not use DMA to transfer data
with the host, thereby relying on the CPU and its software code to handle
data transmissions; however, the code used to transfer and receive data are
implemented differently and therefore produces different performance. Fig-
ures 7.5 through 7.7 shows the time measured on the bridge for reading and
writing 16KB of data from and to the bulk device, from which we observe
the bridge taking significantly more time in receiving data from the host
computer.

During the implementation of the solution, we noticed significant improve-
ment of the bridge implementation on the BeagleBone after enabling data/in-
struction cache for the microprocessor and DMA for the USB controller
when communicating with the device. Comparisons of various cache and
DMA configurations are shown in Figures 7.8 and 7.9 for plaintext bridging,
Figures 7.10 and 7.11 for SHA1-RC4 encrypted bridging, and finally Figures
7.12 and 7.13 for SHA1-AES encrypted bridging. In all benchmark results
for write operations, the improvement after enabling BeagleBone USB DMA
with the device can not be clearly observed due to the bottleneck introduced
by the bridge when receiving data from the host computer without bridge-
to-host DMA.
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Figure 7.3: Comparison of perceived read performance for various bridge
setups on the bulk device. Here we can observe the impact of our solution
implementation, in which a RC4 and AES encryption schemes reduce the
performance more drastically.
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Figure 7.4: Comparison of perceived write performance for various bridge
setups on the bulk device. Similar to Figure 7.3, the performance is affected
by the encryption scheme chosen for secure communication. We also notice
the overhead of receiving data from the host inherent in the StarterWare
implementation, causing an overall decrease in performance.
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Figure 7.5: Comparison of bridge overhead for various settings of
cache/DMA features on the bulk device. The performance is benchmarked
with reading or writing 16KB of data without encryption. Enabling cache
significantly reduces cryptographic operations while enabling DMA reduces
communication overhead between the bridge and the device.
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Figure 7.6: Comparison of bridge overhead for various settings of
cache/DMA features on the bulk device. The performance is benchmarked
with reading or writing 16KB of data with SHA1-RC4 encryption. Enabling
cache significantly reduces cryptographic operations while enabling DMA
reduces communication overhead between the bridge and the device.
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Figure 7.7: Comparison of bridge overhead for various settings of
cache/DMA features on the bulk device. The performance is benchmarked
with reading or writing 16KB of data with SHA1-AES encryption. Enabling
cache significantly reduces cryptographic operations while enabling DMA
reduces communication overhead between the bridge and the device.
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Figure 7.8: Comparison of perceived read performance for various
cache/DMA features on the bulk device when the bridge is forwarding data
without encryption. We can observe that the main factor which impacts
performance is caching.
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Figure 7.9: Comparison of perceived write performance for various
cache/DMA features on the bulk device when the bridge is forwarding data
without encryption. We can observe that the main factor which impacts
performance is caching.
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Figure 7.10: Comparison of perceived read performance for various
cache/DMA features on the bulk device when the bridge is forwarding data
with SHA1-RC4 encryption. We can observe that the main factor which
impacts performance is caching.
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Figure 7.11: Comparison of perceived write performance for various
cache/DMA features on the bulk device when the bridge is forwarding data
with SHA1-RC4 encryption. We can observe that the main factor which
impacts performance is caching.
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Figure 7.12: Comparison of perceived read performance for various
cache/DMA features on the bulk device when the bridge is forwarding data
with SHA1-AES encryption. We can observe that the main factor which
impacts performance is caching.
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Figure 7.13: Comparison of perceived write performance for various
cache/DMA features on the bulk device when the bridge is forwarding data
with SHA1-AES encryption. We can observe that the main factor which
impacts performance is caching.
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7.3.2 Flash Drive

While the bulk device gives us information about the raw data rate, most
USB devices use additional protocols to transfer data. For example, USB
mass storage devices adopt SCSI [66] commands to transfer files. In order
to understand the performance of our solution in the context of these com-
modity products. In our evaluation, we have chosen to evaluate our solution
using a USB flash drive for its widespread usage.

We benchmark our bridge and relay solution by copying files between a
USB flash drive using dd. The following results are obtained with 100 test
iterations for each individual setting. To overcome performance variations
when transferring small files, we copied large files between the host and the
flash drive to obtain stable measurements.

We benchmarked reading a 5MB file from the flash drive to the host com-
puter. The average performance is shown in Figure 7.14. On average, our
solution reduces the throughput from 24.66MB/s down to 4.32MB/s and
2.27MB/s for secured communication using SHA1-RC4 and SHA1-AES re-
spectively.

For file writing operations, we performed tests with writing a 15MB file,
and the results are shown in Figure 7.15. As observed during the bench-
mark with the bulk device, the write performance is affected more by the
overhead of the bridge receiving data from the host than by various encryp-
tion algorithms. The average throughput drops from 6.64MB/s using direct
connection down to 1.71MB/s and 1.28MB/s for SHA1-RC4 and SHA1-AES
respectively.

The asymmetric performance in data transmission between the bridge and
the host is caused by our implementation of the bridge, and can be con-
firmed by profiling the host computer kernel using sysprof [67], obtained
from reading and writing 1GB of data while the bridge is forwarding plain-
text. Here we focus on the usb stor control thread kernel thread used by
the USB storage driver to transfer data, as shown in Figure 7.16. The kernel
function spends more time on the function usb sg wait, which loops until
the host controller driver reports completion of transfer, when writing to the
device [68].

