Doctrinal Thesis

Development of functional lactobacilli-propionibacteria cocultures for biopreservation of Mexican fresch cheeses

Author(s): Saxer, Samuel

Publication Date: 2011

Permanent Link: https://doi.org/10.3929/ethz-a-007316948

Rights / License: In Copyright - Non-Commercial Use Permitted
Summary

Fresh cheese is a popular cheese variety in Mexico and the most favored in the increasing US market. These fresh cheeses are highly perishable products due to high moisture and pH levels, as well as low salt concentration and acidity, and often, no culturing. Chemical preservatives are widely applied at industrial-scale in order to ensure safe and high-quality products. However, chemical mixtures used to enhance safety and shelf life could raise legal and safety questions in the future, and do not respond to consumers’ expectations for high quality and chemical-free natural products, with potential impact on future markets.

In this work, we developed new biopreservatives based on propionic (PAB) and lactic acid bacteria (LAB) co-cultures with high antimicrobial activity for application in Mexican fresh cheeses. Biopreservation is based on microorganisms and their ability to produce storage-stabilizing compounds and has the potential to enhance quality, safety, and shelf life of the fresh cheeses under normal market conditions in Mexico by omitting preservatives and in consequence, allows natural claims and development of new markets.

In the first part of this work, the microflora of 3 Mexican fresh cheeses (Oaxaca, Panela, and cottage cheese) representing high production volume categories, produced at industrial scale without chemical preservatives and stored at abuse temperatures of 10°C for 20 days, was characterized with an emphasis on typical contaminants. Lactic acid bacteria were predominant at levels of log 5 to 8 cfu/g cheese on KFS (enterococci), MRS (lactobacilli), and M17 agar (lactic streptococci). Identification revealed a dominance of enterococci on KFS agar (82 of 93 isolates) as well as lactobacilli on MRS agar (52 of 69 isolates). On M17 agar (202 isolates), Streptococcus thermophilus (41), lactococci (40), and Leuconostoc sp. (31) were observed as most prevalent isolates. Beyond, typical contaminants such as Enterobacteriaceae and fungi (yeasts and molds) were determined at levels of log 3 to 7 cfu/g cheese with a predominance of Enterobacter amnigenus (33 of 135 Enterobacteriaceae...
SUMMARY

isolates) and *Klebsiella oxytoca* (29), *Candida guilliermondii* (52 of 118 yeast isolates) and *Candida tropicalis* (19), and *Penicillium* sp. (30 of 56 mold isolates).

In the second part of this work, simple model systems simulating the Mexican fresh cheeses were developed for efficient screening of protective cultures. The cheese model systems were based on whey permeate that was solidified with 1.0 to 1.25% (w/v) agar mimicking the texture of the original products. Buffering was achieved with 0.16% KH$_2$PO$_4$, 0.12% K$_3$ citrate·x H$_2$O, and 0.21% Na$_3$ citrate·x H$_2$O, which simulated phosphate and citrate content of milk ultrafiltrate, and pH was adjusted to the corresponding cheese pH with NaOH (Panela), or lactic (Oaxaca) or phosphoric acid (cottage cheese). Up to 0.5% (w/v) NaCl was added depending on the cheese and autoclaving (121°C for 15 min) was done. A heat-treated (65°C for 15 min) lactic acid starter was inoculated at a level of log 3 cfu/g to model Oaxaca cheese. A protective PAB-LAB co-culture in Oaxaca and Panela cheese models and cheeses produced at pilot-scale (60 l) was used for efficacy testing. The protective co-culture showed inhibition of typical contaminants of Latin American fresh cheeses (*Enterobacteriaceae* and yeasts) in both, models and cheeses, during 30-day storage at 12°C.

In the third part, a rational strategy with preliminary screening of 11 PAB and 27 LAB strains for antimicrobial activity against typical contaminants of Mexican fresh cheeses and subsequent challenge tests in food models was successfully applied. Two protective PAB-LAB co-cultures consisting of *Propionibacterium jensenii* DF3/*Lactobacillus paracasei* subsp. *paracasei* SM30 and *Propionibacterium freudenreichii* subsp. *shermanii* D27/*Lactobacillus paracasei* subsp. *paracasei* SM15 were selected for their high inhibitory activity against *Enterobacteriaceae*, yeasts, and molds in agar plate assay and food models. The two protective co-cultures were applied on Oaxaca cheese surface produced at pilot-scale (70 to 130 l) spiked with selected *Enterobacteriaceae*, yeasts, and molds and stored for 56
days at 10°C. *P. jensenii* DF3/*Lb. paracasei* SM30 and *P. freudenreichii* D27/*Lb. paracasei* SM15 exhibited a pronounced inhibition of target strains, with a 2.5 to 3.5 log, 1.5 to 2.5 log, and 1.0 to 3.0 log decrease of *Enterobacteriaceae*, yeasts, and molds, respectively, compared to levels on control cheeses without protective cultures.

