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Abstract

This thesis is concerned with the application of non-equilibrium ther¬

modynamics and statistical mechanics of chain molecules in order to

investigate the consequences of deformation and temperture on the rhe-

ology and structure of polymeric materials. The non-isothermal rhe-

ology of polymeric materials, although of considerable scientific and

technological interest, is not yet satisfactorily understood, and no clear

structure-property relationships have been established. In the past, the

investigation of the non-isothermal rheology of polymeric materials has

suffered from a lack of theoretical techniques of suitable applicability.
The GENERIC framework, having made important progress during the

last years, has finally brought the theoretical description of the non-

isothermal rheology of polymeric materials within reach.

The present dissertation consists of three parts: First (Chaps. 2

and 3) we review thermodynamic potentials for polymeric materials to

describe their thermodynamic properties in the quiescent state. The

potentials are evaluated numerically and are compared with experi¬
mental data for hexadecane and linear PE (Chap. 2). Furthermore,
we propose a recipe to check whether a given polymer is of purely en-

tropic elasticity or not. The method is applied to linear PE and PIB

and we see that PE is not of purely entropie elasticity, whereas PIB

is (Chap. 3). The second part (Chap. 4) is devoted to the thermody¬
namics and mechanics of deforming polymeric materials. We adopt a

modern formalism of non-equilibrium thermodynamics to derive a set of

time evolution equations for the deforming material. Comparison with

other thermodynamic approaches is made and constitutive equations for

compressible, non-isothermal polymeric fluids are proposed. Isothermal,

incompressible viscoelastic models of polymeric fluids are generalized to

m
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non-isothermal, compressible conditions. An equivalent representation
of these constitutive equations in terms of the conformation tensor is

given with a clearer connection to the microstructure than the stress

tensor. The third part (Chaps. 5 and 6) deals with the rheology and

non-isothermal rheology of polymeric materials. The fundamental time

evolution equations are solved for homogenous deformations and visco-

metric and rheooptical material properties are evaluated and discussed

for non-isothermal, compressible processes. A microscopic interpreta¬
tion of the phenomenological coefficients appearing in the models de¬

rived in Chap. 4 is given and it is suggested how they can be obtained

from atomistic simulations (Chap. 5). For materials with energetic and

entropie elasticity we discuss adiabatic, non-isothermal stress relaxation

experiments and we compare our theoretical results with experimental

findings. We propose an alternative fiber spinning process with simul¬

taneous supercooling to the glass transition temperature. We see that

small deformations are sufficient to produce highly oriented samples if

the material is quenched during deformation (Chap. 6).

Keywords. Equilibrium and Non-equilibrium Thermodynamics,

Thermodynamic Potentials (SG, FOV), GENERIC, Statistical Mechan¬

ics of Chain Molecules (RIS approximation), Microstructure, Transport

Theory, Constitutive Equations (FENE-P, Giesekus, PTT, Feta), Rhe¬

ology, Non-isothermal Rheology, n-alkanes, PE, PIB.



Kurzfassung

Diese Arbeit befaßt sich mit der Anwendung der Nicht-gleichgewichts-

thermodynamik und der statistischen Mechanik von Kettenmolekülen

zur Untersuchung der durch Deformation und Temperatur induzierten

rheologischen und strukturellen Veränderungen polymerer Materialien.

Die nicht-isotherme Rheologie polymerer Materialien ist noch nicht be¬

friedigend verstanden, trotz erheblicher wissenschaftlicher und techno¬

logischer Bedeutung, und keine klaren Beziehungen zwischen Struk¬

tur und Eigenschaften wurden eingeführt. Die Untersuchung der

nicht-isothermen Rheologie wurde in der Vergangenheit durch das

Fehlen geeigneter theoretischer Methoden stark eingeschränkt. Die

Fortschritte, die im Formalismus von GENERIC im Laufe der vergang¬

enen Jahre erzielt wurden, haben jedoch die theoretische Behandlung
der nicht-isothermen Rheologie polymerer Stoffe in Reichweite gerückt.

Die vorliegende Dissertation besteht aus drei Teilen: Zuerst (Kap. 2

und 3) führen wir thermodynamische Potentiale für polymère Stoffe

ein, um ihre thermodynamischen Eigenschaften im ruhenden Zustand

zu beschreiben. Die Potentiale werden numerisch ausgewertet und mit

experimentellen Daten für Hexadecan und PE verglichen (Kap. 2). Wei¬

terhin schlagen wir eine Methode vor, um zu prüfen, ob ein gegebenes

Polymer rein enropieelastisch ist oder nicht. Die Methode wird auf

lineares PE und PIB angewendet und wir sehen, daß PE nicht rein

entropieelastisch ist, während PIB es ist (Kap. 3). Der zweite Teil

(Kap. 4) ist der Thermodynamik und der Mechanik sich verformender

polymerer Stoffe gewidmet. Wir übernehmen einen modernen Formal¬

ismus der Nicht-gleichgewichtsthermodynamik, um einen Satz von Be¬

wegungsgleichungen für das sich verformende Material herzuleiten. Ein

Vergleich mit anderen thermodynamischen Zugängen wird angestellt

v
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und konstitutive Gleichungen für kompressible, nicht-isotherme poly¬
mère Fluide werden vorgeschlagen. Isotherme, inkompressible Visko-

elastizitätsmodelle für polymère Fluide werden auf nicht-isotherme,

kompressible Bedingungen verallgemeinert. Eine äquivalente Darstel¬

lung dieser konstitutiven Gleichungen mittels des Konformationsten¬

sors, mit einer klareren Beziehung zur Mikrostruktur als der Span¬

nungstensor, wird gegeben. Der dritte Teil (Kap. 5 und 6) handelt

von der Rheologie und nicht-isothermen Rheologie polymerer Stoffe.

Die grundlegenden Zeitentwicklungsgleichungen werden für homogene
Deformationen gelöst, und viskometrische und rheooptische Materi¬

aleigenschaften werden ausgewertet und diskutiert. Eine mikroskopis¬
che Interpretation der phänomenologischen Koeffizienten, welche in den

Modellen von Kap. 4 auftreten, wird gegeben und es wird vorgeschla¬

gen, wie diese aus atomistischen Simulationen bestimmt werden können

(Kap. 5). Für Materialien mit energetischer und entropischer Elas¬

tizität diskutieren wir adiabatische Spannungs-Relaxationsexperimente
und vergleichen unsere theoretischen Ergebnisse mit experimentellen
Befunden. Wir schlagen einen alternativen Faserspinnprozeß mit gleich¬

zeitiger Abkühlung auf die Glastemperatur vor. Wir finden, daß kleine

Deformationen ausreichen, um Materialproben höchster interner Ori¬

entierung herzustellen, falls das Material während der Deformation

abgekühlt wird (Kap. 6).

Stichworte. Gleichgewichts- und Nicht-gleichgewichts Thermody¬

namik, Thermodynamische Potentiale (SG, FOV), GENERIC, Statistis¬

che Mechanik von Kettenmolekülen (RIS Approximation), Mikrostruk¬

tur, Transporttheorie, Konstitutive Gleichungen (FENE-P, Gisekus,

PTT), Rheologie, Nicht-isotherme Rheologie, n-Alkane, PE, PIB.
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Chapter 1

Introduction

As the number of applications for complex materials continues to in¬

crease, from tennis rackets and artificial hip joints to transatmospheric

vehicles, so does the desire for a better theoretical description of their

behaviour during processing. Complex materials, such as advanced

composites, liquid crystals, magnetorheological materials, and polymer
blends are substances with an internal microstructure. They accord¬

ingly exhibit highly unusual properties with respect to crystalline ma¬

terials or ceramics which can prove to be beneficial in a great number

of applications. Since the properties of these materials constitute the

limiting barrier to new technological applications, the interest in a the¬

oretical understanding of the structure/property relationship and how

this structure is altered during processing may be of some interest.

In the present dissertation we give a theoretical description of amor¬

phous polymeric materials focussing on the connection between the con¬

figuration of the material's internal microstructure (chain configuration)
and its macroscopic mechanical properties (mechanical stresses in the

presence of deformation). This is done to demonstrate the practical¬

ity and utility of non-equilibrium thermodynamics in the description of

complex materials. Certainly the structure/property relationship is not

limited to the material's mechanical properties but comprises also its

electrical and optical properties. However, here we focus on the mechan¬

ical properties of common polymeric materials such as linear PE, PIB or

PS in their amorphous state. Linear polymers are suitable candidates

for a project in basic theoretical research for several reasons. First of all
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a great amount of experimental work is carried out and has been done in

the past so that theoretical results can be compared with experimental
data. Furthermore, these polymers possess a well defined internal mi¬

crostructure represented by their chemical constitution and they show

complicated nonlinear mechanical behaviour which is common to many

complex materials.

The description of polymers mentioned in the preceding paragraph
is the main emphasis of the present thesis. To be sure, much work has

been done since the 1940s concerning media with internal microstructure

from a continuum point of view. Irreversible thermodynamics has been

applied to these materials in this setting through the works of several

researchers who put in a mathematical form the governing equations
for the constitutive behaviour of complex media. Furthermore, in the

1960s statistical mechanics of chain molecules emerged as an efficient

and very successful tool to connect chemical structure, i. e. constitution

and configuration, with the configurational and conformational statis¬

tics of chain molecules. Since then these tools have been further re¬

fined and have evolved into the central work of Macromolecular Physical

Chemistry. Despite all this progress, the proper modeling of transport

processes is very difficult and requires a lot of experience. As a result, it

seems that today fewer researchers use any thermodynamic information

in their modeling. Furthermore, in physics, engineering, and rheology
the material's detailed chemical structure is not taken into account in

the theoretical description of complex materials and often coarse grained
chain models are invoked to describe the material properties related to

the internal microstructure. Implications thus arising are reflected in

the failure of the numerical solution of the corresponding equations of

motion or in the prediction of aphysical results. The use of a priori
coarse grained mechanical models has implications on the modeling of

material properties related to the internal microstructure, such as ener¬

getic and entropie elasticity.

In the present thesis a modern approach to non-equilibrium ther¬

modynamics is adopted to derive a full set of thermodynamically and

mechanically consistent time evolution equations (Eqs. (4.42a)-(4.42d),

p. 79) for non-isothermal and compressible polymeric materials. The

GENERIC formalism [1] adopted herein is closely related to the single

generator Hamiltonian formalism of non-equilibrium thermodynamics

[2]. This is the set of time evolution equations adopted in the present

dissertation to study flow phenomena of polymeric materials. To apply
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the evolution equations to specific materials equilibrium thermodynam¬
ics of chain fluids and statistical mechanics of chain molecules have

been adopted. This allows us to treat the rheology, rheooptics, and

non-isothermal rheology of amorphous polymeric materials. The single

chapters are organized as follows.

After this introduction (Chap. 1) thermodynamic potentials for

polymeric materials are presented and evaluated (Chap. 2). A possible
choice of physical variables to describe the thermodynamics of polymers
are the mass density, the internal energy density (or temperature), and

a second rank conformation tensor describing the average shape and

extension of the molecules. The thermodynamic theories, in terms of a

second rank conformation tensor, emerge as the simplest ones able to

provide models representing the polymer rheology under a broad variety
of flow conditions. For the liquid contribution to the thermodynamic

potential we define two Massieu functions leading to a SG [3, 4] and a

modified FOV [5, 6, 7, 8, 9] equation of state, respectively. For the elas¬

tic part to the potential we adopt the Massieu function of the Hookean

spring and we perform detailed atomistic calculations using the RIS

approximation [10, 11, 12, 13]. Numerical examples appropriate to lin¬

ear PE and to hexadecane are given and comparison with experimental
data for the liquid state is made. Then it is shown how to compute the

characteristic elastic constant for real polymer chains adopting the RIS

approximation (Chap. 3). The energetics and entropies for the chain

conformations are extracted from the characteristic elastic constant and

the consequences for the Theory of Purely Entropie Elasticity and for

polymer processing are discussed. This allows to check if the material is

of purely entropie elasticity or not. Numerical examples for PE and PIB

are given. PE is not of purely entropie elasticity whereas PIB is. The

result for the latter is consistent with experimental findings in stress

relaxation experiments [14]. The mesoscopic friction coefficient and the

relaxation time spectrum for polymer melts (i. e. their fading mem¬

ory) can be understood on the Rouse model and the reptation model

[15, 16, 17, 18] and are discussed briefly at the end of Chap. 3. The tem¬

perature and density dependence of these quantities is described by the

equation of Ferry [19, 20] and the WLF equation for undercooled sys¬

tems [21]. To have a guess for the magnitude of the material's frictional

properties at a fixed temperature and pressure molecular dynamics data

from MD/MC simulations of atomistic, polydisperse PE melts [22, 23]
can be taken. With Chaps. 2 and 3 we dispose of a full thermodynamic

description of the quiescent material in the unoriented and in the slightly
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preoriented state. To compute further material properties such as vis¬

cosities or normal stress coefficients and to discuss fluid dynamics of

these materials a set of macroscopic time evolution equations for the de¬

forming/flowing material has to be derived. Therefore non-equilibrium

thermodynamics has to be invoked: this is the topic of Chap. 4 where

we have shown that modern frameworks of non-equilibrium thermody¬
namics can be adopted to describe the macroscopic flow behaviour of

non-isothermal and compressible polymeric materials.

In Chap. 4 the thermodynamics and mechanics of deforming non-

isothermal polymeric materials are examined within the auspices of a

new methodology wherein the laws of physics and principles of mechan¬

ics which are applicable to these thermodynamic systems are imbedded

in a definite mathematical structure of a general, abstract equation

[1, 24]. Such a concept allows to derive a full set of macroscopic time

evolution equations for the fundamental variables to the description of

deforming polymeric materials: the density, the internal energy density,
the conformation tensor, and the momentum density. All non-resolved

degrees of freedom are represented by the internal energy density. This

quantity can be expressed in terms of the other macroscopic thermo¬

dynamic variables through an equation of state (cf. Chap. 2). (This
so called quasi equilibrium hypothesis is further explained in the next

paragraph.) In addition to that our approach allows new insight to

be obtained concerning some aspects of non-isothermal flows of poly¬
meric fluids, and permits a consistent expression and interpretation of

other thermodynamic theories for these systems which have been de¬

veloped over the past forty years. These theories comprise the time

temperature superposition principle [19, 25, 20, 21, 26, 27] and its ex¬

tensions to non-isothermal flows [28, 29, 30, 31, 32], the Theory of Sim¬

ple Fluids with Fading Memory [33, 34, 35], Rational Thermodynamics

[36, 37, 38, 39, 40, 41], and the Theory of Purely Entropie Elastic¬

ity [42, 43, 44, 45, 46]. A major portion of the analysis is devoted to

demonstrating the above statements, and in so doing some common

misconceptions occurring in a significant fraction of the literature re¬

garding this subject are exposed. The definite mathematical structure

of the new methodology permits the thermodynamically consistent gen¬

eralization of isothermal, incompressible models of polymeric materials

to non-isothermal, compressible conditions. Doing thus reproduces, cor¬

rects, and extends non-isothermal models which have been developed
over the years [47, 30, 48, 49, 50, 51, 52, 53, 54], and also allows for

simpler (but equivalent) representations of these models in terms of al-
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ternate variables with a clearer connection to the microstructure of the

material than the stress tensor and heat flux vector fields. Furthermore,
a generalization of the GENERIC structure is proposed that accommo¬

dates interactions between phenomena of differing parities, which im¬

pose antisymmetry upon the corresponding elements of the dissipative

operator matrix.

Before discussing the content of the remaining Chaps. 5 and 6 we

wish to explain the quasi equilibrium assumption made in connection

with the discussion in the preceding paragraph: we assume that for the

time and length scales of observation, the internal energy of the system
has had time to become equilibrated among the non-resolved degrees of

freedom, and that the velocity distribution of the particles around the

average has had the time to achieve a Maxwellian shape characterized

by the temperature. In this case, it is useful to distinguish between the

energy associated with the non-equilibrated degrees of freedom present

in the continuum formulation and the energy corresponding to the non-

resolved degrees of freedom represented by the internal energy. The local

change of internal energy density per unit change in entropy density
defines the thermodynamic temperature. Entropy is viewed as a state

variable of the system which, together with the other state variables, is

enough to describe the physical state of the system.

In Chaps. 5 and 6 we discuss some particular solutions of the PDE's

derived in Chap. 4 using thermodynamic data collected in Chaps. 2-3.

A Runge Kutta scheme has been applied to compute the rheological
and rheooptical properties for a large number of viscoelastic constitu¬

tive equations. This allows a unified treatment of polymer rheology

[26, 55, 56] by means of constitutive equations of the differential type
and it allows to discuss properties of the processed material which are

related to the deformation induced changes in the internal microstruc¬

ture. Such properties can be measured in rheooptics [57, 58, 59]. In

Chap. 5 an alternative representation of the recently proposed enhanced

viscoelastic fluid models (the so called FETA models [60]) in terms of

the conformation tensor is proposed. We show the equivalence of this

representation with the originally proposed formulation in terms of the

extra stress tensor. Furthermore, we give a microscopic interpretation
of the phenomenological coefficients appearing in these models and we

make suggestions how they may be obtained form atomistic simulations.

Chap. 6 is devoted to non-isothermal rheology of polymeric materials

[61, 62, 57, 63]. We present a numerical study of non-isothermal fiber

6 Chapter 1. Introduction

spinning processes taking into account compressibility and energetic

elasticity of the processed material. For the thermodynamic potential
we adopt a combination of a FOV free energy and the thermodynamic

potential of a Hookean dumbbell. We use thermodynamic data and RIS

models appropriate to PE (cf. Chaps. 2, 3) as an input for our numerical

calculations. The basic equations of motion arise from a modern frame¬

work of non-equilibrium thermodynamics derived in Chap. 4 and are

solved for homogenous deformation, temperature, and density. We dis¬

cuss the morphology and the physical and thermodynamic properties of

the processed sample. Accounts on non-isothermal stress relaxation ex¬

periments and the problem of critical cooling are given and a summary

is made at the end (Chap. 7).



Chapter 2

Thermodynamic
Potentials for Polymeric
Materials

Abstract

Thermodynamic potentials for polymer melts are presented. For the liq¬
uid contribution to the thermodynamic potential we define two Massieu

functions leading to a SG and a FOV equation of state, respectively.
The elastic part of the potential is determined through the internal mi¬

crostructure of the fluid. For this part to the potential we adopt the

Massieu function of the Hookean dumbbell and we perform detailed

atomistic simulations using the Rotational Isomeric State approxima¬
tion. Numerical examples appropriate to linear PE and to hexadecane

are given and comparison with experimental data for the liquid state is

made.
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2.1 Introduction

In the past decade much effort has been devoted to the investigation
of various aspects of non-isothermal polymeric liquids, like the thermo¬

dynamics and kinetic theory of these materials under non-equilibrium
conditions [2, 1, 24, 64] and the numerical methods required to treat the

time evolution equations, see e. g.,[65]. Furthermore, simulation tech¬

niques for atomistic polymers have been further refined to understand

the thermodynamics of unstrained and strained (preoriented) polymer
melts [22]. In what follows we discuss the thermodynamic properties
of linear polyethylene (PE) and hexadecane above their melting tem¬

peratures taking into account the detailed chemical structure. Thereby
we allow for non-isothermal behaviour and take into account the com¬

pressibility of the material. We give analytical expressions for the ther¬

modynamic potential of the polymer from which the thermodynamic

properties (ppT-behaviour and heat capacity) of the quiescent material

will be determined.

Theoretical studies of the statistical mechanics and the thermody¬
namic properties of high polymers have a long history, beginning with

the pioneering works of Prigogine and coworkers [66, 67] and Flory and

coworkers [5, 6, 7]. The problem is quite complicated, since analyti¬
cal expressions for the thermodynamic potential of these materials are

not well established and one has to consider the liquid contribution as

well as the elastic contribution of the internal microstructure to the

thermodynamic potential.

It is well known that the theoretical discussion of thermodynamic

properties of polymeric liquids is difficult even in the incompressible

case, since the temperature changes affect the pressure of the material.

The influence of non-isothermal conditions is further enhanced by the

considerable free volume of polymeric fluids which calls in question the

approximation of incompressibility. Besides the effect on density varia¬

tions considered, for instance in [64], it is also desirable to include the

detailed chemical structure into the study of polymeric liquids. The

appropriate tools are well understood and have been applied success¬

fully to a huge number of polymers [10, 11, 12, 13]. This is important
since the energetics of the bond conformations manifests measurable

influence on the elastic properties of the polymer [68, 69, 70] which may

become important in extreme deformation and temperature histories
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as encountered in polymer industry. Another problem generally over¬

looked is the accurate description of the effect of temperature variations

on the internal microstructure of the material [47, 49].

In the present work we include all these ingredients in the thermo¬

dynamic potential of n-alkanes. To capture the properties of the ma¬

terial's internal microstructure we adopt the Rotational Isomeric State

(RIS) approximation [10, 11, 12]. This approach is broadly applicable
to chains of any length, to copolymers of any specified composition and

to asymmetric chains of any stereochemical configuration. The appli¬
cation of these methods to amorphous polymers in the bulk has been

a topic of some controversy but experimental evidence has shown that

single polymer chains behave like random coils under O-conditions in

the amorphous phase [71, 72, 73, 74, 75].

In Sec. 2.2 we give the basic variables of a polymeric liquid and

we review the general thermodynamic relationships for materials with

internal microstructure. In Sec. 2.3 we give two thermodynamic po¬

tentials accounting for the liquid contribution to the thermodynamic

potential. From these thermodynamic potentials we calculate the equa¬

tions of state, the coefficients of the pressure and the density, and the

heat capacity. Sec. 2.4 deals with the contribution of the internal mi¬

crostructure to the thermodynamic potential and the basics of the RIS

approximation. Applications to linear PE and hexadecane are given
and comparison with experimental data is made in Sec. 2.5.

2.2 General Relationships

Since we are interested in practical applications of non-equilibrium

thermodynamics (calculation of viscosities, normal stress coefficients,
strain birefringence, non-isothermal stress-relaxation experiments, and

phase transitions under flow) we want to specify analytical expressions
for the material's thermodynamic potential to understand the quasi-

equilibrium thermodynamic properties of the melt. We wish to take the

Massieu function (the Legendre transformation of the entropy density

[24, 76]) as the thermodynamic potential since it depends on measurable

quantities: the density, p, the temperature, T, and the contravariant

conformation tensor, c. The conformation tensor is the second moment

of the end-to-end vector of the chain and describes the average exten-

10 Chapter 2. Thermodynamic Potentials

sion and orientation of the polymer chain at a reference temperature.

For a simple (i. e. one component) polymeric fluid the thermodynamic

potential can be split into two contributions [2, 1, 24, 77]

u(p,T,c) = uj0(p,T)+Lj1(p,T,c) (2.1)

where cuo(p,T) is the liquid contribution due to intermolecular inter¬

actions and cüi(p,T, c) is the elastic contribution due to the internal

microstructure. The pressure is defined as

dui

~dp
(2.2)

which represents the thermal equation of state of the chain fluid. From

the equation of state the temperature coefficient of the pressure can be

calculated

7=t
• (2-3)

dT
p,c

Inversion of the equation of state (2.2) with respect to the mass density

yields the thermal expansion coefficient and the isothermal compress¬

ibility

ß
_1 dp_
~~p dT

1 dp

P dp

Pic

(2.4)

(2.5)

Note that in the density variable formulation the pressure is not a prob¬
lem variable. The conjugate variable to p is p

= dtu/dp\T c
and not p.