We also measure the time spent on the bridge for both reading and writ-
ing files, as shown in Figure 7.17. Additionally, a best performance poten-
tially offered by the BeagleBone hardware is also estimated based on various
benchmarks of various software efficiently making use of the underlying
hardware features such as DMA and cryptographic acceleration [69, 70] as
shown in Table 7.2. Figure 7.18 shows the time spent on kernel module act-
ing as the relay. Here we clearly observe that most time is spent on data
transfer. The increased time with SHA1-RC4 and SHA1-AES encryption al-
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Reading USB device 22.35 MB/s
Writing USB device 19.56 MB/s
Read from USB host 16.77 MB/s
Write from USB host 15.15 MB/s

AES 25.35 MB/s
SHA1 54.54 MB/s

Table 7.2: Highest achievable speeds provided by the BeagleBone when op-
timized software libraries make use of hardware features such as DMA and
cryptographic accelerations [69, 70].

gorithms is attributed to the time spent waiting for bridge operation. Based
on these observations, the communication efficiency between the bridge and
host could be improved with proper use of DMA on the BeagleBone bare-
metal software.
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Figure 7.14: Comparison of perceived read performance for 5MB with vari-
ous bridge setups on the flash drive.
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Figure 7.15: Comparison of perceived write performance for 15MB with
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7.3.3 Summary

The preliminary benchmark result shows a significant performance impact
by the secure USB bridge due to the following reasons.

• When the bridge forwards data transfers securely, as designed in Chap-
ter 6, it must first receive the data, process it, and sent it to either the
device or the host computer. The overhead of receiving data and send-
ing it without parallelism implies an 50% penalty in terms of perfor-
mance.

• Our implementation on the BeagleBone does not make full use of its
hardware capabilities such as cryptographic acceleration and DMA.

Our prototype implementation is therefore not suitable for securely encapsu-
lating high speed USB communication. However, we notice that prototype is
still useful for device which require low bandwidth, such as USB keyboards,
mouse, and even simple healthcare devices which sends or receives data
in the size of a few bytes. With specialized hardware design such as field
programmable gate arrays (FPGA), dedicated cryptographic processors and
faster USB communication hardware, the secure USB bridge may be imple-
mented to reduce performance penalty.
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Chapter 8

Conclusion and Outlook

In this thesis, we investigated security threats surrounding USB devices dur-
ing their interaction with a host computer running a Linux OS. We focused
on a scenario in which users interact with these devices through software
applications either provided by the device manufacturers or built into the
OS. We identified various attack vectors and their feasibility based on the
the compromise of various software or hardware components of the USB
stack. These attacks allow the adversary to eavesdrop, insert, modify, and
delete data transferred over the USB communication channel; it also allows
the adversary to impersonate the device or its application. Since device ap-
plications often rely on many resources provided by the OS, we focus on
devising a solution that does not require significant modifications of the OS,
such as hypervising. We therefore restrict our problem by defining an ad-
versary model in which the adversary may compromise a user account in
software or control malicious hardware in the USB communication channel.

Based on the above chosen adversary model, we provided a solution con-
sisting of two parts: the USB device access control module and secure USB
bridge. The USB device access control module employs existing DAC, MAC
and software integrity checking mechanisms to ensure that only authorized
and unaltered device applications may access the USB device. The secure
USB bridge acts as a proxy for the USB device and secures the communica-
tion channel by encrypting and verifying the integrity of the original com-
munication with a software module in the host OS. With the exception of
deletion attacks, our secure USB bridge design prevents eavesdropping, in-
sertion, and modification attacks between the bridge and the host computer.
On the other hand, the solution does not protect against malicious devices
connected to the host computer through the bridge.

Since software-based solutions are well-known and implemented in most
OSes, we focus on the implementation of the secure USB bridge. We imple-
mented a prototype bridge to communicate with a kernel module on a Linux
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host computer. We have performed a preliminary performance analysis of
our prototype by testing it with a USB bulk device and a flash drive. We ob-
served that our secure channel using SHA1-RC4 and SHA1-AES encryption
significantly reduces data throughput, and we have identified the cause of
the performance impact to be the bottleneck on the prototype bridge imple-
mentation.

To conclude, our solution has provided a general approach to improving
communication security on commodity USB products without requiring the
modification of either the device or the device software.

Further research may be pursued in the following directions.

• Device identification. By measuring certain characteristics, such as
power usage profiles, the bridge may be able to individually identify
USB devices, which is helpful in preventing attacks from malicious
devices connected directly to the bridge.

• Key exchange protocols. There remains many other pairing mecha-
nisms which could be explored to identify a suitable key exchange
protocol in the use case of USB devices.

• Performance improvement. Our current prototype induces significant
performance overhead, which could be reduced by specialized hard-
ware. Additionally, the bridge could be enhanced to prefetch data if it
is suitable for the device type, thereby improving overall throughput.
For example, if a webcam is detected, the bridge may fetch its data
while waiting for requests from the host computer.

• Extensive USB device support. To improve the compatibility of our so-
lution, more USB device types with different communication protocols
may be tested.

• USB On-the-go. USB On-the-go (OTG) [71] is a standard which allows
a USB device to communicate with another USB device instead of a
host computer. It would therefore be interesting to investigate this use
case and adapt our security solution accordingly.

• Secure USB standards. Instead of providing a bump-in-the-wire solu-
tion like the secure USB bridge, a more robust secure communication
environment could be achieved by incorporating security features in
future USB specifications.
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