Quasi-geostrophic models for fast dynamics in the earth's outer core

Author(s):
Maffei, Stefano

Publication Date:
2016

Permanent Link:
https://doi.org/10.3929/ethz-a-010651908

Rights / License:
In Copyright - Non-Commercial Use Permitted
QUASI-GEOSTROPHIC MODELS FOR FAST DYNAMICS IN THE EARTH’S OUTER CORE

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZÜRICH
(Dr. sc. ETH Zürich)

presented by
STEFANO MAFFEI

Dottore magistrale in Physics, University of Bologna (Italy)
born on 18.06.1987
citizen of Giswil (OW, Switzerland)

accepted on the recommendation of

Prof. Dr. Andrew Jackson, supervisor
Dr. Dominique Jault, co-referee
Dr. Phil Livermore, co-referee

2016
Abstract

The geomagnetic field is known to show oscillations and variability on a wide range of timescales. These are believed to be the observable consequence of the rich dynamics taking place in the outer core of the Earth, where fluid motions driven mainly by thermochemical convection generate and constantly modify the geomagnetic field. Observations of the geomagnetic field at the surface of the Earth can be used to create a map of the magnetic field at the surface of the outer core. It is then possible to use this information to retrieve the surface flows of the fluid core. To gain knowledge about the flows and magnetic field below the core-mantle boundary the geomagnetic data need to be complemented with dynamical models of the fluid core.

On interannual and decadal timescales it has been demonstrated that, because of the overwhelming importance of rotation compared to other forces acting on the fluid, motions are organised in columns parallel to the rotation axis and are essentially 2-D. This approximation is called Quasi-Geostrophy (QG) and allows us to build models that strongly simplify our description of the core dynamics.

In this thesis we develop QG models tailored to the study of the fast dynamics in the Earth’s outer core. These allow us to study magneto-hydrodynamic oscillations that can be triggered in the presence of a background magnetic field. Among these, of particular interest are the torsional waves, geostrophic fluctuations with timescales of 6-8 years, and the slow hydromagnetic oscillations, which are non-axisymmetric waves with much longer periods. The detection of these waves could constrain the magnetic field intensity in the Earth’s outer core, an impossible task to achieve based solely on direct geomagnetic observations. Here we address these topics by making use of numerical and analytical tools.

We develop a new technique, based on the WKBJ approximation, to calculate reflection coefficients for torsional waves at the rotation axis and at the equatorial boundary, a task that was previously attempted in the literature but never fully tackled. We test this method on a novel analytical solution for diffusion-free propagation in a sphere finding good agreement. In particular we find that the reflection at the rotation axis introduces a phase shift that is independent on the details of the background magnetic field. At the equatorial boundary, on the other hand, the reflection coefficient is strongly dependent both on the propagation speed and on the frequency content of the incident wave packet. By analysing the reflection in presence of viscosity and magnetic diffusion we point out the weakness and limitation of current 1-D torsional wave modelling approaches and suggest future directions for research. Comparison with previous 3-D studies of torsional wave propagation suggests that the 1-D wave equation commonly used in the literature fails to properly model the effects of the boundary layer developing at the core-mantle boundary.

Concerning the derivation of a QG numerical model in a sphere (which includes torsional wave propagation) we test the capabilities of a formulation based on the work of Dominique Jault and colleagues. Simple studies of the resulting system of equations using a purely kinematic description of the velocity field proves that the magnetic field can be reliably evolved in time. We calculate the normal modes solution to the hydrodynamic problem confirming findings of previous studies concerning the limitations of the QG approach in the equatorial regions. There, significant vertical structures emerge that the QG approximation cannot account for. Analysis of the hydromagnetic normal modes reveals the weakness of the model, mainly connected with the behaviour at the equator where calculations suggest that the equations become singular due to the vanishing vertical size of the spherical container. We show that this behaviour is due to one of the basic assumptions behind the derivation of the axial vorticity equation, namely that the magnetic field in the interior of the core is considered to be much stronger than on the core-mantle boundary.

The final objective is the set up of a QG numerical model in which, in the future, we will blend in geomagnetic observations in a data assimilation framework. In particular we plan to implement a variational assimilation algorithm based on the work of Li.
Kuan, Andrew Jackson and Phil Livermore. The preliminary details of the algorithm are also illustrated in the present dissertation. The use of data assimilation techniques in conjunction with a working QG model will offer an invaluable dynamical picture of the complex interplay between fluid flows and magnetic field on rapid timescales.
Sommario

È noto che il campo magnetico terrestre manifesta oscillazioni e variabilità su un’ampio spettro di scale temporali. Si ritiene che queste variazioni siano la conseguenza della ricca dinamica del nucleo esterno della Terra, dove il moto di fluidi, causato principalmente da convezione termochimica, genera e modifica costantemente il campo geomagnetico. Osservazioni del campo geomagnetico al di sopra della superficie della Terra possono essere usate per creare mappe del campo magnetico sulla superficie del nucleo esterno. Questa informazione può essere usata per ricostruire la velocità superficiale dei fluidi all’interno del nucleo esterno. Per ottenere informazioni riguardo la velocità e il campo magnetico al di sotto dell’interfaccia tra mantello e nucleo, i dati geomagnetici devono essere combinati con modelli della dinamica del nucleo fluido.