Consequently the expressions of Eqs. (2.4) and (2.5) do not involve the

proper thermodynamic derivatives. But these quantities are the mea¬

surable coefficients of the density and therefore we wish to use them in

the future. A well known thermodynamic relationship states that only
two of the material properties are independent

7:
ß

The heat capacity (at constant mass density) is defined as

02oj

dT2

(2.6)

(2.7)
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The quantity cp (heat capacity at constant pressure), cannot be ob¬

tained from the thermodynamic potential, lj, because the pressure, p,

is not a variable in the density variable formulation. This quantity has

to be calculated from the heat capacity, c, and the coefficients of the

mass density
T 02

c„ = c —

. (2.8)
p K

In general the heat capacity is a complicated function of the mass den¬

sity. For the density coefficient of the heat capacity we have

dc

dp
_

T dj

dT

and for the pressure coefficient of

p,c

dcp

dp

(2.9)

(2.10)

In what follows we want to specify analytical expressions for the liq¬
uid contribution to the thermodynamic potential (Sec. 2.3) and for its

elastic contribution (Sec. 2.4). Furthermore, analytical expressions for

the temperature and the pressure coefficients will be given. With the

analytical expressions at hand we will specify the characteristic prop¬

erties of n-alkanes and we make a comparison with experimental data

(Sec. 2.5).

2.3 Liquid Contribution

In this section we present two Massieu functions for the liquid contribu¬

tion to the thermodynamic potential, ujq. For both functions we derive

the constitutive equation for the pressure. Furthermore, we calculate

the thermodynamic coefficients of these Massieu functions and the heat

capacity. The Massieu function presented in the first subsection leads

to the equation of state according to Spencer and Gilmore. This ther¬

modynamic potential is easy to handle from a mathematical point of

view. The second Massieu functions leads to a modified Flory-Orwoll-

Vrij equation which gives a better fit to the equilibrium ppT behaviour.

This will become evident in Sec. 2.5 when we give numerical examples

appropriate to linear PE and hexadecane.

12 Chapter 2. Thermodynamic Potentials

2.3.1 Spencer-Gilmore Potential

We take the following Massieu function for the liquid contribution to

the thermodynamic potential

Lü0(p, T) = pa0kB \ 1 + In
1

pa0

1

p0a0

cT?
TV

T
(2.11)

which is the thermodynamic potential of a van-der-Waals fluid. In the

above equation a^ is a phenomenological parameter of units mass-1,
kß is Boltzmann's constant, pg, tt, c are coefficients depending on the

material (cf. Tab. 2.1, p. 14). a® can be taken as Avogadro's Num¬

ber divided by the molecular weight of the structural unit or rather

the molecular weight of interacting units in the fluid, chq = N^/M^.
Inserting Eq. (2.11) into Eq. (2.2) for the pressure we obtain

(p + Tr)(po - p) = a0p0pkBT

which is the Spencer-Gilmore equation [3, 4].

T

10

(2.12)

08

07

1 1

1
' 1 ' ' 1 1 1 1 1 1

-

-

"

