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Abstract. A double-moment bulk microphysics scheme for The interaction of various processes and their non-linear de-
modelling cirrus clouds including explicit impact of aerosols pendence on ambient conditions renders the understanding
on different types of nucleation mechanism is described. Proef cirrus clouds in general a difficult task.

cess rates are formulated in terms of generalised moments of Cirrus clouds (except anvils) are closely related to
the underlying a priori size distributions in order to allow their formation regions, so-called ice-supersaturated regions
simple switching between various distribution types. The (ISSRs, see e.d@sierens et a).1999. These are large, ini-
scheme has been implemented into a simple box model angdally cloud free airmasses in the upper troposphere (and
into the anelastic non-hydrostatic model EULAG. The new sometimes lowermost stratosphere) in the status of supersat-
microphysics is validated against simulations with detaileduration with respect to (wrt) ice. These regions are quite
microphysics for idealised process studies and for a well docfrequent in the tropopause region (see égichtinger et
umented case of arctic cirrostratus. Additionally, the forma-al.,, 2003ab; Gettelman et a).2006§. From former inves-

tion of ice crystals with realistic background aerosol concen-tigations Spichtinger et a).20053 it turns out that cirrus
tration is modelled and the effect of ambient pressure on hoclouds often are embedded in horizontally extended ISSRs;

mogeneous nucleation is investigated in the box model. ISSRs and their embedded clouds form a system. Large-
The model stands all tests and is thus suitable for cloudscale dynamical processes like synoptic upward motions,
resolving simulations of cirrus clouds. but also mesoscale waves and small scale turbulence play

crucial roles for the formation and evolution of the system
ISSR/cirrus Epichtinger et a).2005ab). Local dynamics
and microphysics are acting on the cloud and sub cloud-
scale. From this point of view there is need of a cloud resolv-
The role of clouds is crucial for our understanding of the cur-iNg model which can be used for idealised studies of cirrus
rent and the changing climaté®CC, 200%. Cirrus clouds clouds interacting with various scales of dynamics.
modulate the Earth’s radiation budget significantly. It is as- While from theory and measurements it is quite under-
sumed that (th|n) cirrus clouds contribute to a net WarmingStOOd that in cloud free air masses the relative hUmldlty wirt
of the Earth-Atmosphere system (eQhen et al.2000, but  ice can reach very high values up to the freezing thresh-
the magnitude of this warming has not been quantified yet0lds for homogeneous freezing (i.e. 140-170% RHi, depend-
Recently, the impact of thin cirrus clouds in the mid latitudes ing on temperature, se€oop et al, 2000, substantial and
was estimated in idealised framework using vertical profilesPersistent supersaturation inside cirrus clouds is more dif-
from radiosondesHusina et a].2007), but the global effect is ficult to understand. Ice crystals act as a strong sink for
still uncertain. The formation and evolution of cirrus clouds Water vapour. Thus, one expects that RHi-distributions in-
depends in a Comp|ex Way on avariety Of environmenta' Con.side cirrus are centred around Saturation, as some measure-
ditions (temperature, relative humidity, wind fields) as well Mments indicateQvarlez et al.2002 Spichtinger et a]2004.

as on the impact of background aerosol acting as ice nucleitiowever, there are also many measurements from inside cir-
rus clouds that indicate considerable degrees of supersatu-

o ration (seeComstock et a).2004 Lee et al, 2004 Ovarlez
Correspondence tdP. Spichtinger et al, 2002 Kramer et al. 2008 Peter et al.2008 and M.
BY (peter.spichtinger@env.ethz.ch) Kramer, personal communication). These findings seem to
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be contrary to our current understanding of microphysics in-physics into a simple box model for validating the nucleation
side cirrus cloudsHeter et al.2006 and call for an explana- parameterisation and for fast calculations serving a principal
tion. One possible explanation will be given in the presentunderstanding of the interaction of different processes. The
paper. Another pending question is the impact of differ- box model can also be coupled to trajectories, e.g. to the out-
ent nucleation mechanisms on the formation and evolutiorput of a trajectory model (in our case LAGRANT®/ernli
of cirrus clouds. While it is generally assumed that homo-and Davies1997). In a second step we implemented the
geneous nucleation is the dominant formation process fotested microphysics into the anelastic, non-hydrostatic model
cold (' <—38°C) cirrus clouds (e.gsassen and Dodd988 EULAG (Smolarkiewicz and Margolinl997. The twofold
Heymsfield and Sabjri1989 Haag et al.2003h), there are  approach was not only for testing the model but also to have
indications that heterogeneous nucleation can substantiallywo different tools which can be used for different applica-
modify the conditions for homogeneous nucleation bringingtions, which have exactly the same ice microphysics param-
forth large change in resulting cloud properties. Thereforeeterisations.
a model for studying the competition of different nucleation In the following we describe first the more complex dy-
processes would be useful. namics of the EULAG model and the coupling of the dy-
Cirrus clouds have been modelled on all scales: therenamics to the microphysics.
are large scale models for climate research and numerical Then, we describe the box model which was developed
weather predictionKarcher et al.2006 Liu et al, 2007, together with the microphysics in the spirit of the EULAG
Tompkins et al.2007) and mesoscale modeld4drrington et model, i.e. using background states (e.g. for potential tem-
al, 1995 Reisner et a).1998 Phillips et al, 2003 Seifertand  perature) as well. This choice was made to make the “transi-
Beheng 2005. For detailed process studies, cloud resolv- tion” between the two models as smooth as possible.
ing models Starr and Cox1985 Jensen et 311994 Lin et
al.,, 2005 Karcher 2009 and box models§assen and Dogdd 2.1 EULAG model — dynamics
1989 Lin et al, 2002 Gierens 2003 Haag and Krcher
2004 Hoyle et al, 2005 Bunz et al, 2008 were used. Many As a basic dynamical model we use the anelastic non-
box models and cloud resolving models have very detailechydrostatic model EULAG (see e. §molarkiewicz and Mar-
microphysics schemes which require high spatial and temgolin, 1997. The anelastic equations for the dry dynam-
poral resolution. Large scale and mesoscale models ofteits can be written in perturbation form as follows (8mo-