Furthermore, co-cultures *P. freudenreichii* DF27/*Lb. paracasei* SM15 and *P. jensenii* DF3/*Lb. paracasei* SM30 were applied at 3.3% in Panela cheese at pilot-scale (60 l) against the same target organisms. In a first run, milk-treatment of Panela cheeses led to similar inhibition of contaminants as in Oaxaca cheese, but also to strong acidification (2 pH units). In a second run, heat-attenuated or non-attenuated cultures were applied with milk-treatment at 2% and in addition, *P. freudenreichii* DF27/*Lb. paracasei* SM15 was used for surface-treatment. Attenuation is described in literature as a possibility to minimize acid production of LAB strains and was carried out by heat-treatment of strains (65°C, 8 min). Inhibition of artificial contaminants was observed but due to a contaminating initial flora (*Enterobacteriaceae*), evaluation of sensorial characteristics as well as HPLC was not possible in detail for the second trial. However, pH values of all cheeses treated with cultures and control without protective cultures reached levels below pH 6.0 during storage. This pH decrease was subsequently attributed to addition of protective cultures.

In the fourth part, protective co-culture *P. freudenreichii* DF27 and *Lb. paracasei* SM15 that showed strong antimicrobial effects on targeted contaminants (*Enterobacteriaceae*, yeasts, and molds) applied at pilot-scale on Mexican fresh cheese was assessed for the influence of culture parameters (time, temperature, pH, medium supplementation) and fermentation technology (single strain, co-cultures, immobilized cell batch cultures) on production of antimicrobial compounds and antimicrobial activity by HPLC and microplate bioassay using different target strains of *Enterobacteriaceae*, yeasts, and molds, respectively. Antimicrobial activity against fungi was highest after 120 h for *P. freudenreichii* DF27 and after 72 h for
Lb. paracasei SM15, respectively, i.e. at the end of fermentations. In contrast, the incubation temperature (25 and 30°C for P. freudenreichii DF27, and 25, 30, and 37°C for Lb. paracasei SM15) did not significantly influence antimicrobial activity and metabolite production. Reduction of pH 6 to pH 5 during controlled fermentation led to increased antimicrobial activity, although final metabolite concentrations were higher at pH 6. Addition of 3% glucose, 0.5% phenylpyruvic acid (PPA), or 1.5% NaCl to supplemented whey permeate medium (SWP) did not significantly increase antimicrobial activity compared to SWP without supplements. Nevertheless, 0.5% PPA significantly increased phenyllactate (PLA) levels from below detection limit to 2.5±0.2 g/l for Lb. paracasei SM15 and 1.2±0.3 g/l for P. freudenreichii DF27. Combining cell-free supernatants of P. freudenreichii DF27 and Lb. paracasei SM15 as well as co-culturing increased antimicrobial activity compared to single cultures. Co-culturing with free and immobilized cells stimulated production of secondary metabolites such as 2-pyrrolidone-5-carboxylic acid (PCA), PLA, hydroxy-phenyllactate (OH-PLA), and succinate as well as formate. Co-immobilization additionally led to an increased antimicrobial activity (5 Enterobacteriaceae and 5 of 7 fungi were inhibited).

The results in this thesis show the great potential of biopreservation, but also its limitations in the context of the application to Mexican fresh cheeses. The implementation of protective cultures in Oaxaca cheese led to a prolongation of the shelf life from 30 to 60 days without affecting cheese characteristics. In Panela cheese in contrast, the protective culture showed a limited efficacy due to system relevant boundaries such as the high pH value, and led to product acidification with sensorial impact.
Zusammenfassung

Das Ziel dieser Arbeit war es, neue biologische Konservierungssysteme auf der Basis von Milch- und Propionsäurebakterien mit hoher antimikrobieller Aktivität für die (Bio-)Konservierung von mexikanischen Frischkäsesorten zu entwickeln. Biokonservierung basiert auf Mikroorganismen und ihrer Fähigkeit, haltbarmachende Stoffe zu produzieren. Chemische Konservierungsstoffe sollen dabei nicht mehr eingesetzt werden. Herstellern bietet sich so die Chance, sowohl mit konservierungsmittelfreien Produkten zu werben als auch neue Märkte erschliessen zu können.

Im ersten Teil der vorliegenden Arbeit wurde die Mikroflora der drei mexikanischen Frischkäsesorten (Oaxaca, Panela und Hüttenkäse) mit einem Schwerpunkt auf typische Verderber untersucht. Die Käse wurden industriell ohne Konservierungsmittel in Mexiko produziert und in die Schweiz geliefert. Die Keimzahlen von Milchsäurebakterien lagen auf KFS (Enterokokken), MRS (Laktobazillen) und M17-Agar (Milchstreptokokken) zwischen Log 5 und 8 keimbildenden Einheiten (KBE)/g Käse. Eine genauere Identifizierung zeigte eine Dominanz von Enterokokken auf KFS-Agar (82 von 93 Isolaten) sowie von Laktobazillen auf MRS-Agar (52 von 69 Isolaten). Streptococcus thermophilus (41 von 202
Isolaten), Laktokokken (40 von 202) und *Leuconostoc* sp. (31 von 202) wurden von M17-Agar am häufigsten isoliert.