-^^500(1
_^

- ———^isoo -

~^"~—
-^^000 -

-

~~~

—^-^^2%?
"~^

- ^^SSQ^;-«» "~^

0
~~

100 150 200 250

Temperature [ C]

Figure 2.1: The mass density of linear PE as a function of temperature

for different pressures calculated according to Eq. (2.12). The numbers

denote the pressure in bar, the diamonds correspond to experimental
values. The arrow denotes the melting point of approximately 130° C.
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From Eq. (2.12) we can calculate the thermal expansion coefficient,
the isothermal compressibility, and the temperature coefficient of the

pressure according to Eqs. (2.4), (2.5), (2.6)

ß-
1

Po

1

PoT
1

a0kBT
(p + Tlf

7

Po

P TT
— + —
T T

Po(p + k) +
1

a0kBT

aoPopkB

Po- P

(p + tt)2

(2.13)

(2.14)

(2.15)

The heat capacity is the constant c = 3/2ctokB . Furthermore, we have

cp
— c = aokB. The coefficients of the heat capacities vanish identically

which is consistent with Eqs. (2.9), (2.10). In Figs. 2.1 we have plotted
the density of PE as a function of temperature with the pressure as

a parameter. The symbols denote experimental data [7]. Eqs. (2.13)-
(2.15) may be used to obtain a guess for the magnitude of ß, k, 7. A

more detailed discussion is given in Sec. 2.5, p. 27.

2.3.2 Modified Flory-Orwoll-Vrij Potential

To obtain more sophisticated equations of state for chain fluids it is

convenient to introduce reduced quantities for the mass density, the

pressure, and the temperature of the polymeric liquid

P
p ~ p

p=
—

p* p*
T-**

(2.16)

where p*, p*, and T* are, respectively, the characteristic density, pres¬

sure and temperature. These quantities can be determined from a mi¬

croscopic cell model [5,8, 66] where all mers of the melt interact via a

Lennard-Jones Potential. Numerical values for the characteristic prop¬

erties of hexadecane and PE are collected in Tab. 2.1, p. 14. In general

only two of these quantities are independent, p* = ctop*ckBT*, where

the quantity c is assumed to be independent of temperature and volume

over the range of application of the thermodynamic potential to be set

down. This factor is supposed to take into account the restrictions on

the precise location of a given segment by its neighbors in the same

chain [5]. a0 is a constant taking into account the molecular character¬

istics of the interacting fluid particles. The characteristic temperature is

14 Chapter 2. Thermodynamic Potentials

T* = sf)/c/kB, where fj is a characteristic mer-mer interaction energy, s

denotes the number of contacts per mer (ss 3 — 6), and 3c is the number

of degrees of freedom per mer [8, p. 812].

From the thermal and the caloric equations of state (2.18), (2.28)
we construct the thermodynamic potential

"A?) = ^ 1 + 1»k— +31-(,-*-*)

+ 4-ffj.<,17>
where A, B, A, T, and S are coefficients, To is a geometrical factor, and

cto is a phenomenological coefficient accounting for the strength of the

liquid contribution to the total Massieu function (2.1). A and B are

parameters in the Lennard-Jones potential and are determined by the

geometry of the cell lattice. 5 is a geometrical factor which is determined

by the cell geometry (e. g. S = 1 for a simple cubic geometry, ö = l/2ä
for a hep geometry [8]). The parameters A, B, S have the values 1.2045,

1.001, and 0.9532, respectively [9].

Table 2.1: Characteristic thermodynamic properties for hexadecane

and for PE from Refs. [9, 78] (1 bar = 0.1 MPa = 105 kg/m/s2).

p* (bar) P
''

(gem A) T* (K)

C16H34 5046.0 0.9142 4344.6

PE 5452.0 0.9544 5484.7

Mw (gmokT1) 7T (bar) Po (gem"3)

PE 28.0 3470.0 1.0526

Inserting Eq. (2.17) in the definition of the pressure (2.2) we obtain

the following constitutive equation

P=-^—-p2(2Ap-2Bpi). (2.18)
1 — dp 3

For A = B = 0 and 6 = 1 this equation of state reduces to the classical

FOV equation [5, 6, 7, 8, 9].
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Figure 2.2: The same as Fig. 2.1 according to the modified FOV equa¬

tion (2.18) for a) PE and b) hexadecane. The long dashed line in a)
corresponds to the Spencer-Gilmore equation at zero pressure, symbols
are experimental data at atmospheric pressure.
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In terms of the reduced variables the coefficients of the density and

the pressure are

ß

7

pT dp_
~?TdT

p_ dp

pp dp

pf dp

pT dT

(2.19)

(2.20)

(2.21)

Substituting the constitutive equation for the pressure (2.18) into the

above equations we obtain the thermal expansion, the isothermal com¬

pressibility, and the temperature coefficient of the pressure

(ßT)-1

(np)-1

Öp ':

3(1 — Jp 1

Of) 3

3(l-6p-s)

- 1

- 1

2p + p2(-2Ap + 6Bp3)

p + p2(2Ap-2Bpi)

7T2

(2.22)

1

P
-(2Ap-2Bpc

El
P
(-2Ap + 6Bpd)

7"

T

P

P2
l + ^(2Ap-2Bp3)

P

(2.23)

(2.24)

In the appropriate limit these expressions reduce to the known coeffi¬

cients of the FOV equation [5]. In the limit of zero pressure we have

(ßT)-1
öp "

3(1 -Spi)

5p3

3(1 -dpi)

1
-2Ap + 6Bp'c

2Ap-2BpA

p2p*(2Ap-2Bpi)

p2p*(-2Ap-6Bpä)

P*p2
T

(2Ap-2BpA) .

(2.25)

(2.26)

(2.27)

In Figs. 2.3-2.5 we display the thermodynamic coefficients (2.22)-
(2.24) for PE and hexadecane as a function of temperature with the

pressure as a parameter.
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according Eq. (2.23), p. 16 for a) PE and b) hexadecane. The long
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Inserting (2.17) into the equation for the heat capacity (2.7) yields

c = a0kB(2cT2f + cAT) , (2.28)

which is linear in temperature. According to this equation c does not de¬

pend on density. From Eq. (2.24) it follows that d~f/dT\p = 0. Fig. 2.9

(p. 29) shows the heat capacity for PE as a function of temperature. In

the lower part of the figure we plotted the conformational part of the

heat capacity arising from material elasticity (cf. Sec. 2.4). A detailed

discussion of the thermodynamic properties of n-alkanes (Figs. 2.2-2.5

and 2.9) is postponed to Sec. 2.5. In the subsequent Sec. 2.4 we want to

introduce the Massieu function of a network of Hookean dumbbells and

we show how it can be related to the chemical structure of the polymer
under consideration.

2.4 Elastic Contribution

2.4.1 Thermodynamic Potential of a Fixed Polymer
Network

To give a description of non-isothermal and compressible chain fluids we

wish to adopt the thermodynamic potential of the Hookean dumbbell

with infinite chain extensibility. In this case the elastic contribution to

the Massieu function is given by the elastic energy of the polymer plus
the Boltzmann entropy of an assembly of many chains [2, 24, 77]

oji(p,T,c) = -—paiK(T)trc+ -paikBln(detc) . (2.29)

The parameter a.\ in the above equation is a measure of the degree
of elasticity per unit mass of the polymeric fluid, which gives a quan¬

titative measure of the strength of elastic forces per unit mass in the

material. As an example, for a polymer melt, o.\ is given by the num¬

ber of crosslinks or entanglement points per unit volume divided by the

mass density. It is taken herein as a material constant; i. e., it is not a

function of temperature. According to Kuhn and Grim [79] the spring
constant is defined as

K(T)
= I f^L

, (2-30)^ '

2tr(RR)0
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where R is the end-to-end vector of the polymer chain or the distance

between crosslinks or entanglement points and (RR)o is the second

moment of the the end-to-end vector evaluated at equilibrium. Substi¬

tuting Eq. (2.29) into Eq. (2.2) we see that the pressure arising from

lui vanishes. This represents the main assumption of the present work

which may be removed by taking into account the finite extensibility of

the chains. Preliminary studies in this direction could be undertaken,
e. g., in the framework of non-equilibrium molecular dynamics (NEMD).
The conformational part of the heat capacity (cf. Fig. 2.9) is given as

1 d2K(T)

ccon{ = --Tatrc vg
'

. (2.31)

To apply the above Massieu function to polymeric liquids it is es¬

sential to find the functional form of the spring constant for the special

polymer under consideration. This means that the temperature depen¬
dencies of the statistical averages of the vector R have to be determined.

In former works on non-equilibrium thermodynamics of polymeric liq¬
uids tr(RR) has been assumed to be a constant or phenomenological
forms of the spring constant have been assumed [47, 49]. Here we want

to use detailed atomistic representations of the polymer and to calculate

the moments of R as a function of temperature. To this end we resort

to the RIS approximation [10, 11, 12].

2.4.2 Statistical Mechanics of Chain Molecules

In the RIS approximation each molecule is treated as occurring in one

or another of several discrete rotational states. The states are chosen

to coincide with potential minima of the conformational energy as a

function of the rotation angle about the skeletal bonds, the lengths of

the bonds and the bond angles being considered as constant. A given

configuration of the molecule is then specified by a set of torsional angles

{(/>}. Then for each bond i of the chain a statistical weight matrix

U, = [ MC, ], ,
1< i < n

, (2.32)

can be defined with states (Ç) for bond i — 1 indexing the rows and

those (rj) for bond i the columns ((, n = a, ß, , v). The energies Eçv
corresponding to the statistical weights u^v are defined through the
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Boltzmann factors

uO,. =exP (""r^") ' (2'33)

where Eçv^ is the contribution to the total energy of the configuration,

E({(f>}), associated with the assignment of bond i to state n, bond i — 1

being in state (.

The configurational partition function for a chain with n bonds is

then given as

Z = Uit4n"2)Un , (2.34)

where the U,, 1 < i < n, are square matrices of order v x v\ Ui, U„

are row, column vectors of order v

Ui = ( 1 0 ••• 0 ), U„ = ( 1 1 ... 1 )T, (2.35)

and we have introduced the notation proposed by Flory to denote the

serial product [11]

l4"-2)=U2U3...Un_2. (2.36)

Consider a configuration dependent molecular property / = /({</>})
(e. g. the chain displacement vector R connecting its ends, or various

products that may be formed from R) which can be expressed as a sum

of contributions each attributable to an individual skeletal bond of the

chain. For a specified configuration {(/>} of the chain the property / =

f({4>}) can be generated by serial multiplication of generator matrices

Ft of order s (cf. next subsection). For the purpose of generating the

average over all configurations of the chain, we formulate the generator
matrix [11]

^, = (U,(8)ES)||F,||, Ki<n, (2.37)

where Es is the identity matrix of order s, \\Ft\\ is the diagonal array

of the generator matrices Fl(a), , Ft(i/), and ® denotes the direct

product1. The terminal matrices are given by

T{1 = Ui ® Ftl , Tn] = U„ ® Fn] . (2.38)

1The direct product, A eg) B, of matrices A and B of orders a X a' and ß X ß',

respectively, is the matrix of order (an1) X (ßß1) obtained by replacing AtJ by 4,3B
for each z, j.
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The average (/)g of the quantity / is then given as

</>0 = ^2z ^
. (2.39)

Once the statistical weight matrices U2 and the generator matrix Fa

for the configuration dependent property (e. g. the chain displacement

vector) are known the averages can be calculated according to the above

equation (2.39). In what follows we focus on the evaluation of the first

and second moment of the chain end-to-end vector. First we present

the generator matrices for the chain displacement vector (2.43) and the

second order tensor of the end-to-end vector (2.47). In Sec. 2.5 we apply
the RIS models to linear n-alkanes and in this framework we write down

the matrix of statistical weights.

Chain Displacement Vector

Properties of the chain molecule that depend on configuration include

the dimensions of the spatial configuration as measured by the chain

displacement vector R connecting its ends, or various products that may

be formed from R. Evaluation of these properties requires summation

over contributions from the individual bonds or groups comprising the

chain. These contributions being vectors or tensors identified with the

respective skeletal bonds numbered 1 to n, are conveniently expressed
in local reference frames. A cartesian coordinate frame is therefore

defined for each skeletal bond [10]. For a fixed configuration, {</>}, the

chain vector is then given as

n

R = R0„ = ^T^1)1Î, (2.40)

where lt is the bond vector of bond i and Ta is the matrix of trans-

formation between reference frame i + 1 and i and Tf is the serial

product of transformation matrices Eq. (2.36). The transformation ma¬

trix depends on the bond angle B% and the torsional angle (f),t of bond

i

cos 9t sin 0t 0

Ta = sinöjcos^j — cos 8t cos <f>l sinç^ . (2-41)
sin 8t sin (f>t — cos 9Z sin </>t cos (f>l

The above sum Eq. (2.40) is more conveniently written as
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R = A[1A2n 2)An] (2.42)

where

A,
T

0
1 < i < n (2.43)

is the generator matrix for the end-to-end vector and A^ is the first

row of Ai and, A„i is the the final column of A„

Atl = [ T 1 i j (2.44)

Such generator matrices may be formulated for all configuration depen¬
dent properties of a chain molecule. The quantity of interest is given in

analogy to Eq. (2.42) [11]. Fig. 2.6 displays the persistence vector for

n-alkanes (cf. Sec. 2.5.2, p. 30 for a more detailed explanation).

Quantities of Higher Order

The dyadic product RRT is the matrix of the symmetric second order

tensor formed from the components of R. That is

RR1 Rl

i^z^x ^z^y

RX

fly fix

RxRz

RyRz
Ry

(2.45)

The direct product of R with itself gives the 9x1 vector comprising
the same elements taken in reading order, row by row, and arranged as

a column; i. e.,

R®R:

(Rx RxRy RXRZ RyRx Ry RyRz RzRz RzRy R

col(RRT) .

2\T

(2.46)

It follows from the generating scheme for R together with the theorem

of direct products2 that

(n-2).
R®R= (A® A)[i(A® A)2" *>(A®A)n] (2.47)

Tensors of higher order can be developed analogously [10, 11, 12]. In

Fig. 2.7 we display the second moment of the vector p = R (R) for

n-alkanes (cf. Sec. 2.5.2 for details).

2According to this theorem (AC) (g> (BD) = (A (g) B)(C (g) D)
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2.5 Application to Normal Alkanes

The above Massieu fonctions (2.11), (2.17), and (2.29) have been applied
to linear n-alkanes and linear PE and comparison with experimental
data has been made.

2.5.1 Liquid Part of the Thermodynamic Potential

The molecular weight of the structural unit of PE is 28 g moP .
The

numerical parameters for the thermodynamic potential Eq. (2.11) are

collected in Tab. 2.1, p. 14. The thermodynamic properties of a PE melt

have been calculated up to 250°C and comparison with experimental
data at atmospheric pressure has been made. The mass density of PE

is a decreasing function of temperature. For higher pressures the tem¬

perature variations of the density become less pronounced (cf. Fig. 2.1,

p. 12). The qualitative behaviour of 7 as predicted by the Massieu

function (2.11) is reproduced quite well, whereas we have poor agree¬

ment of ß with the experimental values. The experimental data of the

thermodynamic properties have been taken from [7].

The thermodynamic potential (2.17) has been applied to PE and

to hexadecane. The agreement with experimental data is good. The

parameters A, B, ö in the modified FOV equation have the same val¬

ues (cf. p. 14) for all polymers studied in [9]. The coefficients A, V

are taken to give a fit to the measured heat capacity. The character¬

istic pressure, mass density, and temperature are collected in Tab. 2.1.

Fig. 2.2, p. 15 shows the temperature dependence of the mass density
for PE and hexadecane. The pressure has been taken as a parameter

and its value in bar is indicated with each curve. The temperature

coefficient of the pressure as calculated from Eq. (2.24) is depicted in

Fig. 2.3, p. 17 for both materials. For PE this quantity is overestimated

over the entire temperature range at zero pressure. In comparison with

the SG equation (dashed line) we have a more accurate representation.
The thermal expansion coefficient Eq. (2.22) is portrayed in Fig. 2.4,

p. 18. The FOV equation gives a good impression of the qualitative be¬

haviour of this quantity. Fig. 2.5 displays the temperature dependence
of the isothermal compressibility for the two materials at several pres¬

sures according to Eq. (2.23). This quantity is determined through the

other two coefficients via the Maxwell relation (2.6). Fig. 2.8 shows the
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Figure 2.9: The heat capacity for linear PE. The upper graph shows

experimental curves. The lower graph shows the external heat capac¬

ity cp
—

cp according to the modified FOV equation for p = Obar and

p = 200bar and the conformational part of the heat capacity according
to Eq. (2.31) for two RIS models f$± = 120° and $± = 112.5°J.

isotherms for PE and hexadecane for several temperatures. The values

of the temperature are indicated at each curve. In the second figure we

have also reported experimental values for hexadecane [7]. The modified

FOV equation (2.18) is more accurate than the original FOV equation
of state [5]. Fig. 2.9 shows experimental and theoretical heat capacities
for linear PE. In the upper diagram we report experimental data of cp

according to [78, 81]. The lower curve shows the external heat capacity,

cp
—

c, calculated from Eq. (2.8) for the FOV equation for two different

pressures. Furthermore, we have calculated the conformational part of

the heat capacity according to Eq. (2.31) for two different RIS models

(cf. next subsection). We have used torsional angles for the <7±-states
of ±120° and ±112.5° respectively. In the temperature range consid¬

ered cconf is smaller than cp
— c at moderate low pressures. In former

works [82] the RIS approximation has been adopted to calculate the

conformational part of the heat capacity. This involves the definition of

a characteristic temperature (similar to the Debye temperature) to fit

the experimental data.
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2.5.2 Conformational Part of the Thermodynamic
Potential

In the RIS approximation the PE molecule is represented as a linearly
connected sequence of groups, the identities of the single atoms being

ignored. The methylene groups are regarded as the entities which en¬

gage mutual interactions [10]. In this work we adopt the three state

RIS model for PE proposed in [10, 83, 80]. With three rotational

states, trans, gauche+ and gauche^ assigned to each bond, the sta¬

tistical weight matrix for an internal bond i in the chain of n bonds

takes the general form

O" a

%[ava

va %[a

Ut = 1
ijjava

,
1 < i < n, (2.48)

where a accounts for first order (three-bond) interactions and ip, v ac¬

count for second order (four-bond) interactions. In the above matrix

the rotational states are indexed in the order t, g+, g~. The statistical

weights are given as

a = exp(^) , (2.49)

where R is the molar gas constant and T the temperature. The statis¬

tical weight for a g±gT pair in excess of the energy 2Erj is

v = exp(^) , (2.50)

The statistical weight i[ is defined in analogy to the above equations for

a and v; in the RIS model used in this work it is set equal to 1. For

a chain with independent hindered rotations we have v = 1, the freely

rotating chain is recovered from the chain with interdependent hindered

rotations taking ,
v = a = 1 [80]. In our RIS calculations the length

of the C — C bond and the supplement of the CCC skeletal bond angle
were assigned the values I = 1.53 Ä and 9 = 68°, respectively. For the

torsion angles we have adopted the set of symmetrically located states

at (p = 0°, ±120°. For the energies we have chosen Ea = 500cal/mole,
Ev = 2000 cal/mole. With these assumptions it is possible to calculate

all conformational averages of the chain.

With the generator matrix Eq. (2.43) we have calculated the mean

end-to-end vector (R) = a in the reference frame defined defined in [84].
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Figure 2.10: The characteristic ratio for linear n-alkanes for various

chain models for three different temperatures (indicated in centigrade
with each curve). The upper boundary of the figure is the asymptote

for the chain with interdependent hindered rotations at 140°C. The

chain with free rotations does not perform conformational changes upon

temperature variations.

Since the chain is symmetric, the expectation value of the z-component

of (R) vanishes identically. The x- and y-component increase with the

chain length and approach limiting values of 575 pm and 486 pm, re¬

spectively. Fig. 2.6, p. 24 shows the mean square end-to-end vector as

function of chain length for three different temperatures and as a func¬

tion of temperature for short and long chains. Furthermore, we have

calculated the second moment of the vector p = R a representing the

displacement of R for a given configuration from its average over all

configurations [80]. This quantity can be identified with the conforma¬

tion tensor, i. e. c = (ppT)o. Fig. 2.7, p. 26 shows the conformation

tensor as a function of chain length for chains with n > 5 for differ¬

ent temperatures and the same quantity as a function of temperature

for short chains and infinitely long chains. Diagonalization of ppT has

been achieved by appropriate rotation of the coordinate system [80].
A remark on the diagonalization of the second moment tensor and the

definition of the coordinate system are given at the end of this section.
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Figure 2.11: The temperature coefficient a) and its derivative b) of the

unperturbed mean square end-to-end distance for a polyethylene chain

for three different temperatures. Solid lines are for a chain with interde¬

pendent rotations, dashed lines for the curve with independent hindered

rotations. Values of T are indicated with each curve.
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Figure 2.13: The same as Fig. 2.10 for the spring constant.

We see that in the temperature range considered c is only a weak

function of temperature. For infinitely long chains the principal axes of

the conformation tensor are identical which means that the random coil

has the shape of a perfect sphere. Fig. 2.10, p. 31 shows the character¬

istic ratio Cn = {R2)o/(nl2) for three different chain models and tem¬

peratures above the melting point (the generator matrix of R2 is given
on p. 44, Eq. (3.13)). The characteristic ratio is a decreasing function of

temperature for the chain with interdependent hindered rotations. This

is also found for the chain with independent hindered rotations whereas

the characteristic ratio of the freely rotating chain is independent of

temperature. For these chain models the quantity C'n can be calculated

analytically from Eq. (2.39) [10, p. 16, Eq. (20) and p. 27, Eqs. (53),
(54)]. In the limit of infinitely long chains we have Coo = (l+a')/(l — a')
for the freely rotating chain and Coo = (l + a')/(l — a')-(l + ?7')/(l — 37')
for the chain with independent hindered rotations, where a' = cos 9

and n' = (cos 0) = (1 - a)/(I + 2a) [10, p. 59, Eq. (9)]. To obtain the

characteristic ratio of the chain with interdependent hindered rotations

Eq. (2.39) has been evaluated numerically. The upper bound of the

Fig. 2.10, Coo = 6.87, is the characteristic ratio of a linear PE chain at

140°C. The limiting value of the characteristic ratio is reached already
for chain lengths of a few hundred units. Note that the mean square
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magnitude of the chain vector, (R2)q, is much smaller than the contour

length of the chain, i?max = nZ sin 0/2. Figs. 2.11 and 2.12 (pp. 32, 33)
show the temperature coefficient of the characteristic ratio and its deriv¬

ative as a function of chain length and temperature. At 140°C we have

dln(Ä2)0/dT = -1.1-10"3-1/K for PE. This value is in agreement with

the experiments in crosslinked PE [68]. We made calculations for the

chains with interdependent hindered rotations (solid lines) and chains

with independent hindered rotations (long-dashed line). The depen¬
dence on the chain lengths mirrors essentially the features of Fig. 2.10.

The temperature coefficient of PE is an increasing function of tempera¬

ture. Only the RIS approximation which takes into account second order

interactions in the polymer chain manages to reproduce the experimen¬
tal findings for the characteristic ratio and the temperature coefficient.

Fig. 2.13, p. 34 shows the spring constant for the three polymer models

for several temperatures. We have normalized the spring constant with

ni2 (K = 3/2kBT/Cn). The dotted lines are for the freely rotating
chain having a linear spring constant, K(T). The dashed lines and the

solid lines are for the chain with independent hindered rotations and

the chain with interdependent rotations, respectively. Note the differ¬

ent temperature behaviour of the freely rotating chain and the chain

with interdependent hindered rotations for n = 250.

A note on the calculation of the conformational properties of the

chain should be added for completeness. All configurational averages

have been evaluated in a reference frame defined as follows [84]: The

x-axis is taken along the first bond; the y-axis is in the plane of bonds

1 and 2 with its direction chosen at an acute angle with bond 2; the

z-axis, perpendicular to the plane, completes a right handed Cartesian

system. Diagonalization of the second moment tensor is achieved by a

rotation about the z-axis of the coordinate system [80, p. 5368, Eq. (8)].

2.6 Conclusions

We have discussed the thermodynamic properties of simple polymeric

liquids above the melting point for arbitrary pressures. Furthermore,
we have compared our results with experimental data for linear PE

and hexadecane. For the liquid contribution we have given two ther¬

modynamic potentials which may be applied to a special polymer by
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definition of characteristic properties. However, the liquid behaviour of

the chain fluid is very difficult to capture theoretically, since we have no

order in the liquid structure. To capture the thermodynamic behaviour

of the internal microstructure we took the thermodynamic potential
of the Hookean dumbbell and we adapted methods of equilibrium sta¬

tistical mechanics in order to apply it to real polymer melts. Since

the single polymer chains possess a well defined internal microstructure

their thermodynamic behaviour is accessible via methods of statistical

mechanics. The application of these results to other polymer melts is

straightforward.

Further investigations in the direction laid down in the present chap¬
ter should focus on the evaluation of higher moments of the chain end-

to-end vector of n-alkanes. Another interesting point is the calculation

of optical properties as a function of temperature from the RIS scheme.

In the following Chap. 3 we give a further look at the RIS models to

treat the problem of energetic and entropie elasticity of polymers. The

studies of Chap. 3 should continue in a distinct direction, namely the in¬

vestigation of other polymers and macromolecules. Therefore we recon¬

sider some of the aspects introduced in the present Chap. 2 in Chap.3.
We complete the description of the quiescent material studying its re¬

laxation time spectrum, i. e. its fading memory, in the conclustions of

Chap. 3, p. 53. Then we adopt non-equilibrium thermodynamics to de¬

rive macroscopic balance equations for deforming polymers (Chap. 4).



Chapter 3

Molecular Theory of

Energetic and Entropie

Elasticity

Abstract

We show how to compute the characteristic elastic constant for real

polymer chains adopting the Rotational Isomeric State approximation.
The energetics and entropies for the chain conformations are extracted

from the elastic constant, and the consequences for the Theory of Purely

Entropie Elasticity and for polymer processing are discussed. This al¬

lows us to check if the material is of purely entropie elasticity or not.

Numerical examples for PE and PIB are given. PE does not obey the

Theory of Purely Entropie Elasticity, whereas PIB does. The result for

the latter is consistent with experimental findings in stress relaxation

experiments.
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3.1 Introduction

In the past decade much effort has been devoted to the development of

powerful formalisms for non-equilibrium thermodynamics to treat com¬

plex materials such as amorphous polymers with entropie and energetic

elasticity and to describe their physical properties under compressible
and non-isothermal conditions [2, 1, 24]. The Rotational Isomeric State

(RIS) approximation has gained considerable success in relating the

chemical structure of amorphous polymers to their physical behaviour

since the very beginning of its development and its application to poly¬
mer elasticity [10, 11, 12, 13]. This approximation is especially adequate
to compute the characteristic elastic constant of linear polymers since

the energetics and the entropies of the conformations are treated on the

same footing. The application of these methods to amorphous polymers
in the bulk has been a topic of some controversy but experimental ev¬

idence has shown that single polymer chains behave like random coils

under O-conditions in the amorphous phase [71, 72, 73, 74, 75]. In

what follows we show how non-equilibrium thermodynamics and statis¬

tical mechanics can be combined to evaluate the energetic and entropie

elasticity of flexible polymers.

Theoretical considerations on the elasticity of polymers have a long

history beginning with the fundamental work of Kuhn and Grün [79].
Later, the pioneering works of Flory and co-workers showed how the

elastic properties of polymers can be related to their chemical structure

[68, 83]. In what follows we adopt a constitutive equation for the elastic

part of the free energy of a polymer network and we discuss the entropie

as well as the energetic contributions to the free energy. To capture

the elastic properties of the special polymer under consideration we

adopt the RIS approximation to compute the temperature dependence
of the mean square end-to-end distance of the chain vector and the

characteristic elastic constant of the material.

Consequently we dispose of a criterion which allows us to evaluate

whether or not the Theory of Purely Entropie Elasticity [42, 43, 44,

46, 45] is appropriate to the description of the macroscopic flow be¬

haviour of complex fluids. This is of special importance in polymer

processing since the Theory of Purely Entropie Elasticity seems to fail

dramatically if the temperature of the polymer melt is near the glass
transition temperature [14]. But even in the deformation of polymer
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networks above their melting point the energetics of the bond confor¬

mations of the polymer chains yielded measurable effects [68] which may

become relevant in extreme deformation and temperature histories as

encountered in polymer processing. Therefore it is of prior importance
to compute the nonlinear elastic constant of the material in order to

apply the system equations of non-equilibrium thermodynamics [2, 24]
to special polymers taking into account energetic and entropie elasticity.

In Sec. 3.2 we present general relationships of the thermodynamics
of elastic materials and their application to polymer networks. We de¬

termine the entropie and the energetic contribution to the elastic free

energy and the heat capacity of the network. In Sec. 3.3 we review the

basics of the RIS scheme and the generator matrix method to calculate

configuration dependent properties of polymer chains such as the mean

square end-to-end distance. Sec. 3.4 deals with the presentation of the

results of our calculations to obtain the characteristic elastic constant

for polyethylene and polyisobutylene. In the final Sec. 3.5 we present

the conclusions and we discuss the experimental and theoretical conse¬

quences.

3.2 Thermodynamics of Elastic Materials

3.2.1 General Relationships

The Helmholtz free energy of a material with internal microstructure is

a function of the mass density of the fluid, p, the temperature, T, and

the contravariant conformation tensor, c. The conformation tensor is

the second moment of the end-to-end vector of the chain and describes

the average extension and orientation of the polymer chain at a reference

temperature

ai=ai(p,T,c). (3.1)

Note that here we are employing the so called density variable formula¬

tion (i. e. we are working in terms of volumetric quantities) which has

been proven useful in the Hamiltonian framework of non-equilibrium

thermodynamics [2] and in the GENERIC framework [1, 24]. In this

description the free energy has units of force/length .
The entropy den-
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sity and the internal energy per unit volume are given as

da\

m
da1

The heat capacity (at constant mass density) is defined as

T d2ax
Cconf

p dT2

(3.2)

(3.3)

(3.4)
p,c

since, in general, the potential a is a nonlinear function of temperature.

In what follows we adopt the free energy of a network of polymer chains

and we calculate the network's entropy, its free energy and its heat ca¬

pacity related to material elasticity (Sec. 3.2.2), according to the above

Eqs. (3.2)-(3.4). After that we will adapt the RIS scheme to study some

specific polymers (Sec. 3.3).

3.2.2 Elasticity of a Network of Polymers

The free energy of a network of polymer chains is [2, 24, 77]

ai(/9,T,c) = -pa-i_K(T)tic paifcBTln(detc) , (3.5)

where tr c and det c denote the trace and the determinant of the confor¬

mation tensor, respectively. The first term represents the free energy of

a Hookean spring and the second arises from a statistical consideration

of an assembly of many chains. The parameter cti in the above equation
is a measure of the degree of elasticity per unit mass of the polymeric

fluid, which gives a quantitative measure of the strength of elastic forces

per unit mass in the material. As an example, for a polymer melt, a\

is given by the number of crosslinks or entanglement points per unit

volume divided by the mass density. It is taken herein as a material

constant; i. e., it is not a function of temperature. For the elastic con¬

stant of a flexible macromolecule we take the definition of Kuhn and

Grün [79]

K(T) =
IJ§^, (3.6)
2tr(RR)0

'
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where R is the end-to-end vector of the polymer chain or the distance

between crosslinks or entanglement points and (RR)o is the second

moment of the the end-to-end vector evaluated at equilibrium. This

quantity is a nonlinear function since the end-to-end vector changes with

temperature. It has the units of energy/length .
From the free energy

(3.5) of the network we can calculate the energetic and the entropie

elasticity according to Eq. (3.2), (3.3)

Sl(p,T,c)

ci(p,T,c)

1 dK(T)
-~Pai—^^trc

-pai

dT

K(T) - T

1

2

dK(T)
dT

pa\kB ln(det c) , (3.7)

trc
, (3.8)

As an illustration, Fig. 3.1 shows the deviation of the elastic constant,

K(T), from its linear behaviour for n-alkanes. The simulation procedure
and further discussions are postponed to Sees. 3.3 and 3.4.

700 720 7¥0 760 780

Temperature [°C]

200

Figure 3.1: Deviation of the elastic constant from linear behaviour

for n-alkanes with interdependent hindered rotations (solid lines) and

independent hindered rotations (dashed lines). This quantity is a mea¬

sure for the energetic elasticity of the chain according to Eq. (3.8). The

value of n is indicated with each curve. We have assumed bond rotation

angles of cf) = 0°, 120°.
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Applying Eq. (3.4) to the potential (3.5) we obtain

1 d2K(T) , N

cconf = --Taitrc
dT2

, (3-9)

for the conformational part of the heat capacity in terms of the non¬

linear spring constant. This quantity increases linearly with trc and

consequently it may become important in highly oriented systems. In

Fig. 3.2 we show the temperature dependence of the conformational

heat capacity (3.9) for n-alkanes (cf. Secs. 3.3 and 3.4.1 for details).
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015
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Figure 3.2: The absolute value of the conformational part of the heat

capacity according to Eq. (3.9) for three n-alkanes. The value of n is

indicated with each curve. We have assumed bond rotation angles of

</> = 0°,120°.

To apply the above Helmholtz free energy to polymeric liquids it

is essential to find the functional form of the spring constant for the

special polymer under consideration. This means that the temperature

dependence of the quantity tr(RR)o has to be determined. In former

works on non-isothermal rheology tr(RR)o has been assumed to be a

constant [47] or phenomenological forms of the spring constant have

been adopted [49]. Here we want to use detailed atomistic representa¬

tions of the polymer and to calculate the mean square of the magnitude
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of the chain vector as a function of temperature. To this end we re¬

sort to the RIS approximation of Physical Chemistry [10, 11, 12] which

allows us to calculate configuration dependent properties of molecules.

3.3 Rotational Isomeric State Approxima¬
tion

3.3.1 General Relationships

In the RIS [10, 11, 12] approximation each molecule is treated as occur¬

ring in one or another of several discrete rotational states. The states

are chosen to coincide with potential minima of the conformational en¬

ergy as a function of the rotation angle about the skeletal bonds, the

lengths of the bonds and the bond angles being considered as constant.

A given configuration of the molecule is then specified by a set of tor¬

sional angles {cp}. Then for each bond i of the chain a statistical weight
matrix

U, = [ mc, ], ,
1< i < n

, (3.10)

can be defined with states (Ç) for bond i — 1 indexing the rows and

those (n) for bond i the columns ((,n = a, ß, , v). The energies

Eçv corresponding to the statistical weights uçv are defined through
the Boltzmann factors u^ni = exp(—Eçmt/RT), where E^ t

is the con¬

tribution to the total energy of the configuration, E({(f>}), associated

with the assignment of bond i to state n, bond i — 1 being in state

£. Note that in the RIS approximation a coarse grained description of

the polymer chain is adopted and therefore the conformational energies,

Eçn<i, should be taken as temperature dependent functions. However,
for simplicity we wish to work with constant conformational energies
herein. We shall say more about a possible temperature dependence of

the conformational energies in Sec. 3.4.2, p. 53.

The configurational partition function and the generator matrices

for higher moments of the end-to-end vector, R, have been presented in

Sec. 2.4.2, p. 21. In the following Sec. 3.3.2 we introduce the generator
matrix for the mean squared end-to-end vector of the polymer chain.
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3.3.2 Square of the Magnitude of the Chain Vector

The square magnitude of R2 is given by

R2 - 2^ lh + 2 2^ Ife T\T,,,+i • • • Tj_iL ,

h<3

(3.11)
h=i

where l£ is the transposed of bond (column) vector 1^, and l^ is its

magnitude. Each term of the double sum is the scalar product of a pair
of bond vectors. Tt denotes the matrix of transformation between the

reference frame of bond i + 1 and bond i [10]. It is a function of the

bond angle 9t and the torsional angle </>t

T,

COS#j

sin 9t cos </>j
sin 9t sin <pt

sin 9t 0

- cos 8t cos <f>l sin (/
- cos 9t sin </>j cos q

(3.12)

The generator matrix of the square end-to-end distance is

G,

and it follows that

1 21TT I2

0 T 1

0 0 1

1 < i < n
,

R — GmG
(n-2)

G.

(3.13)

(3.14)

where G[i and G„] are, respectively, the first row of Gi and the final

column of G„

Gr 1 21TT I2 ] i j
G,

I2

1

1

(3.15)

Such generator matrices may be formulated for all configuration depen¬
dent properties of a chain molecule, e. g. the radius of gyration, molec¬

ular dipole moments or optical anisotropies. The quantity of interest is

given in analogy to Eq. (3.14).

Figs. 3.3 and 3.6 show the characteristic ratio C„ = {R2)/n/l2 for n-

alkanes and for PIB as a function of temperature. The chain properties
have been calculated with the appropriate statistical weight matrices

(3.16), p. 45 and (3.19), p. 49 and the general relationship (2.39), p. 23

with F = G from Eq. (3.13). A detailed discussion follows in Sec. 3.4.
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3.4 Application to Linear Polymers

3.4.1 Polyethylene

In the RIS approximation the polyethylene (PE, repeat unit —CH2—)
molecule is represented as a linearly connected sequence of groups, the

identities of the single atoms being ignored. The methylene groups are

regarded as the entities which engage mutual interactions [10]. In this

work we adopt the three state RIS model for PE proposed in [83]. With

three rotational states trans, gauche+ and gauche^ assigned to each

bond, the statistical weight matrix for an internal bond 1 in the chain

of n bonds takes the general form

O" a

ipa va

va ipa

U,= 1 f w
,

1< 1 < n
, (3.16)

where a accounts for first order (three-bond) interactions and ip, v ac¬

count for second order (four-bond) interactions [10]. In the above matrix

the rotational states are indexed in the order t, g+, g~. The statistical

weights are given as

<7 = exp(^), (3.17)

where R is the molar gas constant and T the temperature. The statis¬

tical weight for a g±gT pair in excess of the energy 2E(J is

v = exp(^) • (3.18)

The statistical weight tp is defined in analogy to the above equations for

a and v; in the RIS model adopted in this work it is set equal to 1. For

a chain with independent hindered rotations we have v = 1, the freely

rotating chain is recovered taking v = a = 1 [80]. The mean square

end-to-end vector of these chain models can be represented analytically

[10] and has been taken as a check for the treatment of the chain with

interdependent hindered rotations.

In our RIS calculations the length of the C — C bond and the supple¬
ment of the CCC skeletal bond angle were assigned the values / = 1.53 A

and 9 = 68°, respectively. For the torsion angles we have adopted
the set of symmetrically located states at tp = 0°,±120°. In some
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instances we used <p = 0°, ±112.5° to study the dependence on the

torsional angles. For the energies we have chosen Ea = 500 cal/mole,
Ev = 2000 cal/mole. With these assumptions it is possible to calculate

all conformational averages of chain properties according to [10, 83, 80].
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Figure 3.3: The characteristic ratio and its temperature coefficients for
a polymethylene chain as a function of temperature for three different
n-alkanes. We have assumed bond rotation angles of (p = 0°, 120°. The

value of n is indicated with each curve. The arrow indicates the melting

point of linear PE of 130°C.

Fig. 3.3 shows the temperature dependence of the characteristic ra¬

tio and its first and second temperature coefficient as a function of tem¬

perature for short chains, chains of intermediate length, and infinitely

long chains between 100°C and 200°C. The arrow denotes the melting

point of linear polyethylene of 130°C. At 140°C we have Coo = 6.87

for the characteristic ratio and dln(i?2)o/dT = —1.1 • 10~3 • 1/K for

the temperature coefficient of PE. These values are in agreement with

the experiments in dilute solution to obtain the characteristic ratio and
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in crosslinked PE to obtain the temperature coefficient [68]. Only the

sophisticated RIS approximation which takes into account second order

interactions in the polymer chain manages to reproduce the experimen¬
tal findings for the characteristic ratio and the temperature coefficient.

The RIS approximations in [85] ignore second order interactions and

therefore fail to reproduce both quantities. Furthermore, we have cal¬

culated the elastic constant and its first and second temperature co¬

efficient from the characteristic ratio. We have normalized the elastic

constant with ni2 (K = 3/2kBT/Cn).

K

dK

dT
r

df
[10T

120
1 1 ' 1 1 ' 1 '

_ 64

110
128

100

90

80 ""i
1 i 1 1 i 1 i

0.36

1
1

'
\ 1

'
\

'

64

0.34
128

0.32

0.3

3.8

3.7
64

3.6

3.5
, i , i i,i,

100 120 140 160 180 200

Temperature [ C]

Figure 3.4: The same as Fig. 3.3 for the elastic constant and its first
and second temperature coefficient.

Fig. 3.4 shows the elastic constant and its temperature coefficients as

a function of temperature for several chain lengths. The characteristic

elastic constant, K(T), is a measure for the total free energy of the

polymer network according to Eq. (3.5). (Keep in mind that in the

undeformed network trc = 3 and det c = 1.)

48 Chapter 3. Energetic &: Entropie Elasticity

0 32

0 31

0 29

0 28

027

RIS $=120
RIS è=112 5°

700 750 200

Temperature [ C]

250

-^ 128

0 45

i 1 i 1 i

^^^~~~~~~~
—
—
—

""

___-—-~~"~"

^
04

~~~"~
RIS $=120°
RIS $=112 5°

1,1,

64

100 150 200 250

Temperature [ C]

Figure 3.5: Ratio of energetic to entropie energy (a) and energetic
versus total elastic energy (b) for the chain with interdependent hindered

rotations for three different n-alkanes. The value of n is reported with

each curve. We have assumed bond rotation angles <p = 0°, 120° (solid
lines) and (p = 0°, 112.5° (dashed lines).
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The first derivative of the elastic constant with respect to tempera¬

ture, dK/dT, is a measure for the entropies of the bond conformations

according to Eq. (3.7). The second derivative of the elastic constant,

d2K/d2T, is proportional to the heat capacity of the network, Eq. (3.9),
which we have depicted in Fig. 3.2, p. 42 as a function of temperature.

Fig. 3.1, p. 41 considers the deviation of the spring constant from its

linear behaviour and mirrors the energetics of the bond conformations

according to Eq. (3.8). We have also performed calculations for chains

with independent hindered rotations (dashed lines in Fig. 3.2) to show

that the energetic elasticity of the chains with interdependent hindered

rotations (solid lines) is more pronounced. The quantities K(T) and

dK/dT are measures for the total elastic energy and the entropie en¬

ergy of the polymer network, respectively. At this point it is interesting
to study the strength of the energetic elasticity of the network with re¬

spect to its entropie elasticity and with respect to its total free energy.