use bulk microphysics schemes. larkiewicz et al, 2001, Grabowski and Smolarkiewic2002
We have developed a new ice microphysics scheme for the , ,
use in box models and cloud resolving models, based on ear?Y _ v <£> 19 <9T> —fxU4M )
lier work (Gierens2003. A novel feature of the model isthe Dt p
use of arbitrary many classes of ice, discriminated by their D6’ u. Ve @
: e

formation mechanism. The corresponding aerosol types thatp; —
are involved in the formation of the various ice classes are
treated as well. This new concept allows us to investigate the Here,u is the velocity vectorp, p andf denote pressure,
impact of different nucleation processes in the same airmasglensity and potential temperature, respectivglgndf de-

in particular how air pollution (heterogeneous nucleation) af-note gravity and “Coriolis” vectors, respectively;and
fects the cloud evolution. Another novel feature is the formu-are the anelastic reference state profiles for potential tem-
lation of the various process rates in terms of moments of théderature and densityl denotes additional appropriate met-

underlying crystal size distribution. This makes it possible to'iC terms, depending on the coordinate system chosen. The
the choose between various distribution types. subscripte refers to the environmental profiles, which must

The structure of this article is as follows: in the next sec- N0t necessarily be equal to the reference states. Primes de-
tion we will describe the basic dynamical models, i.e. theNOt® deviations from the environmental state (&g —6.).
box model and the anelastic, non-hydrostatic model EULAG p; : =9/97 + u - V denotes the total derivative. The per-
very briefly. In Sect3 the new microphysics scheme is de- turbatio_n pressurg’ is calculated using the mass continuity
scribed in detalil. In Sect. the validation of the model using constraintv - pu=0.
box model simulations and 1-D simulations is shown, and the For solving the governing equations we use the uni-

model's performance is discussed. We end with a summaryied semi-Lagrangian-Eulerian approach describe8rimo-
and draw conclusions in Seé&. larkiewicz and Margolir{1997); Smolarkiewicz et al(2001):

Let ¥ andF denote the vectors of variable® (u, v, w) and
their forcings, respectively. Wit : =w” + 0.5A¢F" and

2 Model description — dynamics the generalised transport operafdf the approximation can
be described as

The new microphysics scheme is implemented into two dif- ~

ferent types of models: First, we implemented the ice micro-¥" ™ = LE; <\IJ> +0.5A¢F ©)
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wherebyi and n denote the spatial and temporal location, re-i.e. the coupling of dynamics and thermodynamics is re-
spectively. This results into a trapezoidal rule for the approx-duced to the additional diabatic forcing term. As indicated
imations. This treatment and the non-oscillatory forward- above, for consistency with the formulation of the dynamics
in-time (NFT) semi-Lagrangian/Eulerian approximations of of EULAG we have formulated the box model using envi-
the integrals were carried out as described in detg#rim- ronmental state§y, p., 6., i.e. the model is formulated in
larkiewicz and Margolin(1997 and Smolarkiewicz et al. perturbation form: All diabatic processes will only change
(2001). The model was used for many applications on dif- ’=6—6,, the adiabatic processes change the environment,
ferent scales and several problems in atmospheric dynami:e. T,, p. while 6, remains constant. This concept can also
ics (e.qg. stratified flow over mountains, convectively inducedbe used for the dynamical model EULAG, where we can sim-
gravity waves etc.). One main advantage of this model isulate adiabatic cooling due to upward motion by changing
the less diffusive advection scheme MPDATA (Multidimen- the background physical temperatdie
sional Positive Definite Advection Transport Algorithm, see
e.g.Smolarkiewicz and Margolirl999.

For including cloud physics into the model, we have to 3 Model description — ice microphysics
perform “moist” dynamics and a coupling of dynamics and ] ] . ) ]
thermodynamics. This can be done as follows (see alsd” this section th_e newly dev_eloped ice mlcrop_hysms scheme
Grabowski and Smolarkiewic2002): We define the density 1S described. FII’S'[, we _defme the set of variables and d_e-
potential temperature (s&mnanuel 1994 including specific ~ "Ve the governing equations. The classes of aerosol and ice

humidity ¢, and the mixing ratio of cloud icg. as follows: crystals will be defined, as well as their properties and mass
_ (or size) distribution types. The moments of these distribu-
Oa =0 +0(ep qv — qc) (4)  tions will be used in the microphysical equations. Finally,

with €,=(1/€)—1, wheree=R, /R, denotes the ratio of the the currently implemented microphysical processes (nucle-
ideal gas constants for dry air and water vapour, respectivelyation, de_p_03|t|on, sedlmen_tatlon) are described in detail. For
Using the definition of an environmental density potential ll quantities we use SI units. _ _ .
temperatur@,, : =6, + 0 ¢, q,. for the representation of Aggregation is not yet implemented in the microphysics
the perturbatiom’, =6, —6,. the governing equations for the scheme. However, aggregation is of less importance for the

moist dynamics read as follows: cold temperature regimel’(<—40°C) and/or for moderate
) , vertical velocities Kajikawa and Heymsfieldl989. The de-
Du — _vV (1’__) 19 (id) —fx U +M (5) velopment of an approprigte par.ameterisatit')n consistent with
Dt ] the two-moment scheme is subject to ongoing research.
Do’
D = U Vet F (6) 3.1 General assumptions and equations for ice micro-

