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this wonderful institution, as well as the country of Switzerland for its generous funding of scientific

research. It deserves mention that my work has also profited greatly from the excellent education in

statistics that I have received both at the ETH, and at the University of Waterloo. Importantly, it is

due to the support of my family that I have been able to pursue doctoral studies, and thanks to the

kindness of friends, who suppressed the natural tendency to ignore statisticians at parties, that the

experience was such a pleasure.

1



Contents

Acknowledgements 1

Table of Contents 2

Abstract 6

I Extensions of the Hawkes Process & the EM algorithm 9

1 Introduction 10

2 Hawkes process with Renewal process immigration 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The Hawkes Process with Renewal Immigration (RHawkes) . . . . . . . . . . . . . . . . 20

2.3 EM Algorithms for the Hawkes Process With Renewal Immigration (RHawkes) . . . . . 23

2.3.1 The Complete-Data EM Algorithm (EM1) . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 The Semi-Complete-Data EM Algorithm (EM2) . . . . . . . . . . . . . . . . . . 27

2.3.3 Convergence of Hawkes EM Algorithms . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Computational Efficiency for Estimation of the Hawkes Process . . . . . . . . . . 30

2.4 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 p-Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Monte Carlo Study of the EM estimation of RHawkes . . . . . . . . . . . . . . . . . . . 34

2.5.1 Bias and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2



2.5.3 Robustness of Branching Ratio Estimation under Misspecification of the Immi-

gration Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.4 Study of EM2 Estimation of Hawkes with Inhomogeneous Poisson Immigration . 40

2.6 Case Study: Self-Excitation of Mid-Price Changes of the E-mini S&P500 Futures . . . 41

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 The ARMA point process 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 The ARMA Point Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 The Relationship to Integer ARMA Models . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Further details about the INARMA model . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Simulation of the ARMA point process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 EM algorithm for the estimation of the ARMA point process . . . . . . . . . . . . . . . 54

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

II A general outlier test, & singular “dragon-king” extremes 58

4 Dragon-kings and extremes 60

5 A general test for multiple outliers 68

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Outlier Testing Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Block, inward, & outward tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Gallery of test statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 EVT & outlier testing in exponential tails . . . . . . . . . . . . . . . . . . . . . 75

5.3 Outlier Test Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Block test performance compared with a mixture model . . . . . . . . . . . . . . 78

5.3.2 Masking, swamping, and estimating the number of outliers . . . . . . . . . . . . 79

5.3.3 Comparative study of the performance of sequential estimators . . . . . . . . . . 80

5.3.4 Robustness to null mis-specification . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Case studies and “Dragon Kings” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Drawdowns/crashes in financial markets . . . . . . . . . . . . . . . . . . . . . . . 86

3



5.4.2 Nuclear accidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 Stock returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.4 Fatalities in Epidemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.5 City sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

III Studies of extreme risks 103

6 Nuclear risk 104

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Data and the measurement of event severity . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Comparing severity measures & critiquing INES . . . . . . . . . . . . . . . . . . 111

6.2.2 The current fleet of reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Uncertainty quantification of risks in nuclear energy systems . . . . . . . . . . . . . . . . 113

6.4 Event frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Event severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.6 Runaway disasters as “dragon king” outliers . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 Modelling aggregate annual damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7.1 Quantiles and return periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7.2 Expected annual damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.8 Discussion & policy conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Cyber risk 130

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 Data, Results & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.1 Data Breach Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.2 Data Breach Severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.3 Cumulative Risk & Future Projections . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2.4 Data Breach Risk & Organisation Size . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.5 Sector & Data Breach Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4



7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 153

Curriculum Vitae 171

5



Abstract

This is a cumulative doctoral thesis, which concerns three different areas: I) point process models

and their statistical estimation, II) statistical outlier testing, and III) applied statistical studies of risk.

These three areas may be, somewhat tenuously, linked to the statistics of extreme events: I) The focal

point process models feature contagion/positive-feedback and thus provide a generating process for

extreme events. Such models are also used in the modeling and study of extremes; II) Outlier tests

are developed, whose generality is due to extreme value theory, and are applied to the detection of

singular extremes (so called “dragon-kings” that “live beyond the tail”); III) the two applied studies

consider the extreme risk present in accidents in nuclear power generation, and “cyber risk” events

where personal information is breached from organizations. More extensive abstracts for these three

parts are given below:

I. I consider the Hawkes process – which is a cluster process and branching process – in which

cluster center/immigrant points follow a Poisson process, and each immigrant may form a cluster

of multi-generational offspring. Here, the Hawkes process is generalized to have renewal process or

Neyman-Scott/shot noise process immigration. This is named the ARMA (Autoregressive Moving

Average) point process, since when aggregated, it is equivalent to the ARMA model for non-negative

integer time series. Such generalizations make direct MLE (maximum likelihood estimation) impossible,

since one does not know which points are immigrants. EM (Expectation Maximization) algorithms

are introduced that enable MLE in such models, improving on the variety of existing estimators, that

only “asymptotically” approach MLE performance. Comments are also made on the fast simulation

and non-parametric estimation of such models.

II. Next, statistical tests for multiple outliers in exponential samples are considered. Thanks to

EVT (Extreme Value Theory), such tests are applicable to general samples, having approximately

exponential or Pareto tails. A simple “robust” test statistic is shown to make inward sequential testing

– formerly relegated within the literature, since the introduction of outward testing – as powerful

as, and potentially less error prone, than outward tests – while being much easier to implement.

A comprehensive comparison of test statistics is done, considering performance in both block and

sequential tests, and for a variety of null and alternative models. Test sensitivity to misspecification

of the sample distribution is studied, and ways to address this such as sample fraction selection and

diagnostic methods are discussed. In five case studies significant outliers are detected and related to
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the concept of ‘Dragon-King’ events, defined as meaningful outliers that arise from a unique generating

mechanism.

III. Two statistical studies of extreme risks are done, highlighting the important insights about

extreme risk that can be obtained: For the risk of nuclear energy systems we provide and analyze

a dataset twice the size of the previous best, with a focus on event cost. Comparing cost with the

industry standard INES scale demonstrates the inconsistency of INES. Findings include that the rate of

accidents dropped significantly after Chernobyl (1986), and has remained roughly constant since. The

distribution of costs changed following Three Mile Island (1979) whereby the typical event became

smaller, but an extremely heavy tail emerged, being well described by a Pareto distribution with

parameter α = 0.5 − 0.6. Further significant runaway disasters were found, which we associate with

the “dragon-king” phenomenon. It is too soon to evaluate the impact of the industry response to

Fukushima. Excluding such improvements, in terms of costs, our range of models suggest that there

is presently a 50% chance that a Fukushima event (or larger) occurs every 60-150 years, and that

a Three Mile Island event (or larger) occurs every 10-20 years; and that the expected annual cost

probably exceeds the cost of a new plant. This highlights the importance of deep improvements to

exclude the possibility of future extreme disasters.

For the risk of personal data breaches from organisations, we argue that such events, enabling mass

identity fraud, constitute an extreme risk. This cyber risk worsens daily as an ever-growing amount

of personal data are stored by organisations and on-line, and the attack surface surrounding this data

becomes larger and harder to secure. Further, breached information is distributed and accumulates

in the hands of cyber criminals, thus driving a cumulative erosion of privacy. Statistical modeling

of breach data from 2000 through 2015 provides insights into this risk: A current maximum breach

size of about 200 million is detected, and is expected to grow by fifty percent over the next five

years. The breach sizes are found to be well modeled by an extremely heavy tailed truncated Pareto

distribution, with tail exponent parameter decreasing linearly, from 0.57 in 2007, to 0.37 in 2015.

With this current model, given a breach contains above fifty thousand items, there is a ten percent

probability of exceeding ten million. A size effect is unearthed where both the frequency and severity

of breaches scale with organisation size like s0.6. Projections indicate that the total amount of breached

information is expected to double from two to four billion items within the next five years, eclipsing

the population of users of the Internet.
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Abstrakt

Dies ist eine kumulative Dissertation, die sich mit drei verschiedenen thematischen Bereichen be-

fasst: I) Punktprozess Modelle und ihre statistische Bewertung; II) statistische Ausreiertests und;

III) angewandte statistische Untersuchungen von Risiken. Verbunden werden diese drei Bereiche mit

statistischen Methoden, die der Bewertung extremer Ereignisse dienen: I) Die zentralen Punktprozess

Modelle weisen Contagion und positives Feedback auf und stellen dadurch einen Prozess zur Verfgung,

der extreme Ereignisse erzeugt. Solche Modelle werde dementsprechend fr die Modellierung und Unter-

suchung von Extremwerten eingesetzt; II) statistische Ausreiertests, denen die Extremwerttheorie Gen-

eralitt verleiht, werden entwickelt und fr die Erkennung einzigartiger extremer Ereignisse eingesetzt (so

genannte “Dragon Kings”, die “jenseits heavy-tailed Verteilungen leben”); III) die zwei angewandten

Untersuchungen betrachten einerseits die extremen Risiken, die in der nuklearen Energieerzeugung

vorhanden sind, anderseits so genannte “Cyber”-Risiken, die entstehen, wenn persnliche Daten Organ-

isationen und Firmen entwendet werden.
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Chapter 1

Introduction

Point process models are highly interesting in their own right, and enjoy a broad range of applica-

tion. Here I simply mention some applications in areas of extreme phenomena. For instance, so called

self-exciting processes and cluster processes have been used to model earthquake aftershock dynamics

(e.g., [193]), high frequency price fluctuations in financial markets [81] as well as dramatic flash crash

events [91], default contagion through business lines [66], insurance claims following a catastrophe

[65, 151, 66, 64], clustering of extreme returns for risk measure estimation [47], and even the spread

of violence [165] and crime [163]. Further, branching processes [114], which may be related to point

processes, were used to model nuclear chain reactions in the Manhattan project.

Here the necessary terminology of univariate point process models is given, with an emphasis on

points occurring in time. For a basic reference see [60], and for a more advanced reference see [62].

Consider a sequence of random event times {Ti}i∈Z, such that Ti < Ti+1 with inter-event (waiting)

times Wi = Ti − Ti−1. This sequence {Ti} defines an univariate point process with counting process

N(t) =
∑

i 1Ti≤t. Denote a realization of the point process by t1:n = {t1, . . . , tn}, on window (0, r],

where N(r) = n, and the history of the process is captured by the natural filtration, Ft = {ti : ti < t}

where i ∈ Z, i.e., including events on the negative part of the time axis as well. In general, the

abbreviation i : j = i, i + 1, . . . , j − 1, j may be used for such sets of indices. Note that a point

process is marked if an associated variable, e.g., a size, is associated with each point. For simplicity

the notation here will exclude marked processes, with little loss of generality.
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A point process can be defined by its conditional intensity function (CIF),

λ(t|Ft) = lim∆→0+ ∆−1E [N(t, t+ ∆)|Ft] . (1.1)

For instance, consider a renewal process, which has waiting times Wi, say with Pr{Wi ∈ (0,∞)} = 1,

that are i.i.d realisations of a random variable with pdf (probability density function) g(·). In this case

the conditional intensity µ(·), and pdf g(·), are related via equations,

µ(w) =
g(w)

1−
∫ w

0 g(s)ds
, g(w) = µ(w) exp

(
−
∫ w

0
µ(s)ds

)
. (1.2)

A constant intensity µ > 0 uniquely corresponds to an exponential density (a Poisson process). Any

non-exponential waiting time pdf will have a non-constant renewal intensity µ(w). Thus, the Poisson

process is the “memoryless” point process, that evolves “without aftereffects” [146]. Thus, the Poisson

process may be considered as a null model, against which one my try to detect clustering or other

features [193].

A useful class of processes are cluster processes, where one process defines so-called cluster cen-

ter points, and then, for each cluster center, associated cluster points are introduced by a separate,

and typically independent, clustering mechanism. These cluster processes may also be thought of as

branching processes [114] where the cluster center points are immigrants, and some parent points are

able to produce offspring points via triggering functions. All of the parent-offspring relationships are

captured in the branching structure. This can also be thought of as a causal structure (i.e., a directed

graph) [78]. It is almost always the case that the cluster center/immigrant process is a Poisson process,

as the memoryless property substantially symplifies analysis (and estimation) [60]. Regarding cluster

formation, in a NS (Neyman-Scott) process, for each immigrant, a single burst of a random number of

offspring is generated, independently of both their associated immigrant, as well as the other clusters.

I.e., the NS clusters have a single generation of offspring. From here onwards, a Poisson distribution for

the number of offspring will be considered. This NS process is also a shot-noise process. Such processes

have been used for modeling earthquake aftershocks [281], rainfall events [59, 213], insurance claims

following a catastrophe [65, 151, 66, 64], etc. Since the immigrants are the only fertile points within

the NS process, to determine the CIF one needs to know which points are immigrants. For this, one

uses the indicator variable Zµi = 1 if ti is an immigrant and Zµi = 0 otherwise. That is, Zµi = dNµ(ti)
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where Nµ(s) :=
∫ s

0 dN
µ(s)ds is the immigrant counting process. Thus the NS process has CIF,

λ(t|FZt ) = µ+

∫ t

−∞
θ(t− s)dNµ(s) , (1.3)

where cluster center points are included in the realisation, and the immigrant indicator variables are

contained within the filtration FZt . The constant µ ∈ (0,∞) is the intensity of Poisson immigration,

and θ(s) = γg(s) is the triggering/self-excitation function, and is the IPP (Inhomogeneous Poisson

Process) originating at each immigrant. Thus it may also be called the offspring intensity. The

function g(·) is the offspring density, with
∫ 0
−∞ g(s)ds = 0, providing the law for the waiting time

between parents and offspring. The parameter γ ≥ 0 is the mass of θ(·), and is a branching ratio,

i.e., the expected number of offspring of each point. In this case, including the immigrant point, the

expected cluster size is γ + 1, and the model is stationary for finite γ.

An important cluster process is the Hawkes process [116, 119], in which immigrants follow a Poisson

process, and then multiple generations of offspring are triggered identically, relative to their parent.

Thus each immigrant, along with its multi-generational tree of offspring, form a cluster. Extensions of

this model have become the predominant model for earthquake aftershocks (ETAS) [193, 121], financial

price fluctuations (e.g., [47, 35, 91, 22]), as well as many other applications. The Hawkes process has

also long been referred to as the “autoregressive” point process [60]. The Hawkes CIF is,

λ(t|Ft) = µ+ Φ(t|Ft) , Φ(t|Ft) =
∑
i:ti<t

ηf(t− ti), (1.4)

where µ ∈ (0,∞) is the deterministic (and possibly varying) immigration intensity, and the triggering/self-

excitation functions φ(·) = ηf(·), also called the offspring intensities, are IPP originating at each

observed point, ti. The offspring density f(·), with
∫ 0
−∞ f(s)ds = 0, again provides the law for the

waiting time between parents and offspring. Here the branching ratio is η ≥ 0. Due to the autore-

gressive nature of the process the expected cluster size is 1
1−η , and the model becomes non-stationary

for η > 1 (the critical case η = 1 is borderline stationary with non-standard scaling properties [217]).

A realization of this CIF (1.4) is shown in the top panel of Figure 1.1, allowing one to observe the

multi-generational branching structure. It is worth noting that the CIF (1.4) is just a superposition of

the immigration and the independent IPP that each point generates. Unlike in the NS process, here

one does not need to know which points are immigrants.

12



(0) (0) (0)(1) (2) (1)

(0) (1) (1) (0) (1) (2)

(I)

(II)

Figure 1.1: Illustration of the CIFs for (I) the Hawkes process (1.4) and (II) the Hawkes process
with over-dispersed renewal process immigration (2.1). The dotted line represents the intensity of
immigration, and the solid line corresponds to the total intensity. The arrows indicate parenthood and
the numbers in parentheses indicate the generation of offspring.

Aggregation

Quoting Brillinger [37]: “many discrete variate processes arise as aggregated point processes, i.e.,

counts of a point process in consecutive intervals of time (bins). Models, techniques, and theoretical

results developed for the study of time series and point processes can suggest corresponding techniques

for each other.” Also, the Hawkes process has also long been referred to as the “autoregressive” point

process [60]. In [150] it was shown that the integer valued autoregressive model (INAR) [181, 285, 97]

approximates the Hawkes process. Similarily, a Hawkes process aggregated on a grid is approximately

an INAR process. Further, as the grid becomes sufficiently fine, and an infinite order INAR model

is considered, the models converge (weakly) [150]. With the same reasoning, it is clear that the NS

process (1.3), when aggregated, forms an integer valued moving average (INMA) process. This is

discussed further in Chapter 3.

Second order statistics

An important object is the autocovariance density, c(u)dudt = Cov(dNt, dNt+u), where N(t) =∫ t
0 dN(s)ds, and c(u)dudt can be thought of as the covariance of the counting measures N(du), N(dt)

on windows du and dt, separated by u [60]. Defining palm intensity h(u) = P{dNt+u = 1|dNt = 1} for

u > 0, as the intensity conditioned only on a previous event, and unconditional intensity λ̄ = P{dNt =

13



1}, then the second moment is E[dNtdNt+u] = λ̄h(u) for u > 0. Thus, for a stationary point process

the autocovariance density is,

c(u) = λ̄δ(u) + λ̄h(u)− λ̄2 , (1.5)

where δ(u) is the standard dirac function. Thus, the palm intensity defines the autocovariance of the

process. The palm intensity is also easy to estimate in practice, e.g., with a histogram type estimator.

The Fourier transform of the covariance density is the spectrum, which may be studied as in stationary

time series. For the Hawkes process the palm intensity is an integral equation,

hAR(u) = µ+ φ(u) +

∫ ∞
0

φ(s)hAR(u− s)ds , (1.6)

which may be generally solved by Wiener-Hopf methods [60]. For the NS process (1.3), the palm

intensity is,

hMA(u) = µ(1 + γ) +
γ(2 + γ)

1 + γ

∫ ∞
0

g(s)g(s+ u)ds. (1.7)

When φ is exponential, then (1.6) can be solved by Laplace transform ([60] page 67),

hExpAR (u) =
µ

1− η
+
η

2

(2− η)

2(1− η)

1

β
exp{−u/(β/(1− η))} = hExpMA(u; γ = η/(1− η), β̃ = β/(1− η)) (1.8)

Thus the exponential kernel provides an example of when the second order statistics of the Hawkes

and NS model are the same. That is, the palm intensity for the Hawkes process renormalizes the

parameters of the Hawkes kernel by equating the expected number of cluster offspring η = γ
1+γ and

cluster characteristic length β̃ = β/(1− η). Considering the analogy with the integer time series, such

representations relate to the AR and MA representations of ARMA time series [39]. The depth to

which these representations are equivalent is not explored here, however it becomes relevant when one

performs estimation based on the palm intensity h rather than the full conditional intensity (see Sec 1).

For instance, from the second order statistics (e.g., the palm intensity) one cannot distinguish between

the Hawkes process and NS process with exponential offspring densities (1.8). On a related note, in

[150] it was shown that the INAR model can be represented by both AR and MA forms of standard

(i.e., real-valued) time series.
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Simulation

Given the conditional intensity (1.1) of a point process, one can simulate the model directly via

a thinning algorithm [166]. For a Hawkes process one could do this by simulating a single point,

updating the conditional intensity, and then repeating. This method continues to be implemented

[115]. Other brute force methods (e.g., [197]) have been discarded in favour of the current preferred

method [184, 192] which decomposes the simulation into independent immigrant and offspring parts.

This method exploits the branching process formulation. That is, each realized point ti generates the

IPP offspring process, φ(t− ti) = ηf(t− ti), from which one simulates. In the proposed methodology,

as well as applications, thinning has also been used for simulating these IPP. For the typical case of

pdf f which decays – especially when the decay is strong, such as in a (shifted) Pareto pdf, which is

employed in seismology [278] – this thinning is highly inefficient. Due to this a fast algorithm for the

special case of the exponential pdf was developed in [67], exploiting the Markovian structure of that

specific parameterisation.

To be clear, the thinning method of [166] requires generating a proposal process with intensity that

exceeds the intensity of the model from which one wants to draw a sample (the proposal process). Then

one retains/accepts each proposal point with probability equal to the ratio of the target intensity to

that of the proposal intensity, at that point. Analogously to the accept/reject sampling from a density,

using thinning is justified when inverse transform sampling is not possible. The cost of this generality

is inefficiency. The inversion method [51], which is equivalent to inverse transform sampling from an

interevent time pdf, relies on the fact that T1, T2, . . . is an IPP with compensator Λ(t) =
∫ t

0 λ(s)ds,

if and only if Λ(T1),Λ(T2), . . . is a unit Poisson process. Thus, one can simulate from a unit Poisson

process and transform the realization with Λ−1(t), to obtain a sample from the IPP with perfect

efficiency.

In other words, and a slightly different formulation: The result of simulating from an IPP, e.g.,

φ(·) = ηf(·) from the Hawkes process (1.4), is a sample of Nφ ∼ Pois(η) inter-event times that are

i.i.d from pdf f . Thus, rather than thinning, one can instead sample the number of offspring Nφ, and

then sample the distance of each offspring from their parent i.i.d. with pdf f by inverse transform:

X
d
= F−1(U), U ∼ UNIF(0, 1). Therefore all that is required is that the inverse CDF F−1 be known.
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Estimation

Given a realization t1:n, on window (0, r], with N(r) = n, the likelihood of a point process, with

parameter vector θ, is,

L(θ|t1:n) = f(t1:n;θ)Prθ [N(r)−N(tn) = 0|t1:n] . (1.9)

This is the product of the joint density, and the probability that no events occur between the last

point tn and the end time time r [62]. This joint density can be factored into a product of conditional

marginal densities,

f(t|t1:N(t)) = λ(t|t1:N(t))exp

(
−
∫ t

tN(t)

λ(s|t1:N(s))ds

)
, (1.10)

each of which is the conditional probability of observing a point at t times the probability of no points

between the previous point tN(t) and t. For an IPP, the density (1.10) becomes unconditional; and for

a homogeneous Poisson process it becomes an exponential density. Thus, the log-likelihood is,

log L(θ|t1:n) =

n∑
i=1

log λ(ti|t1:N(ti))−
∫ r

0
λ(s|t1:N(s))ds (1.11)

Here the conditional intensity is only conditional on the observed points rather than the full history of

the process, contained within the filtration [191]. Maximization of this log-likelihood (1.11) with respect

to θ maximizes the intensity at observed points while minimizing it where no points are observed.

If the conditional intensity cannot be evaluated – such as for the NS model, when the immigrant

points are unknown, as well as its aggregated INMA form – then likelihood maximization cannot be

done. This happens in time series models with an MA component since the innovations are unknown,

and in the point process case where, e.g., the immigration is not Poissonian (2.1), because the branching

structure is not observed. For instance, in [36] the INMA process is estimated by conditional least

squares or generalized method of moments. For NS processes one often uses method of moments, or

maximizes an quasi-likelihood based on the palm intensity [272, 205]. This “palm likelihood” technique

exploits the fact that the palm intensity (1.5) is easy to estimate, while the full conditional intensity

is not. This approach has also been taken for Hawkes processes [21], although it is not necessary to

do so. It also introduces the issue of being able to identify/discriminate between e.g., the Hawkes

process and the NS process, which can have equivalent second order statistics (1.8). In [65] NS/shot-
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noise processes have been estimated by filtering the (unobserved) intensity under a Gaussian process

approximation. For the INARMA models, a Bayesian MCMC technique was used [188, 83]. Such quasi

MLE approaches have also gone to the frequency domain [38] for the Hawkes and NS processes [118],

NS processes with renewal immigration [209, 46] and INAR models [231]. Of course these methods are

only asymptotically competitive with MLE. Instead, one can often use an EM algorithm to perform

MLE, which is developed here.

There has been some interest in the nonparametric estimation of Hawkes process models. In partic-

ular, the INAR approximation of the Hawkes process has been used to estimate a discretized Hawkes

process [149]. Further, the estimators in [22, 21] can be made non-parametric: given any estimate of the

palm intensity (e.g., a histogram), one solves for Hawkes kernel φ via the Wiener-Hopf integral equation

(1.6). For general parametric models, and non-parametric models, the equation must be solved with a

numerical quadrature scheme. In [279, 163] it was shown that EM algorithms (Sec. 1) are natural for

the estimation of Hawkes processes, and that nonparametric estimation is easy to implement. In [185]

it was shown that nonparametric implementations of the EM algorithm were superior to the INAR

approximation method [149] and the solution of the Wiener-Hopf equation (1.6) of [22, 21]. In partic-

ular, the EM algorithm naturally allows one to use non-parametric estimators that are more efficient

than histogram estimators, for instance spline estimators with adaptive bandwidth/smoothness [154].

The non-EM methods, on the other hand, require perhaps impractically large sample sizes for precise

estimation – especially in the tails – as is seen in the simulation studies [22, 21, 185].

EM algorithm

An Expectation Maximization (EM) algorithm [71] is an iterative algorithm to obtain the MLE

parameters of a model, where observed data X is known, but the model depends on some latent or

missing data Z. In such a case it may be difficult to perform MLE with the incomplete data likelihood

L(θ|X), but easier with the (complete data) likelihood L(θ|X,Z). Since Z is unknown, it is accounted

for probabilistically.

In an EM algorithm, one first gives an initial parameter estimate θ̂
[0]

. Then each mth iteration

consists of two steps:
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1) Given the estimates θ̂
[m]

, in the expectation step (E-step), one needs to calculate the function

Q(θ|X, θ̂
[m]

) = E
Z|X,θ̂

[m]

[
log L(θ|X,Z)

]
, (1.12)

which is the expected value of the log-likelihood with respect to the conditional distribution of missing

data Z, given the observed data X and current estimates θ̂
[m]

.

2) The maximization step (M-step) consists in determining the solution of

θ̂
[m+1]

= arg max
θ

Q(θ|X, θ̂
[m]

), (1.13)

that is, the expected likelihood (1.12) is maximized to obtain new estimates θ̂
[m+1]

. The algorithm

iterates the E and M steps until the parameter estimates θ̂
[m]

stabilize. With each iteration, parameter

estimates are guaranteed not worsen the observed data likelihood worse [71].

In general, for point processes with a branching process interpretation – such as the Hawkes and

NS processes – an EM algorithm can be developed where the missing data is the branching structure

[279, 163]. Given the branching structure, the process is then decoupled into identical (up to a time

shift) and independent IPP. Then the statistical problem in the M step is density estimation with

sample weights. This will be further illustrated in the subsequent chapters, where the Hawkes process

is extended to have renewal process immigration, and in another case, to have NS/shot noise process

immigration. In both cases, evaluating the CIF requires knowing which points are immigrants, and

thus MLE is made possible through treating this as missing data and using the EM algorithm.
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Chapter 2

Hawkes process with Renewal process

immigration

This chapter is based on the paper [287].

2.1 Introduction

In the Hawkes processes, the immigration, i.e., the process defining the location of clusters, is a

Poisson process. In this form, including the case of inhomogeneous Poisson immigration, the Hawkes

model can be estimated by Maximum Likelihood Estimation (MLE). We introduce a natural extension:

the Hawkes process with renewal process immigration (RHawkes). The renewal process, like the Poisson

process, has i.i.d (independent and identically distributed) waiting times, but with an arbitrary waiting

time distribution rather than the exponential distribution of the Poisson process. For instance, with

a Weibull waiting time distribution, immigration ranges from being highly dispersed to having highly

regular spacing. As we will see in the case-study in the present paper, such an extension can provide

superior quality of fit in applications. However this flexibility comes at the cost of making direct MLE

practically impossible.

To the best of our knowledge, the RHawkes model has not been considered in the literature. There

have been some similar models proposed for applications in climatology but with either very restrictive

model assumptions, or with less desirable estimation properties: In [58], a renewal cluster model was

proposed for clustering of rainfall events. This model featured Bartlett-Lewis type clustering [60], where

offspring are distributed after their immigrant in a finite renewal process with random termination size.
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In this specification, no overlap of clusters is allowed. This severe simplification allows for easy MLE.

In [219], a Bartlett-Lewis cluster process with renewal process immigration was considered for clustering

of rainfall events to better account for the occasional observation of long periods without rainfall. The

authors estimated the model via maximization of a quasi-likelihood. In [46] a renewal NS process was

proposed with a spectral estimation method used.

Here, we propose an Expectation Maximization (EM) algorithm [71] for estimation of the RHawkes

model. An EM algorithm for the (standard) Hawkes process (here called EM0) has already been

developed [178, 279, 164]. We have extended this approach to the case of renewal immigration (EM1),

and further introduced another EM algorithm with a reduced set of missing data (EM2). This second

algorithm also allows for the computationally efficient estimation of the Hawkes process with IPP

immigration. Both EM algorithms may be easily extended to multivariate Hawkes models, its’ spatio-

temporal extensions, as well as marked processes, but for simplicity of presentation we will focus on

the basic model.

The structure of the chapter is as follows: Section 2 presents the RHawkes process. Sections 3

introduces the EM1 and EM2 algorithms for Hawkes and RHawkes models. In section 4, the compu-

tation of the likelihood and goodness of fit tests for RHawkes are discussed. Section 5 presents Monte

Carlo studies on: the consistency of EM1 estimation of RHawkes, model selection, and robustness of

branching ratio estimation under immigrant process misspecification. In section 6, a case study is done

on the estimation of Hawkes and RHawkes on high frequency price changes in financial markets. In

section 7, we conclude with a discussion.

2.2 The Hawkes Process with Renewal Immigration (RHawkes)

We propose to extend the Hawkes process by considering renewal process immigration (1.2). Thus

the immigration process will renew at each immigrant point, which may be identified within the

realisation by Zµi = 1 if ti is an immigrant and Zµi = 0 otherwise. That is, Zµi = dNµ(ti) where

Nµ(s) :=
∫ s

0 dN
µ(s)ds is the immigrant counting process. Thus the CIF of the Hawkes Process with

renewal immigration (RHawkes) is given by,

λ(t|FZt ) = µ(t− tI[N(t)]) + Φ(t|Ft), (2.1)
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where the full history including immigrant indicator variables are included in the filtration FZt , and Ft

omits the immigrant indicator variables. The self-exciting part, Φ(t|Ft), is the same as in (1.4), and

the index function,

I[N(t)] = max(j ∈ {1, . . . , N(t)} : Zj = 1) , (2.2)

returns the index of the most recent immigrant point prior to time t. A realization of the RHawkes

process (2.1) together with the immigrant intensity is presented in the lower panel of Figure 1.1. This

substantial generalization allows for dependence between clusters. Indeed, in the Hawkes process (and

Poisson cluster processes), different clusters are independent. In contrast, RHawkes is a renewal cluster

process, featuring “nearest neighbour” dependence between clusters. Further extensions can follow by

allowing more extensive interaction of clusters. An instance of this would be to let the cluster locations

themselves follow a Hawkes process.

For the Hawkes model, the CIF (1.4) can be evaluated and thus MLE can be performed, whereas

for RHawkes one needs to know which events are immigrants to evaluate the likelihood (1.9), and

thus, in most practical cases, direct MLE is not possible. In the following section, the later problem

is formulated as a missing data problem with the EM framework to enable estimation. As will be

seen, the EM1 and EM2 algorithms allow for easy estimation of the RHawkes model as long as the

immigrant intensity µ(·) and self-exciting intensity Φ(·) do not have common parameters.

Suppose the immigrants of the process are known: define zi = 1 if ti is an immigrant and zi = 0 if

not. Given these point types (the so-called immigrant vector z1:n), the log-likelihood of a realization

can be written in the form,

logL(θ|t1:n, z1:n) =

n∑
i=1

1{zi=1}log(µ(ti − tI[i]))−
∫ r

0
µ(s− tI[N(s)])ds

+

n∑
i=1

1{zi=0}Φ(ti|t1:N(ti))−
∫ r

0
Φ(s|t1:N(s))ds, (2.3)

which has two separate parts: the first summand and integral for the immigrant renewal process,

and last two for the clustering/offspring part. [191] provides the regularity conditions and asymptotic

properties of MLE for such point process, with renewal and Hawkes processes as examples. Further,

MLE of a renewal process is nothing more than density MLE from i.i.d samples, and thus standard

regularity conditions and asymptotic properties apply. For the clustering part of the log likelihood (2.3)
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to exist, the upper endpoint of the offspring density must be greater than the largest observed inter-

event time. Aside from this, when the regularity conditions of [191] are satisfied for the renewal process

and the Hawkes process (for instance, densities are not too heavy-tailed), they will also be satisfied

in (2.3).

When the immigrant vector is unknown and treated as random, the log likelihood should be de-

fined via an expectation of the conditional likelihoods (2.3) with proper probabilities for all possible

immigration vectors:

logL(θ|t1:n) = log

2n−1∑
j=1

L(θ|t1:n,Z
(j)
1:n)Pr[Z

(j)
1:n|θ]

 . (2.4)

The weighting probabilities depend on the true model parameters, thus direct maximization of (2.4)

is not possible. Instead, an iterative Expectation Maximization (EM) algorithm shall be used.

Suppose now that we consider the full branching structure Zn×n as missing data. The branching

structure is represented by a lower-triangular matrix Zn×n with diagonal elements Zi,i = 1 if point ti

is an immigrant, and Zi,i = 0 if not; and sub-diagonal elements Zi,j = 1, j < i, if point tj is parent to

point ti. Since a point can be either an immigrant or an offspring of a single parent, each row of the

matrix has one unit element.

Following (1.9), the complete likelihood L(θ|t1:n,Zn×n) is constructed as a product of the joint pdf

of observed events f(t1:n,Zn×n) = f(t1:n|Zn×n)f(Zn×n) and another term (the compensator) which

accounts for the probability of observing no event after the last event in each independent subprocess.

Thus, after substituting (2.7) into (1.9) and rearranging, we can write the complete log-likelihood of

RHawkes:

log L(θ|t1:n,Zn×n) = log f(Zn×n) +

 n∑
i=1

i−1∑
j=J [i]

Zi,j log ηf(ti − tj)−
∫ r

0
Φ(s|t1:N(s))ds


+

 n∑
i=1

i−1∑
j=1

Zi,i1{I[i]=j} logµ(ti − tj)−
n+1∑
i=1

i−1∑
j=1

1{I[i]=j}

∫ ti

tj

µ(s− tj)ds

 , (2.5)

where we denoted t0 = 0 as the starting time and tn+1 = r as the stopping time. Neither of these

points are included in the sample. Similarly, if we consider only the semi-complete data (i.e., missing

data being Zi = 1 if ti is an immigrant and Zi = 0 otherwise) the semi-complete log-likelihood (2.6) is
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given by,

log L(θ|t1:n,Z1:n) ∝
n∑
i=1

(1− Zi) log Φ(ti|t1:N(ti))−
∫ r

0
Φ(s|t1:N(s))ds

+

n∑
i=1

i−1∑
j=1

Zi1{I[i]=j} logµ(ti − tj)−
n+1∑
i=1

i−1∑
j=1

1{I[i]=j}

∫ ti

tj

µ(s− tj)ds, (2.6)

where P [Zi = 1] = 1, if Φ(ti|t1:N(ti)) = 0.

2.3 EM Algorithms for the Hawkes Process With Renewal Immi-

gration (RHawkes)

An EM algorithm for the (standard) Hawkes process (EM0) was identified in [178] and formalized

in [279, 163]. It allows for both parametric and non-parametric estimation of the Hawkes process,

including with IPP immigration. In the following subsections, we introduce algorithm EM1, which

extends EM0 to the RHawkes case, and EM2 which has a reduced definition of missing data. In the

same way that EM2 simplifies EM1, EM0 may be simplified, in which case we call this EM2 for the

Hawkes process. A comparison of the computational efficiency of these algorithms and the theory for

convergence follow.

2.3.1 The Complete-Data EM Algorithm (EM1)

For the complete-data EM algorithm for RHawkes (EM1), the observed data X is the point real-

ization t1:n, and the unobserved data Z is the branching structure of the process which indicates: (i)

immigrant events and (ii) parenthood of offspring events (see Figure 1.1).