Fig. 3.5a displays the ratio of energetic to entropie elasticity for several

n-alkanes and Fig. 3.5b the ratio of the energetics to the total energy

of the chain. Our calculations for two sets of torsional angles show

that more pronounced rotations around the skeletal bonds enhance the

energetics of the bond conformations.

3.4.2 Polyisobutylene

For polyisobutylene (PIB, repeat unit —CH2C(CHj)2CH2—) we have

adopted the RIS model of Suter et al. [86]. The PIB chain has a repeat

unit of two bonds with four rotational states trans+, trans_, gauche++,
and gauche" _.

After renormalization the statistical weight matrices for

an internal bond i in the PIB chain are

U„

/ o o i £ \

0 0 Ç 1

1 Ç 0 0

V £ i o o /

Uv,

/ 1 0 1 0 \
0 10 1

10 10

V o i o i /

(3.19)

In the above matrices the rotational states are indexed in the order t.

t_, g+ + , g~ - The statistical weight is given as

+ i

£ = exp(ZË1
RT

(3.20)
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In our RIS calculations the length of the C — C bond was I = 1.53 A,
the valence angles where 123° and 109°, and the torsion angles ±165°

and ±50° for the trans- and gaucie-states, respectively. For the energy

we took E^ = 3000 cal/mole.

C

dC_

dT

dc

[10 K ]

df[10K]-21

20 40 60 80 100

Temperature [ C]

Figure 3.6: The characteristic ratio and its temperature coefficients

for the PIB chain as a function of temperature. The RIS parameters

are reported in the text. The arrow indicates the melting point of linear

PIB of 44° C.

Fig. 3.6 shows the characteristic ratio and its temperature coeffi¬

cients for the PIB chain between 0°C and 100° C calculated from the

statistical weight matrices (3.19). At 27°C we have Coo = 6.81 for

the characteristic ratio and dln(ß2)0/dT = -0.036 • 10~3 • 1/K for the

temperature coefficient for PIB [68]. The number of gauche conforma¬

tions in the chain increases with increasing temperature since Coo is a

decreasing function of temperature. Note that PIB is a glass forming

liquid and as it approaches its glass transition temperature in super¬

cooling it remains amorphous. The temperature coefficient of PIB is 30
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times smaller than the same quantity for PE. Consequently the ener¬

getic potential of PIB is found to be much smaller than the energetic

potential (cf. Fig. 3.8, p. 52) and the material obeys the Theory of

Purely Entropie Elasticity.

K

dK
,

J i I i I i L
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Temperature [ C]

Figure 3.7: The same as Fig. 3.6 for the elastic constant and its first
and second temperature coefficient.

Fig. 3.7 shows the elastic constant and its first and second temper¬

ature coefficient as a function of temperature. For both polymers, PE

and PIB, we recover essentially the same temperature behaviour of the

elastic spring constant and its temperature coefficients. Fig. 3.8 displays
the ratio of energetic to entropie elasticity (a) and the ratio of the ener¬

getic to the total elasticity (b) for PIB. We see that the energetics of the

bond conformations is considerably smaller for PIB than for PE which

makes it more appropriate for a description as a material with purely

entropie elasticity. In non-isothermal stress relaxation experiments [14]
PIB was found to be of purely entropie elasticity. This is consistent

with our RIS calculations and the results of Fig. 3.8.
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Figure 3.8: Ratio of energetic to entropie energy (a) and energetic
versus total elastic energy (b) for PIB.
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For PE and PIB the ratio t\/s\/T was found to increase with in¬

creasing temperature (cf. Fig. 3.5, p. 48 and Fig. 3.8, p. 52). This is

due to the fact that the number of gauche conformations in the chain

increases with increasing temperature which enhances the energetics of

the bond conformations. Taking the conformational energies, E^^, as

temperature dependent functions one may observe an opposite trend of

the ratio ei/si/T. Intuitively, this may be more reasonable because the

entropy of the chain increases with increasing temperature. It would

be interesting to check the trend of the ratio t\/s\/T for chains with a

positive temperature coefficient.

We want to give the characteristic ratio and its temperature coeffi¬

cient for some common polymers: For the characteristic ratio we have

Coo = 6.3 at 343 K, 9.1 at 300 K, and 10.23 at 300 K for polydimethyl-
siloxane (PDMS), poly(vinyl acetate) (PVA) and atactic polystyrene

(PS), respectively [13, and references therein]. Note that the value

for atactic PS depends on the RIS model adapted. The correspond¬

ing temperature coefficients are dln(i?2)o/dT = +0.67 • 10~3 • 1/K,
+0.52 • 10"3 • 1/K, and -0.9 • lO-3 • 1/K.

3.5 Conclusions

We wish to summarize briefly the results that we obtain by combining

thermodynamics and statistical mechanics to evaluate the entropie and

the energetic elasticity of polymer networks. We started from a consti¬

tutive assumption for the Helmholtz free energy of polymer networks

consisting of a free energy contribution of a Hookean spring and a con¬

tribution due to the assembly of many chains. From this free energy

we extracted the energetic and the entropie elasticity of the network.

Adopting the RIS scheme we have calculated the temperature depen¬
dence of the characteristic ratio and its first and second temperature

coefficient. The characteristic ratio is related to the elastic constant of

the polymer. We performed calculations for PE and PIB and we showed

that the Theory of Purely Entropie Elasticity used in engineering ap¬

plications has to be considered with scepticism. Its validity depends

strongly on the material under consideration. It is not appropriate to

the description of n-alkanes since the energetics of the bond conforma¬

tions is between 25% and 45% of the total elastic energy. This value
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varies with chain length, temperature, and the RIS states adopted in

the model under consideration. For PIB the Theory of Purely Entropie

Elasticity seems to be more appropriate since we obtain values between

0.7% and 2.5% for the ratio of the energetics to the total energy of the

bond conformations. This result for PIB is consistent with findings in

non-isothermal stress relaxation experiments.

To have a complete description of quiescent polymeric materials we

have to know their relaxation time spectrum. Therefore we give a short

introduction concerning the fading memory of polymeric materials. In

the past much effort has been undertaken to understand the rich spec¬

trum of relaxation times inherent to polymeric materials. The first

attempts in this direction pointed at the development and experimental

investigation of phenomenological relationships to quantify the temper¬

ature and density variation of viscosities, relaxation times, and shift

factors [19, 87, 20, 88, 21, 89]. In Sec. 6.3.2, p. 126 such phenomenolog¬
ical relationships will be adopted to compute viscosities and thermody¬
namic properties of a deforming material under non-isothermal condi¬

tions. An important milestone in the understanding of the relaxation

time spectrum of polymers was the development of phenomenological

bead-spring models like the Rouse model and the reptation model. The

usual approach followed in these models is to divide the polymer into

sections consisting of the single Flory atoms (i. e. the CH2 groups in

the PE chain). If the Flory atoms are linked together by springs rep¬

resenting the covalent bonds of the chain backbone we have what is

commonly called a bead-spring model. With this model the problem
of the molecular motion is equivalent to the problem of a collection of

interacting Brownian particles. Adopting molecular dynamics simula¬

tion of the detailed atomistically represented chains or coarse grained

polymer chains the relaxation time spectrum of polymers can be de¬

termined from computer simulations. The numerical results are sub¬

sequently mapped onto bead-spring models as the Rouse model or the

reptation model to analyse the scaling laws for the relaxation times

and in order to determine friction coefficients, diffusion constants, and

viscosities [23]. The problem of calculating relaxation times of atom¬

istic polymer chains employing computer simulations is quite compli¬
cated since the relaxation times of polymers increase rapidly with chain

length. In molecular dynamics simulations of the atomistically repre¬

sented polymer runs on the order of 90 ns are the upper limit of what

can be achieved with such techniques actually. Such simulations have
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been carried out for a system of 650 chains with TV = 100 carbon atoms

per chain The system can be considered as free of entanglements, the

region of entanglements setting m at N = 150 carbon atoms, approxi¬

mately [23, and references therein] The situation becomes even more

difficult if temperature variations and supercooling are considered, since

the relaxation time is a strong function of the material's temperature

In fact the relaxation times can increase over several orders of mag¬

nitude in undercooled systems Voigt and Kroger [90] have calculated

the chain length dependence of the zero shear viscosity using NEMD

simulations Simulation details can be found in [90] In this type of

simulations the material is modeled as a system of particles interacting

via a Lennard-Jones potential Vlj = 4e[(cr/r)12 — (er/r)6], where e and

a are the characteristic energy and length of the potential, respectively

Furthermore, a FENE-P potential mimics the elastic forces between ad¬

jacent particles F = Kr/(I — (r/b)2), where K is a, characteristic spring

constant and b is the maximum allowed spring length The distance

between neighboring particles in a chain can be identified with the per¬

sistence length of the real polymer or the Lennard-Jones length in the

MD simulation Then the system is subjected to an external shear de¬

formation and the rheological and thermodynamic properties can be

extracted from the computer experiment Voigt and Kroger found a

linear increase of the zero shear viscosity for the short chain regime

and a Ns 3
power law dependence for chains with N > 100 with this

simulation technique The result for the short chain regime is in agree¬

ment with the Rouse model predicting a linear increase of the zero shear

viscosity with increasing chain length A physical explanation for the

Rouse behaviour m the short chain regime is the absence of screening

effects m the dense amorphous state Furthermore, the Rouse model

neglects hydrodynamic interactions This last effect is taken into ac¬

count in the Zimm model which predicts an increase of the zero shear

viscosity scaling with an exponent of v = 1/2 [17, p 113, Eq (4 149)]
However, the Zimm model is for dilute solutions only
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Chapter 4

Balance Equations for

Flowing Polymeric
Materials

Abstract

The thermodynamics and mechanics of non-isothermal polymeric flu¬

ids are examined within the auspices of a new methodology wherein

the laws of physics and principles of mechanics which are applicable to

these thermodynamic systems are imbedded in a definite mathemati¬

cal structure of a general, abstract equation. This permits the ther-

modynamically consistent generalization of isothermal, incompressible
models of polymeric fluids to non-isothermal, compressible conditions.

Doing thus reproduces, corrects, and extends non-isothermal models

which have been developed over the years, and also allows for simpler

(but equivalent) representations of these models in terms of alternate

variables with a clearer connection to the microstructure of the material

than the stress tensor and heat flux vector fields. A generalization of

the GENERIC structure is proposed that accommodates interactions

between phenomena of differing parities, which impose antisymmetry

upon the corresponding elements of the dissipative operator matrix.
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4.1 Introduction

If we scan the literature of the past forty years or so which is concerned

with non-isothermal polymeric fluids (about two hundred articles and

book chapters scattered randomly), two points seem to be universally

accepted: 1.) the issue is extremely important; 2.) scant work has been

done on this topic. In practically all of the papers that are concerned

with this subject, you can find these two points pointed out explicitly in

the introduction of the article. Although point 1.) remains valid, after

reading and digesting these papers it is evident that point 2.) is no

longer a valid one, because much work has now been done on this topic.
This statement certainly holds true for theoretical work, although there

is still a glaring need for sound experimental data (woefully true for

practically any subject). Several groups of researchers have put forth

theories for the thermodynamics and mechanics of these non-isothermal

materials over the previous four decades, and although each has earned

success to one degree or another, each suffers from limitations of uni¬

versality and/or practicality which can only be overcome by unifying
all of the discrepant parts into a coherent entity. Hence point 2.) above

should now be replaced with something like: 2.) scant effort has been

expended to produce a universal and practical theory from the sum of

its parts. Without doing so, little has been gained, and indeed, most

modern textbooks of rheology and fluid mechanics of polymeric fluids

do not treat the subject of non-isothermal flows, nor do they even ac¬

knowledge its existence.

Taking for granted the validity of point 1.), several groups of re¬

searchers have realized the pertinence of the updated point 2.), and

have attempted to address it. Braun [91] and Peters [92] have presented

very general theories of the thermodynamics of non-isothermal poly¬
meric fluids which cover a wide range of phenomena one might observe

experimentally. Furthermore, over the past ten years, a few unifying at¬

tempts have been made using a new style of thermodynamic theory of

complex fluids that endeavors to condense all relevant thermodynam-
ical and mechanical principles into a single, practical, mathematical

structural equation for the material's dynamical evolution, valid under

non-isothermal conditions. Whether this mathematical structure is the

extended Gibbs relation of Extended Irreversible Thermodynamics [93],
the dynamical evolution equations of dissipative potential theory [77],
the global rate expression of single generator Bracket Theory [94, 95, 2],
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or the two generator GENERIC operator equation [96, 1], the underly¬

ing theme is essentially the same. Hence we must take the opportunity
to unify and to amplify not only the previous theories for non-isothermal

polymer fluids, but also the unifying formalisms. Neither of these is con¬

ceptually difficult given the proper starting point.

In prior publications [97, 98], the unification of the single genera¬

tor Bracket Theory and the GENERIC equation was achieved, demon¬

strating the relative merits of each approach, hence allowing the most

useful elements of each formalism to be implemented in a given sit¬

uation. The double generator structure, involving the associated de¬

generacy conditions, emerged from that analysis as a new opportunity
for further progress in non-equilibrium thermodynamics. That these

two formalisms proved to be so closely related derives from the fact

that they both emerged as the practical outgrowth of the impractical

dissipative potential theory [77]. Hence most of the unifying of the

structural theories has heretofore been accomplished and rendered to

the literature. (Furthermore, the unification of all of these formalisms

with the Matrix Model [99, 100, 101] of isothermal fluids has also been

accomplished [102].) We shall make use of these results in Chap. 4,
and also realize that the GENERIC approach is conceptually compat¬

ible with one of the main tenets of Extended Irreversible Thermody¬

namics, once the generators in the former are taken as not necessarily

equilibrium quantities, as in [2, Sec. 10.1]. Hence certain results from

the latter [103, 93], such as non-equilibrium corrections to the pres¬

sure, temperature, etc., can be introduced, if desired, into the former,

gaining additional structure thereby, without the need for an expansion
of the equilibrium Gibbs relation to include non-equilibrium fluxes as

independent variables. Grmela et al. [104] have explored the interrela¬

tionships between the GENERIC structure and Extended Irreversible

Thermodynamics. This investigation has demonstrated that the proper

state variables for hydrodynamical investigations are not the extra stress

tensor field and heat flux vector field as originally used in Extended Ir¬

reversible Thermodynamics, but rather fields related to the internal

structure of the material [104], as in [105, 2]. Wapperom and Hülsen

[64] adopted a multiple conformation tensor approach to give a descrip¬
tion of non-isothermal polymeric liquids. Furthermore, they derived a

temperature equation from the balance equations of mass, internal en¬

ergy, and polymer conformation. The description presented in Chap. 4

is closely related to the one adopted by Wapperom and Hülsen.
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The objective of Chap. 4 is to give a modern, practical, treatment

of the thermodynamical and mechanical theory of non-isothermal poly¬
meric fluids. Hence we intend to take advantage of the newly emerged

methodology to recast the prior work within a more universal and more

practical framework. Several advantages ensue. First, the definite

mathematical structure of the new methodology imposes mechanical

consistency upon the dynamical evolution equations for the field vari¬

ables used to describe the physical state of the non-isothermal material.

Ergo, common errors can be avoided that occur when writing out a set

of evolution equations using a typical modeling procedure of successive

application of various disjointed mathematical principles and physical
laws. Examples of these common errors will be discussed below. Sec¬

ond, the underlying mathematical structure of the dynamical evolution

equations can lead to important new results regarding the system's sta¬

bility [106, 107] and structural compatibility of closure approximations

[108]. Most importantly, the full thermodynamic consistency of the

system dynamical evolution equations can be guaranteed; a significant

point since it has been demonstrated that violation of thermodynamic

consistency can lead to aphysical system behavior [2]. The set of equa¬

tions obtained herein is more specific to the problem at hand than that

of [104], being expressed in terms of fewer degrees of freedom with re¬

gard to the choice of field variables. The set of equations derived in

[104] is a special case of the more general set derived earlier in [105] and

Sec. 10.1 of [2] in terms of exactly the same set of variables. Hence the

number of degrees of freedom in the present work is equivalent to that

of [91, 94, 95, 92].

4.2 Literature Review

The complex behavior of polymeric materials under non-isothermal con¬

ditions has caused many problems for the engineers and physicists who

were faced with the task of quantifying their material properties and

rheological characteristics. With the rapid expansion of the high poly¬
mer industry in the 1940s and 1950s, much effort was devoted to the

study and characterization of these new materials, creating an impe¬
tus which survives and flourishes today. Over the past fifty years, a

steady accumulation of knowledge has led to a gradual development
of theoretical means to describe the varied and complex behavior of
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these materials under processing conditions. In this section, we give
an overview of some of the important theoretical advances which have

occurred in this area, each building upon the successes of the previous

one. At the end of the survey, we shall recognize that there is still much

room for important new advances, and, indeed, that such are critical if

one ever wishes to have a complete description of the flow phenomena
of these materials under non-isothermal conditions.

In the remaining sections of Chap. 4, we shall make a critical ex¬

amination of these prior theoretical efforts via a formal development in

terms of the GENERIC structure discussed in Sec. 4.1. Although all of

the work discussed below had merit in its time, progress has revealed

that its limitations had to be removed for further theoretical refine¬

ment of the physical system description. We shall find that the internal

consistency of the new structural approach described above allows fur¬

ther refinement, and, in some cases, corrects, clarifies, and extends past

contributions to this subject.

4.2.1 The Time-Temperature Superposition Princi¬

ple

Our thermodynamic story begins at the point where the temperature be¬

came an important variable in the description of the material properties
of polymeric fluids. It was well understood early on after the large-scale

development of high molecular weight polymers that solutions or melts

of these materials, after removal of an applied load, would undergo a

long time viscoelastic relaxation back to the undeformed state which

could be quantified with a spectrum of relaxation modes, each with a

characteristic relaxation time [26]. The expanding polymer industry de¬

manded quantitative information about the material properties of these

fluids under processing conditions, and these are all related in one way

or another to the relaxation spectrum. It was thus of immediate im¬

port to take measurements of the relaxation rates of polymeric fluids

over extensive ranges of deformations. The rub was that the typical ex¬

perimental apparatus had a limited range of deformations which could

be applied to the sample, whereas a typical processing operation did

not. Hence for a given polymeric fluid, only a portion of the relaxation

spectrum could be investigated experimentally.
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Based upon a multitude of experimental evidence of creep and re¬

covery in polymeric fluids, Leaderman [19] first enunciated the time-

temperature superposition principle: "The effect of variation of tem¬

perature is thus seen to cause a shift of the sigmoidal creep curve along
the axis of logarithmic time." This insightful statement, though not

suggesting any hint of universality, lead to the tremendously useful em¬

piricism of experimentally determining a shift factor, aT, which could be

used to superimpose mechanical property data taken at different tem¬

peratures. Although not of universal validity, this principle did apply to

a number of polymeric fluids of practical import in the polymer indus¬

try. It rests on the assumption that the molecular processes which gov¬

ern each relaxation mode of a given polymer are accelerated (retarded)
equally by an increase (decrease) of temperature [25]. These fluids were

described as "thermo-rheologically simple" [25]. Hence an experimen¬
tal determination of aT would then subsequently allow an experimenter
to extend effectively the deformation range of his apparatus by raising
or lowering the temperature. Furthermore, data taken at one specific

temperature could be used to infer those at another. The situation

became even more pleasant with the discovery of reasonably accurate

empiricisms for predicting the shift factor [20, 21, 26], which were valid

approximately from the glass transition temperature, Tg, to Tg +100 K.

Of course, this empirical theory cannot claim universal validity, but it

is remarkable that it does work effectively for a large number of poly¬
meric fluids over a wide range of temperatures. Markovitz [27] has

given a critical account of this empiricism, which so effectively defined

the usefulness and limitations of the theory that no further significant
comments on the subject have appeared in the literature.

In applying the time-temperature superposition principle, it is im¬

plicitly assumed that the fluid under investigation is always at a con¬

stant temperature, spatially and temporally. Hence the temperature

is not a problem variable, but merely an experimentally controlled pa¬

rameter. Nevertheless, it did serve notice that the material properties
of polymeric fluids are influenced greatly by variations of temperature

in a more complicated fashion than the usual Arrhenius temperature

dependence of the Newtonian shear viscosity. Furthermore, it provides
a reasonably sound basis to which subsequent fully non-isothermal the¬

ories of polymeric fluids should conform, in the appropriate limits.
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4.2.2 Extension of the Time-Temperature Superpo¬
sition Principle to Non-isothermal Flows

For the design of polymer processing operations, it is not enough to

know only the material properties of the fluid as functions of temper¬

ature (and other requisite variables, such as the deformation rate, of

course). All of these variables can display spatial and temporal in-

homogeneities, which are induced by inlet/outlet and boundary/initial
conditions of the process itself. In important processing operations like

blow molding, film blowing, fiber spinning, wire coating, injection mold¬

ing, extrusion, and calendering, temperature gradients can be as high
as 100 K/mm perpendicular to the material streamlines due to viscous

heating [63]. Post-processing quench procedures also lead to rapid tem¬

perature variations, but now parallel as well as perpendicular to the

material streamlines. Consequently, the time-temperature superposi¬
tion principle alone, even if it were universally valid, would be inade¬

quate for describing the spatially as well as temporally varying material

properties of the processed polymeric liquid. It is thus necessary to have

available a fully non-isothermal set of evolution equations for the vari¬

ables which describe completely the state of the fluid in space and time.

Typical variables used to quantify the fluid are the stress tensor field,
the velocity vector field, and the scalar temperature field; however, for

processing operations involving crystallization or residual orientation

it is necessary to use structural variables which quantify the confor¬

mational state of the fluid microstructure - a point to be emphasized
below. The development of this set of evolution equations, and indeed,
even the determination of the proper set of field variables, represents

the foremost problem in this field.

The first mathematical endeavors to obtain a fully non-isothermal

flow theory attempted to extend the idea of time-temperature super¬

position to flows with spatial and temporal inhomogeneities. Morland

and Lee [28] examined the linear viscoelasticity of thermo-rheologically

simple fluids by defining a "reduced" or "pseudo" time for the system
which depended on both the spatial, r, and real time, t, variables.

Effectively, under the appropriate definition, a given viscoelastic law or

material function in reduced time, £, is related to its constant temper¬

ature one evaluated in real time through the shift factor:

£(r,£)=taT(T(r)). (4.1)

64 Chapter 4. Balance Equations

Two realizations are necessary to carry this off: 1.) even though the

material is spatially inhomogeneous, the time-temperature superposi¬
tion principle holds for each fluid particle independently; 2.) there is

no explicit dependence of the shift factor on the temperature history of

the fluid particle. The usefulness of this theory is very limited, however,
and not only by the assumption of thermo-rheological simplicity. In the

words of the authors: "Unfortunately the equilibrium and compatibility
conditions are changed in form, and the usual character of the elasticity

equations is lost. Expressing the viscoelastic law in terms of the real

time variable gives either differential operators with non-isothermal co¬

efficients, or integral operators whose kernels have functional arguments;
in both cases there appears to be no general method of solution of the

corresponding stress analysis equations."