The coupling of dynamics and thermodynamics manifests it- physics

selfin two parts: 3.1.1 Prognostic equations

1. An additional buoyancy source from the deviations in ) _ _ _ _ _
water vapour and the cloud ice in E) {n the density ~AS we are interested in particular in the interplay of various
potential temperature competing nucleation modes acting in a cirrus cloud (in par-

ticular homogeneous vs. heterogeneous nucleation), we al-
2. An additional source terny on the right hand side of |ow a non-specified number of aerosol and ice classes. Each
Eq. (6) due to diabatic processes (phase changes etc.). aerosol class corresponds to an ice class that it nucleates and
vice versa. Each class has a number and a mass concentra-
tion, N, andg,, respectively, which are the zeroth and first

The (zero-dimensional) box model represents an air par:moments of a mass distributiofm). Note thatVy is meant

cel which is moved in the vertical direction with a velocity Icneﬁt;giiz isspECT(C Z?rllseéftzft ;si,r)th\(/avs T:;g ftg?secr(;t:]r\?ebniirozon—
w=w(t), prescribed for the whole simulation time Here, g (perkg yair).

: : . . .. 1o be consistent with the formulation of the advection equa-
we assume only adiabatic processes, i.e. the vertical velocit

produces an adiabatic cooling (expansion) or warming (Comﬁons in flux form. This formulation will be used for the sed-

pression) for the background temperatiiselue to imentation of ice crystals, see below. However, ice crystal
number densities and ice water content can be derived using

2.2 Box model

dl _dT. dz _ g w(t) ) the ambient density: n.=N, - p, IWC =¢. - p. The kind

dt dz dt Cp of the distribution is preselected (e.g. log-normal or gamma
The governing equations for the dynamics reduce to etc.). The moments of (m) are

00’ _ [ k

- = Fy (8) Wilm] := A fm)ym*dm, keRso 9)

www.atmos-chem-phys.net/9/685/2009/ Atmos. Chem. Phys., 9,7/6852009
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with the normalisationuo=Ny. Prognostic equations for wherej is the respective class index and

the number and mass concentrations of each aerosol and ice "

class form the basis of our bulk microphysical two-moment \jyc — NUC;, DEP= Z DER. (16)

scheme. = =

Note that we prefer mass distributions whereas observerg|ere 6 denotes potential temperaturg, and 6, denote
L] 4 e

present f[heir measuremepts usua}lly as size distributions. Icg\o physical and potential temperature of the environmental
crystals in nature appear in a myriad of shapes. Crystal mas ate, respectivelyL, is the latent heat of sublimatio
is therefore a more convenient choice for model formula-denotes the specific heat at constant pressureﬁai@otgs

tion than crystal size. Therefore we formulate the prognosti(:the density of the reference statg.is the specific humidity.

;ahqeumatlons for masses; sizes and shapes are diagnosed fromﬂ terms represents sources and sinks of the model variable

¥ due to processes not explicitely represented in the equa-
Ice crystal shape is important for depositional growth tions (e.g. turbulent transport, diffusion etcy), ; andv, ;
(Stephens1983, sedimentationHeymsfield and laquinta  are the mass and number weighted terminal velocities (see
2000 and radiative propertieS\endisch et a).2005 2007 Sect.3.4), respectively. The terms NUGind NNUG, repre-
of ice crystals. The ice crystal shape depends clearly orsent the sources and sinks for the ice crystal mass and number
temperature and ice supersaturation (&giley and Hal-  concentration, respectively, due to nucleation. Sources and
let, 2004 Libbrecht 2005 but columns seem to be a fre- sinks related to diffusional growth or sublimation are repre-
guent habit below-40°C in a variety of field measurements sented by the terms DEP and NDEP. We assume that every
(Heymsfield and McFarquhg2002 their Table 4.1). There- ice crystal nucleates from an aerosol particle (for both nu-
fore we assume columnar ice crystals in our model. cleation types, heterogeneous and homogeneous), hence the

One essential difference of our scheme to other scheme@emso' particle will be removed (i.e. itis now inside the crys-

(e.g. Kessler 1969 Seifert and Beheng?00§ is that we Ital) frzn} tEe gerosol n:JmtE)?r concentran:)n ?nd#]W'"fbe re-
do not differentiate ice classes according to their size. Tra/€ased T the ice crystal sublimates completely. Therefore we

ditionally, cirrus ice was classified as cloud ice and snow,Can treat the sources and sinks for the aerosol number con-

where cloud ice consisted of ice crystals that are so smalfentration using the same terms NNpJ&nd NDEF. For

that their terminal fall speed could be set to zero, while SnOWtreatlng the sources and sinks of the aerosol mass concentra-

was the ice fraction that had non-negligible fall speeds. Thistion we use the terms NUC/and DEP#. Note, that there is