In zweiten Teil der Arbeit wurden einfache Modelle der Frischkäse entwickelt um potentielle Schutzkulturen effizient zu screenen. Die Käsemodule basieren auf Molkenpermeat, das mit der Zugabe von 1.0-1.25% Agar verfestigt wurde um die Textur der Originalprodukte zu simulieren. Zur Pufferung wurde eine Lösung mit 0.16% Kaliumphosphat monobasisch, 0.12% tri-Kaliumcitrat monohydrat und 0.21% tri-Natriumcitrat-Dihydrat verwendet, die die Phosphat- und Citratalkalien von ultrafiltrierter Milch modelliert. Die pH-Werte der Modelle wurden dem pH des entsprechenden Käses mit NaOH (Panela), Milchsäure (Oaxaca), oder Phosphorsäure (Hüttenkäse) angepasst. Für die Simulierung des Salzgehaltes wurden bis zu 0.5% Salz zu den Käsemodellen gegeben. Die Käsemodule wurden bei 121°C während 15 Minuten sterilisiert. Die Starterkultur von Oaxaca wurde mit einer hitzebehandelten (65°C während 15 Minuten) und bei Log 3 KBE/ml inokulierten Kultur modelliert. Die Wirksamkeit der Modelle wurde mit einer Schutzkultur (*Propionibacterium jensenii* SM11/*Lactobacillus paracasei* SM20) getestet und mit der Anwendung in Panela verglichen, der in halbtechnischem Massstab hergestellt wurde (60 Liter). Die Schutzkultur hemmte Enterobakterien und Hefen sowohl im Model als auch im Käse während einem 30-tägigen...
Lagerungsversuch bei einer Temperatur von 12°C. Die Schutzkultur führte aber zu einer nicht signifikanten Säuerung von Panela.

Die Co-Kulturen P. freudenreichii DF27/Lb. paracasei SM15 und P. jensenii DF3/Lb. paracasei SM30 wurden auch in Panela (60 Liter) gegen die gleichen Verderber getestet. In einem ersten Durchgang wurden die Kulturen in die Käsemilch gegeben. Die gleiche Hemmwirkung wie bei Oaxaca wurde beobachtet, aber auch eine starke Säuerung der Käse. Um die Säuerung zu minimieren wurden die Kulturen in einem zweiten Durchgang attenuiert und daneben auch noch auf der Oberfläche aufgetragen. Attenuation ist eine Möglichkeit, die
ZUSAMMENFASSUNG

In einem vierten Teil erforschten wir die Co-Kultur *P. freudenreichii* DF27 und *Lb. paracasei* SM15 genauer, die starke Hemmung der Verderber in oder auf halbtechnisch produziertem Käse zeigte. Wir untersuchten den Einfluss von Kulturparametern (Zeit, Temperatur, pH, Supplemente) und Fermentationstechnologie (Einzelstramm, Co-Kulturen, immobilisierte Zellen) auf die Stoffwechselprodukte und die antimikrobielle Aktivität, die mittels HPLC bzw. mittels zellfreie Überstände per Mikroplatte Bioassay bestimmt wurden.

Die Hemmung von Pilzen war am Ende der Fermentation am stärksten, nach 120 und 72 h für die zellfreien Überstände von *P. freudenreichii* DF27 bzw. *Lb. paracasei* SM15. Die Temperatur (25, 30 oder 37°C) dagegen hatte keinen signifikanten Einfluss auf Konzentration der Stoffwechselprodukte und die Hemmwirkung. Eine Verringerung des pHs von 6 auf 5 in einer kontrollierten Fermentation führte zu höherer Hemmwirkung, obwohl die Konzentration der Stoffwechselprodukte bei pH 6 höher war. Eine Supplementierung von SWP mit 3% Glukose, 0.5% 2-Oxo-3-phenylpropansäure oder 1.5% Natriumchlorid führte nicht zu einer signifikant erhöhten Hemmwirkung im Vergleich zu reinem SWP. Trotzdem wurde die Konzentration von Phenylmilchsäure signifikant erhöht von unter der Bestimmungsgrenze auf 2.5±0.2 g/L von *Lb. paracasei* SM15 und auf 1.2±0.3 g/L von *P. freudenreichii* DF27. Die Kombination der zellfreien Überstände separat gewachsener Stämme führte interessanterweise zu einer stärkeren Hemmung als die des Überstandes eines einzelnen Stammes. Auch Co-Kultivierung erhöhte die Hemmung im Vergleich zu