Using fundamental ideas from the approach of Coleman for materi¬

als with fading memory (to be discussed below), Crochet and Naghdi
wrote a series of articles [29, 30, 31, 32] extending the Morland and Lee

hypothesis by relaxing realization 2.) of the preceding paragraph: the

reduced time is effectively taken as a function of the thermal history of

the fluid particle. Again, the modified time scale is taken as central to

the application of the idea of thermo-rheological simplicity to the analy¬

sis, with the restriction that the requisite strain functional is given by
an isothermal functional of the stress history of a given fluid particle.
This restriction in principle allowed typical constitutive functionals for

isothermal fluids to be introduced into the theoretical description, but

the only concrete applications of the theory were performed in the limit

of linear viscoelasticity [29, 30, 32]. The practical utility of the method¬

ology was limited by computational tractability, and effectively by the

specification of the constitutive functionals.

The theory was also limited by the presumption of thermo-

rheological simplicity of the material, which is far from being a uni¬

versal property of these fluids. Furthermore, the temperature history
of the fluid particle was assumed to be such that the temperature vari¬

ation is small in the recent past, although it may be arbitrarily large
from the initial condition. This is an interesting point, since Matsumoto

and Bogue [62] have shown experimentally that for rapid temperature

changes the time-temperature superposition principle fails dramatically.

They suggest that the shift factor should be taken as a function of

the present temperature and the rate of temperature variation, which

clearly leads us back to the present theory, but in a form with the above-
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mentioned assumption removed. Rather than proceed in this direction,

given the other limitations of the theory described above, it is more

important to press on in the development of a more universal set of

equations for quantifying non-isothermal processes.

4.2.3 Theory of Simple Fluids with Fading Memory

In the early 1960s, Coleman and his co-workers developed several the¬

ories for different, restricted classes of "simple fluids", the most well-

known of these being the Theory of Simple Fluids with Fading Memory

[33, 34, 35]. The fundamental tenet of this theory is that the stress

tensor and heat flux vector at a given material point depend not only
on the instantaneous values of the deformation gradient and tempera¬

ture, but also on all past values of these quantities in a fashion which

decays moving backward in time. The stress tensor field and the heat

flux vector field of the simple fluid then depend on functionals of the de¬

formation gradient and temperature, which are assumed to obey certain

continuity and smoothness conditions, allowing subsequent mathemat¬

ical analysis. Thermodynamics is then used to restrict the allowable

functionality of the constitutive relationships between stress/heat flux

and deformation/temperature gradient by assuming the validity of pos¬

tulated macroscopic balance equations. The forms of these balance

equations also serve to help define the meaning of "simple fluids."

The most sacrosanct macroscopic balance equation in this theory is

the postulated form of the global entropy balance,

pydV + J ^q-ndS - J p^dV = J pasdV. (4.2)

V S V V

In this expression, p is the mass density, n is the specific entropy, q is

the heat flux vector field, n an outwardly-directed unit vector, Q the

specific radiation energy per unit time, T the absolute temperature,

and <ts the local entropy source term. The appearance of Q in this

expression has long been questioned; e. g., Lavenda [41] writes: "If it

(Q) is a heat supply then it has to pass over the surface (S) and so

it should be included in the heat flux term. On the contrary, if it is

a volume source term, then it should be accounted for in the entropy

source term." Equation (4.2) then provides a local expression for the

-/

dtl
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entropy production rate,

-§Kv(?)-§^ <«>

where D/Dt denotes the material derivative. This balance equation is

then considered along with the local balance equations of energy and

momentum,

Du

~Dt
- —V-q+Q + -T:Vv,

P P
(4.4)

Dm

~Dt
- -V-T + b,

P
(4.5)

where u is the specific internal energy, T the total stress tensor field, v

the velocity vector field, and b a body force vector field. Elimination

of the radiation field between Eqs. (4.3) and (4.4) yields the Clausius-

Duhem inequality which is the focal point of the theory:

Dn l Du 1
m „

q-VT
n .„ „.

as = —'- 1 T : Vv -

-—^
> 0 . (4.68

Dt T Dt pT pT2
~ V '

Note that the radiation term has dropped out of the final inequality, and

that the balance equations have effectively limited simple fluids to those

whose entropy flux is due solely to the process of a Fourier-type of heat

conduction [41]. Inequality (4.6) then serves to restrict the allowable

choice of functionals for the constitutive relationships in the theory.

Ultimately, Coleman's theory suffered from the same criticisms as

its famous prodigy, Rational Thermodynamics, which are well docu¬

mented [36, 37, 38, 39, 40, 41]. However, it possessed peculiarities of its

own which limited its universality and practicality. As with the Crochet

and Naghdi theory above, it proved to be computationally intractable,
due to the presence of complex functionals, except in the simplest situ¬

ations. Consequently, it provided no real quantifiable physical behavior

far beyond the limits of linear viscoelasticity. Another problem with the

theory arises from its restriction to simple fluids with fading memory;

this is far from universal behavior for all fluids. In particular, Rivlin [36]
points to the exclusion of Newtonian fluids from this category. Indeed,
not only Newtonian fluids, but all Jeffreys' type viscoelastic fluid models

containing an explicit solvent viscosity seem to be implicitly excluded

as well, since in the limit of small relaxation time the Newtonian fluid is
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recovered. This would be particularly unfortunate since much evidence

suggests that the viscous heat generated under processing conditions

can greatly affect, if not overwhelm, the elastic characteristics of the

flowing material [55, 54, 109, 51, 110, 111]. Materials with an inherent

microstructural anisotropy, such as liquid crystals, are also excluded

from the class of simple fluids, as, of course, are other complex fluids

of practical interest, such as polymer blends and mixtures. Hence the

designation "simple fluids" seems quite apt, and the applicability of the

theory is quite limited by contemporary standards.

4.2.4 The Theory of Purely Entropie Elasticity

Another school of thought concerning non-isothermal flows of polymeric

liquids arose during the early 1970s, that of Purely Entropie Elasticity.
The main tenet of this school is taken directly from the very successful

Theory of Rubber Elasticity, where the entire elastic response of the

solid material is determined by the entropy function. This idea of a

purely entropie elastic response was first applied to viscoelastic materi¬

als by Tobolsky and Andrews [42], but was not developed into a fully
non-isothermal flow theory until thirty years later by Astarita and Sarti

[43, 44, 45, 46].

The theory is a local field formalism, where the local expression
of the first law of thermodynamics is taken as the starting point [43],
expressed as Eq. (4.4). The local form of the second law of thermody¬
namics is then derived as Eq. (4.6). At this point, two assumptions are

made which define the material with purely entropie elasticity and limit

the universality of the theory. The first assumption is that the material

is incompressible, and the second is that the specific internal energy

is a unique function of temperature only, u = u(T) [43]. Defining the

specific heat capacity as c = du/dT, Eq. (4.4) can be written in the

form of a temperature balance,

DT

pc— = T: Vv-V-q + pQ. (4.7)

This is the form of the temperature equation which is used in practi¬

cally all of the engineering analyses of non-isothermal flows of which

we are aware (as well as all commercially available software for these

problems), but it has limitations [43]: "The implications of this
... are
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very important in the engineering analysis of such polymer processing

operations as extrusion and injection molding, where frictional heating
is a crucial phenomenon. Polymer melts are known to be nonlinear vis¬

coelastic materials, and unless the assumption (u = u(T)) is made, their

frictional heating behavior would not be described by (Eq. 4.7)." Al¬

though Astarita and Sarti [46] make a case for the experimental validity
of u = u(T) for some polymeric fluids, this assumption and the other

one concerning fluid incompressibility should be avoided in a universal

theory, as they can seriously affect the dynamical behavior exhibited

by the evolution equations of the system. More experiments are needed

to test the validity of this assumption, as only a few polymeric fluids

have been examined, and even one of these shows deviations from the

expected behavior based on the assumption of purely entropie elasticity

[14]. In Chap. 3 we have proposed a recipe to check whether a given

polymer obeys the Theory of Purely Entropie Elasticity or not.

A further point is made by Astarita and Sarti [45] concerning in¬

ternal state variables and memory functionals (such as those appearing
in Coleman's work) in dynamical theories of polymeric fluids. They
describe how computationally intractable memory functionals can, in

principle and in practice, be replaced by a set of internal structural

variables, of which only the instantaneous values need be known. Hence

computational tractability can be achieved at very little expense. This

structural variable ansatz is the method followed and advocated in this

article, and described thoroughly below.

On only several occasions has a more general expression for the tem¬

perature equation appeared in the literature. Ironically, Astarita and

Sarti [44] wrote down an extended temperature equation for Coleman's

theory, but never made use of it under the auspice of purely entropie

elasticity. Stickforth [112] and Braun and Friedrich [113, 91] presented
similar forms of the temperature equation, which were related to that

of Astarita and Sarti [44], for entropie and energetic elasticity. Braun's

form of the temperature equation is [91]

DT
„

.Dm

pc = —V •
q + <t : A p

F
Dt

H H
Dt

(4.8)

where A is the symmetric part of the velocity gradient tensor field and

<j is the extra stress tensor field. This expression is exact for an incom¬

pressible material, but it is not particularly useful unless the last term
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on the right-hand side is determined analytically. (Keep in mind that

for an incompressible material <r : A = T : Vv, provided that the extra

stress tensor field is symmetric.) Braun subsequently specialized this ex¬

pression for materials with linear relationships between the extra stress

tensor field and a deformation tensor, but did not explicitly consider

relaxational phenomena in his temperature equation, as in Eq. (4.9) be¬

low. Peters [92] obtained a generalization of this temperature equation
for a fluid with multiple relaxation modes and non-affine deformation.

If we neglect these complexities, his equation is

pc^r = -V • q + <t" : A + <re : Z + pT^^ : (A - Z) , (4.9)

where <rv is the viscous contribution to the extra stress tensor field, cre

the elastic contribution, and Z is a relaxation matrix which is used to

fit various rheological models. Although this temperature equation is

more general than Eq. (4.7), we are only aware of one instance where

it was used in an engineering analysis of non-isothermal polymer flows

[114]. The last term on the right-hand side of Eq. (4.9) is not analyti¬

cally known without a microstructural interpretation, resulting in a set

of coupled partial differential equations which is difficult to solve com¬

putationally. (Peters does introduce a microstructural interpretation in

his development, but this requires questionable closure approximations
in order to reduce averages over the orientational distribution function

to arbitrary functions of the second moment [92]).

4.2.5 Non-isothermal Constitutive Equations from

Bead Spring Models

All of the preceding theoretical efforts were essentially continuum ap¬

proaches, describing the gross, macroscopic dynamics of gross, macro¬

scopic processes. In 1972, Marrucci [47] wrote down the first de¬

tailed kinetic treatment of non-isothermal polymer flows based upon

the Hookean dumbbell model of dilute polymer solutions. Here, the

free energy density is taken as purely entropie, with the assumed form

a = n/Y(T)tr[(RR) - (RR)0] , (4.10)

where n is the number density of dumbbells, K(T) is the temperature

dependent elastic spring factor, (RR) is the second moment of the dis¬

tribution function for dumbbell extension and orientation, and (RR)0
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is the same evaluated at equilibrium. The spring factor is assumed to

have a linear dependence on temperature,

K(T) = kBTp , (4.11)

where p is assumed to be the constant

" =

2MRR) 0

5 (4'12)

i. e., it is assumed to be independent of temperature.

By taking the second moment of the diffusion equation for the distri¬

bution function, Marrucci ultimately obtained a constitutive equation
for the extra stress tensor field, which reads

c
faß

AK(T)

(C) DlnT

2K(T)Aaß ' (4'13)

where £ is the friction coefficient of the dumbbell beads and tr^ is the

upper-convected derivative of the extra stress tensor field, defined as

(c)
_

D<TQ/3
Oaß = —^r CTa^V^Vß - aß-fV-fVa . (4.14)

Note that in deriving this expression it has been implicitly assumed

that the material is incompressible. The new term that is proportional
to DlnT/Dt thus appears in Eq. (4.13) over the traditional isothermal

dumbbell model, as has been noted in purely continuum theories [30].
Bird [48] later generalized Eq. (4.13) as

,
c

°~aß
4K(T)

(C) dinK(T) DlnT

, _,

'

din K(T) \ DlnT
-

nkBTöaß „

I '
- 1 >

dlnT J Dt

(nkBT

2K(f)A^ ' (4'15)

making clear an implicit nonlinear temperature dependence of the spring
factor. Of course, this constitutive equation for the extra stress tensor

field must ultimately be coupled with macroscopic balance equations,
such as Eqs. (4.4) and (4.5). In practise, Eq. (4.4) is foregone in favor

of the purely entropie form of the temperature equation, (4.7).

The linear dependence of the spring factor in Eq. (4.13) was also

addressed by Gupta and Metzner [49], who pointed out that the quantity



4.2. Literature Review 71

(/4/K(T) D InT/Dt appearing there is of insufficient magnitude and of

the wrong sign to quantify experimental data They cite the assumption

of constant p., according to Eq (4 12), as the source of the error, since

tr (RR)o actually increases with increasing temperature This produces
a decrease m the stiffness parameter, p, which can be better expressed
with the empirical relationship

P vT (s+1>
, (4 16)

where 73 is a number greater than —1 and v is a positive constant

Eq (4 15) then becomes

,
c

faß
AK(T)

a[c)a + Ba,
DlnT

aß
"I" -ö°a/3-

Dt

/„ ^(nkBT^ DlnT
,„

.

-(B +
1^4K(T)^^r ^

This constitutive equation has been used by Luo and Tanner [50]
and McClelland and Fmlayson [51] for numerical simulations of non-

isothermal film blowing and extrusion, respectively, with some appar¬

ent degree of success These studies couple Eq (4 17) with the mo¬

mentum balance (4 5) and the temperature equation, (4 7), as already
mentioned

Wiest [52] extended Eq (4 15) for the Rouse model and obtained

a generalization of this equation for a discrete spectrum of relaxation

times In a subsequent work with Phan-Thien [53], a non-isothermal

version of the Curtiss-Bird model is obtained Sugeng et al [54] assert

that the non-isothermal constitutive equation described above applies
well to fluids with a low degree of elasticity, however, if the elastic¬

ity of the material is high, as typical in polymer processing operations,

then the elastic effects are comparable in magnitude to the thermal ef¬

fects and this constitutive equation is no longer valid Under these cir¬

cumstances, they propose a non-isothermal generalization of the Phan-

Thien/Tanner constitutive equation,

Taß
(c) DlnT

aaß
~

aaß
nkBT

-,
*-" ""VV

^-*
I

77^a/34lY(T) L aß P
Dt

^
(A i/l A

ÇnkBT
(Aa7a7ß + A-(ßaa7) = Aaß , (4 18)

4iY(T)
^""'-^ ",m-"m

2K(T)

where the parameter e accounts for the "elongational behavior" of the
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model and <p affects the "shear behavior " Note that in this expression,

the spring factor is taken as that of Eq (4 11)

The constitutive equations cited above are restricted to incompress¬

ible fluids, and are limited m the neglect of the viscous flow of the

surrounding medium, which can lead to substantial viscous heat gener¬

ation [63] The generalization to Jeffreys-type constitutive equations is

difficult with bead-spring models due to the added degree of complexity
and associated nonhneanties of incorporating a solvent viscosity into

the expression for the extra stress tensor An extension of these results

to more sophisticated polymer models also turns out to be difficult be¬

cause it is not clear how to incorporate spatial temperature variations

in the kinetic theory [54, 52, 53]

4.2.6 Heat Conduction in Polymeric Fluids

When studying non-isothermal flows of polymeric fluids, one must con¬

sider not only the production of heat within the material due to viscous

heating and entropie effects, but also the transport or conduction of

that thermal energy from a given material point withm the medium

to another This heat conduction is very important in industrial opera¬

tions, greatly affecting the processibihty of a given material and its final

properties [115, 61, 62, 63, 116, 117, 51] The experimental investigation
of heat conduction in flowing polymeric liquids is quite difficult, how¬

ever, especially considering that heat conduction is a transport process

that can be quite slow, and hence can be obscured by other thermally
driven transport and relaxational processes, such as thermally induced

convection, if the temperature gradients involved are very large

In all theoretical studies of heat conduction in polymeric materials, a

Fourier-type of heat conduction is a priori assumed, with q of Eq (4 4)
taken proportional to an anisotropic thermal conductivity tensor,

q= a. VT (4 19)

Some direct experiments have been made of Fourier-type heat conduc¬

tion in sheared polymeric liquids [118, 119] to try to determine the effect

of polymer conformation on the anisotropic thermal conductivity ten¬

sor These measurements seem to show that the thermal conductivity
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parallel to the backbone of a macromolecule is higher than perpendic¬
ular to it. But only data for a few materials, e. g., polyethylene [119],
are available. Theoretical approaches to account for the effects of the

microstructure on the thermal conductivity tensor assume the most gen¬

eral form of this tensor which is compatible with the Cayley/Hamilton
theorem [120, 2],

a = ai<5 + a2(RR) +a3(RR) • (RR) , (4.20)

where the at are, in general, functions of the invariants of (RR) as

well as p and T. From the requirement of a non-negative local rate

of entropy production, as quantified by Inequality (8), —q • VT > 0, it

follows that ai > 0 and a2 + ati > 0 [121], but microscopic considera¬

tions should be made to apply Eq. (4.20) to specific polymers; e.g., solid

polymers or polymeric fluids. Leonov [120] applied Eq. (4.20) to amor¬

phous solid polymers and states that a\ is the thermal conductivity of

an isotropic (undeformed) system, whereas a2 and aj are functions of

the first and the second invariants of the tensor (RR). For a dilute

polymeric solution, van den Brule [122] found that ai is the thermal

conductivity of the solvent, a2 can be related to the mass fraction of

the polymers and the other microscopic parameters of the model, and

afi = 0. Most authors believe the Onsager reciprocal relations imply
that öl is symmetric, but this belief has been attacked by others [123].

It is evident that there is still an enormous gap between theoretical

and experimental studies concerning the heat conduction in polymeric
materials. Only few data on specific substances are available; however,
even data on the same substances show significant scattering due to

systematic errors related to the different experimental techniques used

in the various measurements [117]. Furthermore, most theoretical ef¬

forts and experimental interpretations have assumed that the heat flux

is due solely to Fourier-type conduction, ignoring other possibilities of

thermally driven diffusive processes. Recently, Bird et al. [124] have

examined thermally induced diffusion (the Soret effect) in dilute poly¬
mer solutions. Nevertheless, in order to keep the present analysis as

short and to the point as possible, we also restrict our attention in this

paper to Fourier-type conduction; however, the formalism used herein

can have much to say about non-Fourier-type heat conduction in the

future.

74 Chapter 4. Balance Equations

4.3 Fundamental Balance Equations for

Non-isothermal Polymeric Materials

Our aim in this section is to derive a thermodynamically consistent set

of evolution equations for the basic field variables necessary to describe

a flowing polymeric liquid using the double generator GENERIC struc¬

ture, in a similar vein to the preceding analysis in terms of a single

generator [94, 2]. Doing thus allows one to achieve a definite splitting
between energetic and entropie elasticity potentials, and allows one to

obtain a more symmetric dissipation bracket [97]. The resulting equa¬

tions are free of the restrictions of the previous theories of fluids whose

heat flux is solely of Fourier-type, since no a priori assumptions are made

regarding incompressibility, purely entropie elasticity, time-temperature

superposibility, etc. Explicit non-isothermal counterparts of popular
isothermal viscoelastic fluid models which are thermodynamically con¬

sistent are derived. In so doing, common errors and inconsistencies in

previously proposed non-isothermal models are exposed and discussed.

4.3.1 Thermodynamics of Polymeric Materials at

Quasi-Equilibrium

Our starting point is to choose a set of variables which is sufficient

to describe completely the thermodynamic state of a polymeric liquid
at quasi-equilibrium; i. e., a partial thermodynamic equilibrium where

most of the internal degrees of freedom are equilibrated within the time

scale of interest, subject to the constraint that the remaining degrees
of freedom remain, on the same time scale, frozen at non-equilibrium
values [97]. The variable set x we choose is x = [p,e,c], where p is the

mass density of the fluid with units of mass/length ,
e is the internal

energy density with units of energy/length ,
and c is the contravari-

ant conformation tensor field expressing the degree of orientation and

elongation of the polymer chain with units of length . (Herein, we ne¬

glect all but a single relaxation mode, for simplicity, although fluids

with multiple relaxation modes can be similarly described through ad¬

ditional conformation tensor fields [2].) It is also necessary to express

a thermodynamic potential function for these materials, which we take

as the entropy density, s, which is a function of the thermodynamic
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variables x. A Gibbs relation may then be written down so as to define

the temperature, pressure, and entropie potential as, respectively,

ds\ fds\ ( ds
T = UJ ' p"-£+UJ {"-%)' (4-21)

z , -Tg. (4.22)

The variable set and its associated thermodynamic potential which

were chosen above are the proper quantities to use in the GENERIC

structural equation, as described in the next subsection; however, they
are not necessarily the most natural choice for modelling polymeric ma¬

terials. Indeed, since important physical parameters of these models are

typically written as functions of temperature, such as the spring factor

of Eq. (4.11), it is practical to define a new thermodynamic potential,

tu, which depends on p, T, and c, as

w = s--^-e. (4.23)
de

This new potential is thus a Legendre transformation of the entropy den¬

sity, and is known as a Massieu function [76]. Consequently, Eq. (4.23)
implies the relations

(4.24)

(4.25)

(4.26)

(4.27)

Thermodynamic potentials for polymeric liquids have been presented
and applied to n-alkanes in Chap. 2. The entropie potential has been

computed for PE and PIB in Chap. 3 adapting the RIS approximation.

4.3.2 The Double Generator GENERIC Structure

The GENERIC structure manifests itself through a global master equa¬

tion [96],

^- = {F,E} + [F,S], (4.28)

diu ds

dp
duo

dp
e

dT

diu

rp2
'

ds

de

p =

dc

= T (lü- dijj
~

pit
dp

76 Chapter 4. Balance Equations

written in terms of the Poisson, {•,•}, and dissipation, [•,•], brackets, and

two generators, E and S, which are global functionals of the dynamic
variables chosen for the system description. Here we treat the variables

of the preceding subsection as field variables, x(r, t), implying that lo¬

cally (i. e., for each material point) the fluid is in a quasi-equilibrium
state. Furthermore, these field variables need to be supplemented with

the momentum density vector field, u, so that macroscopic flow phe¬
nomena can be described. F is an arbitrary functional of these variables,
with the form F[x] = j f(x)d3r which is possessed by the total energy,

E, and total entropy, S, as well. The Poisson bracket is bilinear, anti¬

symmetric, and satisfies the Jacobi identity, and the dissipation bracket

is bilinear, symmetric or antisymmetric depending on the parities of the

phenomena under consideration, and guarantees a positive rate entropy
of production. Note that u can be interpreted as pv, where v is the

common velocity vector field.