classification allowed a better treatment of sedimentation in'® S€dimentation of the aerosol particles (due to their small
single-moment models. As a two-moment model partly over-M2SSes)-
comes the problems with sedimentation by introducing two3_1_2 Crystal shape and mass-size relation

sedimentation fluxes, for number and mass concentration, re-

spectively, we no longer differentiate between cloud ice andror parameterisation of the various processes we need as-
Snow. Instead our ice classes cqrrespond to various ”UCleSumptions on the properties of single ice crystals, for in-
ation processes (or to the respective aerosol class). stance their shapes. Generally, we assume that ice crystals
The processes ice crystal nucleation, depositionalare hexagonal columnBéiley and Hallet2004), with height
growth/sublimation and sedimentation are currently imple-L and diameteD (twice the side length of the hexagon).
mented in the scheme. The prognostic equations for potentialhe aspect ratie, : =L/D depends on crystal size, such
temperature and the microphysical variablesfatasses of ~ that small crystals have,=1 and larger crystals have>1.

ice (index c) and aerosol (index a) are thus: Mass-length relations frorileymsfield and laquinté2000
of the form L (m)=a (m) mP"™ with piecewise constant pa-
rameter functionst(m), 8(m) (Table 1) are used to derive

n

Do _ L6, (NUC + DEP) + Dy (10) cryst.al size frorr_\ the prognostic quantity cryft:‘;al mass. The
Dt ¢, T, bulk ice density is assumed as=0.81-10%kg m~3 (Heyms-
Dq, field and laquinta2000. The parameter values are such that
o — — (NUC+DEP) + Dy, (1) the boundary between small and large crystats,is2.146-
Dgej  10(pge.jvm.)) 10 13kg, or equivalentlyL,=7.416 um. The aspect ratio

+NUG +DER + Dy, (12)  can be formulated as a function =f using the formula for
the volume of a hexagonal columb£(+/27/8)- D?- L) and
+NNUGC; + NDER + Dy, ; (13) the mass-length relations we arrive at:

Dt 0 0z
DN, ; Ea(ﬁNc,jvn,j)
Dt 0 9z

Dqa, . :

—5; =NUCA, + DEPA + Dy, (14) 1 form < m,

DN, | rqe(m) = V27, s 17
# _ _NNUG + NDER, + Dy, as 8a§b -m % form > m, (17)

Atmos. Chem. Phys., 9, 68366, 2009 www.atmos-chem-phys.net/9/685/2009/
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Table 1. Values fora, 8 in the general mass-length relation; here,
m;=2.146- 1013 kg denotes the transition between aspect ratio
rq=1 andr,>1, this ice crystal mass is equivalent to a ice crystal
length of L,=7.416um

m o am™t pm)~
m<my 526.1 3.0
m>m; 0.04142 2.2
1000 [
length L ——
diameter D
0 Lo = 742 pm ——— 7
100 [
£
=
= | /
;c? 10 | -
1p
0.1
le-16 le-14 le-12 le-10 1le-08
mass (kg)

Fig. 1. Length ) and diameter ) of hexagonal ice crystals as
functions of the ice crystal mass.

In Fig. 1 length and diameter of the ice crystals are shown as

functions of crystal mass, and in F@the aspect ratio vs. the
ice crystal mass and length is shown.

3.1.3 Sedimentation and mass-fall speed relation

689

11

9

aspect ratio

le-11  1e-10 1le-07

mass (kg)

-14  l1le-13  le-12 le-09 1e-08

aspect ratio

10 100

length (pm)

1000

Fig. 2. Aspect ratior, of hexagonal ice crystals versus ice crystal
massn (upper panel) and length (lower panel), respectively.

Table 2. Values fory, § in the velocity-mass Eql1§); the transition
masses are1=2.146-10"13kg, m»=2.166- 102 kg, m3=4.264-
108 kg; equivalent lengths ard.q=7.416um, L,=4900um,
L3=189%m

m y (m) 8(m)

m <mq 735.4 0.42
m1<m<mp 632924 0.57
mo <m < ms3 329.8 0.31
m3<m 8.8 0.096

For formulating the sedimentation fluxes of the ice mass and

number concentrations, we need assumptions on the termin@arthazy and Schefol@006, who used a reference state
velocity of a single ice crystal. Here again we use an ansatz; To2=270K, po2=815hPa. This second reference state

by Heymsfield and laquint€2000: vo(L)=x - L”.
Using the mass-length relations derived above we formu
late the terminal velocity as a function of crystal mass:

with piecewise constant parameter function®:), §(m), as

vo(m) = y(m) - m

was taken into account in the derivation of our coefficients,

‘which are then valid for the whole tropospheric temperature

and pressure range. The terminal velocity of a single ice crys-
tal vs. its mass is shown in Fi§.