The main step in deriving (1.12) for RHawkes (2.1) is the conditional density,

f(t1:n|Zn×n) =

n∏
i=1

i−1∏
j=1

[
µ(ti − tj)e

−
∫ ti
tj
µ(s−tj)ds

]Zi,i1{I[i]=j} n∏
i=1

i−1∏
j=J [i]

[
ηf(ti − tj)e

−
∫ ti
tj
ηf(s−tj)ds

]Zi,j
,

(2.7)

which is the product of marginal (inter-event time) densities g(·) defined by expression (1.2) for inde-

pendent IPP (see also expression (1.10) in Appendix A1). The first term in square brackets is the

immigrant density (1.2) and the index I[i] is defined in (2.2). When a lag ti − tj , j < i = 1, . . . , n

is an immigrant inter-event time (i.e., Zi,i1{I[i]=j} = 1), then g(·) is evaluated at that lag. In EM0,
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the immigration is memoryless and thus one does not need to keep track of the previous immigrant

point. The term in the second square brackets is the offspring inter-event time density. When a lag

ti − tj , j < i = 1, . . . , n is a parent-child inter-event time (i.e., Zi,j = 1), then the offspring inter-event

time density is evaluated at that lag. To avoid undefined values of (2.7), the offspring inter-event

time density is only evaluated at lags within the support of the offspring density f(·). This is done by

defining the index function,

J [i] := min(j ∈ {1, . . . , i− 1} : f(ti − tj) > 0), (2.8)

which for every point ti returns the index of the most distant previous point tj having ti in the support

of f(t− tj). This issue is not present for g(·) since the immigration intensity (1.2) never vanishes.

With (2.7), the log-likelihood (2.5) can be easily derived. From here, with (1.12), we compute

Q1(θ|t1:n,Zn×n, θ̂
[m]

) = E
Zn×n|t1:n,θ̂

[m]

[
log L(θ|t1:n,Zn×n)

]
∝ n∑

i=1

i−1∑
j=J [i]

Pr[Zi,j = 1|t1:i, θ̂
[m]

] log ηf(ti − tj)−
∫ r

0
Φ(s|t1:N(s))ds


+

 n∑
i=1

i−1∑
j=1

Pr[Zi,i1{I[i]=j} = 1|t1:i, θ̂
[m]

] logµ(ti − tj)

−
n+1∑
i=1

i−1∑
j=1

Pr[I[i] = j|t1:i, θ̂
[m]

]

∫ ti

tj

µ(s− tj)ds

 . (2.9)

For uniformity of notation, the starting and stopping times are denoted as points t0 = 0 and tn+1 = r

respectively , but not included in the sample.

The E-step involves evaluating Q1 (2.9). This requires the probabilistic definition of the branching

structure. We denote the probability weights as:

π
[m]
i,j = Pr(Zi,j = 1|t1:i, θ̂

[m]
), (2.10)

and introduce the abbreviation π
[m]
i = π

[m]
i,i , for immigrants. By definition, the weights sum to one:∑i

j=1 π
[m]
i,j = 1, i = 1, .., n. The first event (i = 1) has π

[m]
1 = π

[m]
1,1 = 1 and is thus an immigrant. The

second event (i = 2) has π2,2 + π2,1 = 1 and thus can either be an immigrant or an offspring with the

respective probabilities (2.10). Each next event has one more parameter in the probability distribution
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than its predecessor. The probabilities are presented as a lower-triangular matrix Πn×n that is, at

each iteration of the EM algorithm, equal to the expected value of the branching structure matrix:

Π
[m]
n×n = E[Zn×n|t1:n, θ̂

[m]
]. (2.11)

Finally, we denote conditional probability weights: π
[m]
i,j|k = Pr[Zi,j = 1|t1:i, I[i] = k, θ̂

[m]
], j ≤ i that

are abbreviated π
[m]
i|k = π

[m]
i,i|k for immigrants. In this notation, probabilities in (2.9) can be written as:

Pr[Zi,j = 1|t1:i, θ̂
[m]

] = π
[m]
i,j ,

Pr[I[i] = j|t1:i, θ̂
[m]

] := ω
[m]
i,j = π

[m]
j π̄

[m]
j+1|j . . . π̄

[m]
i−1|j , and

Pr[Zi,i1{I[i]=j} = 1|t1:i, θ̂
[m]

] = Pr[I[i] = j|t1:i, θ̂
[m]

]π
[m]
i|j = ω

[m]
i,j π

[m]
i|j , (2.12)

where we have introduced weights ω
[m]
i,k and the bar denotes the complementary probability: π̄

[m]
i,j|k =

1 − π[m]
i,j|k. The first line of (2.12) is just the definition (2.10). The second line defines the probability

that j is the last immigrant in the series of i events up to time ti as the product of the probability

πj that j is an immigrant times the probabilities that all following events are not immigrants, all

conditional on j being an immigrant. The third line defines the probability that j is the last immigrant

before immigrant i in the series of i events up to time ti. EM0 for Hawkes processes does not require

any conditional probability weights. According to the thinning property [62], the probability that an

observed event ti comes from one of the independent (sub-)processes is equal to that process’ share of

the total CIF at ti. Thus, conditional probability weights π
[m]
i,j|k can be calculated using the complete

data CIF (2.1), whereas unconditional probability weights π
[m]
i,j require the so-called incomplete data

CIF,

λ∗(ti|t1:N(t),θ) = µ∗(ti|t1:N(t),θ) + Φ(ti|t1:N(t),θ), (2.13)

where the incomplete data CIF of immigration is given by a mixture of immigrant intensities:

µ∗(t|t1:N(t),θ) =

N(t)∑
j=1

ωN(t),j · µ(t− tj |θ), (2.14)

with weights ωN(t),j (2.12) being equal to the probability that tj is the most recent immigrant before

tN(t). Finally, the estimation of probability weights for given observed data t1:n and parameters θ̂ can

25



be written:

π
[m]
i =

µ∗(ti|t1:N(t), θ̂
[m]

)

µ∗(ti|t1:N(ti), θ̂
[m]

) + Φ(ti|t1:N(t), θ̂
[m]

)
, π

[m]
i|k =

µ(ti − tk|θ̂
[m]

)

µ(ti − tk|θ̂
[m]

) + Φ(ti|t1:N(ti), θ̂
[m]

)
, k < i = 2 : N

(2.15)

π
[m]
i,j =

η̂[m]ĥ[m](ti − tj)

µ∗(ti|t1:N(ti), θ̂
[m]

) + Φ(ti|t1:N(ti), θ̂
[m]

)
, π

[m]
i,j|k =

η̂[m]ĥ[m](ti − tj)

µ(ti − tk|θ̂
[m]

) + Φ(ti|t1:N(ti), θ̂
[m]

)
, j, k < i = 2 : N.

Probability weights π
[m]
i,j and ω

[m]
i,j can be jointly computed in the following recursive way. For each

event ti, we denote the probability weight vectors πi = (πi,1, . . . , πi,i) and ωi = (ωi,1, ..., ωi,i−1). The

first event is set to be an immigrant (π1,1 = 1, ω2,1 = 1). Then the second (ω2) and further weight

vectors are computed with the following relation:

ωi =
(
π1π̄2|1 . . . π̄i−1|1 , . . . , πj π̄j+1|j . . . π̄i−1|j , . . . , πi−1

)
=

((
ωi−1 ◦ (π̄i−1|1, ..., π̄i−1|j , ..., π̄i−1|i−2)

)
, πi−1

)
. (2.16)

This recursive equation (2.16) expresses that the weight vector ωi is the Hadamard product (e.g.,

(a, b) ◦ (c, d) = (ac, bd)) of the previous weight vector ωi−1 and a vector of complement probabilities;

and with πi−1 concatenated to the end of the product. Thus, to compute ωi, one uses weight vector

ωi−1 and computes the necessary probability weights π via (2.15). Repeating this procedure for

i = 2, . . . , n, produces the needed probability weights π
[m]
i,j , ω

[m]
i,j , i = 1, . . . , n, j = 1, ..., i.

Now we consider the M-step. Given the probability weights from the E-step, Q1 (2.9) is maximized

to obtain new estimates θ̂
[m+1]

. Because Q1 is decomposed into immigration (µ(·)) and offspring

(ηf(·)) parts without common parameters, these parts are estimated independently. The offspring

part is the same as in EM0, but the immigrant part is more complicated. Estimation of parameters

θ̂
[m+1]
g of µ(·) requires maximization of the part in the second square brackets in Q1, which is nothing

more than a MLE for the immigrant inter-event time density (1.2):

θ̂
[m+1]
g = arg max

θg

n∑
i=1

i−1∑
j=1

ω
[m]
i,j π

[m]
i|j log g(ti − tj ;θg), (2.17)

with sample weights ω
[m]
i,j π

[m]
i|j denoting the probability that tj and ti are immigrants, with no other

immigrant events between them (2.12). A non-parametric estimate is possible, but numerical stability
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issues arise when computing µ(·), as the denominator in (1.2) becomes very small. The explicit MLE

for the branching ratio parameter η can be obtained by analytically maximizing (2.9) with respect to

η:

η̂[m+1] =

∑n
i=1

∑i−1
j=1 π

[m]
i,j∑n

i=1 F̂
[m](r − ti)

=
n−

∑n
i=1 π

[m]
i∑n

i=1 F̂
[m](r − ti)

, (2.18)

where F̂ [m] denotes the estimation of the offspring CDF: F̂ [m](t) :=
∫ t

0 f(s|θ̂[m]
f )ds. The estimated

branching ratio (2.18) is the ratio of the expected number of offspring to a number that is less than

or equal to the total number n. Thus, in a finite window, the denominator inflates the estimate to

account for unobserved offspring expected to occur after the end time r. Estimation of the offspring

density f(t;θf ) is given by the density MLE with an i.i.d weighted sample:

θ̂
[m+1]
f = arg max

θf

n∑
i=1

i−1∑
j=J [i]

π
[m]
i,j log f(ti − tj ;θ[m]

f ), (2.19)

where the sample weights π
[m]
i,j are the probability that tj is parent to ti (2.15). Here non-parametric

estimation of the offspring density f(·) is straightforward.

2.3.2 The Semi-Complete-Data EM Algorithm (EM2)

In this section, we propose a new alternative EM algorithm for RHawkes (EM2), which is based

on a reduced set of missing data. This modification significantly improves computational efficiency

and memory requirements, which allows EM estimation of the RHawkes process on large datasets.

The same simplification can also be applied to the classical estimation of the standard Hawkes model

(EM0), and provides a great increase in computational efficiency.

Within the EM2 algorithm, we reduce the missing data to only the diagonal elements of the branch-

ing matrix {Zi,i}i=1,...,n; i.e. only indicating which points are immigrants, and which are offspring, and

not indicating the parents of the offspring. This diagonal is abbreviated by Z1:n and called the immi-

grant vector. Following a similar derivation to that of Q1 (2.9) (see Appendix A1 for details), the Q
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function with the semi-complete data {t1:n,Z1:n} can be written

Q2(θ|t1:n,Z1:n, θ̂
[m]

) = E
Z1:n|t1:n,θ̂

[m]

[
log L(θ|t1:n,Z1:n)

]
∝

n∑
i=1

(1− π[m]
i ) log Φ(ti|t1:N(ti))−

∫ r

0
Φ(s|t1:N(s))ds (2.20)

+
n∑
i=1

i−1∑
j=1

π
[m]
i ω

[m]
i,j logµ(ti − tj)−

n+1∑
i=1

i−1∑
j=1

ω
[m]
i,j

∫ ti

tj

µ(s− tj)ds,

where P [Zi = 1] = 1 if Φ(ti|t1:N(t[i])) = 0. For uniformity of notation, we denote t0 = 0 and tn+1 = r

as the starting and ending times respectively where both of these points are excluded from the sample.

In (2.20), similarly to EM1, the immigration and offspring processes are separated, and the immigration

part is the same as in (2.9). But, unlike in EM1 (and EM0), the individual offspring processes are not

decoupled. For the E-step, the weights are computed using (2.15). For RHawkes, the probabilities π
[m]
i

and π
[m]
i|k (i = 1, . . . , n; k = 1, . . . , i−1) are needed, but π

[m]
i,j (i = 1, . . . , n; j = 1, . . . , i) are not. For the

(standard) Hawkes model, only π
[m]
i (i = 1, . . . , n) are needed. In the M-step, estimation of µ(·) and

η is identical to EM1 and given by (2.17) and (2.18). But in contrast to EM1, the estimation of f(·)

should be done by numerically maximizing (2.20) with respect to the parameters of f(·). While this

method is more useful for parametric estimation (see Section 2.5.4), the non-parametric estimation of

f(·) is more difficult than for EM1, since unit mass and positivity must be enforced.

2.3.3 Convergence of Hawkes EM Algorithms

The EM algorithm produces an EM sequence of parameter estimates {θ̂[m]}, belonging to the

subspace Θ[0] of the parameter space Θ:

Θ[0] = {θ ∈ Θ : L(θ) > L(θ[0])}, (2.21)

defined for an initial estimate θ̂
[0]

. The main convergence result of the EM algorithm [295] is that,

provided mild regularity conditions, the EM sequence converges to a stationary value θ∗, which means

that for the EM sequence the incomplete-data likelihood converges monotonously to an extrema (local

maxima, global maxima, or saddlepoint) at θ∗. This result does not hold when the sequence of

estimates reaches the boundary of the parameter space Θ.

Reasonable specifications of the Hawkes model, with or without renewal immigration, satisfy the

28



regularity conditions of [295]. Further, by construction, the EM sequence produced by EM0, EM1,

and EM2 satisfy the probabilistic constraints of the Hawkes model (0 < η̂[m+1] < 1 in (2.18)) and

thus estimates do not diverge to the boundary. Thus, for convergence, it is sufficient that an initial

estimate θ[0] is not at the boundary. Indeed, if one starts with the estimate η[0] = 0, then from (2.12)

it is clear that ∀m > 0, η[0] = 0. Starting at η[0] > 0, then obtaining the value η[m] = 0, m > 0

in the EM sequence is only possible if the support of the offspring density f [m] is smaller than the

smallest inter event time in the dataset (2.15),(2.18). With MLE, this could only happen if the initial

estimate f [m] was chosen with an upper endpoint less than the smallest inter-event time. On the other

hand, starting from η[0] = 1 (the stationary upper boundary) and µ[0] > 0, it is clear from (2.12)–

(2.18) that µ[1] > 0 and η[1] < 1, and by induction that µ[m] > 0 and η[m] < 1, ∀m > 0. Thus,

convergence issues should be avoided by taking η(0) > 0 and large enough upper endpoint of f (0) such

that inf(t ∈ R : F [0](t) = 1) > min({ti − ti−1, i = 1, ..., n}). However, since neither the Hawkes nor

RHawkes likelihoods are necessarily unimodal (see [93] for an example), it cannot be guaranteed that

the stationary value θ∗ is at the global maximum. Thus it is recommended to take multiple starting

estimates θ[0] and select the best estimate from the resulting sequences.

Now we consider the speed of convergence. The EM Algorithm implicitly defines a mapping M :

θ[m] → θ[m+1]. In [71], it was shown that (i) all EM algorithms have (at least) linear convergence

with rate dM/dθ, and (ii) that the rate of convergence near the local optimum θ∗ is fast when the

proportion of the Fisher information in the missing data to that of the complete data is small. For

this reason, EM2, with reduced missing data, may have faster convergence than EM1. However, for

RHawkes, this cannot be shown explicitly due to the multiplicative form of immigrant probabilities

in (2.17) and thus the complexity of the closed form of dM/dθ. Note that an example of the case with

large missing information is when clusters are overlapping and thus the branching structure is highly

uncertain. Further, often it is possible to formulate the EM algorithm as a projected gradient ascent

method [218]:

θ[m+1] − θ[m] = P (θ[m])∇logL|θ[m] , (2.22)

where one takes a positive step in the direction of the projected gradient of the log-likelihood. As an

example, in [164], the EM0 for a Hawkes model was presented in this form. The projected gradient

ascent method (2.22) is a first order algorithm on a locally reshaped log-likelihood surface. In [218],

it was shown that, when the missing information is small compared to the complete information, EM
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exhibits approximate Newton behaviour (superlinear convergence) near θ∗. It was claimed to hold for

all latent variable models (this includes RHawkes).

In agreement with [297, 218, 260], simulations in [164] confirmed that, for the Hawkes process

with well separated clusters, the EM algorithm behaved like a second order method, whereas for

overlapping clusters the convergence was closer to linear. These results are encouraging for the EM

algorithms presented here. However the EM algorithms here have not been verified to fit into the

form of (2.22) due to the difficulty of expressing the partial derivatives of the log likelihood given

by a logarithm of a sum of products (see expression (2.4) in Appendix A1). Heuristically speaking,

over-dispersed immigration in RHawkes can worsen cluster overlap and thus decrease the speed of

convergence. For the sake of brevity, we do not present analysis of the convergence of EM1 and EM2

for RHawkes process.

A practical convergence issue was also encountered in some circumstances. Specifically, when

estimating RHawkes with EM2 on data with branching ratio ≈ 0, the scale of the offspring density may

be overestimated with each successive iteration, leading to an erroneously large branching ratio estimate

due to the denominator of (2.18). Thus, to avoid this error, one may wish to set the denominator

of (2.18) to the sample size n, accepting a negative bias for the estimation of η, which vanishes with

increasing sample size, and is negligible for an offspring density with short memory. This issue was not

encountered when estimating the Hawkes process with IPP immigration with EM2.

2.3.4 Computational Efficiency for Estimation of the Hawkes Process

Here the computational complexity and memory requirements for the estimation of Hawkes and

RHawkes models are discussed. First let us note that in general both MLE and the E-step for all EM

algorithms, require evaluating the CIF at O(n2) inter-event times. However in the case of parametric

estimation with an exponential offspring density (or any linear mixture of exponentials), a recursive

relationship [197] can be used for reducing the computational complexity to O(n) for MLE and EM2

for Hawkes, including Hawkes with IPP immigration.

The memory requirements for storing the probability weights in the E-step are the following: O(n2)

in EM0, EM1 and EM2 for RHawkes; and O(n) in case of EM2 for Hawkes. For the M-step, weighted

samples of O(n2) inter-event lags are used for the offspring density (2.19), and also for the renewal

density (2.17) in the RHawkes case. For EM0 and EM1, this poses only a minor problem, because if
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these samples are too large, then subsamples can be taken. Such a sub-sampling approach also allows

for the use of density estimators that do not naturally include sample weights. This approach is easier

than the variational calculus approach used in [165].

The computational difficulty can be further reduced if the offspring density has finite support with

upper endpoint tf and nf = max({N(ti) − N(tj) : ti − tj < tf )}) being the largest number of points

observed within the support of the density. In this case, the E-step and M-step only need to be

performed on lags {ti− tj : i = 1, . . . , n, j = max(1, i−nf ), . . . , i−1}. The same is true for the renewal

density. This reduces both O(n2) memory and computation requirements to O(n ·nf ) with nf ≤ n. A

similar approach, which adaptively chooses nf to satisfy a pre-specified tolerable error, was introduced

in [111]. Note that taking nf too small introduces downward bias into the estimation of the branching

ratio (2.18).

2.4 Statistical Inference

Here we discuss parameter variance-covariance, likelihood, and p-value computation for the RHawkes

process. Without a closed-form solution, estimation of the parameter variance-covariance matrix should

be done via bootstrap. As for similar models (such as mixture models), the sample size must be large

to achieve the asymptotic covariance, and Monte Carlo estimates are typically recommended (see [103]

and references therein).

Likelihood and goodness of fit tests for RHawkes require evaluating the CIF (2.1), and thus may

be computed for each immigrant vector Z1:n = {Zi,i}i=1,...,n ∈ {0, 1}n. Since the first point of the

sample is always set to be an immigrant, there exist 2n−1 possible immigrant vectors, uniquely indexed

as z
(j)
1:n, j = 1, . . . , 2n−1.

To simplify computation, a Monte Carlo approach can be used where sample averages of likelihoods

and p-values are taken. Specifically, given the probabilistic description of the branching structure

obtained in the E-step (2.12), an ensemble of realizations of the immigrant vector may be generated,

and likelihoods and p-values computed for each realization. Ensemble average likelihoods and p-values

may then be computed. A Monte Carlo study of the inferential power of these statistics is conducted

in Section 2.5.

To simulate realizations z1:n = (z1, . . . , zn) of the random vector Z1:n ∈ {0, 1}n, we have used

an acceptance-rejection thinning type algorithm [167]. We start from the vector z1:n = (1, 0, . . . , 0)
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since the first point is always treated as an immigrant. Next, for each following event ti, i = 2, . . . , n,

Bernoulli random variables with probabilities πi|1 (2.15) are generated, and the first success (at i = k)

is taken as the second immigrant (i.e. zk = 1); then the third immigrant is selected in the same way

with probabilities πi|k, i = k + 1, . . . , n; and so on until the stopping time r is reached. This yields a

realization z1:n = z
(a)
1:n, identified by an index a ∈ {1, . . . , 2n−1}. Repeating the procedure l times, we

obtain the sample set {ai}i=1,...,l, where each element defines the sampled immigrant vector z
(ai)
1:n .

2.4.1 Likelihood

The likelihood value for RHawkes was computed as follows: For a given immigrant vector z
(j)
1:n,

j ∈ {1, . . . , 2n−1}, the immigration intensity,

µ(j)(t) = µ(t− tI[N(t)]|z
(j)
1:n) , (2.23)

is a deterministic function, and the RHawkes model can be treated as a Hawkes model with IPP

immigration. Thus, plugging the Hawkes CIF (1.4) with immigration intensity (2.23) into the log-

likelihood equation (1.9), one obtains the conditional incomplete data likelihood for immigrant vector

z
(j)
1:n:

L(θ; t1:n|z(j)
1:n) =

n∏
i=1

(
µ(j)(ti) + Φ(ti|t1:N(ti))

)
exp

(
−
∫ r

0
µ(j)(s) + Φ(s|t1:N(s))ds

)
. (2.24)

The incomplete data likelihood is equal to a weighted sum of the conditional incomplete likelihoods (2.24):

L(θ; t1:n) =
2n−1∑
j=1

L(θ; t1:n|z(j)
1:n)Pr[Z1:n = z

(j)
1:n|θ]. (2.25)

The weighting probabilities in (2.25) may be computed by probabilities from the E-step (2.12), however,

this is computationally burdensome. Instead, a Monte Carlo approximation of the likelihood (2.25),

L(θ; t1:n) ≈ 1

l

l∑
i=1

L
(
θ; t1:n|z(ai)

1:n

)
, (2.26)

may be done with sampled immigrant vector indices {ai}i=1,...,l.

Ultimately, the Monte Carlo log-likelihood is obtained by taking the logarithm of this average (2.26).

The logarithm of the incomplete likelihood (2.25) or its approximation (2.26) may be directly compared
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with the log-likelihood of the standard Hawkes process (1.9). In practice, one will start by calculating

the log of (2.24), and exponentiate these to be averaged in (2.25). Due to limitations of floating-

point number representation, this exponentiation may result in an overflow being evaluated by the

computer. In this case, one can average the log of the conditional likelihoods (2.24), keeping in mind

that this will provide an underestimate of the Monte Carlo log-likelihood due to Jensen’s inequality.

The underestimation error will be small when the variance in the conditional log-likelihoods is small

with respect to the mean.

2.4.2 p-Values

To perform a hypothesis test for an estimated point process model, one often uses the so-called

residual analysis [193] based on the time change property [198]: For point process {Ti}i∈N with CIF

λ(t|t1:N(t)), the set of transformed times {T̃i}i∈N, T̃i =
∫ Ti

0 λ(s|t1:N(s))ds are generated by a unit rate

Poisson process. Thus for a realization t1:n, one can estimate its CIF, transform it to t̃1:n and test

the hypothesis that the resultant process is unit Poisson. More generally, we define the test statistic

(for example, the Kolmogorov Smirnov (KS) distance [179]) as a random variable S := S(T 1:n,Z1:n),

which, under the null hypothesis, has known reference distribution F0. Here the observed test statistic

S(t1:n, z
(j)
1:n) transforms a realization of points t1:n, given their immigrant vector z

(j)
1:n, j ∈ {1, . . . , 2n−1}.

For semi-complete data sets {t1:n, z
(j)
1:n}, we define the null hypothesis H

(j)
0 as the validity of the

RHawkes model for Z1:n = z
(j)
1:n. Then the semi-complete data p-values are given by

p(j) = Pr[S > S(t1:n,Z1:n)|H(j)
0 ] = 1− F0(S(t1:n, z

(j)
1:n)), j = 1, . . . , 2n−1. (2.27)

For the incomplete data set {t1:n}, the null hypothesis H0 is that the RHawkes model is true. The

test statistic for this, S(t1:n,Z1:n), is unknown because the immigrant vector is unknown. Thus, by

conditioning, the incomplete data p-value is,

p = Pr[S > S(t1:n,Z1:n)|H0] =
2n−1∑
j=1

p(j)Pr[Z1:n = z
(j)
1:n|θ], (2.28)

which may be expressed in terms of the semi-complete data p-values (2.27). As for the likelihood,

a Monte-Carlo approximation of the p-value (2.28) may be done by taking the average of the semi-
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complete data p-values:

p ≈ 1

l

l∑
i=1

p(ai), (2.29)

having their indices in the sampled set {ai}i=1,...,l.

2.5 Monte Carlo Study of the EM estimation of RHawkes

In this section, we examine the convergence (consistency) of EM1, the performance of the statistical

inference methods developed in Section 2.4, and the robustness of the Hawkes process estimation in

the case of misspecification of the immigration process. For the study of the EM2 algorithm, we refer

to Appendix A2. We consider the renewal process immigration with a Weibull immigrant waiting time

distribution:

g(w) = µ(w) exp

(
−
∫ w

0
µ(s)ds

)
=
κ

β

(
w

β

)κ−1

exp

(
−
(
w

β

)κ)
, (2.30)

and associated Weibull intensity function µ(w) = κwκ−1/βκ, w ≥ 0. The case κ = 1 corresponds

to the standard Hawkes process (1.4) with constant background intensity µ = 1/β. When κ < 1,

the intensity decays, which implies that the inter-event time density (2.30) is sub-exponential and

features over-dispersion. Alternatively, as κ→∞, the inter-event density (2.30) weakly converges to a

delta-function g(w) = δ(w−β), and the immigration process becomes deterministic with regular event

spacing β.

For the offspring density f(t), we consider both the exponential pdf, originally suggested by

Hawkes [117]:

fexp(t) =
1

τ0
exp

(
− t

τ0

)
1t≥0, (2.31)

which is parametrized with a shape parameter τ0 > 0; and the Omori-type heavy-tailed pdf [193]:

fOmori(t) =
αcα

(t+ c)1+α
1t≥0, (2.32)

with shift parameter c > 0 and Pareto tail index α > 0.

The exponential offspring density (2.31), which is typical for financial and econometric applica-

tions [34, 29, 91, 80, 11], endows Markov properties to the model [190], and is more robust to outliers

than heavy-tailed alternatives [93]. A heavy-tailed offspring density (2.32) is typical for seismological

applications [194], where it accounts for the power law decay of aftershock activity with time (Omori’s
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law). For many practical applications, it can be well approximated as a sum of weighted exponen-

tial densities [112]. As discussed in Section 2.3.4, the computational complexity of evaluation of the

log-likelihood in the above cases can be reduced to O(n).

2.5.1 Bias and Efficiency

This section discusses the bias and efficiency of the EM1 estimator for RHawkes (2.1). For this,

we have considered simulations of the RHawkes process (2.1) with parameters κ and η presented in

Table 2.1. The Weibull shape parameter κ was given values in {0.5, 0.75, 1, 1.25, 1.5}, ranging from

highly over-dispersed to highly under-dispersed. For each value of κ, the scale parameter β was

chosen such that the expected immigrant inter-event time was equal to 10, i.e., β was given values in

{5, 8.4, 10, 10.7, 11.1}. The characteristic time τ0 of the exponential offspring density (2.31) was chosen

to be τ0 = 3.

For each combination of parameters, we simulated 50 independent RHawkes realizations, each

with 500 events. Efficient simulation was performed using the algorithm of [184], which exploits the

branching representation of the Hawkes process. The model parameters {κ, β, η, τ0} were then

estimated using EM1. We intentionally chose “bad” starting parameter estimates to demonstrate

robust convergence: κ̂[0] = 1; the scale parameter β̂[0] was chosen as the true value β multiplied by a

uniform random number in [0.25, 4]; the branching ratio η̂[0] was chosen as a uniform random number

in [0.1, 0.9]; and the characteristic time of the offspring density τ0 was chosen as a uniform random

number in [0.5, 10].

The bias and standard deviation of the estimates are presented in Table 2.1. In general, most

parameters were well estimated, especially the branching ratio η. Due to the fixed sample size of 500

points, when η is larger, the expected number of immigrants E[N (0)(r)] is smaller. Thus the bias and

the variance of estimates of immigration process parameters κ̂ and β̂ are larger with larger η and are

the worst for η = 0.9, i.e., when the E[N (0)(r)] = 50. Another factor that introduces systematic error

into the results is that when η is large and thus clusters are overlapping. However, this bias decreases

with increasing sample size.
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Table 2.1: Results of EM1 estimation (Section 2.3) of the Hawkes Process with Weibull renewal
immigration (2.1) and exponential offspring density on simulated data. For each combination of pa-
rameters, this table presents the average bias and standard deviation (in brackets) of estimates over
50 simulations.

κ η E[N(0)(τ)] κ̂− κ β̂ − β η̂ − η τ̂0 − τ0

0.5 0.1 450 0.02 (0.02) 0.55 (0.74) 0.02 (0.06) -0.05 (2.04)
0.5 250 0.06 (0.03) 1.70 (1.32) 0.03 (0.06) -0.41 (0.52)
0.9 50 0.16 (0.15) 0.89 (2.13) -0.04 (0.05) -0.46 (0.51)

0.75 0.1 450 0.04 (0.04) 1.01 (1.22) 0.06 (0.06) 0.31 (1.51)
0.5 250 0.06 (0.07) 1.16 (1.52) 0.02 (0.06) -0.25 (0.48)
0.9 50 0.12 (0.13) -1.00 (3.14) -0.05 (0.05) -0.52 (0.37)

1 0.1 450 0.02 (0.05) 0.46 (0.76) 0.03 (0.04) 1.71 (2.97)
0.5 250 -0.02 (0.07) -0.66(1.08) -0.03 (0.05) -0.08 (0.48)
0.9 50 0.02 (0.15) -1.58 (2.99) -0.04 (0.05) -0.28 (0.60)

1.25 0.1 450 -0.03 (0.08) 0.04 (0.63) 0.01 (0.04) 6.23 (6.59)
0.5 250 -0.06 (0.11) -0.69 (1.21) -0.04 (0.07) -0.05 (0.59)
0.9 50 -0.12 (0.20) -3.16 (2.53) -0.07 (0.05) -0.30 (0.49)

1.5 0.1 450 -0.06 (0.09) -0.09 (0.6) 0.00 (0.03) 3.91 (5.35)
0.5 250 -0.15 (0.10) -0.79 (1.09) -0.03 (0.06) 0.03 (0.56)
0.9 50 -0.29 (0.26) -3.17 (2.96) -0.05 (0.05) -0.36 (0.42)

2.5.2 Model Selection

In this section, we address the question of model selection when the immigration process is unknown.

For this, we simulate the Hawkes process with Weibull renewal immigration (2.1) and exponential

offspring density (2.31), and then test the null hypothesis (H0) that observed events {t1:n} are generated

with the Hawkes model (1.4) versus the alternative hypothesis (H1) that {t1:n} are generated from a

Hawkes process with Weibull renewal immigration (2.1). In both models (H0 and H1), the offspring

density is assumed to be exponential (2.31).

We consider three statistical test: (i) comparison of the AIC values of H0 and H1, (ii) the Wilks

likelihood ratio test with level 0.05 [293] where H0 is nested in H1, and (iii) the KS test for standard

exponential transformed inter-event times with level 0.05, using the methodology discussed in Sec-

tion 2.4. It should be noted that the option (iii) is not a test of H0 against alternative H1, but the

Portmanteau-type test of H0 against the alternative hypothesis H̃1, that is loosely specified (i.e. “not

H0”).

The parameters for the process (2.1), (2.30) were chosen as follows: The Weibull shape parameter
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κ was given values in {0.5, 0.75, 1, 1.25, 1.5} and other parameters were fixed at values of β = 1, η = 0.6

and τ0 = 0.3. For each combinations of these parameters, we simulated 100 independent realizations

of size 250, 500, 750, and 1000 events. Then both models were estimated on each sample: the true

model (2.1), which corresponds to H1, was estimated using EM1, and the misspecified model (1.4),

which corresponds to H0, was estimated using direct maximization of the log-likelihood (1.9). The

Monte-Carlo approximation of the likelihood for the true model (2.26) was done with 200 sampled

likelihoods.

Table 2.2 summarizes the results. In general, the larger the sample and the further from Poisson

immigration (when κ is away from 1), the more powerful the test. The AIC test (i) provides a powerful

decision rule for comparing the models, even for small sample sizes (e.g., n = 250) and moderately

over and under dispersed immigration (e.g., κ = 0.75 and κ = 1.25 respectively). When the null model

is true (i.e., κ = 1), both models provide approximately equal AIC. The Wilks test (ii) is powerful

for sample sizes with 500 or more points, and at even smaller sample sizes in case of high over- or

under-dispersion of the immigration process (e.g., κ = 0.5 and κ = 1.5 respectively). The KS test (iii)

is understandably the least powerful as it specifies no alternative model. Even on large sample sizes

(n = 1000, E[N (0)(r)] = 400), and for significant immigrant over-dispersion. (κ = 0.5), the test has

very low power: less than 0.5.

Summarizing, model selection can be successfully resolved using AIC and/or the Wilks test. In

the following section, we will see that misspecification of the immigration process can bias parameter

estimates.

2.5.3 Robustness of Branching Ratio Estimation under Misspecification of the

Immigration Process

The branching ratio η is an important parameter of the Hawkes model and branching-type processes

in general, as it quantitatively defines both the stationarity of the system and the importance of the

self-exciting mechanisms. In this section, we discuss the robustness of the estimation of η when

the immigration process is misspecified. For this, we estimate the Hawkes model on synthetic data

generated with the RHawkes model as well as the Hawkes model with IPP immigration. Both of these

examples illustrate ways in which branching ratio estimation can be systematically biased (see [93] for

a longer list and discussions).
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First we consider the generating process being RHawkes (2.1) with Weibull immigration (2.30)

and exponential offspring density (2.31). We fixed parameters η = 0.5 and τ = 0.1 and varied the

immigration shape parameter from over-dispersed (κ = 0.4) to under-dispersed (κ = 1.4). As before,

the scale parameter β was chosen so that, for any given κ, the expected immigrant inter-event time

was fixed (in this case E[T
(0)
i − T (0)

i−1] = 4).

For each value of κ, we have simulated 50 independent realizations. On each synthetic realization,

we have used MLE to estimate the (standard) Hawkes process (1.4) with (i) exponential offspring

density (2.31) and (ii) Omori-type density (2.32). Figure 2.1 presents results of the estimation of the

branching ratio η̂ as a function of the shape parameter κ of the underlying immigration process.

In Figure 2.1 (left), both models with Poisson immigration have a significant bias in the estimation

of η̂. In the case of under-dispersed immigration (κ > 1), one observes a relatively small negative

bias, which is similar for exponential (2.31) and Omori-type (2.32) offspring densities. In contrast,

for over-dispersed immigration (κ < 1), the bias is positive and much stronger. For instance, when

κ = 0.5, the branching ratio has median positive bias of 0.17 and 0.31 for the Hawkes process with

exponential and Omori-type offspring densities respectively.

Next, we consider the simulation study from Appendix A2, namely EM2 estimation of the Hawkes

Test n E[N (0)(r)] κ = 0.5 κ = 0.75 κ = 1 κ = 1.25 κ = 1.5

AIC 250 100 0.99 0.58 0.06 0.35 0.81
500 200 1 0.79 0.07 0.6 0.95
750 300 1 0.93 0.12 0.68 0.99
1000 400 1 0.96 0.2 0.83 1

Wilks 250 100 0.97 0.35 0.01 0.19 0.54
500 200 1 0.67 0.01 0.32 0.87
750 300 1 0.85 0.04 0.5 0.95
1000 400 1 0.9 0.05 0.65 1

KS 250 100 0.08 0.05 0.03 0.06 0.1
500 200 0.17 0.04 0.03 0.08 0.17
750 300 0.30 0.04 0.06 0.13 0.22
1000 400 0.46 0.06 0.05 0.14 0.22

Table 2.2: Results of model selection tests. E[N (0)(r)] denotes the expected number of immigrant
events in the sample. AIC provides the fraction of the 50 repetitions in which the H1 model had
superior AIC to the H0 model. Wilks provides the fraction of the 50 repetitions in which the H0 model
was rejected when compared to the H1 model using the Wilks test at level 0.05. KS provides the
fraction of the 50 repetitions in which the H0 model was rejected when using the KS test at level 0.05.
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Figure 2.1: The left panel: EM1 estimates of the branching ratio η̂ (2.18) using the Hawkes model with
Poisson immigration and exponential offspring density (black) and Omori-type density (grey) when
the true process is generated with the Hawkes model with Weibull renewal immigration with shape
parameter κ. The true branching ratio (0.5) is presented with a horizontal dashed line. Solid lines
correspond to median values and dotted lines present quartiles of estimates for the densities.
The right panel: The difference between the estimated branching ratio and the true branching ratio:
1) (black) where the Hawkes model is estimated on simulations from the Hawkes model with IPP
immigration for a range of branching ratios, and 2) (grey) where the model used for simulation is
estimated on its own realizations. The horizontal axis is the value of the branching ratio used for
simulation. The median (heavy solid), quartiles (dashed), and 0.05 and 0.95 quantiles (dotted) of all
estimates are given.

process with deterministic sinusoidal immigration intensity. Figure 2.1 (right) summarizes the errors

in the estimation of the branching ratio for the true model (IPP immigration) and the false model

(constant immigration). For the true model, estimation is consistent and efficient. For the false model,

the branching ratio is consistently overestimated, in particular for low values of the branching ratio.