This global equation can also be expressed in the form of a local

operator equation [96, 1],

dx T5E fiS
,„ on.

where L is the Poisson operator associated with the reversible dynamics,
M is a metric matrix associated with the dissipation, and 5/öx denotes

a functional derivative, defined as

for the present article. In general, the functional F may depend on

spatial gradients of x as well as x itself, and in this case the definition of

Eq. (4.30) should be altered accordingly [2]. Eq. (4.29) is complemented

by the mutual degeneracy requirements

L— = 0, (4.31a)
ox

M^- = 0, (4.31b)
dx

which express the fact that the operator L lies in the null space of the

generator of the irreversible dynamics, S, and vice versa for the operator

M and the generator E. In what follows we will adopt the double gener¬

ator GENERIC formalism to derive a set of fully dynamically consistent

time evolution equations for polymeric materials.
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4.3.3 Derivation of the Non-isothermal Flow Equa¬
tions

We now wish to derive a macroscopic set of thermodynamically con¬

sistent non-isothermal flow equations for a polymeric fluid using the

operator form of the master equation, Eq (4 29), since it turns out to

be easiest to specify the proper dissipative contributions to the dynam¬
ics using this form [97] The reversible dynamics, as described by the L

operator, have already been expressed in terms of an antisymmetric op¬

erator matrix in [1] This operator can be obtained through a rigorous

transformation from the Poisson bracket for elastic materials, which was

postulated ad hoc in [125] for an incompressible material and derived

directly from the principle of least action for a compressible one [94]
This operator, m terms of the variable set x = [p, u, e, c], is [1]

I ° VeP 0 0

pVa V£uQ +ueVQ L2s T24

0 T32 0 0

V o T42 0 0

\

7

(4 32)

The unspecified elements in the operator matrix of Eq (4 32) are

L2i = Vap + eVQ - 2VßClßzai , (4 33a)

T32 = pVe + Vee - 2clßzleVß , (4 33b)

T24 = -(VQC^C) - VßCßrjÖaC - VßCßcÖaT1 , (4 33c)

T42 = (VecQ/3) - cQ7V75^e - c/37V7(5QE (4 33d)

Note that the Ernstem summation convention has been introduced m

this and subsequent expressions

The generators to be used in Eq (4 29) are

E[p, u,e,c] = I

S[p,e,c] =

2p

s(p,e,c)dsr

+ em(p, c) + e dJr (4 34)

(4 35)

The function em depends on the variables indicated, and can quantify
the energetic effects of an external magnetic field, for example, upon

the system Note that L as defined by Eq (4 32) satisfies degeneracy
condition (4 31a)
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The last element of Eq (4 29) to be specified is the metric matrix, M

For the linear dissipative processes considered here, M is constructed

through the operation [97]

M = C DC1

where

D

C

/ 0 0 0 0 \

0 TQßaie 0 0

0 0 T2aaß 0 1

V 0 0 0 TApä7e J
/ -1 0 0 0

0 \>ß 0 0

i öem . . oem
„vava + (\/ßVa) y

a „

dp
M

dcps
\ 0 0 0 -1

(4 36)

(4 37)

(4 38)

/

and CT is the operator transpose of C [97] The decomposition of

Eq (4 36) splits the metric matrix into distinct submatrices with ei¬

ther thermodynamic (D) or mechanical (C) nature C is defined using

the generator E [97], and has essentially the same form regardless of the

physical system under consideration D is the matrix of phenomenologi¬
cal coefficients, which is symmetric (for the present system) and positive

semidefimte The phenomenological coefficient matrices, Q, a, and A

represent viscous, conduction, and relaxational effects, respectively

They are system specific, and will be defined for various polymeric fluid

models in the next section Note that D was determined with the re¬

strictions that the materials exhibited Fourier-type heat flux only, that

mass is conserved, that the principle of material objectivity holds, that

chain migration effects are negligible on process time scales, and that

the material does not display non-affine motion (This last restriction

will be removed in the next section ) Evaluating Eq (4 36), we obtain

/ o

0

M

0

—VßTQßaie\I1

0 -T(Vßva)Qßa7eV7

V 0 0 M4i

0 0

M2i 0

\

dcpS
TAaßvc

pSr/C
(4 39)

/

where the unspecified elements in this operator matrix are

M2i = VßTQßa7e(V7ve) , (4 40a)
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M.àS TQßa7e(VßVa)(V7ve) - VaaaßT2Vß

^
^ 1^-pS^e
depS dc~,

M43 -TAaß~/e
de

(4.40b)

(4.40c)

Note that degeneracy condition (4.31b) is satisfied for the metric

matrix. Furthermore, for M to be symmetric, Qaß-ye = Q-teaßi
Aq/37e = A7<EQ/3, and aaß = aßa.

The evolution equations for the system variables are obtained from

Eq. (4.29) after evaluating the functional derivatives of the generators,

ÖE

'

1 ,

Öeir
2^a^a i

p.

Sx 1

dem

dcvC

5S_
Sx

dio

dp
0

1/T
du

. dcvC

(4.41)

They are

dp
~d~i

dva

de

dt

dcaß
dt

-V7(/w7) ,

-pvßVß(va) - \7ap + Vßaaß + pba ,

—V7(eu7) — pV7u7 — V7g7 + 2ziac1ßVßi

de de

+ Qa^e(Va^)(V7J)e) + AQ/37e

a
dCm

ocaß

—V1V1Caß + C7a\7jVß + C7/qV7UQ

dev

(4.42a)

(4.42b)

-m '-"--in

dcaß 9c7e

-AQ/37e
9c^

- AQ/?7e 27c ,

where the extra stress tensor field is given by

°~aß — 2zQ7C7/3 + Q^Q7eV7U£ + 2Cßj
de

dc~,

(4.42c)

(4.42d)

(4.43)
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the body force vector field by

ba = -Va^ + ~P^VacvC, (4.44)
dp p dcv(

and q is the heat flux vector field of Eq. (4.19). Note that if

em(/9,c) = pêm(c), then b = 0, and that if êm contains an explicit spa¬

tial dependence, êm(c, r), then b = —<9êm/9r|c .

The first equation, (4.42a), is the continuity equation expressing
conservation of mass. The second equation, (4.42b), is the linear mo¬

mentum balance of Eq. (4.5), given the realization that the total stress

tensor field is defined as T = a — pô.

The third equation, (4.42c), is the balance expression for the inter¬

nal energy density. Note that this evolution equation no longer has the

form of Eq. (4.4): it does not include all contributions to the extra stress

tensor of Eq. (4.43) and has additional relaxational terms not appear¬

ing in Eq. (4.4), unless one associates the latter with the controversial

radiation term, Q. This is not very satisfying since these relaxational

effects have nothing to do with radiation. Hence we have an explicit

example of Lavenda's criticism [41] that the specific radiation energy

appearing in the macroscopic balance equation is essentially a consis¬

tency factor which "permits the computed constitutive dependent vari¬

ables to be compatible with the macroscopic balance equations." Con¬

sequently, in the presence of a non-vanishing em, the specific energy, u,

of Eq. (4.4) cannot be interpreted as the specific internal energy, but as

û = (e + em)/p. The time evolution equation for this quantity is given

by

dpu
_

de dem dcaß dem dp

dt dt dcaß dt dp dt

= —V7(yOÛu7) — pV7u7 + aaß\7aVß — V7g7 . (4.45)

Only in this sense is Eq. (4.4) consistent with Eq. (4.5) as written,
but it is for the internal energy and external potential energy taken

together. Hence the balance equations of Rational Thermodynamics
are not internally consistent for non-vanishing em, even though they

implicitly account for it by incorporating a body force vector field into

the linear momentum balance, Eq. (4.5).

The last expression, (4.42d), is an evolution equation for the con¬

formation tensor field. When the extra stress tensor field of Eq. (4.43)
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turns out to be linear in c, Eq. (4.42d) can be rewritten as a constitutive

equation for the extra stress tensor field of the form of those arising from

kinetic theory models, as discussed above. By taking the time deriv¬

ative of the thermodynamic potential, s(r, t) = s(p(r,t),e(r,t),c(r,t)),
at a fixed spatial position,

ds ds dp ds de ds dcaß
\%

=

lTplh+lh<Tt
+

<dc~^ß~dT'
(' '

one can also write down a field equation of change for the entropy den¬

sity,

ds 1 1

-qJ
= -Vß{SVß) - -VQ qa + -<2a/37e(VQUg)(V7Ue)

2 dem _1A dem dem
+
T

Aa/?7e
dc^

zle + TAaßle d^ dc^

+ —AQ/37e zaßZJe . (4.47)

Note that this expression is consistent with Eq. (4.3) if

11 2 dem
pas = -^qßVßT+—Qaß7e(VaVß)(V1ve) + —AaßyE—^-zle

+ —Aaßle- h —AaßlezaßZle . (4.48)
1 Ocaß öc7<E 1

Nevertheless, Eq. (4.47) is a dependent equation, and nothing much is

gained at present by writing and solving it. In prior works, writing
down an entropy equation and identifying as was very important be¬

cause it allowed one to impose the second law of thermodynamics upon

the entropy production rate to determine constraints upon the material

parameters. In the approach advocated herein, however, the second law

and its corresponding constraints manifest through the positive semi-

definite criterion on the D matrix.

The set of partial differential equations derived above, together with

the proper boundary and initial conditions, describes the non-isothermal

flow of a compressible, viscoelastic liquid manifesting entropie and ener¬

getic elastic effects, viscous dissipation, and Fourier-type heat conduc¬

tion. If one desires an explicit equation of change for the temperature,

it is given by

dT
_

dT dp dT de dT dcaß
dt dp dt de dt dcaß dt

(4.49)
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where the partial time derivatives are substituted with Eqs. (4.42a),
(4.42c), and (4.42d); however, it too is a moot expression as it is a

dependent equation. One must still solve for the variable set x before

evaluating Eq. (4.49). Consequently, one is better off just substituting
the calculated values of x into T(p, e, c) = ds/de. Of course, this pre¬

sumes that the potential s is a known function. Alternatively, one can

take T instead of e as an independent variable. The advantage of this

approach is that one knows more about the temperature dependence
of the material properties than about their dependence on the internal

energy.

Apparently, there is no thermodynamically consistent closed tem¬

perature equation of the form of Eq. (4.7), even when em = 0. There

is essentially no mathematical reason to assume purely entropie elastic¬

ity given an arbitrary potential function s. If one inverts this poten¬

tial to obtain an internal energy potential, e(p,s,c), and then defines

T = de/ds = f(p, s, c), / can be inverted with respect to s to give an

expression for f~x(p, T, c), which can be substituted into the potential
e to give pu(p, T, c). Now it is hard to accept that u loses all dependence
on the variables p and c in this process. For instance, the thermody¬
namic potential associated with Eq. (4.54) below does not seem to show

any signs of this behavior. Consequently, the temperature equation (4.7)
must be viewed as applicable only within the limitations imposed by the

assumption of purely entropie elasticity.

In the lack of any explicit expressions for the entropie potential, one

must ultimately resort to experimental evidence or molecular simula¬

tions to see whether or not the assumptions of purely entropie elasticity
are valid. Astarita and Sarti [46] make a case for an experimental verifi¬

cation, but the results appear inconclusive, as mentioned above. If there

is no explicit temperature equation, then one runs into the problem of

specifying boundary conditions for solving the evolution equations of

variable set x. Although boundary conditions in terms of the tempera¬

ture are easily set, boundary conditions on the internal energy are more

difficult to assign. Also, if one does not assume incompressibility, then

one no longer has a Poisson equation for the pressure which can be

solved simultaneously with the evolution equations for the variables v,

e, and c. The news is not all bad, however, as allowing for compressibil¬

ity in the material has an important mathematical consequence in that

it guarantees that the resulting evolution equation for the extra stress

tensor (found by substituting Eq. (4.43) into Eq. (4.42d) when a is lin-
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ear in c) is always purely hyperbolic [126, 127], hence easing some of the

difficulties experienced in numerical computations. Still, the best line

of progress in the future seems to involve molecular simulations of both

simple and viscoelastic fluids in order to determine, in some fashion, the

functional forms of the entropie potentials. Once this is accomplished,
and the thermodynamic potential is known, the temperature equation
of (4.49) can be used after elimination of the variable e from the set of

evolution equations for the variables p, v, and c. Hence one is again
allowed to specify boundary and initial conditions on the temperature

as opposed to the internal energy density.

Since boundary and initial conditions for e are harder to specify than

those for T, an explicit temperature equation of the form of Eq. (4.9)
is very practical from a computational standpoint at present because it

does not apparently require knowledge of the thermodynamic potential,

provided that the heat capacity has been determined experimentally.
This equation may then be solved along with the evolution equations
for p, c, and v, which form a closed set provided that the variable e can

be eliminated everywhere in favor of p, c, and T. This independence
of the set of evolution equations potential is illusory, however, except

for incompressible fluids where the continuity equation is eliminated in

favor of a Poisson equation for the pressure. The procedure of Peters

[92], and implicitly that of Braun [91], is to take the time derivative of

the potential to, (4.23):

ds dw d fds \

m
=

m+dï{¥ee)- (4'50)

However, the time derivatives appearing in this expression are time

derivatives at fixed spatial positions, as defined analogously to

Eq. (4.46). Hence Eq. (4.50) yields nothing more than an identity. As¬

suming incompressibility, Peters takes d/dt as the material derivative,

D/Dt. The quantity Ds/Dt is then set equal to the proper terms on

the right-hand side of Eq. (4.47) and a temperature equation derived,
in terms of our nomenclature, as

PC— = Qaß^e (Vtt^) (V71>£) -Vßqß+T "^
aß

(V-yVß)

i 9A
dem dem dzle

ocaß ocaß ol

a rr &z^e Oenl oem

AaßlezaßT— + Aaß7e——, (4.51)
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where

pc ^dto
^

d2iü
, Â „.

T=2df + TdT-2- (4'52)

Setting em = 0 gives an expression similar, but not identical, to

Eqs. (4.8) and (4.9). The difference lies in the terms proportional to A,
the relaxation matrix, which were not explicitly written down in [91],
and the requirement of a closure approximation in [92] to produce a mi¬

crostructural interpretation of the extra stress tensor field, thus allowing
the derivative on the right-hand side of Eq. (4.9) to be evaluated.

One must realize, however, that the temperature equation given
above is mathematically restricted to incompressible materials in or¬

der to obtain a closed set of evolution equations for the variables v,

c, and T without knowledge of the functional form of the potential
tu. (However, a sufficiently accurate experimental determination of c

is required as well if u> is unknown. The incompressibility assumption
then allows one to evaluate the pressure from the corresponding Poisson

equation without knowledge of to.) Consequently, caution must be exer¬

cised when employing temperature equations of the form of Eqs. (4.7),
(4.9), and (4.51).

It should be possible to obtain from Eq. (4.50) a temperature equa¬

tion for a compressible material, but lj cannot be mathematically elimi¬

nated from it in the process, and therefore no practical advantages ensue

other than replacing energy boundary/initial conditions with temper¬

ature ones. Since uj cannot be mathematically eliminated from this

equation, one has, in effect, Eq. (4.49). In order to eliminate effectively
lj from this equation a posteriori, one can define a thermodynamic func¬

tion with respect to derivatives of the pressure, similarly to the heat ca¬

pacity of Eq. (4.52). One can then use the temperature equation sans lj

after experimentally determining this additional thermodynamic func¬

tion along with c. Unfortunately, this does not eliminate the pressure

from the momentum equation, which implies that one must still know

the potential lj in order to solve the full system of evolution equations.

Problems also arise in the literature on account of poor bookkeeping.
For instance, take e(p, s, c) as the thermodynamic potential. Defining
T = de/ds, one obtains a function for T = f(p,s,c). Inverting this

function, one can obtain a function for s = f^1(p,T,c), which can be

substituted into e(p, s, c) to give e(p, f~l(p, T, c), c), which then leads to

e'(p,T,c); however, e and e' are two distinct functions. Indeed, defining
the Helmholtz free energy density as the Legendre transformation of the
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internal energy density, a = e — Ts, one finds that

da
=

de_
=

de^_
_

de' df^1
9c 9c 9c 9/_1 9c

One must always be careful to distinguish between e and e', as well as

their time derivatives and corresponding evolution equations.

4.4 Constitutive Equations for Non-iso¬

thermal Polymer Models

In order to apply Eqs. (4.42a)-(4.42d) to obtain models for specific poly¬
meric materials, constitutive assumptions for the Massieu function of

Eq. (4.23) have to be determined and the phenomenological coefficients,

Q, a, and A have to be specified. Doing thus results in a thermody¬

namically consistent set of evolution equations for the system variables,
which may, in principle, be solved for a given process or flow field after

specifying the proper boundary and initial conditions.

Several key examples of non-isothermal polymeric fluid models can

be realized by taking the Massieu function of Eq. (4.23) as a sum of two

contributions,

uj(p, T, c) = w0(p, T) - —paiK(T)trc + -paikB ln(det c) , (4.54)

where Lj0(p, T) is the contribution that is independent of the elasticity of

the material, and the remaining terms represent the Boltzmann entropy
of the microstructure [77, 94, 95, 2]. The parameter ai in the above

equation is a measure of the degree of elasticity per unit mass of the

polymeric fluid, which gives a quantitative measure of the strength of

elastic forces per unit mass in the material. As an example, for a solution

of dumbbells, a.\ is given by the number of dumbbells per unit volume

divided by the mass density. It is taken herein as a material constant;

i. e., it is not a function of temperature. The spring constant, K, is taken

as an arbitrary function of temperature. Note that, for this particular

lj, the pressure of Eq. (4.27) reduces to

p = T(uj0 - pduj0/dp) . (4.55)

The function em is taken as vanishing.
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The matrix a in Eqs. (4.19) and Eq. (4.42c) is the thermal con¬

ductivity tensor of the polymeric fluid. It is, in principle, anisotropic,
and assumes the most general form realizable through the Cay-

ley/Hamilton theorem, Eq. (4.20) (with c = (RR)), where the coeffi¬

cients au i = 1,2,3, are taken as functions of p, T, and the invariants

of c. For the models under consideration herein, a suitable choice of

these coefficients would be to take ax as the isotropic thermal conduc¬

tivity, k, a2 = 3/2/mpai(kB [122], where m is the mass of a dumbbell

bead, and a-j, = 0. Of course, the most intuitive approach would be to

treat these coefficients as parameters to be fit using experimental data,
but given the problems associated with the necessary experiments de¬

scribed earlier and the possibility of a non-Fourier-type heat flux (which
creates the additional problem of distinguishing non-conventional trans¬

port processes from the traditional ones), perhaps molecular simulations

provide a more ready alternative.

The matrix Q is also anisotropic in general. A sufficient condition

for Q to result in a materially objective extra stress tensor field is for

Q to be objective and for Qaßle = Qaße~f A general expression for Q
in terms of the stated variables is [2]

Qaßle = Tl{T)(5ai5ße + 5ae5ßl) + (k(T) - 2/3n(T)) 5aßöle

+ H.O.T.
, (4.56)

where the bulk (n) and shear (n) viscosity coefficients now depend on

temperature, and H.O.T. represents terms that are higher order in the

conformation tensor, which are not required for the models described

in the remainder of this article. Again, the extent and nature of these

higher-order terms is dictated by the Cayley/Hamilton theorem, and

an explicit expression may be found in [2]. An explicit temperature

dependence of the viscosity parameters could be taken as an Arrhenius

form, e. g.,

n(T) = mexp(A0/kBT) , (4.57)

where Aq is an activation energy.

4.4.1 The Non-isothermal Maxwell and Oldroyd-B
Models

Given the above definitions, only the relaxation matrix, A, remains to

be specified to determine completely a viscoelastic fluid model. For
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both the Maxwell and Oldroyd-B models, this matrix is that which

generalizes the relaxation matrix corresponding to the isothermal upper-

convected Maxwell model [125, 128, 2],

Aa
1

/37e
2pai\(T)K(T)

(Cal5ße + CaeSß-, + SalCße + Saecßl) . (4.58)

In this expression, A is the relaxation time of the viscoelastic material,
which is also dependent on the temperature. The system of evolution

equations is then given by Eqs. (4.42a), (4.42b),

de

dt

c(c)
caß

-V7(«;7) - pV7u7 - V7g7 + aaß\7aVß

1

'

<y U<y

kBT

X(T)
-aß

\(T)K(T)
'aß )

(4.59)

(4.60)

where c*-c' is defined analogously to Eq. (4.14) and the extra stress tensor

is given by

aaß = pctiK(T)caß - paikBT6aß + QQ^7eV7'ye . (4.61)

The Maxwell model results for Q = 0, and the Oldroyd-B model for Q
as given by Eq. (4.56).

The linear expression for the extra stress tensor of Eq. (4.61) can be

inverted and substituted into Eq. (4.60) to obtain an evolution equation
for the extra stress tensor. Doing thus, there results

HTKß
1 - A(T)

D In K(T)
Dt

Taß

paikBT\(T) 2Aaß
D In fiT(T) DlnT

Dt Dt
laß (4.62)

for the non-isothermal Maxwell model, and

A(T)aaß 1 - A(T)
D In K(T)

Dt
Vaß

paxkBTX(T) 2A,aß
D In fiT(T) Dln(T)\

r

j oaß
Dt Dt

+ 2n(T)Aaß + k(T)AeeSaß

+ 2A(T)n(T)4Ci + \(T)k(T)(AeJ^ß)^)
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Dn(T) Dk(T)
^ '

Dt
ß ^ '

Dt
Aee5aP

- 2A(T)n(T) — Aaß

- \(T)k(T)m^t{T) Aee5aß , (4.63)

(c)
for the non-isothermal Oldroyd-B model, with aL defined as

aaß + VaßV^ and k(T) = k(T) - 2/3n(T).

The first expression above corresponds to the constitutive expression
of Bird, (4.15), provided that pax = n, X(T) = Ç/4/K(T), and that the

fluid is taken as incompressible. If K(T) is taken as a linear function

of temperature, according to Eq. (4.11), then the constitutive equation
of Marrucci, (4.13), is obtained. The constitutive equation of Gupta
and Metzner results from taking K(T) as expressed by Eqs. (4.11) and

(4.16). A generalization of Eq. (4.62) in terms of multiple conformation

tensor fields reproduces the result of Wiest [52]. Furthermore, Phan-

Thien [129] has shown under what conditions this type of constitutive

equations is consistent with the notion of time-temperature superposi¬
tion. Eq. (4.63) represents the extension of the kinetic theory models

to Jeffreys type fluids, which could not be addressed easily through a

kinetic theory approach. It also goes beyond the Simple Fluid Theory
discussed earlier.