3.1.4 Choice of distribution type

given in Table2. The parameters have been derived using the

coefficients for small columns bieymsfield and laquinta
(2000. The terminal velocitiesp are valid for reference
values ofTp 1=233 K, po,1=300 hPa, for other temperatures
and pressures we apply the correction factor

)—0.394

such thatv(m, T, p)=y (m) m*"™ ¢(T, p). For very large
ice crystals [ >1899um) we use coefficients adapted from

T
To

p

—0.178
g

o(T, p) = ( (19)

www.atmos-chem-phys.net/9/685/2009/

For the formulation of the process rates in Eq€HL5) it is
required to choose an a priori distribution type for the crys-
tal masses and the masses of single aerosol particles. This
choice can be handled very flexible (for instance as an en-
try in a FORTRAN namelist) when we are able to formulate
the process rates in terms of general moments of the distribu-
tion. Then specification of a distribution in the model simply
means branching into the corresponding function for the gen-
eral moments. Because of this flexibility it does not matter

Atmos. Chem. Phys., 9,/6852009
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The lognormal distribution for the ice crystal mass can be

1 ] written as
- - N, 1 (tog () 1
§ o1} f(m) Jonlogon expl —5 ogon - (20)
§ ool I with geometric mean mass,, and geometric mass standard
é I / deviationo,,,. The lognormal distribution is completely spec-
b5 . ified once its zeroth, first, and second moment are given. The
0.001 | prognostic variables of the two-moment scheme let the sec-
I ond moment a free parameter that we either have to fix to a
0.0001 / constant or to make a function of the mean mass. We use the
1e-16 1le-15 le-14 1e-13 le-12 le-11 1e-10 1e-09 1e-08 1e-07 latter possibility. For this purpose we followoller (1986
mass (kg) and define a “predominant massitpre : =pu2[ml/uilm],

divide it by the mean mass : =u1[m]/uolm] and set the

Fig. 3. Terminal velocityv(m) of a single ice crystal as function of  ratio o of these masses constant, that is:
the crystal mass:.

m polm]polm]
ro = —2- = — = eXp((log(om))Z) .@y
m palm]
much which kind of distribution we use here to derive the Hence, the geometric standard deviation can be expressed as
process rates. However, the model formulation is simpler exn(</loara ) or lo — Jlodra 29
when we select a lognormal distribution than when we se- " p( gro gom 970 (22)

lect something else. The reason for that is the special fornUsing Eq. 2) the analytical expression for the moments of
of the mass-size and mass-fall speed relations that we have lognormal distributiory (m) can be written as follows:

assumed and that are common to cloud microphysics formu- . 1 )

lations at least since the 1970s. These relations have the formx[m] = N, - m,, exp(E(k log(oim)) ) (23)
of a power law. It can easily be shown that when two quanti- ) s

. 1 1 L >

ties are related by such a power law and one quantity is log- =N, mI:nrOZ =N, _mkro 2 (24)

normally distributed, then the other quantity is lognormally . ] ] o )
distributed as well. There are other distributions that haveOPViously the formulation using the ratig is much simpler
that property as well, e.g. Weibull and generalised gammdhan the formulation using,,.

distributions. The former of these is a generalisation of the Given the lognormal mass distribution, the correspond-
exponential distribution and might sometimes apply, e.g. for"9 lognormal d|str|put|ons f_or the related quantities size apd
young contrails Gierens 1996. The latter has more param- fall speed are obtained using the following transformation
eters then the lognormal, which has two. Since it is difficult (- for crystal lengtt):

to derive equations for all parameters, one usually has to fix_,, = « .mﬁ, log(or) = B - log(oy) (25)

them somehow in an ad hoc way. Hence, we prefer to haw?_| .
R . . ere we have considered the parameters as constant for the
a distribution with few parameters that avoids such proce-

: . "7 sake of simplicity. Since the coefficients are actually piece-
dures as much as possible. When a gamma distribution i3 . : :
) . wjse constant functions of mass, the transformation formula
selected for crystal sizes, as is often done, then masses an : : : L
; . ; . above is not strictly correct. One possible correction is the
terminal velocities are generalised gamma distributed. How-
. . . . use of truncated moments (see below).
ever, from observations there is no evidence for preferring . .
. L . .2 In Table3 the values ob,, ando;, depending on the ratio
(generalised) gamma distributions against lognormal distri-
. 2 ) R . ro and the mass range are shown.
butions for fitting size distributions of ice crystals. For many
observational data, a lognormal distribution can be fitted as3 »  Nuycleation
well as a generalised gamma distribution (M. DeReus, per-
sonal communication), and indeed, lognormal fits were usediwo different nucleation processes are parameterised in our
in several studies (e.&chioder et al.2000 scheme: First, homogeneous freezing of supercooled aque-
Also the observation of multiple size modes does not callous solution droplets (Se@&.2.1) and second, heterogeneous
for multi-parameter distributions. We strongly believe that freezing on solid aerosol particles (Se2.2. Both mech-
multiple modes are the result of mixing of ice crystal pop- anisms depend on relative humidity wrt ice; for calculating
ulations that have different origin. In our model such casesrelative humidities from prognostic variables (temperature,
are covered by the use of multiple ice classes, where the cormspecific humidity, pressure), we use formulae fréar-
bined size distribution of several classes will often show sev-phy and Koop(2005 for the saturation pressures of (super-

eral modes. Hence, we prefer the lognormal distribution.  cooled) water and ice.
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crystals created within a time stéy from an initial aerosol

Table 3. Geometric standard deviationg, ando;,, depending on -
concentrationV, can now be calculated as

the ratiorg. The transition mass;=2.146- 10713 kg is equivalent
to a length ofL;=7.416um.

o0
AN, = N, / fa’(r)P(Aaw, T, At) dr (27)
o Om oL 0
mem (wheref/(r) is the aerosol size distribution normalised to 1)
t m>my .
125 160 117 1.24 and the frozen ice water content can be calculated as
1.50 1.90 1.24 1.34 00
200 223 132 146 Age = Ng / Lo wypaVaP(Aay, T, Aty dr  (28)
300 2.85 142 1.61 0
4.00 325 148 171 wherew,, denotes the HO weight fraction ang, the den-
6.00 381 156 184 sity of the solution, respectively. Exploiting the lognormal