For example, an upward bias of more than 0.6 is observed when the true branching ratio η = 0.1,

and still an upward bias of approximately 0.1 when η = 0.5. The overestimation is a result of an

apparent clustering provided by the baseline sinusoidal IPP immigration µ(t), which is attributed by

the (standard) Hawkes model to the self-exciting term Φ(·).
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2.5.4 Study of EM2 Estimation of Hawkes with Inhomogeneous Poisson Immigra-

tion

Here we perform a Monte Carlo study using EM2 to estimate the (standard) Hawkes process (1.4)

with deterministic IPP immigration intensity 0 < µ(t) < ∞, ∀t. For computational efficiency, an

exponential offspring density (2.31) is chosen. In this case, the recurrence relation of [197] can be

used and both the E- and M-steps of the EM2 have complexity of O(n). Thus, it becomes possible

to estimate the model even on large datasets with a standard personal computer. The immigration

intensity will be estimated using kernel density estimation

µ̂(t) =
n∑
i=1

πik(t− ti; b)1{0<t<r} + c(t), (2.33)

where the kernel function k(t; b) is a pdf with bandwidth parameter b. This estimator (2.33) distributes

mass πi around each point ti, and the higher the bandwidth, the more dispersed the mass is. When mass

is distributed outside of the interval (0, r], it should be “reflected” back in. We denote this “reflection”

operation by the term c(t) ≥ 0, 0 < t ≤ r. One of the crucial aspects of using kernel estimators

like (2.33) is the selection of bandwidth. Here we use a fixed bandwidth that is specified a-priori,

however for practical applications automatic bandwidth selection procedures may be used [232, 274].

When a measure of the degrees of freedom of the estimate is available, AIC tests may be used. An

essential feature of this estimator (2.33) is that
∫ r

0 µ̂(t) =
∑n

i=1 πi, which means that it provides

an unbiased estimation for the total number of immigrant points in the sample. This avoids the

accumulation of bias across EM iterations.

In our Monte Carlo study we have simulated the Hawkes process with sinusoidal immigration

intensity µ(t) = sin(2πt/250) + 1.5, exponential offspring density (2.31) with scale parameter τ0 = 0.1,

and branching ratio values η sweeping from 0.1 to 0.9 by 0.1. For each set of parameters, 50 simulations

of this process on one period of the immigration intensity (0, 250] were performed. The median sample

size was 1200 with quartiles 520 and 1310. For each realization, we estimated two models using the

EM2 algorithm (see section 2.3.2): the first being the true model, and the second (false model) being

the Hawkes model with homogeneous immigration (µ(t) = µ). The initial parameter estimates were

chosen uniformly at random in the following intervals η ∈ (0.1, 0.9), τ0 ∈ (0.1, 10) and µ ∈ (0.1, 5).

The EM algorithm was allowed to perform 200 iterations, but in 90 percent of the time it converged
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Figure 2.2: The solid thin black line is the true sinusoidal immigration intensity used in simulation.
Lines are also plotted for the median (heavy solid), quartiles (dashed), and 0.05 and 0.95 quantiles
(dotted) of all estimates for all parameter values.

in less than 100 iterations. The convergence criterion was that the cumulative sum of the absolute

differences of estimated parameters for the previous 3 iterations were smaller than or equal to 10−6.

The comparison of the estimated branching ratios η̂ for true and false models was discussed in

Section 2.5.3. Here we illustrate the good convergence of the non-parametric estimation of the im-

migration intensity µ(t). Figure 2.2 presents the true immigration intensity and a summary of the

estimated immigration intensity across all samples for the true model. As it is seen from the Figure,

the immigration intensity is well estimated, including cases when most of the points are offspring (when

η = 0.9).

2.6 Case Study: Self-Excitation of Mid-Price Changes of the E-mini

S&P500 Futures

Over the past decade, the Hawkes model has become very popular in financial applications, mostly

for modeling high-frequency fluctuations of prices and limit order book dynamics [34, 29, 273, 55, 11,

91, 21, 48, 112], and for the modeling of sequences of lower-frequency extreme events [47, 84, 80].

In this section, we present a data-driven motivating example for applications of the RHawkes model

within the context of quantitative finance.

We study the point process of mid-quote price changes of the E-mini S&P500 Futures Contract

traded on the Chicago Mercantile Exchange (CME). The mid-quote price is defined as the mean of the
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best bid and best ask prices, and is the standard point process employed in the study of high-frequency

(sub-second) price fluctuations [33]. Here the branching ratio η is defined as the proportion of price

changes that are caused by previous price changes, thus quantifying market (in-)stability concepts such

as endogeneity, positive-feedback and reflexivity, and its estimation gives deep insight into the dynamics

of the system [91].

We consider price dynamics for 10 separate trading days within 2012 (2012-01-03, 2012-02-03, 2012-

03-01, 2012-04-03, 2012-05-03, 2012-06-01, 2012-08-03, 2012-09-04, 2012-10-03, 2012-11-01). Similarly

to [91], we define a sample as a sequence of mid-price changes occurring in 20 minute windows, where

each window overlaps 10 minutes with the previous window. Only windows occurring during the

Regular Trading Hours (9:30 to 16:15 CDT) were considered. This yields almost 400 samples. Samples

with less than 200 points were excluded (approximately 20 percent of samples), resulting in a median

sample size of around 400 points. As discussed in [93], due to data quality issues, the points are

uniformly randomized within intervals of 0.2 seconds prior to their given time-stamp.

We have estimated three models on each dataset: (M1) the Hawkes model with exponential offspring

via direct MLE, (M2) the Hawkes model with IPP immigration and exponential offspring using EM2

with immigration estimated by kernel estimation (see eq. (2.33) in Appendix A2), and (M3) the

RHawkes model with Weibull immigration and exponential offspring using EM1. The main result of

the analysis below is that the log-likelihood of the model with renewal immigration (M3) is significantly

larger than that of the models with Poisson immigration processes (both M1 and M2)

Specifically, we have compared differences between log-likelihoods of models. The (0.1, 0.25, 0.5, 0.75, 0.9)

quantiles of differences between (M3) and (M1) were (5.1, 9.1, 16.3, 24.8, 34.7) and clearly favour the

(M3) model. Even for the 0.1 quantile log-likelihood difference (i.e., 5.1), the Wilks likelihood ratio

test rejects the simpler model (M1) with a p-value of 0.001. The AIC test also favours (M3) as the

difference in numbers of parameters between the models is equal to 1.

The quantiles of differences in log-likelihoods between models (M3) and (M2) were (0.6, 4.5, 10.4,

18.6, 26.0). Since the models are not nested, Wilks-type of tests can not be performed. Further,

comparison of penalized likelihoods, such as AIC, cannot be done since the equivalent degrees of freedom

(edf) of the kernel estimate of (M2) are not known. However, even in the simplest case when µ(t) is

constant and edf = 1, (M3) is superior to (M2) nearly 90 percent of the time according to AIC test.

Using the standard goodness-of-fit test based on the transformed inter-event times that should

42



follow exponential distribution (Section 2.4), (M1) is rejected on 53 percent of samples at a level of

0.05, (M2) on 51 percent of samples, and (M3) on 22 percent of the samples, which again indicates

that (M3) is superior. However we need to note that for all models the rejection rate is quite high.

Alternatively, one may consider testing if the transformed time follows a uniform distribution on

the transformed interval (0, r̃] since this is another definition of a homogeneous Poisson process. Unlike

the previous test, this takes into account temporal correlations between inter-event times. Here, the

rejection rates at level 0.05 are equal to: (M1) 0.25, (M2) 0.08, and (M3) 0.20. Thus, (M2) does a

better job of “detrending”, while (M3) better describes the inter-event distribution and obtains superior

likelihood. One could, for instance, first detrend the data and then apply (M3).

Finally, we summarize the parameter estimates of the winning model (M3). The branching ratio η

had median 0.65 and quartiles (0.61, 0.7). These high values of η suggests substantial high-frequency

self-excitation in price changes: about 65% of price changes are triggered by previous price changes.

This supports, while correcting slightly downward, the previous estimation of [91] based on (M1),

which provides higher estimates with a median of 0.73.

The immigration shape parameter κ had median 0.55 and quartiles of (0.50, 0.61), which consis-

tently indicates over-dispersion. in the immigration process, relative to the Poisson. The immigration

scale parameter β has median 5.2 and quartiles of (3.4, 8.2). The large variance of β reflects substantial

changes of activity levels within each day. Finally, the scale parameter of the offspring density has

median 0.056 and quartiles of (0.052, 0.061), that are similar for the three models.

The superiority of RHawkes has multiple potential explanations. A first hint, as explained in [93],

is the presence of larger inter-event durations than can be accounted for by the Hawkes model. Next,

in financial markets, it is clear that many positive feedback mechanisms are present at different time

scales (see [90] for a list). These mechanisms range from reactive high-frequency trading at short time

scales to herd behaviour of traders at long time scales. Thus a more complete model would consider self-

excitation at multiple time scales (and magnitudes), as well as their interactions. RHawkes constitutes

a simple instance that allows for first order dependency between clusters.

2.7 Discussion

We have proposed a new type of self-excited point process that extends the Hawkes model to allow

for the immigration process (which is a homogeneous or IPP within the standard Hawkes framework) to
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be a stochastic self-excited process as well. Within the specific model discussed in the paper (RHawkes:

Hawkes process with renewal immigration), the immigration process was considered to be a renewal

process with a given intensity function. However, this generalization makes direct MLE impossible.

We have made the estimation of RHawkes possible by the introduction of two EM algorithms:

EM1, which is built on the existing EM algorithm for Hawkes processes (EM0), and EM2 which uses

a reduced set of missing information. These estimation techniques were shown to be consistent in

simulation studies, and easily allow for non-parametric estimation. Further, we have shown that the

EM2 algorithm can be applied to the estimation of the Hawkes process with IPP immigration, and

this application is more computationally efficient than the standard (EM0) approach.

The (standard) Hawkes model is widely used in many areas from physics to quantitative finance.

In such applications, in particular when the focus is the quantification of the branching ratio, we

recommend as a best practice to consider both IPP and renewal immigration as alternative models.

We have provided an example of the relevance of our results to the existing literature on the quan-

tification of the branching ratio for high-frequency price fluctuations (see for example [91, 112]). In the

provided case study, it was shown that the RHawkes model is superior to the specifications considered

in [91], thus questioning the validity of the Poisson immigration assumption in such applications. As

another example, for the modeling of rainfall, our approach provides a richer model than [58] and

theoretically superior estimation to [219]. Finally, extending EM1 and EM2 for the estimation of

spatio-temporal and marked versions of the Hawkes model would allow one to test the validity of the

Poisson background intensity hypothesis in modeling triggered seismicity.
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Chapter 3

The ARMA point process

This chapter is part of a work-in-progress.

3.1 Introduction

I argue that, by driving the Hawkes (autoregressive) process (2.1) with NS (moving average) pro-

cess (1.3) immigration, one obtains a process that, when aggregated, is approximately the INARMA

process (the ARMA time series for positive integers). We thus propose that this process be called the

ARMA point process. A special case of this process, called the dynamic contagion process – having

exponentially decaying triggering intensities and exponential marks – was introduced in [66]. Here an

emphasis is placed on estimation of the model.

As is the general case, once a moving average component is included in a model, the estimation –

namely maximum likelihood (MLE) – becomes more difficult. In the time series case this is because

the innovations are not observed, and in the point process case, because the branching structure is not

observed. For instance, in [36] the INMA process is estimated by conditional least squares or generalized

method of moments. For NS processes one often uses method of moments or maximizes a quasi (palm)

likelihood [272, 205]. In [65] such processes have been estimated by filtering the (unobserved) intensity

under a Gaussian process approximation. For the INARMA models a Bayesian MCMC technique was

used [188, 83]. As suggested in [38] a frequency domain estimator that approximates MLE for point

process models – including the Hawkes and NS processes [118], NS processes with renewal immigration

[209, 46] and INAR models [231] – has been used. Here an Expectation Maximization (EM) algorithm

is defined for the estimation of the ARMA point process, thus containing an algorithm for the Hawkes
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process, the NS process and their INARMA analogies. Efficient simulation is also addressed.

3.2 The ARMA Point Process

x x

t

φφ

θ θ

φ

φ φ φ

φ

Figure 3.1: A realization of the ARMA point process with innovation/immigration intensity µt, MA
intensity θ, and AR intensity φ. Immigrants, θ-offspring and φ-offspring are denoted by x mark,
triangle, and dot, respectively. A point is connected to the intensity that it triggers by a vertical
dashed line. All points are projected onto the horizontal axis, with parenthood indicated by arrows,
forming the full realization.

Here we introduce the ARMA point process, defined by its CIF (conditional intensity function),

λ(t|FZt ) = lim∆↓0 ∆−1E
[
N(t, t+ ∆)|FZt

]
= µ+

∫ t

−∞
θ(t− s)dNµ(s) +

∫ t

−∞
φ(t− s)dN(s)

= µ+

N(t)∑
j=1

Zµj θ(t− tj) +

N(t)∑
k=1

φ(t− tk) , (3.1)

which drives the Hawkes process (1.4) with shot noise (1.3). The process is conditioned on the natural

filtration FZt that contains the entire history of the process, as well as the indicator variables: for i ∈ Z,

Zµi = 1 if ti is an immigrant and Zµi = 0 otherwise. That is, Zµi = dNµ(ti) where Nµ(s) :=
∫ s

0 dN
µ(s)ds

is the immigrant counting process. Here µ > 0 is the immigration/innovation intensity, φ the AR

intensity, and θ the MA intensity. The indicator variable Zµi = 1 if ti is an immigrant (i.e., when

dNµ(ti) = 1), and Zµi = 0 otherwise. Thus the MA intensity is only triggered by immigrants. The

MA and AR intensities are intensities of IPP, and can thus be factored into pdf and non-negative

normalizing constants, θ(·) = γg(·) and φ(·) = ηf(·), as defined in the NS (1.3) and Hawkes processes
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(1.4). Taking the unconditional expectation of the CIF (3.1) yields the expected intensity,

λ̄ =
µ(1 + γ)

1− η
, (3.2)

indicating that η <∞ and γ < 1 are necessary conditions for stationarity, and η > 1 will produce an

explosive proliferation of points. By setting γ = 0 one recovers the Hawkes process, and by setting η = 0

one recovers the NS process. Formulating the ARMA point process as a branching process brings great

insight, as visualised in Fig. 3.1: µ introduces immigrants, which may then trigger a single generation

of θ-offspring with intensity θ(·), and then all existing points trigger a generation of φ-offspring with

intensity φ(·), which may, in turn, trigger the subsequent generation of φ-offspring in the same way.

The sum of these independent IPP provides the ARMA CIF (3.1), and the set of immigrant and (θ-

and φ-)offspring points forms the ARMA point process realization. The MA branching ratio γ is the

expected number of θ-offspring of a single immigrant, and the AR branching ratio η is the expected

number of immediate φ-offspring of any point. Further, counting all generations, a single point is

expected to produce η + η2 + · · · = 1− 1/(1− η) φ-offspring. Thus, as in the Hawkes process, η is the

expected proportion of all points that are φ-offspring.

3.3 The Relationship to Integer ARMA Models

The discrete valued analogues of classical time series models [39] have seen a flurry of recent develop-

ment [97, 181] and enjoy many current and potential applications. Here we consider the INARMA(p, q)

process, an ARMA process for counts Xl ∈ {0, 1, 2, . . . }, l ∈ Z, that satisfies the difference equation,

Xl = εl +

q∑
k=1

θ̃k ◦ εl−k +

p∑
j=1

φ̃j ◦Xl−j , εl
i.i.d∼ Poisson(µ̃) , µ̃ ≥ 0 (3.3)

which has the familiar ARMA structure, but with a thinning operator, instead of multiplication, to

preserve the count value of the process. Here the Poisson thinning operator ◦ , for some count variable

Z is considered,

α ◦ Z =
Z∑
i=1

Yi, α > 0, and α ◦ 0 := 0 , (3.4)

where all (Yi) and Z are independent. If Yi
i.i.d∼ Pois(α), then α ◦ Z|Z = z is a sum of z independent

Poisson variables with parameter α, and thus has distribution Pois(αz). Thus, given that both all
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Figure 3.2: Identical realisations from (left plot) the ARMA point process (3.1), and (right plot) the
INARMA(2, 3) process. The left plot is the first cluster from fig. 3.1, where the symbols are defined.
The right plot is given for grid ∆ (3.3) indicated by the vertical lines, where the count values are given
above the plot. In the INARMA process one knows the counts, not the exact locations of the points
in time. Here the points are included to show how the INARMA process approximates the Hawkes
process. The origins of the axes framing the AR and MA triggering coefficients are located at the time
values of the points that triggered them to highlight that the INARMA process cannot trigger points
within the bin containing the point that generated the triggering function.

thinnings in (3.3) are independent of eachother, and of the Poisson innovation εl, then the conditional

df ofXl|X(l−p):(l−1), ε(l−q):(l−1) is also Poisson. The unconditional df ofXl is not Poisson. It is important

to note that the standard thinning used in integer time series is Bernoulli/Binomial thinning, where the

variable Y has a Bernoulli df. In this case, the unconditional df of Xl is Poisson, but the conditional one

is not. A survey of the different thinning specifications employed within the literature are summarized

in [286]. Bernoulli thinning provides the most mathematical elegance, and maintains many structural

similarities to ARMA models. Other forms of thinning, such as Poisson thinning, provide useful

generalisations – especially when the unconfiditional df is not Poisson. Specifically, Poisson thinning is

used here to enable the connection with the ARMA point process. In this sense, each model motivates

and justifies the other.

The INARMA process (3.3) is a multi-type branching process [72] that is stationary for
∑p

j=1 φ̃j < 1

and
∑q

k=1 θ̃k < ∞. The branching interpretation is the same as for the ARMA point process: the

innovation count εl introduces immigrants, and thinning (3.4) has the interpretation that each of the

Xj points in the jth bin is expected to produce φ̃l−j offspring in the lth bin, where l > j. Thus

the INARMA process introduces a burst of offspring triggered by immigrants, via thinning with θ̃
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coefficents, and an autoregressive tree of offspring triggered by all past events, via thinning with φ̃

coefficients. The INARMA process is more general in the sense that, for negative coefficients θ̃ and φ̃,

it can produce “self-inhibiting” behaviour.

Next a formal argument is made to demonstrate an asymptotic equivalence between these two mod-

els. This is aided by observing the similarities between the two subplots of Fig. 3.2. The INARMA(p, q)

process, with Poisson thinning, has conditional expectation,

E[Xl|X(l−1):(l−p), ε(l−1):(l−q)] = µ̃+

q∑
k=1

θ̃kεl−k +

p∑
j=1

φ̃jXl−j , (3.5)

and therefore, dividing (3.5) by ∆, one obtains a discrete CIF of the INARMA process.

Next, if one aggregates the ARMA point process (3.1) on bins of width ∆ > 0, one obtains the count-

ing variables {X(∆)
l = N (∆l,∆(l + 1)) , l = 1, ..., r∆} for all points, and {ε(∆)

l = Nµ (∆l,∆(l + 1)) , l =

1, ..., r∆} for innovations, where Nµ(s) =
∫ s

0 dN
µ(s) only counts immigrants, as in the NS process (1.3).

For instance, in Fig. 3.2, the immigrant counts are: {ε(∆)} = {0, 1, 0, 0, . . . }. In this aggregated model,

one obtains the discrete CIF,

∆−1E
[
X

(∆)
l |X

(∆)
(l−1):(l−p), ε

(∆)
(l−1):(l−q)

]
≈ µ+

q∑
k=1

θ(k∆)ε
(∆)
l−k +

p∑
j=1

φ(j∆)X
(∆)
l−j , (3.6)

where the approximation treats φ and θ as step functions, with step width ∆, and (falsely) excludes

triggering of points within the same bin. Roughly speaking, the approximation becomes exact as

∆→ 0+ and p, q →∞. In this limit the conditional intensities of (3.5) and (3.6) become equivalent by

equating parameters: µ̃ = µ∆, θ̃k = ∆θ(k∆), and φ̃j = ∆φ(j∆). Since the CIF uniquely characterizes

the finite-dimensional distributions of point processes [62], the processes are thus equivalent.

As special cases, the Hawkes process is approximated by the INAR process, and the NS process

is approximated by an INMA process. The (weak) converge of the INAR process to the Hawkes

process, as ∆→ 0, was rigorously proved in [150]. The INAR approximation was exploited in [149] to

approximately estimate the Hawkes process using a non-parametric least-squares-based estimator.

As is the case for the ARMA point process, the INARMA model cannot be directly/simultaneously

estimated by MLE due to missing information – here being the innovation counts ε
(∆)
l−1, ε

(∆)
l−2, . . . where

only the complete counts X
(∆)
l−1 , X

(∆)
l−2 , . . . are observed. In Sec. 3.5 we provide an EM algorithm to

estimate the ARMA point process, which may also be applied to the INARMA model.
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3.3.1 Further details about the INARMA model

The thinned variable is a compound random variable. One can use the Tower property of conditional

expectations to derive the moments of such variables. For instance, for Poisson thinning, where Z is a

count random variable, and α, β ≥ 0: E[α◦Z] = αE[Z], E[β◦α◦Z] = αβE[Z], and E[(α◦Z)(β◦Z)] =

αβE[Z2]. Thus such moments are the same if one replaces the thinning with multiplication. However

the Poisson thinning case differs from the multiplicative case when the second moment is considered,

as E[(α ◦ Z)2] = αE[Z] + α2E[Z2]. Further, E[(β ◦ α ◦ Z)(α ◦ Z)] = βE[(α ◦ Z)2].

To consider simple models, for the INMA(1) process with Poisson thinning,

E[X] = (1 + θ1)E[ε] , (3.7)

Var(X) = (1 + θ2
1)Var(ε) + θ1E[ε] , (3.8)

Cov(Xl, Xl−1) = θ1Var(ε) , (3.9)

and thus the mean and covariance are the same as the standard MA(1) process, but the variance is

different, due to the presence of the θ1E[ε] term. For the INAR(1) process with Poisson thinning,

E[X] = (1− φ1)−1E[ε] , (3.10)

Var(X) = (1− φ2
1)−1(Var(ε) + φ1E[X]) , (3.11)

Cov(Xl, Xl−1) = φ1Var(X) , (3.12)

and thus the mean is the same as the standard AR(1) process, but the variance is different, due to

the presence of the φ1E[X] term. Thus, the covariance formula, as written above, is the same as the

standard AR(1) process, but, for equal parameters, will have a different autocovariance, due to the

different variance.

Next, the Yule-Walker approach for systematically computing autocorrelations for the INARMA(p, q)

process is shown. Take the INARMA(p, q) process,

Xl = εl +

q∑
k=1

θk ◦ εl−k +

p∑
j=0

φj ◦Xl−j . (3.13)

For u = 0, 1, 2, . . . and i ∈ Z, denote au = E[XlXl−u] (= E[Xl+iεl+i−u]) and bu = E[Xlεl−u] (=

50



E[Xl+iεl+i−u]), so bu = 0 for u < 0. Then, multiplying (3.13) by εl−u, and taking the expectation,

gives the system of equations,

bu =

q∑
k=0

θkE[εl−kεl−u]−
q∑
j=1

φjbu−j , (3.14)

where θ0 = 1, bu−j = 0 for u < j, and b0 = E[ε2l ] + E[εl]E[X]. Thus b1, . . . , bq may be determined

recursively using eq. 3.14. Next, multiplying (3.13) by Xl−u, and taking the expectation, gives the

system of equations,
p∑
j=0

φjau−j =

q∑
k=1

θkbk−u , (3.15)

where φ0 = 1, and given b1, . . . , bq, one can solve for a1, . . . , aq, and aq+1, aq+2, . . . are solved where

the right hand side of (3.15) is zero.
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3.4 Simulation of the ARMA point process

Below an algorithm for simulating ARMA point processes is presented. It exploits the fact that,

given the branching structure, the innovation, MA, and AR processes are mutually independent IPP.

At the end of step II one has simulated an NS process (1.3). By skipping step II, and completing

step III, one simulates a Hawkes process (1.4). To avoid edge effects, one should simulate on a large

window, and discard the burn in period. Using inverse transform sampling makes the algorithm very

fast. For instance, simulating with γ = 1, and η = 0.9, O(104) points can be simulated in O(0.1)

seconds (implemented in R on a standard laptop with 2.90 GHz processor, and 4GB ram). Simulation

algorithms for the Hawkes process follow the same approach, but their implementations have been

much slower due to using inefficient IPP sampling techniques [184, 192], rather than using inverse

transform sampling, as discussed in Chap. 1.
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Simulation algorithm

I. Simulate the immigrant points

(i) Simulate Poisson process {T (0)
i }i∈1,...,n0 on the window (0, r], where N(r) = n0.

II. Simulate MA points

(i) For each immigrant i = 1 : n0: simulate the number of offspring N θ
i
i.i.d∼ Pois(γ), and then

sample the N θ
i inter-event times Si,j , j = 1 : N θ

i , i.i.d from pdf g. If N θ
i = 0, simulate zero

inter-event times for that immigrant.

(ii) The MA points generated by the ith immigrant are then {T θi,j}j=0:Nθ
i

= T
(0)
i + {Si,j}j=0:Nθ

i
.

(iii) The immigrant and MA points together are {T (1)
i }i∈1,...,n1 = {T (0)

i } ∪ {T θ1,j} ∪ · · · ∪ {T θn0,j
},

where n1 = n0 +
∑n0

i=1N
θ
i .

III. Simulate AR points by generation

(i) Set the fertile points A = {1, . . . , n1}, generation k = 1, and zeroeth generation points

{T φ[0]
i } = {T (1)

i }.

(ii) For the current generation k, for all fertile points ∀i ∈ A: simulate the number of direct

offspring N
φ[k]
i

i.i.d∼ Pois(η), and then the N
φ[k]
i inter-event times S

φ[k]
i,j , j = 1, . . . , N

φ[k]
i , i.i.d from

pdf f . If N
φ[k]
i = 0, simulate zero inter-event times for that that point.

(iii) The AR points generated by the ith point are then {T φ[k]
i,j }j=0:N

φ[k]
i

= T
φ[k−1]
i +{Sφ[k]

i,j }j=0:N
φ[k]
i

and

(iv) the union of these sets, {T φ[k]} = {T φ[k]
1,j } ∪ · · · ∪ {T

φ[k]

N
φ[k]
i ,j
}, is the offspring of generation k.

(v) Update the fertile set A = {i : T
φ[k]
i < r} to be all points born in the current generation k

that fall within the window (0, r].

(vi) If A is non-empty then increment the generation (k = k + 1) and return to (ii), otherwise

return the realization formed by joining all generations: {Ti}i=1:n = {T (1)
i }∪{T φ[1]}∪· · ·∪{T φ[k]}.
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3.5 EM algorithm for the estimation of the ARMA point process

Here the observed data isX = t1:n and the missing data is indicator variablesZ = {Zµi , Zθi,j , Z
φ
i,j , i =

1, ..., n, j = 1, ..., i− 1}, which are zero except Zµi = 1 if ti is an immigrant, Zθi,j = 1 if ti is triggered

by θ(t − tj), and Zφi,j = 1 if ti is triggered by φ(t − tj). Thus, ∀i: Zµi +
∑i−1

j=1(Zθi,j + Zφi,j) = 1. Given

the missing data, the first term of the likelihood (1.9) is decomposed as,

n∏
i=1

λ(ti|t1:n,Z) =

n∏
i=1

[
µZ

µ
i

i−1∏
j=1

[
θ(ti − tj)

]Zθi,j i−1∏
k=1

[
φ(ti − tk)

]Zφi,k ]
, (3.16)

where an intensity is only evaluated at the correct time or inter-event time as determined by the

indicator variables that encode the branching structure. Taking the log and the expectation of the

likelihood, the Expected Complete Loglikelihood (abbreviated as Q) is,

Q(θ|t1:n,Z, β̂
[m]

) = E
Z|t1:n,β̂

[m]

[
log L(β|t1:n,Z)

]
= Qµ +Qθ +Qφ , (3.17)

Qµ =

n∑
i=1

πµi logµ−
∫ T

0
µds ,

Qθ =
n∑
i=1

i−1∑
j=1

πθi,j logθ(ti − tj)−
n∑
j=1

πµj

∫ r

tj

θ(s− tj)ds ,

Qφ =
n∑
i=1

i−1∑
k=1

πφi,j logφ(ti − tk)−
n∑
k=1

∫ r

tk

φ(s− tk)ds ,

where innovation, MA, and AR processes are decoupled into Qµ, Qθ, and Qφ respectively. The

probability weights in (3.17), to be calculated in the E step, are given by,

πµi = Pr{Zµi = 1|t1:n,β} =
µti

µti +
∑i−1

j=1 π
µ
j θ(ti − tj) +

∑i−1
j=1 φ(ti − tj)

(3.18)

πθi,j = Pr{Zθi,j = 1|t1:n,β} =
πµj θ(ti − tj)

µ+
∑i−1

j=1 π
µ
j θ(ti − tj) +

∑i−1
j=1 φ(ti − tj)

(3.19)

πφi,j = Pr{Zφi,j = 1|t1:n,β} =
φ(ti − tj)

µti +
∑i−1

j=1 π
µ
j θ(ti − tj) +

∑i−1
j=1 φ(ti − tj)

, (3.20)

exploiting the thinning property [62] whereby the probability that ti comes from one of the independent

(sub-)processes is equal to that processes’ share of the total CIF at ti.

Next, considering the M-step, Qµ, Qθ, and Qφ (3.17) have the structure of log-likelihoods for

density estimation with sample weights, where the samples are all positive interevent times ti− tj , j <
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i = 1, . . . , n, and the weights are the prefactors of the log terms in (3.17). In further detail: Qµ has a

simplified structure due to being a Poisson process and has estimator,

µ̂ =

n∑
i=1

πµi /r , (3.21)

in the homogeneous case, and may easily be extended to the inhomogeneous case with by estimating a

density for points t1:n with weights πµ1:n, and re-scaling the density to have mass
∑n

i=1 π
µ
i . For Qθ and

Qφ, by factoring the intensities into their branching ratios and densities – θ(·) = γg(·) and φ(·) = ηf(·)

– the densities and branching ratios may be estimated separately. As an example, for g(·) being an

exponential density, its scale estimate is the weighted average,

τ̂ =
n∑
i=1

i−1∑
j=1

πθi,j · (ti − tj)
/ n∑

i=1

i−1∑
j=1

πθi,j . (3.22)

Finally, the MLE for the branching ratios are,

γ̂ =

∑n
i=1

∑i−1
j=1 π

θ
i,j∑n

i=1 π
µ
i Ĝ(r − ti)

, η̂ =

∑n
i=1

∑i−1
j=1 π

φ
i,j∑n

i=1 F̂ (r − ti)
, (3.23)

where G and F are the CDF of g and f respectively, and their role in the denominator is to account

for offspring truncated by the end of the observation window r.

This algorithm can be adapted to INARMA (3.3) estimation by defining the df to be histograms

with bin width ∆ equal to the time between the INARMA counting variables. The algorithm requires

storage and computation with matrices that are O(n2). On a standard PC this makes computation

prohibitive for samples with n > 104. However this implementation is crude as, in this case, even the

largest interevent time tn − t1 is considered as an interevent time by which tn could be triggered via

θ(t − t1) or φ(t − t1), despite the fact that the probablity of this could be effectively 0. Thus, for

window r large relative to the support of θ and φ, one can safely omit interevent times above a certain

threshold. The result of this is banded/sparse matrices which reduce storage and computation from

n2 to n×m, potentially with m << n. This enables fast estimation on, e.g., samples with n = O(105)

with memory/point interaction limited to a neighbourhood of m < 1000 adjacent points.

Regarding the convergence of the EM algorithm [218, 295, 71], one first needs that the necessary

MLE regularity conditions are satisfied [191], for instance having smooth distributions that are not
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too heavy tailed. Next, it must be ensured that the sequence of parameter estimates does not reach

the boundary of the parameter space. For instance, if estimates µ[m], η[m], or γ[m] are equal to zero

at any iteration, m, or equivalently, if the support of f [m](.) or g[m](.) is smaller than the smallest

interevent time, then the estimates will remain zero (eqs. 3.18-3.20). However, given non-zero starting

estimates, the EM algorithm estimates automatically satisfy the constraints of the model parameters.

Thus one simply needs to avoid problematic initial estimates. Regarding speed of convergence, there

is the general result of [71, 295] that the algorithm will not worsen the likelihood with each iteration.

Further, from [218], given that Q is differentiable in Θ and the M-step has a unique solution, then the

EM algorithm iterates in a positive direction on the true likelihood surface. Finally, when the missing

information is small compared to the complete information, EM exhibits approximate Newton behavior

with superlinear convergence near the true optimum. In terms of the ARMA point process, as well

as other mixture type models, this means that when clusters are overlapping (missing information is

large) convergence will be slow, as has been shown for the Hawkes process with exponential offspring

df [164, 260], as well as other mixture models [297, 218]. Exactly deriving the convergence properties

of the ARMA point process model would add no new qualitative insight, and would lack generality

due to only applying for a single parameterization.
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3.6 Discussion

The aggregated NS/shot noise process is approximately an INMA process, the aggregated Hawkes

process is approximately an INAR process, and the aggregated Hawkes process driven by shot noise

(the ARMA point process, or dynamic contageon process) is approximately an INARMA process. As

the aggregation becomes fine, the integer time series becomes equivalent to the analogous continuous

time point process. The univariate unmarked ARMA point process was considered but multivariate

and marked extensions follow immediately. The EM algorithm for the ARMA point process provides

MLE for this new type of process, as well as the NS process that it contains. Further, the algorithm

can be generalized to the aggregated INARMA case. This provides MLE to a class of models where

many inferior estimation algorithms had been used (See Sec. 1).

Much basic work on the development of this model remains. For instance, the second order

statistics need to be derived for the ARMA point process. Deriving the MA (and AR) representations

for the INARMA model – as done in [150] for the INAR case – is related to this. Further, the limiting

equivalence between the INARMA model and the ARMA point process should be rigorously proven as

has been done for the Hawkes process and the INAR model [150], or by using probability generating

functionals. The performance of the EM algorithm for the estimation of the ARMA point processes

should be characterized, and compared with other estimators, in simulation studies.
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Part II

A general outlier test, & singular

“dragon-king” extremes
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This short chapter is an extended version of a piece written by Spencer Wheatley and Didier

Sornette to appear in an edition of SATW INFO edited by Prof. Wolfgang Kröger.
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Chapter 4

Dragon-kings and extremes

Introduction

Extremes dominate the long term quality and organization of most important natural and soci-

etal systems: the largest two nuclear power plant accidents have caused five times more damage than

all other (>200) historical accidents together [292]; the largest ten percent of private data breaches

from organizations accounts for ninety-nine percent of the total breached private information[289]; the

largest five epidemics since 1900 caused twenty times the fatalities of all others [290, 106]; etc. Such

statistics are consistent with (extremely) heavy tailed distributions. Furthermore, it is often the case

that the largest events are outliers and have special circumstances associated with them. This point

will be elaborated below.

Despite the importance of extreme events, due to ignorance, misaligned incentives, and cognitive bi-

ases, we often fail to adequately anticipate them. Technically speaking, we choose models that are

not heavy-tailed enough, and under-appreciate both serial and multivariate dependence of extremes.

Some examples of such failures in risk assessment include: the use of Gaussian models in finance (e.g.,

Guassian copula and Black-Scholes models); the use of Gaussian processes and linear wave theory

failing to predict the occurrence of rogue waves; the failure of economic models to predict the 2007

financial crisis; and the under-appreciation of external events, cascades, and nonlinear effects in prob-

abilistic risk assessment. Such high impact failures (e.g., the 2011 Fukushima disaster) emphasize the

importance of the study of extremes.
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Dragon-kings & Black Swans

Here a special type of “outlying” extreme event is discussed. Dragon-king (DK) is a double

metaphor for an event that is both extremely large in size or impact (the “king” is the richest in the

land) and generated from a unique process/origin (a “dragon”) relative to other events from the same

system. This term was introduced by Prof. Didier Sornette. As an example, a king may himself be a

dragon-king in terms of wealth within his country, as he has the unique right to tax the population.