Two points are now evident. First, these evolution equations for the

extra stress tensor field contain an additional term over the usual upper-

convected derivative employed in engineering analyses. (Note that the

first term on the right-hand side of Eqs. (4.62) and (4.63) is <r(c) and

not the usual cr^c\) Ergo, whether or not it is explicitly stated in these

works, an incompressible fluid has been assumed. Indeed, in some it is

explicitly stated that the fluid is compressible, at least slightly, leading
to incorrect applications of the governing evolution equations, especially
when one considers that the additional term in the convected derivative

actually has profound implications on the mathematical character of the

constitutive equation for the extra stress tensor field [127]. Second, by

comparing Eqs. (4.60), (4.62), and (4.63), it is obvious that using the

conformation tensor field as the system variable, as opposed to the extra

stress tensor field, results in a much more natural and mathematically

simpler set of evolution equations: time derivatives of the temperature

appear explicitly in the constitutive equations for the extra stress tensor
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field, but not m the evolution equations for c This simplicity of the

conformation tensor field evolution equation carries over into the nu¬

merical solution of the equation set, and represents a key advantage of

using the conformation tensor field as the appropriate system variable

Although, traditionally, the extra stress tensor field has been the vari¬

able of interest, since it was directly measurable, as optical experiments

now begin to play the dominant role m rheological measurements it is

more natural to use a structural variable which can be directly related

to the measured optical quantities, such as birefringence and dichroism

Furthermore, as industry begins to model processes involving residual

orientation and flow-induced crystallization of polymeric materials, a

microstructural variable is a more natural choice than a kmematical

one for quantifying the process dynamics Furthermore, working on a

purely macroscopic level m terms of a conformation tensor allows one to

avoid making dubious closure approximations to obtain the constitutive

equation for the extra stress tensor field, as m [92] It is also no more

difficult, and perhaps less so, to specify proper boundary and initial

conditions on c than on <x Hence any preference which one might have

once had for writing constitutive equations for the extra stress tensor

field instead of a microstructural variable field should have vanished

The addition of a Newtonian viscosity contribution to the Maxwell

Model to form the Oldroyd-B Model is a more important modification

for non-isothermal polymeric materials than for isothermal ones because

viscous heating can dominate elastic effects m typical processing oper¬

ations [54, 109, 51, 110] The elastic effects are reversible m nature

elongating the polymer chains results m a release of heat to the en¬

vironment, but returning them to their initial configurations requires

exactly as much heat as was originally given off Viscous heat is irre¬

versible, once generated, it is not absorbed by returning the material to

its original configuration, but must be conducted or radiated from the

system

If one wants to assume incompressibility and to work m terms of

the temperature variable and its explicit evolution equation, given the

caveat mentioned earlier, Eq (4 51) leads to

DT
„

^dK(T)

Dt
ß^ß^H i

dT

T2 fpaxK(T)2 &pu1kBK(T)

pc— = -Vß qß + pa{T caßAaß - /3a1fcBTV7u7

2\(T)K(T) \ T2
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i i 2 1

+paikB c77

T2 (paxK(T) dK(T) ipaikBK(T)
~

2X(T)K(T) V T &T~ C~n
T

- 3pa,kB ^/p- + paikB2cA (4 64)

for the Maxwell Model, and the same as above with the term

Qaß7e (V„^)(V7«E) = 2v(T)AaßAaß + k(T)A71Aee (4 65)

added to the right-hand side for the Oldroyd-B Model, after neglecting
the higher-order terms m Eq (4 56) Note that the Cayley-Hamilton
theorem can be used to eliminate c

l from this equation,

i
1

C«
<3

-r(cçeceç-liccc + 312) , (4 66)
1*

with Ii = trc, I2 = l/2[(trc)2 — tr(c c)], and /j = detc, thus revealing
a behavior which is higher-order m c The conformation tensor field

can be eliminated from this equation m favor of er, so that one has the

variable set [v, er, T] to solve for, subject to the proper Poisson equation

for the pressure, however, given the forms of the constitutive equations

for the extra stress tensor field, Eqs (4 62) and (4 63), solving m terms

of the variable set [v,c,T] is clearly preferred for the reasons discussed

above

An interesting point is that the heat capacity of Eq (4 64) is given

by Eq (4 52) For the potential of Eq (4 54), this amounts to

dLj0 d2uj0\ 1
m

d2K(T)

2—^+T—-£ --ojiTtrc-
v ;

p V dT dT2 J 2
1

dT2

1 d2K(T)
ee Co--aiTtrc^^l (4 67)

Note that c reduces to cq when K(T) is a linear function of T When

K(T) is nonlinear in T, if one wishes to solve the set of evolution equa¬

tions using the temperature equation of (4 51) as one of its members,
then one can take the experimentally measured heat capacity as cq

(cf Chap 6, p 125) In this case Eq (4 67) should be used in the

calculations for nonlinear K(T) It would be interesting to see a defini¬

tive set of experiments exploring the effects of deformation on the heat

capacity of polymeric materials, as we are aware of none
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4.4.2 The Non-isothermal Giesekus Model

Another very popular isothermal viscoelastic constitutive equation is

the Giesekus model [130]. This model considers a solution of Hookean

dumbbells subject to an anisotropic mobility tensor,

Cvfl

aß (l-ß(T))5aß+ß(T)^-caß (4.68)

where ß(T) is an empirical, temperature dependent function. The con¬

dition 0 < ß(T) < 1 enforces the stresses to decay upon a cessation of

deformation and transfers directly from the isothermal case. The relax¬

ation matrix, A, for the Giesekus model is [131, 2]

Aa
1

ß~,e
2pai\(T)K(T)

x (1 - ß(T))(cai5ße + cae5ßl + cß7Sae + cßeöaj)

2ß(T)K(T)

kBT
\Ca^Cße -f- CaeCß^J (4.69)

The last term on the right hand side is a second-order correction to

the Hookean dumbbell relaxation matrix, Eq. (4.58). Inserting this

expression into the partial differential equation (4.42d),

Caß

1 - ß(T) l-ß(T)

\(T)
Caß

\(T)K(T)

2paiß(T)K(T)2

kBT6af

kBT
:aicßl + 2paiß(T)K(T)caß , (4.70)

and using the definition for the extra stress tensor field, Eq. (4.61) (with
Q = 0), yields the non-isothermal generalization of the Giesekus model,

HTKß'+Vaß l-A(T)

paifcBTA(T) 2A
aß

Din K(T)1 ß(T)
Dt \ pa^BT'

D In K(T) Dln(T)

-anFa,

Dt Dt

ae<Jeß

laß (4.71)

Once again, we notice the complexity of this constitutive equation com¬

pared to the corresponding evolution equation for the conformation

tensor field because of the appearance of the time derivatives of the

temperature field in this expression.
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4.4.3 The Non-isothermal FENE-P Model

The FENE-P model is another popular isothermal viscoelastic fluid con¬

stitutive equation. Here, the linearly elastic spring law in Eq. (4.54) is

replaced by a nonlinear spring law [2],

uj(p,T,c) = lj0(p,T) + ^paiK(T)b(T)2 In (l ~ ^2
+ -paxkB ln(det c) , (4.72)

where b(T) is the maximum allowable chain extension, which is taken

as a temperature dependent parameter. The evolution equation for the

conformation tensor is then

(C)_ 1 / b(T)2 \ kBT
c*ß- x(T) \b(T)2-trc) a/3+A(T)i,(T)Öa'3' ( <à)

and the corresponding expression for the extra stress tensor field is

aaß = paxK(T) ( b(TL_tTC ) Caß
~ PaikBTSaß . (4.74)

Note that this expression is nonlinear in the conformation tensor, and

hence it is difficult to invert this relationship to obtain a constitutive

equation in terms of the extra stress tensor field.

4.4.4 The Non-isothermal Phan-Thien and Tanner

Model

The Phan-Thien/Tanner model considers the dependence of the relax¬

ation time on the internal microstructure of the fluid, and allows a slip¬

page of the polymer chains with respect to the surrounding medium,
often referred to as non-affine motion. For a general conformation ten¬

sor theory, what exactly is meant by non-affine motion depends critically
on the exact interpretation of the conformation tensor. For instance,
if one considers the conformation tensor as a contravariant deforma¬

tion tensor, "non-affine motion" might be taken to mean a "slip" of

the deformation tensor relative to the kinematical motion of the fluid

particles; i. e., the deformation of the material particle does not keep
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up with that required by the particle convection. If the conformation

tensor is taken as the second moment of the orientational distribution

function of a solution of dumbbells, then "non-affine motion" may be

taken to mean that the end-to-end orientation vector of the dumbbell

does not convect directly with the local fluid particles.

Non-affine motion is accounted for in the metric matrix by consider¬

ing couplings between the gradient of the momentum density, Vu, and

the entropie potential, z, tensor fields, under the realization that these

two fields have opposite parities [94, 132, 121, 2]; i. e.
, they have oppo¬

site signs under a time inversion. This inversion is related to the proper¬

ties of the microstructure of the material, and how the microstructural

constituents are affected by suddenly reversing the direction of time

- see [40] for further details. The gradient of the momentum density

changes sign under this transformation, but the entropie potential does

not. Hence the corresponding elements in the M matrix are actually

antisymmetric instead of symmetric! This represents a departure from

the properties of the GENERIC structure which have been considered

thus far: only phenomena with like parities were considered [1]. How¬

ever, this additional structural requirement for phenomena of opposite

parities actually arises from a detailed statistical treatment of the sys¬

tem on a fine-grained level of description [133]. During a projection

operator transformation to a more coarse-grained level of description,
the parities of the processes involved survive without alteration. Conse¬

quently, the D matrix of Eq. (4.37) is supplemented by an antisymmetric

contribution,

D

f° 0 0 0

0

0

J- ^cßofye
0

—TXaß7e

0

T2aaß
0

TXelßa
0

\

I

(4.75)

This antisymmetric contribution may be an artifact of working on too

coarse a level of description with too few degrees of freedom. In [132],
such an antisymmetric contribution to the dissipative dynamics arose

when passing from an inertial to a non-inertial system description. On a

more detailed level of description, in terms of a larger number of degrees
of freedom, it may turn out that D remains symmetric.
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Taking the operator product of Eq. (4.36), the metric matrix turns

out to be

M

with

/o
0

0

M2A

Mi2

M34

0

-V/3TQ/3Q7eV7
M32

X,ctß^e TV.,

0

M2i

MiA

0

-VßXelßarj
MiA

TAaßvc

\

(4.76)

V^T<5^Q7e(V7ue) + VßXnßa T
de

de-.

de

de
—T(VßVa)QßajeV7

—T——Apsvc — (V'ßVa)XelßaT

aß
-XaßleTV1 ,

M43

dcps

dem
—TAaßle- h AQ/37eT(V7u£) ,

d,

(4.77a)

(4.77b)

(4.77c)

(4.77d)
-7e

and element M^j as given by Eq. (4.40b). Note that the additional terms

do not contribute to the entropy production rate in the (3, 3) element

of M (a known result for processes with opposite parities [40, 2]), and

that the antisymmetry of M requires that Xaßl<L = Xleaß.

The non-isothermal Phan-Thien/Tanner model can now be obtained

by setting em = 0, Q = 0, and using the Massieu function of Eq. (4.54),
along with the phenomenological matrices [2],

-2*-aß~{e

^aßje

a(T) - 1

1

(CajSße + CaeSß1 + Cß~,öae + Cßeöal) , (4.78)

1
e K(T) e

-css - 3-

2pa1X(T)K(T) \ a(T) kBT a(T)/

X (Ca^ySße + CaeÖßj + öa^Cße + ÖaeCß^) . (4.79)

The parameter a(T) lies in the range [—1,1], and characterizes the de¬

gree of non-affine polymer motion. It is a function of temperature since,
in general, the non-affine motion varies with the rigidity of the polymer
chains. One then obtains Eqs. (4.42a), (4.42b), (4.59), and

(a)
_

dcaß a(T)
v7\/~fcaß —

1

Caß — dt

a(T) - 1

(cq7V7u/3 + c/37V7uQ)

(cQ7V/3u7 + cßlVav1 -A.aß^fe^'je •> (4.80)
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with the extra stress tensor field given by

aaß zcß^za^ -\- Jvaß^ez^e . (4.81)

Again, the extra stress tensor field of Eq. (4.81) is linear in c, so we

may obtain an explicit constitutive equation for the stress tensor field,

A(T)—7^
a(T) a?

1

1

a(T)

e

laß'

a(T)2pa1fcBTL'77

paifcBTA(T)
\

,rr* * (DlnK(T) DlnT

2a(T)Aaß
' I y '

,frr,fD]na(T)
,
DInK(T)\

ff77
- A(T) —

+
—

DÉ Di

Dt Dt
Saß (4.82)

after taking A in Eq. (4.80) as given by Eq. (4.58). This expression re¬

duces to the isothermal Phan-Thien/Tanner model if temperature and

density variations are absent. Eq. (4.82) is an extension of the constitu¬

tive equation of Sugeng et ai., Eq. (4.18), since the degree of non-affine

motion, a(T)(= 1 — cp), is an explicit function of temperature, the fluid

is compressible, and K(T) is an arbitrary function of temperature.

4.5 Conclusions

In this chapter we have used a modern theoretical approach to non-

equilibrium thermodynamics to derive a set of mechanically and thermo¬

dynamically consistent evolution equations for a non-isothermal poly¬
meric liquid. This set of evolution equations for the system variables

arises from a master equation for the system dynamics in which the ba¬

sic principles of mechanics and thermodynamics are embedded a priori.

This set of equations accounts for a compressible, viscoelastic fluid with

energetic as well as entropie elasticity, viscous dissipation, Fourier-type
heat conduction, and relaxation of the internal microstructure. In so do¬

ing, several inconsistencies and disadvantages of prior theoretical work

on non-isothermal polymeric materials were revealed and discussed. In

the presence of a non-vanishing elastic potential, the balance equations
of Rational Thermodynamics were seen to be internally inconsistent.

The temperature equation universally used in engineering analyses of
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non-isothermal polymer flows was seen to rest on dubious assumptions.
It was pointed out that the implicit assumption of incompressibility
in prior theoretical work changes the mathematical character of the

constitutive equation for the extra stress tensor field. The use of the

conformation tensor field, instead of the extra stress tensor field, as

one of the system variables results in a simpler set of evolution equa¬

tions, with practical implications regarding its numerical solution in

processing geometries. The set of evolution equations derived herein

was shown to produce non-isothermal counterparts of several popular
isothermal viscoelastic fluid models.

In the following Chaps. 5 and 6 we will compute numerical solutions

of the time evolution equations derived in Chap. 4. In this context we

focus on so called rheological flows. Furthermore, we will give a micro¬

scopic interpreation of the friction coefficients appearing in these time

evolution equations. The rheological behaviour of amorphous polymers
both in the liquid and in the solid state is a fascinating topic which has

attracted many investigators, theoretical and experimental. For general
reviews on rheology of liquids and solids the reader is referred to the

standard textbooks in the field [26, 55, 56]. Theoretical developments in

the field of rheology have a long history and are mainly directed towards

the development of new constitutive equations for the extra stress ten¬

sor in the material, see e. g. [134, 135, 136, 137, 138, 139, 140, 60, 141].
In Chap. 4, [2, 24] it has been shown that a large number of such

constitutive equations can be recast into modern formalisms of non-

equilibrium thermodynamics. In these approaches the principles of

classical mechanics and the laws of thermodynamics are embedded a

priori. This ensures the thermodynamic admissibility and mechanical

consistency of the evolution equations. Experimental progress in rheol¬

ogy is mainly concerned with the construction and development of new

rheometers to measure the viscosity as a function of the applied defor¬

mation, e. g. [142, 143, 144, 145]. However the application of rheooptics
is becoming more important, e. g. [57, 58, 59, 146]. This method al¬

lows to understand the mechanical properties of complex materials via

an optical investigation of the internal microstructure. This is inter¬

esting because these methods are faster and cheaper than the conven¬

tional mechanical measurements. Furthermore, optical measurements

can be used in arbitrary deformations of the material which is not the

case for mechanical measurements which are performed in pure shear or

pure elongational deformations only. This is of importance in process-
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ing and engineering because the product control by means of optical
methods may be cheaper and perhaps more reliable than mechanical

quality checks. In what follows we discuss the rheology of amorphous

polymers for homogenous deformations adopting the continuum me¬

chanics description of Chap. 4. To apply this description to a specific

material, constitutive relationships for the material's free energy and

the phenomenological matrices have to be adopted. Our approach al¬

lows the prediction of rheological as well as rheooptical behaviour of

the amorphous material. Furthermore, a large class of well established

constitutive equations in polymer rheology is treated in a unique man¬

ner. We have focussed on isothermal and incompressible viscoelastic

materials in Chap. 5. In this case the rheological spring constant of

the material is a linear function of temperature and the phenomenolog¬
ical coefficients which appear in the material description are assumed

to be independent of temperature. Thus the polymer is viewed as a

material of purely entropie elasticity and the extra stress tensor is a

linear function of temperature. In Chap. 6 we discuss non-isothermal

and compressible viscoelastic materials.

98 Chapter 4. Balance Equations



Chapter 5

Enhanced Constitutive

Models for Polymer
Melts and Microscopic

Interpretation of the

Phenomenological
Coefficients

Abstract

In the present chapter an alternative representation of the enhanced vis¬

coelastic fluid models in terms of the conformation tensor is introduced.

We show the equivalence of this representation with the originally pro¬

posed formulation in terms of the extra stress tensor. Furthermore, we

give a microscopic interpretation of the phenomenological coefficients

appearing in these models and we explain how they may be obtained

form atomistic simulations.

99

100 Chapter 5. FETA Models

5.1 Introduction

Recently the performance of enhanced constitutive models for isother¬

mal and incompressible polymer melts in a cross-slot flow has been

discussed intensively. In this analysis a continuum formulation in terms

of the extra stress tensor has been adopted to discuss and to evaluate a

new class of viscoelastic fluid models of differential type (the so called

fixed viscosity or Feta-models) and to compare the predictions with the

Giesekus and the PTT model [60]. At the same time it has become

possible to generate relaxed configurations of unstrained and strained

atomistic polymer melts via Monte Carlo (MC) simulations [22] and to

employ molecular dynamics (MD) simulations [23] to extract friction

coefficients, relaxation times, and viscosities from the atomistic poly¬
mer melts. This is an important point since it allows to study, to test,

and to develop new phenomenological relationships in polymer rheology.

Up to now only the unstrained MC configurations have been subjected
to MD simulations but a similar procedure should also be possible for

strained MC configurations. Thus, additional phenomenological para¬

meters appearing in the constitutive relationships may be determined

by projection of the atomistic simulations onto the phenomenological

relationships, similar as in [23]. As a first step in this direction we give
an alternative presentation of the recently proposed enhanced constitu¬

tive models for polymer melts in terms of a conformation tensor to have

a link between atomistic simulations and macroscopic material proper¬

ties. This is reasonable since in atomistic simulations the conformation

of the polymers can be extracted at once but it is more difficult to obtain

the extra stress from such simulations [22, Figs. 15, 16].

Recent studies in non-equilibrium thermodynamics [2, 24] of com¬

plex materials have shown how to relate the polymer's conformation

to the purely mechanical extra stress tensor from which the material

functions (viscosities and normal stress coefficients) can be extracted.

In these studies it has been shown that one has to solve a time evolu¬

tion equation for the conformation tensor to recover the transient and

the static system response to homogenous deformations. The extra

stress tensor and the viscometric functions are calculated a posteriori
from the thermodynamic properties of the fluid: the density, tempera¬

ture and conformation tensor. In what follows we present an alternative

approach to enhanced constitutive models based on a conformation ten¬

sor description. Furthermore, we give a microscopic interpretation of
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the phenomenological coefficients which appear in these fluid models

and we suggest how these quantities may be extracted from atomistic

simulations of polymer melts The fact that we can relate the phe¬

nomenological material parameter to the internal microstructure of the

melt represents an important advantage of the conformation tensor over

the traditional extra stress description Another point in favour of the

conformation tensor approach is the full thermodynamic consistency
of the evolution equations Moreover, using the conformation tensor

avoids numerical instabilities which are encountered m viscoelastic fluid

models with a deformation dependent relaxation time when working m

terms of the extra stress tensor [147]

The present chapter is organized as follows In Sec 5 2 we present

the time evolution equation for the conformation tensor and the we ex¬

plain how the extra stress is related to the thermodynamic potential of

the material In Sec 5 3 we give the constitutive relations for the ther¬

modynamic potential and the phenomenological matrices for rotational

diffusivity and non-affine motion With the conformation tensor equa¬

tion and the constitutive assumptions we recover the modified upper

convected Maxwell models (Sec 5 4) We discuss the phenomenological

relationships for the variable relaxation time and we explain the mam

features of the enhanced viscoelastic fluid models Sec 5 5 deals with

the interpretation of the phenomenological coefficients in terms of the

material's microstructure We introduce a mobility tensor to account

for anisotropic drag and we give a relationship which relates the degree
of non-affine motion to the conformation tensor We discuss how the

phenomenological relationships may be extracted from atomistic MD

simulations Conclusions and discussions are given in the final Sec 5 6

5.2 Conformation Tensor Formulation

To treat the rheology of amorphous polymeric materials we study
the evolution equation for the conformation tensor equation [2, 24],
Eqs (4 42d), (4 80), pp 79, 94

dcaß
——- = -u7V7cQ/a + c7QV7u/3 + c~fßV~fva - XQ/37eV7u£

— AQ/37£z7<E , (^5 1)
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for homogenous velocity gradients, Vv = const In the above equation1
c is the second rank contravanant conformation tensor, v is the velocity,
X characterizes the degree of non-affine motion, and A is the rotational

viscosity The onentational field

(5 2)

is defined m terms of the thermodynamic potential, lj\
= Lj\(p, T, c), de¬

pending on density p, temperature T, and conformation c (Eqs (4 22),
(4 26) pp 75, 75) Here we are using the Massieu function as a ther¬

modynamic potential since it depends on measurable variables and it

arises naturally from the Legendre transformation of the entropy den¬

sity (generator m the GENERIC formalism [24]) With the specification
of constitutive relationships for the Massieu function and the phenom¬

enological matrices the recently proposed viscoelastic fluid models m

Ref [60] may be recovered as we will show m Sec 5 4 The conforma¬

tion tensor is the second moment of the end-to-end vector of the polymer

chains, c = (RR) Hence it describes the elongation and the orientation

of the polymer coils in the material If the chain ends are taken as the

material points representing the polymer in a continuum formulation,
and these points are envisioned as undergoing an affine deformation de¬

scribed by the deformation gradient tensor F, one can readily show that

c = F FT [22] In this case c may be interpreted as the elastic Cauchy
tensor The form of the extra stress tensor arises naturally through a

systematic modeling approach in terms of the Hamiltonian framework

[2] or the GENERIC formalism [24], Eq (4 81), p 95

aaß = ZzajC^ß + Xaß^ez^e , (o 6)

where the first term is the elastic contribution to the extra stress tensor

arising from the Poisson operator and the second term takes into ac¬

count additional stresses due to slip of the material This second term

originates from the irreversible contribution to the overall dynamics
Note that here we are neglecting viscous dissipation of the deforming
continuum (similar as in [60]) which can be easily incorporated into the

analysis The above Eq (5 3) is an important relationship establish¬

ing the connection between the polymer conformation and the extra

stress of the material The viscometric functions, i e the viscosities

and normal stress coefficients, are defined in the usual way in terms of

1In Eq (5 1) and in what follows we adopt the Einstein summation convention
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the extra stress tensor. They are calculated from the thermodynamic

properties of the melt (density, temperature, and conformation) and

the relevant relaxation time after Eq. (5.1) for the conformation tensor

has been solved for homogenous deformations. An important issue of

the conformation tensor approach followed in this work is to guarantee
the positive-definiteness of the internal variable, c [2]. This allows to

extract information from the underlying internal microstructure and to

compute rheooptical properties of the deforming material. Furthermore,
it gives a more natural interpretation of theoretical aspects concerning
the relaxation-time/microstructure dependence as we will see in Sec. 5.5.