8.00 4.23 1.62 1.92

character of the dry aerosol size distribution, we can use a
16.0 5.29 1.74 2.13

Gauss-Hermite integration for numerical calculation of the
integral Gierens and Sém, 1998. The integral in Eq.Z8)

is usually much less than one, so that homogeneous nucle-
ation usually is not number limited. Note, that homoge-

3.2.1 Homogeneous nucleation neous freezing of solution droplets only occurgat—38°C,
i.e. below the supercooling limit of pure water.
The solute mass (mass 0f8l0y) in a solution droplet is Formation of AN, ice crystals simply implies loss of

equivalent to the radius of a sphere of the pure solute. For AN,= — AN, aerosol particles. However, a priori it is not
this radius we prescribe a lognormal size distributioi®)  clear how much aerosol mass is transferred to the ice in the
with the geometric mean radiug and a geometric standard nucleation process. Here we use the following procedure.
deviationo, . While the aerosol number concentration decreases by a fac-
Given the solute mass, the radiysof the solution droplet  tor f,=|AN,|/N, the dry aerosol mass concentration in the
is obtained from the Bhler theory, depending on tempera- aerosol class decreases by a fagipr Hence the mean dry
ture and relative humidity. From thedKler theory inits sim-  aerosol mass is reduced by a faatbr f,,)/(1— f,,). We can
plest form we know that at (water) saturation the equilibrium compute and apply this factor once a relation betwgeand
droplet radius; is proportional to the square root of the so- f; is given. For this we make the ansatz
lute mass, i.e. proportional i6/2, a power law relationship.
Hence the solution droplets are approximately Iognormallyfn‘f = fn- (29)
distributed as well, which is in accordance to measurement
of upper tropospheric aerosdlljnikin et al., 2003.
The probability for an aqueous 28/H>S0O, solution
droplet of volumeV;; to freeze within a time period: is

The postulatex>1 expresses that fact that large droplets
(consisting of large aerosols) will freeze first and vanish from
the aerosol pool (see elgaag et al.2003a Fig. 8). It turns
out from additional calculations, that a facte=1.33 is a
good approximation. We will use the same approach for the
P(Aay, T, At) = 1 — exp[—Jhom (Aaw, T)Va(T)At] (26)  sublimation of ice crystals, see Se8f3. Note that we let the
width parameterd,) of the aerosol mass distribution un-
where Jhom(Aay, T) denotes the homogeneous nucleation changed during the nucleation event.
rate which is parameterised according<mop et al.(2000 The shift of the mean mass of the background aerosol dis-
in terms of temperature alla,, : =ay—a,,,, the difference  tripution is optional and can be switched on and off. For
of water activity in the solution and,,, the activity of the  very large background aerosol concentrations, the shift of the
water in the solution in equilibrium Wlth ice at temperature mean mass is marginal and can be switched off. Then, only
T (i.e.a},=e}(T)/e;,(T), the ratio of the saturation vapour the number concentration is decreased, while the mean mass
pressures wrt ice and liquid water, respectively).is thusa  or size of the aerosol distribution remains constant; the new
function of temperature alone. The water activity itself is the mass distribution is calculated using the new number concen-
ratio of the equilibrium vapour pressure over the solution totration. For simulations with high vertical velocities at very
the equilibrium vapour pressure over pure liquid water. cold temperaturesI{<210K) the shift of the mean mass is
When dynamical processes (uplift) are slow enough thatrecommended.
solution droplets can equilibrate their volume to changes in  The impact of shifting the modal radius of the background
relative humidity, then the water activity equals the saturationaerosol distribution leads to smaller radii of solution droplets
ratio (wrt water). This is assumed here. Hence, the homogeduring the ongoing nucleation event, resulting in a decrease
neous nucleation raté,omn can be expressed as a function of of number density of nucleated ice crystals due to the abrupt
relative humidity and the temperature. The number of icechange during a nucleation event.
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3.2.2 Heterogeneous nucleation

Although the investigation of different nucleation mecha-
nisms within the same environment is one of the key issues
which will be studied using the new cirrus microphysics, we
mention heterogeneous nucleation only briefly here, because
we will not use it further in the present paper. Generally,
the parameterisation for heterogeneous nucleation makes use
of prescribed background aerosols, which act as ice nuclei.
Thus, there is an explicit impact of the aerosol on the for-
mation of ice crystals and also washout of the background
aerosol trapped in the sedimenting ice crystals is described.
After nucleation the aerosol particles are trapped inside the
ice crystals and are released as soon as the ice crystals evap-
orate.

In our model we can use parameterisations of heteroge-
neous nucleation of any type, more or less sophisticated. In
Part 1b Epichtinger and Gieren2009 we will extensively
use heterogeneous and homogeneous nucleation within the
same environment; the parameterisation that is used is de-
scribed there.

3.3 Deposition growth and sublimation

The growth Eq. (see e.gptephens1983 for a single ice
crystal of mass: reads:

d
d—’? = 47CDy f1f2 [po(To) — ps.i (Ty)] (30)

wherep, (T,) and p ; (T;) denote the ambient water vapour
density, derived from ambient humidity and temperatfire
and the saturated (with respect to ice) water vapour density
at the ice crystal surface, i.e. at surface temperafur& he
other factors in Eq.30) are as follows:

— Diffusivity of water vapour in air

T 1.94
D, =211.10°° (-) <@> ms
Tp p

according toPruppacher and Kle{t1997 using refer-
ence valuegp=27315K and pp=101325 Pa, respec-
tively.