Su scale temporali inter-annuali e decennali, è possibile dimostrare che, a causa della predominante importanza della rotazione rispetto alle altre forze che agiscono sul fluido, i moti sono organizzati in colonne parallele all’asse di rotazione e sono essenzialmente 2-D. Questa approssimazione è detta Quasi-Geostrofica (QG) e consente la creazione di modelli che semplificano sostanzialmente la descrizione della dinamica del nucleo.

Nella presente dissertazione vengono sviluppati modelli QG appositamente pensati per lo studio della dinamica rapida del nucleo esterno della Terra. Questi modelli consentono lo studio di oscillazioni magneto-idrodinamiche che possono essere sostenute in presenza di un campo magnetico di fondo. Tra queste, di particolare interesse sono le onde di torsione, fluttuazioni geostrofiche su scale temporali di 6-8 anni, e le oscillazioni idromagnetiche lente, che sono non-assimetriche con periodi temporali molto più lunghi. L’osservazione di queste onde può fornire informazioni riguardo l’intensità del campo magnetico all’interno del nucleo, un’impresa che è impossibile basandosi unicamente su osservazioni dirette del campo geomagnetico. In questa tesi questi argomenti vengono affrontati con una combinazione di tecniche analitiche e numeriche.

Viene sviluppata una nuova tecnica, basata sull’approssimazione WKBJ, per calcolare i coefficienti di riflessione delle onde di torsione all’asse di rotazione e all’equatore, risultato precedentemente suggerito in letteratura ma mai completamente ed esplicitamente ottenuto. Questo metodo viene testato su una nuova soluzione analitica per la propagazione di onde di torsione in una sfera in assenza di dissipazione, ottenendo ottimo accordo. In particolare viene trovato che la riflessione all’asse di rotazione introduce uno sfasamento che è indipendente dai dettagli del campo magnetico di fondo. All’equatore, d’altra parte, il coefficiente di riflessione dipende fortemente sia dalla velocità di propagazione e dal contenuto in frequenze del pacchetto d’onda incidente. Analizzando la riflessione in presenza di viscosità e diffusione magnetica vengono evidenziati i punti deboli e le limitazioni di odierne approcci 1-D per la modellazione di propagazione di onde di torsione e nuove direzioni di ricerca vengono proposte. Il confronto con precedenti studi 3-D di propagazione di onde di torsione suggerisce che l’equazione d’onda 1-D utilizzata frequentemente in letteratura non riesce a riprodurre correttamente l’effetto dello strato limite che si sviluppa al confine nucleo-mantello. Per quanto riguarda la creazione di un modello QG in una sfera (modello che include la propagazione di onde di torsione) vengono testate le capacità di una formulazione basata sul lavoro di Dominique Jault e colleghi. L’insieme di equazioni che risulta da questa formulazione viene esaminato attraverso semplici studi in cui viene adottata una descrizione puramente cinematica della velocità del fluido e il risultato prova che l’evoluzione temporale del campo magnetico può essere riprodotta in maniera affidabile. Successivamente illustriamo i modi normali di oscillazione soluzione del problema idrodinamico confermando risultati di studi precedenti riguardo alle limitazioni dell’approccio QG nelle regioni equatoriali dove emergono strutture verticali significative che non possono essere riprodotte dall’approssimazione QG. L’analisi dei modi di oscillazione idromagnetici rivela le limitazioni del modello, principalmente connesse con la risposta del sistema all’equatore dove i nostri risultati suggeriscono che le equazioni diventano singolari a causa del fatto che la dimensione verticale della sfera diventa zero.
Noi qui dimostriamo che questo comportamento è da ricondurre ad una delle assunzioni fondamentali dietro alla derivazione dell’equazione di vorticità assiale, ossia che il campo magnetico nell’interno del nucleo sia da considerare molto più intenso che al confine nucleo-mantello.

Lo scopo finale è la creazione di un modello numerico QG in cui, in futuro, le osservazioni del campo geomagnetico verrano fuse attraverso un approccio di data assimilation. In particolare noi pianifichiamo di implementare un algoritmo di assimilazione variazionale basato sul lavoro di Li Kuan, Andrew Jackson e Phil Livermore. I dettagli preliminari dell’algoritmo sono illustrati nella presente dissertazione. L’utilizzo di tecniche di assimilazione di dati in congiunzione ad un modello QG funzionale fornirà un quadro dinamico inestimabile riguardo la complessa interazione tra il moto dei fluidi nel nucleo e il campo geomagnetico, su scale temporali rapide.