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Custom chemicals and pharmaceuticals manufacturing is performed very often in multipurpose
batch plants. Multipurpose plants offer a high degree of flexibility for the design and operation of

chemical processes. As a consequence, problems related to mathematical models of different sce¬

narios such as: design of a single process, design of a new plant, retrofit of an existing plant or

scheduling a given portfolio of processes in a given plant are complex and demand substantial

computational resources. The mathematical models of a given problem related to batch process¬

ing are usually very difficult to formulate. Typically these problems are highly nonlinear, and

unless simplified, are believed not to be solvable in polynomial time. The problem complexity
even increases if multiple objectives are to be considered. On top of the multiobjective decision

problems, the uncertain factors inclusion further complicates the mathematical models.

A solution to the discussed problems is a design, i.e. an allocation of recipe tasks to batch plant

equipment. The aim of the proposed algorithms is to optimize the design of a single chemical

process to be implemented in an existing multipurpose batch plant. Various objective functions

used in the multiobjective optimization are defined as quantitative measures of the quality of

such process designs. In this work a Tabu Search metaheuristic method was successfully applied
to a wide range of problems.

The main goals of the research posed in this thesis can be summarized as:

1. Formulation of the mathematical problems and development of methodologies supporting the

batch plant engineering development team during the process design phase.

2. Proposing a set of solving algorithms for tackling the presented problems.

3. Finding and demonstrating a practical method of reducing significantly the size of the batch

design optimization domain. A Superequipment concept was developed as a mathematical

model of an equipment class capable of performing any chemical operation class.

A Superequipment unit must additionally fulfill the reality criterion, that means it must be

transformable into a real equipment unit during and after the optimization. This concept
reduces the combinatorial complexity in the solution space significantly.

4. Stipulating and investigating a stochastic mathematical model, related to batch process devel¬

opment, which can be handled by multiobjective optimization in a reasonable time frame

allowing rapid result output. Productivity robustness related to a design is defined in the sto¬

chastic approach.

5. Automatically selecting a set of feasible and good-performing designs as a basis for the deci¬

sion making in the early batch process development.

The problem domain of early stage batch process development is extended in the presented for¬

mulations. In addition to the optimization of a single deterministic design, the new optimization

algorithms assist in: retrofitting of equipment, grass-root design of a new plant, automated pro¬

duction plant line selection or in evaluating a design robustness by an automated stochastic

method. The results compilation is also automatically presented as a selection of individual

designs, sorted according to prioritized list of objective function values.

The methods, demonstrated on various case studies, show feasibility of the resulting designs, a

broad applicability of the methods for automatized integrated process development. The dis¬

cussed stochastic batch process design approach presents important measures related to the risks

in the preliminary design stages.
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Die Prozessentwicklung ist ein grundlegender Teil eines industriellen Projekts. Pharmazeutika

und Spezialitätenchemie werden meistens in Batch-Anlagen hergestellt. Die Notwendigkeit
einer effizienten Prozessplanung stellt den Prozessdesigner vor die Aufgabe, neue automatisierte

Methoden zu entwickeln.

Die Methoden sollen eine Integrierte Prozessentwicklung, das heißt Beurteilung von allen rele¬

vanten Aspekten des Prozesses gewährleisten. Dabei ist zu beachten, dass oft nur unvollständige
Informationen über das Verfahren vorhanden sind. Die Applikation dieser Methoden in der

Praxis sollte eine schnelle Übersicht von Prozessalternativen und deren Parametern liefern. Eine

methodische Formulierung von mathematischen Modellen für die Batch-Prozesse ist problema¬
tisch. Zur Zeit gibt es keine rigorosen Algorithmen, die eine zuverlässige Lösung für Probleme

dieser Art liefern können. Üblicherweise werden die Probleme vereinfacht oder mit Hilfe von

„random - search" Algorithmen gelöst, die keine optimalen Lösungen garantieren. Die Komplex¬
ität der Probleme steigt, wenn man mehrere Zielgrößen betrachtet oder wenn Unsicherheiten in

die Problemstellung mit einbezogen werden.

Das Hauptziel dieser Arbeit liegt in der Entwicklung von Methoden und Software für die frühe

Beurteilung der Prozessalternativen in Mehrzweckanlagen. Die Methoden sollen vielver¬

sprechende Prozessdesigns entwerfen, deren Zielgrößen berechnen und eine Auswahl von

Designs zur Weiterentwicklung vorschlagen.

Die Basis für die Entwicklung dieser Methoden bildet eine Reihe von Problemstellungen bez¬

üglich der Prozessentwicklung in Batchanlagen.

In dieser Arbeit wurden die folgenden Themen behandelt: eine deterministische Problemstel¬

lung, eine stochastische Problemstellung mit Design Robustness, das Superequipment Konzept.

Eine deterministische Problemstellung baut auf mathematischen Modellen auf, welche die

Daten über die Batchanlage, das Rezept und die Produktionsheuristiken enthalten. Damit kann

man eine Reihe von Szenarien bezüglich des Designs eines Prozesses, das Retrofit von Produk¬

tionsanlagen oder Neuanlagengestaltung lösen.

Ein weiterer Lösungsansatz ist das Superequipment Konzept. Das Superequipment ist ein mathe¬

matisches Modell. Es ist definiert als eine übergeordnete Klasse von Produktionsgeräten. Diese

Klasse kann alle betriebsüblichen Operationen durchführen. Dabei muss es aber die Bedingung
der Realität erfüllen, so dass dieses Modell innerhalb der Optimierung in ein reales Gerät trans¬

formierbar ist. Letztendlich reduziert dieses Konzept die Komplexität von Optimierungsproble¬
men im Prozessdesign. In dieser Arbeit wird das Superequipment Konzept in unterschiedlichen

Fallstudien erfolgreich demonstriert.

Die nächste Stufe in der Entwicklung der präsentierten Methoden ist die Betrachtung einer

Batchproduktion mit multiplen Entscheidungskriterien unter Beachtung von Unsicherheiten.

Das Ziel ist, mehrere Designs zu entwürfen, die nicht nur eine gute Produktionsrate haben,
sondern auch die erwartete Produktionsrate unter variablen Beschaffenheiten gewährleisten kön¬

nen. Die Robustheit wird als ein Kriterium für das Design vorgeschlagen. Die unsicheren

Parameter werden mit der Latin-Hypercube Methode behandelt und sind im Rezept definiert.

In der Evaluationsfunktion werden dann die Wahrscheinlichkeitsdistributionen der Variablen
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für die Berechnung der Produktionsrate, und die Produktionsrate zur Berechnung der

Robustheit benutzt.

Um die Methodologie ausführlich zu testen, wurden mehrere industrierelevante Fallbeispiele
verwendet. Listen von vielversprechenden Designs mit entsprechenden Beschreibungsindika¬
toren wurden innerhalb einer Stunde Rechenzeit generiert. Die verschiedenen Indikatoren

erlauben Diskussionen und Bewertungen des Designs bezüglich weiterer Kriterien (z.B. Batch-

grösse), die während der Optimierung nicht benutzt wurden. Die Lösungansätze von unter¬

schiedlichen kombinatorischen Problemstellungen kann man erfolgreich mit dem

Superequipment Konzept verbessern. Die Fallbeispiele haben gezeigt, dass eine Rechenzeiter-

sparniss gegenüber den konventionellen Methoden erreicht werden kann.

Die präsentierte Unsicherheitsbehandlung beider multikriterieller Optimierung demonstriert

anhand mehrerer Fallbeispiele, welche der Prozessparameter einen bedeutenden Einfluss auf

die Designproduktionsrate haben.

Die Methoden, die in dieser Arbeit vorgestellt werden, zeigen eine gute Anwendbarkeit, relativ

niedrige Rechenzeiten und helfen bei den Entscheidungen im Rahmen der Integrierter Prozes¬

sentwicklung.
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This chapter states the problems encountered in batch process

design, presents an overview of literature discussing such problems,
reviews the process ofselection ofsuitable optimization algorithm and

in thefinalphasepresents the research goals tackled in this thesis.



Introduction

.
1 Integrated batch process development

Speciality chemicals and pharmaceutical products are typically produced in batch

processes. Custom batch manufacturing requires flexible response to varying
amounts of product orders, delivery times and on demand production. The corre¬

sponding plants are often classified as multiproduct batch plants or as multipur¬

pose batch plants.

According to (Rippin, 1983, Rippin, 1991) the terms multipurpose batch plant and

multiproduct batch plant have been defined as follows:

multiproduct batch plant configuration implies using the plant in the mode where

each product follows the same processing sequence through all the process steps.

multipurpose batch plant implies a configuration of the equipment, where each

product follows its own distinct processing sequence. In the plant the connectivity

among units is flexible. This flexibility then allows to use the production line for

manufacturing more types of products with the possibility of simultaneous

processing. Decisions are to be made as how to allocate the pieces of equipment
and how to manage re-piping of the units.

In practice combinations of these two limiting scenarios might also arise. Multi¬

purpose plants can be used in two main modes: either only one production runs in

the plant at a given time or many processes run concurrently. Some multipurpose
plants consist of discrete but flexible production lines that are independent from

each other.

Because of the escalating importance of these types of chemical processes, in

recent years increased research efforts have been undertaken to develop design
methods for batch processes. Many methods deal with the grass root design of

multiproduct or multipurpose batch plants and include the equipment sizing

problem (Grossmann and Sargent, 1978, Papageorgaki and Reklaitis, 1990, Spar¬
row et al., 1975, Voudouris and Grossmann, 1996). In most cases, the authors con¬

sider the case where many productions run concurrently.

Relatively few publications have been presented that deal with the optimum

design of a single batch process. For grass root design, (Loonkar and Robinson,

1970) described a procedure for the cost optimum design and apparatus sizing of a

single batch process, while (Takamatsu et al., 1982) presented a similar approach
that considers the possibility of intermediate storage. (Yeh and Reklaitis, 1987) pre¬

sented a method for the preliminary grass root design of a single monoproduct
batch process including an approximate sizing procedure. (Mauderli and Rippin,

1979) developed a method for planning and scheduling in multipurpose batch

plants. While they consider many concurrent productions, their first step consists

of the heuristic generation of design alternatives for the production of single prod¬
ucts taking into consideration the plant specifications and the process require¬
ments. (Wellons and Reklaitis, 1989) developed a MINLP formulation for such a

design task. They generate groups of equipment units that can handle one particu¬
lar step of the chemical process. The resulting combinatorial tree is optimized for

the maximum production. The results are typically a list of batches (potentially of
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different batch size) that take different paths through the plant and run in a fixed

sequence.

The pre-assignment of equipment units to a given process step is a constraint that

limits the design possibilities in multipurpose plants in which equipment units

can be used for several tasks and can thus be assigned to different process steps.

(Wellons and Reklaitis, 1991) revised their design procedure for the scheduling of

different processing paths for the same product and included the equipment

assignment problem into the optimization. However, for control, safety and qual¬

ity reasons as well as due to good manufacturing practice (CMP) regulations, sub¬

sequent batches are often preferred to follow the same path and to be of equal size.

Under this perspective, the objective changes from the optimum schedule of n

subsequent batches to the design of the single most efficient batch. To our best

knowledge, the only such method presented so far is the one we described in

(Cavin et al., 2004).

In order to identify an optimal solution for this problem it is important to consider

in the design procedure all details and existing constraints such as equipment

specifications (e.g. range of operating temperature and pressure, lining material,

special supply pipes, the floor at which each equipment is located), design con¬

straints (e.g. feasible and infeasible connection of equipment units), and process

requirements (e.g. reaction mixture that cannot be safely transferred, thus forcing
several operations to be conducted in the same equipment unit). This is the

approach taken in the method presented here.

The most common approach in praxis and literature is a deterministic one (Balas-
ubramanian and Grossmann, 2003a, Papageorgaki and Reklaitis, 1990, Mauderli

and Rippin, 1979), in which fixed inputs are used for rendering fixed outputs for

instance simulations where quality and delivery time requirements of each prod¬
uct must be fulfilled (see for instance (Biegler et al., 1997, Voudouris and Gross-

mann, 1996, Rippin, 1991)). However, it is often the case that many factors are

unknown or uncertain in the early stage, for example yield of a reaction as a func¬

tion of reaction time, problems with crystallization, which is often unpredictable
in the scaled-up processing or solvent volume needed for a given task. These

uncertainties call for a stochastic approach in optimizing the process design.

In the remainder of this section the literature on deterministic and stochastic

batch design problems is reviewed.

1.1.1 Deterministic batch design problem

The basic formulation and systematics of batch plant design problems was pub¬
lished by many authors, for example (Rippin, 1991, Rippin, 1983, Allgor et al.,

1996, Allgor et al., 1999, Biegler et al., 1997, BarbosaPovoa and Macchietto, 1993,

Reklaitis, 1989). In general the problem is to minimize costs and maximize pro¬

ductivity of the design layout for:

(a) a single process optimization focused on proposing a single optimal process

layout, where each chemical task is assigned to a given equipment unit or, in a dif¬

ferent formulation, a unit is assigned to a task

(b) scheduling, i. e. optimization of multiple processes running either in parallel

3
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or successively in time, where the focus of optimization lies on fulfilling the mar¬

ket demand for a number of products under delivery time and other constraints.

In the aforementioned literature, the general aim of the multipurpose batch plant

optimization is to provide an optimal schedule for subsequent batches in order to

meet the required productivity, time and product amount constraints. The meth¬

ods vary, but the basic assumption is that a given batch operation can be per¬

formed by different equipment in subsequent batches. Therefore the process

follows multiple different path flows through the plant equipment. Due to safety
and regulatory GMP reasons in pharmaceutic production, it is not allowed to

modify the allocation of operation to equipment from batch to batch and the proc¬

ess flow path through the plant must remain constant for the whole campaign, or

in the case of pharmaceuticals, for all campaigns after a FDA approval (FDA,

2006). Therefore the problem of scheduling of subsequent batches changes to

finding an optimal design, which will remain unmodified during the whole cam¬

paign.

As (Rippin, 1991) refers, three essential components are presented in any batch

processing problem:
• product requirements
•

process tasks, which must be carried out in their appointed sequence to pro¬

duce each of the products
• equipment needed for carrying out the processes

From these requirements, different problem settings might arise, for example:
• grass-root design of a new batch plant; papers describing this problem are taking
major part of the publications, see for example (Espuna et al., 1989, Yi and Rek¬

laitis, 2002, Wang et al., 1999, Yeh and Reklaitis, 1987).
(Allgor et al., 1996, Allgor et al., 1999) define and solve a preliminary design of

a batch plant and demonstrate the method on several case studies, considering
thermodynamics, recipe related constraints, reaction specific data, equipment
limitations and more.

• retrofitting the batch plant is today even more used than grass-root design (see

(Papageorgaki and Reklaitis, 1993, Young and Reklaitis, 1989).
(Barbosa-Povoa and Macchietto, 1994, Voudouris and Grossmann, 1996) have

published an introduction to the problem structure, proposing tools and algo¬
rithms for solving the retrofit problem, where mostly MINLP methods for solv¬

ing discrete optimization, and its variations are applied in:

- handling specific product with well-known and established routes in the fac¬

tory
- designing the factory for the future requirements and products which may

come to the production in the near future horizon

• time-related problems: scheduling of the process, see (Mockus and Reklaitis,

1999, Reklaitis, 1995, Wellons and Reklaitis, 1989). The problems include also

the use of equipment under uncertainty with different approaches, see for

example (Balasubramanian and Grossmann, 2003b, Balasubramanian and

Grossmann, 2003a)
• sizing the equipment and capacity related problems (Terwiesch et al., 1994,

Young and Reklaitis, 1989)
• mode ofoperation ofthe plant: equipment pool model, production lines model,
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or other existing models (Rippin, 1993)
• considering environmental impacts of the manufacture, waste management

algorithms (Hungerbühler et al., 1999, Stefanis et al., 1997, Dedieu et al., 2003)
Some of the tasks which are closely related to industrial problems of batch

processing can be solved by help of optimization techniques. Usage of such meth¬

ods allows for faster screening of production capacities, plant line selection for

given product, decision making, planning and assessment related to the plant and

process.

The problem that has to be solved is a combinatorial optimization problem. Even

when the user selects to use short-cut models to adapt operation duration, non-lin¬

ear (e.g. stepwise) functions are evaluated to compute the objective function, ren¬

dering this problem a non-linear integer system. Such systems are usually NP-

complete or NP-hard1 and are assumed not to be solvable in polynomial time. Var¬

ious algorithms and methods have been developed to tackle similar problems that

can be classified in three main categories: heuristics, mathematical programming
and randomized search algorithms.

Integrated process development can be more rigorously defined as being optimal
with regard to several factors (multi-objective optimum). The objectives consid¬

ered are typically costs, productivity, energy consumption and environmental

impact. In many cases, such multi-objective optimal designs target for example at

reusing mass and energy from the output stream of one process in the input
stream of another process within the boundaries of a given system (e.g. a building,
a facility) - making mass and energy flows "integrated". In this context it is obvi¬

ous that practical solutions have to be profitable. The challenge lies in finding

process designs delivering high profits while having only little environmental

impact thus being eco-efficient (Hungerbühler et al., 1999, Jankowitsch, 2000).

Problems arising in the design and operation of batch chemical plants can be

described and solved by many different methods. In the 70's and 8o's increasing
trend of massive use of the computers allowed researchers to develop and revise

computational methods in the field of searching for optima (Weisstein, 2006). As

our problem is described as discrete, many commonly known techniques2 of find¬

ing the extreme of a multi-parameter function are not applicable.

A heuristic method, tailored for a specific optimization problem, sacrifices the

solution quality to enhance the computational feasibility. On the other hand, the

class of rigorous methods is composed of several general equation-based mathe¬

matical techniques such as Mathematical Programming (LP, MILP, NLP,

MINLP) and Dynamic Programming. These rigorous methods can guarantee the

optimality of the solution in finite time for some problems (P and NP-complete
Problems) (Garey and Johnson, 1979). However, for large size of NP and NP-hard

class of problems, the rigorous methods are computationally infeasible. Numerous

1. In computational complexity theory, NP-hard (Non-deterministic Polynomial-time hard) refers to

the class of decision problems that contains all problems H, such that for every decision problem L in

NP there exists a polynomial-time many-one reduction to H, written L<p H . Informally, this class

can be described as containing the decision problems that are at least as hard as any problem in NP.

2. i.e. Nelder-Mead method, continuous steepest descend method, Newton method, Flatcher-Powell

method, . . .



practical problems are mixed integer optimization problems, that are intractable.

Such problems commonly are addressed with heuristics that provide a solution,
but not information on the solution's quality.

There exist many discrete algorithms for tackling the problems of finding a global
extreme, or an extreme of a nonlinear function in an NP-hard setting (NIST,

2006).

The global optimization techniques, for example mathematical programming
methods, such as: linear programming (LP), mixed integer linear programming

(MILP), mixed integer non-linear programming (MINLP) require exact stipula¬
tion of the batch design problem. The stipulation has to be explicitly formulated

for each problem separately, including detailed specification of tasks to equip¬
ment assignments. The complexity of the batch design problem also leads to sim¬

plified mathematical models, which often require feasibility check for each

solution and an exact definition of equality/inequality constraints (Grossmann
et al., 1983, Voudouris and Grossmann, 1996, Papageorgaki and Reklaitis, 1990,

Mockus and Reklaitis, 1999). From the broad range of mathematical program¬

ming methods, only few examples successfully handling variety of batch process

design problems are mentioned below.

The linear programming (LP) (Yoo et al., 1999) was used for general retrofitting of

a batch process. It is a simplification of the nonlinear mathematical programming.

Many authors use the Mixed Integer Nonlinear Programming (MINLP) methods

with this type of problems, e. g. (van den Heever and Grossmann, 1999, Mockus

and Reklaitis, 1999, Papageorgaki and Reklaitis, 1990). Branch and Bound Method

(Gross and Roosen, 1998, Grossmann and Floudas, 1987, Patel et al., 1991, Sparrow
et al., 1975) utilizes mathematical programming in a way where the solution

domain is divided into subdomains by reference to integer variables and the sub-

branches are searched for better values than the current optima. After identifying
which branches do not contain the global optimum, the domain space is reduced

substantially.

Randomized heuristic and metaheuristic search algorithms provide an edge in the

feasibility of solutions to many NP-hard problems compared to MINLP methods,
but don't guarantee optimality of the solution. See for example (Zitzler et al.,

2001, Michalewicz, 1994, Pham and Karaboga, 2000) for comprehensive overviews

and applications of the randomized search methods.

Genetic algorithms (GA) offer advantages in the large scale problem and are

inspired by nature's evolution strategy. The solutions are represented as codified

genes. The genes contain all relevant information about the solution. Additional

functions or operators are required to modify the solution genes such as: cross¬

over, mutation, elimination of low performance solutions, learning, etc. In the

field of chemical batch processing, the GA solves many problem types, although it

is necessary to define controlling mechanisms in order to avoid invalid solutions to

be generated (Chen et al., 2003). For the multipurpose batch plant optimization

(Dietz et al., 2006) published a method for evaluating process designs according to

multiple criteria including cost objective functions. The aim was to estimate the

Pareto-front3 by multiobjective genetic algorithm (MOGA). GA optimization
framework inhérents difficulties related to a large percentage of invalid or infeasi-

ble solutions in the population if random generation of chromosomes is used
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(Areibi et al., 2001, Dietz et al., 2006). In the study by (Chen et al., 2003) a new

application of GA has been conducted for a combinatorial follow-up design prob¬
lem and several EA performances have been compared.

Tabu Search - a meta-heuristic described by (Glover and Laguna, 1997), has been

used for solving different types of problems and provides a good compromise
between computational time and results quality. Several practical implementa¬
tions of Tabu Search algorithm have been published regarding batch plant

processing optimization. In the article published by (Wang et al., 1999), a special
Tabu Search (TS) optimization algorithm with double tenure list was used suc¬

cessfully and applied to the multipurpose batch plant design. Better results were

obtained in comparison with the results of mathematical programming (MP) and

simulated annealing (SA).

(Balasubramanian and Grossmann, 2003a) have also implemented a TS method

for the scheduling of processing plants under uncertainty and compared it to a

mathematical programming approach. They found TS to be an attractive method

to obtain in a relatively short time good solutions for large problems that might be

intractable with standard MINLP optimization techniques.

(Armentano and Arroyo, 2004) use multiobjective TS to obtain results in a bicrite-

ria flowshop problem and demonstrate that the TS cannot only find the global
optima in the defined problems, but also find in some cases better solutions than

published before. (Lin et al., 2005, Lin and Miller, 2004) defined a methodology
used to solve a wide variety of chemical engineering problems. They demonstrate

on several small NLP and MINLP test cases and three small- to middle-scale

chemical process synthesis problems the feasibility and effectiveness of the TS

techniques.

(Cavin et al., 2004, Cavin et al., 2005, Mosat et al., 2005a) studied a multiobjective

optimization of multipurpose batch plants using Tabu Search as a meta-heuristic

applied to the problem of finding a set of "high-performance" process-layouts. TS

makes use of adaptive memory to escape local minima. As shown in these publica¬
tions, the Pareto-front approximation of solutions is often not a sufficient criterion

for decision-making if the solution, a process layout, has to be implemented in

real conditions. Therefore a methodology is presented, which allows for finding a

non-dominated solution, Pareto optima and a diversified selection of feasible solu¬

tions to the batch process design problem in order to avoid infeasibility of

addressed solutions due to insufficient complexity of the underlying mathematical

model of the process. This methodology is similar to the Rough Set Method and

Ranked domain drift group analysis presented for example by (Yanofsky et al.,

2006), incorporating the knowledge of an expert within the optimization algo¬
rithm. The result of this process is a set of all possible candidates for the optimal
solution, called the Pareto domain, that have been ranked according to the

expert's preferences. In addition to providing the optimal solution to the problem

3. Pareto-front is a set of states of objective parameters satisfying the criterion of Pareto optimality.
Pareto optimality is optimality criterion for optimization problems with multi-criteria objectives (multi-
criteria optimization). A stated (a set of object parameters) is said to be Pareto optimal, if there is no

other state B dominating the stated with respect to a set of objective functions. A stated dominates a

state B, ifA is better than B in at least one objective function and not worse with respect to all other

objective functions



at hand, the ranked Pareto domain can yield useful information regarding the

robustness of the optimal operating point.

Probabilistic batch design problem

In the literature, the probabilistic batch design problem is mainly cited in the

scope of scheduling and production requirement satisfaction (Grossmann et al.,

1983, Reklaitis, 1995), where the allocation of tasks to units or vice-versa is consid¬

ered under uncertain production variables or uncertain per annum production

quotas for a number of products. Hence, uncertain production requirements are

the basis of uncertain optimization, see i.e. (Shah and Pantelides, 1992) and the

resulting multipurpose batch plant solutions are penalized for infeasible produc¬
tion regions.

Usually the production quota is given by customers and the delivery time is a

function of the available plant equipment and equipment sizes, etc. At the end,
the most important factor for delivery time is the productivity measure - typically
the performance of design, which should be maximized. Maximizing of the pro¬

ductivity leads to inflexibility of a batch design, as shown by (Mulvey et al., 1995)
and vulnerability of the design performance by change in operating conditions.

Therefore a compromise between peak-performance, which is often the case in

productivity-optimal designs, and invariance to uncertain operating conditions

has to be achieved.

In the extensive review by (Sahinidis, 2004), probabilistic batch design problems
solved by mathematical programming methods are enlisted. The authors recog¬

nize, among many sub-problems in the uncertain optimization of batch processes,

that the most important topics are: minimizing deviation from goals, robustness as a

quantified criterion of process quality and flexibility of a design. Mathematical

methods are presented as solvers for such kind of problems. The principles of han¬

dling uncertainty in process development remain independent of the method

used. One of the successful methods for handling uncertain models within the

optimization is programming with recourse, a two-stage here and now program¬

ming, where the first-stage variables are those that have to be decided before the

actual realization of the uncertain parameters. Subsequently, once the random

events have presented themselves, further design or operational policy improve¬
ments can be made by selecting, at a certain cost, the values of the second stage, or

recourse, variables. We use the approved two-stage here-and-now programming
method in connection with a metaheuristic multiobjective TS algorithm for solv¬

ing the multiobjective robust design problem. Before defining the actual robust

design problem, we will review robustness and flexibility criteria in the literature.

Robustness of a batch design

In the literature, a robust batch process or the term "robustness" is in all cases

related to uncertainty, but definitions of the term differ substantially. Basic distinc¬

tion can be observed among the definitions: 1. flexible design problem and the

2. robust design problem, which will be used for the purposes of this literature

overview. Therefore the term flexibility, although in the literature often cited as

robustness, will be used in connection with the first problem definition. The
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robustness criterion will be used in connection with the second problem defini¬

tion.

1. The flexible design problem.
The flexibility criterion's goal is to provide quantitative measures of ensuring feasi¬

ble performance of a design under all considered uncertain conditions. In this

sense, a flexible design could be understood as a reliable design, when for example
after one equipment unit fails, the design is still operable. This term is also known

under "probability offeasible operation" (Straub and Grossmann, 1993).
Some of the applications of the flexible design problem include:

- quantitative criterion as an index for operational flexibility (Swaney and Gross-

mann, 1985).
- flexibility as a process design reliability (Kubic and Stein, 1988), handles computa¬
tions by fuzzy sets programming method.

- stochastic geometric programming applied to engineering design under uncer¬

tainty by (Avriel and Wilde, 1969), where the flexibility is used as a combined crite¬

rion of satisfying the upper and lower bounds for operation variables and costs in

the optimal condenser design problem. The method uses a mono-objective two-

stage permanently feasible geometric programming approach.
- flexibility of various problems related to design of a problem was examined by
(Bansal etal., 2002), where parametric programming was used. The method is

applicable to linear or nonlinear problems.

2. The robust design problem.
The robust design criterion's goal is to provide a quantitative measure of process

stability under uncertain conditions so that the performance/profit variance is min¬

imized. The robust design method aim is to identify a design in which the influ¬

ence of all uncertain input parameters in all possible combinations is minimized.

Robustness objective applications in the batch process design include:

- (Bernardo et al., 2001) identified and incorporated quality costs and robustness cri¬

teria in chemical process design problems under uncertainty within a single-level
stochastic optimization formulation. The solution defines an optimal design,
together with a robust operating policy that maximizes average process perfor¬
mance.