(31)

— Capacitance factolC which accounts for the non- -

spherical crystal shape. We could have used the ca-
pacitance factors for hexagonal columngadifiruta and
Wang(2005 here, but we did not for the following rea-
sons: First, the well-known uncertainty in the deposi-
tion coefficient (see below) has a larger effect on the
results than the choice @. Second, the formulation

of ventilation factors (see below) has been derived for
spherical water drops and only few experiments have
been carried out for other shapes than sphetitall

and Pruppachefl976. Third, an ice cloud contains
anyway a mixture of crystal shapes and habits. Inclu-
sion of the correct capacitance factor for one habit leads
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to inconsistencies with other habits. For these reasons
we simply followedHall and Pruppachefl976. For
spheres of radius, C=r. Hexagonal columns with
length L=2a and diameteD=2b can be approximated

by prolate spheroids with semi axesand b (a>b),

i.e. with an aspect ratig,=L/D=a/b. The capacitance
factor C can be determined using the electrostatic anal-
ogy (McDonald 1963

B Le' _ A’
log (%f;) log (—“J;)A')

where ¢'=y/1 — (b/a)2=1+/a? —p?=4" denotes the
eccentricity of the spheroid. We use the aspect ratio
introduced in Sect3.1for our calculations.

C

(32)

— Correction factor f; for the difference between the

transfer of water molecules to the crystal by pure diffu-
sion and that according to kinetic treatment of individ-
ual water molecules (important for very small crystals
with sizes less than Am):

*

= ———, with 33
f T (33)
A 2n M, D
P = , X/[ _ TT My fZ (34)
4nC RT, 2042 —ay)-t

where A is the surface area of the ice crystdlf,
denotes molecular weight of water amlis the uni-
versal gas constanta,; denotes the deposition coef-
ficient. Currently there is no agreement on a gen-
erally accepted value af,;. Measured values range
between M04<w <1 (see e.gPruppacher and Klett
1997 Magee et al.2006, however most models work
well with oy > 0.1 (Lin et al, 2002 for reasons dis-
cussed irkKay and Wood2008. The deposition coeffi-
cient could even depend on crystal size (&ggrens et
al., 2003 or on ice supersaturatiolpod et al, 2001).
For our validation runs we have se;y=0.5 (see e.qg.
Karcher and Lohmanr20023b).

Ventilation factor f> to correct for the enhanced growth
of ice crystals due to enhanced water vapour flux arising
from motion of the crystal relative to the environmental
air (important for large crystals). We followall and
Pruppache(1976 and set:

i1 11
1+ 0.14(NS3(,1\711§E)21 for NSiCNée <1

0.86+ 0.28(N3 N2,) for NI N2, > 1

fo= (35)

whereNs.=Dn/p denotes the Schmidt numbaeris the
viscosity of air andVg, is the Reynolds number defined
by characteristic dimensions of the ice crystal.
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The latent heat released on the growing crystal must be dif- 107
fused to the ambient air. This is described by an analogous i e
- I =200hPa = " :
equation: o8 D=300nPa N Lo et
e- 3 p:4OOEPa a ...I “A: A
dm —_ b p=500hPa  ~ " : i
Ly— =4nCDy f1 f5(T. — Ty) (36) e et
dt K LT e
S 1e-09 | Laetietiy
L, denotes the latent heat of sublimation, the coefficientsg i et
f1. f5 are the counterparts to those in E8Q 3 el
1e-10 Fguietat w
¥ _ _r* sk KIS e e atT
i Pa UrPacp L i . A
Here, K is the thermal conductivity of moist aif, is o1
the average thermal velocity of air molecules striking -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20
the ice surface anfl;=1 is the thermal accommodation temperature (K)
coefficient. 0.876 prerrrrrrr T
0.375 |- p‘:zoo‘EPa‘ . ciam®
e . L [ p=300hPa T Ll
— The ventilation factorf; for thermal diffusion is calcu- 8'23‘3‘  pedoonea -
lated as followslifall and Pruppachef976: 0372 T
20371 [t
1.00+ 0.14x32 for o < 1 5 oarfe
fi= {086+ 02812 for yo o 1° 37§ oae
X0 197 X0 S o368 gk
S 0367 e S o -
% h h | 0.3%9 TG . E S B s
XQ=NPrNReJ*Q, whereNp, denotes the Prandtl num- 0.365 ettt
ber andNReJB denotes the Reynolds number for the 0.364 1 ipvrerr T
A 0.363 77"
characteristic Iengtl‘E. 0.362

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20
In order to compute the parameters required for a pa- temperature (K)
rameterisation, the two diffusion equations are solved iter-

Flsof inermediate ize, 6. above the kined regime but S /0 % Cocficientsa(p.7) (gp) andb(p.7) (ootom) for
9 Koenig's ansatzm /dt~a(p, T)m?P-T) and the approximation of
small enough such that ventilation is negligible, the ansatz by, ,umerical solution of Eq30) for different pressures.

Koenig (197]) %am , provides a good approximation to

the numerical solutlon The coefficientsh depend on satu-

ration ratio, temperature and pressure and can be derlved Ugtheremo=mo(p, T) ~ 1071® — 10-kg, y=y(p,T) ~
ing a least squares regression of exponential e =ax” 0.2—0.25,m;=2.2 - 10~ 19%g, ands=0.12.