DK are generated by mechanisms such as positive feedback, tipping points, bifurcations, and phase

transitions, that tend to occur in nonlinear and complex systems, and amplify DK events to dispro-

portionately extreme levels. By understanding and monitoring these dynamics, some predictability of

such events may be obtained [259, 246, 241]. Predictability aside, it is also of importance to i) identify

the possibility, and ii) assess the risk of such events. The statistics and mechanisms of DK are further

elaborated below.

It is worth contrasting the DK of Sornette with the Black swan theory popularized by Taleb [271],

which is related to well established concepts such as Knightian uncertainty [152] and the sampling

of species problem [298]. Black swan is a metaphor for an event that is surprising (to the observer),

has a major effect/impact, and whose occurence is rationalized in hindsight [271]. An analysis of the

meaning of the concept in a risk context was given by Aven [20]. Taleb claims that black swan events

are not predictable, and in practice encourages one to prepare rather than predict, and limit ones

exposure to extreme fluctuations. However, in a wide range of physical systems, many extreme events

are predictable to some degree, provided that one has a sufficiently deep understanding of the structure

and dynamics of the focal system, and the ability to monitor it [13, 241, 246]. Thus, many extremes

are DK rather than black swans, and the distinction is important.

Dragon-king mythology

Here the Dragon-King terminology is motivated and explained as it relates to a symbol common

in a variety of ancient mythologies. In fig. 4.1 an illustration of the Ouroboros character is given (“he

that eats his tail” in Greek), reproduced from [77]. This ancient character is a symbol of alchemy,

or more generally a reflexive or self-referential process. That the character can be represented by

a dragon and with a king’s crown is very appropriate. The structure of the Ouroboros can also be
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Figure 4.1: The Ouroboros character. This illustration was taken from [77]

related to positive feedback, unsustainable self-consumption (creation arising from destruction), and

other features of DK events. Further, the Ouroboros and other dragon/serpent characters are related

to extreme events in multiple mythologies: e.g., the Leviathan of the Old Testament, Jörmungandr of

Norse mythology, and the Dragon-King of Chinese mythology.

Statistics of extremes & beyond

Many phenomena in both the natural and social sciences have power law statistics [183, 189, 243].

Furthermore Extreme Value Theory (EVT) provides that many distributions (the Frechet class) have

tails that are asymptotically power law [79] with the Generalized Pareto Distribution (GPD). The

result of this is that, when dealing with crises and extremes, power law tails are the “normal” case.

Power laws have a unique property (scale-invariance/self-similarity), implying that all events – both

large and small – are generated by the same mechanism, and thus there will be no distinct precursors

by which the largest events may be predicted.

However, in a variety of studies it has been found that, despite the fact that a power law models

the tail of the empirical distribution well, the largest events are significantly outlying [290, 142, 201].

Such events are interpreted as DKs when they indicate a departure from the generic process underlying

the power law. An instance of this is given in Figs. 4.2 and 4.3. Examples of where outliers have

been found include crashes in financial markets, the cost and radiation released in nuclear power plant

accidents, urban agglomeration sizes within a country [290], intraday wholesale electricity prices [138],

the 2007 stock market crash [212] etc. That is, DK are statistical outliers that are highly informative,

and should be the focus of much statistical attention. Thanks to a key result from EVT, a quite general
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Figure 4.2: Left: Illustration of the system trajectory in the vicinity of a bubbling event. Right:
empirical probability density function (histogram) of peak heights in trajectories in double logarithmic
scale. This illustration was taken from [45]

outlier test is available for detecting DK and assessing their significance [290].

Figure 4.3: The 5000 largest drawdowns (a measure of crashes) for 8 different futures contracts plotted
according to their empirical complementary cumulative distribution function (CCDF), shifted by fac-
tors of 10 for visibility. The dashed lines are power law fits, and the triangles the detected drawdowns
[290].

On the topic of EVT, there is another important point to make: the distinction between the

statements (i) “a structural break / regime change produces the events that are outlying (e.g., with
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respect to EVT)”, and (ii) “the impact of the outlying event leads to the structural break / regime

change”. The distinction is important because extreme events often occur around regime changes,

and the first statement could attribute the outlying event to this change in regime, while the second

would suggest the opposite causal relationship. The first statement may be used as an explanation

for the failure of EVT when some change – typically treated as exogenous – takes place. That the

change/shock is exogenous agrees with the black swan concept. At the same time, a black swan event is

defined as having extreme consequences, e.g., causing a regime change, rather than itself being caused

by one. The second statement is thus compatible with the black swan and DK events.

On the other hand, the apparent discrepancy between the two statements may falsely rely on the

conflation of the “regime change”, that is the DK mechanism itself, with the regime change that follows

the DK event; e.g., a reaction to the crisis induced by the DK. Further, events with outlying/oversized

impact are likely to lead to regime changes, by definition. Thus, if one accepts that there are extreme

events that are beyond/outlying relative to some model, e.g,. an EVT model, then the important

question is: are they treated as exogenous, or can they be “endogenized” by expanding the scope of

the knowledge/modeling? This is also the distinction between black swans and DK.

Mechanisms for dragon-kings

DKs may be associated with the regime changes, bifurcations, and tipping points of complex

out-of-equilibrium systems [259]. For instance, a catastrophe (fold bifurcation) of the global ecology

[26] – where incremental loading has little impact, but beyond a threshold results in a dramatic change

that is difficult to reverse – could be considered to be a DK that has many precursors as the system

approaches the catastrophe. Secondly, positive feedback, e.g,. where in a stampede the number of

cattle running increases the level of panic which causes more cattle to run, can cause DK in crowds

and stock markets. Next, attractor bubbling, as shown in Fig. 4.2, is a generic behavior appearing in

networks of coupled oscillators whereby noise occasionally pushes the system trajectory into extreme

orbits [45]. A block and spring mechanical model, considered as a model of geological faults and their

earthquake dynamics, produces DK in a similar fashion [229]. It could also be the case that DKs are

created as a result of system control or intervention. That is, trying to suppress the release of stress

or death in dynamic complex systems may lead to an accumulation of stress or a maturation towards

instability. For instance, brush/forest fires may be unnaturally suppressed, allowing for a buildup of
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dead wood, and resulting in a huge uncontrollable fire. An analogue to this is monetary policy, in

which quantitative easing programs and low interest rate policies aimed at smoothing out economic

fluctuations lead to instability and an enormous DK “correction” event [249, 250].

Assessment, modeling, prediction & control

Prior to any discussion of prediction, it is important to mention that the identification and

explanation of DK events is already difficult, and extremely important for risk assessment/management.

As was mentioned, one can identify outliers in historical datasets, and attempt to associate them with a

mechanism/process. This identification is important as it demonstrates the relatively high probability

(or even possibility) of an event relative to a model, or the rest of the data. For such extreme events,

data will be sparse, and uncertainty deep/severe [19]. However, if there is suggestive evidence of DK,

then one should not simply ignore them in the name of parsimony. How one proceeds will depend on

the focal application. However, one should generally be able to hypothesize relevant DK mechanisms

and consider models for them, construct extreme scenarios (e.g., the cost of a severe meltdown at

a nuclear power plant in Switzerland or New York state), try to deduce some probabilities for such

events, assess uncertainties, and evaluate the sensitivity of the risk to these quantities. Methods for

dealing with deep/severe uncertainty [19] can provide guidelines. To account for risk over future time

periods one may consult approaches from risk theory whose compound process models consider both

random event occurence and size [182].

Modeling DK requires dynamic models that are complex and/or non-linear, that are being fit to data

provided by the continual monitoring of the focal system. For instance, in non-linear systems with

phase transitions at a critical point, it is well known that a window of predictability occurs in the

neighborhood of the critical point due to precursory signs: the system recovers more slowly from

perturbations, autocorrelation changes, spatial coherence increases, etc.[269, 222]. These properties

have been used for prediction in many applications ranging from changes in the bio-sphere[26] to

rupture of pressure tanks on the Ariane rocket [16]. For the phenomena of unsustainable growth

(e.g., of populations or stock prices), one can consider a growth model that features a finite time

singularity, which is a critical point where the growth regime changes. In systems that are discrete

scale invariant, such a model is power law growth, decorated with a log-periodic function [238, 128].
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This has been applied to many problems [241, 16, 140] such as earthquakes [220], and the growth and

burst of bubbles in financial markets [142, 262, 253, 86, 261]. Next, epidemic dynamics are interesting

and may reveal the development of a block-buster success: e.g., the spread of plague, viral phenomena

in media, the spread of panic and volatility in stock markets, etc. In such a case, a powerful approach

is to decompose activity/fluctuations into exogeneous and endogeneous parts, and learn about the

endogenous dynamics that may lead to high impact bursts in activity [61, 245, 92].

Regarding prediction, given the relevant model estimates, one may compute quantities such as the

probability of an extreme (e.g., a DK) in a future time interval, related risk measures such as value

at risk and expected shortfall [176], the most probable occurrence time of an event, etc. In a dynamic

setting the dataset will grow over time, and the model estimate, and its estimated probabilities, will

evolve. Tests for DK (or anomolous dynamics in general) will likely be weak most of the time (e.g.,

when the system is around equilibrium), but as one approaches a DK, and precursors become visible

(i.e., as one enters a pocket of predictability), the true positive rate should increase.

Regarding control, one can then use the estimated probabilities and their associated uncertainties to

inform decisions such as taking a specific action if a DK is predicted to occur. An optimal decision

(e.g., see [31] for the statistical decision theory) will then balance the cost of false negatives/false

positives and misses/false alarms according to a specified loss function. For instance, if the cost of a

miss is very large relative to the cost of a false alarm, then the optimal decision will detect DKs more

frequently than they occur. One should also study the true positive rate of the prediction. The smaller

this value is, the weaker the test, and the closer one is to black swan territory. It has been proposed

that the more homogenous and connected the system, the more predictable its behavior will be [258],

as presented in Fig. 4.4. An important point to mention and ponder is the risk and potential harm

resulting from well intended control. Recall that the suppression of natural fluctuations in a complex

system is itself a source of DK events.

To mention some critical statistical issues: Second only to the selection of the proper model

is selection of the relevant variables. For this one should consider scientific hypotheses as well as

modern statistical/machine learning methods – in particular when predictive power is emphasized

over the inferential value of a precise and simple model. Next, in any such modeling (of extremes

with non-trivial models) there is bound to be substantial uncertainty. Thus, one should adequately

capture not only the randomness present in the fitted stochastic model, but also the uncertainty of
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Figure 4.4: Predictability based on interaction and diversity in a system. This illustration has been
reproduced from [258].

its estimated parameters (e.g., with Bayesian techniques), and the uncertainty in model selection

(e.g., by considering scenarios / an ensemble of different models). Thirdly, in the absense of data,

when considering scenarios, to obtain the sampling distribution of model parameters, or to optimize

prediction/decision algorithms, simulation is a powerful tool effectively allowing one to conduct rigorous

quantitative thought experiments, and providing a valuable complement to the analysis.

The impact of extremes, and DK in particular, urges that extremes be studied and monitored. Future

designs should be robust and resilient [255], acknowledging the potential for such extremes. At the

same time, the application of such theory presents many challenges and demands modesty in the

presense of severe uncertainty.
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Chapter 5

A general test for multiple outliers

This chapter is based on [290].

5.1 Introduction

There is a large statistical literature on outlier testing/detection (e.g., [25, 120] are classic refer-

ences). Outliers are anomolous observations that may be a spurious nuissance to be discarded, or may

be of primary relevance: e.g., in climate science, credit card fraud detection, medical diagnosis, etc. (see

[10] for examples). Much of the statistical literature focuses on testing outliers relative to a null model

(i.e., a model without outliers) that is Normal. In many cases, the outliers are themselves considered

to be Gaussian. For instance, a Gaussian sample with Gaussian outliers is the so-called contaminated

(location-shift) normal, which is the “the simplest, and perhaps most studied, case” [280], classically

employed to analyze the performance of outlier tests in Gaussian samples (Sec. 3.4 of [120]). Further-

more, a mixture of Gaussian densities has often been used for the detection of outliers/anomoulous

sub-populations [125, 12]. But most empirical data of interest in many fields do not follow Gaussian

distributions but are better described by distributions with fatter tails such as exponential or power

law distributions [158, 183, 189, 243].

Here, we thus consider the detection of outliers in samples having approximately exponential or

Pareto tails. The case of an exponential null DF (distribution function) has been covered in literature,

and [23] provides a review. This case is much more general than typically claimed. In particular, by

a simple transformation, the outlier tests in an exponential sample are applicable to Pareto (power

law) samples. Further, Extreme Value Theory (EVT) [79] provides that general “well behaved” DFs
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asymptotically have either exponential or Pareto tails. Thus, testing outliers relative to exponential

tails is very general because EVT provides asymptotic generality for the null DF. Finally, the tests

considered here are independent of the parameter of the exponential/null DF. If a different DF were

considered, this would require one to estimate the parameters of the DF in the presence of outliers to

perform the test, which is bound to lead to strong biases.

A common approach to outlier detection, with which the optimality of outlier tests in exponential

samples is studied, is the so-called slippage model, where the outliers also have an exponential DF,

but with a larger scale parameter than the null [120, 25]. However, there is no reason why the DF

of the outliers needs to be a scale multiple of the null DF, aside from the fact that this simplifies

analysis. Rather many shapes should be possible, reflecting the fact that outliers arise not only from

amplification dynamics (of which there are many), but also human error, instrument error, or any

other arbitrary departures from ordinary system behaviour. Therefore, the performance of various

tests with different outlier generating mechanisms should be compared to obtain the most general

outlier detection methodology.

For a statistical outlier test, one not only wants to have high power and computational tractabil-

ity, but also to estimate the number k of outliers well. Masking and swamping errors are impediments

to this task: Masking: For k actual outliers, and r hypothesized outliers, with r < k, a first outlier

masks a second if the second outlier is only identified as an outlier when the first is not present. That

is, considering r < k outliers, k − r outliers have been left in the sample, and may skew the statistics

enough so that the r hypothesized outliers do not appear very extreme. The larger the k − r outliers

remaining in the sample, the worse the masking.

To quote [120] on masking: “the masking effect is the main cause, both of the large degree of

attention given in the literature to the detection of multiple outliers, and the fact that none of the

solutions proposed is entirely satisfactory.”

Swamping: For k actual outliers, and r hypothesized outliers, with r > k, an outlier swamps a

non-outlier when the non-outlier is only identified as an outlier when considered in the presense of the

outlier. That is, when r−k non-outliers are grouped with the k outliers within a TS (test statistic(s)),

the test may still reject the null hypothesis, especially if the k outliers are large.

That block outlier tests suffer from both masking and swamping has led to the introduction of

sequential testing [215, 120, 147, 25]. Inward (sequential) tests were found to suffer from masking, and
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thus outward sequential tests were proposed [215, 147] and have since become the standard approach.

However, they are substantially more complicated as they require a multiple testing correction to

control the type 1 error. In this work, it is shown that a simple modification to the TS cures the

inward test of the masking problem, making it competitive with the outward test.

There are many works in the literature where a limited set of TS and testing methods are

compared with specific null and alternative models (e.g., [169, 50, 24, 170]). Here, a more comprehensive

comparison is done for a range of these statistics and of null and alternative models, providing useful

practical insights that – in the opinion of the authors – have not been emphasized in the literature.

Finally, the present article aims at shifting the focus from reliability/failure applications (the

exponential case) towards applications in risk modeling (the Pareto case). Indeed, Pareto (power

law) DFs seem to be ubiquitous in most natural hazards (earthquakes, landslides, floods, tsunamis,

etc.), industrial catastrophes (nuclear accidents, hydro-electric dam ruptures, power black-outs, traffic

grid-locks, etc.), social systems (individual wealth, size/success of companies, etc.), and so on (see

e.g. [183, 189, 243] and references therein). Furthermore, a number of studies have found suggestive

evidence that there are extreme events “beyond” the Pareto sample [246, 259]. This brings into play

the concept of “Dragon Kings” (DK) [246], which will be elaborated. We should stress again that, via

a simple transformation, the outlier tests in an exponential sample can be directly translated to Pareto

(power law) samples and vice-versa.

Section 5.2 presents the general methodology, its justification, and a battery of statistical tests

for the detection of outliers. This includes a modification of the classical TS, as well as the presentation

of general arguments based on EVT that supports the generality of the exponential outlier test. In

Section 5.3, a variety of Monte Carlo studies are done to compare the performance of the different

tests, taking into consideration both dispersed and clustered outliers, susceptability to masking and

swamping, and robustness to null misspecification. In Section 5.4, a case study is given, and the

Dragon King (DK) concept is explained. In the supplementary material four additional case studies

are presented, which highlight results from previous sections. The case studies are: financial crashes

(drawdowns), nuclear power generation accidents, stock returns, fatalities in epidemics, and city sizes.

Section 5.5 concludes with a discussion.
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5.2 Outlier Testing Methodology

The setup is an ordered sample x(1) > x(2) > ... > x(n) where n − k of the observations are iid

(independent and identically distributed) realizations of a random variable, X
iid∼ Exp(α), with the

exponential DF,

FX(x) = 1− exp{−αx}, x ≥ 0, α > 0 , (5.1)

and the remaining k points are outliers that are iid with some DF, and independent of X. Which points

are outliers is unknown, and one wants to detect them. Further, if X is exponentially distributed then

Y = u exp{X} iid∼ Pareto(α, u). That is, the exponential of an exponential random variable has the

Pareto DF,

F (x) = 1− (x/u)−α, x ≥ u, α > 0 . (5.2)

Therefore one can take the logarithm of Pareto samples and apply outlier tests for exponential samples.

The following subsections discuss block and sequential testing procedures, different TS, the justification

for why exponential tails are general, and how to identify at what threshold the exponential tail begins.

5.2.1 Block, inward, & outward tests

A simple approach to detecting outliers is a block test, where the number of outliers, r, is specified

a-priori and, in a single test, either all r points in the block are identified as outliers or zero are. Such

procedures suffer from masking and swamping when too many or too few points are included in the

block respectively. However, if well specified, block tests are powerful due to the simultaneous usage

of all data. To avoid dependence on the specification of block size r, sequential tests were developed:

Inward test: One starts with the full sample and tests if the largest point is outlying. If that

point is identified as outlying (the test is rejected), then the point is removed from the sample and

the test is repeated with the next largest point. The procedure is repeated until the first failure to

reject. The estimated number of outliers k̂ is the number of rejected (marginal) tests. Clearly, this

test can suffer from both masking and swamping. The weaknesses of the inward procedure were cited

as motivation for the outward test [215, 120, 147]:

Outward test: One specifies a maximum number of outliers r, and starts by testing if the

rth largest point x(r) is an outlier by deleting the other r − 1 largest values x(r−1), x(r−2), ..., x(2), x(1)

and applying the test on x(r). If this test is rejected, then r outliers are identified. If this test is not
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rejected, then one takes a step “outward”, which involves then testing the (r−1)th largest point x(r−1).

This testing of increasingly large points is done until the first rejected test, say for x(j), j ∈ {1, ..., r},

thus identifying k̂ = j outliers. If none of the tests are rejected, then no outliers are identified. This

test minimizes the probability and magnitude of both masking and swamping. As such, the outward

procedure has been claimed superior over the inward [147, 50, 24] and received more subsequent

development [169, 170].

However, control of the type 1 error (the probability of a false alarm) is difficult in the outward

test. The test considers the null hypothesis H0 that there are no outliers, with multiple alternatives,

Hj that there are j outliers j = 1, ..., r, with TS Tj . A single rejection of the r tests rejects the null

H0. Thus, to achieve an overall type 1 error level of 0 ≤ a ≤ 1, e.g., the common level of 0.05 or 0.1,

the marginal tests need to have a lower level. The larger r is, the larger the correction will be, and

thus the lower the power of the test. This “multiple testing correction” requires knowing the joint

and marginal DF of, generally dependent, Tj , j = 1, ..., r. More specifically, one defines all marginal

tests to have equal level b, i.e., Pr{Tj > tj} = b, j = 1, ..., r, and the level b is determined such that

Pr{Tj ≤ tj , j = 1, ..., r|H0} = 1 − a. Clearly ar ≤ b ≤ a, where the lower bound corresponds to the

case of independent tests (the Bonferonni bound), and the upper bound to perfect dependence. For

the specific TS (5.3) discussed below, the joint and marginal DFs were derived for k = 2, 3 in [147],

and a Monte-Carlo implementation recommended in [169] for larger k.

In contrast, for the inward method, the type 1 error level is equal to the marginal level (a = b)

because a rejection of the null only happens when the first marginal test (for the largest point, x(1))

is rejected. This is a major advantage over the outward procedure in terms of computation and also

because no power is lost due to a multiple testing correction.

5.2.2 Gallery of test statistics

We now review the standard TS for outlier detection in exponential samples, and propose a

modification to cure inward tests of the masking error. In general, outlier TS facilitate a comparison

of the “outlyingness” of the suspected outliers (in the numerator of the statistic) relative to some

measure of dispersion within another subset of the data (in the denominator of the statistic). Some of

the measures are based on spacings (or maxima) and others on sums of observation sizes.
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The max-robust-sum (MRS) statistic for the jth rank,

TMRS
j,m =

x(j)∑n
i=m+1 x(i)

, m ≥ 0 , (5.3)

is a modification of a classic statistic [147], which is recovered when m = 0, where m is a pre-specified

maximal number of outliers. When m = 0 it is referred to as the MS statistic. The index j is given

to allow the test to be used in sequential procedures, for j = 1, ...,m [147]. The case of m > 0 in the

denominator was introduced to prevent masking: When r < k, and m = 0, there will be k− r outliers

in the denominator that will make x(j) appear less outlying. This becomes important in inward testing,

and is similar to using robust scale estimates in the case of outliers relative to a Normal population

[136]. Thus, the choice of m is a tradeoff between sample size (power) and sample purity (masking

avoidance). The classic statistic (when m = 0) has optimal properties in the presense of a single outlier

from an exponential DF [120]. Having a single value in the numerator rather than a sum (as in eq. 5.4),

this statistic will not cause swamping. That is, x(j−1) being outlying has no influence on the test for

its smaller neighbour x(j). However, the downside of this, that will be seen, is that this statistic is

not powerful when outliers are clustered. The DF of the test statistic under the null is conveniently

computed by Monte Carlo simulation. The test statistic (5.3) may be referred to as the MS test when

m = 0.

We propose the sum-robust-sum (SRS) test statistic for r upper outliers,

TSRSr,m =

∑r
i=1 x(i)∑n

i=m+1 x(i)
, m ≥ 1 , (5.4)

which is a modification of the well known Cochrane test statistic, which is recovered when m = 0,

where m is again a pre-specified maximal number of outliers. When m = 0, it may be referred to as

the SS statistic. In the classical case (m = 0), the test is equivalent to a likelihood ratio test (LRT)

when the outliers also come from an exponential [23]. Due to the sum over r in the numerator, this

test suffers from swamping. However it is not susceptible to masking because it uses the observation

magnitude rather than differences; i.e., it does not compare x(1) versus x(2), which may be close to

each other, but far from the rest of the sample. Further, by summing in the numerator, it will also

be powerful in the detection of cases where the outliers are clustered. The DF of this statistic (when

m = 0) was given by [167, 50]. It is also convenient to simulate the DF. The test statistic (5.4) may
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be referred to as the SS test when m = 0.

Another classic test statistic, for r upper outliers, is the Dixon (D) statistic [73],

TDr =
x(1)

x(r+1)
, (5.5)

whose DF under the null is given by [168]. In the outward testing case, the joint DF was given by

[170]. It is often used as a less powerful alternative to the SS, with the advantage of being less prone

to both swamping and masking.

We also include a test from the Physics literature on detecting “Dragon King” (DK) outliers

[201]. This DK statistic for r upper outliers,

TDKr =

∑r
i=1 zi∑n
i=r+1 zi

∼ F2r,2(n−r), (5.6)

uses the weighted spacings, zi = i(x(i)−x(i+1)), i = 1, ..., n− 1, zn = nx(n), and has an F distribution.

It suffers from both masking and swamping, and will not be powerful in the case of multiple clustered

outliers since it counts spacings rather than absolutes. It is thus only superior in the simplicity of its

DF under the null.

Under the exponential DF (5.1), all of these TS have the pleasant property that their DF is

independent of α. Under a different DF, the DF of the TS would depend on the parameters of the

null that would then need to be estimated, potentially in the presence of outliers. This follows from

the Rényi representation of spacings [211, 23] where for Ei
iid∼ Exp(α), the spacings Si = X(i) −X(i−1)

are equal in distribution to (αi)−1Ei where Ei
iid∼ Exp(1). Thus, in the TS, which are ratios of sums of

spacings or order statistics (which are themselves a sum of spacings), the parameter α cancels. In this

work, with the exception of the DK test (5.6), the empirical DF of the TS are computed from 50,000

independent samples from the null DF.

In addition to the tests mentioned above, a mixture model is considered,

f(x) = (1− π)αexp{−αx}+ πφ(x;µ, σ) , α, σ > 0 , (5.7)

where the Gaussian density φ(x;µ, σ) provides the outlier regime, and 0 ≤ π ≤ 1 is a weight. It is

common and natural to consider Gaussian outliers [280, 12, 125]. This model allows one to classify
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points as either outliers or not based on the relative mass of the mixture components at that point.

The MLE (Maximum Likelihood estimate) of this model (5.7) is done using an EM (Expectation

Maximization) algorithm [210]. A LRT (likelihood ratio test) of this model versus the null (π = 0)

provides p-values, and nπ̂ estimates the number of outliers. The major strengths of this method are

that it does not require sequential testing – i.e., it avoids masking and swamping naturally – and

that one can generalize the exponential, e.g., to a Weibull or gamma DF, without complicating the

procedure. It is important to note that this method does not distinguish between inliers and outliers

– i.e., the density φ can be significant both within and beyond where the null df has substantial mass.

5.2.3 EVT & outlier testing in exponential tails

It is important to note that outlier tests based on both the Pareto and exponential DFs are

generally applicable to data having approximately Pareto or exponential tails. This follows from the

well known Pickands-Balkema-de Haan theorem of EVT, that states [79]: For a broad range of DFs, for

random variable X, with sufficiently high threshold u, the excess DF, Fu(x) = P{X−u ≤ x|X−u > 0}

(i.e., the tail of the DF), is approximated by the GPD (Generalized Pareto Distribution Function),

GPD(x; ξ, β, µ) =


1− (1− ξ(x− µ)/β)−1/ξ , if ξ 6= 0

1− exp(−(x− µ)/β), if ξ = 0 ,

(5.8)

in the sense that,

limu→∞sup0≤x | Fu(x)−GPD (x|ξ, β(u), µ)| = 0 , β(u) > 0, ∀u. (5.9)

If ξ = 0 (the Gumbel case), then the GPD (5.8) is exponential with lower truncation µ = u and scale

parameter β = 1/α. This case includes common DFs such as the exponential (obviously), the Normal,

and even some fat-tailed DFs such as the Lognormal. If ξ > 0 (the Fréchet case), the GPD (5.8) is

(generalized) Pareto with µ = u, σ = u/α, and ξ = 1/α. This case includes heavy tailed DFs such

as the Pareto and Log-gamma. The only other case (ξ < 0: the Weibull case) is where the DF has

a finite upper endpoint, which is of less interest in outlier detection. Therefore, since a Pareto tail

can be transformed to an exponential one, outlier testing in exponential samples is (asymptotically)

extremely general!
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Since the GPD approximation (5.9) is only asymptotically valid, one must select a sufficiently

large lower threshold u before applying outlier tests. The problem of threshold selection is a tradeoff

between bias and variance, and is the primary statistical issue in the EVT literature, where it is

referred to as sample fraction selection. In the physics literature, threshold selection and goodness

of fit diagnostics are important for the interpretation of mechanisms underlying power laws found in

datasets. There are a variety of tools available for this task.

The classic “Hill plot” method [122] for threshold selection consists of estimating the model for a

range of thresholds and selecting the lowest threshold (the largest sample fraction) where the estimate

is “stable” – i.e., consistent with values of the estimate for larger thresholds. See Fig. 5.5 for an

example. Of course, one can also look for statistically significant changes in the estimated parameter

relative to the hopefully stable value obtained deeper in the tail [122, 109, 28], however more powerful

principled methods exist (see e.g., [30, 105] for a review). For instance, let us mention the methods

based on minimizing the asymptotic mean square error of the estimate. This requires assuming the

(class of) DF beyond the power law tail [109], or using bootstrap methods [63, 105].

For some reason, these methods have not been extensively adopted outside of the EVT literature.

For instance, the most highly cited paper on the estimation of power laws and sample fractions [52] does

not mention the sample fraction estimation literature. However a subsequent work [283], extending

the method to binned/aggregated data, does provide such references. The popular work [52] suggests

choosing the pair of u and α that have the smallest KSD (Kolmogorov-Smirnov distance). The KSD

criterion penalizes error, and rewards sample size. However, as noted by [70, 56], comparing KSD

across samples of different size is not necessarily consistent as the KSD simply scales with growing

sample size like ∼ 1/n0.5. Further, in [52], no argument was given why this is optimal. In [70, 56],

it was shown that the method fails when the DF has a power tail whose parameter changes from one

value to another. Originally, [122, 109] proposed applying a test for decreasing u, and selecting u at

the value before the first value where the test is rejected. In [70], a similar approach was proposed

based on the KS test, where instead one would select the largest sample that could not be rejected,

regardless of if rejection occurs at higher thresholds.

These methods can be thought of as outlier tests, where “lower outliers” are points below the tail

threshold u, that are discordant with the tail. However, instead of elaborating on this, a more general

automatic approach is recommended: One should fit both the exponential, and a more complicated
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density to the range of upper samples, and identify the threshold at which the complicated density is not

significantly better. If the more complicated density is sufficiently flexible, this should determine that

the exponential provides a good approximation above the threshold. One could consider comparing

nested models with the LRT, however this is only a comparison with a specific alternative model.

For a more general alternative model, one can use a non-parametric estimator, such as the logspline

estimator (available in R:locfit) [154]. One can then compare the null with this alternative with the

Akaike Information Criterion (AIC). In the presense of clear outliers, one may wish to use estimators

that censor, or are robust to the outliers.

Concerning outlier testing, it is useful to estimate the sample fraction to have an idea of where

the tail approximation begins to apply. However, tests can often accept a model for a larger sample

but reject it in the tail! Thus, one should apply outlier tests for a range of lower thresholds and look for

stability in outlier test results for data that do not violate the null. That is, letting nu ≤ n be the size

of the largest upper sample that can be defended based on the methods discussed above, an outlier test

should be applied to the upper samples consisting of the nu, nu−1, ..., 10+r largest points, where r is the

expected number of outliers, and where one should certainly not consider samples of size smaller than

ten. Consistent identification of outliers in these upper subsamples, where the GPD approximation

(5.9) is most relevant, and where the null model cannot be rejected, should be interpreted as a robust

result. This algorithm involves c = nu − (10 + r) consecutive dependent tests, which gives multiple

chances for a false positive. However, under the null, the probability of rejecting c > 1 consecutive

tests, decreases as c increases. Based on simulation studies with the range of models considered within

this work, we offer as a rough rule of thumb, that for a sample of size 10 < n < 100, one should require

a run of c = n/10 tests to be rejected to maintain control of the type 1 error.
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5.3 Outlier Test Performance

Here, the performance of the different tests are compared with simulation studies. The strength

of TS are studied in block tests and compared with the mixture test; where masking and swamping are

studied in block tests; where inward, outward, and mixture tests are compared; and how misspecifica-

tion of the null effects test performance. The setup considered is a standard exponential sample with

four outlier scenarios: (0) no outliers, (I) a single outlier, (II) multiple dispersed outliers, and (III) a

cluster of multiple outliers. These cases are plotted in Fig. 5.1.
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Figure 5.1: Outlier cases. The null case (0) is standard exponential for which a realization of 50
points are plotted as open circles. Three outlier cases are considered on top of the null: (I) a normal
DF with mean µ = 6 and σ = 0.1 is given by a dashed red line, and its single outlier is the red x
mark; (II) multiple dispersed outliers Yi ∼ 3+Exp(1/β), i = 1, ..., 5 plotted with a solid blue line
for β = 4 and blue triangles indicating (a realization of) the outliers; (III) multiple clustered outliers
Yi ∼Norm(µ, 0.1), i = 1, ..., 5 plotted with a green dotted line for µ = 5, and green dots indicating the
outliers.

5.3.1 Block test performance compared with a mixture model

Here, the power (at level 0.1) of the range of TS is studied where the TS are employed in block

tests, and where the block size r, and the robustness value m are set to the true number of outliers k.

The three cases where outliers are present are considered: (I) n = 20, k = 1, Xi ∼Exp(1), i = 1, ..., 19,

X20 ∼Norm(µ, 0.1), µ = 3, ..., 10; (II) n = 50, k = 5, Xi ∼ 3+Exp(1/β), i = 46, ..., 50, β = 1, 2, ..., 6;

(III) n = 50, k = 5, Xi ∼Exp(1), i = 1, 2, ..., 45, Xi ∼Norm(µ, 0.1), i = 46, ..., 50, µ = 3, 4, ..., 10. The
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mixture model (5.7) is only estimated in the cases with multiple outliers.

In Fig. 5.2, the power curves are plotted for these scenarios, for a range of outlier parameters,

being computed over 2’000 independent simulations. For a single outlier (case I), most of the tests

are exactly identical (by definition), with the exception of the DK and D tests, which are weaker.

For multiple dispersed outliers (case II), the SS test performs best, with the SRS being slightly less

powerful – robustness has a cost. The mixture is poorly specified and is thus weakest. For clustered

outliers (case III), the performance of the tests varies greatly. Indeed, the TS with the sum in the

numerator often identifies the cluster of outliers. However, the well specified mixture model is most

powerful, also identifying the “outliers” when they are not really outlying but rather a contamination

well within the sample (i.e., “inliers”).
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Figure 5.2: The Monte Carlo power curves (at level 0.1) for the range of test statistics (labeled)
employed in block tests, providing the rejection rate for different values of the outlier parameter. Each
panel corresponds to one of the outlier cases defined in figure 5.1.

5.3.2 Masking, swamping, and estimating the number of outliers

We now present simulation studies to expose the degree to which the different TS suffer from

masking and swamping in block tests – that is, how accurately they estimate the number of outliers.

This is done by performing the tests on synthetic data for a range of block sizes. The three scenarios

considered are: (I) swamping due to a single outlier, n = 30, k = 1, Xi ∼Exp(1), i = 1, ..., 29,

X30 ∼Norm(8, 0.1); (II) swamping without masking due to dispersed outliers, n = 30, k = 5,

Xi ∼Exp(1), i = 1, ..., 25, Xi ∼ 3+Exp(1/5), i = 26, ..., 30; and (III) swamping with masking due

to clustered outliers, n = 30, k = 5, Xi ∼Exp(1), i = 1, ..., 25, Xi ∼Norm(8, 0.1), i = 26, ..., 30.
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Our simulation study determines the frequency at which the tests are rejected, at level 0.1, in

2’000 independent samples, for a range of block sizes (b = 1, 2, ..., 10). The results are in Fig. 5.3. The

MS and MRS tests are not effected by block size since the maximum is always the largest point. In

the next section, the inward test will apply the MRS statistic to the largest point, then the second

largest, and so on. In that case, the MRS TS will not cause swamping. As anticipated, masking is

problematic for the MS statistic, especially when large observations are densely clustered. Further,

as intended, the MRS suffers from masking less than the MS. The SS and SRS tests suffer less from

masking and swamping than those based on spacings and maxima. Swamping is pervasive in block

testing, even when there is only a single large outlier. That the rejection rate decays slowly as the

block size surpasses the true block size indicates that the minimal p-value in the sequence of estimates

will not reliably indicate the true block size. These problems motivate sequential testing.
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Figure 5.3: Monte carlo rejection rate (at level 0.1) for the range of test statistics (labeled) employed
in block tests, with different block sizes. Each panel corresponds to one of the three outlier cases.

5.3.3 Comparative study of the performance of sequential estimators

Here, inward and outward sequential procedures are compared, along with the mixture test.

Again the four outlier scenarios visualized in Fig. 5.1 are considered. The tests used are: (i) the

outward test with MS, MRS, SS, and SRS statistics; (ii) the inward test with only the MRS statistic,

which is necessary to avoid masking and swamping; (iii) the mixture model (5.7); and (iv) the SRS

block test, given the correct number of outliers. This last option, which was the best performing block

test in Fig. 5.2, provides a benchmark.