- (Ahmed and Sahinidis, 1998) defined robustness as a goal programming approach
to balance trade-offs between expectation and variability of the recourse cost in the

batch process development. The linearized form of a non-linear problem in a two-

stage programming was applied.
- (Nishida et al., 1974) defined robustness as a measure of attaining the min-max

performance structure of a design, which should minimize the effect of the worst

variations in the uncertain parameters. It uses mono-objective optimization.
- A robustness measure in the monoobjective cost optimization of a chemical pro¬

cess with an objective function including error parameters as a result of uncertain

inputs has been proposed by (Painton and Diwekar, 1995). The measure is quanti¬
fied as a penalty to the objective function. Simulated annealing is used in this case.

- (Samsatli et al., 1998) considered robustness as a measure for a reasonable perfor¬
mance over a wide range of uncertainty. They define some general robustness met¬

rics that can represent significantly different robustness objectives simply by

modifying functions and parameters.
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- Robustness as an optimal design of systems involving parameter uncertainty char¬

acterized as a minimum average normalized deviation of the objective from the

optima over the range of uncertainty (Wen and Chang, 1968). The proposed defi¬

nition of robustness involves minimizing the expected relative sensitivity, which

may be defined according to the probability distribution of the system parame¬

ter. The method is monoobjective.
- (Bonfill et al., 2005) addressed robustness in the scheduling problem with uncer¬

tain operation times

Another approach combines both flexibility and robustness into one criterion for

obtaining both flexible and robust designs. (Rooney and Biegler, 2003) formulated

the combination of feasibility problem (model parameter uncertainty) and robust

design problem, where robustness is a quantifier of the operating parameters

response.

(Mulvey et al., 1995) defined the term Robust Optimization (RO) and differenti¬

ated between: model robustness, which is important for mathematical program¬

ming models, where the authors state that robustness/feasibility of such model is

usually overemphasized, and solution robustness, which is then particularly impor¬
tant in the context of optimization formulations. They also showed that robust¬

ness, as an objective function, is antagonistic to the costs-performance objective
function. This principle will also be demonstrated on a case study in the

Chapter 4 Uncertainty with application to design robustness measures.

The development of new processes has therefore gained in complexity, due to

these new constraints or objectives. But the growing globalization simultaneously

requires faster time-to-market and hence tends to reduce the time a company can

invest for process design and optimization. In particular in fine chemistry, phar¬
maceuticals and custom manufacturing, chemical companies must continuously

develop their product portfolio (and hence introduce new production processes)
in order to maintain their competitiveness. Hence a reliable, efficient and rapid

process synthesis - that takes into consideration all the objectives and

constraints - is one of the keys for a successful business in these sectors.

1. 2 Research focus

In the traditional sense, batch process design is understood as a final part of

Research & Development (R&D) for a given product. Figure 1-1 shows a scheme

of the chemical process development in custom manufacturing, with an aim to

create profit for a company by fullfilling the order of a chemical. In the first place,
the customer is the initiator of such a request. The product specification in early

phases can lie anywhere from underspecified (not even amount that will be

ordered is known) to perfectly defined (probably in the case where the customer

already ordered the same compound before). After the initial screening, request is
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usually formed from a customer order. At this point, in many cases neither the

final selling price nor delivery date is known. If the compound has not been man¬

ufactured before, the production recipe is also unknown and has to be developed
first in the laboratory scale. Usually process chemistry is not included in this first

stage. After the laboratory recipe is defined, the bench- and pilot-scale experi¬
ments are performed. This is the first point in time when engineers start concern¬

ing about the process layout, that means how the chemical operations will be

allocated in the factory. For reasons such as: due dates, legislation and similar, the

production layout should be fixed as soon as possible. Therefore the most acute

opportunities for design optimization, that means performance or cost optimiza¬

tion, arise early in the process. In the ideal state, the optimization begins directly
after the request is formed, which is rather unrealizable.
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Figure 1-1: Overview of the batch process development in custom manufacturing
from the order to the final production step.

Design optimization is performed according to multiple criteria, where the priori¬
ties of the objectives are known. Objectives are in most cases the costs and related

productivity, ecology, safety, eventually others such as: simplicity of the process,

robustness under varying conditions, etc. After the optimal design is identified, at

present stage in industry, mostly by non-automatized calculations, the production
phase can begin.

2



1.2.1 Objectives

A novel approach for solving various design problems related to single products in

multipurpose batch plants is presented.

The main goals of the research posed in this thesis can be summarized as:

1. developing methodologies and algorithms supporting the batch plant engineer¬

ing development team during the process design phase

2. finding and demonstrating a practical method of reducing significantly the size

of the batch design optimization domain

3. stipulating and investigating a stochastic mathematical model related to chemi¬

cal batch recipe which can be handled by multiobjective optimization in a rea¬

sonable time frame allowing rapid result output.

As a first step, the problem was defined as a single product multipurpose batch

design optimization, where the single product is to be manufactured in a given

plant. The method will be referred to as "the conventional TS optimization". In

the following chapters, we extend the conventional TS method and include: new

universal modular Tabu Search algorithm, new objective functions, a new

approach solving the batch design problem by a "superequipment concept" and

introducing uncertainty into the formulations.

The problem domain of early stage batch process development will be extended

in the following way: in addition to the optimization of a single deterministic

design, the new optimization algorithms assist in: retrofitting of equipment, grass-

root design of a new plant, automated production plant line selection or in evalu¬

ating a design robustness by an automated stochastic method.

1. 2.2 Automated deterministic batch process development
and assessment

Here, the problems related to single deterministic design optimization are han¬

dled. A range of objective functions is defined, resulting in a results set compris¬

ing for instance: costs, diversification of resulting designs, simplicity of a design,
NPV, ...

The new objective functions aim at providing more detailed information

about proposed design set to the decision maker. Currently 12 objective functions

related to deterministic problems are programmed and up to 5 can be included in

a prioritized list in a multiobjective optimization.

As the multiobjective optimization problem is nonlinear and NP-complete,
an efficient solving algorithm has to be defined. In this thesis a Search algorithm
is defined as an optimization basis and demonstrated on multipurpose batch

plants process development problems.

Introduction
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1. 2.3 Superequipment - an efficient model for reducing the

optimization domain complexity

Problems related to the modification of a plant line by adding one or more equip¬
ment units, the selection of a plant line out of several available, or the definition

of a whole new plant are handled. A new approach called superequipment concept
has been developed for solving this set of problem types. For each problem type a

different list of objective functions can be selected.

In the novel approach, the concept of superequipment is defined as an abstract

model utilizing a virtual unit, which is capable of performing any physico-
chemical batch operation. Each superequipment is transformed into a real equip¬
ment unit, for example a reactor, during or after the optimization in order to eval¬

uate performance parameters of a design. This novel concept uses an implicit
definition of a superstructure and essentially optimizes on the transfers between

different equipment units in a design.

The superequipment model helps in determining the optimal equipment units for

a given recipe and is applied on the following problem specifications:

1. Plant retrofit for a given plant line and single recipe.
This problem includes investment in an existing plant line. The upper limit of

investment in terms of number of equipment has to be set in order to obtain realis¬

tic designs and results. Net present value is usually set as the most important objec¬
tive function in the prioritized list of objectives. The method identifies those

equipment units that provide the highest Net Present Value (NPV) and determines

corresponding process layouts. The equipment units are characterized by equip¬
ment class, size, lining material, additional options (attached condenser, distillation

column) and costs.

2. Plant line selection for given recipe.
The goal is to obtain a unified sorted list of optimal designs from all plant lines,

plus the information about the investment scenarios into additional equipment
if the capacity of a certain plant line is not sufficient. Usually there is a compro¬

mise between selecting a large plant line with high throughput versus a small

plant line favouring the simplicity of designs. As the list of results stores diverse

designs from each plant line, the method offers important information for deci¬

sion making.

3. Grass root design for a single recipe.
This problem demonstrates grass-root optimization of a batch plant, offering all

the necessary details on each stored design, such as: size of the units, NPV, vessel

options, lining materials, multiple choices for selected units and more. However

this is limited to one product up to date, which means the case is constructed as

monoproduct batch plant. The grass-root design case offers the testing of the

concept using a larger number of superequipment.
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1. 2.4 Stochastic nonlinear two-stage multiobjective optimi¬
zation

The new method poses inclusion of uncertain variables into the multiobjective

optimization algorithm. This concept is demonstrated on a single product to be

manufactured in a single multipurpose production plant line under uncertain rec¬

ipe variables. The uncertain recipe variables can be for instance: operation time

and operation volume.

The response to uncertain operating conditions, as a quantitative measure of a

batch design will be referred to as "Robustness of a design", or short: robustness.

As a novel technique, inclusion of performance robustness as an objective func¬

tion alongside with productivity of a design results not only in optimal perform¬
ance design set or solely robust designs, but both optimal performing and robust

designs in one.

The application of all proposed multiobjective optimization methods is demon¬

strated by case studies.

1. 2.5 Overview of the thesis content

In the Chapter 2, the multiobjective optimization algorithms will be presented.
This chapter comprises the basic TS formulation, the extension to the superequip¬
ment concept, the definition of the various objective functions, the approach for

incorporating uncertainty and the implementation of the whole concept in terms

of software.

On the basis of the mathematical formulations a set of case studies will demon¬

strate in Chapter 3 the application of the superequipment concept. The case stud¬

ies comprise: grass root design of a new batch plant, retrofitting of equipment
units in a selected plant line and a selection of a suitable batch plant line for a

given recipe.

A novel robustness measure of a design as an objective function in a multiobjec¬
tive optimization will be demonstrated in Chapter 4. A case study involving
uncertain recipe definition to be produced in a multipurpose batch plant is pre¬

sented.

Chapter 5 presents conclusions and discusses possible future developments on the

basis of the presented methods.
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Abstract

The aim ofthe methodpresented here is to optimize the design of
a single chemicalprocess to be implemented in an existing multipur¬

pose batch plant. Afier giving a detailedproblem definition the dif¬
ferent steps of the procedure are explained in the following
paragraphs. This chapterformulates the deterministic and stochastic

batch design problems that are tackled in this thesis. A solution to

these problems is a design, i.e. an allocation of recipe tasks to batch

plant equipment. For this, a new approach introducing so-called

superequipment ispresented.
An improved modular Tabu Search algorithm will be outlined

for handling multiobjective optimization problems. Objective func¬
tions as quantitative measures of the quality ofprocess designs are

mathematically expressed afterwards.
Applications and case studies are then presented in Chapters 3—4.



Methods & algorithms

2.1 Batch process design problem

After specifying the batch design problem we introduce the design criteria in form

of objective functions. The definitions are generally valid for both deterministic

and stochastic batch process design problems. If some definitions or equations are

valid only for the stochastic problem, it will be stated specifically for such case.

2.1.1 Problem definition

The presented approach is used for solving the following problem definitions:

Given:

Recipe
• expressed as a sequence of chemical/physical tasks

• capacity requirements for each task of recipe per unit of final product
• base duration of each task at the input scale

• recipe constraints (allowing or forbidding certain order and combinations of

tasks)

Plant data

• equipment description including detailed specifications such as: nominal vol¬

ume, operating T-P ranges, lining material, additional options (attached con¬

densers, distillation columns), etc.

• connectivity constraints among equipment in the plant line

Economic data

• detailed cost composition on campaign basis

• investment costs where applicable

Heuristics

• which equipment class is capable of performing which recipe operation classes

• design heuristics

• scale-up rules for each operation class expressed as a function of batch size

and equipment class

• heuristics for the optimization related to superequipment (e.g. determining the

equipment class for superequipment)

Optimization parameters

• one or more objective functions

Determine:

A set of dominating (approximated Pareto-optimal) plus structurally diverse domi¬

nated layouts for the process, i.e. allocation of recipe tasks to equipment units, struc¬

ture and order of the final recipe (e.g. in parallel or in series use of units)
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2.1.2 Overview of the method

A general overview of the method is presented in Figure 2-1. The data inputs rep¬

resented as cylinders plus the constraints are needed for the design optimization.
The process routines for recipe analysis, superstructure generation, process simu¬

lation, and optimization have been implemented in a Matlab® program. The

process simulations can also be conducted in a commercial batch process simula¬

tor.

Equipment
Database

Connectivity
Constraints

Objective functions

Data Input

Recipe

Analysis

(blocs)

Base

Recipe

Simulate Process in

commercial Package

i

Recipe
Simulation

Results

Recipe Constraints

Adapt
Durations

inMatLab®
«»"»neroial

Figure 2-1 : Overview of the batch process design method. The gray rectangles mark

usage of optional external software, the rectangles with parallel vertical lines indicate

the main process data flow (Cavin, 2003).

2.1.3 Inputs and term definitions

This section describes in detail each input component from the

Section 2. 1.1 Problem definition. The list of corresponding mathematical opera¬

tors is given in Table 2-1.



Methods & algorithms

Table 2-1 : List of operators. The letters used in the definitions are variables.

A<-B B is transformed to A

AeB A is contained in B

A£B A is not contained in B

AcB A is contained in B (subset, group operator)
A^B A contains B (group operator)
A\jB union ofA and B

A-^B B is assigned to A

A.B column B of matrix A

A\A.C=d
take rows ofA where the value of column C

is d

A.B\A.C=d take only column B (same rows as above)

\/A:B for all A the dictum B is valid

A®B pair-wise combination ofA and B

A*B A is not equal to B

Ac\B intersection ofA and B

n
A

u A

1
= 1

union ofA over 2=1..»

\A\ set containing A

0 empty set

2.1.3.1 Recipe

The Recipe [R] is an ordered sequence of physico-chemical tasks with detailed

task specifications. R is a matrix containing vertically the physico-chemical task

rows. The vertical position, also called index [R.ID], represents the position of the

given task in the sequence of tasks (see Figure 2-2a).

Each row of R first indicates the type of the task [R.OpClasslD], the base volume

[R.Volume] and the estimated base duration [R.Time] required for the task. All

column names ending in ID are relations to lists of available options stored in

library matrices. For instance, R.OpClasslD refers to the operation class matrix

[OpClass] (or in a short form [oc]) containing all supported types of tasks (e.g.
reaction, distillation...), see Figure 2-2c and Table A-2. Operating temperature

[R.Temperature], pressure [R.Pressure] and required lining materials [R.LiningID]
are then given. Each step also contains additional information in form of "flags"
[R.Flag] that encode accepting or refusing parallel or serial use of units for

processing, required, allowed or forbidden transfers during or after the block.

Based on R.Flag, where one flag indicates the impossibility of a transfer between

two subsequent tasks - i.e. the two tasks must be conducted in the same equip¬
ment unit(s) - the recipe is condensed in a block matrix B (see Figure 2-2ab).
Each no-transfer block row of the B matrix contains a link to the corresponding
recipe R rows [b]. Each row of B contains the largest volume required during the

block, as well as the highest pressure and temperature reached (the maximal val¬

ues for each block operation are marked in bold case on Figure 2-2b). The block

[&,] from the bolck recipe matrix B is defined by Eq. 1.

k,:= R\R.ID = b (1)
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The recipe also includes information about the base case batch size, which is

computed from the material balance of the basic design given as an input The

material balance computations are performed by external software tools or are to

be entered directly to the optimization algorithm Base case in this scope is the

state for which the material balances have been computed and refer to the basic

layout of the process, usually the simplest possible arrangement of equipment to

perform all the tasks of the recipe

Per definition, any variable in the recipe can be considered as uncertain In the

following sections, we define as uncertain the time and volume requirement of

individual tasks, which results in the uncertainty in cycle time (CT) and batch

size (BS) for each generated design

(a) [R] Recipe matrix:
R.ID R.OpClass R.Time R.Volume R.OpClasslD R.Flag R.Temperature R.Pressure R.Lining R.PrevOp R.NextOp

[min] [m3] [°C] [bar]
1 Charge 20 8 4 4 0 20 1-1 — 2

2 React 230 8 4 32 1 180 4-1 1 3

3 Charge 20 9 4 4 0 90 1-1 2 4

4 Distill 160 9 4 17 2 80 05-1 3 5

y°) [B] Block Recipe matrix:
BlockID

(K)
B.OpClass B.Time

[min]

B.Volume B.OpClassID B.Flag

[m3]

B.Temperature

[°C]

B.Pressure B.Lining

[bar]

b

k1 Charge, React 20, 230 8.4 4,32 1 180 4 -1 1,2

k2 Charge, Distill 20, 160 9.4 4, 17 2 90 1 -1 3,4

(c) [OpClass] Operation Class matrix:

OpClassID OpClass.Name OpClass.Scaling
32 React special scaling
4 Charge constant scaling

(d) [EqClass] Equipment Class matrix:

EqClassID EqClass.Name
14 Reactor

(e) [A] Class Assignment matrix

A-OpClassID A.EqClasslD
32 14

4 14

Figure 2-2: Input matrices of the batch process design problem (R, B, OpClass,
EqClass) The R Lining material requirement -1 denotes "any lining possible" for the

particular operation

2.1.3.2 Plant data

Plant data is expressed as follows Equipment list [E] is a list of all equipment

physically present in a given plant Each equipment is characterized by its proper¬

ties î equipment class, 2 unit volume, 3 construction material, 4 lining mate¬

rial, 5 attached optional components, 6 location in the plant For investment

scenarios, additional equipment units and information are available (see below)

Limiting operation conditions of each equipment unit are stored as a link to

matrix [P], containing a list of standard temperature and pressure ranges (TP

ranges) of units typically used in industry
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Operation class [OpClass] is a matrix containing: operation names, operation identifi¬

cation number (ID) and corresponding operation scaling rules (constant, linear,
non-linear smooth and step-wise scaling of volume or time). For example: opera¬

tion class: 'multidrop centrifuge', scaling of operation time according to volume:

stepwise4 (see Figure 2-2c and Table A-2)

Equipment class [EqClass] is a matrix containing equipment class name and equip¬
ment class number [EqClasslD]. For example: equipment class reactor: 14 (see

Figure 2-2d and Table A-i).

Operating conditionsfor equipmentunits pressure and temperature ranges of equipment
are divided into temperature and pressure ranges, which correspond to industry
norms for vessels. For example: TPrange 1:0- 280 °C, 0-6 bar, TPrange 2: -100 -

50 °C, 0-6 bar. The following lining materials are defined: 1, Stainless SteelA^fA
(material standard); 2, Glass/Email/Graphite; 3, Hastelloy (metal alloy); 4, DIN 1.4539

(German industry norm); 5, PTFE. The lining materials are in the ascending order of

resistance to corrosive or hazardous materials. If the lining material is not relevant for

the recipe task (e. g. non-corrosive operation), a lining material notation "-1" is used

consistently in this publication. In such case the lining material selection is not a lim¬

iting factor for the equipment selection.

Plant line equipment [E] is a matrix containing set of specific equipment units physi¬
cally present in the given batch plant. Each equipment is characterized by its

identification number, name, nominal volume, lining material, temperature and

pressure range (TPrange as a part of (PJ), floor in the plant. For example: ID: 1,

unit name: 'Reactor 12', nominal volume: 16 m^, lining material: PTFE,TPrange:
o - 280 °C, 0-6 bar.

2.1.3.3 Economic data

Economic data input is needed for operating costs (including material costs, waste

disposal costs, energy, utilities, labour and other costs) and investment cost (e.g.
when implementing new equipment in an existing plant line or grass root design
for given recipe).

The economic data cost structure for a project has been implemented as a flexible

data structure. The main cost composition components for a general batch proc¬

ess are listed in Figure 2-3. This data structure is flexible, that means every field

can be renamed, modified, etc. This flexibility is achieved by an eXtended

Markup Language (XML) implementation (Marchai, 2003) of the database. For

the purposes of case studies listed in this thesis, the cost computation schema

listed on Figure 2-3 is used, where the investment costs belong to the other/user

defined fields.

4. Usually multi-drop centrifuge equipment is used for the operation class: multidrop centrifuge, in

which case a certain fraction of the total amount of crystals is processed in a predefined period of time.

The next charge requires again a certain period of time plus time for loading/unloading of materials.
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A List of equipment units [Ebuy] that could be added to an existing plant, including
the maximum allowed number of each class type serves as a basis for investment

retrofit and grassroot scenarios. For instance a possible specification might be: at

maximum two reactors and one multi-drop centrifuge can be added to a given

plant, not exceeding two equipment units in total (e.g. due to space limitations in

an existing plant). The investment related data for the retrofit scenario and grass-

root design are computed according to "six-tenths" rule (Perry and Green, 1997)
or searched in databases of existing prices (Matches, 2006, Cowan, 2003), scaled-

up and corrected according to material, size, options and installation factors. The

Net present value is computed according to cash flows specific for each campaign
and design.

costs

I
Costs independent

of design

raw materials

waste

(V)

ivy

overhead
m

(MJI
other/user defined

Costs dependent
of design 1

(M)|
energy 1

Ml
labour

plant rent / ff) 1

equipment rent

changeover

other/ (M)|
user defined |

Figure 2-3: Project costs scheme as programmed in a XML database. Fixed costs are

denoted (F), variable costs (V) and mixed costs (M) consisting of both the fixed and

variable part. The categorization is specific for the presented case studies and might dif¬

fer to industrial practice in some details.

2.1.3.4 Problem related heuristics

Heuristics on implementing the design into the real facility include assignments of

given operations to an equipment class in an assignment matrix [A].

Class assignments [A] is an assignment matrix of the type: operation class ID can be

processed by a specified equipment class ID, i. e. the assignments contain multi¬

ple links of operations to be conducted in a given equipment class. For example:

operation class 'reaction' with ID = 32 can be processed by equipment class 'reac¬

tor' ID = 14 (see Figure 2-2e and Table A-3). For instance reaction, crystallization,
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extraction and other operations can occur in a batch reactor, filtration, cake-

washing and drying can be performed in a nutsche-dryer.

Additional heuristics are defined in order to ensure feasible and realistic designs
in the results list, for example at maximum two units can be used in parallel,

equipment cannot be used both in serial and parallel mode at the same time.

These rules are implemented in the algorithm and applied automatically by the

move definition in Tabu Search (TS) (see also (Cavin et al., 2004)).

2. 2 Tabu Search

The Tabu Search (TS) method (introduced by (Glover and Laguna, 1997)) is used

to approach the investigated batch design problems. This algorithm is a metaheu-

ristic global search method, and hence needs a stopping criterion. The heuristic

component in the optimization has been selected after careful consideration of

various aspects. The large size of the combinatorial problems in chemical batch

processing applications often ensues NP-complete model formulations. The

papers published by (Cavin et al., 2004, Cavin et al., 2005) discussed selection of

proper optimization algorithm and show advantages of using Tabu Search algo¬
rithm for batch design problems. They also discuss parameter settings of such TS

implementations, such as: neighbourhood size correlated to the input data, tabu

list length, restarting options, aspiration criteria settings, etc. The TS implementa¬
tion method presented in this chapter provides a wide selection range of batch

designs, which include dominating (approximated Pareto-optimal) designs as

well as dominated set of designs, in order to minimize the possibility that the

majority or all of the optimal results are not feasible because of hidden constraints

and limitations. Furthermore, designs are stored that are structurally different

than the dominating solutions. Later in the text, we refer to the list of such domi¬

nating, dominated and structurally different solutions as the results list. The

results list contains also additional detailed information on each design. This sec¬

tion will summarize terms, definitions and equations needed for the scope of

explaining the optimization algorithms for various problem settings:

1. the deterministic batch design problem optimization

2. the superequipment concept

3. the stochastic batch design problem optimization

2. 2.1 General Tabu Search algorithm

This section details a general TS method, which is later used in combination with

different problem specific functions to solve the problems introduced in

Chapter 1 - Introduction.
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Initial Solution

First an initial solution has to be provided; it should be as good as possible. If the

initial solution is near the optimum, the number of moves needed to reach the

optimum will be small, and hence the algorithm will find it quickly. Therefore, an

initial solution proposed by experts or generated by heuristics is usually advanta¬

geous.

A method providing multiple initial solutions can however be preferable: the con¬

straints may make the solution space non-convex, and hence a "good" initial solu¬

tion may be computationaly very far (i.e. numerous moves) from the optimum. An

efficient way of exploring the whole solution space is to restart with different ran¬

domly generated initial solutions. Further refinements can be implemented. For

instance, a strategy used by (Wang et al., 1999) is to influence the random selec¬

tion of the initial solution to cover previously unvisited regions of the optimization

space. This allows a targeted diversification of the search.

Move Definition - Neighborhood generation

The definition of the moves, i.e. the definition of the modifications that can be

done at each iteration to the current solution, is highly problem-specific. The cur¬

rent solution combined with the moves defines a neighbourhood. In general
terms, with more moves allowed, the algorithm can be quicker (less moves needed

to go to the optimum solution), and less prone to be blocked by constraints. How¬

ever, as only a subset of the neighbourhood will be tested (see below), chances are

also higher that the optimum will be missed. This is the first trade-off in the para-

metrization of the TS; as will be explained in the following, such trade-offs arise

for most settings of the TS.

Neighborhood - Candidate list selection

According to the number and kind of moves defined, the neighbourhood can be

quite large. If at each iteration every neighbour must be evaluated, the algorithm
will become quite slow. Therefore, usually only a subset of the neighbourhood is

considered. The most used method is to randomly select a fixed number of neigh¬
bours for consideration. The trade-off is then: the larger the sub-set, the slower the

algorithm; but the smaller the subset, the higher the risk not to find the optimum
- moves towards the optimum might simply not be selected in the subset of the

neighbourhood.

Heuristics can be developed to either adapt the subset size (larger subset in

unknown regions in order not to miss interesting solutions, smaller subset to

escape a local minimum quicker), or to favour some "promising moves" over regu¬

lar moves. These techniques, known as intensification, depend usually on knowl¬

edge gained during the optimization.

Tabu list

A special selection rule is set up to avoid loops. The latest move is placed on a

tabu list, and the reverse move is forbidden during a certain number of iterations.

This will allow the algorithm to escape local optima, and hence to conduct a glo¬
bal optimization. Indeed, when the optimum is found, the best neighbour will be



algorithms

an uphill move. In most cases, at the next iteration, the best neighbour will be the

minimum just left; but as the reverse of an accepted move is tabu, returning to the

previous solution is forbidden and the algorithm has to continue going uphill, i.e.

leaving the local optimum.

An important parameter is the tabu list size, which indicates how long the reverse

of one applied move will remain prohibited, as well as the number of moves that

are forbidden (the list being usually managed as a First-In First-Out (FIFO)

stack). The longer the tabu list, the smaller are the chances that the algorithm will

loop around a local optimum. But the longer the list, the more limited the search

becomes (good solutions could be missed because a move leading to them

remained tabu for a long time).

A common optional improvement to the tabu management is aspiration. In order

to lessen the limitations arising from long tabu lists, tabu moves may be accepted
if they lead to a solution that is better than any solution found so far.

Objective function - best candidate selection

After the neighbourhood has been filtered to eliminate tabu moves and a subset

has been selected, each neighbour in the subset is evaluated with regards to the

objective function(s). The best neighbour is selected, and becomes the "initial"

solution for the next iteration.

The objective function value (the "fitness" of a solution) can however be manipu¬
lated before the selection. In highly constrained problems for instance, con¬

straints could be handled as penalties (and hence "validate" the solutions, but

assigning them a lower value). The penalties should be large enough to promote
valid solutions, and should be proportional to the number of constraint violations.

However, they should not be so large as to effectively forbid such moves. The fit¬

ness can also possibly be modified according to other heuristics, in order to favour

(or penalize) a "direction" - for example to favour exploring unvisited areas of the

solution space. This method known as diversification allows a better covering of

the overall solution space. It will depend on the regions visited during the optimi¬
zation. As indicated above, this objective can also be achieved with multiple
restarts in different regions of the solution space.

In the Figure 2-4 an algorithm scheme of a problem independent TS algorithm is

defined. By detaching the data-flow from the TS algorithm, a certain degree of TS

algorithm independence from the problem type was achieved.
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Figure 2-4: Modular and universal Tabu Search algorithm structure. The filled-

boxes represent data storage, the full arrows logical data flow, the dashed lines hierarchy
of the functions. In the program implementation, each non-filled rectangle represents
a separate function.