The coefficientsz, b have been calculated for pressures in Using these corrections we are able to approximate the
the range 158 p<600 hPa in 50 hPa bins and for the tem- mass growth rates for single crystals within an error margin
perature range-80<7 <—20°C in 1K bins. For the Runge-  of less than 5% compared to the numerical solution.

Kutta integration we have assumed water saturation. The ac- The numerical solutions together with the original Koenig
tual value ofa during a simulation is the product of the tab- znsatz and the new approximations are shown inig.

ulated value ande—e;)/(e—ej,). This factor is negative for  Now we are going to derive the “integrated” equation for
ice-subsaturated conditions, i.e. the equations then describge cloud ice mixing ratio tendency:

crystal sublimation. The functions(p, T) andb(p, T) for

selected pressures are displayed in BigThe form of the  dqc d_ /oo Fmym dm (39)
Koenig approximation makes itideal for later use in the prog- dt dt Jo

nostic equation fog.. However, it overestimates strongly the

crystal growth in the kinetic regime and underestimates the We may interchange the derivative with integration, invoke
influence of the ventilation factor for large crystals. In order the product rule and arrive at:

to overcome these problems, we introduce a correction of tthq o0 8f(m)

following form: dar /(; o1

m dm +/ f(m)—dm

dm a-mb. ( _ exp( (ﬂ())y)) for m < my The second integral vanishes, siriog/ar = 0 (becausen
~ (38) must be interpreted here a co-ordinate:ispace, and the co-

)
dt a-mb- (%) form > m ordinate system is, of course, fixed). The first integral can be
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le-11 The original Koenig approximation results into an ice water
Vel mass rate ofiju,[m]. Additional numerical integrations and
AT our simulations showed that we can approximate the integral
le-12 | num. sol. ——
Koenig / _AT=210K in Eq. @2) so that for sufficiently small crystals the tendency
corr. —— / . . 4
z 13 - _AT=200K for ¢, can be cast into the following form:
2 le
g /// / dqe o \7?
2 te1af g — Na-uplm]- (1— eXp(— (mo X) )) (43)
g }
le-15 : wherex~20. Hence, we simply need another correction fac-
// p=300 hPa tor. It turns out that this correction will only have an impact
le-16 for low temperatures and high vertical velocities (see below).

le-16 1le-15 1le-14 1e-13 1le-12 1le-11 1e-10 1e-09
mass (kg)

For large crystals, the ventilation correction becomes im-
portant. These crystals alone give the following contribution:

Fig. 5. Growth ratesdm/dt of single ice crystals vs. crys- d o s
tal mass. Results of the numerical integration (red) and ap-%9¢ :/ f(m)a-mb . (ﬂ) dm (44)
proximations using the original Koenig ansatz (green) and the dt mj

Koenig ansatz with our corrections (blue) for various temperatures . .
(T=230/220/210/200K) and fixed pressure&300 hPa). which can be computed using known expressions for trun-
cated momentslawitz 2004). Finally, we arrive at the fol-

lowing expression:
cast into another form when we make use of the “continuity

mjp

H ” g H — mn 14
equation” in mass-space, which reads dg. - (1 _ e( (mo.x) )) for 7 < m; s
af(m) 9 [dm B ar A helm 8 _
” + 3 <Ef(m) =0. (40) - form > my

Inserting this into the first integral above, we find Note that”flq;‘ is expressed using the mean mass (first mo-

dq. © 5 (dm ment) and the moment of ordérof the mass distribution.

e _/o Fy <Ef(m)> dm This formulation makes it possible to use any kind of mass
distribution for which analytical expressions for the moments

Partial integration yields are known.

dq dm o0 < dm Growth of ice crystals does not affect their number con-

d: =— [mzf(m)] —I—/ E.f(m) dm, centration (as long as there is no aggregation), but sublima-

0 0

tion does when the smallest ice crystals sublimate completely
where the integrated part in the square brackets vanishes, bg#hile larger crystals only loose some mass. We parameterise
causef (m) vanishes at infinity, and at the lower boundary this effect in a simple way. Let the ice mass mixing ratio
m=0. Finally, we arrive at the following simple expression: in a certain grid box be reduced by a fractignduring one
o0 time step. Then we assume that the corresponding fractional

dq. dm . Co o

= — f(m) dm. reduction of number concentration is given fy= f;*, with
dt dt a>1. This relation implies that when a small mass fraction

Here, 4 can be interpreted as the “advection velocity” in sublimates, this is mainly due to shrinking of big crystals;
»_space due to crystal growth; hence, we can insep/hen alarge mass fraction vanishes, then also a large fraction

the “mass ' | > s
the modified Koenig approximation from above. Let us first of crystal number concentration must vanish. In the limiting

treat the case where the largest crystals are still smaller thaf@S€8/¢=0 or f;=1, we also havefy=0 or fy=1, respec-
my (i.e. f(m) ~ 0) for m>m;). This gives tively, as it should be. From numerical studies we found that

, a=1.1 produces plausible results. This value is in agreement
dq. > b () with Harrington et al(1995, who derived from numerical
_— = . 1 _ mq 41 ' . y
dt /0 fma-m ¢ dm (41) simulations a rangeda <1.5.

(e.¢]
=/0 fm)a - mbdm 3.4 Sedimentation of ice crystals
14
_ /OO f(m)a - mbe—(m%) dm From our parameterisation of the terminal velocity of a sin-
0 gle ice crystal we derive terminal velocities for the mass

o0 b ,<%)V and number concentrations, respectively. To this end let
= 