The DFs for the TS were simulated with 50’000 samples from the null model. All tests were
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done with a level of 0.1. For the outward test, the level of the marginal tests b was lowered to obtain

the overall level of a = 0.1. For each test, this was done by applying the test on 10’000 independent

samples generated from the null, for multiple values of b, and selecting b such that a(b) = 0.1± 0.005.

The resultant marginal levels are in Table 5.1. Note how large of an adjusment is needed in the outward

test, whereas in the inward test there is no adjustment: bInward = a = 0.1.

n r MS SS MRS SRS
50 10 0.018 0.05 0.025 0.049
30 5 0.028 0.055 0.0345 0.0575
15 5 0.025 0.06 0.036 0.056

Table 5.1: Marginal levels (b) for outward tests for different sample sizes (n), maximal number of
outliers (r), and robustness value (m = r) to obtain an overall type 1 error level of a = 0.1

The results, for slightly different specifications of the four cases, and in order of decreasing sample

size, are in Tables 5.2, 5.3, and 5.4. In case (0), where there are no outliers, the inward and mixture

procedures have false positive events that estimate a small number of outliers, whereas the outward

procedures falsely identify large numbers of outliers. In case (I) of the sequential procedures, the

inward test is most powerful at identifying the single outlier, even matching the power of the block

test. The outward tests are substantially weakened, even with relatively small m = 5. The inward

test provides superior estimation of outliers, whereas the other tests tend to overestimate. In case (II),

with a cluster of outliers, both the benchmark (the block test) and the inward test perform poorly.

They are outperformed by the outward test, which is less susceptible to masking, by design. However,

here the mixture approach is both the most powerful and accurate in estimating outlier numeracy. In

case (III), with multiple dispersed outliers, all of the inward and outward approaches are similarily

competitive, while being slightly dominated by the block test. The mixture approach is weak since the

outlier component is poorly specified. For the outward procedure, the MS/MRS statistic dominates

the SS statistic.

In summary, the inward procedure with the MRS test statistic is more computationally conve-

nient than the outward procedure, commits less severe false positives, and can even be more powerful

when identifying single or multiple dispersed outliers. In the event of a dense cluster of outliers, a

mixture approach can be more computationally convenient and powerful than the outward approach.

Within the outward approach, the MS/MRS statistic was superior to the SS/SRS statistic, and robust

modifications performed similarly.
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Case Quantity MS Out SS Out MRS Out SRS Out MRS In Mix SRS Block
(0) Rej. Rate 0.11 0.10 0.11 0.10 0.10 0.14 0.10

(0) k̂ (3,6,9) (5,9,10) (3,6,9) (5,9,10) (1,1,3) (2,2,4)
(I) Rej. Rate 0.30 0.22 0.30 0.22 0.64 0.09 0.69

(I) k̂ (2,3,6) (2,5,10) (2,3,7) (2,5,10) (1,1,2) (2,2,2) = 1
(II) Rej. Rate 0.91 0.75 0.89 0.75 0.04 0.95 0.38

(II) k̂ (5,7,8) (5,7,10) (5,7,9) (5,7,10) (1,9,10) (5,5,6) = 5
(III) Rej. Rate 0.96 0.96 0.97 0.96 0.95 0.63 0.98

(III) k̂ (5,6,8) (4,6,10) (5,6,9) (4,6,10) (6,7,10) (3,10,10) = 5

Table 5.2: n = 50 (sample size), m = 10 (robustness value). Summary of tests over 5000 repeated
simulations of four cases: (0) the null case (X ∼Exp(1)), (I) a single large outlier (Xi ∼Exp(1),
i = 1, ..., 49; X50 ∼Norm(7, 0.1)), (II) a cluster of multiple outliers (Xi ∼Exp(1), i = 1, ..., 45;
Xi ∼Norm(5, 0.1), i = 46, ..., 50); (III) multiple dispersed outliers (Xi ∼Exp(1), i = 1, ..., 45; Xi ∼
max({Xi : i = 1, ..., 45})+Exp(1/5), i = 46, ..., 50). The rejection rate and the median k̂ and quartiles
of the estimated number of outliers (in the event of a rejection) are given in alternating rows.

Case Quantity MS Out SS Out MRS Out SRS Out MRS In Mix SRS Block
(0) Rej. Rate 0.11 0.11 0.11 0.11 0.11 0.16 0.10

(0) k̂ (2,3,5) (4,5,5) (2,4,5) (3,5,5) (1,1,3) (2,2,5)
(I) Rej. Rate 0.45 0.32 0.43 0.33 0.72 0.08 0.75

(I) k̂ (1,2,3) (1,3,5) (1,2,3) (1,2,5) (1,1,2) (2,2,2) = 1
(II) Rej. Rate 0.72 0.63 0.73 0.64 0.08 0.96 0.36

(II) k̂ (3,4,5) (3,4,5) (3,4,5) (3,4,5) (4,5,5) (3,3,3) = 3
(III) Rej. Rate 0.87 0.86 0.89 0.86 0.88 0.50 0.90

(III) k̂ (2,4,4) (2,4,5) (2,4,5) (3,4,5) (3,4,5) (2,5,7) = 3

Table 5.3: n = 30 (sample size), m = 5 (robustness value). Summary of tests over 5000 repeated
simulations of four cases: (0) the null case (Xi ∼Exp(1)), (I) a single large outlier (Xi ∼Exp(1),
i = 1, ..., 29; X30 ∼Norm(7, 0.1)), (II) a cluster of multiple outliers (Xi ∼Exp(1), i = 1, ..., 27;
Xi ∼Norm(5, 0.1), i = 28, 29, 30), (III) multiple dispersed outliers (Xi ∼Exp(1), i = 1, ..., 27; Xi ∼
max({Xi : i = 1, ..., 27})+Exp(1/5), i = 28, 29, 30). The rejection rate and the median k̂ and quartiles
of the estimated number of outliers (in the event of a rejection) are given in alternating rows.

5.3.4 Robustness to null mis-specification

In practice, the correct specification of the null/main model is of considerable importance. Here,

the sensitivity of the rate of false positives (level / type 1 error), and true positives (power), to

the degree of misspecification of the null are exposed via a simulation study, for the battery of TS

implemented in block tests. We consider simulating data from a Weibull DF,

F (x) = 1− exp{−(x/τ)κ}, x ≥ 0, τ, κ > 0 , (5.10)
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Case Quantity MS Out SS Out MRS Out SRS Out MRS In Mix SRS Block
(0) Rej. Rate 0.11 0.11 0.11 0.11 0.08 0.16 0.10

(0) k̂ (2,3,4) (3,5,5) (2,3,5) (3,5,5) (1,2,4) (2,3,5)
(I) Rej. Rate 0.25 0.22 0.23 0.20 0.30 0.14 0.30

(I) k̂ (2,3,4) (2,4,5) (2,3,4) (2,4,5) (1,2,3) (2,2,4) = 1
(II) Rej. Rate 0.42 0.42 0.43 0.41 0.04 0.93 0.13

(II) k̂ (3,4,5) (4,5,5) (3,4,5) (3,5,5) (3,4,5) (3,3,3) = 3
(III) Rej. Rate 0.63 0.62 0.64 0.62 0.63 0.37 0.66

(III) k̂ (2,3,4) (2,4,5) (2,3,4) (2,4,5) (2,3,5) (2,3,4) = 3

Table 5.4: n = 15 (sample size), m = 5 (robustness value). Summary of tests over 5000 repeated
simulations of four cases: (0) the null case (Xi ∼Exp(1)), (I) a single large outlier (Xi ∼Exp(1),
i = 1, ..., 14; X15 ∼Norm(4, 0.1)), (II) a cluster of multiple outliers (Xi ∼Exp(1), i = 1, ..., 12;
Xi ∼Norm(4, 0.1), i = 13, 14, 15), (III) multiple dispersed outliers (Xi ∼Exp(1), i = 1, ..., 12,
Xi ∼max({Xi : i = 1, ..., 12})+Exp(1/5), i = 13, 14, 15). The rejection rate and the median k̂ and
quartiles of the estimated number of outliers (in the event of a rejection) are given in alternating rows.

which is exponential (α = τ−1) when κ = 1, is fat tailed for κ < 1, and becomes concentrated at τ as

κ becomes large. The results of the simulation study are presented in Fig. 5.4 and can be described as

follows.

Panel (b) concerns the rate of false positives where r = 3 outliers are tested, with level a = 0.1,

in a Weibull (5.10) sample of size n = 30, for a range of shape parameters κ, without outliers. When

κ < 1, the DF is fat tailed, having many events that are large, and thus the tests falsely identify many

points as outliers. This is problematic in practice (with small to moderate sample sizes), because one

does not know what the true null model is. For instance, with n = 30, even when the true DF is

considered as an alternative model versus the exponential, and using the powerful LRT, 50 percent of

the time (for κ ≈ 0.6), one will not reject the exponential model at a level of 0.1. In this case, when

falsely retaining the exponential model, the type 1 error will be between 0.3 and 0.5, depending on the

selected TS. The KS test of compatibility of the data with the exponential DF is even less powerful,

allowing for more severe false positives.

Case (c) considers the frequency of true positives (power). The setup is the same as above, but

3 dispersed outliers are included. When the Weibull DF becomes less fat tailed, the power of the SRS

and MRS tests decreases whereas the power of the D and DK tests increases. Here, with n = 30, for

the tests of the Weibull versus the exponential, including the outliers in the sample, there is a high

probability (0.6-0.8) of not rejecting the exponential model when 1 < κ < 1.5, where the power of

some of the tests is weakened.
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It is clear that the power, and especially the level, are highly sensitive to the validity of the

exponential model, and misspecification of the null can lead to erroneous inference. This has important

implications for the practical application of the tests. In particular, one should have a sufficiently large

sample to diagnose the validity of the null, and not blindly accept/reject the result of the test and its

diagnostics.
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Figure 5.4: Test robustness Panel (a): The Weibull PDF (5.10) plotted for parameters (κ, β) equal
to (0.5, 0.4), (1, 1) and (1.5, 1.5). Panel (b): The frequency of rejection of the null of no outliers, at level
0.1, in the presense of no outliers, for block tests for r = 3 outliers, assuming an exponential null model,
when the data is generated from a Weibull for a range of shape parameters κ. Panel (c): The frequency
of rejection of the null using a level 0.1, of the block tests for r = 3 outliers, with the same setup as frame
(b), except that 3 outliers are truly present. The models for the cases are: (b) Xi ∼Weibull(κ, 1), i =
1, ..., 30; (c) Xi ∼Weibull(κ, 1), i = 1, ..., 27, Xi ∼max({Xi : i = 1, ..., 27})+Exp(1/3), i = 28, 29, 30).
For each case, simulation and testing were performed 1000 times for κ sweeping 0.5 to 1.5. The tests
are colour coded: SS (red solid), SRS with m = r (yellow solid), MS (blue dashed), MRS with m = r
(turquoise heavy dashed), D (magenta light dotted), DK (black dotted). In both frames, the black
heavy solid line is the power of the LRT of the Weibull versus the exponential on the data (including
outliers). Similarily the grey heavy solid line is for the Kolmogorov-Smirnov test.

84



5.4 Case studies and “Dragon Kings”

Outlier detection relative to an exponential DF has primarily been motivated by reliability engi-

neering applications. Switching perspective from reliability to risk, the exponential of an exponential

variable has the (heavy-tailed) Pareto df (5.2) that is typically used for modeling extremes in both

natural and social sciences: earthquake energies, the DF of runs of stock prices, claims in non-life

insurance, etc. [79, 183, 189, 243].

The Pareto DF is unique in that it is scale invariant [74, 160], suggesting that events of all sizes

– including extremely large ones – are generated by a single mechanism operating at different scales.

This feature allows this single parsimonious DF to generate a broad range of event sizes. Thus, if a

phenomenon is scale invariant, then extreme events are not predictable and there is nothing anomolous

about them as there is nothing to distinguish these events from their smaller siblings, other than their

resultant size. This reasoning has been advanced to explain the extreme difficulties in forecasting large

earthquakes [102]: according to the approximate scale invariance of the Gutenberg-Richter law, large

earthquakes are just earthquakes that started small... and did not stop growing.

However, a number of studies have found either strong or, in other cases, suggestive evidence that

there are extreme events “beyond” the Pareto sample [246, 259], i.e., outliers, inspiring the concept

of the “Dragon King” (DK) [246] event. DK embody a double metaphor implying that an event is

both extremely large (a king [158]), and generated from a unique mechanism/origin (a dragon) relative

to other events in the system/sample. The hypothesis advanced in [246, 259] is that DK events

are generated by a distinct mechanism (e.g., positive feedback) that intermittently amplifies extreme

events, leading to the generation of runaway disasters as well as extraordinary opportunities/successes.

Due to the uniqueness of such events, there is hope that such extremes may exhibit precursory signs,

disclosing some predictability. The identification of the existence of such phenomena is also clearly

important – for example, with applications in risk management. Examples of such DK events have been

proposed to include failures of material systems, landslides and some large earthquakes in geophysics,

financial crashes in economics, and epileptic seizures and human parturition in biology [246, 259].

Identifying DKs with convincing statistical significance is a prerequisite to the investigation of their

origin, understanding their generating mechanisms, and developing forecasting methods, controls, and

resilient system designs. Motivated by these considerations, and to provide pedagogical examples,

five case studies are considered where DK events are tested as statistical outliers. The case study on
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financial market crashes is given below, and the other four in the supplementary material.

5.4.1 Drawdowns/crashes in financial markets

It is well known that crashes in the financial markets occur frequently and can have a significant

effect not only on market participants, but also on the broader economy. It is often thought that finan-

cial markets are unpredictable – i.e., they are scale invariant / fractal [177, 242] (Pareto distributed).

However, in [141, 139, 94] it was found that the sample of crash sizes – measured from the peak to the

valley of the event (so-called drawdowns) – contained outliers (defined below). However, the statistical

test used in [94] contains an error in the DF of the marginal TS, and [139, 141] did not use standard

outlier tests. To correct this, and provide an example, this problem is revisited with the same data.

The data are the drawdowns computed for the eleven most actively traded Futures Contracts on the

American and European Indices1, from January 1, 2005 to December 30, 2011.

A peak-to-valley measure of the size of intra-day financial crashes is considered: an ε-drawdown

(hereforth referred to simply as a drawdown) is the total cumulative return of a negative run in price

over time, with some specified tolerance for small positive changes along the way [141]. A drawup

is its positive counterpart. This is an interesting measure of risk because it captures the transient

dependence of price changes in time, whereas studying the unconditional df of returns does not. More

specifically, considering one trading day [t0, t1], prices taken at intervals of width ∆ are pi = p(t0 + i∆),

i = 1, ..., n = b(t1 − t0)/∆c. The returns are then ri = log(pi/pi−1). One starts at the first negative

return i0 = min{i : ri < 0}. Then, the cumulative return,

ri0,i =

i∑
j=i0

rj = log(pi/pi0), i > i0 ,

tracks the negative growth of the drawdown, continuing for i = i0, i0 + 1 . . . until the first value of i,

say i2, such that the cumulative return has appeared to reverse direction, relative to its lowest point:

ri0,i2 −mini0≤j≤i2ri0,j > εσ .

Parameter ε ≥ 0 tunes the tolerance of moves in the opposite direction, and σ is the standard deviation

1US: 1) ES, S&P 500, E-mini; 2) NQ, NASDAQ, E-mini ; 3) DJ, Dow Jones, E-mini. European: 4) AEX, Netherlands;
5) CAC, CAC40, France; 6) DAX, Germany; 7) FTSE, UK; 8) IBEX, Spain; 9) OMX, OMX Stockholm 30, Sweden; 10)
SMI, Switzerland; 11) STOXX, Euro STOXX, Europe.
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of the returns from the previous trading day. The inclusion of σ makes the tolerance adaptive, which

allows for volatity regimes. Finally, stepping backwards from i2, which is the index of a positive

change, the drawdown is defined to have occurred from the start i0 to the lowest point, which occurs

at i1 = argminj∈(i0≤j≤i2)ri0,j . From the next index, i1 + 1, a drawup is defined to begin and computed

in a similar way. Drawdowns and drawups alternate in this contiguous way, for the entire trading day.

In panel (a) of Fig. 5.5, for the eight contracts thought to contain an outlier, the largest 5000

drawdowns are plotted according to their empirical CCDF (complementary CDF, i.e., 1−F (x)). The

empirical CCDF appear approximately linear in the double logarithmic scale, indicating a qualitatively

good fit, with the exception of some outliers. There are also some additional differences in the tail.

For instance, the tail of the CCDF drops beneath the Pareto fit before crossing back to form the

outlying empirical tail. This could suggest an amplification mechanism operating above a threshold

size. In panel (c), the Hill plot is given, where the MLE for the tail exponent α is plotted for a range

of upper sample sizes. The parameters tend to have an increasing trend, indicating slight convexity

in the CCDF in panel (a), and thus a loss of outlier testing power for large sample sizes (Sec. 5.3.4).

Based on the Hill plot, the estimator for the top 1’000 points appears to be approximately stable for

most of the contracts. For systematic threshold / sample fraction selection, three methods are used: 1.

comparing the AIC of exponential and nonparametric (R:logspline) fits, 2. selecting the smallest KSD

as recommended in [52], and 3. selecting the smallest threshold where the KS test p-value is above

0.10. The results of these methods are given in Tab. 5.5. All but one of the 24 tests select at least the

top 1’000 points, thus upper samples of this size and smaller will be considered for outlier testing.

Test ES CAC DAX FTSE SMI IBEX NQ DJ
AIC 1’184 1’214 2’290 2’734 2’704 2’055 1’154 3’757
KSD 1’049 1’115 1’520 3’144 609 1’501 1’074 1’134

p 1’985 1’323 2’403 3’714 2’701 2’255 3’123 4’000

Table 5.5: The selected number of points in the upper sample based on comparing the AIC of the
null and the nonparametric model, minimizing the KSD, and the largest upper sample with KS test p
value greater than 0.1.

In panel (a) of Fig. 5.5, the apparent outliers are large and dispersed. Thus, the MRS TS (5.3)

should be powerful (Sec. 5.3.3) and can be applied inward for a range of thresholds, requiring a fraction

of the computation of outward testing. For each dataset, the inward test was performed – with MRS

TS, m = 10, level a = 0.1, and upper sample size ranging from n = 10 to n = 1000. For all contracts,
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Figure 5.5: Financial Market Crashes. (a): The 5000 largest drawdowns for each of the 8 futures
contracts thought to contain outliers, plotted according to their empirical CCDF in double logarithmic
scale. For clarity, each CCDF above the black one is multiplied by 10 relative to the one beneath it.
The Pareto DF with MLE parameter for the top 500 points is given by the dashed lines, starting at the
solid dot. The triangles identify the points that were identified as outliers based on the interpretation
of panel (b). (b) The number of identified outliers is plotted against sample size where the MRS
test (5.3) with level a = 0.1 has been applied inward with m = r = 10, for a range of sample sizes
n, for each contract in (a) with the same colour coding. (c) Hill plot: The estimated tail exponent is
plotted for a range of upper sample sizes. (see online version for colour)

excluding AEX, OMX, and STOXX, at least 1 outlier was found and are indicated in Panel (b) of

Fig. 5.5. For some of the contracts, the results are quite stable across sample size (e.g., CAC and

FTSE). For others, the impurity of the DF plays a role in the interpretation. For instance, for DAX,

two outliers are detected once the test is restricted to the bent-down tail. For ES, choosing between

zero and seven outliers is more subjective – are there multiple outliers, or does the tail grow heavier?

For IBEX, it is clear that the identification of seven outliers is due to the dip in the empirical CCDF

occuring between drawdown size of twenty and thirty. The alternative choice of 1 outlier is more stable

with respect to a broad range of values of n. The interpreted outliers are indicated in panel (a).

The largest outliers coincide with major news events: The 07 July 2005 London bombings coin-

cided with the largest outliers of CAC, DAX, FTSE, SMI, and IBEX – all being based on European

indices. Further, DAX and CAC each have an outlier corresponding to the “Mini Flash Crash” of

27 Dec. 2010 (e.g., see [41]). All American contracts (ES, DJ, and NQ) have their largest outliers

coinciding with the infamous “2010 Flash Crash” of 6 May 2010. We thus observe that outliers occur

either due to some exogenous impacts (London bombings) or as a result of an endogenous transiently
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unstable dynamics (flash crash). Indeed, in [91, 90], it was suggested that financial markets exhibit a

significant endogeneity or “reflexivity”, in the sense that nowadays up to 70-80% of trades occurring

at the time scales of fractions of seconds to tens of minutes are motivated (or triggered) by previous

trades. In this framework [91, 90], dragon kings emerge when the market dynamics become critical and

super-critical, that is when the future trades are triggered only by previous trades and not by news,

making the financial markets essentially self-referential in these periods. Thus, some of the outliers

can be classified as dragon king drawdowns.

5.4.2 Nuclear accidents

We consider as events accidents occurring at nuclear power plants, studied in [291]. For this

two measures of severity are considered: the cost measured in 2011 US Dollars, for which there are

173 values over the period of 1960 to 2015; and a logarithmic measure of radiation released called the

Nuclear Accident Magnitude Scale (NAMS) [236], for which there are 33 values over the same period.

Since the disaster at Fukushima in 2011, Nuclear power has come under major public scrutiny. Further,

the level of risk that the nuclear industry claims is consistently much lower than statistical analysis of

past events indicates [256]. Thus, it is crucial to arrive at a better understanding of the true risk level

in this critical application.

The disasters occurring at Chernobyl (1986) and Fukushima (2011) are the most costly accidents

thus far, and together are estimated to have caused damage costing 430 Billion 2011 US dollars. This

is roughly equal to five times the cost of all 173 other events together. These events, together with

TMI (Three Mile Island, 1979), are also the largest radiation release events. These events are thus

extremely large. It is instructive to ask whether a heavy Pareto tail is sufficient to account for these

extreme risks or, alternatively, if the tests discussed here can identify outliers / DKs in this data.

In Fig. 5.6 the empirical CCDF (complementary CDF i.e., Pr{X > x}) for NAMS and the log

cost are plotted. For log cost only the 114 events occurring post TMI and included due to an abrubt

change in distribution after TMI. For NAMS, the largest three events form a cluster, and appear

outlying relative to the Exponential df with α̂NAMS = 0.7 (0.3) fit by MLE to the top 15 points. Not

surprisingly the df of NAMS and the log cost are similar, as they are certainly related. For log cost, the

two or three largest events appear to be outlying relative to the Exponential df with α̂$ = 0.6 (0.14)

fit by MLE to the top 50 points. As shown in the hill plot, inset in Fig. 5.6, when comparing the
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AIC of the logspline nonparametric fit with the exponential one, the exponential cannot be rejected

for samples smaller than the 60 largest points. Further, when performing the KS test, the exponential

fit cannot be rejected (at a level of 0.05) for samples smaller than the 80 largest points. Thus the

exponential approximation for the tail, and thus the outlier test, should only be applied to not more

than the upper 60 points.
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Figure 5.6: Nuclear Power Plant Accidents: the CCDF (cumulative complementary distribution
function, i.e., Pr{X > x}) of the log of the 56 largest cost events, in millions of US Dollars, (black
solid) shifted by 2 units for visibility, and the CCDF of all 33 log radiation release (NAMS) values,
in solid grey. The fitted lines are exponential MLE fits. The inner panel is the Hill plot for the cost
values. The solid rough line is the MLE for the exponential distribution for the tail of cost events, for
multiple upper sample sizes. It is bracketed by lines indicating one and two standard deviations of the
estimator. The vertical dashed line indicates the largest sample at which the exponential cannot be
rejected (based on AIC) as being as good as the logspline nonparametric fit. The vertical solid line
indicates the largest sample at which the exponential cannot be rejected by the KS test.

We now test the outliers with a number of the aforementioned tests. The results are presented

in Tab. 5.6 and summarized below. First considering NAMS, in Fig. 5.6 the CCDF is visibly concave

until the top 15 points or so, causing a decrease of test power for tests applied to larger sample fractions

(Sec. 2.7). Since the outliers are clustered, (from Sections 2.4 and 2.6) the mixture approach is most

powerful, and inward tests the weakest. Despite the small sample size, the mixture test consistently

identifies 2 or 3 outliers over a range of upper samples. This confirms that the cluster of large events

is a significant feature, however this cluster of large events is not far enough beyond the tail for the
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other tests to reject the null. It is also important to note that the sample size is very small, and thus

our ability to diagnose the validity of the null is weak! Next, cost values are considered for which a

larger sample is available. The outward test and the mixture test consistently identify the two largest

points as significant outliers. The SRS block test fluctuates around a value of about 0.1. It is not

surprising that tests based on the MRS fail to reject due to lack of power when the largest point is

not extremely large. Thus Fukushima and Chernobyl appear to be outliers in both radiation released

(NAMS) and cost. This is compatible with our understanding of these accidents, where the disaster

escalated beyond the threshold of control, leading to an unmitigated proliferation of damage. That

these points are outying in both (dependent) samples would give higher significance if a bi-variate

outlier test were performed.

It is worth mentioning that there is a positive relationship between NAMS and cost: Considering

the 30 events with substantial radiation release (NAMS> 0), a linear regression of the logarithm of

cost (the response) versus NAMS (the explanatory variable) yields an intercept of 2.33 (0.7), p = 0.003

and a slope of 0.97 (0.17), p < 10−5, with coefficient of determination R2 = 0.5. Further, the same

regression can be done for the 16 events that have occurred at Sellafield, in the UK. The result of

this is an intercept of 2.30 (1.0), p = 0.04 and a slope of 1.17 (0.39), p = 0.001, with coefficient of

determination R2 = 0.4. Thus, there is a significant relationship between radiation release and cost,

where we have simply considered a linear relationship. Of course the regression parameters for different

plants will depend on the value of property development around the plant.
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Data n r = m MRS SRS MS Out MRS In Mix DK

NAMS 20 3 0.62 0.35 0, 0.09 > 0.04 0, 0.62 2,0.03 0.21
NAMS 15 3 0.60 0.32 0, 0.07 > 0.04 0, 0.60 2,0.025 0.20
NAMS 10 3 0.37 0.15 3, 0.025 < 0.04 0, 0.37 3,0.025 0.14

Damage 50 2 0.17 0.08 2,0.03 < 0.06 0, 0.17 2,0.05 0.18
Damage 40 2 0.23 0.11 2,0.04 < 0.06 0, 0.23 2,0.06 0.22
Damage 20 2 0.25 0.14 2, 0.05 < 0.055 0, 0.25 2,0.07 0.25
Damage 15 2 0.17 0.07 2, 0.02 < 0.04 0, 0.17 2,0.03 0.21
Damage 10 2 0.06 0.02 2, 0.01 < 0.04 2, 0.01 0, 0.18 0.16

Table 5.6: Summary of outlier tests for NAMS and cost data for the upper n points, for r outliers
(with robustness value m = r). Bold values indicate significance at a level of a = 0.1. Block tests
performed include: MRS (7), SRS (5), mixture likelihood ratio (10), and the DK test (9). Further,
the MS (6) test was applied outward (MS Out), with the number of identified outliers, the p-value,
and the adjusted level (to achieve a = 0.1) given. For instance, in the first row for MS Out there are
zero outliers because the p-value of 0.09 is above the adjusted level of 0.04. Finally, the MRS test was
applied inward (MRS In), with the number of identified outliers, and the p-value of the test for the
largest point given.
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5.4.3 Stock returns

An issue of debate is if the 1987 stock market crash (Black Monday) was an outlier. We focus on

[224], which is the most recent study on this problem. In [224], considering daily returns on the Dow

Jones Industrial Index, from 3 January 1977 to 31 January 2005, it was claimed that Black Monday

is not an outlier. In further detail, the returns were whitened by taking the residuals of a standard

AR(1)-GARCH(1,1) model estimated on the returns. Next, the two largest whitened returns X(2)

and X(1) were tested as outlying. The test used relies on the GPD approximation (2) of the tail of

the sample, and requires an estimate of the tail parameter α. A sample size of n = 732 was used to

estimate α. The test statistic Tr = X(r)/X(r+1), comparing X(r) to the previous (next largest) order

statistic X(r+1), was used to test if X(2) and X(1) were outlying. Testing outward, with a level of 0.05,

neither of these points were identified as outliers.
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Figure 5.7: Stock Returns: The rough line provides the empirical CCDF of the magnitude of the
500 largest whitened returns of the Dow Jones Industrial Index from 3 January 1977 to 31 January
2005. The solid lines between solid dots provide Pareto model estimates for two magnitude layers. The
dashed line extends the slope of the first layer for comparison with that of the second.

To evaluate the approach taken in [224], we first plot the CCDF of the 500 largest negative

whitened returns in Fig. 5.7. This plot was not provided in [224], but is clearly essential to assessing

above which threshold the GPD approximation (2) is sound. A few important points are apparent

from the figure: Firstly, the CCDF above the 200 largest observations is shallow/concave, and thus
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considering more than 200 points (i.e., 732 in [224]) in the sample will weaken the test (i.e., the estimate

of α will be too small). Secondly, the second largest point is similar in magnitude to the largest. Thus,

the test using T1 = x(1)/x(2) will be masked by x(2), and not rejected. Finally, the top 6 or 7 points

seem to follow a heavier tailed df. Thus, 6 or 7 points should be tested as outlying, rather than only

2, and a sum test statistic, measuring the cumulative departure of the empirical tail, could be more

powerful.

First, we consider estimating a Pareto df with two layers. The first layer, containing 193 points,

covers 1.97 < x ≤ 4.45 and has MLE α̂1 = 3.8. The second layer, containing the 7 largest points,

covers 4.45 < X and has MLE α̂2 = 1.8. Given that the first layer model is true, there is a p = 0.02

probability of observing such an extreme difference between the estimated parameters. This two layer

model appears to describe the empirical CCDF well (Fig. 5.7). Next, a single layer model for the top

200 points, covering 4.45 < X was estimated with MLE α̂0 = 3.9. The likelihood ratio test of the

two layer versus one layer model is rejected in favour of the two layer with p-value 0.07. Further,

applying the SS test for r = 6 with the top 200 points rejects that there are no outliers with p = 0.04.

Finally, applying the DK test for 6 outliers, for upper sample sizes ranging from 20 to 200, all tests

had p < 0.04. Thus it appears that the 6 largest points are outlying.

The largest one is, unsurprisingly, “black monday” Oct. 19, 1987, which is unambiguously

classified as an outlier. An enormous literature has dwelled on its possible origin with a lot of confusion

as no simple proximate cause can explain its occurrence. We find more compelling the story that it

marked the end of a large financial bubble and thus corresponded to its burst [254, 242, 142]. The

second largest event occurred on “black friday” Oct. 13, 1989 and is usually associated with a fall

of the junk bond market (https://en.wikipedia.org/wiki/Friday_the_13th_mini-crash). The

third largest loss corresponds to the first day of reopening of the US stock markets on Sept. 17, 2001

after Sept. 11, 2001. It is not clear to us how to interpret the fourth largest loss that happened on

Nov. 15, 1991. The fifth largest loss on Oct. 27, 1997 is analyzed in details in [242], which paints

a picture much richer than the usual story that this was a global stock market crash caused by an

economic crisis in Asia. This loss can actually be seen also as a partial burst of a bubble that had

been surging in the few previous years (recall the famous quip on the “irrational exuberance” of the

stock markets by Alan Greenspan, then the Chairman of the US Federal Reserve, on Dec. 5, 1996

(http://www.federalreserve.gov/boarddocs/speeches/1996/19961205.htm)). The sixth largest
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loss on Nov. 9, 1986 is not clearly associated with any exogenous cause, to the best of our knowledge.

These six outliers are part of the list found by other researchers (e.g. [98]).
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5.4.4 Fatalities in Epidemics

We now study the number of fatalities caused by outbreaks of bacterial, viral, and parasitic

diseases (epidemics). A dataset for this, with 1,368 events covering the period from 1900 to 2015,

was provided by [106]. The dataset excludes, and in some case provides only national fatalities for,

pandemic events (spanning multiple countries). Thus the dataset was complemented with the well

known Spanish (1918), Asian (1957), and Hong Kong (1968) Influenza pandemics, which each caused

in excess of 1 million fatalities [203]. Further, the 2009 H1N1 “Swine” influenza pandemic, which was

estimated to cause upwards of 150,000 fatalities [234], was also included. All epidemics and pandemics

will be simply referred to as events.
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Figure 5.8: Epidemic Fatalities: (a) scatterplot of 1,368 epidemic fatalities from 1900 to 2015. (b)
The CCDF of the 507 events in excess of 50 fatalities from 1960-2015 (black dashed), its Pareto tail
fit with lower threshold u = 300, and MLE α̂ = 1.05 (0.08), and the CCDF of the 523 events in excess
of 50 fatalities from 1900-2015 (blue dotted), having 9 events beyond the window. The inner panel
(c) plots the Pareto tail estimate for samples exceeding lower thresholds ranging from 50 (n = 507)
to 4,300 (n = 20) for the time period from 1960-2015 (i.e., the black dashed CCDF). The level 1.05 is
given by the horizontal line.

From Panel (a) of Fig. 5.8, it is clear that over time the dataset has become more complete,

in particular for small event sizes. Further, in the period from 1900-1960, 13 events have more than

10,000 fatalities (0.21 per year), whereas in the period from 1960-2015, only 1 such event does (0.02

per year). Notwithstanding potential changes in the true frequency of events, this is obviously a highly

significant difference. These historical extreme events – Influenzas, Bubonic plagues, Cholera, etc. –

have largely been eradicated through sanitation, vaccines and antibiotics.
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Considering the period from 1900 onwards, many changes have occurred that should have influ-

enced both the incidence and severity of events. Due to data incompleteness, the rate of events cannot

be studied.

Despite this, the sample in excess of 50 fatalities from 1960 onwards, containing 507 points, is

roughly stationary in severity. For instance, when repeatedly (1000 times) sampling 100 points from

the 507 points, splitting the 100 points into two equal subsamples, and testing their distributions for

equivalence with the KS test, only 12.6 percent of p-values were less than 0.1. Thus, the modern

sample – spanning the 55 years following 1960 – may be used as a proxy to evaluate the outlyingness

of the historical extremes, or at least to evaluate how outlying they would be if they were to occur

now.

The events in excess of 50 fatalities from both 1900 onwards and 1960 onwards are plotted

according to their CCDF in Panel (b) of Fig. 5.8. The sample from 1960 approximately has a Pareto

tail (see Panel (c)) with parameter around 1.05 (0.08) for the 168 points above the lower threshold of

300. With increasing lower truncations, the estimated parameter increases (as the CCDF bends down),

however this is not a significant departure from the estimated tail. For instance, the Anderson-Darling

test for the fit of the top 168 points gives a p-value of 0.8. The tail of the sample from 1900 onwards is

skewed both by the inclusion of historic large events, and also by the absence of their smaller siblings,

which were not recorded.

The value of the exponent α ≈ 1 is reminiscent of Zipf’s law, which is known to derive quite

robustly from the interplay between three simple ingredients [216]: birth, proportional growth (also

known as “preferential attachment” in network theory) and death. If the variance of the proportional

growth component is large, the df of event sizes converges to a power law with exponent α ≈ 1.

These ingredients are arguably minimum constituents of epidemic processes and rationalize our finding

α = 1.05 (0.08). What is really surprising is the detection of outliers that we present below, which,

in some cases, suggests the activation strong amplification processes beyond the proportional growth

mechanisms.

We turn our attention to the detection of outliers relative to the approximately stationary data

from 1960 onwards. The 14 events in excess of 10,000 fatalities – 13 of which happened before 1960

– are considered. The smallest of these 14 is a Cholera outbreak causing 10,276 fatalities (Egypt,

1947). We start with the weakest possible test, considering as a sample: the 167 points with between
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300 and 10,000 fatalities occuring since 1960, plus the aforementioned Cholera outbreak. Testing

for a single outlier with the DK test (9) gives a p-value of 0.002. Thus any of the other suspected

outliers – including the 2011 Swine Flu event – would be identified as significant outliers also. And,

including multiple of these outliers in the sample, and testing them together, would provide even higher

significance.