The Inputs of the problem have to be defined centrally, processed by the prepare

inputs algorithm and passed to the main function: Tabu Search. The Tabu Search

function calls then all the problem specific subroutines, which will initialize the

data, define neighbourhood, apply moves on selected solution candidates and

evaluate the modified candidates according to multiple objective functions. The

decide module returns the best candidate according to: tabu tenure, stored optima
and advanced TS options. After the inner iteration loop has passed, the sorting/
eliminating of solutions takes place. The restart loop refers to the optional restart¬

ing of the algorithm at random points. Stopping criteria have to be met in order to

obtain the final optimization results. Usually the postprocessing of the candidates

is the final phase in the optimization.

2. 2.2 Tabu Search applied to the deterministic batch design
problem

The method aims at finding the optimal assignment of recipe blocks into given

equipment units (Mosat et al., 2004). The transfers between the units are also

determined and define the moves of Tabu Search. As an input, a base case layout
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(a design) and initial batch size, cycle time, operation durations, temperatures,

pressures and other data are required. During each iteration one design is altered

and all neighbours originating from that particular design are evaluated for their

parameters (see Figure 2-5). The design parameters, such as task durations, vol¬

ume and time requirements for each block are adjusted and scaled accordingly.

Tabu Search

Recipe

Heuristics

Plant

Equipment

Objective
functions

Diversification
Results

list

Productivity Search space

Nr. of units -a

Batch size

NPV

Costs

Connectivity

Objective space
Design #1

^7 Design #2

3,
o

3
to

3
rv

Design #3 SL

Figure 2-5: An overview of the implementation scheme of Tabu Search algorithm
used for deterministic batch process design optimization.

The complete optimization algorithm was programmed as a software package in

the Matlab programming language. In addition to the Matlab algorithms used for

the TS program, additional software was used for input data definition (see Figure
2-6; Batch Plus engineering software for generating the plant line database [E],
XML for defining the cost of campaigns and economic data) and as the output,
the result reports are generated in webpages (HTML).



Methods & algorithms

y

HTML Viewer

Figure 2-6: Software packages (grey boxes) used in different stages of batch process

optimization for data processing (ellipses)

2. 2.2.1 Design - solution to the batch design problem

Design (L) is a solution to the multiobjective optimization problem representing a

process flowsheet. Each design is defined as a set of assignments of given recipe
tasks to a specific equipment unit. First we define the mathematical formulation

and later a design example will be listed.

Let i be the main counter among all operation blocks in the recipe matrix B (see

Figure 2-2). For each block k, from the block recipe matrix B feasible equipment
classes [U] are determined:

Ut := ( A.EqClassID \ A. OpClassID z^{ukt. OpClassID ) ) (2)

Eligible equipment units from the matrix E (database of all equipment in the

plant line) are stored in matrix V as defined by Eq. 3:

Vt:=(E\ E.EqClassID e Ut ) (3)

Recipe block operations are defined as:

X,:={krbj} (4)

where the index / means that several subsequent blocks k can be grouped into one

common composite block.
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The next step in determining the design is to filter eligible equipment units Vi

according to lining material and operating condition requirements as defined in

Eqs. 5-9:

V, <- Wi | (P-Pmm I PTPrangelD = Vt .TPrange) < min (XrPressure)] (5)

Vt <- [Vt | (PPmax | PTPrangelD = Vt .TPrange) > max (XrPressure)] (6)

Vt<- [Vt\ (PTmln | PTPrangelD = Vt .TPrange) < min (XrTemperature)] (7)

K*~ Wi\ (PPmax I PTPrangelD = Vt. TPrange) > max (Xr Temperature)] (8)

Vt <- (Vt \Vt .LiningID e n Xt.LiningID) (9)

The set L is a design which contains assignment of recipe blocks kj into equip¬
ment units V,-:

» n

L:= U(V;.<=^) (10)

i= 1

In the TS implementation we differentiate the units that are used in the design L,

units available for moves (V) and units which are not available for the next move.

Thus for each L, there are applicable units stored in the vector (V,).

The superstructure of each iteration step is defined by combining eligible equip¬
ment units for each recipe block with design rules and constraints. The first con¬

straint is that no equipment unit can be reused, i.e. once emptied, it may not be

used again in the same batch. Hence, if a given unit is assigned to a block, it can¬

not be used in another block, except if this would result in a continuous utiliza¬

tion. The units from previous block LM and next block L,+1 can generally be used

in the current block, if the condition of continuous utilization is maintained

(Eq. 11):

Vt^Vt- YdL-EMi-l,i+D <n>

J

For each design element Lt the condition of eligible equipment in Lt must be

maintained. Finally one or several elements from the eligible equipment units are

selected.

From design L we can obtain additional information from related matrices (k, and

Ej) such as: equipment size, lining material, floor in the building, mode of the

operation (in series, in parallel) etc.

In the practical implementation, the design matrix L contains as many rows as

there are blocks kj in the block recipe B. The following modes of operations are

implemented:

1. normal mode of operation, where one unit performs one or more blocks kj

2. in parallel mode of operation, where two units process the given block(s) in par¬

allel time frame
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3. two units in series, where two equipment units are sequentially processing one

block of operations kj

4. three units in series, processing the same operation block kj sequentially in time.

One block recipe

Two blocks recipe

-a

o

normal

in parallel

2 in series

3 in series

1) Mode of operation of the first block

normal in parallel 2 in series 3 in series

1

D

DD

ii[_

»D

DD DD

S

Symbol Legend

D equipment slot

1 in parallel mode of operation

* in series transfer

l transfer between blocks

Figure 2-7: Design block combinations for recipe with one and two blocks. A rectan¬

gle corresponds to one equipment slot, full arrows to in-series transfer, two parallel lines

to in parallel mode of operation and hollow arrows to the transfer from one recipe
block to another. Solutions to recipes with more blocks are designed analogously.

If one recipe block is present, four operation mode combinations for a design arise

(see Figure 2-7). For two recipe blocks, there exist 16 operation mode combina¬

tions. This number of combinations is only valid, if the recipe flags R.Flag allow

all modes of operations for the given block kj.

An example on Figure 2-8 shows two possible arrangements of designs for two rec¬

ipe blocks. The first design is valid according to the constraint of not refilling a

once emptied unit. The second design would violate such constraint, because the
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first block in series will result in an empty unit A and the second block in series

will result in re-filled unit A, which could introduce safety or quality related prob¬
lems.

U
O

XI

U
O

Figure 2-8: Equipment assignment to a specific slot in design examples. Example 1

shows that the equipment unit B can occupy one slot in a parallel block #r as well as

one slot in the in series block #2. Example 2 shows that the equipment unit A cannot be

assigned to the in series block #2, because this violates the "no reuse of equipment" con¬

straint.

2. 2.2.2 Objective functions for multiobjective optimization of batch

processes

As an input for the algorithm, a base case layout and initial batch size, cycle time,

operation durations, temperatures, pressures and other data are required. During
each iteration one design is altered and all neighbours originating from that par¬

ticular design are evaluated for their parameters. The design parameters, such as

task durations, volume and time requirements for each block are adjusted and

scaled accordingly.

The algorithm has been designed for handling multiple objectives, where priori¬
tized optimization objectives can be selected from the following list:

1. Production rate [kglhr], maximize, the production rate is computed form the cycle
time and batch size of the process designs.

2. Number ofequipment units in design [pes.], minimize, this criterion refers to the

simplicity of design, from the practical point of view, the lower the number of

units used in a design, the lower the maintenance, cleaning requirements,

changeover and similar.

3. Batch size [kg], maximize, is the amount of product delivered by a single batch.

4. Number of significant equipment units including reactors, centrifuges, etc.

[pes.], minimize, as the important equipment units are sometimes used for tasks,
which can be performed by other equipment, this objective function prevents
such assignments. For instance, distillation can be performed by a separate dis-

Example 1 Example 2
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tillation column or by a reactor with an attached condenser, in which case the

distillation column is a non-significant equipment and the objective favors leav¬

ing the reactor free for other tasks.

5. Productivity per total nominal volume of significant equipment units used in a

design —&-
, maximize, this objective function's aim is to maximize the vol-

Lh. m^-i

ume utilization of significant equipment. It is important if the plant is in the so

called Equipment Pool Plant (EPP) mode, where more products are manufac¬

tured concurrently in the same plant line and therefore optimization of the uti¬

lization has higher priority than a simple productivity maximization.

6. Floors-up indicator as a measure of upwards material transfer across the floors

of a plant line [-], minimize, this function quantifies the pumping requirements
in a plant, where usually designs with materials flowing from the top building
floors to lower floors are preferred. This is used mostly as a less important objec¬
tive.

7. Connectivity costs (or connectivity constraints violations) which prevent using

impossible connections among the units in a resulting design and favour existing

pipe connections between units [-], minimize. The connectivity constraints bi¬

directional matrix contains as many rows/columns as there is equipment units in

the plant. Each tuple is refering to a connection from first equipment to second

equipment on a scale from o - existing connection to 10 - impossible connection

(if there is a thick wall in between).

8. Special function for obtaining diversified designs with regard to number of

equipment units [-], maximize. The special diversification function serves as a

technique for enforcing the searching of performing designs over a range of a

minimal possible number of equipment units to a maximal possible number of

units (which is given by recipe constraints and number of blocks). Maximal score

of looo is set for those designs with highest productivity for a given number of

equipment. If a design with the same number of units and better productivity is

found, its score is set to 1000 points and the other designs' score is lowered by one.

This is an objective space diversification method.

9. Special objective function for multiple plants selection [-], maximize. The spe¬

cial objective function for multiple plants selection is an index score and ensures

storing of superequipment designs which fit into a selected existing plant line

and lowers the score for designs which do not fit. See Section

2. 2.3 Superequipment concept for explanation.

10.Costs of campaign [CHE, L/SD], minimize, this objective function is explained
below.

1 l.Net present value (NPV) of a project with or without investment [CHE, L/SD],

maximize, this objective function is explained below.

12.Payback period [years], minimize, this objective function is explained below.
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Costs of campaign

Costs of campaign (Objective function 10) serve as a basis for economic calcula¬

tions and include cost of materials, waste management, labour, utilities, overhead,

changeover etc. Before the production phase of a proposed batch design can take

place, it is helpful and moreover necessary to estimate the costs of the process.

Due to the nature of production line factory cost composition, the biggest contri¬

bution to the production costs are the raw material costs and the rent of the plant.

Figure 2-9 shows the cost objective function as a function of design parameters

(batch param). The cost is a sum of costs related to: function of time (fC0Sf(t)),
function of number of equipment used in design (fcost(nr.eq.)), function of con¬

nectivity violations (fcost(vequip))' volume of equipment used in a design and other

costs (fcost(otherj).

For a case study, and better explanation of elements, please see the attached cost

datasheet in Appendix A-2 XML data for the cost function.

f ,(batch param. )= f ,(t)+ f l(nr.eq.)+ f iconn.viol.)+f ,(v )+f ,(
J cost ^ i ) j çpst \ ) j cost ^ 1 ) J cost ^ ) j cost ^

equip
> J cost ^

other ')

cycle time, time, manhr

number of equipment, n. of signif. units

n. of connectivity violations filling grade, special eq. used,

volume of reactors, vol. of equipment

Figure 2-9: Cost objective function as a function of batch design parameters.

NPV

The net present value (NPV, objective function n) is computed according to

(Brealey and Myers, 1996) and, if applicable, includes investment. The interest

rate used for the case studies from Chapters 3
- 4 is 10% and the time frame is

scaled according to the length of the campaign.

Payback period

Payback period (objective function 12) is computed according to (Brealey and

Myers, 1996) as the number of years before cumulative forecasted cash flows

equals initial investment.

The objective functions are prioritized in an optimization scenario. Up to five

objective functions can be selected for an optimization run. All selected objective
functions are evaluated (see Figure 2-10) for each design. The objective functions'

priorities are applied in the decision moethod of the TS (see Figure 2-4). In this
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process, if the first objective is not sufficient for resolving difference between two

designs, the second objective function values are compared. If the first and second

objective function values are equal for two compared designs, the third objective
is then used in the decision and so forth. Usually the first objective function is pro¬

ductivity of a design. In such case, a larger throughput is always preferred to a sim¬

pler design (lower number of equipment in the design). Similarly, a simpler

design is always preferred to a more "top-down" one.

2. 2.2.3 Optimization Algorithm Formulation

A schematic flowchart of the Tabu Search is given in Figure 2-10. In the follow¬

ing, the different rules and options for the algorithm will be discussed.

Generate Initial

Solution

Generation

Rules

< While not stop

Generate

Neighborhood

Filter Tabu Moves

Select Subset of

Neighborhood

For each

considered

Neighbor

>

Evaluate

Neighbor

Adapt Evaluation

Update space

knowledge

Best Neighbor
becomes Initial

Solution

Stopping
Criterion

Move

Definition

Problem

Constraints

Tabu List

Size

Aspiration
Criterion

Subset

Size

Objective
Function

Constraint

Violations

Penalties

Figure 2-10: Tabu Search algorithm used in the BPD Software (Cavin et al, 2005).
Boxes with grey background signify options. Parallelograms represent the rules and the

objective functions.
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The optimization algorithm provides optimal layouts for the process, while operat¬

ing parameters are considered fixed.

Equipment units can be assigned to a recipe block in normal mode (one equip¬
ment unit operating in the block), parallel mode (two units in parallel are

assigned to a block) and serial mode (two and more units operate sequentially
within one block). Each recipe block's mode of operation is stored in the design L
and is derived from the move applied to the design element Lr Additionally we

differentiate the order of equipment units in sequential mode of operation (in

series) and denote units that are at the beginning of the design element ft, end of

the design element U and within the element <-». The double arrows symbol is

used for all units assigned to a design element.

For finding the previous or next recipe block in the sequence, the following proce¬

dures are defined:

k+ = find_next_block(i, B) (12)

k~ = find_previous_block(i, B) (13)

Forbidden reuse of equipment in the design layout prevents simple combinatorial

arrangement of the problem and introduces additional filter for the free equip¬
ment units for block i. In order to identify correctly free units available for each

element (L,) of the design ,
we define:

• Vz,ft for available equipment units at the beginning of an element, >

• V',++ for available units within an element,

• Vi)l for units at the end of the design element.

Parameter L!+1 denotes the next design element (following after L,), as the last unit

of L, can still be used for processing the block L,+1, if the recipe constraints

[k,.Constraints] allow this arrangement. For example, if a transfer is prescribed
between the current and previous recipe block, the last unit of previous block can¬

not be used in the current block L,.

Three moves are defined for the modification of current design L (Eq. 10):

1. Addition, where one unit is added to L to conduct a specific recipe block (either in

serial or in parallel mode)

2. Removal, where a unit is removed from L

3. Replacement as a combination of removal and addition from and to L

Each element in the move list M contains a unit's ID (or two units' IDs in the case

of replacement), as well as the block to which it refers and the kind of move it rep¬

resents.

For a real equipment, an addition move of a unit into a design is subject to the

connectivity constraints and hence possible moves are different if the new unit is

added in the beginning, within or at the end of a recipe block. For superequip¬
ment this restriction does not exist. Free superequipment can always be added into

a free slot in the design element, therefore every free superequipment is automati¬

cally contained in the list of free equipment V, for a given element Lt (see
Section 2. 2.3 Superequipment concept). Addition in series is defined by Eq. 14.
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The move is only conductible if the recipe block's mode of operation constraints

[k,.OperationMode] allow in series arrangement of units within the design ele¬

ment.

if LrDesignType = 'parallel'

e

if f .DesignType =
'

single
'

if kt OperationMode =
'
series allowed '

V
fl (add at the beginning)

Vt 0 (add in the middle)

E
jj (add at the end) 114)

else :

e

if Lt .DesignType =
'
series

'

V
fl (add at the beginning)

Vt 0 (add in the middle)

V
^ (add at the end)

M,
add,s

Addition in parallel is defined by Eq. 15 and is only possible if the recipe block's

mode of operation constraints allow for this arrangement.

if Lt .DesignType =
'

single
'

if kt .OperationMode =
'

parallel allowed
'

M.
add,s

K*nK*
else

e

else :

e

(15)

As there are no design blocks possible with in series and in parallel mode of opera¬

tion at the same time, the list of all possible addition moves is defined by Eq. 16.

1

M yj j^/radd, p (16)

Removal of a unit is possible only if the unit is not used both in a previous (k") and

subsequent (k+) block, otherwise the removal would produce an invalid design
due to the reuse of a unit (see Eq. 17).

m: L\L,£

JJ

(17)
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It is allowed to remove all units assigned to a block. This increases the flexibility of

TS algorithm in low degrees of freedom situations, where only limited number of

neighbours is valid for evaluation. Of course, such a design is incomplete and

therefore its production rate is zero. Implications for superequipment unit

removal are that it is always possible to remove one, if the no-reuse of equipment
rule is valid (see Section 2. 2.3 Superequipment concept).

The replacement moves for a design block Lt are defined by Eq. 18 as a pairwise
combination of any removal and any addition. Replacing one superequipment
unit with another is preferable, as for example the superequipment unit from pre¬

vious block can be newly assigned to current block and thus increasing the diver¬

sity in the iteration step (see Section 2. 2.3 Superequipment concept).

MrePl = Mrem 0 Madd (18)
111

v '

The sum of all possible moves (M) is as follows:

M =

^j (Mfd kj Mrtem kj MrtePl) ( 19)

1

A subset of moves has to be evaluated in each iteration for determining the next

neighbour according to TS principles. Eq. 20 shows the subset selection and

denotes also that it is forbidden to select moves already stored in the Tabu List (T).

M° <- random subset of(M \ M <£ T) (20)

The actual design L is transformed by the application of a move Mm from

M° into a new design Lm. The application of all moves in M° to the given design
L creates the candidate list W. All designs in Ware then evaluated. The evaluation

of the design comprises a simulation of the process and the computation of the

resulting objective functions.

2. 2.3 Superequipment concept

If considerations about the retrofit problem of additional investment into an exist¬

ing plant line are to be made, the combinations of equipment on buy list and their

characteristics (i.e. unit size, lining material, options, TP range) require exponen¬

tial solving time. During a standard TS optimization it is necessary to generate a

number of combinations in form of designs, where the allocation of each new unit

should be varied in the design in order to have a good chance of finding the global
optimum.

Superequipment concept has been developed as alternative approach. It simplifies
the combinatorial problem, because one superequipment unit substitutes any unit

from the list of equipment. Superequipment is not a real equipment. It stands for

a model of a unit, where each piece of superequipment can be transformed into a

real apparatus in the final design. The method is discussed in (Mosat et al.,

2005a).
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2. 2.3.1 Superequipment formulation

The superequipment class [S] is defined in the way that any operation from the

operation classes present in the assignment matrix A can be conducted in the

superequipment:

S : =

i^j At- EqClass (21)

i

Formally we define a superequipment unit as an unit belonging to the

equipment list E:

Superequipment unit : = ( E.EqClassID = S ) (22)

Each piece of superequipment used in a design must be transformed into an exist¬

ing real unit at some point during the optimization. This transformation is neces¬

sary for the evaluation function. That means, the transformation is done in each

iteration for each evaluated design and for each superequipment unit. At the same

time, the superequipment retains the information about the proposed transformed

equipment class for the results postprocessing. These application-specific trans¬

formations are explained below.

At the beginning of each iteration and during the design generation, there is no

need of knowing the exact equipment class from the equipment classes matrix, nor

the size, lining material or TP ranges of a unit. The cycle time, batch size etc. are

only needed at the point when objective functions for the specified design are

evaluated. If the design L contains any superequipment unit, rules for transforma¬

tion of a superequipment into a real equipment unit are needed. For each

superequipment in design L, an equipment unit type must be available in A. This

enables the conduction of all operations from recipe blocks k, that are assigned to

the superequipment:

V (L.Ej.EqClass = S) : f\ ( A.EqClass \ A. OpClass =

y L
.
E

. kt. OpClass ) ^ S (23)

i

The rule excludes conducting incompatible operations in one unit, for example

multidrop centrifugation and reaction cannot be conducted in a single unit. On

the other hand crystallization, extraction and reaction can all be conducted in a

reactor.

If we consider a design L with the composition of n real equipment units E, and

one superequipment unit St, the superequipment unit is transformed into a real

equipment unit according to the transformation algorithm on Figure 2-11, in

which the eligible classes are determined according to the recipe block's parame¬

ters and other equipment connected to the superequipment. For instance, if a

reactor is operating in parallel mode with a superequipment, the superequipment

belongs automatically to the reactor class.
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[Superequipment vessel

[sr\

All operation classes

conducted in [S1]: [oc]

For all [oc]
find eligible equipment

classes [U]

equipment
class filter

size filter

loop over ^^

all equipment classes

capable of

conducting the same

block of operations
[ki]asthe[S1];

apply heuristic rules

Filtering algorithm for [U]

lining material

filter

minimal requirements
for the lining material

of the vessel

-any connected vessels

in parallel?

-any connected vessels

in series?

- determine minimal

required size for

block operations [ki]

TP range

filter

minimal requirements
for the temperature
and pressure range

[Filtered
eligible

quipment classes [U]

no- design not realizable

yes

list of valid [U] for [S1]

Figure 2-11: Algorithm for transformation of the superequipment unit to standard

equipment including filtering according to minimal specification requirements from

the recipe block. This transformation occurs prior to objective functions evaluation.

The superequipment transformation is conducted in steps, where all invalid

equipment classes are eliminated through partial filters: equipment class filter,
size filter, and unit property filter. The first part, limiting the set of equipment
classes according to heuristic rules, is related to industrial practice, where parallel

operations should be conducted in the same class of equipment with the same

characteristics (equal size, lining material, TP ranges) due to quality control.

Computation of the size of superequipment unit is related to heuristic and eco-
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nomic criteria. All other properties arise from the minimal requirements of the

recipe blocks conducted in the superequipment unit and interconnected equip¬
ment. For example: if there is flexibility in the class choice for specific superequip¬

ment, selecting the cheaper alternative for the evaluation is preferred. If several

equipment sizes are possible (equipment in parallel operations should have the

same volume if possible) select the smallest possible size for the unit. Additionally,

options for the unit (additional installations, condensers, columns, ...) are deter¬

mined.

The superequipment transformation example in Figure 2-12 shows three opera¬

tions, where the second operation is conducted in the superequipment (original
design). After transformation we can see one of the possible solutions - a reactor

(the middle design). Second valid solution is an extractor (the bottom design).
This possible flexibility in the class, size, lining material is maintained through
the optimization process up to the final results list, so that the decision maker can

see all possible proposals.

Figure 2-12: Superequipment transformed into a real equipment according to algo¬
rithm on Figure 2-11

Figure 2-13 explains the grass-root design process using only superequipment i.e.

after fitting the transfers and after obtaining the design consisting only of

superequipment units (upper part of the figure). There are two valid possibilities
for operation î (extraction): extractor or reactor. For evaluation purposes the

cheaper unit will be selected for computing the NPV objective function. Second

vessel is a reactor of bigger size and third unit has to be a multidrop centrifuge of

given type according to the third block specifications. The option of reactor or

extractor for the first operation is displayed in the results list.
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Figure 2-13: Scheme of grass-root design optimization using superequipment con¬

cept

The tabu procedures are universally valid for the superequipment concept
method and are listed in the section 2. 2.2.3 Optimization Algorithm Formulation.

2. 3 Stochastic batch design problem

The problem described in this section is a single product multipurpose batch

design optimization, where the single product is to be manufactured in a given

plant.

The presented stochastic method poses inclusion of uncertain variables to the

multiobjective optimization algorithm input and demonstrates the concept on sin¬

gle product to be manufactured in single multipurpose production plant line

under uncertain recipe variables. The uncertain recipe variables can be for

instance: operation time and operation volume.

The main aim of this research is to implement a quantitative measure of a batch

design response to uncertain operating conditions, which will be referred to as

"Robustness of a design", or short: robustness.

As a novel technique, inclusion of performance robustness as an objective func¬

tion alongside with productivity of a design results not only in optimal perform¬
ance design set or solely robust designs, but both optimal performing and robust

designs in one.

The deterministic productivity is not satisfactory for making complete decisions

on: which from the large number of optional designs to implement in the produc-
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tion stage. The aim of this method is to complement industrial decision making in

the early process development stage in order to obtain high productivity and high
robustness designs set which, if compared to high-peak productivity - low robust

designs, yield stable production quotas under varying conditions.

After discussion with industry experts, we identified many advantages in the robust

design problem formulation. We decided to examine several robustness criteria as a

quantification of performance deviations under uncertain recipe input variables.

2. 3.1 Optimization problem overview

In general, the optimization problem can be expressed in a stochastic two-stage
non-linear formulation with recourse (Bastin, 2004).
The first stage decisions are those, which have to be taken before the experiment
takes place. All these decisions are called the first-stage decisions and the phase in

which the decisions are taken is called the first stage.
The second stage decisions, also called recourse actions, can be taken after the

experiment. They are called second-stage decisions and occur in the correspond¬

ing period, second stage.

The aim in this optimization method is to take the first-stage decisions that are in

average optimal, with the possibility to take some recourse decisions to face the

additional knowledge that will be obtained after disclosure of the uncertainty.
This suggests defining an objective function and constraints associated to the first-

stage variables, while for the second-stage decisions, an additional objective and

constraints that depend on the realization of the random variables are considered.

The two stages are then combined by adding the expectation of the second-stage
objective to the first-stage objective. The resulting program is called the two-stage
stochastic program with recourse.

In the following formulations the first-stage decision variables are denoted as x,

second stage variables as y and the uncertain variables as %= £(ro), where the prob¬
ability distribution function is known. The co is a random event, generally a vector

that takes its values from a set of random events Q and £is a real random vector.

The optimization problem is defined as follows:

min z(x)= fj(x) + Q(x)

s. t. Cj (x) < 0,i= l,...m 1

(24)

11 z(X)= ^' Z= ml + ^' - - - ml

where Q(x)= E[Q(x, £)], and

Q(x, Q= miny f2(y(Q, £)
(25)

s. t. t2f t(x, y) + ^ t(y(£), £,) < 0, i= l,...m2

f2, «(*» y^ + c2, ,(K£), 0= 0, i= m2+ l,...m2

The z(x) is the stochastic objective function (in the next Section z(x) is refering to

robustness or productivity). The f:(x) is the first stage deteriministic objective
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function, Q(x) is the second stage objective function including uncertain parame¬

ters and is generally a function of probabilistic error parameters £,. E(£) is the

expectation of £,. The Q(x) is generally measurable. The f2(x) is the second stage
stochastic objective function of uncertain variables y. The deterministic con¬

straints Cj are used in the first stage and c2, t2 stochastic constraints in the second

stage. We suppose here that the functions f2, t2 i

and c2 i
are of the same cardinal¬

ity. The nij symbols denote the fixed constraints, which do not depend on the real¬

ization of the random vector. The m2 constraints of the second stage formulation

are associated to the realizations of the random vectors.

2. 3.2 Options, constraints and limitations

The formulation has to fulfil the following constraints and limitations:

• Mode of operation: one equipment unit assignment in normal mode, two

equipment units of equal equipment class and equal nominal volumes^ in par¬

allel mode, two or maximum three equipment units of the same equipment
class allowed in series.

• Continuous utilization of equipment rule states that according to Good Manu¬

facturing Practice (GMP) it is not allowed during single batch to re-use a once

emptied equipment unit. The unit had to be cleaned before re-filling, which

leads to increased operation costs.

• Task to equipment assignment: a given chemical task can be performed only in

a specific equipment class. For example: reaction can be performed only in

reactor class, crystallization either in reactor or crystallizer class.

• Operating conditions: each equipment has one of five lining materials speci¬
fied and given operation temperature/pressure range. A chemical task can be

performed only by equipment unit which meets the resulting requirements.
For example: acidic reaction, 5 bar, 180 °C can be performed by PTFE-lined

reactor with up to 6 bar and 220 °C. The following lining materials are defined:

1, Stainless Steel V4A; 2, Glass/Enamel/Graphite; 3, Hastelloy; 4, Stainless

Steel DIN 1.4539; 5> PTFE

• Material balance and scale-up rules: the material balance is computed in the

first-stage of the model, before the optimization. During the optimization scale-

up rules are applied if the task is going to be transferred to a unit with different

volume. Constant, linear and user-defined scale-up rules were defined for dif¬

ferent equipment classes.

• Recipe constraints: if necessary, recipe tasks will be modified to satisfy the qual¬
ity and safety criteria. The following optional criteria were defined: no transfer

between tasks (e.g. if a dangerous compound is present in a unit and transfer

would be an additional risk), no in-series mode of operation for current task, no

in-parallel mode of operation for current task (e.g. if splitting of the heteroge¬
neous mixture is problematic), specific lining material enforced for current

task (e.g. for fluorination reactions).
• Eventually if needed, minimal productivity requirement constraint as a lower

5. The equal nominal volume in parallel mode of operation is optional, but used in praxis. The Good

Manufacturing Practice (GMP) regulation requires using two units of the same class in parallel.
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bound is used during the optimization, which can be transformed, by help of

additional information about the campaign size, into due or delivery date lim¬

its. Such constraints are usually defined in connection with economic objec¬
tive functions, which we discuss in the Section 2. 2.2.2 Objective functions for
multiobjective optimization ofbatch processes.

2. 3.3 Multiobjective robust design problem

The common batch design problem focuses on profit and is usually monoobjec¬

tive, although there are several objectives incorporated within the profit objective
function. The primary objective used in this study is productivity defined as

amount of product delivered per unit of time [kg/hr] by a single design.

If the profit or productivity of a design are to be maximized, lowering the cycle
time and increasing the batch size leads to this objective. Shortening the cycle
time of a single batch can be assured by de-bottlenecking the time limiting opera¬

tions. Increasing the batch size can be achieved by de-bottlenecking the volume

limiting operations up to the capacity limit of equipment (scaling-up the recipe,

using larger unit), or capacity limit of the plant (using more units in parallel for

volume-limiting operations). Problems arise later in the production, after imple¬

menting the design, if the design is optimal, but under varying operating condi¬

tions the productivity drops. We noticed a systematic behaviour of deterministic

global optimal designs: if the productivity of a design is the so-called peak per¬

formance, a minor change in the operating variable results in a big drop of pro¬

ductivity. The actual factory productivity difference against the computed value

depends on the ratio of design operation time under expected conditions to the

operation time under actual conditions. Thus, the design obtained by determinis¬

tic optimization will be optimal only and exclusively for the set of parameters.
From this point of view, often the designs that rank second or third under deter¬

ministic conditions show a lower sensitivity to varying operating conditions.

Therefore we aim at obtaining good performance/productivity/profit designs, but

the variations of the performance should be minimal under the specified condi¬

tions. Often these uncertain distributions are not known, but using of at least min/

max or triangular distributions often reveals hidden bottleneck problems with par¬

ticular recipe and plant combination if compared to deterministic optimization.

Figure 2-14 shows an example of hidden bottleneck in a design, where in the

standard deterministic case the operations happening in unit Ei are time limiting,
which results in a certain cycle time. After introducing uncertain operation times

the operations assigned to unit E3 might become time limiting, and therefore pro¬

longing the cycle time even more.
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Figure 2-14: Equipment time utilization graph. In the deterministic case, the Er uti¬

lization time determines the cycle time of the design. In the case of time variations (the
thin bars above the equipment rectangles) suddenly the cycle time might increase due

to a, in a standard case, nonlimiting operation.

The robust batch design problem can be stated as follows: in the assignment of

chemical recipe tasks to equipment units find such assignments, which minimize

the prioritized set of objective functions. In our formulation, the Equations [24]
and [25] are modified for multiobjective optimization for approximated Pareto-

ranked domain in a meta-heuristic algorithm. In this case, the prioritized set of

objective functions is: 1. productivity of a single design (maximize) 2. robustness of

a single design (maximize). The productivity of a design [G] is determined in the

first-stage of the algorithm and in general, it is a function of: design variables (Ej,

cycle time and batch size as functions of block recipe variables (B) and uncertain

variables (£):

max G(f[B, £), L)

s. t. H
j J(B, u, L) < 0, i= 2, ...mi

H
j .(B, u, L)= 0, i= mj + 1, ...m1 (26)

where H(u) denotes the heuristics defined in the previous section as a function of

recipe variables and user-selected variables u.

In this context, a Latin Hypercube method is used for stratified sampling of uncer¬

tain states defined in the input recipe matrix B. This sampling approach was

selected as a variance reduction technique, in which the selection of sample val¬

ues is highly controlled, although allowed to vary within the defined interval. The

Latin Hypercube stratified sampling method (Hess et al, 2004, Saliby and

Pacheco, 2002) is based on a full stratification of the sampled probability distribu¬

tion of each uncertain input variable with a discrete random selection inside each

stratum. A random state includes a vector containing one randomly selected value

from each sampled variable. The complete resulting random state set is therefore

containing the whole range in the definition interval of each uncertain variable.

In the case of 3 uncertain variables and 100 stratified intervals, the resulting set

will contain 100 random states, in this case 100 different recipe matrices B. In the

presented case studies, the productivity is computed for each of the 100 recipes,
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which results in a discrete function of the productivity density. The robustness

measure is then computed according to the discrete productivity probability den¬

sity function reusulting in a scalar. Different robustness measures investigated in

this study are discussed below.

Productivity [kglhr] as a performance measure is a throughput of the final product
based on the selected assignment of recipe tasks to equipment units in a design.
If no uncertain variables are specified at the input side, productivity is a scalar

value. In the case of relevant uncertain variables in the recipe, such as time of

operation or volume of operation, the resulting productivity is computed for each

design according to Latin Hypercube method from the input variables.

The resulting objective function value is a vector of productivities for different

scenarios of the recipe and is denoted by a symbol [G] in contrast to the determin¬

istic scalar productivity value defined in the Section 2. 2.2.2 Objective functions for

multiobjective optimization of batch processes.

The robustness objective function [R] is then determined in the second stage of

the optimization algorithm:

max R(B, u, L, £)= RAG(B, u, L, £), L],

s. t. H^ t(B, u, L) + ^ ,(G(£), S) < 0, i= l,...m2 (27)

H2t t(B, u, L) + c2^ ,(G(0, £)= 0, i= m2+l,...m2

where the term denoting the constraints related to uncertain production quota

requirements c2 (G(%\ %)= 0 can be omitted, as we do not consider such case in

this publication.

The number of equipment units used in design objective function can be

expressed as:

mm Ne (L) (28)

and this function is not influenced by uncertain parameters in this formulation.

The goal is to minimize the number of equipment units used, in order to free a

part of the production capacity for eventual future campaigns. The less equipment
units used in design, the lower the cleaning and maintenance cost.

2. 3.4 Robustness measures

Robustness of a design [-] is a measure of design productivity stability under vary¬

ing conditions originating from the recipe uncertainties.

We examine and discuss the following three robustness specifications (compare
with Figure 2-15):

1. Robustness #1 (Figure 2-15 (a)) which is expressed as maximal probability value

(mode) in the Probability Density Function (PDF) of solution's productivity
(Eq. 29). In this case, the mode of the productivity probability distribution

(denoted as a function pdfgO ) expresses how likely the corresponding productivity
will occur among the number of possible probabilistic states given by uncertain
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inputs, e.g. time and volume variations of chemical operations. There are two solu¬

tions, i.e. designs, displayed in Figure 2-15 (a), where the first solution receives bet¬

ter robustness score. The productivity peak is higher, but the solution cannot

achieve the high productivities offered by the second design.

Rj[G(B,u,L),L]:

Rj(B, u, L, £)= max[pdfG( G(B, u, L) )] (29)

2. Robustness #2 (Figure 2-15 (b)) is computed from the most probable productiv¬

ity point on the Cumulative Distribution Function (CDF). If we review the

uncertain recipe inputs, we can compute the most probable value (Y, max) out

of N probabilistic states for each of the input variables (X;):

Yi, max= max\- Pdfö (X)]> where i= L--N (30)

where X e E, and pdf() denotes probability distribution function of the uncertain

variable Xr If we review the productivity objective function (Eq. 26), we can rede¬

fine the generic robustness formulation from Eq. 27 to Robustness #2 as:

R2[G(B,u,L,Z,),L]:

R2(B,u,L,Q=(l-cdfG(Gmax)) (31)

where Gma= mode(G)

where the mode(x) function returns an element of a vector x, where the probability
density function reaches the maximum. It is used for determining the most proba¬
ble value of design's productivity Gmax. The Robustness #2 definition is thus com¬

puted from the CDF function of productivity in the point Gmax.
The Robustness #2 is then defined as: what is the probability, that the given design's
productivity is Gmax or higher?

3. Robustness #3 (Figure 2-15 (c)) takes the most probable productivity of a given
solution Gmaxas stated in Eq. 31 and is defined as:

R3[G(B,u,L,Yt),L]:

C — C

R3(B,u,L,Q= i--i
'

(32)
where Gma= mode(G)

cdfG(G+ ) <= cdfG(GmJ +
c+

cdfG(G^ ) <= cdfG(Gmax) -

c_

where the variables c+ and c_ refer to a predefined bias in the CDF of solution's

productivity. Then the Robustness #3 can be expressed as: what is the scaled pro¬

ductivity variation in the interval <G_, G+> compared to the expected productivity
Gmax ? The point G+ is computed from the cumulative density probability in the

point Gmax plus a user-defined bias c+ (see Eq. 32). The value of G_ is computed
in a similar way. This robustness criterion aims at achieving designs with the

expected productivity according to the most probable recipe input variables with

an addition that if the productivity varies mostly in the predefined cumulative
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probability interval limit, the design will be awarded a bonus to the robustness. In

the case of a steep CDF function for a specific solution design around the Gmax
point, the robustness will be high and vice versa.

(a)

(b)
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Figure 2-15: Robustness definitions related to a specific design: (a) Rr; maximum

probability approach, (b) R2; probability of achieving the mode of the productivity or

better, (c) R3; robustness as a relative change in the productivity computed from the

productivity mode probability value, and a specified cumulative probability distribution

range (cdf(GmJ - c_, cdf(Gmax) + c+).
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2. 3.5 Handling uncertainty within Tabu Search optimization

This section lists the TS options used specifically in the Chapter 4 Uncertainty
with application to design robustness measures.

Probability distributions Out method allows for using any custom probability density
function, inclusive measured point-sets. For the purposes of the method demon¬

stration, the two most common probability density functions (PDF) will be used:

• Triangular PDF with notation:

tripdp\A, B, C) (33)

where A < B < C and A, C are parameters with a scaled relative probability of

o, B is a parameter with a scaled relative probability of 1. Accordingly, the func¬

tion trirnd(A, B, C) will choose random numbers from the triangular distribu¬

tion.

• Normal probability density function referred as:

normpdf{\x, a) (34)

returns the PDF of the normal distribution with mean //and standard deviation

a. The random function normmd(p, a) returns an array of random numbers

chosen from a normal distribution with mean // and standard deviation a.

• Lognormal probability density function referred as

lognpdf{log([i), a) (35)

returns the PDF of the normal distribution with mean //and standard deviation

a. The random function lognpdf(ß, a) returns an array of random numbers

chosen from a lognormal distribution with mean // and standard deviation a.

The neighborhoodThe neighbourhood W of a solution L (a design) is a set of all solu¬

tions created by applying all defined moves M:

W(L) = L^M (36)

A random sub-neighbourhood is selected from the current solution candidate

neighbourhood in each iteration. The size of the sub-neighbourhood is dependent
on: total number of neighbours, total number of non-tabu and tabu listed moves.

A reasonably large fraction of moves is selected for evaluation dependent on the

size of the problem and CPU power.

Types ofmoves The moves applied to a design are chosen randomly and with special
consideration of the tabu tenure. In each iteration of the TS algorithm, the given

design solution is modified by applying a number of selected moves that represent
the modification of one recipe task-to-equipment assignment. The following
moves are provided:
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1. change operation mode to "normal"

if operation mode is not normal, eliminate all equipment units except of one and

change the mode of operation

2. change operation mode to "in parallel of two equipment units"

if the operation mode is not in parallel, add or remove equipment units to a total

count of two and change the operation mode to parallel.

3. change operation mode to "in series of two equipment units"

if the operation mode is not in series of two equipment, add or remove equipment
units to a total count of two and change the operation mode to in series of two

equipment.

4. change operation mode to "in series of three equipment units"

if the operation mode is not in series of three equipment, add equipment units to a

total count of 3 and change the operation mode to in series of three equipment.

5. remove one equipment unit (if possible)
remove one of the equipment units from the current operation. In the case of in

series of three equipment, the operation mode becomes either in series of two equip¬
ment or in parallel, with the preference of the latter, depending on the condition

that the two equipment units in parallel must be of equal class and equal size.

6. add one equipment unit (if possible)
adds one equipment unit to an operation task

7. exchange one equipment unit (if any feasible unit is free for such move)
remove randomly one assigned unit from a recipe operation and add another ran¬

domly selected unit from the free equipment group, which has to be of suitable-

equipment class. It has to be noted, that the term free equipment group is specific
to each recipe operation in the design. One equipment can be assigned to perform
many operations, as long as the continuity in usage is maintained.

Tabu Search options Selected Tabu Search options are applied for improving the con¬

vergence rate of the algorithm. The aspiration criterion, selective steepest ascend

(i.e. choose always worst solution for a specified number of iterations) and random

restarts were used.

Sorting criteria Comparison of two or more designs according to multiple objective
functions is performed via the importance function: 1. global optimum,
2. dominance (approximated Pareto-optimum), 3. local optimum in one of the

objective functions, 4. good-performing solutions according to user specifications.
The problem has to fulfil the constraints defined in the Section 2. 3.2 Options,
constraints and limitations.
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Abstract

A novel approach for solving different design problems related to

single products in multipurpose batchplants ispresented: the selection

ofone production line out ofseveral available, additional investment

into an existing line or plant, and grass-root design ofa new plant.
Multiple objectives are considered in these design problems. Dominat¬

ing (approximated Pareto-optimal) solutions are generated by means

of a Tabu Search algorithm. In the novel approach the concept of

superequipment has been defined as an abstract model, which is capa¬

ble of performing any physico-chemical batch operation. Each

superequipment is transformed into a real equipment unit, for exam¬

ple a reactor, during or afier the optimization in order to evaluate

peformance parameters of a design. This novel concept uses an

implicit definition ofa superstructure and essentially optimizes on the

transfers between different equipment units in a design.
On the basis ofcase studies we demonstrate that the application of

the superequipment concept offers a number of advantages for the

investigated design problems. For example, in the evaluation of
investment into single equipmentpieces to be added to existingplants
or production lines only the maximum number ofadditional equip¬

ment, each represented as a superequipment, has to be specified
instead ofa list consisting ofa higher number ofexplicit units. Simi¬

lar advantages arise for grassroot design problems orfor the selection

ofa production line or plant out ofseveral that are availablefor the

production ofa specified chemical.

The comparison with optimization results obtained with a con¬

ventional Tabu Search algorithm revealed that the superequipment

approach is capable of identifying the dominating approximated
Pareto-optimal solutions in significantly reduced computation time.
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3.1 Introduction

The superequipment concept, stipulated in the Section 2. 2.3 Superequipment

concept introduces a mathematical model of a unit capable of performing a role of

any equipment unit combination. In this chapter three case studies studying this

concept will be presented. An introduction to the problem has also been pre¬

sented in (Mosat et al., 2005b).

The first case study offers insights into retrofitting a small monoproduct batch

plant by buying at maximum two new equipment units with detailed specifica¬
tions and predictions about the production increase and the resulting NPV after

the investment.

The second case study studies the multiple plant lines selection out of several

available for a pharmaceutical product, which should be manufactured by a

design with high productivity and four other important objectives. A comparison
of standard TS optimization invoking the same optimization procedure several

times versus a single superequipment optimization is performed showing clearly

advantages of the latter method.

The third case study demonstrates using a large number of superequipment units.

A grass-root design of a batch plant is examined for a given recipe.

3. 2 Case studies

3. 2.1 Investment scenario for an existing plant and a given

recipe - L- Ascorbic Acid case study

Figure 3-1 displays a principle of a conventional optimization method, where for

each additional equipment, which will be considered as an investment option, a

new optimization has to be performed. In case of three additional considered

units, such procedure requires manually defining three optimization problems,

running three times the TS optimizations as well as reviewing and filtering three

different results lists. For instance three equipment units could be defined as:

1. reactor, 6 m3 nominal volume, PTFE lining material, up to 6 bar pressure, with¬

out mounted condenser, 2. crystallizer, 10 m3 nominal volume, stainless steel lin¬

ing material, up to 2 bar pressure, 3. multidrop centrifuge, 400 1 nominal volume,

Hastelloy lining material, 2 bar pressure. As we see, considering all combinations

of equipment classes, nominal volume, lining and construction materials, addi¬

tional options and more is not feasible and a new method for handling such prob¬
lem types needs to be used. That means for instance all reactor sizes combined

with all construction and all lining materials with condenser attached or without,
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in total only for reactors there are 216 of such combinations.

On the right-hand side of Figure 3-1, the superequipment concept for this prob¬
lem setting requires only setting-up one optimization problem, where one

superequipment unit representing large number of real existing units has to be

defined. In such procedure not only three, but all good-performing equipment
units will be considered in the TS optimization automatically. At the end, one

results list is obtained and it contains a sorted and filtered list of the most benefi¬

cial equipment unit combinations.

combinororiol problem
Line 1 review

results

+ nn optimize—>results 1

optimize—>resuirs 2

optimize—Results 3

superequipment

LI i i

VS.

transform,

re v ie lu

optimize results

results

Figure 3-1 : Investment into an existing plant; problem methodology demonstration.

Comparison of two methods, on the left the conventional TS combinatorial optimiza¬
tion problem, on the right the superequipment optimization problem.

The Vitamin C case study is based on the (Reichstein and Griissner, 1935, Oster

and Fechtel, 2002) synthesis and was selected for its simplicity to demonstrate the

basic principle of superequipment concept. Similar case study has been published

by (Niedrig, 2004) where the estimation of equipment costing is studied in more

detail and optimized for three different scenarios.

We define a small batch plant (Plant C4) and examine investment possibilities in

order to deliver the product and increase the plant production capacity for the

future campaigns. The aim is to produce and sell 1000 t of the product within 5

years time constraint. As for this case an investment is necessary, additional objec¬
tive is to maximize the NPV of a project with equipment investment considering
additional constraints discussed below. There is only space for two additional unit

installations within the production building. The productivity was selected as pri¬

mary and NPV as a secondary objective function, because of a large penalty if the

delivery time frame of 5 years cannot be fulfilled. A comparison of results

obtained by superequipment concept and conventional TS optimization is pre¬

sented.

3. 2.1.1 Recipe description

According to (Reichstein and Griissner, 1935), vitamin C is produced from D-glu-
cose. Since the transformation step from D-Glucose to L-Sorbose includes a
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microbiological oxidation reaction, the first step of the Reichstein synthesis was

left out and it is assumed that the L-Sorbose can be bought as a raw material and

the production proceeds from this reactant. Therefore the presented case study
included only the remaining steps (see Figure 3-2) of the original Reichstein

route.

L-Sorbose

OH

L-Sorbose-diacetal 2 - Keto - L - gulonic acid diacetal

OH O

O

HO.
OH

OH

OH

2 - Keto - L - gulonic acid

O

L-Ascorbic acid

OH
O

4 HO.

OH

OH

HO OH

Figure 3-2: Vitamin C case study reaction scheme.

OH

OH

A rough outline of the process and the utilized chemical reactions are shown

below, for the complete Batch Plus recipe see Appendix A-3 Vitamin C Reich-

stein synthesis in Batch Plus software.

Step 1: L-Sorbose to L-Sorbose-diacetal

This step consists mainly of the introduction of the diacetal protection group for

the later oxidation to carboxylic acid (see Figure 3-3). A reactor is charged with L-

Sorbose and acetone. Then some sulfuric acid is added as catalyst and dehydrat¬

ing agent. During the reaction, the mixture is kept at 4°C. After the reaction, it is

neutralized with sodium hydroxide. The excess of acetone is distilled and recycled
whereas the diacetal is extracted with toluene (block 1).

CgH12Og "t" c. v»oilcU
H2S04, cone.

4 °C
12M20°6+ 2 "2°

Figure 3-3: Transformation of L-Sorbose to L-Sorbose-diacetal
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Step 2: L-Sorbose-diacetal to 2-Keto-L-gulonic acid diacetal

The contents of the reactor from Step 1 are transferred into another one. Then a

catalytic amount of nickel sulfate is added along with some sodium hypochlorite
as an oxidizing agent. This oxidation reaction (see Figure 3-4) is performed at

6o°C and the resulting 2-Keto-L-gulonic acid diacetal is isolated by acidifica¬

tion and extraction with sulfuric acid (block 2).

C12H20O6 + NaOCl 1IT±
^ C12H1807 + NaCI + H2

fin °r*

Figure 3-4: Transformation of L-Sorbose-diacetal to 2-Keto-L-gulonic acid diacetal

Step 3:2-Keto-L-gulonic acid diacetal to 2-Keto-L-gulonic acid

This step contains the removal of the diacetal protection group, which is done by
hydrolysis (see Figure 3-5) at 90 °C (block 3). The intermediate is separated from

the released acetone by crystallization (block 4).

2 H20
C12H18°7 •* 2 CLHLO + CRH1f107

Figure 3-5: Transformation of 2-Keto-L-gulonic acid diacetal to 2-Keto-L-gulonic
acid

Step 4:2-Keto-L-gulonic acid to L-Ascorbic acid

The intermediate from the previous step is dissolved in toluene and cyclization to

L-Ascorbic acid in the presence of hydrochloric acid (as a catalyst) takes place
(block 5) (see Figure 3-6). The resulting Vitamin C is then dissolved in water,

crystallized (block 6) and centrifuged in a multidrop centrifuge (block 7). Recrys-
tallization of final product takes place as a purifying step in (block 8). It is

assumed, that the drying step processes product crystals from multiple batches in a

distinct drying line, therefore it will not be included in the case study.

C8H10°7
3qOC

'

* C6H8°6 + H2°

Figure 3-6: Transformation of2-Keto-Lgulonic acid to L-Ascorbic acid (vitamin C)

3. 2.1.2 Plant lines description

Plant C4 (base plant)

Reactors: 5; 6.3 m): 4; 10 m): 1; one 6.3 m} reactor and one 10 m} reactor have a dis¬

tillation column attached

Multidrop centrifuge: 1; 1.2 m), vertical basket
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Various additional units: tanks, filters

Plant C4S (base plant and superequipment)

Two additional superequipment pieces have been added to the base plant C4 in

order to simulate investment options.

Plants Czf.r, C4.ce, G^rce (base plant plus additional units)

C41 consists of the base case plant C4 plus an additional 10 m^reactor

C4ce consists of the base case plant C4 plus one multidrop centrifuge 1.2 m)

C^rce consists of the base case plant C4 plus one additional 10 m} reactor and one

multidrop centrifuge 1.2 m}

3.2.1.3 Optimization settings

By optimization of plant C4 with additional equipment units, we increase produc¬

tivity as compared to the base case design. The limit of maximum two new units

should represent the space limitation in the multipurpose production plant. We
demonstrate the usage of the E^uy list, which in this case consists of: max. 2 reac¬

tors, max. 2 multidrop centrifuges, which can be bought and installed into the

plant C4. The constraint of at most two significant units as an investment is also

part of the Ebuy list (condensers count as an option for reactors). The Ebuy list rep¬

resents a set of additional constraints for the problem. In this case it is used at the

beginning of the optimization (adding 2 superequipment units into a base plant)
and in the transformation algorithm of superequipment into a real unit, where

only the listed options are allowed for transformation.

The prioritized list of objective functions for this case has been set as follows:

1. productivity, 2. NPV, 3. special diversification function, 4. batch size, 5. number

of equipment units, (see Section 2. 2.2.2 Objective functions for multiobjective opti¬
mization of batch processes)

The objective functions for the base case (plant C4) have been set as:

1. productivity, 2. campaign costs, 3. batch size, 4. number of equipment units,

5. floors-up indicator.

From previous examinations the optimization settings for Tabu Search have been

set as follows: neighbourhood size 30, the tabu list length is 70, forbidding shortly
visited neighbourhoods. Stopping criteria for the optimization were set to 60 itera¬

tions after finding last non-dominated solution and there were 28 restarts during
the run, as no improvement has been achieved in the last 10 restarts.

Economic data

The data for determining costs of the campaign and NPV have been obtained

from various sources (Schnell_Publishing, 2004), mostly from industry experts.
The production plan is to produce 1000 t of Vitamin C under 5 years delivery
time. Projected selling price is 10.0 USD/kg of Vitamin C and remains constant

over time. Reactants, solvents and other chemicals costs are 4.73 USD per kg of
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product. We assume 8000 hr/year operation time. Total costs of campaign are to

be determined for each design separately and include price of utilities, overhead,

changeover, waste management, rent for plant per hour, labour and other. All of

the cost categories are customizable and reflect current market prices. Campaign
costs do not include potential investment. In the NPV computation, the cash

flows include the complete eventual investment in equipment units, although we

are considering a multipurpose batch plant with varying product portfolio and also

later products benefit from this investment. The investment loan begins 6 months

before the campaign beginning.

3. 2.1.4 Results and discussion

Results for base case plant C4 - conventional optimization
Optimization results show, that with current base plant (Plant C4) we can achieve

production rates up to 20.2 kg/hr by implementing a design with 6 equipment
units. Optimal production costs in the base plant C4 are 7.98 USD/kg of product

including material costs. The simplest possible design employs 4 units and can

manage all eight blocks of the recipe.

For the following considerations, we assume that the current production of Vita¬

min C is performed by design ranked #1 in the list of results (containing 150 domi¬

nating and structurally diverse designs), which has a batch size of 240 kg/batch
and a productivity of 20.2 kg/hr. The corresponding project duration is 6.2 years,

which is too high and suggests an additional investment.

Review of this design (see Fig. 3-7) shows that the recipe block 1 is performed in

parallel (reactors R6di, R6d3), block 2 in normal mode of operation (reactor

R6d5), blocks 3, 4, 5 and 6 in reactor Riod4, centrifugation from block 7 in multi¬

drop centrifuge Cei.2di and finally the crystallization from block 8 in reactor

R6d2.
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Blocki (in parallel)

Block 2 Blocks 3,4, 5,6 Block 7 vy

Figure 3-7: Design #1 from plant C4 (base case) in Vitamin C case study as obtained

by conventional TS optimization; R denotes reactor, Ce centrifuge. The volume limit¬

ing unit is Riod4 filled with 10m3 of reaction mixture, and the time limiting unit is

Cei.2di with 730 min utilization time.

Superequipment Optimization of Investment Scenario - Results for Plant C4S

The following step in examining possible investment options includes adding two

superequipment units into the existing plant C4, which means that the algorithm
will generate either designs utilizing zero, one or two pieces of superequipment in

addition to the units from plant C4. If the resulting optimal design contains no

superequipment, an additional equipment on top of plant C4 would not improve
the profitability of the process.

Table 3-1: Subset of dominating (assumed Pareto-optimal) designs for plant C4S in Vitamin C case

study by TS optimization using superequipment method

Design Investment Equip, size Investment Productivity Nr. of units Payback time NPV Campaign time

rank [#] M [kUSD] [kg/hr] [pes.] [year] [kUSD] [years]
1 react+centr. 10; 1.2 820 27.8 8 6.6 1300 4.1

35 centrifuge 1.2 340 23.1 7 12.5 1130 4.9

49 react.+cryst. 16; 6.3 800 21.3 8 7.2 1180 5.4

69
no

investment
- 0 20.2 6 - 1520 6.2

However, the algorithm with superequipment method identified several profitable

possibilities for investment. A selection of investment options is listed in Table 3-

1, where the designs are dominating (assumed Pareto-optimal) in the listed

objective functions and have been chosen from a results list with 200 entries. If we

compare the Design #1 and Design #69, the NPV is the highest for the no invest¬

ment case. However the project time constraint 5 years must be taken into
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account. Thus from the listed solutions only the Designs #1 and #35 are satisfying
this constraint.