With respect to the mechanism(s) at the origin of these outliers, it is likely that each case may

be associated with specific catalysing processes. For one of the largest dragon-kings, the so-called

Spanish flu of 1918 which killed an estimated 50 millions people in the world, there is a clear identified

amplification mechanism. In this epidemic, about 500–600 million people, a third of the world’s

population at that time, were infected. The pandemic took five times more lives than the First World

War. The first cases of the unknown disease were registered in Kansas, America, in January 1918. By

March 1918, more than 100 soldiers fell ill at the US army camp in Funston, Haskell County, where

more than 5000 recruits were training for further military operations on the European battlefronts of

the First World War. Most of the recruits were farmers, had regular contact with domestic animals and

were less resistant to viruses than recruits from cities. The high concentration of personnel in the camp

simplified human-to-human transmission. At that time, viruses were not known to medicine, and some

doctors had not even accepted the idea that microorganisms could cause disease. Later, the personnel

of Funston camp were transferred to Europe by ship, and during the long transatlantic crossing, the

virus spread among soldiers coming from other parts of the USA. Upon arriving in Europe, American

soldiers infected British and French forces, which in their turn infected German forces in hand-to-hand

combat. When Woodrow Wilson, President of the United States from 1913 to 1921, began to receive

reports about a severe epidemic among American forces, he made no public acknowledgement of the

disease [27]. Moreover, other governments involved in the war made similar decisions – censorship, lies,

and even active propaganda – to keep up morale, allowing the disease to continue to spread without

any preventive measures. The pandemic was named “Spanish flu” because Spain was a neutral country

during the First World War and did not suppress the media, so it was only Spanish newspapers that

published honest articles about the severity of the disease – despite the fact that it had originated

in the USA and spread initially among American soldiers in the absence of a proper response by the

US government. This lack of response was probably due to the US strategic goal of developing a

strong political influence in the post-WWI peace process that was to shape international politics in the
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following decades. In summary, the amplification mechanisms that led to the Spanish flu dragon-king

are (i) extremely efficient connectivity between people mediated by movements of soldiers and (ii) rare

absence of any prophylactic or treatment measures due to the priority given to the war efforts.

We thus conclude that we found evidence of dragon-kings in the database of epidemic events,

including the more recent period post-1960, albeit with a much reduced frequency. For instance,

one of our detected outliers, the Swine Influenza pandemic, occurred in 2009. Concerning the AIDS

pandemic, which is not included in the dataset, in 2014, 1.2 million [1 million–1.5 million] people

died from AIDS-related illnesses, a significant improvement from the maximum reached in 2015 of 2.3

million [2.1 million–2.6 million] deaths from AIDS-related illnesses, with an estimated ∼ 36 million

total deaths since its identification [277, 276]. The evidence we have presented for a dragon-king regime

in the dynamics of epidemics suggests that a return of pandemic plagues cannot be ruled out, perhaps

catalysed by the severe progressive threats of antimicrobial resistance [53], and climate change.
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5.4.5 City sizes
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Figure 5.9: City sizes: plot of the CCDF for the 35 largest cities (and also agglomerations for France)
in each of the 14 countries: Brasil, China, France, India, Indonesia, Japan, Korea, Mexico, Nigeria,
Pakistan, Phillipines, Russia, the UK, and the USA. The sizes were scaled such that the second largest
point (third largest for Russia) in each country has size 1. The scaled largest point (two largest for
Russia) are plotted in the bottom right. Each country that is suspected of having outliers is in colour:
France (blue circles for cities, blue downward triangles for agglomerations), Russia (black x marks),
Indonesia (purple triangles), Mexico (green crosses), and England (red squares).

Within the disciplines of economics, geography and geopolitics (among others), the distribution

of city and of agglomeration sizes is of particular interest, due to the importance of urban primacy,

and because it constitutes one of the key stylized facts. There is a large literature documenting that

the distributions of city and agglomeration sizes follows a Pareto df with parameter close to one (Zipf’s

Law) (see e.g. [216] and references therein). There has been some debate over if the df would be better

represented by a Lognormal [75, 76, 162], however the debate has been clearly settled in favour of the

Pareto for the 1000 largest cities [175]. Note that both the Pareto and Lognormal df’s are generally

taken to result from Gibrat’s principle of proportional growth [104] (see [216] for a general derivation).

In [201], the DK test (9) was used to identify outlying population agglomerations for a number

of countries, assuming a Pareto tail. Here we consider city sizes rather than agglomerations since this

data is available for more countries. We only consider agglomeration sizes for the case of Paris, France
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for comparison with [201]. Data for 14 large countries2 were taken from [1]. All tests use the SRS

block test statistic for testing the largest point as an outlier, with the exception or Russia where two

outliers are tested.

In Fig. 5.9, the 35 largest cities of each country are plotted according to their empirical CCDF,

rescaled in a way to make the largest cities comparable. Since not all of the samples appear to follow

a pure Pareto df, results on robustness and testing the tail (Sections. 2.1 and 2.7) are relevant here.

First considering French cities, for upper sample sizes of 5 < n ≤ 35, the p-value fluctuates in a range

of 0.1 − 0.2. Thus, there is only marginal evidence that the city of Paris is an outlier. However, the

agglomeration of Paris is relatively larger, and for 5 < n ≤ 25 the p-value fluctuates between 0.02

and 0.15, providing stronger evidence of the uniqueness of Paris. The CCDF of Indonesia is concave.

Thus, if too large of a sample is considered in the test, Jakarta will not be detected as an outlier. For

instance, if one draws a line that best interpolates all points of the empirical CCDF, the line will be so

shallow that the Jakarta point falls beneath it, essentially masking the outlier. For this reason, Jakarta,

Indonesia has p < 0.1 only for the upper most points 5 < n < 11. Mexico is an even more extreme

case of the above, having p < 0.1 for 5 < n < 20 for Mexico City. London, UK, is the most significant,

having 0.001 < p < 0.05 for all 5 < n ≤ 35. Finally, testing both Moscow and Saint-Petersberg as

outliers, the p-value is in 0.01 < p < 0.15, with a mean of 0.09 for all 5 < n ≤ 35. In conclusion, it is

absolutely clear that London is an outlier, and the largest city/cities of five of the remaining fourteen

countries considered have moderate/suggestive evidence that they are outlying.

5.5 Discussion

We provided a comprehensive study of outlier detection in the highly general case of samples

with exponential and Pareto tails. By considering a variety of TS and outlier scenarios, many useful

insights are provided for practitioners. Further, a simple yet novel modification of TS was shown to

make the convenient inward test competitive with the relatively arduous outward test.

Insights include that one should select the correct TS based on the the nature of the suspected

outliers. For instance, a mixture model can be very useful for clustered outliers, whereas an inward

test with a MS type statistic will be powerless. Next, the power and level of outlier tests are highly

2Brasil, China, France, India, Indonesia, Japan, Korea, Mexico, Nigeria, Pakistan, Phillipines, Russia, the UK, and
the USA.
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sensitive to the correct specification of the main DF (exponential/Pareto). For robust results, it may be

better to focus on the tail of the sample, where EVT provides that the best approximation is attained.

If the approximation is poor even in the tail, then one should choose a better null model to avoid

spurious inference. Further, tests should be applied for a range of upper samples sample (growing

lower threshold) and consistent rejection required for a robust rejection to be verified.

In the case studies, the concept of Dragon King events was introduced. This stresses that

some outliers are meaningful, and perhaps special. Further, one should certainly not simply discard

these outliers but rather focus on understanding them. Significant outliers were found in the sizes of

financial returns and crashes, epidemic fatalities, nuclear power generation accidents, and city sizes

within countries. In the cases of financial crashes and nuclear accidents, the existence of dragon kings

should be considered in the assessment of risk.
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Part III

Studies of extreme risks
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Chapter 6

Nuclear risk

This chapter is based on [291].

6.1 Introduction

The industry-standard approach to the evaluation of the risk of nuclear accidents is a top-down

technique called probabilistic safety assessment (PSA). PSA consists of developing fault tree models

that allow one to simulate accidents, with different triggers and event paths, and the severity and

frequency of such accidents [159]. Furthermore, within a plant, PSA may be an ongoing process where

both the PSA, and plant operations and technology, evolve together with the purpose of improving plant

safety. The basic PSA methodology works as follows: Initiating events, such as component failures,

human errors, and external events, are enumerated and assigned probabilities. Next, a (typically

deterministic) fault tree is defined to encode the causal links between events, allowing combinations

of initiating events to form the ultimate resultant/system-level event. Such a model then allows one

to determine the probability of such events, and potentially attach damage/consequence values to the

event paths. Thus, a textbook PSA would require the complete and correct definition of initiating

events, subsequent cascade effects, and their probabilities and consequences.

It is therefore not surprising that the documentation for a plant-specific PSA often fills a book-

shelf, and is a constant “work in progress”. Within PSA, three levels exist, delineating the depth/extent

to which events are studied [129, 130, 133]: level 1 concerns core damage events, level 2 concerns ra-

dioactive releases from the reactor building given that an accident has occurred, and level 3 evaluates

the impact of such releases on the public and the environment. Levels 1 and 2 are required by reg-
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ulation. Level 3, which is the level considered in this study, is seldom done in PSA. Given that the

reliability of PSA depends on the inclusiveness of scenarios, the correct modeling of cascade effects,

and the handling of tremendous uncertainties, it is not surprising that PSA has failed to anticipate

a number of historical accidents in civil nuclear energy [257, 156]. In [172], it was found that the

probability assessments were fraught with unrealistic assumptions, severely underestimating the prob-

ability of accidents. In [5], the chairman of the World Association of Nuclear Operators stated that

the nuclear industry is overconfident when evaluating risk and that the severity of accidents are often

underreported.

Instead of entering this quagmire, several studies have used a “bottom-up” approach, performing

statistical analysis of historical data. These studies [257, 126, 236, 108, 85] and others have almost

universally found that PSA dramatically underestimates the risk of accidents. The IAEA (International

Atomic Energy Agency) provides the INES (International Nuclear Event Scale) measure of accident

severity, which is the standard scale used to measure the severity of nuclear accidents. However, the

INES has been censured – for being crude, inconsistent, only available for a small number of events,

etc. – not only in statistical studies, but by the industry itself [5, 40]. As noted by The Guardian

newspaper, it is indeed remarkable (sic. astonishing) that the IAEA does not publish a historical

database of INES events [214]. However, given that the IAEA has the dual objective of promoting

and regulating the use of nuclear energy, one should not take the full objectivity of the INES data

for granted. Independent studies are necessary to avoid possible conflicts of interest associated with

misaligned incentives.

Presumably for lack of better data sources, a number of statistical studies such as [108, 85] have

used the INES data to make statements about both the severity and frequency of accidents in nuclear

energy systems. Here, we also perform a statistical analysis of nuclear incidents and accidents, but we

avoid relying on the INES data. Instead, we use the estimated cost value in USD (US dollars) as the

common metric that allows one to compare often very different types of incidents. This database has

over triple the number of events compared with most studies, providing a much better basis for statis-

tical analysis and inference, and bringing into question the reliability of the other studies. Moreover,

because radiation releases may translate into very different levels and spread of contamination of the

biosphere depending on local circumstances, the quantification of cost is more useful and provides a

better comparative tool.

105



According to PSA specialists, the gaps between PSA-specific results and the global statistical

data analysis mentioned above exist in the eyes of observers who ignore the limitations in scope that

apply to almost all PSA – e.g., PSA is often restricted to normal operating conditions and internal

initiating events. Indeed PSA is a tool that serves many purposes that do not rely on the accurate

absolute quantification of risks. However, PSA is used as the tool for discussing risks in nuclear energy

systems, and has multiple shortcomings in this regard. That is, PSA applications need to better

consider incompleteness, uncertainty [186, 156, 208, 88], and be combined with bottom-up statistical

approaches when discussing risks at many levels [171].

Moreover, because of the uniqueness of each reactor, some nuclear experts say that assigning

risk to a particular nuclear power plant is impossible [131, 2]. A further argument is that the series

of accidents form a non-stationary series in particular because the industry has been continuously

learning from past accidents, implementing procedures and upgrading each time to fix the problem

when a vulnerability was found especially via accidents. For instance [157]: the loss of criticality

control in the fast breeder reactor EBR-I (1.7MWe) that started operation in 1951 on a test site

in the Idaho desert led to a mandatory reactor design principle to always provide a negative power

coefficient of reactivity when a reactor is producing power; the Windscale accident in 1957 catalyzed

the establishment of the general concept of multiple barriers to prevent radioactive releases; the Three

Mile Island accident in 1979 led to plant specific full-scope control room simulators, plant specific

PSA models for finding and eliminating risks and new sets of emergency operating instructions; the

Chernobyl accident in 1987 led to the creation of the World Association of Nuclear Operators (WANO)

through which participating operators exchange lessons learned, and best practices; the Fukushima-

Daiichi accident in 2011 is pushing towards designs that ensure heat removal without any AC power

for extended times., etc. As a consequence, each new accident supposedly occurs at a nuclear plant

that is not exactly the same as for the previous accident. This leads to the concept that nuclear risks

are unknowable because one does not have a fixed reference frame to establish reliable statistics [4].

In contrast, we propose that it is appropriate – and important – to study the global risk of nuclear

energy systems by performing statistical analysis of an independently compiled dataset of the global

pool of reactors. There is nothing invalid about modeling the overall risk of the heterogeneous global

fleet, provided one takes sufficient care to control for non-stationarity, and does not draw inference

beyond the “average reactor”. In particular, risk-theoretic stochastic models aiming at describing both
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the frequency and severity of events, as in [126, 257], offer very useful guidelines for such statistical

analyses. This constitutes the standard approach that insurance companies rely upon when quoting

prices to cover the risk of their clients, even when the estimation of risk appears very difficult and non-

stationary. In this spirit, Burgherr et al. [42] write that “the comparative assessment of accident risks

is a key component in a holistic evaluation of energy security aspects and sustainability performance

associated with our current and future energy system.”

In the next section, we describe the data used in our analyses, how severity of events in nuclear

energy systems can be measured, and show that the INES values are a poor measure of severity when

compared with the consequences of events measured in USD cost. Section 3 discusses uncertainty

quantification in nuclear risks. Section 4 estimates the rate of events and proposes simple models to

account for the evolution of the nuclear plant industry. Section 5 analyses the distribution of costs.

Section 6 discusses a runaway disaster effect where the largest events are outliers referred to as “dragon-

kings” (DK). Section 7 combines the different empirical analyses of previous sections on the rate of

events, the severity distribution and the identification of the DK regime to model the total future

cost distribution and to determine the expected annual cost. Section 8 concludes and discusses policy

implications.

6.2 Data and the measurement of event severity

We define an “event” as an incident or accident within the nuclear energy system that had

material relevance to safety, caused property damage, or resulted in human harm. The nuclear energy

system includes nuclear power plants, as well as the facilities used in its fuel cycle (uranium mines,

transportation by truck or pipeline, enrichment facilities, manufacturing plants, disposal facilities, etc.).

Events are defined to be independent in the sense that one event does not trigger another one. For

instance, three reactors melted down at Fukushima in 2011, however we define this as a single accident

due to the fact that the occurrences at the individual reactors were part of a dependent sequence,

and linked to a common cause. Statistical changes due to industry responses to past accidents are

controlled for in the modeling.

With this definition, we compiled an original database of as many events as possible over the pe-

riod 1950 to 2014. To be included in the database, an accident had to be verified by a published source,

some of them reported in the peer-reviewed literature, but others coming from press releases, project
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documents, public utility commission filings, reports, and newspaper articles. Such an incremental

approach to database building has been widely utilized in the peer-reviewed energy studies literature.

Hirschberg et al. have constructed the ENergy-related Severe Accidents Database (ENSAD), the most

comprehensive database world-wide covering accidents in the energy sector [124]. Flyvbjerg et al. built

their own sample of 258 transportation infrastructure projects worth about 90 billion USD [95, 96].

Ansar et al. [17] built their own database of 45 large dams in 65 different countries to assess cost over-

runs. Also investigating cost overruns, Sovacool et al. [266, 265] compiled a database consisting of 401

electricity projects built between 1936 and 2014 in 57 countries, which constituted 325’515 megawatts

(MW) of installed capacity and 8’495 kilometers of transmission lines.

The dataset includes three different measures of accident severity: the industry standard measure,

INES; a logarithmic measure of radiation release, NAMS (Nuclear Accident Magnitude Scale) [236];

and the consequences of accidents measured in 2013 US Dollars (USD). The industry standard measure

is the discrete seven point INES, defined as [135]: level 0: events without safety significance, level 1:

anomaly, level 2: incident, level 3: serious incident, level 4: accident with local consequences, level 5:

accident with wider consequences, level 6: serious accident, and level 7: major accident. Levels 1-3

are considered to be “incidents”, and levels 4-7 “accidents”. The distinction between incidents and

accidents is not clear and thus somewhat arbitrary (e.g., see page 152 of [135]). Incidents tend to

concern degradation of safety systems, and may extend to include events where radiation was released

and people were impacted. However, when the damage and impact to people and the environment

becomes large enough, then the event is deemed an “accident”. But, there are rules about how many

fatalities, or how much radiation release, is necessary to qualify for a specific INES level.

The second measure, NAMS, was proposed as an objective and continuous alternative to INES

[236]. The NAMS magnitude is M = log10(20R) where R is the amount of radiation released in

terabecquerels. The constant 20 makes NAMS approximately match INES in terms of its radiation

level definitions.

Finally, the main measure used here is the USD consequences/costs due to an event. This cost

measure is intended to encompass total economic losses, such as destruction of property, emergency

response, environmental remediation, evacuation, lost product, fines, court and insurance claims, etc.

In the case where there was a loss of life, we added a lost “value of statistical life” of 6 MM USD

per death. The 6 MM USD figure is chosen as a lower bound of the value of statistical life reported
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by various US agencies (e.g., the Environmental Protection Agency, Food and Drug Administration,

Transportation Department, etc.) [18]. Practically speaking, given that the costs are taken from

different sources, it is unlikely that the data truly reflects all relevant costs. While imperfect and

controversial, this has the advantage of leading to a single USD metric associated to each event that

combines all possible negative effects of the accidents. The costs were standardized by using historical

currency exchange rates, and adjusting for inflation to 2013 USD. Adjusting for differing price levels

(e.g., because an equivalent event in Switzerland will cost more than one in the Ukraine) was not done

because the majority of events belong to countries with a similar price level (US, UK, Japan, and

Western Europe), and because the sample is so heavy tailed that adjusting cost within an order of

magnitude has little impact on the statistics.

The result of this effort is a unique dataset containing 216 events. Of these events 175 have cost

values, 104 have INES values, and 33 have NAMS values (from [236]). The datasets of Sovacool, from

the energy studies literature (e.g,. [263], that has been studied [257, 126]) provided a starting point

of around 100 events with cost values. For our dataset, Tab. 6.1 lists the 15 most costly events. The

data and severity measures are discussed in the following subsection. The dataset has been published

online [288], where the public is encouraged to review and recommend additions and modifications with

the intention of continually expanding and improving the quality of the data. We believe that this is

very important for the proper understanding of risk in nuclear energy. The cost and INES scores are

plotted over time in Fig. 6.1. The frequency with which events exceed the threshold of 20MM USD,

and the distribution of these excesses will be studied in Sec. 6.4 and Sec. 6.5 respectively. Further,

how these quantities have changed in response to the major accidents of Three Mile Island, 1979,

and Chernobyl, 1986, will be studied. There are likely to be changes following the major accident at

Fukushima in 2011. However, there has been little time to observe improvements, and the cost data is

most incomplete in this area: the cost of 18 of the 29 post-Fukushima events contained in the dataset

are, as of yet, unknown. Thus, the industry response to Fukushima cannot be quantified in this study.

This dataset dwarfs existing datasets from the academic literature, and is mature enough to

justify an analysis. However it is still important to consider the quality of the data, and what method-

ology is best to handle the limitations. Regarding data completeness, in a rare statistical statement,

the IAEA stated, “During the period July 1995-June 1996, the Agency received and disseminated

information relating to 73 events - 64 at NPPs [nuclear power plants] and nine at other nuclear fa-
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Figure 6.1: Figures concerning the raw data. Panel (I) plots the cost of events over time. The horizontal
line is the 20 MM USD cutoff. The vertical lines indicate the occurrence times of TMI, Chernobyl, and
Fukushima. Panel (II) plots the INES scores of events over time. The vertical lines again indicate the
occurrence times of TMI, Chernobyl, and Fukushima. Panel (III) is a scatterplot of the INES scores
and cost of events (black), and the INES scores and NAMS values of events (grey). The star and black
vertical lines give the mean and standard errors of the logarithmic costs. The points have been shuffled
around their integer INES score for visibility.

cilities. Of those 73 events, 32 were stated to be “below scale” (i.e. safety-relevant but of no safety

significance) and three to be “out of scale” (i.e. of no safety relevance). Of the remaining 38 events,

three were rated at INES level 3 and eight at level 2 (i.e. as “incidents”), and 27 at level 1 (i.e. as

“anomalies”)” [132]. On the other hand, in the dataset of this study, only 6 events fall within this

period, none of whose INES values are known, rather than the 38. This statistic tells two important

things: Firstly, for increasingly small event sizes, our data is increasingly incomplete – the smaller the

event, the less likely it is to be discovered, recorded, reported to the regulator, reported in the media,

etc. Secondly, our data will remain incomplete for small events until the IAEA publishes historical

INES data. The shortage of events of INES level 1, and even 2, prohibits a “near miss” analysis.

That is, given that every event develops from having INES score 0, then to 1, and so on, it would be

interesting to determine the probability of developing to the next level.

However, the statistics of the largest costs are much more interesting. For instance, the most

costly event (Chernobyl) has cost roughly equal to the sum of all other events together, the two most

costly events (Chernobyl and Fukushima) have cost roughly five times the sum of all other events

together, and the sum of the 53 costs in excess of 100 MM USD is 99.4 percent of the total cost of all

175 cost values. This clearly implies that, if one wants to study the aggregate risk in terms of total
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cost, then one simply needs data for the largest events. Thus a typical approach taken in such cases

is to study events that are in excess of a threshold, above which the data is thought to be reliable

and well modeled. As in [126], we use a threshold of 20MM USD, although results will be similar if

a threshold of e.g., 100 MM were used. For cost, there are 101 values above the threshold of 20 MM.

Further, of the 41 events with unknown cost, 31 have known INES scores, of which half have level 2

or higher.

Table 6.1: The 15 largest cost events since 1960 are provided with the date, location, cost in MM
2013USD, INES value, and NAMS value. The full dataset is provided online [288]. Unknown values
are indicated with a dash.

Date Location Cost (MM USD) INES NAMS
1986-04-26 Chernobyl, Ukraine 259’336 7 8.0
2011-03-11 Fukushima, Japan 166’089 7 7.5
1995-12-08 Tsuruga, Japan 15’500 - -
1979-03-28 TMI, Pennsylvania, United States 10’910 5 7.9
1977-01-01 Beloyarsk, USSR 3’500 5 -
1969-10-12 Sellafield, UK 2’500 4 2.3
1985-03-09 Athens, Alabama, United States 2’114 - -
1977-02-22 Jaslovske Bohunice, Czechoslovakia 1’965 4 -
1968-05-01 Sellafield, UK 1’900 4 4.0
1971-03-19 Sellafield, UK 1’330 3 3.2
1986-04-11 Plymouth, Massachusetts, United States 1’157 - -
1967-05-01 Chapelcross, UK 1’100 4 -
1982-09-09 Chernobyl, Ukraine 1’100 5 -
1983-08-01 Pickering, Canada 1’000 - -
1973-09-26 Sellafield, UK 990 4 2.0

6.2.1 Comparing severity measures & critiquing INES

There are many ways to quantify the size of a nuclear accident. Following Chernobyl, several

authors proposed to use a monetary value of severity to make events comparable, and use a rate measure

normalized by the number of reactor operating years to consider frequency [127, 227, 228]. This is

what we have done. Since the IAEA uses INES, it is instructive to compare the two approaches. First,

the INES is a discrete scale between 1 (anomaly) and 7 (major accident). Similarly to the Mercalli

intensity scale for earthquakes (which has 12 levels from I (not felt) to XII (total destruction)), each

level in the INES is intended to roughly correspond to an order of magnitude in severity (in the amount

of radiation released).
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The INES has been criticized for instance in [236] (and references therein). Common criticisms

include that the evaluation of INES values is not objective and may be misused as a public relations

(propaganda) tool; moreover, the historical scores are not published, not all events have INES values

assigned, no estimate of risk frequency is provided, and so on. Given confusion over the INES scoring of

the Fukushima disaster, nuclear experts have stated that the “INES emergency scale is very likely to be

revisited” [40]. In [236], the Nuclear Accident Magnitude Scale (NAMS), a logarithmic measure of the

radiation release, was proposed as an objective and continuous alternative to INES. This proposition,

to go from the INES to the NAMS, is reminiscent of when the geophysics discipline replaced the discrete

Mercalli intensity scale by the continuous Richter scale with no upper limit, which is also based on the

logarithm of energy radiated by earthquakes. In the earthquake case, the Mercalli scale was invented

more than a hundred years ago as an attempt to quantify earthquake sizes in the absence of reliable

seismometers. As technology evolved, the cumbersome and subjective Mercalli scale was progressively

replaced by the physically based Richter scale. In contrast, the INES scale looks somewhat backward

from a technical and instrumental point of view, but was created in 1990 by the International Atomic

Energy Agency as an effort to facilitate consistent communication on the safety significance of nuclear

and radiological events, while more quantitative measures are available.

Here, we perform a statistical back-test of the accuracy of INES values in relation to costs and

NAMS. Indeed INES is not defined in terms of cost, however if INES fails to capture the information

that costs do, then the cost measure is important. In Fig. 6.1, we plot both the logarithm of cost, and

NAMS versus INES. There is an approximate linear relationship between INES and log cost [intercept

parameter at INES= 0 is 0.64 (0.3) and slope 0.43 (0.08) by linear regression]. This is consistent

with the concept that each INES increment should correspond to an order of magnitude in severity.

However, cost grows approximately exponentially (100.43 ≈ e1) rather than in multiples of 10 with each

INES level. Further, the upper category (7) clearly contains events too large to be consistent with the

linear relationship. For instance, the largest events (Fukushima and Chernobyl) would need to have

an INES score of 10.6 to coincide with the fitted line. In addition, the cost of INES level 3 events do

not appear to be statistically different from the sizes of INES level 4. Finally, there is considerable

uncertainty in the INES scores as shown by the overlapping costs. There is an approximate linear

relationship between INES and NAMS [at INES= 3 the intercept is 1.8 (0.9) and slope 1.7 (0.2) by

linear regression]. One sees from the points, and from the fact that the slope of the line is greater than 1,
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that large radiation release events have been given an INES level that is too small. Furthermore, some

INES level 3 events should be INES level 2. This illustrates the presence of significant inconsistency

of INES scores in terms of radiation release level definitions.

6.2.2 The current fleet of reactors

One must judge the number of accidents relative to the so called volume of exposure; in this

case, the number of reactors in operation. This data was taken from [134] and is plotted in Panel I of

Fig. 6.2. The number of reactors in operation grew sharply until 1990 after which it stabilized. The

stable level has been supported by growth in Asia, compensating for a decline in Western Europe. A

steep drop is observed in the Asian volume where, following Fukushima in 2011, all of Japan’s reactors

were shut down temporarily until further notice [225]. On the topic of reactors, it is important to

note that reactors are somewhat informally classified into generations [7]: Generation I reactors were

early prototypes from the 1940s to 1960s. Generation II reactors were developed and built from the

1960s to the 1990s, of which boiling water reactors (BWR) and pressurized water reactors (PWR) are

common. Generation III reactors have been developed since the 1990s’. These reactors, such as the

advanced BWR and PWR reactors, were improvements upon their Generation II ancestors, replacing

safety features that required power with passive ones, and having more efficient fuel consumption.

Generation IV reactors concern new technologies, and are still being researched/developed. They have

the intention of further improving safety and efficiency, which were deemed as still being inadequate

in the Generation III reactors. The vast majority of existing reactors are of Generation II, where

most Generation I reactors have been decommissioned, and few Generation III reactors have been

constructed. Generation IV reactors are not expected to be deployed commercially until at least 2030

or even 2040.

6.3 Uncertainty quantification of risks in nuclear energy systems

Prior to moving ahead with data analysis and interpretation, reflection on the degree of un-

certainty present, and how it is handled in the analysis, is warranted. Following [19] two important

questions are (i) if (frequentist or Bayesian) probabilities are attainable, and (ii) if the proposed prob-

abilistic model is accurate/valid. Given a lack of relevant data (e.g., when talking about the future),

or difficulty with justifying models, the answer to these questions may be no. If the answer to both
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questions is no, then one can be said to be in a state of deep uncertainty. Such considerations are

relevant to the study of risk in nuclear energy systems, and are discussed below.

Fortunately for this study, the context is clear as historical risks, and the current risk level, are

being analyzed. Future risk is only being discussed insofar as the current state remains. Thus, the

analysis does not need to deal with uncertain futures. Also, by studying risk at a global level, one

avoids epistemic uncertainties associated with the specificities of a given plant, type of accident, or

technology. Furthermore, relevant data is available and a simple and somewhat justifiable model used.

Thus, here a probabilistic approach is valid, where uncertainties include epistemic model uncertainty,

aleatoric statistical uncertainty in the parameter estimates, as well as data uncertainty. The epistemic

and aleatoric uncertainties are dealt with by imposing a relatively broad range of parameter estimates

(for frequency, severity distribution, and maximum possible severity). Regarding data uncertainty,

the data studied here is at a much higher quality level than that of previous studies on nuclear risks.

Although the authors are committed to ongoing expansion and refinement of the data, this is a sensible

point to provide an analysis. That is, it is unlikely that reasonable modifications of the cost estimates

will substantially impact the high-level results provided.

Going beyond this analysis, one can look deeper into nuclear risk. For instance, as regulation

requires, PSA is done for each individual plant [129, 130]. This necessitates that the probabilities of

initiating events be specified and that the interaction of events be encoded in a fault tree. Further, if

one wants to perform level 3 PSA, then the consequences of each event need to be specified [133]. For

this task, at a unique power plant, there is little data and thus the huge number of parameters must

be specified based on belief/assumption rather than frequentist estimates. Thus, in addition to the

aleatoric sampling uncertainty that is captured by simulating from the model, one should also consider

the epistemic uncertainty in the model specification and its parameters [88, 87]. Such an approach has

been suggested in [208] and a research project considering such methodology in studying the risk of a

large loss of coolant is underway [137]. However, standard PSA practice and regulations are not yet

at this level of uncertainty quantification. Furthermore, needing to encode all possible events in the

fault tree implies that the worst case is limited to the one that the modeler can imagine. Finally, the

epistemic uncertainty present in the specification of the (typically deterministic) fault tree, which will

practically always be incomplete, is not considered at all. These data and epistemological limitations

imply that PSA exhibits deep uncertainty. These issues largely inhibit the ability of standard PSA to
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provide an adequate quantification of overall risk.

Nonetheless, PSA is an important and useful exercise. That is, it is a top-down technique that

allows for the generation and prioritization of high risk events that may not have been observed, and

for common causes to be identified. It is thus instrumental in safety improvement, and risk-informed

decision making. The statistical approach is a bottom-up technique, whose specificity (e.g., the risk of

a specific reactor technology) is restricted by limited historical data, and whose instances from which

one can learn are limited to those that have been observed. As suggested in [171], it is natural to

combine top down and bottom up approaches, at least by comparing their results. It is clear that this

should be done in nuclear energy systems as well.

Taking a broader perspective, the future risk of nuclear energy should be considered to support

decision-making both within the nuclear energy industry, but also within the portfolio of energy source

alternatives. The future risk of nuclear energy is deeply uncertain: it depends heavily on developments

in reactor and disposal technology, plant build-out and decommissioning scenarios, the emerging risk

of cyber-threats and attacks, etc. Furthermore, in making decisions about the holistic plans for future

energy systems, the uncertainties of other energy sources also become relevant across multiple criteria.

Many risks are reasonably well understood, such as reduced life expectancy, but the evaluation of

terrorist threats [123], and the potentially severe environmental impacts of carbon emission are deeply

uncertainty [144, 110]. Thus, energy system decisions should be supported by robust multiple criteria

decision-making tools with adequate consideration of uncertainty. A probabilistic attempt could be

scenario analysis with probability distributions being assigned to the scenarios. Alternatively, non-

probabilistic methods may be warranted, as has been done in large-scale engineering systems with

multiple diverse stakeholders [145].

6.4 Event frequency

Regarding the frequency of events, we observe Nt = 0, 1, 2, . . . events each year for the vt nuclear

plants in operation for years t = 1960, 1961, . . . , 2014. The annual observed frequencies of accidents

per operating facility are λ̂t = Nt
vt

. The observed frequencies are plotted in Panel (II) of Fig. 6.2. The

rate of events has decreased, and perhaps stabilized since the end of the eighties. The running rate
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estimate,

λ̂RUN
t0,t1 =

∑t1
t=t0

Nt∑t1
t=t0

vt
, (6.1)

used in [126] is plotted for t0 = 1970 and t1 = 1970, 1971, . . . , 2014. In the presence of a decreasing

rate of events, such a running estimate overestimates the rate of events for recent times. Furthermore,

it is a smoothing method where the estimate is taken at the rightmost edge of a constantly growing

smoothing window, rather than in the center of a window with fixed width. To avoid this bias and

to properly evaluate the trend, we consider another approach. We assume that Nt are independently

distributed Pois(λtvt). The Poisson model features no interaction between events, which is sensible as

separate nuclear events should occur independently, and is compatible with how we have defined our

events in Sec. 6.2. The changing rate of events is accomodated by a log-linear model for the Poisson

rate parameter,

λGLMt = E

[
Nt

vt

]
= exp(β0 + β1(t− t0)), (6.2)

for given t0 < t and parameters β0, β1. This is the so-called Generalized Linear Model (GLM) for

Poisson Counts [195] and may be estimated by maximum likelihood (using in R:glm). The GLM

model was estimated from 1970 until 1986 and from 1987 until 2014, with estimated parameters in

Tab. 6.2, and plotted in Panel (II) of Fig. 6.2. The first estimate suggests a significantly decreasing

rate, which is in agreement with the decreasing running rate estimate. The second (the approximately

flat) GLM indicates that from 1987 onwards the rate has been not significantly different from constant.

Clearly the running rate estimate, starting at 1970, is unable to account for this. To further diagnose

this difference, in Panel (III) of Fig 6.2, the running estimate (eq. 6.1) is done running both forward

and backward from the Chernobyl event of 1987. From here it clear that the rate prior to Chernobyl

λ̂RUN
1960,1986 = 0.013 (0.002), is larger than the rate after λ̂RUN

1987,2014 = 0.0032 (0.0006). Thus it is apparent

that there was a significant reduction in the frequency of events following Chernobyl – likely due to a

comprehensive industry response.

It is interesting to note that such a change is not apparent following TMI. There is insufficient

data to identify a change following Fukushima. That the data is incomplete implies that our rate

estimates are under-estimates. For instance, even within our dataset, there are forty events occurring

after Chernobyl whose cost is unknown. Of these forty, thirty-two have INES values, and seventeen of

these have INES value of 2 or larger. Based on the known INES and cost values, the median cost of
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Figure 6.2: Figures concerning the rate of events. Panel (I): The number of operational reactors over
time [134] where the bottom layer is the United States, the second layer is Western Europe, the third
layer is Eastern Europe, and the top layer is Asia. Panel (II): The annual observed frequencies are given
by the solid dots, with Poisson standard errors given by the vertical grey lines (Var(λt) = λt

vt
). The

solid irregular line bounded by dotted lines is the running rate estimate (eq. 6.1) from 1970 onwards,
with standard errors. The solid black lines are the Poisson GLM regressions (eq. 6.2) from 1970 to
1986 and 1987 to 2014, with parameters in Tab. 6.2. Panel (III) provides the running rate estimate
(eq. 6.1) running both backwards and forwards from the Chernobyl event in 1987. In all three panels
the vertical dotted lines indicate the occurrence of the TMI, Chernobyl, and Fukushima events.

events with INES= 2 is 26 MM USD, i.e., more than half of INES= 2 events exceed the threshold. Thus,

based on these statistics, assuming that only nine of the forty unknown events have cost in excess of 20

MM USD is conservative. With such an assumption, the estimate becomes λ̂RUN*
1987,2014 = 0.004 (0.0006).

Taking into account the above, and that the rate of events may actually still be decreasing, we consider

a conservative range of current estimates λ̂2014 between 0.0025, and 0.0035. This suggests an average

of 1 to 1.5 events per year across the current fleet of reactors. Thus, despite having a dataset twice

as big as [126], we find a similar rate estimate. Further, provided that the fleet does not undergo any

major changes, we expect the rate to remain relatively stable.

As in [126], a significant difference between the frequency of events across regions is found. In

Tab. 6.3, one sees that the running estimate of the annual rate varies by as much as a factor of 3 across

the regions. This is likely to be more due to a difference in reporting rather than a difference in the

true rate of events. This provides further evidence that our rate estimates are underestimates.

117



Table 6.2: Parameter estimate, standard error, and p-value for GLM estimates of rate (eq. 6.2). The
two rows are two estimates for starting times 1970 and 1987. The intercept parameter is given for at
the starting time.