The best performing design according to productivity utilizes additionally one

10 m) reactor and one 1.2 m) centrifuge (see Fig. 3-8). Reactor specifications deter¬

mined by the operation requirements are: steel construction material, stainless

steel lining/V^A, temperature range -i5°C to 150 °C, up to 6 bar pressure resist¬

ance and no distillation column. The centrifuge is sold with PTFE lining and a

buffer tank.

Block 1 (in parallel)

Block 7 (in parallel)

Block 2 Blocks 3, 4, 5, 6

(Block 3 in series

Figure 3-8: Vitamin C case study with investment as obtained by superequipment
method optimization. Design ranked #1 from plant C4S. Dashed arrow refers to in

series operation mode.

Objective function values are: productivity 27.8 kg/hr, batch size 0.24 t/batch, and

payback time of 6.6 years. Time analysis (Figure 3-9a) shows shortening of cycle
time from 730 min to 525 minutes by better utilizing the equipment and parallel

assignment of the two centrifuges. The volume utilizing analysis (Figure 3-9b)
shows the volume limiting equipment (Riod4 and SupEq257), which perform the

operation in series. The centrifuges are never volume limiting, therefore the vol¬

ume utilization is not shown.
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600

Figure 3-9: Vitamin C case study with investment as obtained by superequipment
method optimization. Design #1 in plant C4S, (a) equipment time utilization, (b)

equipment volume utilization.

Comparison of Conventional TS Optimization (Plants C4r, C4ce, C4rce) and Superequipment
Method Optimization (plant C4S)

For comparison we studied investment options using a conventional TS optimiza¬
tion approach (Cavin et al., 2004, Cavin et al., 2005) and accordingly defined

three new plant lines mirroring the investments on top of the base plant: plants
C4r (additional reactor), C4ce (additional multidrop centrifuge) and C4rce (reac¬
tor plus multidrop centrifuge), see Table 3-2.

Table 3-2: Investment scenarios for plant C4; Vitamin C case study and conventional

TS optimization

Plant 1 Equip, type Equip, size Investment

[kUSD]

Options

C4r reactor 10 480

C4ce multidrop centrifuge 1.2 340

C4rce reactor+centrifuge 10; 1.2 820

distill, column

buffer tank

dist. column + buff, tank

The optimization of each case separately provides in total three distinct result lists

with loo designs for each case. The best designs according to productivity have

been selected for comparison (see Table 3-3).
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The new îom^ reactor in the plant C4r provides only a small improvement over

the base case. All equipment is used in this plant and a productivity of 20.7 kg/hr is

only about 1 % higher than in the base case.

Table 3-3: Comparison of optimal designs from plants C4, C4r, C4ce, C4rce, Vitamin C case study;
conventional TS optimization

Plant

name

Prod, rate Floors up Batch size Nr. equip.
Campaign

costs

NPV
Campaign

time

[kg/hr] [-] [t] [pes.]
[mio.

USD]
[kUSD] [years]

C4 20.2 4.5 0.24 6 7.98 1520 6.2

C4r 20.7 6.0 0.24 7 7.90 1020 6.0

C4ce 23.1 4.5 0.24 7 7.86 1130 4.9

C4rce 27.8 4.5 0.24 8 7.79 1300 4.1

A 1.2 m} centrifuge in the plant C4ce offers 12 % capacity improvement over the

base case, which has been achieved by ordering two identical centrifuges in paral¬
lel and thus shortening the original cycle time from 730 minutes in the optimal

design from plant C4 to 525 minutes in the design from plant C4ce, where the

time limiting operations take place in one 6.3 m) reactor (single mode of opera¬

tion).

The combination of centrifuge and reactor in the plant C4rce offers massive short¬

ening of the cycle time by employing second centrifuge in parallel, increasing the

utilization of equipment and decreasing the cycle time even more by serial

arrangement of the units R6f2-Rioei and Rioei-Rioci (see Figure 3-10).

Block 1 (in parallel)

Block 7 (in parallel)

Blocks 4, 5, 6, 7

Block 8

Figure 3-10: Vitamin C case study with investment as obtained by conventional TS

optimization. Design #1; plant C4rce. Dashed arrows refer to in series operation mode.

Comparing the optimal design according to productivity from plant C^rce (Figure
3-10) and the superequipment method optimized design on Figure 3-8, identical

arrangement of the equipment in both flowsheets can be observed. Although the
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flowsheets are similar, there can be differences in the recipe block assignments.
For example in the design #1 from plant C4S (Fig. 3-8) the block 2 is performed in

R6d2, block 3 (in series) in SupEq257 and Riod4 and block 4 in Riod4 .
In the

flowchart of design #1 from plant C^rce (Fig. 3-10) the block 2 is performed in

R6f2, block 3 in series in R6f2, Rioei, Rioci and the block 4 in Rioci. Both layouts
have the same objective function values.

All designs from Table 3-3 were identified in the results list from the superequip¬
ment method optimization and prove the superequipment method reliable.

3. 2.1.5 Conclusions

The non-dominated solution is found in both conventional TS approach and by

using superequipment concept with TS. Comparison of the data from conven¬

tional optimization and superequipment method shows that the productivity in

both cases is the same for the same designs.

The flowcharts of the corresponding optimal designs in both methods are identi¬

cal in location of volume limiting equipment, time limiting equipment and struc¬

ture of designs with regard to the same type of equipment. The differences in

block allocations in series have no effect on objective function values.

Comparison of the CPU time needed for performing three separate optimizations

against one optimization utilizing the base plant and two pieces of superequip¬
ment shows clear advantage of the latter method: for each standard optimization
the mean value of duration for 1000 iterations was 856 s, the mean value of time

required for finding the non-dominated optimum was 3510 s. The superequipment
method requires more computational time for validation and transformation algo¬
rithms and the mean value of duration for 1000 iterations is 2051 s. The mean

value to find the non-dominated optimum is 2430 s, because the problem utilizing
superequipment units is less constrained and requires less iterations to reach a glo¬
bal optimum. Furthermore the superequipment approach has the significant
advantage that only the maximum number of additional units has to be specified
for the investment scenario while an explicit definition of a larger number of

equipment is required in the conventional approach. This reduces the amount of

work related to input specifications, results list compilation, and number of opti¬
mization runs.

3. 2.2 Plant selection for given recipe — 4-(2-

quinolinylmethoxy)-phenol (Product H) case study

The aim of this case study is to show how in a single run diverse plant lines can be

optimized by superequipment method and compared with each other. As a proof
of functionality, we optimize the three plant lines by standard method and com¬

pare with results obtained by superequipment optimization.

6. Numerous optimization runs from different random starting conditions have been performed and no

better solution could be found within the given time-frame (maximum solving test time was 48 hours),
which suggests that the solution is, with a high probability, a global optimum.
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Figure 3-11 shows schematics of such optimization. In the standard case one

would select a number of existing batch plant lines from corresponding databases,

optimize multiple times and review multiple results lists in order to obtain the best

design which will be performed in one of the plant lines. On the other hand,

superequipment methodology for batch plant line selection requires: superequip¬
ment domain specification (saying how many superequipment units will be

needed for current optimization) plus the databases of the considered batch plant
lines. Afterwards only one optimization run will be performed delivering sorted

results list consisting of top-performing, in general dominating (approximated
Pareto-optimal), designs for all considered plant lines. Thus the number of optimi¬
zation runs is reduced to one.

[Input] [Optimization] [Output]

Figure 3-11 : Plant line selection procedure using predefined superstructure consist¬

ing only of superequipment units plus predefined multiple batch plant lines containing
real equipment units delivers results for three batch plant lines in one optimization run.

This case study shows production of a fine chemical used in the pharmaceutical
and photo industry. The synthesis is based on a reactant known under commercial

name Quinaldine which is freely available on the market. The recipe and basic

process simulation of 4-(2-quinolinylmethoxy)-phenol (or its sodium salt),
referred to as Product H have been presented by (Petrides et al., 2002). An over¬

view of the chemical process can be found in Appendix A-4.

3. 2.2.1 Recipe description

The recipe consists of 33 individual steps ordered into 12 blocks (this is equivalent
to the recipe matrix B). The Quinaldine as a key component is transformed

through 5 reaction steps into product H. None of the reactions needs extreme tem¬

peratures or pressures and can be easily controlled. Minimal number of units for

this recipe is 9. The reaction scheme listing the most important reactions of this
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procedure and the BatchPlus recipe is listed in the Appendix A-4 Quinaldine deri-

vate synthesis - Product H.

Charging the reactants, evacuating the reactor and first reaction are assigned to

(block 1). Quality control test is performed at the end of reaction.

Second reaction step is performed in the (block 2).

Extraction takes place (block 3) and third reaction step follows after charging with

additional reactants (block 4). Also in this reaction, quality control is needed.

Crystals of the intermediate product have to be filtered and washed (block 5).

After dissolving the intermediate with additional solvent, reaction 4 takes place
(block 6). Another filtration of the crystals (block 7) is followed by dissolution and

reaction 5, where the final product in solid state is synthesized (block 8).

Product is then filtered (block 9), dissolved in a solvent and crystallized (block 10)
before multidrop centrifugation removes the solvent (block 11) and final drying
occurs in the (block 12).

3. 2.2.2 Plant lines description

Superplant

The plant size has been set as the number of the blocks in recipe times two, as no

operations can be conducted in series (GMP regulations) and all operations can be

performed in parallel, thus resulting in the minimal count of 24 superequipment
units. Defining more superequipment units has no effect on results, it only slows-

down the computation as the resulting designs contain 24 or less units.

Plant Cio

Reactors: 8; 6.3 m): 1; 10 m): 5 ; 16 m): 2; each reactor has

distillation column or condenser attached

Multidrop centrifuges^; 0.44 m) each

Filters: 4; 0.6 m} each

Crystallizers:0

Plant Qt,

Reactors: 11; 4 m): 5, 6.3 m: 6; 3 reactors have distillation column

or condenser attached

Multidrop centrifuges: 2; 0.8 m} each

Filters: 3; 0.6 m} each

Crystallizers: 2; 4.8 m) each
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Plant Cn

Reactors: 21, /^m): 3; 6.3 m): 11; 10 m): 7 ; 12 reactors have

distillation column or condenser attached

Multidrop centrifuges: 8; 0.44 m): 6; 0.8 m): 2

Filters: 9; 0.44 m} each

Crystallizers: 5; 10 m} each

In each plant line additional supporting units have been defined, e.g. dryers,
tanks.

3. 2.2.3 Optimization settings

The first step includes setting-up the Superplant consisting only of superequip¬
ment units, selecting and specifying the target plants (Cio, Q2, C11) in order to

allow superequipment design performance computations in each of the plants and

running the optimization with the following prioritized list of objective functions:

1. productivity, 2. special plant line selection score, 3. special diversification func¬

tion, 4. Net Present Value, 5. number of equipment. The NPV refers to NPV of

the campaign. In this case study no investment into additional or new equipment
units is considered.

Later on, we optimized each of the plant lines (plant Cio, plant Q2, plant Cn)

separately. Ordered objective function list was: special diversification function,

productivity, floors-up indicator, net present value for the campaign, number of

equipment.

Net present value of the campaign has been calculated as follows: customer

placed an order of 750 t of Product H, projected selling price is 64 USD/kg of

product. Plant independent costs (materials, waste treatment) are 30.4 mil. USD

and energy costs, utilities, labour costs, plant line rent, changeover, overhead,
other are considered plant and design dependent. Plant independent costs are

90 % of total costs on average. The interest rate is 10%.

The optimization settings for Tabu Search have been set as follows: neighbour¬
hood size 40, the tabu list length was 90, forbidding shortly visited neighbour¬
hoods. Stopping criteria for the optimization were set to 70 iterations after finding
last non-dominated global optimum and there were 36 restarts during a run,

because no new optimum could be found during the last 10 restarts.

Individual designs are created during the superplant optimization, where each of

the units is represented by a superequipment unit. In order to obtain the produc¬

tivity, costs and other parameters, real properties of each apparatus must be deter¬

mined. The determination process is performed as many times as is the number of

plant lines to compare, in our case three times for each design in each iteration.

During the determination of unit properties, operation time, volume and mode

have to be taken into account. This procedure results in a listing consisting of unit

type, minimal size and minimal parameters required to carry out the desired oper¬

ation block. Two final steps are then performed: identifying/matching the

superequipment units with the real equipment from each plant line and scaling of
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the time and volume for each recipe block according to the bottleneck in order to

obtain maximal productivity for each design in the three plant lines. The transfor¬

mation of superequipment units follows in each iteration for each evaluated

neighbor.

If the superequipment design can be matched into the given plant line, that

means there is enough equipment in that plant line from each class, size and lin¬

ing material for performing all operations. If the evaluated design contains more

superequipment units than available units in a given plant line, either the design
is not realizable in that plant, or additional investment is required. In such case,

the maximal possible productivity is computed for the investment scenario. If no

investment is allowed, productivity is zero.

3. 2.2.4 Results and discussion

The principle of matching the superequipment units from design #1 to a plant is

demonstrated in Fig. 3-12. The second and third plant are matched the same way

as the plant Cio and are not shown in the figure.
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SUPERPLANT

(reactor)

(reactor)

ïTTi
SEq. 262

10mA3

(reactor)

SEq. 260

10m«3

(reactor)

"rlir
SEq. 259

0.6 m*3

(filter-nutsche)

^

(reactor)

F-06a

0.6 m*3

R1

10mA3

(reactor)

R2

10m»3

(reactor)

^±tr
F-06C

0.6 m*3

(filter-nutscheï

R6

16m«3

(reactor)

/ 0.44 m*3 \ / 0.44 m*3 \

/(CENTRIFUGE) \/(CENTRIFUGE) \

Figure 3-12: Product H case study. Design #i as superplant layout (left) and mapped
to plant Cio for evaluation purposes (right); (see Table 3-4). The superequipment unit

volumes can be less than the equivalent volume in the existing plant. This can happen
if the corresponding unit is not full. This is set according to the defined heuristics.

First, the selection of equipment sizes is constrained only by recipe block volume

demand. For example, if the volume requirement of a reaction is r4 m3, a

superequipment unit obtains the next available nominal volume of a reactor:

r6 m3 as a first approximation in determining the volume of superequipment.
Therefore the superequipment design #r cannot be used directly for determining
all the evaluation parameters in each selected plant. For example, because the

standard size of centrifuge in the design #r used in superplant is r.2 m^, the cycle
time computed for this alternative is lower than the cycle time of the same design
in the plant Cro using 0.44 m} centrifuges. Plant Q2 has no available r6 m^ or
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ro m) reactor, therefore the respective design #r productivity will be determined

by an appropriate superequipment layout transformation, where the SEq. 264, a

r6 m) vessel becomes a volume bottleneck after transformed to a 6.3 m) reactor.

One of the most important questions for the decision maker is: "in which plant
line should the campaign be carried out? ". Table 3-4 provides a comparison of

parameters of designs mapped completely to the three plant lines (not requiring

any investment, each design can be performed in a given unmodified plant line).

Table 3-4: Subset of resulting designs from superplant optimization for the case study
Product H and the following plant lines: 1. plant Cio, 2. plant Q2, 3. plant C11.

Results are sorted according to productivity. The bold numbers indicate best designs
in each plant according to productivity.

Design ID
Plant line

ID
Prod, rate Batch size Nr. equip. NPV

(#) (#) [kg/hr] [t] [pes.] [mio. USD]

3 3 135.1 1.27 24 23.0

7 3 133.0 1.24 21 22.8

1 1 130.9 1.60 13 23.3

4 1 130.9 1.60 14 23.2

1 3 90.3 0.97 13 22.1

2 2 74.0 0.69 13 21.0

4 2 68.8 0.63 14 20.6

1 2 58.4 0.63 13 19.3

As we see in Table 3-4, design #3 is the overall best in terms of productivity. This is

also the best design found for plant C11. The large number of 24 units used for pro¬

duction implies increased costs for this design (NPV=23.o mio. USD) and thus

not reaching the optimum for the NPV. This design is actually performing all rec¬

ipe blocks in parallel and thus creating overhead in cleaning costs and labour

demand. The productivity per total nominal volume of significant equipment is

low (0.71 kg.hr'1.m'^).

The best productivity in the plant Cro can be achieved by design #r (Figure 3-12),

being only 3% less effective than design #3, but it utilizes only r3 units, reducing
the costs and reaching the optimum in NPV equal to 23.3 mio. USD for the whole

campaign. Plant Q2 is dedicated for small productions and has no ro m) reactor,

therefore the best achievable productivity is 74.0 kg/hr with design #2. All of the

resulting Net Present Values are rather similar, because of the high fraction of raw

material and solvent costs. Thus the primary criteria for decision might be for

example productivity, number of units used or batch size. If the campaign time is

the main issue, design #3 should be implemented in plant Crr. On the contrary, if

the free capacity of a big plant (plant Crr) was required for upcoming campaigns,

design #r in plant Cro could be a good compromise between performance, NPV
and number of units used while keeping the large plant free.

Note that the same design can have multiple instances in the results table. For

example design #r from the superplant can be matched and realized in all of the

plants without requiring additional investment. This means, that all r3 units from

the superequipment design will be mapped into real units for each plant. How-
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ever, because the equipment units differ in each plant, the performance indicators

also differ and favour the second largest plant in the list, where the volume bottle¬

neck is resolved by parallel usage of two ro m} reactors.

Our goal is to search the whole solution space and obtain designs from minimal to

maximal allowed number of units. Furthermore the specification declares, that

only designs which fit into any of the real plants will be stored in the results list.
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Figure 3-13: Productivity vs number of equipment units for the Product H case

study after matching superplant designs to plants Cio, Q2, C11 Designs with maximal

productivity for given number of equipment are displayed Designs #1-3 refer to corre¬

sponding designs from Table 3-4

The conventional optimization technique uses mostly restarts as the main diversi¬

fication component. After each restart, a single random design is selected from the

results list and random selection of move is not sufficient to escape the area with

given number of equipment. Therefore the steering of searching algorithm in the

objective space by special diversification function is needed, which ensures stor¬

ing of designs with broad variety in number of units and a good productivity.

Figure 3-13 shows the relationships of the productivity vs. number of used equip¬
ment units for the three plants. A subset of designs with best productivity for given
number of units and given plant is displayed. A minimal number of 9 units has to

be used to process the r2 blocks of the recipe. The maximal number is 24 (design
#3), as discussed above. The design #3 can be matched only with plant Crr with¬

out additional investment. The mapped designs show a trend of increasing pro¬

ductivity with increasing number of equipment. The best designs with r5

equipment units (Fig. 3-13) do not include two centrifuges in parallel mode
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(block rr) as in the best designs with r4 units. This increases the cycle time. If a

design with r5 units and two parallel centrifuges (recipe block rr) is mapped into

plant Cro or plant Crr, an additional reactor (as compared to the best design with

r4 units), which is placed in series with another reactor, becomes the volume bot¬

tleneck and no bigger unit is available. Similarly, in the plant Q2 adding equip¬
ment to the optimal design with r3 units improves the process no more.

Comparison of the results obtained by superequipment method with the standard

optimization of each plant separately shows a good match (see Table 3-5). In the

plant Q2, the non-dominated solution with 74.0 kg/hr and r3 units has not been

found during the run (200 iterations without finding global optima and 40 restarts

requiring ca. 230 minutes). This can be explained by too constrained searching

space (fully loaded plant utilizes r4 units for this recipe) and neighbourhood,
where the only possibility of diversification in current implementation of TS is in

the restarts. On the other hand, superequipment method is less constrained due to

the "chameleon" property of each unit and the diversification process is ensured

naturally by moving through the solution space almost without limits (no restric¬

tions in lining materials, size, etc.).

Table 3-5: Resulting designs with best productivity for conventional TS optimization of

Product H case study in the plant lines: 1. plant Cio, 2. plant Qz, 3. plant C11

(compare with Table 3-4 - superplant optimization).

Plant line ID Prod, rate Batch size Nr. equip. NPV

(#) [kg/hr] [t] [pes.] [mio. USD]

1 130.9 1.60 13 23.3

2 69.4 0.63 11 20.8

3 135.1 1.27 24 23.0

3. 2.2.5 Conclusions

Here, another advantage of superequipment concept becomes evident, as the free¬

dom of equipment choice in each iteration is crossing the regions in the TS

searching space without limitations. In the conventional method, the regions of

invalid designs or infeasible solutions can be a limiting factor for escaping local

optima and require other diversification methods for driving the optimization
towards the global optima.

The CPU time analysis for standard TS optimization shows, that with increasing
number of equipment units in the plant, the time to find global optimum
increases. In the plant Cro optimization, global optimum in productivity has been

found after 3900 iterations (mean optimization time ro40 s per rooo iterations), in

the plant Q2 after 5200 iterations (mean optimization time rÔ20 s per rooo itera¬

tions), in the plant Crr after 8300 iterations (mean optimization time ^30 s per

rooo iterations). In total 26009 s were needed to optimize the three plants inde¬

pendently.

The superequipment plant optimization with 24 units and three lines required on

average 3150 s per rooo iterations and the mean of 8 runs on number of iterations

to find global optimum in productivity for all three plants is 3600 corresponding to
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U340 s. However the CPU time is strongly dependent on TS criteria selection,

neighbourhood size, tabu tenure length, recipe complexity and objective func¬

tions selected. In any case the sum of optimization times for handling three lines

separately is significantly larger than the optimization time utilizing the

superequipment approach.

Again the superequipment concept offers a practical advantage: instead of specify¬

ing three independent optimization problems and obtaining three separate result

lists as in the conventional approach, only a single problem has to be specified in

the superequipment method delivering one overall list of results as a basis for deci¬

sion making.

3. 2.3 New plant design for selected recipe - Acetylsalicylic
Acid case study

The grass-root design is based on net present value calculations with investment

and demonstrates suitability of superequipment concept on this problem type.
The results of the superequipment concept optimization are compared with the

standard plant line optimization in the grass-root simulation mode.

Figure 3-14 shows the grassroot design optimization scheme. A superstructure

consisting of a number of superequipment units is defined as an input7. During a

single optimization run, a number of designs consisting only of superequipment is

generated. In each iteration all evaluated designs have to be "identified", which

means transformation of superequipment model to an existing equipment unit

takes place according to heuristic rules. The transformation process serves as a

necessary step in determining the Net Present Value of each design.

Sipersfricfire Super-Design

G
0

O'

ize

Figure 3-14: Grass-root plant line optimization scheme using superequipment. The

superequipment units in a circle will be transformed for objective function evaluation

into a real equipment unit, in order to determine productivity, NPV, and other objec¬
tives.

7. The superestructure domain definition is very simple, it is a number representing maximal number of

potential equipment units in the new resulting grass-root plant line.
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3. 2.3.1 Recipe description

Acetylsalicylic Acid is a low-cost fine chemical also known as Aspirin. In this case

study a process first published by (Schmitt, 1885^ Kolbe, r86o) and later reviewed

by (Lindsey and Jeskey, 1957) is used. The appropriate reaction scheme is pre¬

sented in Appendix A-5 Acetylsalicylic acid reaction scheme, Kolbe-Schmitt synthe¬
sis.

The process comprises 4 reactions, from which one is a reactive distillation. Reac¬

tants are charged and heated in a reactor. All of the solids dissolve and reaction

takes place, after which the reaction mixture has to be cooled down (block r).
Extraction (block 2) and pH-adjustment follow (block 3). After that, distillation of

the solvent is necessary (block 4). Charging and dissolving of additional reactant is

assigned to (block 5). Preparation of reaction mixture by charging of solvents,

reactants, dissolving them and adjusting pH (block 6) take place. Afterwards, the

reactive distillation has to be conducted in a reactor with distillation column

attached (block 7). Charging, reaction and cooling of the mixture follows (block

8). Crystallization (block 9) and multidrop centrifugation (block ro) recover the

intermediate crystals. Final reaction step occurs (block rr) and aspirin product has

to be purified in subsequent steps by crystallization (block 12), multidrop centrifu¬

gation (block 13), and drying (block 14).

3. 2.3.2 Plant lines description

Superplant

The superplant size is determined by the maximum number of units which can be

used in a design. In this case, the recipe consists of r4 blocks, where only 4 blocks

can be performed in parallel mode (constraint set in the recipe input) and no

blocks are allowed in series for safety reasons. Therefore, the maximum number of

units is r8, this is set as a size for superplant.

Plant C12 (Conventional TS optimization)
This plant consists of various types of reactors, dryers, tanks, multidrop centri¬

fuges, filters, extractors, crystallizers and more units. Sufficient number of equip¬
ment classes to perform each block is available. We present here only the

important equipment units. The plant was defined for comparison purposes with

the Superplant. The basic assumption in this optimization case is that, if enough
equipment units is provided for performing the recipe, the conventional TS opti¬
mization will automatically result in the appropriate grass-root designs.

Filters: 6; 0.6 m) each

Multidrop centrifuges: 8; 0.44 m} each

Dryers: 4; ro m) each

Crystallizers: 4; ro m1> each, PTFE lining material

The recipe can be performed by a maximum of r2 reactors ( reaction, crystalliza¬
tion, extraction, pH adjustment, distillation operations, etc. can utilize a reactor)
in rr blocks, where one of them can be performed in parallel. Standard tempera-
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ture and pressure conditions used in the recipe require common vessel materials

up to 6 bar and 200 C. We consider only three standard sizes for reactor vessels:

r6 m}, ro m} and 6.3 m}. We also consider three possible lining materials in the

reactor vessels: stainless steel, Hastelloy, enamel/PTFE. All possible combinations

of such properties result in 2r6 reactor units in the grassroot plant.

As we want to simulate a grass-root design with this plant, we neglect the floors,

spacial coordinates of each unit in the plant and also the connectivity constraints.

3. 2.3.3 Optimization settings

For the grassroot optimization of superplant and plant Cr2, the prioritized list of

objective functions has been set as follows: r. production rate, 2. NPV, 3. costs of

campaign, 4. special diversification function, 5. number of units in design.

The main interest of the grassroot design is the calculation of economic indicators

(planning phase of a project), which are included as objective functions: NPV and

costs of the campaign. The costs of the campaign are needed as an input for the

NPV computation. The plan is to produce Aspirin during the next 5 years. It is

assumed that the whole production can be sold during this period. The projected

selling price used in computations is set to 8.76 USD/kg of Aspirin and remains

constant during the production period. The equipment is bought before the

beginning of the campaign and is computed for each design individually. Installa¬

tion factor, material type, pressure factors, options, etc. are also included in the

pricing. Costs of buildings, building area and costs related to the beginning phase
of the project are not included, as we consider only the costs directly related to the

design. The loan begins one year before the start of the production and the inter¬

est rate is 10%.

The costs of the campaign include labour, utilities, changeover, materials and

waste costs, overhead and other. The plant independent costs include mostly the

material and waste costs and represent about 75% of the total costs without invest¬

ment for this campaign. Cash flows are computed at the end of each year. The

equipment units are to be depreciated during the 5 years period from the begin¬

ning of production; the salvage value is set to zero.

The Tabu Search options are set as follows: neighbourhood size: 40, tabu list

length: 80, number of iterations until restart without finding new non-dominated

solution: 80, number of restarts: 30.

3. 2.3.4 Results and discussion

The TS optimization shows that the minimal number of units needed for the pro¬

duction is 8, the maximal is r8 due to the recipe specific heuristics. Table 3-6 dis¬

plays three representative designs: Design #2 is an optimum in productivity,

Design #r4 is optimum in NPV and Design #407 is utilizing only 8 equipment
units. All of the designs have a payback time of less than five years.
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Table 3-6: Aspirin case study: subset of dominating (approximated Pareto-optimal)
designs for the grassroot problem as obtained by superequipment approach.

Design ID Prod, rate Batch size Nr. equip. NPV

(#) [kg/hr] [t] [pes.] [mio. CHF]

2 234.7 2.24 18 38.1

14 226.4 2.24 15 40.5

407 137.1 2.09 8 24.1

Figure 3-15a shows a graph of maximal productivity vs. number of units used in a

design as stored in the results list.
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Figure 3-15: Aspirin case study. Resulting designs from superplant optimization (hol¬
low squares) and plant C12 optimization (dark dots), maximal productivity vs. number

of units (a) and maximal NPV vs. number of units used (b).
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It includes a subset of dominating designs according to the objective functions list.

The dominating design #2 utilizing r8 equipment units from the superplant opti¬
mization has the best productivity of 234.7 kg/hr. The same level of productivity
has been identified with the conventional optimization of plant Cr2

,
where the

structure of transfers between the blocks in the optimal designs is comparable.

Figure 3-16: Aspirin case study, (a) Design #9, superplant (superequipment concept

optimization) (b) Design #1 plant C12 (conventional TS optimization). Z denotes a

centrifuge, R a reactor, T a Tank, Co. is a condenser. The ellipses represent conven¬

tional equipment, the rectangles represent transformed superequipment units.

The scatter plot of NPV vs. number of equipment units displayed in Figure 3-

16 (b) shows a clear dominance (approximated Pareto-optimum) with a design
utilizing r5 equipment units (the tanks do not count to the total number of equip¬

ment). The NPV value for this case is 40.5 mio. CHF. It has to be mentioned

again, that the superequipment method cost algorithm prefers the cheapest possi¬
ble unit if a selection for a given recipe block is available.

Figure 3-16 shows, that the TS optimization using superequipment method is

capable of finding the same structures within the designs as in the conventional
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TS optimization method. Both designs use 2 pairs of centrifuges in appropriate

recipe blocks and all equipment locations and sizes are comparable. The unit

sizes in superequipment design must be equal or larger than the corresponding
units in plant Cr2 design in order to achieve the same productivity. Otherwise, the

superequipment design productivity is scaled-down according to the volume bot¬

tleneck.

3. 2.3.5 Conclusions

In the superplant method the optimal productivity has been found after 4200 iter¬

ations requiring ca. 3350 s per rooo iterations (14070 s in total). The conventional

TS method requires a mean value of 5680 s per rooo iterations and 6400 iterations

to find global optimum (36352 s in total). The plant definition for the Plant Cr2

comprises more than 220 units, which is a burden for CPU time as compared to

only r8 superequipment vessels.

The conventional TS optimization uses explicit specification of each unit, which

might enable only suboptimal solutions when even a large number of specified
units results in a too limited superstructure. This problem is overcome by optimiz¬

ing only on the transfers, i.e. by using the superequipment concept for which only
the maximum number of units has to be specified.

3. 3 Discussion and conclusions

We presented a novel approach using superequipment concept for solving differ¬

ent design problems related to single products in multipurpose batch plants: addi¬

tional investment into an existing line or plant, the selection of one production
line out of several available, and grassroot design of a new plant. Multiple objec¬
tives are considered in these design problems. Dominating (approximated Pareto-

optimal) solutions are generated by means of a Tabu Search algorithm.

In the novel approach the concept of superequipment has been defined as an

abstract model, which is capable of performing any physico-chemical operation.
Each superequipment is transformed into a real equipment unit, for example a

reactor, during or after the optimization in order to evaluate performance parame¬

ters of a design. This novel concept uses an implicit definition of a superstructure
and essentially optimizes on the transfers between different equipment units. This

principle perfectly mirrors the major aim of batch process design, i.e. the goal to

equally distribute the tasks to be conducted to a number of equipment units so

that the cycle time is minimized and optimal batch size is achieved.

On the basis of the case studies we demonstrated that the application of the

superequipment concept has the following advantages for the investigated design
problems:
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In the superequipment mode, only the maximum number of additional units,

each represented as a superequipment unit, has to be specified instead of defining
a large number of equipment explicitely.

The multiobjective Tabu Search algorithm generates a number of superequip¬
ment designs in a single run. Afterwards the potential implementation of these

designs into the available production facilities is investigated and the resulting
performance indicators are determined. The indicators such as productivity and

NPV highlight the trade-offs between different facilities. Constraints such as due

dates can be considered in the selection of the most appropriate line.

The comparison with optimization results obtained with a conventional Tabu

Search algorithm revealed that the superequipment approach is capable of identi¬

fying the dominating solutions. CPU time comparison of conventional TS optimi¬
zation vs. superequipment TS optimization shows that the superequipment
method requires in some cases more time per iteration (2.1 s/iteration for the Vita¬

min C investment case compared to 0.9 s/iteration), which is due to additional

heuristics and increased time for evaluating objective functions for all options in

one superequipment. However, the number of iterations to find global optimum is

lower than in the corresponding traditional TS optimization case, because the

search space and move space are less constrained. For the investigated case studies

the overall CPU time for the superequipment approach was significantly lower as

compared to the conventional approach.

For all three fields of application the superequipment concept means a considera¬

ble saving in time and effort because the optimization problems are reduced in

size and repetitive optimization runs are avoided.

Other possible applications include, but are not limited to, optimizing of several

given plant lines with possible constrained investment options simultaneously,

finding a set of designs for given number of recipes in one optimization run, opti¬
mization in an equipment pool plant with several recipes and layout combina¬

tions. It has to be investigated to which extent the superequipment concept can

also be used in combination with other optimization approaches.
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Abstract

This chapter adduces multiobjective optimization with uncer¬

tainty based on approximated Pareto-analysis and exemplifies the

principles on a multipurpose batch plant study.
There exists a tendency of incomplete information in the early

industrial batch process development. The unknown variables are

often related to a preliminary chemical recipe, for instance duration

of operations. The aim of the preliminary batch process design is to

find assignments of recipe operations to given equipment units avail¬

ablefor production, which we call the design or solution. Due to the

presence ofuncertainfactors in the early stages, quality ofthese assign¬

ments is often difficult to quantify. Similarly, if the goal is to obtain

the best design for implementation in the multipurpose factory, the

quantification of objective functions needs also to be adjusted for
uncertain variables.

Wepropose a Tabu Search optimizationframework, which allows

tofind a set offeasible designs (dominating optima, local optima and

interesting solutions) with uncertain variables present in the initial

recipe. As a novel approach, we introduceproductivity ofa design [kg/
hrj as primary and productivity robustness as a secondary objective
function, which is an important measure ofdesign reliability under

varying conditions.

This combination ofi objectives is able ofiproviding results list

based on Latin Hypercube Monte Carlo simulation consisting ofi
guaranteed valid designs. The implementation ofi Tabu-Searchframe¬
work using a two-stageprogramming approach and uncertain process

inputparameters results in hugeflexibility in the input stage ofprob¬
lem specification. Adding and modifying ofi objective functions is

inherited.

As a result we successfully demonstrate that meta-heuristic opti¬

mization techniques are capable ofideliveringfeasible solutionsfocus¬

ing on optimizations ofiperfiormance robustness on a large domain ofi

process designs and are also able ofi capturing different antagonistic
solution qualities by multiobjective optimization.
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4.1 Introduction

In the Chapter 2 Methods Ö algorithms, we introduced the methods needed for

searching for optimal batch process design. In this chapter, we describe two case

studies: a synthetic process with an arbitrary recipe and a simple Aspirin produc¬
tion, in which we evaluate the uncertainty and the robustness of the resulting
designs. The aims of the case studies are:

• to find a set of batch design alternatives with good performance and outstand¬

ing robustness

• to perform a monovariate sensitivity analysis of the uncertain recipe data for

each resulting design
• to estimate changes in productivity according to the multivariate uncertainties

in the initial recipe for each resulting design

4. 2 Uncertainty case study

4. 2.1 Initial recipe

It is a hypothetical production in preliminary (R&D) phase, where only limited

knowledge about the process is available. The recipe tasks should mimic typical

operations found in a speciality chemical production. In this stage, we assume

that the reaction data is not fully determined, but an approximate basic mass-bal¬

ance can be computed prior to the optimization, which we use as a base case for

scaling-up of the production.

The recipe displayed in Table 4-1 contains 15 steps, from which three are reac¬

tions. It is a production-scale process performed by equipment of a base volume of

10 m3 and assuming a simple linear-arrangement of all equipment units necessary

for successfully performing the production.
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Table 4-1 : The uncertainty case study, an arbitrary recipe with uncertain operation times. The functions

trirndQ and normrndQ refer to random triangular and normal PDFs.

Time Volume
Operation

class
Flags Temperature Pressure

Lining
material

Previous

operation

Next

operation

[mm] [m3] [°C] [bar]

20 8.4 4 0 20 1.0 -1 - 2

.30, 350, 400) 8.4 32 1 180 4.0 -1 1 3

20 9.4 4 0 90 1.0 -1 2 4

160 9.4 17 2 80 0.5 -1 3 5

20 2.6 4 0 80 1.0 -1 4 6

210 2.6 15 2 50 1.0 -1 5 7

200 2.5 47 2 30 1.0 -1 6 8

20 3.1 4 0 20 1.0 -1 7 9

00, 400, 500) 3.1 32 2 100 4.0 5 8 10

120 3.6 19 2 50 1.0 -1 9 11

80 3 4 0 50 1.0 -1 10 12

d(420, 16.80) 3 32 0 100 4.0 -1 11 13

250 3 15 2 50 1.0 -1 12 14

300 1.5 47 2 30 1.0 -1 13 15

200 0.5 18 3 90 1.0 -1 14 -

ID
Operation

description

1 1.0 Charge

2 2.0 React

3 3.0 Charge
4 4.0 Distill

5 5.0 Charge

6 6.0 Crystallize

7
7.0 Multidrop

centrifuge

8 8.0 Charge

9 9.0 React

10 10.0 Extract

11 11.0 Charge

12 12.0 React

13
13.0 Crystal¬
lize

14
14 0 Multidrop

centrifuge

15 15. Dry

The time of each operation is set as fixed or uncertain. The three reactions: Reac¬

tion 2.o, 9.0, 12.0 contain uncertain time data in a form of probability distribution

functions. The first two reaction durations utilize the triangular Probability Den¬

sity Function (PDF), which is usually used if expected and minimal/maximal

durations are available. The triangular distribution, if known from the process, is

providing more information than the min-max approach. The third reaction with

a time set to normrnd(/j.2o, 16.80) PDF is taking 420 minutes on average, and is

expected to follow the normal distribution with a standard deviation a = 16.8.

Such distribution of reaction time could be a result of more detailed laboratory
measurements. The volume of operation is a maximum-filling volume of an initial

production-scale equipment. Although operation volume can be considered

uncertain in this phase, this option is not investigated here. A changing volume in

the initial recipe could simulate for example the varying amount of the reaction

mixture. Operation class refers to the class of operation listed in Operation descrip¬
tion column.

The Flags column in Table 4-1 represents constraints to the optimization problem:
o for no constraints, 1 for parallel mode of operation forbidden for given opera¬

tion, 2 for in-series mode of operation forbidden for current operation, 3 for in

series and in-parallel mode of operation forbidden for current operation. If more

operations are to be conducted in the same equipment unit, the constraints add

up. The temperature and pressure refer to maximum temperature and pressure

reached during a given operation. Lining material is a constraint, which assures

usage of proper equipment lining material type for each operation, for example, if

a fluorinating reaction was used, lining material PTFE (with a numeric represen¬

tation 5, listed in Section 2. 3.2 Options, constraints and limitations) would be
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used. In this simple example, all lining materials except one are non-constrained

(and thus set to -1).

The columns Previous operation and Next operation represent a link to previous/
next operations which is important for non-linear recipe types, for instance if two

reactants are to be prepared simultaneously (two parallel branches in the recipe)
before mixing in one common reactor (final reaction branch of a recipe tree). The

listed recipe is linear in the operation arrangement.

4.2.2 Plant line

The multipurpose batch plant considered in this case study (see Table 4-2) con¬

tains 8 reactors of different sizes, multidrop-centrifuges, extractors and a dryer.
Additional supporting equipment as pumps, heat-exchangers, mills, etc. is not

listed. Each equipment unit is characterized by its class, class number, nominal

volume, floor (eventually coordinates in the building), lining material and TP

range.

Table 4-2: Plant line used in the uncertainty case study.

ID
Equipment Equipment Equipment Nominal

Floor
Lining TP

name class name class ID volume

[m3]

material range

1 Cel.6a2 Centrifuge 135 1.6 0 5

2 Cel.6b4 Centrifuge 135 1.6 0 5

3 Crl0a2 Crystallizer 5 10 5

4 Crl0a2 Crystallizer 5 10 5

5 Crl0b4 Crystallizer 5 10 5

6 Dryerl Dryer 16 6.3 5

7 Extract 1 Extractor 6 4 1

8 Extract2 Extractor 6 4 5

9 RlOcl Reactor 14 10 3 5

10 R4al Reactor 14 4 3 5

11 R4el Reactor 14 4 3 5

12 R6al Reactor 14 6.3 2 5

13 R6a2 Reactor 14 6.3 1 5

14 R6b3 Reactor 14 6.3 2 5

15 R6d4 Reactor 14 6.3 2 5

16 R6fl Reactor 14 6.3 2 1

17 T10a2 Tank 19 10 0 1

18 T16a3 Tank 19 16 0 1

4. 2.3 Optimization settings

A standard Tabu-search method of optimization was used for this case study. Prior¬

itized list of objective functions was: 1. productivity, 2. robustness. All three robust¬

ness objectives were examined in three separate runs. Robustness #3 was

computed according to Eq. 32 with parameters: c+ = o.25; c_ = o.25 (see Section

2. 3.4).
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For data sampling, a Latin Hypercube method (Hess et al., 2004, Saliby and

Pacheco, 2002) resulting in 300 points was used, 100 points per each uncertain var¬

iable so, that each variable is tested in its whole range. Additionally for monovari-

ate sensitivity analysis another 36 data sampling point combinations were defined,

12 for each variable. The random numbers were generated according to standard

probability distribution functions (Equations 33 - 35). The data sampling proce¬

dure is repeated for each evaluated neighbour from the solution neighbourhood
before the actual evaluation of productivity takes place.

In the second stage, the resulting 300 discrete productivity values are fed to the

robustness objective function. As a result, the objective function value of robust¬

ness as a scalar is obtained for given solution according to Figure 2-15 and

Equations 29 - 32.

For the TS optimization aspiration criterion was used, a short term Tabu list of a

length of 12 and a stopping criteria which would restart the run for 10 times if no

improving moves to the global optimum were recorded successively for more than

30 times.

The neighbourhood of the current solution was evaluated to a degree ranging
from 20% to 40% and a candidate was selected according to TS heuristic rules. If

the neighbourhood was smaller than 12, all neighbours were selected for evalua¬

tion. During the run, due to the large number of combinations of equipment and

moves, a standard average neighbourhood size of 80 members was encountered.

Storing of the resulting designs was following the priority list: 1. global optimum,
2. local optima in one of the objective functions, 3. approximated Pareto optima

(dominating solutions), 4. other good performing designs with a limit of 75% of

the value of the global optimum.

4. 2.4 Case study results

The results list, consisting of about 30 designs with optimal and good-performing
objective function values, is filtered to display the four most interesting solutions

(see Figure 4-1), which contains:

• Design #1, which is an optimum in the expected productivity value ( which is a

value with the highest probability in the resulting discrete PDF) and also an

optimum in the maximum productivity value from all the results

• Design #6, which is an optimum in the robustness R17 R2, R,

• Designs #3 and #7, which are dominating (approximated Pareto optimal)
Please note, that the design identification numbers do not refer to any particular

sorting order, they serve only for naming purposes. Each design on Figure 4-1 con¬

tains a histogram of productivity and a lognormal fit of the productivity data. The

required objective function definitions are given in the Section2. ^.^ Robustness

measures.
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Figure 4-1 : Results list for the uncertainty case study depicting probability density
distribution vs. productivity of four designs. Solution #1 is optimal in the expected pro¬

ductivity, the design #6 is optimal in robustness and other designs are dominating
(approximated Pareto optimal). Robustness #3 indicator is displayed in the header of

each graph.

After reviewing the results list, the decision maker will select a few designs for fur¬

ther inspection. If the most important decision criterion was robustness, one

might select the design #6, because it shows (a) high probability of the expected
productivity value; Robustness #1 = 62.0% (b) a high probability of achieving the

expected productivity or higher; Robustness #2 = 58.6% and (c) a high
Robustness #3 value = 94.9%, which means that the span between the expected

productivity and the expected productivity ±25% is 5.1 %. In other words, the most

probable operation mode (cdf(Gmax) ±25%) among the examined probabilistic
states lies within the 5.1% deviation interval from the value Gmax = 18.2 kg/hr.
However, this design provides only low productivity values.

Therefore if the decision maker aims at high productivity, one might select

Designs #1 and #7 for inspection, where we can see differences in the assignment
of recipe operations to equipment units (Figure 4-2). The Robustness #3 values

are 84 %, resp. 93 %. The former design provides higher expected productivity and

higher maximal achievable productivity and the latter only a slightly lower pro¬

ductivity compared to the optimum with higher Robustness #3 indicator.

Design #3 is dominated, achieves an expected productivity value of 32.2 kg/hr and

Robustness #3 indicator is 88 %. The Design #3 will not be further investigated.
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(a)Design (#1) flowchart.
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(b)Design (#7) flowchart.
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Figure 4-2: Uncertainty case study results: (a) Design #1 and (b) Design #7 flow¬

sheets. The equipment units correspond to the factory units listed in the Table [4-2].
The vertical arrows mean in series mode of operation, the two parallel vertical bars

between units mean in parallel mode of operation. Two or more blocks can be per¬

formed by the same equipment (see Design #7, tasks 3.0
— 6.0). Robustness #3 value is

displayed in the header along with other objective function values.

Figure 4-2 shows that the Block nr. 7 is performed in series in two reactors for the

solution #1. This sequence of reactors shortened the cycle time compared to the

initial design. The second solution, Design #7 shows two reactors in parallel mode
of operation for the operation 12.0 React, which improves the batch size. However,

for the volume demanding operations in the first block (operations r.o and 2.0),
both designs utilize two reactors in series, which will shorten the operation time,

but on the other hand, both reactors are only 6 m3, which creates a volume bottle¬

neck.

As can be seen from Table 4-3, indeed, all the reactors used for the first block are

volume limiting (reactors R6ar, R6b3). We can also conclude, that the latter
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design could be improved substantially in the batch size by using larger reactors

for the first block, which is not realizable in the current plant.

Table 4-3: Volume filling grade for Design #1 and Design #7 from the uncertainty case

study. The centrifuges are never volume limiting.

Equipment unit
Volume

filling grade

Volume

filling grade
name Design #1 Design #7

Cel.6a2 - -

Cel.6b4 - -

Crl0a2 0.225 0.225

RlOcl 0.705 0.195

R6b3 1.000 1.000

R6d4 0.369 0.369

R6a2 0.357 0.179

Extract2 0.675 0.675

Dryerl 0.024 0.024

R6al 1.000 1.000

R6fl 0.357 0.179

R4el 0.488 -

The cycle time of Design #r is (min., average, max.): 175 min, 226 min, 276 min

and the cycle time of Design #7 is (min, average, max): rgg min, 232 min 277 min.

Figure 4-3 shows the Gantt-chart of the Design #r and #7, a utilization of equip¬
ment units over time. This is an average operation time representation. In the

worst case, all uncertain operations are prolonged, in the best case all relevant

operations will be shorter according to the initial recipe specifications. The first

design's cycle time is determined by operations 8.0, 9.0, the second design's cycle
time by operations rr.o and r2.o performed in parallel mode. Because the time

limiting operations are different in comparison of the two solutions, it can be

assumed that the robustness of the designs will differ.
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Figure 4-3: Uncertainty case study results: (a) Design #1 and (b) Design #7 Gantt-

charts. Marked are the in series and in parallel operations. Time of the operations rep¬

resents the most probable time among the number of uncertain states.

If we look at the sensitivity analysis on Figure 4-4, which was computed as a

response in productivity to a single variable modification, where all other uncer¬

tain variables have been fixed, we can identify similarities in the dependencies.
For the Reaction 12.0, the productivity of Design #r is insensitive according to this

analysis, and Design #7 shows lower productivity if the reaction time is too high.
This is in agreement with the in series (Design #r where this is not a time limiting
operation), resp. in parallel (Design #7, operation is time limiting) mode of oper¬

ation for this reaction. However, the correlations between the three uncertain

reaction times cannot be seen.
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Figure 4-4: Uncertainty case study, monovariate sensitivity analysis for (a) Design #1

(b) Design #7.

Figure 4-5 shows a multivariate analysis of the productivity-reaction time depend¬
ence with probabilities. The data points represent a histogram of probabilistic
areas, where the dark colors close to black mark the most probable states. Light
colors close to white represent a probability close to zero, which means that such

state is improbable. Several basic shapes can be observed, for example linear

shape (case (a), second graph) means that the productivity is highly correlated to

the Reaction 9.0 time variable with the most probable coordinates around the

[32.7 kg/hr, 400 min] point. The correlation becomes smaller if the Reaction 9.0

time is lower than 350 min, because other factors begin to influence the productiv¬

ity. One of the most important results for R&D stage here is: if the design #r is

going to be implemented, there will be a strong correlation between reaction 9.0

time and productivity. However, lowering the reaction time under 350 minutes
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will not bring further increase in productivity. This effect can be observed even

better for the Design #7 (Figure 4-5 (b), second graph from bottom), where lower¬

ing of the reaction 9.0 time under 400 min is not going to improve the productiv¬

ity dramatically, because the influence of other uncertain variables is too strong.

An elliptic shape of the histogram, as seen in Figure 4-5a - reaction r2.o and Fig¬
ure 4-5b - Reaction 2.0 means that the correlation between the uncertain variable

and productivity is close to zero. Of course, this information is design-dependent.
Therefore robustness investigations conducted in early stages of batch process

design can help to reduce research cost by pointing out relevant uncertain varia¬

bles that need further investigation in order to identify optimal operating condi¬

tions in combination with a selected process layout.

Figure 4-5 (b) presents another important shape for the Reaction 12.0, which is a

transition between an elliptic and linear shape, that means that the data is par¬

tially correlated to the productivity of the given design. If the reaction time will be

kept between 400 and 450 minutes, there is a high probability of achieving pro¬

ductivities between 32-34 kg/hr. However, the histogram shows also, that the pro¬

ductivity can drop even under 28 kg/hr. There is a clear time-bottleneck front

visible on the high-probability border.

Comparison of two designs based on presented histograms will show also the

degree of productivity robustness regardless of robustness definition. The concept
of robustness #r can be observed and confirmed by the relative probability of the

highest peak in the graph, that means the darkest color point. The higher the rela¬

tive probability of a given state for all uncertain variables, the more probable the

state in which the design will operate. Robustness #2 and #3 can be associated

with the surface area of the histogram for each uncertain variable. The smaller the

surface, the more precise definition of the production state. That shows also which

and how important the input variables are in relation to specific design and pro¬

ductivity. The crosses in the graphs determine the expected productivity state and

the expected operating times for the uncertain operations. In the probabilistic
state indicated by these cross marks, the uncertain operation times are set to the

basic operating conditions: 2.0 React: 350 min, 9.0 React: 400 min, r2 React: 420

min, which is equivalent to the base case recipe without uncertain times. From

these operation points, the expected productivity value is computed, which is used

for determining if the design is dominating.
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Figure 4-5: Uncertainty case study; multivariate sensitivity analysis, as a result of

Latin Hypercube Monte-Carlo simulation with 300 points for (a) Design #1 and

(b) Design #7. The Y-axis refers to the uncertain input variables in the recipe. The

normrnd(jU, o) function is synonymous to the to random number generator with nor¬

mal distribution. The colored bars on the right-hand side refer to the relative probability
density of the depicted rectangle areas in the graph. The cross marks refer to the

expected operating times and expected productivity.
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4. 3 Aspirin case study with uncertainty

Acetylsalicylic Acid is a low cost fine chemical also known as Aspirin. The appro¬

priate Batch Plus recipe is listed in the Appendix A-6 Acetylsalicylic acid base rec¬

ipe, one-step reaction. Dimmer (Dimmer, ^99, BatchPlus(TM), 2002) presented a

reaction scheme consisting of one reaction step (see Figure 4-6) with 93% yield at

a temperature of 900 C.

Salicylic acid Acetic anhydride Acetylsalicylic acid Acetic acid

Molecular weight [g/mol]: 138 102 180 60

O

^/O^ o

OH

O O

Figure 4-6: Aspirin (Acetylsalicylic acid) synthesis from Salicylic acid.

The raw materials are Salicylic acid and Acetic anhydride, while Acetic acid is

used as solvent, and is also a by-product. Note that the process considered in this

section is different from the one investigated in Chapter 3 Superequipment appli¬
cation.

4. 3.1 Initial recipe

The recipe is projected for ro kmol quantity of reactants. The following steps are

considered:

r. Charge 1380 kg Salicylic Acid, 1428 kg Acetic Anhydride, 600 kg Acetic Acid

2. React via Aspirin synthesis (see Figure 4-6), this reaction is exotermic with a

temperature ramp from 2o°C to go°C and the reaction time is set as uncertain

with triangular random probability density: tripdf(30o, 450, 520).

3. Crystallize Aspirin, the crystallization time is also set as uncertain, with a ran¬

dom probability density trirnd(200, 2ro, 270).

4. Centrifuge the Aspirin crystals, the centrifugation will be carried out in multi¬

ple drops, the centrifuge can process ca. 0.8 m3 in one drop. The total time is set

as uncertain with a lognormal random probability density lognrnd(4.787, 0.37).

5. Crystals are dried and are the final product (1674 kg), the drying operation dura¬

tion is uncertain with a range: lognrnd(5.2g8, 0.2).

Table 4-4 provides additional details about the recipe.
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Table 4-4: Aspirin case study with uncertainty. The uncertain variables are operation times for the

operations are defined as a triangular or lognormal random probability distribution. The batch size of

the projected recipe is 1674 kg (10 kmol total quantity of reactants). The ID's are explained in the

Figure 2-2.

ID
Operation

description
Time

[mm]

Volume

[m3]

Operation
class ID

Flags
Tempe¬
rature

[°C]

Pressure

[bar]

Lining
material

Previous

operation

Next

operation

1 1 Charge 35 4.1 4 0 20 1.0 -1 0 2

2 2 React trirnd(360,450,520) 4.1 32 0 90 1.0 1 1 3

3 3 Crystallize trirnd(200,210,270) 4.1 15 2 90 1.0 -1 2 4

4 4 Centrifuge lognrnd(4.787,0.37) 3.5 47 2 30 1.0 -1 3 5

5 5 Dry lognrnd(5.298,0.20) 1.7 18 3 90 1.0 -1 4 -

For comparison and testing purposes a base recipe without uncertain operation
times is given (Table 4-5), which is actually a subset of the recipe from Table 4-4.

Table 4-5: Aspirin case study with uncertainty, a deterministic recipe for Aspirin production. No uncertain

time is defined. The batch size of the projected recipe is 1674 kg (10 kmol total quantity of reactants).

ID
Operation

description
Time

[mm]

Volume

[m3]

Operation
class ID

Flags
Tempe¬
rature

[°C]

Pressure

[bar]

Lining
material

Previous

operation

Next

operation

1 1 Charge 35 4.1 4 0 20 1.0 -1 0 2

2 2 React 450 4.1 32 0 90 1.0 1 3

3 3 Crystallize 210 4.1 15 2 90 1.0 -1 2 4

4 4 Centrifuge 120 3.5 47 2 30 1.0 -1 3 5

5 5 Dry 200 1.7 18 3 90 1.0 -1 4 -

Instead of defining uncertain operation times, only the most probable states are

given. That means, for instance, that the expected value of the operation 2 React

time (trirnd(30o, 450, 520)) is 450 min. Similary the crystallization, centrifugation
and drying time was determined. This recipe serves only for comparison of the sto¬

chastic vs. deterministic optimization.

4.3.2 Plant line

The multipurpose batch plant considered in this case study (see Table 4-6) con¬

tains 6 reactors of different sizes, multidrop-centrifuges, extractors and a dryer.
Additional supporting equipment, such as pumps, heat-exchangers, mills, etc., is

not listed. Each equipment unit is characterized by its class, class number, nomi¬

nal volume, floor (eventually coordinates in the building), lining material and TP

range. The same plant is used for the deterministic Aspirin recipe comparison.
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Table 4-6: Plant line used in the Aspirin uncertainty case study. The ID's are explained
in the Figure 2-2.