Model β0 β1

GLM 1970:1986 −3.87 (0.3), 10−16 −0.06 (0.03), 0.05
GLM 1987:2014 −5.53 (0.3), 10−16 −0.015 (0.02), 0.45

Table 6.3: Statistics by region: Number of events (N) and number of reactor years (v) from 1980
through 2014, the rate of events per reactor year, and the Poisson standard error of the rate. Russia
is included in Eastern Europe.

Region N v λ̂RUN1980,2014 std.

Americas 32 4’378 0.0073 0.001
Western Europe 12 4’813 0.0027 0.001
Eastern Europe 5 2’180 0.0023 0.002

Asia 13 2’548 0.0051 0.001

6.5 Event severity

For the quantitative study of event severity, costs (measured in MM 2013 USD) are considered

to be i.i.d random variables Xi, i = 1, 2, . . . , n with an unknown distribution function F . Here, we

estimate the cost distribution. A common heavy-tailed model for such applications is the Pareto CDF,

FP (x;u1) = 1− (x/u1)−α, x > u1 > 0 , α > 0 , (6.3)

which may be restricted to a truncated support as,

F (x|u1 ≤ X ≤ u2) =
F (x)− F (u1)

F (u2)− F (u1)
, 0 < u1 < u2 , (6.4)

where u1 and u2 are lower and upper truncation points that define the smallest and largest observations

allowed under the model. Extending further, truncated distributions may be joined together to model

different layers of magnitude,

F2P (x|u1 ≤ X) = FP (x|u1 ≤ X ≤ u2)Pr{u1 ≤ X ≤ u2}+ FP (x|u2 ≤ X)Pr{u2 ≤ X}. (6.5)
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In Fig. 6.3, the severity measures are plotted according to their empirical complementary cumu-

lative distribution functions (CCDFs). In Panel (I), the sample of costs in excess of 20 MM USD, is

split into pre and post TMI periods with 42 and 62 events respectively. The distributions are clearly

different. Indeed, the KS test [268], with the null hypothesis that the data for both subsets come from

the same model, gives a p-value of 0.015. As can be seen from the lower inset of the first panel of

Fig. 6.3, this p-value is much smaller than the p-values obtained for testing other change-times. For

instance, there was no apparent change between the pre and post Chernobyl periods. The pre-1979

data, having median cost of 283 MM USD, has a higher central tendency than the post-1979 data,

having a median cost of 77 MM USD. However, the post-1979 distribution has a heavier tail, whereas

the pre-1979 distribution decays exponentially. It is a rather well-known observation that improved

safety and control in complex engineering systems tends to suppress small events, but often at the

expense of more and/or larger occasional extreme events [247, 259, 155]. This raises the question of

if the observed change of regime belongs to this class, as a result of the improved technology and risk

management introduced after TMI.

Thus, we focus on estimating the left-truncated Pareto (eq. 6.3) for the post-1979 data. The

estimate α̂(u1) fluctuates in the range of 0.5-0.6 for lower threshold 20 < u1 < 1000 MM USD,

indicating that the data is consistent with the model. For u1 < 20, the estimate of α is smaller, as

is typical for datasets where small events are under-reported. In [257], the estimated value was larger

(α = 0.7), while [126] also found values between 0.6 and 0.8. With our more complete dataset, the

smaller value α is qualitatively consistent with previous studies, but further emphasizes the extremely

heavy tailed model (α ≤ 1) where the mean value is mathematically infinite. In practice, this simply

means that the largest event in a given catalog accounts for a major fraction (∼ 1 − α) of the total

dollar cost of the whole [243]. That is, the extremes dominate the total cost.

6.6 Runaway disasters as “dragon king” outliers

In a complex system with safety features/barriers, once an event surpasses a threshold, it can

become uncontrollable, and develop into a “runaway disaster” – causing disproportionately more dam-

age than other events. This is the type of phenomenon that is considered here. In Panel (I) of Fig. 6.3

one can see that (at least) the two most costly events since TMI (Chernobyl and Fukushima) lay above

the estimated Pareto CCDF, and that Chernobyl, TMI, and Fukushima form a cluster of outliers in
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Figure 6.3: Figures concerning the severity of events. Panel (I): The main frame plots the cost of
events for the pre and post-TMI periods according to their CCDFs, in grey and black respectively. The
lower inset figure shows the p-value of a segmentation test of the cost data, identifying TMI (1979)
as the change-point in the cost distribution. The upper inset figure shows the estimated parameter α
(with standard deviation) of a Pareto distribution (eq. 6.3), for the post-TMI cost data, for a range
of lower thresholds (u1). The fit for u1 = 30 (MM USD) is given by the red solid line in the main
frame. Panel (II): In the main frame, from left to right, are the CCDF of INES scores above 2 (shifted
left by 1), the CCDF of NAMS scores above 2, and the CCDF of the natural logarithm of post 1980
costs (shifted right by 2). For the center and right CCDFs, the dots with x marks indicate suspected
outliers/dragon-kings. The dashed and solid red lines are exponential fits to the CCDFs. The inset
figure provides the p-value for the outlier test for the upper sample above a growing threshold. The
upper curve is for r = 3 outliers, and the lower curve for r = 2 outliers.

the sample of NAMS data. The NAMS data cannot be split into pre and post TMI samples due to

insufficient data. The NAMS distribution is well described by the Exponential distribution for values

between 2 until 5, as reported in [236]. That is, for NAMS values above u1 = 3.5, the estimate is

α̂NAMS = 0.72 (0.3) with sample size n = 15, where the three suspected outliers were censored to

avoid biasing the estimate [69]. Since NAMS is a logarithmic measure of radiation, this corresponds

to a Pareto distribution for the radiation released, which is valid over 3 decades.

We relate this concept of runaway disasters to the concept of dragon-kings. The term dragon-king

has been introduced to refer to such situations where extreme events appear that do not belong to the

same distribution as their smaller siblings [247, 259]. Dragon-king (DK) is a double metaphor for an

event that is both extremely large in size or impact (a “king”) and born of unique origins (a “dragon”)

relative to other events from the same system. For instance, a DK can be generated by a transient
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positive feedback mechanism. The existence of unique dynamics of DK events gives hope that they

may be “to some extent” predictable. In this sense, they are fundamentally different from the a priori

unpredictable “black swans” [271, 20]. Statistically speaking, given that extreme events tend to follow

heavy-tailed distributions, DK can be specifically characterized as outlying large extremes within the

population of extreme events. That is, DK live beyond power law tails, whereas black swans are often

thought of as being generated by (unanticipated) heavy power law tails.

Let us now make the above observations more rigorous by testing the apparent DK points as

statistical outliers. There are many tests available to determine if large observations are significantly

outlying relative to the Exponential (or Pareto) distribution [23, 270, 201] with a recent survey in [290].

A suitable approach to assess the NAMS outliers is by estimating a mixture of an Exponential and a

Normal density,

fNAMS(x|x > 3.5) = παexp{−αx}+ (1− π)φ(x;µ, σ) , α, σ > 0 , (6.6)

where the Gaussian density φ(x;µ, σ) provides the outlier regime, and 0 ≤ π ≤ 1 is a weight. The test

is done for the 14 points in excess of 3.5, where the Exponential tail is valid. The Maximum Likelihood

estimation of this model (eq. 6.6) is done using an Expectation Maximization algorithm [210, 32]. The

estimates of this (alternative) model are (π̂ = 0.8, α̂ = 0.78, µ̂ = 7.8, σ̂ = 0.21). We also consider a

null model with no DK regime (π = 1). For this the MLE is α̂ = 0.66. The alternative model has a

significantly superior log-Likelihood (the p-value of the likelihood ratio test [293] is 0.04). Thus there is

a statistically significant DK regime relative to the Exponential, with (1− π̂) ·14 ≈ 3 outliers expected.

That the amount of cost is related to the amount of radiation released suggests testing for a DK

regime in cost. Not every runaway radiation release disaster produces commensurate financial damage

(see Three Mile Island in Tab. 6.1). But, given that the majority of nuclear power installations have

surrounding population densities higher than Fukushima [4], the DK regime in radiation should amplify

cost tail risks. From Panel (II) of Fig. 6.3 as many as the three largest points could be outlying. For

this we consider the sum-robust-sum (SRS) test statistic,

TSRSr =

∑r
i=1 x(i)∑n
i=r+1 x(i)

, m ≥ 1 , (6.7)

for the ordered sample x(1) > x(2) > ... > x(n), which compares the sum of the outliers to the sum

121



of the non-outliers [290]. This test was performed for r = 2 and r = 3 outliers for a range of upper

samples – i.e., the sample in excess of a growing lower threshold. For r = 2, the p-value fluctuates

between 0.05 and 0.1 for samples ranging from the ten to the forty largest points. For r = 3, the test

fluctuates between 0.1 and 0.2. Thus, there is evidence that the two largest events are indeed outliers,

both in terms of radiation and cost.

Given the suggestive evidence that the extreme tail of cost is heavier than the rest of the tail,

perhaps due to a runaway disaster effect, it is important to include this in the risk modeling. For

simplicity, we continue with the Pareto model. The MLE for the top 5 points is α̂(u1 = 1100) =

0.36 (0.15). To pursue a pleasant but non-rigorous argument, this appears to be consistent with the

run-away effect that propels NAMS values from M ≈ 5 to M ≈ 8. That is, transforming back from

log scale, this same effect on the Pareto model would transform the parameter α to α(u1 = 1100) ≈
5
8 × 0.61 = 0.375.

6.7 Modelling aggregate annual damage

We now characterize the annual risk of nuclear events measured by cost, with three quantities:

quantiles, return periods, and expected values. These characterizations are relevant for the current

state of the operating nuclear fleet – excluding any potential improvements following Fukushima – and

do not consider scenarios for the transition to more advanced reactor technologies, such as Generation

III and beyond.

6.7.1 Quantiles and return periods

Having estimated the rate of events in Sec. 6.4, the severity distribution in Sec. 6.5, and identified

the DK regime in Sec. 6.6, we here combine these models in a Compound Poisson Process (CPP) (for

references, e.g., [296, 182]) to model the annual total cost in MM USD,

Yt =

Nt∑
i=1

Xi,t ∼ CompPois(vtλt,F ) , (6.8)

where, for each year t = 1980, 1981, . . . , 2014, there are a random number of events Nt, modeled by

a Poisson process with annual rate vtλt, and each event has a random size (in MM USD) Xi,t
i.i.d.∼

F, F (20) = 0, i = 1, . . . , Nt, where the condition F (20) = 0 ensures that we consider only events with
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costs larger than 20 MM USD.

There are a range of statistically valid parameter estimates that should be considered. From

Sec. 6.4, rate estimates ranging between 0.025 and 0.035 were suggested as conservative underestimates.

From Sec. 6.5, the distribution of cost in excess of 20 MM was found to be well described by a Pareto

distribution with parameter between 0.5 and 0.6. Further, in Sec. 6.6 it was found that the largest

cost values are significantly larger than what would be expected under the Pareto model. An attempt

to account for this was made by including a heavier tail (a DK regime) with α ≈ 0.4 for the top ten

percent of the mass (with lower threshold u1 = 1100 MM USD).

First we characterize the risk level with return periods, defined within the CPP model by con-

sidering,

Pr
[
{# events with size ≥ x(j) in τ years > 0}

]
= 1− exp

[
−λvτPr{X ≥ x(j)}

]
, (6.9)

which is the probability of observing at least one event, at least as large as some size (e.g., given by

an order statistic x(j)), in a given time period τ . One sets equation (eq. 6.9) to a given probability p

and solves for the return period τj(p) of the jth largest event. Setting p = 1 − e−1, one obtains the

standard return period τj(p) = 1
λvPr{X≥x(j)}

. In Tab. 6.4, median and quartile estimates of p = 0.5

return periods estimates are given for combinations of the above range of parameter values. For each

given set of parameter values, 100’000 samples of the data were simulated, parameters re-estimated

on these samples, and the return period computed. The median and quartiles were taken over these

100’000 return period estimates. In the lowest risk model (λ = 0.00275, and α = 0.6), the median

p = 0.5 return periods for TMI, and Fukushima are 17, and 154 years respectively. In the most

conservative case (λ = 0.0035, and α = 0.4 in the extreme tail), these values are 12, and 62. It is clear

that including the DK effect does not inordinately amplify the risk. For instance, the return periods

with high frequency risk (λ = 0.0034) and low risk severity (α = 0.6) are similar to those of the low

frequency frequency risk (λ = 0.00275) and high severity risk (α = 0.4 in the extreme tail).

Next we provide quantiles. For F , we take the estimated Pareto cost distribution (eq. 6.3 with

u1 = 20 and α̂ = 0.55). We also consider FDK , which is a two layer model (eq. 6.5) where the upper

layer is for the DK regime. The first layer, from u1 = 20 to u2 =1’100, is Pareto with α̂1 = 0.55 (0.15)

estimated by MLE. The second layer, from u2 =1’100 onwards, is also Pareto with heavier tail α̂2 = 0.4.

Given vt, λt, and F , we can calculate the “aggregate” distribution G for annual cost Yt. We do this for
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Table 6.4: Median and quartile p = 0.5 return periods (eq. 6.9) for Fukushima (x(2)), and TMI (x(4)).
for different rate parameters λ and parameters α for the Pareto distribution above lower threshold u.
The last column corresponds to the “dragon king” regime. The median and quartiles are computed
over 100,000 estimates of the parameter values computed on data simulated given the parameter values
provided in the table.

λ x(j) α = 0.6, u = 20 α = 0.55, u = 20 α = 0.4, u = 1100

0.00275 x(2) (97, 154, 259) (64, 98, 157) (37, 82, 274)

0.00275 x(4) (13, 17, 24) (10, 13, 18) (10, 15, 30)

0.0035 x(2) (80, 128, 214) (50, 80, 130) (31, 66, 198)

0.0035 x(4) (10, 13, 19) (8, 10, 14) (8, 12, 22)

the year 2014 with the Panjer algorithm by Monte-Carlo [296, 182]. Quantiles of the estimated G are

in Tab. 6.5. The 0.99 quantile is highly sensitive to the choice of λ and distribution F : For very low

rate λ = 0.002, and without considering the DK effect, the 0.99 quantile is 54’320 (MM USD) which is

five times the cost of TMI. For λ = 0.0025, we obtain a similar estimate to [126], who obtained 81’000

(MM USD). Considering λ = 0.003, with the DK effect, this quantile is 331’610 (MM USD), which is

double the estimated cost of Fukushima.

Table 6.5: The estimated 0.95 and 0.99 quantiles, as well as the probability of the annual cost
exceeding the cost of Fukushima x(2) = 166, 089 MM USD, are given for the aggregate distribution
G. The Pareto model is with u1 = 20, α = 0.55, and the Pareto DK model is with u1 = 20 u2 =
1100, α1 = 0.55, α2 = 0.4. The volume (number of active nuclear plants) is taken to be v2014 = 388.
The quantiles are given in MM 2013USD.

Model λ q0.95 q0.99 Pr{Yt ≥ x(2)}

Pareto 0.002 2’950 54’320 0.0054
0.0025 4’440 82’440 0.0068
0.003 6’200 115’780 0.0082

Pareto DK 0.002 2’180 120’730 0.0088
0.0025 3’720 220’510 0.011
0.003 5’880 331’610 0.013

6.7.2 Expected annual damage

So far we have considered models without a limiting cost, in which the mean cost is mathe-

matically infinite, since our various estimations of the Pareto exponent α all converge to values less

124



than 1 [243]. Of course, the Earth itself is finite, thus there is an upper cut-off, u2, to the maximum

possible cost. But this upper cut-off could be exceedingly large, and there – as of yet – no evidence of

a maximum being reached thus far (i.e., no accumulation of observations at an upper limit in Fig. 6.3).

Think for instance of the real-estate value of New York City, USA or Zürich, Switzerland, both of which

are rather close to a nuclear plant, and would become inhabitable in a worst case scenario. Here, we

would be speaking of up to tens of trillions of dollars of financial losses, not to speak of human ones.

Thus, insurance and re-insurance companies introduce a maximum loss for their liabilities, which for

them works as if there is a genuine upper cut-off: u2. Everything above such a cut-off is then the

responsibility of the government(s) and society; for the truly extreme catastrophes, only the state can

be the insurer of last resort.

It is useful to put hard numbers behind these considerations by using scenarios. For the CPP

(eq. 6.8), the mean and variance of the annual cost are

E[Yt] = λtvtE[X], V ar(Yt) = λtvtE[X2] . (6.10)

Given lower and upper truncations, u1 and u2, the first two moments for the Pareto are,

E[X] =
α

α− 1

[
u1−α

1 − u1−α
2

u−α1 − u−α2

]
, E[X2] =

α

α− 2

[
u2−α

1 − u2−α
2

u−α1 − u−α2

]
. (6.11)

Thus the mean grows in proportion to u1−α
2 (and the variance faster as u2−α

2 ). In Tab. 6.6, we compute

these moments of the costs X when the maximum value, u2, is equal to the present estimate of the cost

of Fukushima, ten times greater, and one hundred times greater. Since the expected annual number of

events λ̂2014v2014 is approximately 1, these values provide a rough estimation of the mean and standard

deviation of annual cost in 2014 (eq. 6.10).

Table 6.6: The first moment and the square root of the second moment of X are given by the first
and second value respectively. The Pareto model is with u1 = 20, α = 0.55 and three values for the
maximum value u2. The Pareto DK model is with u1 = 20 u2 = 1100, α1 = 0.55, α2 = 0.4 and
three values for the maximum value u3. The maximum values are 1, 10, and 100 times the cost of
Fukushima, x(2) =166’089 MM USD. All units of costs are in MM USD.

Model x(2) 10× x(2) 100× x(2)

Pareto 1’513, 8,253 5’367, 54’590 20’488, 349’736
Pareto DK 1’404, 8,466 3’982, 45’267 11’250, 240’810
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If we accept that the Fukushima or Chernobyl events represent roughly the largest possible cost

then (see Tab. 6.6) the mean annual cost is approximately 1.5 Billion USD with a standard error

of 8 Billion USD. This brackets the construction cost of a large nuclear plant, suggesting that about

one full equivalent nuclear power plant value could be lost each year, on average. However the heavy

tailed severity implies that most years, there is little cost, and once in a while an extreme hits, driving

the total cost up considerably. If we assume that the largest typical possible cost is about 10 times

that of the estimated cost of Fukushima, then the average annual cost is about 5.5 Billion USD with

a very large dispersion of 55 Billion USD. Indeed, the outlook is even more dire for larger possible

upper-cutoffs. Such numbers do not appear to be taken into account in standard calculations on the

economics of nuclear power (see for instance [294])). To be fair, we should also note that the long-term

effect on, say, lung cancer risks and other particle pollution induced deaths, are not taken into account

in evaluating the cost-benefits of alternative sources of energy such as coal.

6.8 Discussion & policy conclusions

Our study makes important conclusions about the risks of nuclear power. Regarding event

frequency, we have found that the rate of incidents and accidents per civil nuclear installations decreased

from the 1970s until the present time. Along the way, there was a significant drop in the rate of events

after Chernobyl (April, 1986). Since then, the rate has been roughly stable, implying a rate between

0.0025 to 0.0035 events per plant per year in 2015. It is worth noting that the decrease in risk due to

the reduced accident frequency per reactor from the 1960s onwards has been somewhat offset by an

increasing number of reactors in operation.

Regarding event severity, we found that the distribution of cost underwent a significant regime

change shortly after the Three Mile Island major accident. Moderate cost events were suppressed but

extreme ones became more frequent to the extent that the costs are now well described by the extremely

heavy tailed Pareto distribution with parameter α ≈ 0.55. We noted in the introduction that the Three

Mile Island accident in 1979 led to plant specific full-scope control room simulators, plant specific PSA

models for finding and eliminating risks and new sets of emergency operating instructions. The change

of regime that we document here may be the concrete embodiment of these changes catalyzed by the

TMI accident. We also identify statistically significant runaway disaster (“dragon-king”) regimes in

both NAMS and cost, suggesting that extreme events are amplified to values even larger than those
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explained under the Pareto distribution with α ≈ 0.55.

In view of the extreme risks, the need for better bonding and liability instruments associated with

nuclear accident and incident property damage becomes clear. For instance, under the conservative

assumption that the cost from Fukushima is the maximum possible, annual accident costs are on par

with the construction costs of a single nuclear plant, with the expected annual cost being 1.5 billion

USD with a standard deviation of 8 billion USD. If we do not limit the maximum possible cost, then

the expected cost under the estimated Pareto model is mathematically infinite. Nuclear reactors are

thus assets that can become liabilities in a matter of hours, and it is usually taxpayers, or society at

large, that “pays” for these accidents rather than nuclear operators or even electricity consumers. This

split of incentives improperly aligns those most responsible for an accident (the principals) from those

suffering the cost of nuclear accidents (the agents). One policy suggestion is that we start holding

plant operators liable for accident costs through an environmental or accident bonding system [264],

which should work together with an appropriate economic model to incentivize the operators.

Third, looking to the future, our analysis suggests that nuclear power has inherent safety risks

that will likely recur. With the current model – which does not quantify improvements from the

industry response to Fukushima – in terms of costs, there is a 50% chance that (i) a Fukushima event

(or larger) occurs in 62 years, and (ii) a TMI event (or larger) occurs in 15 years. Further, smaller

but still expensive (≥ 20 MM 2013 USD) incidents will occur with a frequency of about one per year,

under the assumption of a roughly constant fleet of nuclear plants. To curb these risks of future events

would require sweeping changes to the industry, as perhaps triggered by Fukushima, which include

refinements to reactor operator training, human factors engineering, radiation protection, and many

other areas of nuclear power plant operations. To be effective, any changes need to minimize the risk

of extreme “dragon-king” disasters. Unfortunately, given the shortage of data, it is too early to judge

if the risk of events has significantly improved post Fukushima. We can only raise attention to the

fact that similar sweeping regime changes after both Chernobyl (leading to a decrease in frequency)

and Three Mile Island (leading to a suppression of moderate events) failed to mitigate the very heavy

tailed distribution of costs documented here.

A separate conclusion of our article concerns the nature of data about nuclear incidents and

accidents. We found that the INES scale of the IAEA is highly inconsistent, and the scores provided

by the IAEA incomplete. For instance, only 50 percent of the events in our database have INES
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scores. Further, for the costs to be consistent with the INES scores, the Fukushima disaster would

need to be between an INES level of 10 and 11, rather than the maximum level of 7. The INES

scale was compared to the antiquated Mercalli scale for earthquake magnitudes, which was replaced

by the continuous physically-based Richter scale. Clearly an objective continuous scale such as the

NAMS would be superior to the INES. However, while using INES, scores should be made available

for all accidents. When such a framework is established, and data on incidents and accidents made

more rigorous, and transparent, accident risks can be better understood, and perhaps even minimised

through positive learning.

Finally, our study opens a number of avenues for future research. Our results have been obtained

for the current fleet, dominated in large part by Generation II reactors. Future research directions

could be to investigate how much of the specific risks for each reactor type or design can be inferred

from statistical analysis, with the goal of identifying which of the reactors are the safest. In addition to

the role of technology, another natural extension would be to correlate accidents to the type of market

or form of regulatory governance, restructured versus monopoly/state run, or limited liability versus

no limited liability.

Speaking in comparative terms, our focus on the risks of civil nuclear power plants might give

the impression that this technology is riskier than other competing technologies, such as coal or wind

energy. However, due to the more diluted nature of the costs, and the quasi-hysteric focus on nuclear

risks following the Fukushima disaster, an insidious villain may be hidden: it has been estimated that

fine particle air pollution causes about seven million premature deaths globally each year, including

more than one million in China, and about 60’000 in Europe. Considering the value of life to be in

the millions (106), these deaths alone account for a cost on the order of a trillion USD (1012), not

taking into consideration the billions also being required for health care. Coal, whose global use has

soared by 50% from 2000 to 2010, is the leading source of fine particles, which are embedded in the

lungs, causing cancers. Between 2010 and 2012, European coal consumption jumped 5%, or 50 million

tons. Thus, performing a rigorous empirically based comparative analysis of the risks of nuclear versus

other forms of energy providers is absolutely essential to avoid falling in the traps of media hypes

and availability biases, in the goal of a better steering of our societies. Furthermore, such an analysis

should, on one hand, take into consideration the costs of the disposal of nuclear wastes, while on the

other hand recognizing that Humankind is confronted with a “nuclear stewardship curse”, whereby
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existing nuclear by-products/waste need to be securely managed over immense time scales [248].

6.9 Future Work

Looking forward, we are in the process of expanding the dataset, and constructing better cost

estimates. This involves searching for new events, comparing multiple cost estimates for each event,

where is estimates are available, and potentially constructing estimates for other events based on

comparison to other events. For future work, interesting directions are: 1) Extending the statistical

risk analysis of nuclear power in to consider different reactor designs/generations, and linking these

analyses to specific PRA estimates. This will make our estimates from more relevant to the recent

generations of nuclear power plants and position us to consider future risk scenarios. 2) Publishing the

nuclear power incident/accident data from on our ETH website, in a supervised open format where the

public can contribute. This will provide public visibility and scientific robustness into the study of the

risk of nuclear accidents. This is enormously important. 3) Comparative risk analysis of relevant energy

sources (including nuclear, fossil-based, hydro, solar, wind, etc.) based on cost. Essentially, the cost

values will include fatalities, rather than considering fatalities separately as has been done in the past.

This allows for better comparison of sources like hydro and nuclear, which have historically been high

and low fatality risks, respectively. This analysis would bring together the ENSAD data, our nuclear

events data [124], as well as data on solar, wind, etc. accidents from Prof. Sovacool. 4) Construct

and evaluate the risk of scenarios for future nuclear power plant build-out and decommissioning. This

will be based on a combination of statistical risk estimates and PSA estimates for reactors of the new

generation for which accident data is not yet available.
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Chapter 7

Cyber risk

This chapter is based on [289].

7.1 Introduction

Both the Earth and humanity are often hit by extreme disasters characterised by their high

severity and unpredictability [200]. Natural disasters – such as floods, earthquakes, and hurricanes –

and man-made disasters – such as financial crashes [148, 242], nuclear power plant meltdowns [291,

257], military nuclear accidents [223], the 2003 space shuttle explosion [161] and many other extreme

industrial disasters [199, 49] – belong to this class. A recent entrant into this class are cyber attacks

[3], in which intellectual property can be ex-filtrated, and operations of information systems – or even

critical physical infrastructures [57, 221] – disrupted. These cyber attacks can be perpetrated by cyber

criminals, or even by state actors as acts of espionage or cyber warfare. Here we focus on personal data

breaches, as a subset of cyber risks, where large amounts of personal information (i.e., name, social

security number, address, email, date of birth, credit card numbers, user-names and passwords, etc.)

are ex-filtrated from organisations, typically for use in identity fraud.

While appearing minor in view of other cyber risks, personal data breaches heavily impact

both consumers and organisations [113, 202]. For instance, the average financial loss due to the

theft of a single piece of private data is estimated to be 213 USD [202]. Thus it is not surprising

that data breaches can result in immediate negative impacts in the stock value of traded companies

[43, 100, 8, 101]. Further, it is estimated that data breaches (including intellectual property) cost large

companies more than 1 trillion US Dollars in 2008 [180]. In fact, the potential for major damage is
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so severe that the statistical properties of data breaches have been found to be similar to those of

the most extreme disasters mentioned above [174]. Acknowledging this, both governments, insurance

companies, and organisations have started ranking cyber risk as one of the largest risks that they face

(e.g., [89, 206, 284, 6, 14]).

Understanding the risk of disasters is essential for the proper design of infrastructures, emergency

response planning, and for the construction of sound insurance policies [79, 82]. Modern approaches

to this involve the systematic collection of high quality data and subsequent statistical risk analysis

[79, 200].

Early work on personal data breach risks [174] has demonstrated the Pareto (Power Law) distri-

bution function (df) of large breaches, which, having parameter α ≈ 0.7, is so extremely heavy tailed

that the largest observation is expected to be (1−α)/α ≈ 0.43 times as large as the sum of the rest of

the data [244]. For this reason, the mean (and higher moments) are infinite, and thus data breaches

constitute an extreme statistical risk. Motivated by the major implications of such a dire characteri-

sation, the fact that, in the past six years since [174] was done, much more data has become available,

and given the dynamic nature of the cyber space, we both significantly update and extend this analysis.

With a current and much larger dataset, we confirm the heavier tailed breach df, and stable frequency

since 2007. Going beyond this, we find that the breach df is in fact even heavier tailed than expected,

and has a finite maximum. Further, we explicitly evaluate the connection between organisation size

and breach risk.

Specifically, we characterise the risk of large data breaches of personal data occurring at organ-

isations. Damage is measured by the number of individual information items (ids) ex-filtrated. The

recording of such data started in the 2000s, by an early online community, scouring media and other

online reports [196], and has since become more mature with a variety of communities and organisa-

tions taking on the job [204, 282]. Within the United States, this task has been aided by Freedom of

Information (FOI) requests, and the onset of legal disclosure obligations faced by organisations having

suffered a data breach (Data Breach Notification Act). However, perhaps due to the relatively short

history of cyber risks, these databases are not without their weaknesses, including incompleteness, lack

of standardisation, in-availability, and so on. Here, we have joined together the two largest databases

[196, 204], and filtered for events that occurred at an organisation (both public and private, businesses,

universities, hospitals, etc.), within any country. This yielded 6,422 data breach events, each having
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in excess of 10 ids breached, between January 1st, 2000 and April 16, 2015, providing a solid basis

for statistical analysis that allows us to estimate both the frequency and severity of events. For this

modeling, we focus exclusively on large breaches (having in excess of fifty thousand ids). The severity

is represented by a Pareto df with extensions allowing for the statistical hypothesis testing of (i) if

there is a maximum breach size, (ii) if this maximum is growing, and (iii) if breaches tend to be getting

larger over time. These models are tested against one-another and individually verified by rigorous

diagnostics. Acknowledging the fact that breached data accumulates in the hands of cyber criminals,

we also model the cumulative sum of large breaches over time. This brings together models for both

frequency and severity, and provides a gloomy forecast for risk of data breaches, and thus the state of

privacy, in the following five years.

Further, extreme statistical properties of disasters may often be related to a complex hierarchi-

cal underlying structure, in which cascades of failures develop into a broad df of sizes. For instance,

the Gutenberg-Richter (heavy-tailed power law) frequency-magnitude law for earthquakes is thought

to originate from the hierarchy of fault scales forming complex fault networks [226]. The proximate

trigger of the 2008 financial meltdown can be attributed to a collapse of the hierarchical inter-bank

network [237], when overnight loans backed by financial asset collaterals froze [143, 230]. Financial bub-

bles develop from the interaction of many different agents at different scales– computers, individuals,

investment floors, and firms to currency blocks – at different time scales [252].

Similarly, the Internet exhibits a socio-technological complexity that spans all levels of inter-

actions. With fast-evolving hardware and software structures, and coupled with heterogeneous and

simultaneous interactions of millions of users, there are many potential points of failure. More specifi-

cally, data breach risk is related to underlying factors such as the attack surface, which is the number

of points where an attacker can extract data, as well as the volume and value of information assets that

an organisation is guarding. As a single proxy risk factor for these variables, we consider organisation

size, as defined by market capitalisation. With this measure, we unearth how both the frequency and

magnitude of breach risk scale with organisation size – thus quantifying the effective risk surface of an

organisation.
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7.2 Data, Results & Methods

The risk of data breaches is considered where each breach has an event time, being the date at

which it was reported (to a governmental body or media outlet), and a size, being the number of pieces

of personal information breached.

The risk is decomposed into frequency and severity components, and these two components are

studied separately. Only events above a threshold size are considered. This is sensible for (at least)

two reasons: Firstly, large breaches dominate the total number of breached ids. For instance, although

events with size above 5 × 104 only represent less than 10 percent of events, the total number of ids’

breached across these large events is above 99 percent of the total across all events (Tab. 7.1). Thus,

we want good data for reliable statistics about large breaches. This relates to the second reason:

large breach events are more visible, and thus the data are more complete and reliable in this range.

Including smaller events in the data set worsens data quality and may bias statistics. We choose the

breach size threshold to be 5 × 104, and breaches above this threshold will be referred to as large

breaches. To further select reliable data, we study events occurring from January 1st, 2007 until April

15th, 2015, being the most recent date available at the time of analysis. Data is available prior to 2007,

however the number of events are relatively few, and the statistics less consistent.

It is important to note that almost 40 percent of events have an unknown size (Tab. 7.1). If we

exclude these events, and if these events with unknown size tend to be small (i.e., falling beneath the

threshold of 5 × 104), then there is no problem. This may well be the case. If they also tend to be

large, then we underestimate the frequency. If they tend to be large, and follow a different distribution

than the rest of the sample, then this will bias the estimate of the distribution. However, given a

lack of covariates to identify if there is a way to predict if an event will have an unknown size, we

can neither evaluate the effect of this, neither perform any meaningful imputation (i.e., estimate the

missing values in a way that is consistent with the result of the data). That is, any imputation will

only sample these events from the distribution identified by the observed events, and thus have no

impact on the distribution. Further, this will require an assumption about what proportion of the

events with unknown size will be above the threshold. Thus, we simply omit the events with unknown

size, providing an optimistic quantification of the risk.

To enable rigorous statistical modeling, we introduce some notation. We consider the large breach

sizes {xi, i = 1, 2, . . . , n = 619}, having limited size 5 × 104 < xi ≤ ν, with given lower threshold
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5× 104, and parameter ν gives the unknown maximum breach size. The data xi are ordered by their

event time 0 < t1 < t2 < · · · < tn, where the clock starts at t = 0, being January 1st, 2007, and one

unit of t is a year.

Category n Total Breach Monthly Rate Annual Rate GLM

US 6142 1.189× 109 62.6 (13.1) 751.0 (110.9) -
US> 5× 104 407 1.174× 109 4.25 (1.82) 49.5 (6) 4.59 (0.5); − 0.08 (0.1), 0.43

Non-US 1978 0.794× 109 24.6 (18.0) 296.0 (199.2) -
Non-US> 5× 104 186 0.788× 109 2.48 (1.65) 26.0 (11.4) 1.64 (0.4); 0.19 (0.1), 0.02

All 8574 1.983× 109 87.2 (27.1) 1046.5 (292.1) -
All> 5× 104 619 1.962× 109 6.29 (2.65) 75.5 (10.38) 5.44 (0.6); 0.18 (0.12), 0.13

Table 7.1: The number of events (n), total number of breached ids (Total Breach), average monthly
count (Monthly Rate) and standard deviation of monthly counts, average annual count (Annual Rate)
and standard deviation of annual counts, and GLM summary. The generalised linear model (GLM)
summary provides the intercept parameter (events per month) with standard error, and GLM slope
parameter (events per year) with standard error and p-value. These statistics are given for events
occurring to US firms (US), to non-US firms, and to all firms together (All). Statistics were taken on
the window of January 1st, 2007 until April 15th, 2015. For each of the aforementioned categories,
the statistics are given for all sizes (including 2683 events with unknown size within the US, and 526
events with unknown size outside of the US), and for events with breach in excess of fifty thousand
ids. (> 5× 104).

7.2.1 Data Breach Frequency

The rate (frequency) of breach events is studied, with relevant statistics presented in Tab. 7.1.

According to a linear regression of monthly counts over time (Poisson Generalised Linear Model with

identity link [195],) the rate of large events has been stable within the US, and growing significantly

outside of the US – driving almost significant (p = 0.13) growth when all countries are taken together.

However, this growth is 0.18 events per year, which is only a fifth of a percent of the total annual rate,

thus being practically insignificant. This apparent stability runs counter to the view that cyber risks

are worsening. Next, we consider the dynamics in the size of large breaches, which provides a less

reassuring message.

7.2.2 Data Breach Severity

The dynamics of the df of large breach sizes over time are studied. Given the growing amount of

data being stored online, and the evolution of cyber crime methods, the severity of breaches is expected

134



to increase. As an initial diagnostic, the observed cumulative sum of large breaches over time is shown,

in Fig. 7.1 (panel IV), to curve up – indicating growth in the mean breach size. We thus consider three

possibilities: (i) there is a maximum possible breach size, (ii) this maximum is growing, and (iii) large

breaches are becoming larger over time.