ID
Equipment Equipment Equipment Nominal

Floor
Lining TP

name class name class ID volume

[m3]

material range

1 Ce0.4a Centrifuge 135 0.4 0 5

2 Ce0.4b Centrifuge 135 0.4 0 5

3 Crl0a2 Crystallizer 5 10 5

4 Crl0b4 Crystallizer 5 10 5

5 Crl0c4 Crystallizer 5 10 5

6 Dryerl Dryer 16 6.3 5

7 Extract 1 Extractor 6 4 1

8 Extract2 Extractor 6 4 5

9 R4a Reactor 14 4 3 5

10 R4b Reactor 14 4 3 5

11 R4d Reactor 14 4 2 1

12 R4e Reactor 14 4 2 5

13 R6a Reactor 14 6.3 2 5

14 R6fl Reactor 14 6.3 1 5

15 TlOa Tank 19 10 0 1

16 T16a Tank 19 16 0 1

4. 3.3 Optimization settings

A Tabu-search method of optimization with uncertainty was used for this case

study. Prioritized list of objective functions was: r. productivity, 2. robustness. All

three robustness objectives were examined in three separate runs. Robustness #3
was computed according to Eq. 32 with parameters: c+ = o.^6; c_ = o.^6 (see Section

2. 3.4).

For data sampling, a Latin Hypercube method resulting in 400 points was used,

400 points per each uncertain variable so, that each variable is tested in its whole

range. As mentioned in the Section 2. 3 Stochastic batch design problem, the Latin

Hypercube sampling method ensures generation of probabilistic states in the

whole range of the uncertain variable values, in this case the ranges for 2 React,

time <^6o, $2o> min, 3 Crystallize, time <2oo, 2jo> min and so forth (see Table 4-

4). That means that the deterministic case study recipe (Table 4-5) is a subset of

the 400 probabilistic states. In fact, the expected values of uncertain variables are

stored for each stochastic recipe, in order to compute the robustness objective
function.

Additionally for monovariate sensitivity analysis another 48 data sampling point
combinations were defined, r2 for each variable. The random numbers were gen¬

erated according to standard probability distribution functions (Equations 33-35).
The data sampling procedure is repeated for each evaluated neighbour from the

solution neighbourhood before the actual evaluation of productivity takes place.

For the deterministic recipe definition, the prioritized objective function list was

set as: r. productivity, 2. number of equipment. The robustness objective function

can be computed only for the uncertain case study. Other settings are identical to
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the stochastic TS optimization.
Other TS parameters were set equally as defined in Section 4. 2.3 Optimization

settings.

4. 3.4 Aspirin case study results

Figure 4-7 shows the resulting Designs #3, #2 and #1. The Design #3 is identified

as a non-dominated solution with objective values in expected productivity 638 kg/
hr and Robustness R3 = 83%.
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Figure 4-7: Three resulting designs from Aspirin uncertainty case study. Designs #1,
#2 and #3 are displayed in a histogram of probability density vs. productivity [kg/hr]
objective function obtained by Latin-Hypercube sampling method. Robustness #3
value is listed in the header of each graph.
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The complete list of the discussed designs' objective values is displayed in Table 4-

7. The table shows that designs vary substantially in performance values, because

the number of equipment units is critical here for the batch size.

Table 4-7: Results list for Aspirin uncertainty case study. The expected productivity refers

to the productivity value with the highest probability density value.

Design
Expected

productivity

Robustness

RI

Robustness

R2

Robustness

R3

Number of

equipment
units

# [kg/hr] [%] [%] [%] [pes.]
3 638 1.0 54.4 83.0 6

2 622 1.0 57.1 84.7 5

1 510 1.4 58.2 87.0 6

Comparison of the Design #3 and #2 flowsheets (see Figure 4-8) indicates, that the

time-bottleneck recipe block is the Block Nr.r (operations r Charge 2 React).

Indeed, the remaining operations are utilized by the same equipment units, that

means the productivity value difference between the two designs is resulting from

the crystallization operation.
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(a) Design (#3) flowchart.
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(b)
Design (#2) flowchart.
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(c) Design (#1) flowchart.
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Figure 4-8: Aspirin case study with uncertainty, (a) Design #3 flowchart (b) Design
#2 flowchart (c) Design #1 flowchart.
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The comparison of Gantt-charts for Design #3 (Figure 4-9a), Design #2 (Figure 4-

9b) and Design #r (Figure 4-9c) shows the expected operation times and schedule

for equipment units. The base case scenario is equivalent to the deterministic rec¬

ipe optimization. The Design #3 has the highest productivity due to the parallel
utilization of two reactors. That means that the volume bottleneck was eliminated,
reactors are fully charged, but the cycle time (480 min in the expected state) is rel¬

atively high. Design #2 has shorter cycle time (390 min in the expected state),
because the crystallization is not in parallel mode and thus the two reactors are

not fully charged. The Design #r utilizes three reactors in series, which lowers the

cycle time to 200 minutes in the expected state. As a trade-off, a high batch size

value (as of Design #1) cannot be reached, because there are only 4m3 reactors

available.

(a)
R6a 1 Charge 2 React
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R6fl 1 Charge 2 React

L

Crl0a2 3 Crystalliie in parallel
Crl0b4 3 Crystalliie

Ce0.4a 1 4 Centrifuge
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1 1 1 1 1 1 1 1 1
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Figure 4-9: Aspirin case study with uncertainty, the Gantt-charts of (a) Design #3 (b)

Design #2 (c) Design #1

The monovariate sensitivity analysis of productivity dependency from uncertain

operation times is displayed on Figure 4-10. It shows the correlation of reaction
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time and the productivity. Other parameters are uncorrelated in the monovariate

sensitivity graphs.
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Figure 4-10: Aspirin uncertainty case study, monovariate sensitivity analysis for

(a) Design #3 (b) Design #2.

Analysis of the uncertain operation time (see Figure 4-11) shows a high corella-

tion of the reaction time (2 React) and productivity for both Designs #3 and #2.

Unless the reaction time for Design #3 (Figure 4-1 la) is kept under 400 minutes,

the reaction will be the time-limiting operation. The same trend can be observed

in Design #2 (Figure 4-1 lb). The operation '2 React' is also a volume limiting
operation for both designs. Other operations are uncorrelated to the productivity
in most of the probabilistic states.
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Figure 4-11 : Aspirin case study with uncertainty. Multivariate sensitivity analysis
with 400 Latin-Hypercube sampling points. Operation times for 2 React, 3 Crystallize,

4 Centrifuge and 5 Dry are displayed for (a) Design #3 (b) Design #2. The white-to-

black scale bar represents the probability density values. The cross marks represent the

state with the expected productivity and expected operation time.
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The deterministic recipe TS optimization required only about 2 % of the compu¬

tational time compared to the probabilistic optimization case study. Table 4-8
shows the results list.

Table 4-8: Results list for the deterministic optimization in the Aspirin case study with

uncertainty.

Number of

Design Productivity equipment
units

# [kg/hr] [pes.]
1 638 6

7 622 5

8 600 6

10 510 6

11 203 4

It is noteworthy, that this case study is relatively small and therefore the probabil¬

ity of identifying the non-dominated solution is high. The first design from the

deterministic optimization is displayed on Figure 4-12.

Design (#1) flowchart.

Production Rate [kg/h] = 638

Number of units used [-]=6
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Figure 4-12: Aspirin case study, deterministic optimization. Design #1 flowsheet.

It is identical in performance and design layout to the Design #3 from the stochas¬

tic optimization case (Figure 4-8a).
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4. 4 Discussion and conclusions

If we want to compare the three robustness definitions presented in this text, we

might generalize, that the robustness #r is helpful for determining the expectation
of the most probable productivity, which does not provide any information about

the importance of considered uncertain variables, nor the dangers of unexpected

productivity drops in certain cases for the resulting designs.

Robustness #2 delivers information about the probability of achieving an expected

design productivity or higher. It is a more suitable measure as an objective func¬

tion than the Robustness #r, but does not take into account the intervals lower

than expected productivity value.

Robustness #3 is the most versatile definition aiming at determining the most

probable interval of operation of a design. If, for instance, the interval is +-25%
around the probability of the expected productivity, the 50 % wide span ensures

capturing of most problems related to uncertain operation of the examined solu¬

tion. The presented productivity robustness method can be used as a tool for: deci¬

sion making towards design implementation into the production phase, or aimed

at determining which input parameters are the most important if the process is

going to be implemented in a given production plant. From the point of view that

a multipurpose batch plant is built for many processes as versatile as possible,
there will always be a limit in equipment which prevents from further increasing
the process performance. Therefore optimization in the recipe/process research

has to be performed. We showed that such optimization is strongly design depend¬
ent, therefore the largest opportunities in process optimization reside in the com¬

bined optimization of equipment utilization plus process/recipe development in

the early stages.

The algorithm allows also other uncertain parameters to be defined (such as vary¬

ing temperature or pressure in the operation, unknown volume, etc.) which is not

demonstrated in the presented case studies.

Scalability of the method is assured per se from small problems to huge sets main¬

taining a guaranteed feasibility and at least near-optimal quality of results.

Automatic scaling of the recipe batch size according to free capacity of the design
equipment plus optimization based on the cycle time and volume utilization of a

design is attained identically as by the deterministic TS algorithm. Subsequently a

black-box evaluation of objective functions follows.

In the demonstrated uncertainty formulation it is not important if the operating
conditions, such as filling volume, operation time, operating temperature, are

planned in the R&D stage or occurring in the production phase. In both cases the

uncertain variables can be seen as stressors to a static system - to a design.

From the comparison of Figures 4-5 and 4-11 we see that already the roo

(respectively 400) sampling intervals are sufficient to analyze the correlations

among the operations in a design.
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Uncertainty with application to design robustness measures

Comparison of the uncertain TS optimization method with the deterministic opti¬
mization shows, that the same results can be obtained, if the prioritized list of

objective functions includes productivity in the first place.

In contrast to mathematical programming methods, (for example, (Rooney and

Biegler, 2003)) the presented two-stage here and now stochastic programming
method implemented in TS metaheuristic algorithm offers many advantages:

• The result is not a single design, but rather a set of various good-performing
designs. This advantage is inherited from the TS optimization method.

• The problem formulation does not have to be linearized or simplified in order

to obtain feasible results in a convenient time-frame. The proposed solving
method can handle continuous, discrete, smooth or non-smooth functions

included in the mathematical models. Because of the effective neighborhood
random search strategy (especially the TS move definitions), the algorithm
benefits in the computational speed.

• Black-box objective functions assure general problem formulation valid for any

prioritized combination of objective functions. The objective functions are

independent of the TS optimization algorithm. Therefore the searching algo¬
rithm is manipulating the solutions, i.e. the designs, which are then evaluated.

Sorting and decisions according to the prioritized list of objective functions

then follows.

• Feasibility regions or constraint violations are not critical for the solutions,
because the TS strategy assures valid solutions to be generated throughout the

whole optimization process if the problem is solvable.

• The type of input variable PDF does not influence the optimization algorithm.
The PDF can be defined as discrete or continuous, smooth or non-smooth

function and the black-box evaluation of objective functions independent of

the TS optimization core assure convergence stability, which could be a prob¬
lem with non black-box optimization methods.
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Abstract

Due to the high degree ofautomation, the methodologypresented
in this thesis efficiently supports the design ofbatchprocessesfor a sin¬

gle recipe. The techniques help to determinepromising design alterna¬

tives in the preliminary design phase.
The superequipment method shows good applicability on a range

ofdiscussed problems. Superequipment can be equivalently extended

to similarproblem settings.
The stochasticproblem definition included only a subset ofpossi¬

ble probabilistic variable definitions in the specifications. A new

objective function type includes the probabilistic definitions ofpro¬
ductivity andperformance robustness, which are handled by discrete

approximation — a Latin Hypercube method. Thepresentedstochastic

optimization technique successfully demonstrated the potential of
multiobjective algorithms involving uncertain parameters.

We therefore consider the present work as a first step in dealing
with nonlinear stochastic optimization in batch design problems, sug¬

gesting many possible future research directions, rather than a com¬

pleted exploration ofthe subject.
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5.1 Conclusions

The research work described in this thesis is concerned with the study of prelimi¬

nary batch process design, more particularly with the design of methods and algo¬
rithms for solving problems related to identifying a set of performing batch designs
for a given chemical recipe.
In the presented text an automated methodology in form of a set of algorithms for

solving the following scope of problems was successfully introduced, investigated
and applied to case studies:

1. Deterministic nonlinear multiobjective optimization of batch process designs.

2. Equipment related problems such as: grass root design of a new plant, retrofit of

an old multipurpose batch plant, plant line selection out of multiple choices.

3. Stochastic multiobjective batch design optimization for a single recipe.

All the investigated problems are applicable to multipurpose batch plants.

Deterministic multiobjective-optimal set of performing process

designs

First the mathematical formulation of a batch design together with methods and

algorithms of: manipulating the design, computing performance characteristics

and postprocessing the designs were defined in Chapter 2.

The batch design was defined as a sequence of allocation of chemical recipe oper¬

ations to equipment units. Often a small number of equipment units combined

with a small number of recipe tasks results in a nonlinear allocation problem of

exponential size. Therefore an efficient metaheuristic optimum solving algorithm
- the Tabu Search was customized and applied to this problem set.

As a result of this customizing, the modified TS can, in a short time period effec¬

tively approach the preliminary batch design problems. In the deterministic defi¬

nition of the batch design problem, the solutions consist of a list of dominating
(approximated Pareto-optimal) designs, local optimum designs and several good-
performing designs. This list is the main output result for the decision maker, usu¬

ally a process engineer in a batch plant.

The method can efficiently solve the deterministic batch process design problem.
Of course, the presented results are based on assumptions and mathematical mod¬

els, which cannot include the complete set of decision variables. Therefore the

algorithms and software are ment as a complementary set of tools for the decision

making engineers. The discussions and testing with industry experts showed the

applicability, a sufficient precision of the computed results for the preliminary

design phase and a good match of the blind-test results with the designs already
implemented in the production.

Superequipment - batch equipment related problems

As stated in the Chapter r, new methods for solving efficiently, the preliminary
batch process design problem are needed. As a result, a novel method for effi-
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ciently reducing the combinatorial domain size was introduced (see Chapter 3).
Instead of defining equipment units in the combinatorial way ,

a mathematical

model called superequipment including all the properties was proposed. The

major implication of this research is that instead of optimizing a large number of

explicit equipment units, it is only necessary to define one superequipment unit,

or a set of superequipment units in a TS optimization.

Practical applications include all problems related to adding or exchanging units

in the plant. In the case of plant retrofit, the aim is to find the best possible equip¬
ment unit according to cost criteria. In the combination with NPV objective func¬

tion the problem of identifying the most effective units combination as an

investment can be successfully solved by proposed algorithm. Results include a set

of optimal designs for a given recipe. If the investment is feasible, that means the

NPV > o, the results will automatically list the best investment scenarios at the top

positions. The top selected designs contain superequipment units transformed

into real equipment units which correspond to the investment propositions.

If the task is to select a plant line out of several optional lines, the optimization

problem can be processed several times, or, as proposed in this thesis, only one

optimization run is sufficient to identify the appropriate plant line. Solely the

superequipment units are used for generating the solutions. During each iteration

a design consisting only of superequipment units is transformed into a real design
alternative. After this transformation the comparison and scaling of designs equip¬
ment according to the units present in the existing plant lines take place.
The results set contains in this case a sorted list of designs according to the defined

objective functions and information about the plant line in which the design will

be performed. Thus the decision maker can immediately see which performance
can be achieved by a given plant line. This information is always design specific.

Another problem set involves a grass root design of a new multipurpose batch

plant. A new method involving a specified number of superequipment units which

will again result in a set of dominating (approximated Pareto-optimal) designs was

shown.

One of the major conclusions is that this optimization method significantly
reduces the design domain space and thus reducing the number of combinations

of possible equipment units in a design. As a result, the approximated Pareto-

optima can be found in less time with higher chances of finding the global opti¬
mum. Although the superequipment transformation requires additionally compu¬
tational time, overall the computation is faster due to the combinatorial domain

reduction.

The superequipment concept shows on practical examples that a simple mathe¬

matical model of a unit together with design heuristics can deliver superior result

sets faster as compared to previously used standard Tabu Search optimization algo¬
rithms using explicit equipment unit definition.

8. by including information about equipment class, size, lining material, maximal pressure, temperature,

etc.
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Stochastic multiobjective batch design optimization problem

The objective of this research was to introduce uncertain variables into the batch

design problem. Mathematical formulation of a stochastic batch design optimiza¬
tion problem taking into account uncertain recipe variables was stipulated as a

solution to this problem with a practical application on a case study.

In Chapter 4 a demonstration of uncertain recipe variables such as: operation
duration (or possibly operation volume) in a multiobjective optimization shows

several important conclusions related to the preliminary stage process design:
• a simple sensitivity analysis of uncertain variable to the design's performance is

not sufficient for determining the synergic effects of several uncertain factors to

productivity
• it is critical to consider and determine not only the uncertain variable by itself,
but the uncertain variable set influencing the final design's layout and vice

versa. That means, that measuring and narrowing the probabilistic distributions

of such variables has to be always considered in the connection with a specific
design, because in one design layout the given variable can play a crucial role,

e.g. is time or volume limiting, and in another design it can become time or

volume limiting only after some other conditions are met

A new stochastic objective function was defined which aims at quantifying the

effect of uncertain time or volume operation variables on productivity. The

robustness objective, if used in a ranked multiobjective optimization, can deliver

good-performance and, at the same time, stable design sets. That means that the

variance induced by stochastic recipe variables on productivity is minimized.

From a practical point of view, the deterministic optimization results usually in

peak-productivity optimal designs, whereas the proposed robustness objective

algorithm ensures that the productivity of a design will be in X % of the probabilis¬
tic states at least as good as expected, or that the productivity will stay within the

desired interval around the expected value. The percentage of the robustness

parameters can be specified at the input.

5. 2 Further research perspectives

The themes presented in this thesis suggest a new range of research topics. Some

of the most promising research problems with regard to easy aggregation with the

existing models and algorithms are listed below.

Ecology and energy assessment

Ecological evaluation could be implemented to integrate for instance the energy

consumption predictions in the process design.
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The goal of such minimization would be to identify the best design set according
to prioritized objective functions: r. productivity/costs 2. écologie objective func¬

tion. Using this objective function would also suggest additional information for

the plant selection problem.

Energy consumption prediction is partially implemented by the algorithms pre¬

sented in this thesis in the economic objective function, where the costs of energy

and utilities are minimized.

Algorithmic advancements

The modular TS algorithm allows definition of a number of problems to be solved

in one course. This opens new batch design problem solving opportunities as dis¬

cussed below.

A number of recipes (N) to be computed simultaneously in one plant

In this type of optimization, a recipe matrix of a size [mxn] (rows, columns) is

expanded to a size [mxnxN], that means that the evaluation function will output
for example not one productivity value, but N productivity values for the N speci¬
fied recipes. At the present stage, this is implemented in the uncertainty computa¬
tions.

In the future, it might be easily modified to accept recipes of various sizes, e.g.

[mr x nr], [m2 x n2J, ...
which would allow to test the whole portfolio of recipes

and propose the best design or the suitable set of equipment units for a given port¬
folio. For example, in order to gain factory building space for new equipment, it is

necessary to eliminate some of the old units. This optimization would propose a

buying list of suitable units for the given chemical recipe portfolio.

Number of plants to be optimized simultaneously for N recipes.

This is partially solved by a classical multiple lines selection in more optimization

runs, or by a superequipment method in one optimization run (see Chapter 3).
These methods were programmed only for one recipe to be handled by the batch

plants.
Accommodation of the modular TS algorithm provides additionally means for

exchanging the information about the plant lines during the optimization. This

means, that the plant lines could be optimized in a cooperative way, as is usual in

equipment pool plants. The problem definition then changes to maximize profit
of a portfolio of chemical recipes in a number of plant lines over a period of time.

The plant lines could be defined as totally independent, i.e. a multinational com¬

pany producing in different countries, or as a totally cooperative plant (Equip¬
ment pool) or a state between these two limiting cases.

Parallelization

The problems can be easily parallelized. For successful parallelization the modu¬

lar TS algorithm offers: vectorized evaluation of objective functions, multidimen¬

sional recipes, solution neighbourhood which can be split into two or more parts,
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move definitions which can be distributed to slave machines according to cpu

time needed for such move application on a given set of solution candidates.

Tabu Search advanced options

We utilize simple tabu tenure, aspiration, stopping criteria, etc. as the TS options.

Long term memory could be used for intensifying the search in promising solu¬

tion areas. Interconnected tabu tenure lists for the cases where multiple problems
are being solved simultaneously could improve the convergence speed. All prereq¬

uisites are met in the advanced TS algorithm presented in this thesis.

Recipe optimization

In the current stage, the recipe remains fixed in the material balance. That means

that the resulting design's batch size is scaled according to the precomputed mass

balance. Operation times are scaled according to simple rules. Mass balance com¬

putation model and additional simple models for separation steps or reaction

kinetics would be beneficial in connection with the current optimization tool and

with the robustness definition. This would enable the decision maker to see

directly the effects of: solvent selection, separation step selection or reaction kinet¬

ics on a production stage design.

As we concluded in the Chapter 4, recipe parameters importance is strongly
dependent on the design or plant line of implementation. Therefore study of reac¬

tion yield itself might not bring the desired benefits in design's productivity,
whereas in connection with the existing plant and design optimization techniques
the importance of a reaction yield for the examined operation can be easily deter¬

mined.

5. 3 Final conclusions

Due to the high degree of automation, the methodology efficiently supports the

design of batch processes for a single recipe. The methodology helps to avoid over¬

looking particular problems, or particularly promising design alternatives in the

preliminary design phase.

The superequipment method shows good applicability on a range of problems,
from which only a few were discussed.

The stochastic problem definition included only a subset of possible probabilistic
variable definitions in the specifications. A new objective function type: the prob¬
abilistic definitions of productivity and performance robustness, which are han¬

dled by discrete approximation - a Latin Hypercube method - successfully
demonstrated the potential of multiobjective algorithms involving uncertain

parameters.

We therefore consider the present work as a considerable first step in dealing with

nonlinear stochastic optimization in batch design problems, suggesting many pos¬

sible future research directions, rather than a completed exploration of the sub¬

ject.
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6.1 List of Symbols

A assignment matrix, lists operation classes allowed in each equipment class

b a vector contained in B linking the recipe indexes R.ID to a block k,

B block recipe matrix, each block k, of B contains one or more recipe steps

BS batch size of a design [t/batch]

c± 2
term denoting the constraints related to uncertain optimization problem def¬

inition used in the first (r) and second (2) stage

c+. predefined bias in the CDF of design's productivity G

cdfQ cumulative distribution function

C a constant or a parameter used in the PDF, CDF functions

CT cycle time of a batch design [min]

E equipment list, matrix, list of all equipment in the given plant

E(£) expectation value of £in the stochastic problem definition

Ebuy list of equipment that can be added to an existing plant, matrix

EqClass equipment class, used in A, E, L matrices

f(x) function of x

f12(x) the first/second stage deterministic objective function

G productivity in the stochastic optimization definition [kg/hr]

H(B, u) heuristics as a function of block recipe matrix and user-selected variables u

ID identification number, used in connection with matrices B, R, A, E, EqClass,
OpClass, TP

k, single block from block recipe matrix B

L single design, ordered sequence of assignments of given recipe blocks k, into

equipment units E;

Lining lining material



List of symbols and abbreviations

lognrnd( log(ju), <j) random lognormal probability distribution function; returns an

array of random numbers chosen from a lognormal distribution with mean /j

and standard deviation a

m constraints in the stochastic function definition, m: refer to the first stage, m2

to the second stage of the formulation

m constraints in the stochastic function definition, see the definition of con¬

straint m

M move set, matrix containing the set of possible moves in tabu search optimi¬
zation

modeQ function returning a value from a list of input arguments which has the maxi¬

mum value in the pdf() function

N a number of elements in a vector

Neq number of equipment units [pes.]

normrnd(//, a) random normal probability distribution function; returns an array of

random numbers chosen from a normal distribution with mean //and stan¬

dard deviation a

NPV Net Present Value [USD, CHF]

oc operation class equivalent to OpClass, used in the Superequipment defini¬

tions

OpClass operation class used in E and A matrix

P pressure, in TP range of equipment: the minimal/maximal operating pres¬

sure range for the apparatus [bar], P is also used as a symbol for plant matrix

definition.

pdfQ probability distribution function

Q(x) the second stage objective function including uncertain parameters

r recipe step, one row of matrix R

R recipe, matrix, recipe consists of process steps
R.Duration - task duration, R.LiningID - lining material ID, R.OpClasslD
operation class ID, R.Pressure - maximal pressure for operation, R.Tempera¬
ture - maximal temperature for operation

R, Rlr2,? robustness of a design in a stochastic optimization, the subscripts refer to the

first, second or third robustness definition

S superequipment class

t constraint in the stochastic optimization problem

T temperature, in TP range of equipment: the minimal/maximal operating
temperature range for the apparatus [°C], Tabu List definition matrix

TP temperature and pressure range of equipment, matrix [°C], [bar]

trirndfj triangular probability density function

u user defined variables in the heuristics
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List of symbols and abbreviations

U feasible equipment classes matrix

V eligible equipment units for given recipe block kx

W design candidate list resulting from the application of the moves M to the

actual design L

x first-stage decision variables in the stochastic function definition

X operations in the recipe block kt

Xj input variables Xi, used in the stochastic function definition

y second stage variables in the stochastic optimization problem

Y the most probable value

z(x) stochastic objective function

co random event from a set of random events Q

Q set of random events

E, uncertain variables, random vector

6. 2 List of indexes

0
current item, for instance in L, M.

add addition, in move definition M

eq equipment units, in number of equipment units N

G productivity related index, used in connection with pdf() and cdf()

i, j counters over operations or equipment or elements of the recipe such as

blocks or steps

m index ofM, by extension, index on L. L is the design resulting from the move

M

max maximal, for instance in TP range

min minimal, for instance in TP range

p in parallel, in move definition M

rem removal, in move definition M

repl replace, in move definition M

s in series, in move definition M

E, index refering to function of uncertain variables

+,- value higher resp. lower than the given value



List of symbols and abbreviations

6. 3 List of abbreviations

CDF Cumulative Distribution Function

EA Evolutionary Algorithm

Eq Equipment

EPP Equipment Pool Plant

GA Genetic algorithm

HTML Hypertext Markup Language

ID Identification number

MI(N(LP)) Mixed Integer (Non(linear Programming))

MO Multi-objective

MOGA Multi Objective Genetic Algorithms

NP non-deterministic polynomial time

PDF Probability Density Function

R Reactor

R&D Research and development

SA Simulated annealing

SEq Superequipment unit, used in diagrams

SuperEqSuperequipment unit

TS Tabu Search

XML eXtended Markup Language
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Appendix

A-1 Program heuristics

Table A-1: Equipment class matrix [EqClass] containing equipment
classes used in the software.

Equipment class ID

[EqClassID]
Equipment class [EqClass.Name]

1 Centrifuge
2 Column

3 Condenser

4 Filter - Cross Flow

5 Crystallizer
6 Extractor

9 Filter - Pot

10 Filter - Press

11 Filter - In-Line

14 Reactor

16 Dryer - Rotary

18 Filter - Sparkler
19 Tank

22 Dryer - Tray
24 Column - Continuous Packed

25 Column - Continuous Tray
28 Extractor - Continuous

29 Filter - Continuous

30 Heat Exchanger
32 Evaporator - Long Tube

34 Evaporator - Wiped Film

48 Centrifuge - Horizontal Basket

49 Centrifuge - Vertical Basket

50 Dryer

51 Filter - Dryer

52 Dryer - Agitated Pan

53 Hopper

54 Filter - Agitated Nutsche

55 Dryer - Conical

56 Dryer - Blender

57 Dryer - Horizontal Paddle

62 Filter - Tank Sheet

63 Reactor - Continuous

68 Centrifuge - Decanter

69 Filter - Depth
87 Filter - Bag

90 Dryer - Spray

91 Dryer - Fluid Bed - Continuous

92 Dryer - Freeze

135 Centrifuge - Filter

137 Heat Exchanger - Plate

138 Heat Exchanger - Shell and Tube

148 Dryer - Fluid Bed

175 Mixer - Static

178 Filter - Nutsche

179 Filter - Cartridge
256 Superclass
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Table A-2: Operation classes matrix [OpClass] containing the

operation class ID, name and scaling heuristics, which denotes the

operation time scaling according to the operation volume: o - no

scaling, 1 - linear scaling with volume, 2 - non-linear scaling with

volume.

OpClassID OpClass.Name OpClass.Scaling
1 Age 0

2 Clean 0

3 QC-Test 0

4 Charge 0

7 Transfer 1

9 Transfer-Through-Heat-Exchanger 1

12 Elute-Column 0

14 Concentrate 1

15 Crystallize 0

16 Decant 0

17 Distill 1

18 Dry 1

19 Extract 0

20 Filter 0

22 Quench 0

24 Wash-Cake 0

25 Cool 1

26 Heat 1

27 Heat-To-Reflux-And-Age 0

28 Evacuate 0

29 Pressurize 0

30 Purge 0

31 Vent 0

32 React 0

35 pH-Adjust 0

38 Distill-Continuously 1

40 Extract-Continuously 1

47 Multi-Drop Centrifuge 2

48 Utilize 0

49 Yield React 0

51 Open-Close Vent 0

52 React-Distill 0

64 Mix 0

76 Pressure-Transfer 1



Table A-3: Class assignments matrix [A]. Operation classes are assigned to

equipment classes. The operation classes reffer to Table A-2, the

equipment classes to Table A-i. The operation class -1 assigned to

superequipment class (ID 256) means that all operations are allowed in

that equipment class. The marker -1 for equipment means all

equipment is suitable for the given operation class.

A.OpClassID A.EqClassID
1 14 19

2 -1

3 14 19

4 14 19

7 -1

9 30 137 138 14

12 2

14 14

15 5 14

16 6 14 19

17 2 24 25 3 14 34 32

18 16 22 50 52 55 56 57 90 92 148

19 6 14

20 4 9 10 11 18 29 51 54 62 69 84 87 89

22 14

24 1 4 9 10 11 18 29 48 49 51 54 62 68 69 71 76 81 84 87 89 132

25 14 19

26 14 19

27 3

28 14 19

29 14 19

30 14 19

31 14 19

32 14

35 14 19

38 24 25

40 28

47 1 48 49 68 71 76 81 135

48 -1

49 14

51 14 19

52 3

64 14 175 19

76 14 19

83 148

-1 256
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A-2 XML data for the cost function

Product Cost Data Overview ©2005 A.M.

Project description: Vitamin C

Author of xml: Andrej Mosat

Date of cost data: 5.03.2005

Campaign size projected: roooooo kg

Projected selling price of product: ro CHF/kg

1 Costs independent from design/production line

Material L-Sorbose

2.34 CHF/kg

amount fixed: 1295 t per:

campaign

Acetone

2.08 CHF/kg

amount fixed: 1271.2 t

per: campaign

Sodium-Hypochlo-
rite

0.61 CHF/kg

amount fixed: 388.5 t per:

campaign

Sulfuric Acid

125 CHF/t

amount fixed: 3071 t

per: campaign

Toluene

1.356 CHF/kg

amount fixed: 276 t per:

campaign

Ethanol

0.932 CHF/kg

amount fixed: 74 t per:

campaign

NaOH

0.156 CHF/kg

amount fixed: 1036 t

per: campaign

Water

0.005 CHF/kg

amount fixed:9620 t

per: campaign

Waste manage¬

ment

Waste and other

materials

0.0093 CHF/kg
amount fixed: 14800 t

per: campaign
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2 Costs dependent from design/production line

2.1 Energy and utilities

plantC4

Steam

45.34 CHF/

MWh

amount fixed:

1.5 MWh

amount variable:

0.3 MWh

per: nrreact/ct

Electricity

77.59

CHF/MWh

amount fixed: 1.5

MWh

Nitrogen

1.91 CHF/mA3

amount fixed:

0.5 mA3

plantC4

40 CHF/hr

amount fixed:

1 hr per: 1/ct

amount variable:

0.5 hrper: nreq

plantC4

10 CHF/hr

amount fixed: 1

hr per: 1/ct

amount variable:

0.5 hrper: nreq

plantC4

102 CHF/hr

amount fixed: 0.5

hr

plantC4ce

Steam

45.34 CHF/

MWh

amount fixed:

1.5 MWh

amount variable:

0.3 MWh

per: nrreact/ct

Electricity

77.59

CHF/MWh

amount fixed:

1.5 MWh

Nitrogen

1.91 CHF/mA3

amount fixed:

0.5 mA3

plantC4ce

40 CHF/hr

amount fixed: 1

hr per: 1/ct

amount variable:

0.5 hr per: nreq

plantC4ce

10.5 CHF/hr

amount fixed: 1

hr per: 1/ct

amount variable:

0.5 hr per: nreq

plantC4ce

102 CHF/hr

amount fixed:

0.5 hr

plantC4r

Steam

45.34 CHF/

MWh

amount fixed: 1.5

MWh amount

variable: 0.3

MWh per: nrre¬

act/ct

Electricity

77.59

CHF/MWh

amount fixed: 1.5

MWh

Nitrogen

1.91 CHF/mA3

amount fixed: 0.5

mA3

plantC4r

40 CHF/hr

amount fixed: 1

hr per: 1/ct

amount variable:

0.5 hr per: nreq

plantC4r

10.7 CHF/hr

amount fixed: 1

hr per: 1/ct

amount variable:

0.5 hr per: nreq

plantC4r

102 CHF/hr

amount fixed: 0.5

hr

plantC4r-ce

Steam

45.34 CHF/

MWh

amount fixed:

1.5 MWh

amount variable:

0.3 MWh

per: nrreact/ct

Electricity

77.59

CHF/MWh

amount fixed:

1.5 MWh

Nitrogen

1.91 CHF/mA3

amount fixed:

0.5 mA3

plantC4r-ce

40 CHF/hr

amount fixed: 1

hr per: 1/ct

amount variable:

0.5 hr per: nreq

plantC4r-ce

11.2 CHF/hr

amount fixed: 1

hr per: 1/ct

amount variable:

0.5 hr per: nreq

plantC4r-ce

102 CHF/hr

amount fixed:

0.5 hr

SuperPlant

Steam

45.34 CHF/MWh

amount fixed:

1.5 MWh amount

variable: 0.3 MWh

per: nrreact/ct

Electricity

11.59 CHF/MWh

amount fixed:

1.5 MWh

Nitrogen

1.91 CHF/mA3

amount fixed:

0.5 mA3

SuperPlant

40 CHF/hr

amount fixed: 1 hr

per: 1/ct

amount variable:

0.5 hr per: nreq

SuperPlant

9 CHF/hr

amount fixed: 1 hr

per: 1/ct

SuperPlant

102 CHF/hr

amount fixed:

0.5 hr

2.2 Labour cost

2.3 Plant rent

2.4 Changeover
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2.5 Other

plantGà plantGàce plantC4r plantGàr-ce SuperPlant

10 CHF 10 CHF 10 CHF 10 CHF 10 CHF

amount fixed: amount fixed: amount fixed: amount fixed: amount fixed:

1 const 1 const 1 const 1 const 1 const

2.6 Investment

plantC4

0CHF

plantC4ce

720000 CHF

plantC4r

510000 CHF

plantC4r-ce

1300000 CHF

SuperPlant

500000 CHF

Legend: each parameter has a unit and value field, for example: unit: CHF,
value: ro. In general, the field consists of 'fixed amount' and Variable amount'.

The basis of computation is indicated by the tag: 'per'. For example: waste mate¬

rial is displayed as: amount fixed: r48oo t, per: campaign, which means that this

amount is counted for the whole campagin. Note: if the field name "per:" is misss-

ing in the description of "fixed" or "variable" amount, it means: "per: batch" or

accordingly "perxampaign" depending on context, this sheet is an overview, not

the equation or formula itself. If the "per:
" field is stated as: "per: XY" it means:

"per: XY and batch" The abbreviation const means a constant amount.

For additional information about the field names, see Figure 2-9.
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A-3 Vitamin C Reichstein synthesis in Batch

Plus software

L-Sorbose

OH

L-Sorbose-diacetal 2 - Keto - L - gulonic acid diacetal

OH O

L-Ascorbic acid

OH

2 - Keto - L - gulonic acid

O

o.

4 HO.

OH

OH

HO OH

OH

OH

Figure A-1 : Vitamin C reaction scheme.

Step: Vitamin C Synthesis

.
L-Sorbose -> L-Sorbose Diacetal

Comments: Diacetal-Protection group for later oxidation to Carbonic acid.

.I.Charge R16b3 with 426 kg of L-Sorbose. The charge time is 30 min. Charge R16b3 with 8540

liter of ACETONE. The feed rate is 10 Cubic m/h. Charge R16b3 with 340 liter ofSULFURIC-ACID.

The feed rate is 10 Cubic m/h. Dissolve 100% of all solids.

.2. Cool unit R16b3 to 4 C. The cooling time is 1 h.

.3. React in unit R16b3 via reaction 1. Reaction occurs over 5 h.

.4. Charge R16b3 with 340 kg of SODIUM-HYDROXIDE. The charge time is 30 min. Charge R16b3

with 855 liter of WATER. The feed rate is 15 Cubic m/h. Dissolve 100% of all solids.

.5. Distil the batch in unit R16b3. The operation time is 2 h. The overhead, named Aceton-Recycle,
is sent to T10a2. The process condenser is Co10b3. Separation is: 95% of ACETONE goes to

Overhead and 5% of WATER goes to Overhead. Unspecified materials go to Bottoms.

.6. Charge R16b3 with 1280 liter of TOLUENE. The feed rate is 15 Cubic m/h.

.7. Extract in unit R16b3 over 90 min. Partition coefficient(mass basi top/bottom) of L-Sorbose is 3, of

Diacetone-L-Sorbose is 3, of TOLUENE is 100, of WATER is 0.01 and of ACETONE is 1.

Unspecified materials go to Bottom. The bottom layer is sent to T16a3.

The transfer rate is 15 Cubic m/h.
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2. L-Sorbose Diac -> 2-Keto-L-Gulonic acid Diacetal

Comments: oxidation to gulonic acid under the protection of acetal-protection groups

2.1. Transfer contents of unit R16b3 to R10c1. The flow rate is 15 Cubic m/h.

2.2. Charge R10c1 with 128 kg of SODIUM-HYPOCHLORITE. The charge time is 30 min. Charge
R10dwith 4.3 kg of NICKEL-SULFATE. The charge time is 1 min. Dissolve 100% ofall solids.

2.3. Heat unit R10c1 to 60 °C. The heating time is 1 h.

2.4. React in unit R10c1 via reaction2. Reaction occurs over 3 h.

2.5. Charge R1 Od with 213 liter of SULFURIC-ACID. The feedrate is 15 Cubic m/h. Charge R1 Od

with 850 liter of ETHANOL. The feed rate is 15 Cubic m/h. Maintain the temperature at 60 C.

2.6. Transfer contents of unit R10c1 to Cr16a2. The flow rate is 15 Cubic m/h.

2.7. Crystallize the batch in unit Cr16a2. The followingcomponents are separated in the crystal phase:
97% of 2-keto-gluconic acid diacetal, 10% of Diacetone-L-Sorbose,10% of L-Sorbose and 0.1%

of ETHANOL. The crystallizationtime is 2.5 h.

2.8. Transfer contents of unit Cr16a2 to R16d4. The flow rate is 15 Cubic m/h.

3. 2-Keto-L-Gulonic acid diac -> 2-Keto-L-Gulonic acid

Comments: Removal of acetal-protection group by hydratation
3.1. Charge R16d4 with 430 liter of WATER. The feed rate is 15 Cubic m/h. Maintain the temperature

at 90 C. Dissolve 100% of all solids.

3.2. Heat unit R16d4 to 100 °C. The heating time is 1 h.

3.3. React in unit R16d4 via reaction3. Reaction occurs over 1 h.

3.4. Transfer contents of unit R16d4 to Cr10a2. The flow rate is15 Cubic m/h.

3.5. Crystallize the batch in unit Cr10a2. The followingcomponents are separated in the crystal phase:
97% of 2-Keto-L-glutonic acid, 30% of 2-keto-gluconic aciddiacetal, 10% of Diacetone-L-Sorbose

and 10% of L-Sorbose.The crystallization time is 1 h.

3.6. Purge unit R10e1. Purge 1 times with NITROGEN for 30 min each.

3.7. Transfer contents of unit Cr10a2 to R10e1. The flow rate is 15 Cubic m/h.

4. 2-Keto-L-Gulonic acid -> L-Ascorbic acid

Comments: cyclisation, acidic catalyse with HCl

4.1. Charge R10e1 with 6403 liter of TOLUENE. The feed rate is 15 Cubic m/h. Charge R10e1 with

430 liter of HYDROGEN-CHLORIDE. The feed rate is 15 Cubic m/h. Dissolve100% of all solids.

4.2. React in unit R10e1 via reaction4. Reaction occurs over 1 h.

4.3. Centrifuge the batch from unit R10e1 in centrifuge Ce1.6a2.The number of drops is 8. The cake is s

ent to Cr10b4. Thecake discharge flow rate is 5 kg/s.
4.4. Charge Cr10b4 with 2130 liter of WATER. The feed rate is15 Cubic m/h.

Dissolve 100% of all solids.

4.5. Crystallize the batch in unit Cr10b4. The followingcomponents are separated in the crystal phase:
98% of ASCORBIC-ACID, 5% of Diacetone-L-Sorbose, 5% of L-Sorbose,5% of 2-Keto-L-glutonic
acid and 5% of 2-keto-gluconic aciddiacetal. The crystallization time is 90 min.

4.6. Transfer contents of unit Cr10b4 to T16b3. The flow rate is15 Cubic m/h.
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A-4 Quinaldine derivate synthesis - Product H

A reaction scheme

1) Chlorination

Quinaldine
Chloroquinaldine

+ ci2

N

+ HCl

CI

3b) Condensation reactions (Byproduct/Impurity formation)

Chloroquinaldine Quinoline, 2,2'-(1,2-ethenediyl)bis-(9CI)

+ 2 NaOH + 2 H20 +2 NaCI

CI

3c) Condensation reactions

Hydroquinone + NaOH

<y
,H

Hydroquinone sodium salt + H20

Na

O

+ NaOH + H20

OH OH

3d) Condensation reactions

Chloroquinaldine + Hydroquinone sodium salt

Na

O

4-(Quinolin-2-ylmethoxy)-phenol

CI

+ NaCI

OH

4) Solubilization

4-(Quinolin-2-ylmethoxy)-phenol

o.

4-(Quinolin-2-ylmethoxy)-phenol sodium salt

+ NaOH

O,

O.

+ H20

'Na
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1) Chlorination Reaction and Salt Formation

The first reaction step involves the chlorination of quinaldine. Quinaldine is dis¬

solved in carbon tetrachloride (CCI4) and reacts with gaseous CI2. The yield of

the reaction is around 98%. The generated HCl is neutralized using Na2C03.
The stoichiometry and yield of the three reactions follows:

Quinaldine + CI2 ===> Chloroquinaldine + HCl Yield = 98 %

Na2C03 + HCl ===> NaHC03 + NaCI Yield = roo %

NaHC03 + HCl ===> NaCI + H2O + CO2 Yield = roo %

2) The second reaction

(reaction not displayed in the reaction scheme) involves the formation of Chloro¬

quinaldine.HCl. The added HCl first neutralizes the remaining NaHC03 and

then reacts with chloroquinaldine to form its salt. The stoichiometry and yield of

the two reactions follows:

NaHC03 + HCl ===> NaCI + H2O + CO2 Yield = roo %

Chloroquinaldine + HCl ===> Chloroquinaldine.HCl Yield = roo %

Small amounts of generated CO2 and volatilized CCI4 are vented. The presence

of water (added with HCl as hydrochloric acid solution) and CCI4 leads to the for¬

mation of two liquid phases. The small amounts of unreacted quinaldine and

chloroquinaldine remain in the organic phase while the salts Chloroquinal¬
dine.HCl and NaCI move to the aqueous phase.

3) Condensation Reactions

The third reaction step involves the condensation of chloroquinaldine and hydro¬

quinone. First, the salt chloroquinaldine.HCl is converted back to chloroquinal¬
dine using NaOH. Then, hydroquinone reacts with NaOH and yields

hydroquinone.Na. Finally, chloroquinaldine and hydroquinone.Na react and

yield the desired intermediate product. Along with product formation, a small

amount of chloroquinaldine dimerizes and forms an undesirable by-product
(Impurity) that needs to be removed from the product. The stoichiometry and

yield of the four reactions follows:

Chloroquinaldine.HCl + NaOH ===> Chloroquinaldine + NaCI + H2O Yield = 100 %

2 Chloroquinaldine + 2 NaOH ===> 2 H2O + 2 NaCI + Byproduct/Impurity Yield = 2 %

Hydroquinone + NaOH ===> Hydroquinone .Na + H2O Yield = 100 %

Chloroquinaldine + Hydroquinone.Na ===> Product + NaCI Yield = 100 %

4) Solubilization Reaction

The Product/Impurity cake recovered by filtration is added into a NaOH solution.

The Product molecules react with NaOH forming Product.Na which is soluble in

water. The Impurity molecules remain in solid phase. The stoichiometry and

yield of the solubilization reaction follows:

Product + NaOH ===> Product.Na + H2O Yield = roo %
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5) Precipitation Reaction Step

The excess NaOH is neutralized using HCl and then Product.Na is converted

back to Product. The stoichiometry and yield of the two reactions follows:

HCl + NaOH ===> H2O + NaCI Yield = roo %

HCl + Product .Na ===> Product + NaCI Yield = roo %

Batch Plus recipe

1. Chlorination

1.1. Charge r6-1 a with 1300 kg of CARBON-TETRACHLORIDE. The feed rate is 9 Cubic m/h. Use 10 °C

Cooling Water on the Entire Jacket at a rate of 1 Cubic m/h.

1.2. Charge r6-1 a with 390 kg of QUINALDINE. The charge time is 30 min.

1.3. Charge r6-1 a with 275 kg of SODIUM-BICARBONATE. The charge time is 30 min.

1.4. Close the vent in unit r6-1 a

1.5. React in unit r6-1a via 1-chlorination. Reaction occurs over 8.7 h. The final temperature of the batch

is 50 °C. Continuously add 236 kg of CHLORINE. The feed time is 6 h. The feed begins 10 min after

the operation start time. Extra time for this Operation is 10 min.

1.6. QC-Test the material in unit r6-1 a. Continue operation while waiting for the test. The expected
test time is 60 min.

1.7. Cool unit r6-1 a to 25 °C. The cooling time is 65 min. Use 10 °C Cooling Water at a rate of

3.25 Cubic m/h.

1.8. Close the vent in unit r6-1 a

1.9. Evacuate r6-1 a to 0.1 bar. Evacuation time is 20 min.

1.10.Pressurize unit r6-1 a to pressure 1 atm.. Pressurization time is 10 min.

2. Salt formation

2.I.Charge r6-1a with 180 kg of CARBON-TETRACHLORIDE. The feed rate is 9 Cubic m/h.

Maintain the temperature at 25 °C.

2.2. Charge r6-1a with 2710 kg of WATER. The feed rate is 9 Cubic m/h.

2.3. Charge r6-1a with 120 kg of HCI-100%-1. The feed rate is 2 Cubic m/h.

2.4. React in unit r6-1a via 2-salt-formation. Reaction occurs over 70 min. The final temperature of

the batch is 50 °C. There is no emission control for this operation. Extra time for this

Operation is 10 min.

2.5. Close the vent in unit r6-1a

2.6. Evacuate r6-1 a to 0.1 atm. Evacuation time is 20 min.

2.7. Pressurize unit r6-1 a to pressure 1 atm.. Pressurization time is 20 min.

2.8. Open the vent in unit r6-1 a

2.9. Extract in unit r6-1a over 90 min. Separation is: 100% of WATER goes to Bottom, 100% of

QUINALDINE goes to Top, 100% of Chloroquinaldine-HCl goes to Bottom and 100% of

SODIUM-CHLORIDE goes to Bottom. Unspecified materials go to Top. The bottom layer, named

main, is sent to r6-2a. The transfer time is 15 min. There is no emission control for this operation.

2.10.Open the vent in unit r6-2a

3. Condensation

3. I.Charge r6-2a with 280 kg of WATER. The charge time is 15 min.

3.2. Charge r6-2a with 449 kg of Hydroquinone. The charge time is 30 min.

3.3. Charge r6-2a with 1450 kg of METHANOL. The feed rate is 8 Cubic m/h.

3.4. Charge r6-2a with 280 kg of SODIUM-HYDROXIDE. The charge time is 25 min. Dissolve 100% of

all solids.

3.5. React in unit r6-2a via 3-Condensation. Reaction occurs over 15 h. The final temperature of the

batch is 50 °C. Extra time for this Operation is 10 min.
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3.6. QC-Test the material in unit r6-2a Continue operation while waiting for the test.

The expected test time is 60 min.

4. Solubilization

4.1. Filter the batch from unit r6-2a in filter filter-nutsche-4-a The slurry flowrate is 1.1 Cubic m/h. The

cake contains 100% of 4quinolin-methoxyphenol in the Solid phase and 100% of

Chloroquinaldine-impurity in the Solid phase. The cake contains 20% of WATER in the Liquid
phase. Extra time for this Operation is 20 min.

4.2. Wash the cake in unit filter-nutsche-4-a For each wash, use 2450 kg of WATER. The feed rate

is 2 Cubic m/h. The moisture content in the final cake is 20%.

4.4. Transfer contents of unit filter-nutsche-4-a to r6-3a Extra time for this Operation is 5 min.

4.5. Charge r6-3a with 4100 kg of WATER. The charge time is 30 min.

4.6. Charge r6-3a with 195 kg of NaOH (s). The charge time is 20 min.

4.7. React in unit r6-3a via 4-Solubilization. The reaction is Adiabatic. Reaction occurs over 90 min.

4.9. Filter the batch from unit r6-3a in filter filter-nutsche-4b. The slurry flowrate is 1.1 Cubic m/h.

The mother liquor is sent to r6-4a The filter separates 100% of all solids. The moisture content in

the final cake is 5%.

4.1 O.Charge r6-4a with 543 kg of HCl (36%). The feed rate is 8 Cubic m/h.

4.11.React in unit r6-4a via 5-Precipitation-final. The reaction is Adiabatic. Reaction occurs over 30 min.

4.12.Filter the batch from unit r6-4a in filter filter-nutsche-4c. The slurry flowrate is 1.1 Cubic m/h.

The cake contains 100% of 4quinolin-methoxyphenol in the Solid phase. The cake contains 20%

of WATER in the Liquid phase. Extra time for this Operation is 20 min.

4.13.Wash the cake in unit filter-nutsche-4c. For each wash, use 2446 kg of WATER. Wash the cake 1

times.

4.14.Transfer contents of unit filter-nutsche-4c to r10-1a Extra time for this Operation is 5 min.

4.16. Charge M 0-1 a with 4320 kg of ISOPROPYL-ALCOHOL The feed rate is 9 Cubic m/h.

Dissolve 100% of all solids. Extra time for this Operation is 30 min.

5 Product recovery

5.1. Age the contents of unit r10-1a for 3.5 h.

Comments: This is the filtration through GAF Filter

5.2. Transfer contents of unit r10-1 a to crysti 0-a1.

5.3. Crystallize the batch in unit crysti 0-a1. The following components are separated in the crystal phase:
97% of 4quinolin-methoxyphenol. The crystallization time is 4 h.

5.4. Centrifuge the batch from unit crysti 0-a1 in centrifuge centrifuge-800b. The mass of wet cake

per drop is 120 kg. The slurry flow rate is 1 Cubic m/h. The speed of rotation of the centrifuge for

slurry charge is 10000 Rev/min. The cake moisture represents 30% of the total cake. The cake

named product-crystallized is sent to dry5.3-a2. The cake discharge time is 12 min.

5.5. Dry the batch in unit dry5.3-a2. The drying time is 12 h. The drying temperature is 90 °C. The

drying pressure is 0.8 atm. The moisture content in the final cake is 3%. The product recovery

is 99.5%.

135



Appendix

A-5 Acetylsalicylic acid reaction scheme,

Kolbe-Schmitt synthesis

This reaction scheme is used in the case study 3. 2.3 New plant design for selected

recipe - Acetylsalicylic Acid case study and uses a Kolbe-Schmitt process (Schmitt,

1885^ Lindsey and Jeskey, 1957, Kolbe, r86o). Acetylsalicylic acid (Aspirin, molar

weight r8o.r6 g/mol) is commercially synthesized using a two-step process. First,

phenol is treated with a sodium base generating sodium phenoxide, which is then

reacted with carbon dioxide under high temperature and pressure to yield sali¬

cylate (Reaction r, yield 80 %). Salicylate which is acidifed yields salicylic acid

(Reaction 2, yield roo %). Salicylic acid is then acetylated using acetic anhydride,

yielding Aspirin and acetic acid as a byproduct (Reaction 3, yield 95 %). As a final

step, conversion to sodium salt is performed (Reaction 4, yield roo %).

Formulations containing high concentrations of acetylsalicylic acid can undergo
autocatalytic degradation to salicylic acid in moist conditions, yielding salicylic
acid and acetic acid.

nu

NaOH, CO
*»

(Y O.Na

<V°H CX /OH

Figure A-2: Kolbe-Schmitt Synthesis ofAspirin.
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A-6 Acetylsalicylic acid base recipe, one-step

reaction

Reaction scheme

The reaction scheme presented by (Dimmer, ^99, BatchPlus(TM), 2002) consists

of one reaction step (see Figure 4-6) with 93% yield at a temperature 900 C.

Salicylic acid Acetic anhydride Acetylsalicylic acid Acetic acid

Molecular weight [g/mol]: 138 102 180 60

O

xA- o

a
OH OO

^^
OH

+ A)^ "

ÜL.OH
+ A-oH

o o

Figure A-3: Aspirin (Acetylsalicylic acid) synthesis.

The raw materials are Salicylic acid and Acetic anhydride, while Acetic acid is

used as solvent, and is also a by-product.

Batch Plus recipe

1. Aspirin synthesis

1.1. Charge R35 with 4548 kg of SALICYLIC-ACID. The charge time is 15 min.

1.2. Charge R35 with 4708 kg of ACETIC-ANHYDRIDE. The charge time is 15 min.

1.3. Charge R35 with 1976 kg of ACETIC-ACID. The charge time is 15 min. Dissolve 100% of all

solids.

1.4. React in unit R35 via Aspirin Sythesis. Reaction occurs over 150 min. The final temperature of the

batch is 75 °C.

I.S.Transfer contents of unit R35 to R33. The transfer time is 15 min.

1.6. Continue Reaction Utilize unit R33 for 150 min.

1.7. Transfer contents of unit R33 to R32. The transfer time is 15 min.

1.8. Continue Reaction Utilize unit R32 for 150 min.

2. Crystallization of ACETYLSALICYLIC-ACID

2.1 .Transfer contents of unit R32 to R23. The transfer time is 15 min.

2.2. Crystallize the batch in unit R23. The following components are separated in the crystal phase:
100% of ACETYLSALICYLIC-ACID. The crystallization time is 210 min.

2.3. Transfer contents of unit R23 to R80. The transfer time is 15 min.

3. Centrifugation

3.1. Centrifuge the batch from unit R80 in centrifuge C5 & C3. Transfer 100% of the batch to the

centrifuge. The slurry feed time is 15 min. The deliquoring time is 40 min. The centrifuge
retains 100% of the solid. The cake moisture
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represents 5% of the total cake. The mother liquor is sent to T8. The cake is sent to R8.

The cake discharge time is 15 min.

4. Drying

4.1.Transfer contents of unit R8 to D60. The transfer time is 15 min.

4.2. Dry the batch in unit D60. The drying time is 120 min. The drying temperature is 100 °C.

4.3.Transfer contents of unit D60 to Big-bag. This is the key step output. The transfer time is 15 min.

5. Distillation

5.1.Transfer contents of unit T8 to R22. The transfer time is 15 min.

5.2. Distill the batch in unit R22. The operation time is 180 min. Separation is: 90% of

ACETIC-ACID goes to Overhead and 90% of ACETIC-ANHYDRIDE goes to Overhead.

Unspecified materials go to Bottoms.
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