Detecting The Maximum Breach Size

We use Extreme Value Theory (EVT) [79] to determine if a maximum breach size exists, and if

so, how it has evolved. For this we assume that the breach counts are large enough that they can be

treated as realizations of a random variable with a continous rather than discrete distribution. EVT

provides a standard framework for such statistical inference “beyond the largest observation”. We

exploit a quite general EVT theorem that roughly states: for large values of random variable X being

in excess of a sufficiently large truncation u, the Generalized Pareto Distribution (GPD) approximately

models the tail of the df of X,

Pr{X − u ≤ x|t, X − u > 0} ≈ 1− (1− ξx/β(t))−1/ξ , with β(t) > 0 , for ξ 6= 0 , (7.1)

with 0 ≤ x without upper bound if the Extreme Value Index ξ is positive and 0 ≤ x ≤ −β(t)/ξ for

ξ < 0. In this latter case, a finite maximum exists for X,

ν(t) = u− β(t)/ξ < ∞ , (7.2)

which may vary with time when the scale parameter β is time dependent.

To characterize the maximum breach of the (natural) log of breach sizes, ν(t), we consider the

following statistical hypotheses and their corresponding parameterisations of (7.1),

M0 : no maximum size is detected (ξ > 0) ; (7.3)

M1 : there is a constant log-maximum (ξ < 0, β(t) = β0) ; (7.4)

M2 : the log-max grows linearly in time (ξ < 0, β(t) = β0 + β1t, β1 > 0) ; (7.5)

M3 : the log-max grows sub-linearly in time (ξ < 0, β(t) = β0 + β1ln(t), β1 > 0) . (7.6)
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For the GPD approximation (7.1) to be good, one wants u to be as large as possible, but at

the same time one wishes to have a large sample. Thus, we take estimates at the lowest value of u

at which parameter estimates stabilize. The GPD (7.1) with its parameterisations (eqs. 7.4-7.6) were

estimated on the natural log of the breach sizes (Peaks Over Threshold (POT) Estimation [54]), for

lower thresholds ranging from u = 14.4 (having 102 points above) to u = 16.8 (having 20 points above).

Considering that the estimated maximum is approximately stable for u > 15.5 (Fig. 7.1, panel (II)),

estimates are taken at u = 15.5 (having 50 points above), and recorded in Tab. 7.2.

The main insights about the behaviour of the maximum size gained from this estimation are

visualized in Fig. 7.1 (panels (I) and (II)). For a range of lower thresholds u, the estimated maximum

breach size are “hugging” the data, implying the existence of a highly significant upper truncation

which the data has already reached. Moreover, we find a highly significant upward growth of this

maximum size. In further detail, for M1, the estimated shape parameter ξ is already significantly

negative (ξ̂ = −0.36 (0.1), p ≈ 0.001) with small u = 14.4, and achieves values below −1 for u > 16,

indicating a highly significant maximum. Both M2 and M3 exhibit significant growth in the maximum

over time (p < 0.001 in Tab. 7.2), and have superior likelihood to M1 by the likelihood ratio test

(LRT), having p = 0.08 and p = 0.05, respectively. Finally, M3, has superior log-likelihood to M2

for all u > 15.5 with the same number of parameters. Thus, the best model for the growth of the

maximum (obtained by exponentiation of the log-maximum) is the sub-linear power,

exp(ν(t)) ∝ t−β1/ξ ≈ t0.83. (7.7)

Indeed it may seem obvious that here – as in any natural (finite) system – there is a maximum size.

Further, given the flow of users and data online, and the growth of giant IT companies, it is sensible

that this maximum possible breach size is increasing. However, to quantify this is of high importance

to policymakers and (re-)insurance firms who care about the aggregate risk, which is dominated by the

largest observations of such heavy tailed df. It also makes a major theoretical distinction as for this

model with a finite maximum all moments are finite, whereas with an infinite maximum all moments

are infinite.
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Table 7.2: EVT peak-over-threshold (POT) estimates of the three models (eqs. 7.4-7.6) are presented
for lower threshold u, with loglikelihood (ll), and estimated shape ξ (with standard error), scale inter-
cept β0 (with standard error) and scale slope β1 (with standard error and p-value).

Model u ll ξ β0 β1

M1 15.5 −60 −0.61 (0.18) 2.24 (0.47) = 0
M2 15.5 −57 −0.65 (0.15) 1.35 (0.39) 0.18 (0.06), 0.001
M3 15.5 −56 −0.78 (0.15) 1.60 (0.26) 0.65 (0.15), 0.7× 10−6

The Distribution of Large Breach Sizes

The df of large breach sizes is estimated to quantify the severity of data breach risks and their

dynamics. We model the large breach sizes by a doubly truncated Pareto (DTP) df typical for modeling

extreme risks,

FDTP (x|t) =
1− (x/ũ)−α(t)

1− (ν̃/ũ)−α(t)
, 0 < ũ < x ≤ ν̃ , α(t) > 0 , (7.8)

having shape parameter α(t) potentially varying in time. Rather than working directly with (7.8),

for convenience we work with the natural logarithm of the data, Y =ln(X), which follows a doubly

truncated Exponential (DTE) df,

FDTE(y|t) =
1− exp(−α(t)(y − u))

1− exp(−α(t)(ν − u))
, 0 < u < y ≤ ν , α(t) > 0 , (7.9)

with u =ln(ũ) and ν =ln(ν̃).

We have already determined that a significant and growing maximum breach size exists. How-

ever, it is not yet known what other trends have been present within breach severity. We thus consider

statistical hypotheses about trends in the df of large breaches, and their corresponding parameterisa-

tions in (7.9):

D0 : the df has a fixed max (ν(t) = ν0) and is stationary (α(t) = α0) ; (7.10)

D1 : the df has a fixed max (ν(t) = ν0) and becomes more heavy tailed (α(t) = α0 + α1t , α1 < 0) ;(7.11)

D2 : the maximum log-breach grows sub-linearly (ν(t) = ν0 + ν1ln(t) , ν1 > 0),

and the df becomes more heavy tailed (α(t) = α0 + α1t , α1 < 0) . (7.12)

The hypothesis D2 (7.12) contains (7.6) where ν0 = u − β0/ξ and ν1 = −β1/ξ. The hypotheses
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D0 (7.10) and D1 (7.11) overlap with testing of the previous hypothesis tests (7.3-7.6), providing an

opportunity for confirmation of results about the maximum with the specific DTE model (7.9).

The DTE (7.9) with specifications (7.10-7.12) were estimated by Maximum Likelihood (ML).

For D2, the maximum was given by ν0 ≈ 13.63 and ν1 ≈ 0.84, computed from the EVT estimates (M3

in Table 7.3).

The estimation (Table 7.3) finds that large breaches have grown larger (the tail has become

heavier), and confirms that a maximum breach size exists, and is increasing. More specifically, it is

confirmed that a maximal breach size is clearly present by comparing the likelihood of D0 with and

without finite maximum (p ≈ 10−7 by the LRT). It is also found that large breaches have become

heavier tailed, with the shape parameter of D1 significantly decreasing (p = 0.04) at a rate of −0.027

per year. This extension of the model significantly increases the quality of fit (D1 has superior likelihood

to D0 with pLRT = 0.006). Finally, in confirmation with the EVT results, the model (7.12) is found

to be best, where the growing maximum further improves the result of D1 (D2 has superior likelihood

to D1 with pLRT = 0.007).

These results are all quite striking. For instance, all estimates, having shape parameter α < 1,

are so extremely heavy tailed that, without a finite maximum, the mean of this model would be infinite.

For D0, having shape parameter α = 0.47 and maximal breach 1.52 × 108, the expected large breach

size is 3.1× 106, with even larger standard deviation, 1.3× 107 (7.14). For D2 in 2015 (t = 8), having

α(8) = 0.364 and maximum exp(ν(t)) = 2.24 × 108, the expected large breach size becomes twice as

large as for D0. Further, under D2, given a breach size is in excess of fifty thousand, there is a 10

percent chance that it exceeds ten million ids.

In Fig. 7.1 (panel III), diagnostics are given to demonstrate the validity of D2. For this, the

data are transformed to be stationary and then standard diagnostics are performed. In detail, if D2

is true, then the log breach random variable Y = ln(X) is from model (7.9) with non-stationary

parameters (7.12) with estimated values in Tab. 7.3. Thus, the transformed data,

Ỹi = Y × α(t)

α0
| t ∼ DTE (α0 , ν

∗(t)) (7.9), ν∗(t) =
α(t)

α0
× ν(t) ≈ ν0 , (7.13)

will be approximately stationary with df equal to that of the log breaches Y at time 0 (January 1st,

2007). Estimating the model (7.9), with the D0 specification, on the transformed data (7.13), yields an

estimate of α̂ = 0.58, which agrees with the estimate D2 at t = 0 (α(0) = α0 = 0.57), indicating that
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the transformation is valid. Further, in Fig. 7.1 (panel III), the empirical complementary CDF of the

transformed data are found to be well described by this estimated stationary model, as evidenced by

small residuals between the empirical and estimated complementary CDFs – the Kolmogorov-Smirnov

[268] has p-value of 0.78 – as well as the consistency of the shape parameter α for lower truncations u

ranging from 5× 104 to 5× 107.

The above results are strengthened and confirmed by obtaining similar results with a more

flexible method. We used quantile regression [153] which, rather than specifying a parametric model,

independently fits linear regressions to each quantile. In support of the dynamic specifications D1 and

D2, Fig. 7.1 (panel I) shows good agreement between the linear quantile regressions and the growing

quantiles of D2. Further, the slope, standard error, and p-value of the linear regressions of the 0.5 and

0.9 quantiles are 0.083 (0.038), 0.03 and 0.145 (0.07), 0.04, respectively. Thus the quantile regressions

are significantly increasing, providing strong additional evidence that large breaches are getting larger.

Table 7.3: Parameter estimates, standard errors (Monte Carlo with 1000 repetitions), and p-values for
the significance of slope parameters (Monte Carlo with 1000 repetitions), of model (7.9) with parameter
specifications eqs. 7.10-7.12. The D0* model has no finite maximum.

Parameter ll α0 α1 ν0 ν1

D0 −1020.7 0.47 (0.017) = 0 18.839 (0.2) = 0
D0* −1032.9 0.51 (0.02) = 0 =∞ = 0
D1 −1017.0 0.58 (0.05) −0.027 (0.01), 0.002 18.839 (0.2) = 0
D2 −1013.3 0.57 (0.05) −0.025 (0.01), 0.014 = 13.63 = 0.84

7.2.3 Cumulative Risk & Future Projections

Due to the large-scale sharing of breached data, e.g., by sophisticated underground markets

[99, 207], breached personal information is concentrated, enabling efficient subsequent identity fraud

[113]. Thus, privacy erodes with the growth of the cumulative number of breached ids. For this reason,

to understand the long term risk of data breaches to privacy, it is crucial to study the cumulative

amount of breached information. The cumulative sum measure brings together both frequency and

severity in a convenient way for the study of past and future evolution of risk.

In Fig. 7.1 (panel IV), the observed cumulative sum, Cn =
∑n

i=1 xi, of the n = 619 large breaches

occurring from January 1st, 2007 until April 15th, 2015, is plotted. If both the statistics of frequency
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and severity were stable over time, the cumulative sum would grow linearly in n. That the observed

cumulative sum curves upward indicates a growing mean, as featured in the D1 and D2 specifications

of (7.9). To compare the observed data with the models, the expected cumulative sum E[Cn] = nE[X],

and its standard deviation, are plotted for the estimated models. This simply requires computing the

first two moments of the DTP (7.8):

E[X] =
α

α− 1

[
u1−α − ν1−α

u−α − ν−α

]
, E[X2] =

α

α− 2

[
u2−α − ν2−α

u−α − ν−α

]
. (7.14)

However, there is an important subtlety in comparing the observed and expected curves. The

relevance of the expected sum to the observed sum relies upon the Central Limit Theorem (CLT). For

infinitely large ν, the mean is infinite and thus the CLT never converges. In this case, the cumulative

sum would grow super-linearly, Cn ∼ u n1/α, rather than linearly [244]. For instance, for α = 0.5, this

curve would have exceeded the upper boundary of the Fig. 7.1 (panel IV) within the first n = 200

observations. A rule of thumb for when the CLT holds, and the cumulative sum grows linearly in n

rather than super-linearly, is for samples larger than n∗ ≈ ( νu)α [244]. Here where u = 5 × 104, ν =

1.6 × 108 and α ≈ 0.5, the crossover point is n∗ ≈ 50. This means that the observed upward bend in

the cumulative sum occurring after n∗ is not due to the superlinear growth resulting from the heavy-

tailed CDF but rather results from the non-stationarity of the process. Comparing the observed and

expected curves: D0, which grows linearly, fails to capture the trend; D1, which is convex due to an

increasingly heavy tail, partially captures the trend; and D2 is again the best model, capturing the

trend well due to both an increasing maximum and increasingly heavy tail.

For future projections, we make use of all fitted models. The previous analysis was conditional

upon knowing the number of breaches. To more properly quantify the uncertainty of projections, the

annual number of breaches Nt is treated as random. The annual sum,

Yt = X1 + · · ·+XNt , (7.15)

(with all Xi and Nt independent) is called a Compound Process [182, 296]. The mean and variance are

given by,

E [Yt] = E [Xt] E [Nt] , Var(Yt) = E [Nt] Var(Xt) + E [Xt]
2 Var(Nt) , (7.16)

which are computed for the coming five years of 2015-2019 in Tab. 7.4, where the four months of data
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after January 1st, 2015 were excluded for convenience. One observes that the cumulative breach Ct,

currently at a level of around 1.816× 109, is expected to more than double in the next five years under

the non-stationary D1 and D2 model specifications.

Model Quantity 2014 2015 2016 2017 2018 2019

D0 Yt × 10−8 - 2.37 (1.14) 2.37 (1.14) 2.37 (1.14) 2.37 (1.14) 2.37 (1.14)
D0 Ct × 10−8 = 18.16 20.5 (1.14) 22.9 (1.61) 25.3 (1.94) 27.6 (2.28) 30.0 (2.55)
D1 Yt × 10−8 - 3.73 (1.52) 4.18 (1.63) 4.67 (1.74) 5.21 (1.86) 5.81 (1.99)
D1 Ct × 10−8 = 18.16 21.9 (1.52) 26.1 (2.22) 30.7 (2.82) 36.0 (3.38) 41.8 (3.92)
D2 Yt × 10−8 - 4.96 (2.12) 5.97 (2.48) 7.16 (2.87) 8.56 (3.31) 10.2 (3.79)
D2 Ct × 10−8 = 18.16 23.1 (2.12) 29.1 (3.27) 36.3 (4.35) 44.8 (5.47) 55.0 (6.65)

Table 7.4: Future expected annual breaches (and standard deviation) (7.16) of the annual sum Yt
(7.15) and cumulative breach Ct since 2007 are presented with annual rate estimates from Table 7.1,
and DTP df (7.8) with parameterisations given in eqs. 7.10-7.12, and parameter values in Table 7.3.
All values in the table are divided by 108. These estimates assume a constant rate of 75.6 large events
per year with annual variance of 229 (computed across 2007 until 2015). The US rate estimate is 50.4,
and thus US estimates may be obtained by scaling the numbers by 49.5/75.6 ≈ 2/3 (the US total is
11.89× 108, which is also about 2/3 of the total of 19.62× 108).

7.2.4 Data Breach Risk & Organisation Size

Larger organisations tend to have more attractive assets to motivate a cyber attack, present a

larger attack surface making penetration easier, and once penetrated, contain more data to be ex-

filtrated [233]. Thus, larger organisations will be both more frequently and severely victimised than

smaller ones. To quantify the relationship between risk and organisation size, we use market capital-

isation (MCAP) as a proxy for size, and compare organisations of different size with past observed

breaches. Specifically, we consider 4,950 firms publicly traded on the New York Stock Exchange

(NYSE), American Stock Exchange (AMEX), and the Nasdaq [187]. For victimised firms, MCAP was

taken the day before the data breach incident, to avoid possible subsequent devaluations due to the

breach (e.g, see [43]), and to avoid price changes that often occur in the highly dynamic stock market.

For non-victimised firms, the MCAP was taken at June 1st, 2014. All MCAP values were then inflation

adjusted to 2014 US Dollars. Within the dataset studied here, there were 735 events across 400 of

these companies, between 2006 and 2015.

To model the cumulative distribution function (CDF) of the size of all firms (n = 4, 950), and

the size of firms given that they have been victimised (n = 735), we consider a Lognormal df. This
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model choice has substantial justification, being a good model for a variety of size measures ranging

from profits, to MCAP, to the number of employees [267, 173, 107] and because it asymptotically

encompasses the Zipf law family [175] often advocated based on the interplay between proportional

growth and firm birth and death events [251, 240, 239, 216]. The df is truncated from above and below

by the observed maximum and minimum of 106 and 6.6 × 1011, respectively. The estimated dfs are

plotted with the empirical dfs in Fig. 7.2 (panel (I)), demonstrating reasonable goodness of fit. The

CDF of victims, being shifted about 1 decade to the right of its unconditional counterpart, gives much

higher probability to larger firms being victimised. This is further studied in the next subsection, and

the relationship between firm size and breach size is presented afterwards.

Breach Frequency & Firm Size

The effect of firm size on the frequency of breach events is now studied. Despite the fact that

only 10 percent of the publicly traded firms have been victimised, nine of the ten largest have been,

and often multiple times (e.g., both Apple Inc. and IBM 6 times, Facebook 8 times, Bank of America

8 times, HSBC 17 times, General Electric 2 times, and Wal-Mart 6 times). Thus larger firms, despite

being rare, are frequently victimised. The relative frequency at which firms with a given log(MCAP)

are victimised is quantified by the victimisation pdf,

Pr{Firm log(MCAP) size= x|Firm is victimised} ∝ fVictim(x)

fPopulation(x)
, (7.17)

which is proportional to the ratio of the victim and population log size densities. Using the Lognormal

estimates from the previous section as well as histogram density estimates, the victimisation pdf (7.17)

is plotted in panel (II) of Fig. 7.2. Both the histogram and parametric estimate suggest approximate

linear growth, with slope 0.6, for sizes between 108 and 1011. Thus the probability of victimisation

grows with size as ∼ s0.6.

The way that frequency (and breach size, to be seen below) scale with firm size can be interpreted

as a quantification of an effective risk surface. A 3D object with volume c has surface area proportional

to c2/3. In d dimensions, the exponent is (d − 1)/d. Thus the exponent 0.6 would correspond to a

(fractal) dimension of df = 2.5, implying that the risk surface scales with firm size in a way between

that of the circle delineating a disk and the sphere bounding a ball.

Another line of interpretation acknowledges that firms are composed of sub-units, and that
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breaches occur at this level. An example of this is Sony Corporation, which suffered a data breach

on its PlayStation Network (Sony Computer Entertainment Division) in 2011, and a separate massive

attack on Sony Picture Entertainment in late 2014. In [15], it was found that the number of subunits

in a firm scales with firm size as ∼ s1/3 and that the size of the largest sub-unit within a firm scales

like ∼ s2/3. A pleasant, but simplistic, connection between this scaling and our result would be that

the probability of attacks is proportional to the size of the largest unit, which is arguably the most

visible and vulnerable. In reality, the number of subunits may also play a role.

Breach Size & Firm Size

We now quantify the way in which breach size scales with firm size. Companies with larger

market capitalisation, tending to have more customers, retain more personal data that can be leaked.

Further, personal data are increasingly considered as the ore that companies mine to extract consumer

profiles and enhance online commerce [233]. Thus, the value (and size) of personal data assets are

increasingly likely to be reflected in market capitalisation [44].

In Fig. 7.2 (panel III), the 298 breaches with size in excess of 103, that occurred at publicly

traded US firms, are plotted versus organisation size (MCAP). Further, linear quantile regressions of

this data, with automatically detected change-points (additive quantile regression [153]), are plotted.

One sees that the largest breaches occur at larger organisations. That is, the quantile regressions for

quantiles 0.5 and above significantly increase (p < 0.05) with firm size, until this size effect saturates

for firm sizes above 1010. In particular, for the 0.9 quantile, breach size increases with slope 0.66,

indicating that the largest breach sizes scale with firm size as∼ s0.66.

It is also apparent that, despite the fact that large firms suffer the largest breaches, they also

– more frequently – suffer small ones in which only a fraction of the total information assets are

extracted. Assuming that hackers always aim to maximise the volume of ex-filtrated information,

these small breaches could be considered as only partially successful. More likely, again recognising

that organisations are comprised of functional sub-units – potentially having separate IT systems –

and that attacks occur at the sub-units, then the breach sizes will be related to the subunit sizes.

Again recalling the result of [15] that the size of the largest sub-unit scales with firm size like ∼ s2/3,

we see an incredible coincidence that the 0.9 quantile of breaches and breach frequency also scale with

firm size in this way. This strongly links the risk of breaches to the size of the largest sub-unit.
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This characterization of the risk surface in terms of firm size – specifically with densities that

dictate both how the number of breaches are distributed across firms of different size, and how large

breaches tend to be for victimized firms of different size – allow for the extrapolation of breach statistics

onto unobserved populations. For instance, given a population of organizations and their sizes, one

can infer the quantity and distribution of breaches that they have suffered. The validity of this most

basic extrapolation will involve a ceteris parabis assumption. For instance, one will have to assume

that such an organization is similar in attractiveness and permeability to cyber criminals to a publicly

traded firm of similar size.

7.2.5 Sector & Data Breach Risk

The previous sections focused on identifying universal relationships in data breach risk with a

single risk factor, organisation size. Clearly, there are other attributes of organisations that are relevant

to data breach risk. We thus consider industrial sector as a risk factor, which may serve as a proxy

to identifying relatively homogeneous subpopulations in regard to their frequency of interaction with

consumers, and the total volume of personal data that they guard. There are twelve sectors, as defined

in [187]. The sector is likely confounded with firm size, and thus firm size effects. However, due to

the limited data, a statistical analysis considering these effects jointly is infeasible. Rather, a simple

analysis is done, nuancing the former results.

Fig. 7.3 plots the median and 10 year frequency of large breaches for the 12 sectors. We propose

to rationalise these observations by the hypothesis that the frequency of breaches is related to the

frequency of customer interaction, and that the severity should be related to the volume of personal

data guarded by an organisation. Consumer Service, and Finance have small sub-units (i.e., retail shops

and bank branches) at which they interact with local customers, and suffer from small but frequent

breaches. On the other side, Basic Industries, having large centralized operations, and infrequent

customer interaction, implies large yet infrequent breaches. Consumer Durables have a lower breach

frequency than Non-Durables, which, by definition, involve more frequent customer contact. Further,

the companies with the largest loss in the three categories with highest median loss are Sony (Non-

Durables), eBay (Misc.), and UPS (Transportation). These companies all clearly guard large amounts

of personal data. Capital Goods (e.g., heavy equipment producers) suffer relatively small breaches,

possibly due to a smaller number of customers than retailers of non-durables. These comparisons tend
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to support the hypotheses posed above.

7.3 Discussion

Due to the combination of large size and the high potential for immediate financial damage,

breaches of personal identities (ids) are among the most disruptive and costly cybersecurity events both

for consumers [113] and organisations [235]. Thus, large breaches translate into immediate financial

consequences for organisations, often reflected in drops in stock price [43, 100, 8, 101], and reputational

damage. Based on this study, the annual total of breached ids is expected to range between half a billion

to a billion over the next 5 years. Considering the average cost of more than 200 USD per breached

item [202], this translates into hundreds of billions of USD losses per year. Severely worsening the

problem is that, not only do data breaches have short term consequences for individuals, but due

to sophisticated underground markets for breached data [99, 207], breached personal information is

concentrated, enabling efficient subsequent identity fraud [113]. As an illustration, several research

studies have established how personal identities may be reconstructed, and individuals re-identified

from a few spatio-temporal locations of credit card uses [68] or even from public data [9]. Thus,

privacy gets increasingly eroded as the cumulative number of breached ids grows.

Cyber risks, within the general context of the evolving and expanding Internet, are highly dy-

namic. Being governed by the struggle of IT security technology to keep up with the constant inno-

vation and adaptive nature of cyber crime, ranging from social engineering attacks to the egregious

sale of “zero day” security vulnerabilities. The struggle is compounded by an ever-growing amount of

personal data stored online, and a growing attack surface due to the adoption of mobile computing

paradigms. Due to the clear potential for damage, it is crucial that the risk of data breaches be well

understood. Despite the dynamic context of data breaches, and a relatively short history, we have

specified a statistical model for risk that successfully unearths clear statistical regularities, allowing for

novel understanding of this risk.

The frequency of large breaches (having in excess of fifty thousand ids) was found to be stable

since 2007, with a rate of 76 events per year. Despite the relatively low rate, since 2007 nearly 2 billion

pieces of personal information have been breached, hinting at the extreme size of large breaches. For

breach sizes, we considered three possibilities: (i) there is a maximum possible breach size, (ii) this

maximum has grown, and (iii) large breaches became larger over time. These statements were formally
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tested on the data (from January 1st, 2007 until April 15th, 2015). By Extreme Value Theory (EVT),

it was found that a highly significant maximum breach size exists, and is growing with time like t0.84,

where the current maximum breach size is about 200 million, and is expected to grow fifty percent

over the next five years. This feature is highly relevant for policymakers and re-insurance companies

who are concerned with evaluating and managing the total risk.

On a critical note, this upper limit may not be entirely valid. That is, EVT cannot consider

the presence of an unobserved regime beyond the usual df. Such singular extreme statistics, also

called Dragon-Kings, have been observed in, e.g., city sizes, financial crashes, and nuclear accidents

[259, 291]. For example, Facebook gathers personal data from 1.4 billion users (as of January 2015, and

not counting Whatsapp (700 million users) acquired by Facebook in 2014), and the National Security

Agency (NSA) most probably gathers personal information about several billion people worldwide.

Though these organisations certainly operate with incomparably more resources, and at a much high

level of information security, the chance of massive attacks on personal data gathered and stored by

Internet giants and governments cannot be excluded in the future – especially considering the size

effect by which large organisations are more frequently attacked, discussed below.

The df of breach sizes was found to be well modeled by a Pareto (Power law) df with a linearly

shrinking shape parameter, and maximum breach size given by the EVT estimate. The estimate of this

model, having shape parameter 0.57 (0.05) in 2007, is expected to have become much heavier tailed

with shape parameter 0.37 in 2015. Under this current model, given that a breach is in excess of fifty

thousand ids, there is a ten percent chance that the breach exceeds ten million ids.

Next, the connection between organisation size, measured by market capitalization, and the risk

of data breaches was unearthed. It was found that the frequency of breaches scales with organisation

size like ∼ s0.6, indicating that larger organisations are victimised at much higher frequencies than their

smaller counterparts. Further, the largest breach sizes (quantified by the 0.9 quantile) were found to

scale with organisation size ∼ s0.66 for firms with market capitalisation between one million and ten

billion US$. Above ten billion US$, the scaling reached a plateau. Thus we identified that the effective

risk surface scales with organisation size with at exponent around 0.6. This can be thought of as a

fractal scaling relationship. Alternatively, recognising that organisations are comprised of functional

sub-units – potentially having separate IT systems – and that attacks occur at the sub-units, then

the breach sizes will be related to the subunit sizes. In [15], it was found that the size of the largest
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sub-unit scales with firm size like ∼ s2/3. That this scaling relationship is similar to that of the risk

surface, is highly suggestive that the size of the largest sub-unit – potentially housing the main IT

system and data – defines the risk level. This is a precious first step towards establishing a relationship

between data breaches and the underlying structure of organisations in which they tend to occur.

As the damage of data breaches is a cumulative erosion process, we also studied the cumulative

sum of data breaches. Like many negative externalities in the economy [275], the phenomenon of

privacy erosion is hard to measure. For instance, the cumulative sum likely overestimates the erosion

as, to some extent, the ex-filtrated data degrades over time. In particular, users can change their

passwords and cancel their credit cards. However, other aspects of the victims identity – such as name,

address, and social security number are more persistent. Thus, in reality, the true erosion is somewhere

in between an instantaneous and cumulative process. However, this approach provides a transparent

quantification upon which discussions of past and future risk may be had. To date, the total amount

of breached personal data, well approximated by the sum of large breaches, is around 2 billion personal

id items. Although some individuals may have been subjected to multiple breaches, the amount of

aggregate loss is considerable, e.g., compared to the number of Internet users (3.5 billion) or even to

the world population (7 billion). Projections based on the best models suggest that the growth of the

cumulative sum is accelerating, and is expected to double (surpassing the number of Internet users) in

the next 5 years. Finally, it is important to note that about 30 percent of events have unknown breach

size, and thus the statistics above are underestimates.

Our results provide detailed insights on the aggregate statistics of data breaches, their impact

on organisations, as well as on the long-term effects for consumers and society. In fact, the provided

estimates of the risk level are conservative given the fact that we are only considering the subset of data

breaches that have been discovered, reported, and submitted to the online databases. Our findings

suggest that people should not only worry about privacy erosion the way we experience it nowadays,

by assuming that our personal data will remain confined and exploited only by “trustworthy” private

organisations and governmental agencies. On the contrary, people should expect that the personal

data they have uploaded on online platforms, such as social networks, may be either suddenly or

progressively disseminated, first in underground markets, and then publicly.

Finally, this work supports and encourages further emphasis on addressing cyber risks at both

organisational, and governmental levels. This risk should not be thought of in terms of representative
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or typical data breaches, which is a completely inadequate concept given the heavy-tailed nature of the

pdfs. Rather one must consider the full distribution. Moreover, this is a system where the total risk

is dominated by the few extremes, which are inherently stochastic. Thus, policies should be adapted

to this regime where standard actuarial methods, insurance by the mean, do not apply. In terms

of defense, this also calls for measures aimed at stopping the big events, the cascades, perhaps by

decentralizing IT systems in big organisations.

7.4 Future work

The findings of this study are useful and important for many stakeholders in cyber risk. However,

this study leaves many areas unexplored, and also identifies important areas for future study:

• Extending scope by extrapolation: The data is largely limited to English speaking countries, and

is most reliable for the United States, where data is provided by the government based on the

Freedom of Information Act. Thus, to arrive at a more complete picture of the risk, new data

sources for other countries may be considered. However, it is unlikely that such data will be

made available as few other governments allow free access to such data, and have less strict laws

about reporting breaches. So, instead, we propose to perform an extrapolation based on auxiliary

information. For instance, having discovered the relationship between firm size and breach risk,

we can consider a population of firms whose breaches have been unobserved, but whose firm sizes

are known, and infer the quantity and distribution of breaches that they have suffered. This can

be made more sophisticated by considering other factors in addition to firm size.

• Further exploring organization size and risk: Market capitalization was used to define firm size.

Thus, only publicly traded firms were considered. Most of the victims are private firms. Thus

number of employees, or another measure, should be used to allow for the consideration of all

firms. Furthermore, as was suggested by the study, risk scales with size as s0.6, which is also how

the size of the largest organizational sub-unit scales with size [15]. Thus, the apparent connection

between risk and sub-unit size should be tested by comparing sub-unit size data (as in [15]) with

breach data.

• More specific risk with more risk factors: The study considered firm size as a risk factor, and

suggested some link between sector and the degree of customer interaction that a firm has. The
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rigorous quantitative study of risk factors aside from firm size should be done, such as sector,

the type of data that a firm tends to have, and its degree of interaction with customers. This

will allow for more specific discussion of risk, and the identification of what makes certain firms

more attractive and vulnerable to attacks.

• Linking the evolution of risk to the evolution of the Internet: The study made no quantitative

connection to how cyber risk scales with the growth and evolution of the Internet. The number

of people with Internet connectivity, the number of users of social media, and the amount of

personal data going online should be considered. Thus, to better understand the evolving risk of

data breaches, it is clear that the link between the past dynamics of breaches, and the growth of

the Internet be quantified. Aside from being interesting in itself, this will allow for more informed

forecasts to be made.

• Keeping up to date: The Internet, technology, cyber crime, and the amount of personal data

online are evolving. Thus, the data and the risk models should be dynamic and kept up to date.

That is, it is important that the study, and extensions of it, be performed regularly to provide

the most accurate assessment of the present and future risk.
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Figure 7.1: Panel (I) plots large events (above 5× 104) over time from January 1st, 2007 until April
15th, 2015, as well as the p = (0.1, 0.2, . . . 0.9) and 0.95 quantile levels of a linear quantile regression
(black), and D2 (eq. 7.8; red), estimated on the data. The upper endpoints of M1 (green), M2 (blue)
and M3 (red) are given by the dashed lines. Panel (II) plots EVT estimates of the maximum of the
natural log of the data. M1 is given in green. M2 (blue) and M3 (red), having growing maximum,
have the maximum plotted at both January 1st, 2007 (lower) and at April 15th, 2015 (upper). Panel
(III), in the main frame, plots the empirical complementary cumulative distribution function (CCDF;
rough black line) of the transformed breach sizes (for the second alternative model), the DTP CCDF
(smooth black line) α̂ = 0.56) estimated on the transformed breach sizes, and the empirical CCDF for
the untransformed data (grey line). The inner left frame plots the “residual” distances between the
empirical and estimated CDFs (the two black lines), with (0.1, 0.25, 0.5, 0.75, 0.9) quantiles plotted for
the Kolmogorov Smirnov df. The inner right frame is a sequence of DTP shape parameter estimates,
and standard errors, on the transformed data, for increasing lower truncations, u. Panel (IV) plots the
observed cumulative sum of the 619 large breaches occurring from January 1st, 2007 until April 15th,
2015 (rough black). The horizontal axis extends to 800, which is the number of events to be expected
about 2.5 years into the future. The green, blue, and red lines provide the expected cumulative sum
under the estimated null, first, and second alternative models, respectively. The lower standard error
for each of the three curves is plotted in the same color, with the null, first, and second alternative
models having long dashed, medium dashed, and densely dashed lines respectively. The upper standard
error will be the same distance from the expected cumulative sum, but on the positive side.
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Figure 7.2: The effect of firm size (market capitalisation) on the risk of breaches: Panel (I) provides
the empirical (black) and estimated Lognormal CDFs for organisation sizes (red), and victimised
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into (eq. 7.17). The orange line does the same but with the Lognormal estimates. Monte Carlo
(0.1, 0.25, 0.5, 0.75, 0.9) quantiles (dashed black) of the estimated (orange) pdf are given by repeated
sub-sampling from the estimated Lognormal CDFs and re-computation of (7.17). Panel (III) plots the
log of breach sizes in excess of 103 (n = 298), that occurred at US organisations versus log org. size.
The lines are linear quantile regressions of this data, where change points are automatically detected
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0.02; q = 0.9: 0.18 (0.12) 0.39.
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[168] J. Likeš. Distribution of Dixon’s statistics in the case of an exponential population. Metrika , 11(1):46–54, 1967.

[169] C. Lin and N. Balakrishnan. Exact computation of the null distribution of a test for multiple outliers in an

exponential sample. Computational Statistics & Data Analysis , 53.9:3281–3290, 2009.

[170] C. Lin and N. Balakrishnan. Tests for Multiple Outliers in an Exponential Sample. Communications in Statistics

– Simulation and Computation , 43.4:706–722, 2014.

[171] I. Linkov, E. Anklam, Z. A. Collier, D. DiMase, and O. Renn. Risk-based standards: integrating top–down and

bottom–up approaches. Environment Systems and Decisions, 34(1):134–137, 2014.

[172] D. Lochbaum. Nuclear Plants Risk Studies: Failing the grade. Union of concerned scientists report, 2000.

[173] L. M. B. Cabral and J. Mata. On the Evolution of the Firm Size Distribution: Facts and Theory. The American

Economic Review, 2003.

[174] T. Maillart and D. Sornette. Heavy-tailed distribution of cyber-risks. Eur. Phys. J. B, 75(3):357–364, 2010.

[175] Y. Malevergne, V. Pisarenko, and D. Sornette. Testing the Pareto against the lognormal distributions with the

uniformly most powerful unbiased test applied to the distribution of cities. Physical Review E, 83:036111, 2011.

[176] Y. Malevergne and D. Sornette. Extreme financial risks: From dependence to risk management. Springer Science

& Business Media, 2006.

[177] B. Mandelbrot and R. Hudson. The Misbehavior of Markets: A fractal view of financial turbulence. Basic Books,

2014.

[178] D. Marsan and O. Lengline. Extending Earthquakes’ Reach Through Cascading. Science, 319(5866):1076–1079,

Feb. 2008.

[179] F. Massey. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American statistical Association,

46:68–78, 1951.

[180] McAfee. McAfee Unsecured Economies Report. 2008.

[181] E. McKenzie. Discrete variate time series. Stochastic Processes: Modelling and Simulation, page 573606, 2003.

[182] T. Mikosch. Non-Life Insurance Mathematics. 2nd printing. . Springer, 2006.

163



[183] M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet

Mathematics, 1(2):226–251, 2004.

[184] J. Møller and J. Rasmussen. Perfect simulation of Hawkes processes. Advances in applied probability, 37(3):629–646,

2005.

[185] P. Morzywolek. Non-parametric methods for estimation of hawkes process for high-frequency financial data. ETH
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