5.3 Constitutive assumptions

For the Massieu function we adopt the relationship for the Hookean

dumbbell Eq. (4.54), p. 85. With the Massieu function (4.54) and the

definition of the orientational field (5.2) we obtain

zaß = ^pctiK5aß - -pciXkBTcr}ß . (5.4)

This quantity is the thermodynamic conjugate variable to the extensive

conformation tensor and may be viewed as an orienting field acting on

the coils in the strained polymer melt. The conformation tensor, c, and

the orienting field, z, are the appropriate thermodynamic variables to

the description of complex fluids and they can be extracted from atom¬

istic simulations of polymer melts to test and to improve constitutive

relationships such as Eq. (4.54) [22, Figs. 8-10]. To recover the enhanced

viscoelastic fluid models the phenomenological matrices for rotational

diffusivity and non-affine motion are taken according to Eqs. (4.58),
(4.78), pp. 87, 94. The relaxation time A = A0A(trc) and the degree
of non-affine motion — 1 < a (trc) < 1 are now functions of the first in¬

variant of the conformation tensor. In the models discussed in [60], the

parameter a = 1 — £ characterizing the polymer slip has been assumed

to be constant. This point will be addressed in Sec. 5.5. The relaxation

matrix can be generalized to account for anisotropic drag (an impor¬
tant phenomenon in the realistic description of polymer melts) as we

will discuss below. Inserting Eqs. (5.4), (4.78) into Eq. (5.3) we recover

Eq. (4.81), p. 95 where the degree of non affine motion is allowed to be

a function of the first invariant of the conformation tensor. Note that
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the Hookean approximation gives a linear relationship between confor¬

mation tensor and extra stress tensor which can be inverted easily to

express A (trc) in terms of the extra stress tensor.

Following [60] we collect some examples for the function A(trcr) in

Tab. 5.1. In the first column we report the name of the viscoelastic

constitutive equation. In the second column we give the functional

form of the variable relaxation time in terms of the extra stress tensor.

Table 5.1: The relaxation time as a function of the stress tensor for
some viscoelastic fluid models (from Ref. [60]).

Model A(tro-)

Maxwell

PTT I |1-

PTT II exp

Cox-Merz

a2pct\kBT

e

OSS

1 -

a2pa.\kBT

e

Ellis l + A

Marrucci-a 1 —

a2pct\kBT

e

a2pct\kBT

e

oss - 3-

oss

oss

-b

a2pa.\kBT
oss - 3-

In Tab. 5.2, p. 105 the relaxation time functions are expressed in

terms of the conformation tensor. In the expressions for the relaxation

time functions the parameters a, e denote the degree of non-affine mo¬

tion and the strength of the material response on the conformation,

respectively. The quantities A, a, b are further numbers taken as fit

parameters in [60]. The most simple case, A (trc) = 1, corresponds to

the linear viscoelastic Maxwell model (cf. Sec. 4.4.1, p. 86).
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Table 5.2: The relaxation time as a function of the conformation ten¬

sor for some viscoelastic fluid models.

Model A(trc)

Maxwell

PTTI

PTTII

Cox-Merz

Ellis

Marrucci-a

e K

exp

akBT

'e K

ess

css-Z-
a kBl a

e K e

-,css
- 3-

kBT

t
i e K e

A I -j-^css -3-
,

a kBl a

1 I
e K <*e

,

a kBl a

In the following Sec. 5.4 we want to discuss the stress tensor descrip¬
tion of the viscoelastic fluid models reported in the above Tabs. 5.1, 5.2

to show the relation to Ref. [60]. Having established the equivalence
between the two descriptions in terms of the mechanical stress tensor

and the conformation tensor we discuss how the phenomenological co¬

efficients appearing in the constitutive equations could be determined

(Sec. 5.5).

5.4 Stress Tensor Formulation

With the constitutive assumption for the Massieu function (4.54) we

obtained a linear relationship between the conformation tensor and the

extra stress Eq. (4.81). With the relations for the phenomenological
matrices (4.58), (4.78) we can write down the constitutive equation for
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the modified upper convected Maxwell models [148]

(a) Qgß
_

2?7 , /«. ^

^ +

AoA(tar)
"

A0A(tarra/3 ' (5'5J

where n = a2aipkBTXo is the zero shear viscosity, A = l/2-(Vv+VvT)
is the symmetric part of the velocity gradient, and A(trcr) is any one of

the functions in Tab. 5.1. In the limit of small deformations the above

constitutive equations reduce to the linear viscoelastic Maxwell model.

Note that the modified upper convected Maxwell models do not account

for anisotropic drag; a point which is addressed in Sec. 5.5. Second

normal stress differences arise from the Gordon Schowalter derivative

in Eq. (5.5). We emphasize that working in terms of the conformation

tensor is preferable since it avoids numerical instabilities as encountered,
e. g., in the White Metzner models [147], another example of viscoelastic

fluid models falling into the class of Eq. (5.5).

In Figs. 5.2 and 5.1, pp. 107, 108 we report the dependence of the

relaxation time on trer and trc to clarify the relationship between the

extra stress description and the conformation tensor approach. We have

taken a = 1 for all curves. In Fig. 5.2a we portray the variable relax¬

ation times of the models introduced in Tab. 5.1 as a function of the first

invariant of the extra stress tensor. All curves start out at equilibrium,
i. e. trcr = 0. The overall relaxation time, A = A0A(trc), is equivalent to

A0 for small stress values and approaches zero as the extra stress ten¬

sor becomes very large, and hence a Newtonian constitutive assumption
arises in this limit. In Fig. 5.2b we have drawn the stress dependence of

the relaxation time for the Cox-Merz rule (cf. p. 109) and the modified

Ellis model. This last model has been proposed as an approximation to

the Cox-Merz rule to achieve numerical stabilization and to gain more

flexibility in describing first normal stress differences [60]. The parame¬

ters A, a, b have been chosen equal to 2, 2, 1, respectively. For this value

of b the Ellis model reduces to a modified Maxwell model [148] and a

represents the sensitivity of the fluid relaxation time to increasing stress

beyond a critical stress level [2]. In Fig. 5.1 we report the dependence
of the relaxation time on the first invariant of the conformation tensor,

trc. The curves start out at equilibrium, trc = 3, since in this state

we have globular coils, c = S. Due to the linear relationship between

conformation and extra stress the curves have been only shifted along
the a;-axis.
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Figure 5.1: The dependence of the relaxation time, X/Xo, on the first
invariant of the conformation tensor, Ic = trc, for some viscoelastic

fluid models with variable relaxation time m Tab. 5.1 with a = 1. For

the Ellis-m model we took A = 2, a = 2, b = 1.
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Figure 5.2: The same as Fig. 5.2 for the dependence of the relax¬

ation time on the first invariant of the extra stress tensor, 1er = trer

(Tab. 5.2).
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The Cox-Merz rule (cf. p. 106) has been suggested as a way of ob¬

taining an improved relation between the linear viscoelastic properties
and the viscosity. This empiricism predicts that the magnitude of the

complex viscosity is equal to the viscosity at corresponding values of

frequency and shear rate n(j) = |?7*(üj)||w=7 [142, p. 150]. Since we are

not considering oscillatory shear flows in the present work we do not

study the Cox Merz rule in more detail.

Fig. 5.3 shows the steady state viscosity for some of the viscoelastic

fluid models Eqs. (5.1), (5.5) with A(trc), A(trer) from Tabs. 5.2, 5.1.

The material parameters a, e are the same as in Figs. 5.2, 5.1. All models

predict the so called shear thinning behaviour. A detailed presentation
of viscoelastic material models in shear and elongational can be found

in [26, 55, 56].

10"
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—I 1 I I I Mil I I Mill 1 1 I I I I I -1 1 I I I III

10" ^
10

aUCM

c PTTb (s 0 25)
d PTTa(s 0 25)

e Marrucci a (s 0 5)

g Cox Merz (s 0 5)

10 10 10 10

shear rate, yX

Figure 5.3: The nonlinear viscosity function for some viscoelastic fluid
models with variable relaxation time. The parameters a, e are the same

as in Figs. 5.1, 5.2.

The modified Maxwell models (5.5) are equivalent to the enhanced

viscoelastic fluid models (Feta) models [60, Eq. (34)]. In addition to

the variable relaxation time A(trer) also the elastic modulus, G(tr<x), is
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taken to be deformation dependent in these models

Titrer) = A(trcr)G(trcr) , (5.6)

where t](trcr) denotes the nonlinear steady state shear viscosity func¬

tion. The quantity ^(trer) is chosen in such a way to have an accurate

description of the steady state non-linear shear viscosity. The func¬

tional dependence of both A(trcr) and G(tr<x) is arbitrary as long as

the product of both quantities satisfies the above requirement. This

allows for a saver numerical treatment of the equations and gives more

flexibility in describing first normal stress differences. The reason for

this is that a single power-law exponent cannot accurately describe the

shear rate dependency of both the shear viscosity and first normal stress

difference and, in practice, different functionalities have been used for

the viscosity and the elastic modulus. This is similar to an approach
followed by Deiber and Schowalter where different functionalities have

been used for the viscosity and the relaxation time [149, 147]. A draw¬

back of the examples treated thus far in [60] is that the second normal

stress differences are zero [60, p. 401].

5.5 Determination of Phenomenological
Coefficients

5.5.1 Bead-Friction Coefficient, Relaxation Times,
and Viscosity

In the phenomenological matrices Eqs. (4.58), (4.78) there are several

quantities which are material dependent and which have to be deter¬

mined from atomistic simulations of polymer melts to gain a reliable

prediction of the material's macroscopic properties. These quantities
include the relaxation time, Ao, the characteristic spring constant, K,
the degree of non-affine motion, a, and the strength of the material's

response on the conformation, e. A further phenomenological coeffi¬

cient, ß^, is introduced into the fundamental time evolution equation

(5.1) if we take into account the phenomenon of anisotropic drag. To

determine these phenomenological coefficients we can benefit from the

conformation tensor description introduced in Sec. 5.2 and to use it in

combination with MC and MD simulations. The conformation of the
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polymers can be easily extracted from these simulations and it can be

studied as a function of the other thermodynamic properties of the melt

[22]. This allows to test and to determine new constitutive relations for

the phenomenological coefficients. The mesoscopic bead friction coeffi¬

cient, £, and the relaxation time, Ao, appearing in Eq. (4.58) have been

determined from MD simulations of relaxed MC configurations of un¬

strained and unentangled atomistic polymer melts invoking the Rouse

model [23]. The characteristic elastic constant, K, in Eq. (4.58) is

proportional to the inverse mean squared end-to-end distance of the

polymer chains and it has been calculated from the RIS models. Fur¬

thermore, it can be extracted from bulk MD runs, from end-bridging MC

runs, or from MC sampling of continuous unperturbed chains (CUC)
and the different results may be compared [23].

5.5.2 Isotropic and Anisotropic Drag Coefficient

The relaxation matrix (4.58) does not take into account the phenom¬
enon of anisotropic drag which is necessary for a realistic description
of the physical properties of a polymer melt. This effect occurs due

to the alteration in the flow field that one monomer in the chain feels

due to the motion of the other monomers [16]. In a similar spirit to

the concept of hydrodynamic interaction the Giesekus model takes into

account the effect on a given polymer chain (represented as a dumbbell)
due to the presence of the confining interactions with the other chains.

This effect is modeled by introducing an anisotropic hydrodynamic drag
force under flowing conditions. Thus, a new phenomenon is added to

relaxation matrix (4.58) discussed above, namely, that the surround¬

ing, flow oriented chains in the melt would create this anisotropy in the

effective molecular drag. According to this postulate, the usually con¬

stant, inverse hydrodynamic drag coefficient in kinetic theory which is

basically inversely proportional to the relaxation time, is replaced with

an anisotropic, conformation-dependent "mobility tensor"

Cäß =

£ ((1 - ßc)5aß + ßc^aß) > (5-7)

where ßc is an empirical constant which lies within the range of 0 <

ßc < 1 [2, 24]. The dependence on the conformation tensor is necessary

in order for the mobility tensor to become isotropic (i. e proportional to

the identity tensor) at equilibrium, since there is no preferred direction
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of orientation under quiescent conditions. The scalar drag coefficient,

(, is known from MD simulations of detailed atomistic PE melts and it

is independent of chain length beyond a chain length of TV « 70 [23]. It

would be interesting to do a similar analysis with an oriented polymer
melt invoking the relation for the anisotropic drag (5.7) and to verify if

the value ßc « 0.2 — 0.3 [60] may be recovered.
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Figure 5.4: The 11-component of the mobility tensor, £~ ,
as a func¬

tion of the 11-component of the dimensionless conformation tensor, c\\,

for several values of the phenomenological Giesekus parameter, ßc, ac¬

cording to Eq. (5.7). This situation corresponds to a purely diagonal

conformation tensor as encountered in elongational flow. The curves

have been extrapolated to en =0.

For a purely diagonal orientational field, z, corresponding to an

uniaxial elongation we have plotted the relationship between the 11-

component of the mobility tensor and the 11-component of the con¬

formation tensor for several values of the Giesekus parameter, ßc,
(Fig. 5.4). The curves start out at en = 1 and have been extrapo¬

lated to en =0. The phenomenological parameter ßc may be obtained

from the intersection of the MD simulation data with the z-axis or from

their slope.
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The relaxation matrix for the Giesekus model is obtained with the

constitutive relation for the anisotropic drag (5.7)

A
X

2pctiXoX(c)K

2ßcK
T

; \Ca~(Cße < CaeCß^ )
kBl

(1 - ßc)(ca-föße + Cae5ßj + CßjSae + Cße5a^)

(5.8)

which has a similar form to the relaxation matrix associated with the

hydrodynamic interaction [2, p. 251]. It may be used with the confor¬

mation tensor equation (5.1) to study further viscoelastic fluid models.

Next we want to discuss another possibility to describe second nor¬

mal stress coefficients in polymer melts, i. e we want to study non affine

motion.

5.5.3 Degree of Non-affine Motion and Strength of

Material Response

In the examples discussed in [60], the parameter a characterizing the

degree of non-affine motion in the phenomenological matrix (4.78) has

been assumed to be constant. However, the polymer molecule's rigid¬

ity/aspect ratio varies strongly with deformation, which implies that

a variable parameter a might be a more appropriate choice. In fact

Hmch [150] and Rallison and Hinch [151] have proposed models based

on a modification of the FENE dumbbell model which utilizes a mixed

convected derivative with the parameter a given as [151]

" " T,
,„

, (5-9)
ßaR2G + trc

where ßa is a numerical factor of the order of unity and Rq, is the

undistorted radius of gyration of the chain. Similar as with the end-to-

end distance it may be obtained from the RIS models, from bulk MD

runs, from end-bridging MC runs or from MC sampling of CUCs [23]. In

Fig. 5.5 we portray the degree of non-affine motion as a function of the

first invariant of the conformation tensor, Ic = trc, for three different

values of the parameter ßa. We took R2^ = 1/6R2 = 1.145 valid for

long PE chains.
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Figure 5.5: The dependence of the degree of non-affine motion, a,

on the trace of the dimensionless conformation tensor, trc, for several

values of the phenomenological coefficient ßa and R2, = 1.145 according
to Eq. (5.9). The horizontal line, a = 0.92, is the constant value adopted
m Ref. [60].

We notice that the polymer slip varies strongly with the conforma¬

tion of the polymers as the deformation sets in. As the polymer coils are

stretched and the trace of the conformation tensor increases the degree
of non-affine approaches quickly the limiting value a = 1. Thus, a con¬

stant value for the degree of non-affine motion, e. g. a = 0.92 [60], has

to be viewed with scepticism especially if we are working in the nonlin¬

ear viscoelastic regime. Note that in simple shear the mixed convected

derivative — 1 < a < 1 is characterized by a non-monotonic shear-stress

versus shear rate behaviour. During the start-up of steady shearing
one observes oscillations between large positive and negative values in

the shear stress for high shear rates if that derivative is adopted. In a

similar way as proposed for the constitutive relation for the anisotropic

drag (5.7) the relation of Rallison and Hinch (5.9) could be invoked

to determine a numerical value for the parameter ßa. The right hand

side of Eq. (5.9) is obtained from the viscosity ratio of the strained

and the unstrained polymer melt. Disposing of a relationship between
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the degree of non-affine motion and the conformation tensor one can

map the chain conformations and the relaxation times as obtained from

MD simulations of strained configurations on one of the constitutive

assumptions in Tab. 5.2 to determine the phenomenological parameter

e governing the strength of the material's dependence on the polymer
conformation.

5.6 Conclusions

In this chapter we have given an alternative approach to enhanced con¬

stitutive models for polymer melts in terms of the conformation tensor

description. This is preferable over the traditional continuum approach
in terms of the extra stress tensor because we have a direct link to the

internal microstructure of the material's constituents and it allows to

discuss rheooptical and mechanical properties independent from each

other. Phenomenological coefficients arising from the dissipative con¬

tribution to the system dynamics can be extracted from atomistic sim¬

ulations of the polymer melts. This is due to the fact that the confor¬

mation tensor can be readily obtained from atomistic simulations and

the trajectories can be mapped on constitutive relationships of polymer

rheology. We have presented such phenomenological relationships and

we suggested possibilities to extract microscopic parameters from MD

simulations of strained polymer melts.

The spring constant is related to the energetic elasticity of the poly¬
mer and it can be calculated directly in the framework of the RIS ap¬

proximation. The relaxation times and the mesoscopic friction coeffi¬

cient, may be obtained from atomistic configurations of the melt in¬

voking the Rouse model or the reptation model depending whether we

have an entangled or an unentangled melt. To determine the coefficient

quantifying the strength of anisotropic drag in the melt MD runs of

relaxed oriented configurations of the melt should be performed. The

trajectories of these MD runs can be mapped on the Giesekus form of

the anisotropic mobility tensor. A similar recipe may be appropriate
to determine the Rallison/Hinch parameter quantifying the strength of

non-affine motion in the system as a function of the polymer's aspect

ratio.
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Chapter 6

Rheology of

Non-isothermal and

Compressible
Viscoelastic Materials

Abstract

We present a numerical study of non-isothermal fiber spinning processes

taking into account compressibility and energetic elasticity of the

processed material For the thermodynamic potential we adopt a com¬

bination of a FOV free energy and the thermodynamic potential of a

Hookean dumbbell The basic equations of motion arise from modern

frameworks of non-equilibrium thermodynamics and are solved for ho¬

mogenous deformations We discuss the morphology and the physical
and thermodynamic properties of the processed sample Accounts on

non-isothermal stress relaxation experiments and the problem of critical

cooling are given
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6.1 Introduction

Non-isothermal rheology [61, 62, 57, 63], i e the rheological response m

the presence of changing temperature, is an important problem, both as

a basic study m rheology and as an applied problem m polymer process¬

ing Lots of basic work m rheology, both experimental and theoretical

has dealt with isothermal flows, with the temperature held constant

during any one measurement/calculation However, it is well known

that the final properties of a finished article are strongly dependent on

the details of the processing operation as defined by the deformation

and thermal histories of the processed material In what follows we dis¬

cuss the rheological response of a deformed amorphous polymer which

is simultaneously quenched to a temperature slightly above the glass

temperature We will study the macroscopic deformation, the internal

structure, and the thermodynamic properties of the sample during the

process and we will show how different processing conditions influence

the physical state and the internal microstructure (morphology) of the

final article thus produced The study of this work applies especially
to homopolymers1 since they tend to be most clearly m one state or

another (e g viscous, rubberlike, or glassy) and are thus suitable can¬

didates for our study

In this work we start from a full set of time evolution equations for

non-isothermal polymeric materials with entropie and energetic elastic¬

ity as obtained from a general framework of non-equilibrium thermo¬

dynamics [2, 24], Chap 4 This is preferable over traditional modeling

procedures which combine balance equations for the density, the mo¬

mentum, and the internal energy with a constitutive equation for the

extra stress, e g [115, 48, 49, 152, 153], because it ensures the thermo¬

dynamic consistency of the evolution equations and it allows to extract

information on the internal microstructure (morphology) of the ma¬

terial The problem is quite complicated since besides non-isothermal

effects and entropie elasticity we have to take into account compressibil¬

ity and energetic elasticity of the processed polymer This is important

since density variations about 10% are not unusual m polymers and

can be even higher when phase transitions are involved In addition to

that small density variations have a dramatic effect on the relaxation

time spectrum [20, 21, 154] We take into account energetic elasticity

1A polymer which is derived from a single monomer is called a homopolymer
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of the material since the Theory of Purely Entropie Elasticity [43, 44],
Sec. 4.2.4 is not adequate to capture the complicated frictional behav¬

iour of polymeric materials [46, 14]. In principle, energetic elasticity
accounts for the relative spatial position of the material's constituents

and models of Physical Chemistry [10, 11, 83] have to be adapted to

capture the thermally induced energetic effects present in polymeric ma¬

terials. However, it is worth doing so since there are only few studies in

polymer rheology considering explicitly energetic elasticity of the mate¬

rial [48, 49]. Finally we adopt a thermal and a caloric equation of state

of the quiescent material to include the ppT-behaviour and the heat

capacity into our treatment [8, 9, 5, 7, 78]. This is important since the

ppT-behaviour is related to important material properties as the sound

velocity and the thermal expansion of the material and compression
work is done against the pressure of the material.

Our theoretical analysis may be relevant in the context of prop¬

erty enhancement by molecular orientation. It is well known that tem¬

peratures not too far above the glass temperature are the best ones

for inducing high levels of orientation by macroscopic deformation of

the material. At more elevated temperatures the relaxation processes

are too fast, and at temperatures very near to the glass temperature

the sample can fail by brittle fracture if it is deformed. One is thus

motivated to seek out the best temperature and deformation strate¬

gies in a temperature regime somewhat above the glass temperature.

In experimental studies substantially higher stresses could be achieved

under non-isothermal conditions. However, in many cases it proved
difficult to extract the samples from the oven in their highly stressed

states; the processed material showed a so called glassy response. In

the cases where it was possible to conserve the highly oriented state

stresses about 40% higher than in the isothermal runs were achieved

[57]. Here we want to study incompressible and compressible processes

where the material is simultaneously deformed and quenched from the

rubbery state, thereby freezing in high levels of molecular orientation.

Our theoretical analysis shows that it should be possible to conserve

the high orientation induced by such a process.

In Sec. 6.2 we present the equations of motion for a non-isothermal

and compressible amorphous polymer with entropie and energetic elas¬

ticity and we give the definition of the pressure, the heat capacity, and

the orientational field in terms of the thermodynamic potential. Fur-
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thermore, we define the material properties needed for the subsequent
sections. Sec. 6.3 is devoted to the constitutive relations we need to

solve the equations of motion. We take a thermodynamic potential
for the polymer, we write down the constitutive relations for the phe¬

nomenological matrices, and we give phenomenological relations for the

temperature dependence of the relaxation time we use in our calcula¬

tions. In Sec. 6.4 we give a treatment of some aspects of non-isothermal

rheology. A short account on non-isothermal stress relaxation experi¬
ments is given. Furthermore, we discuss an alternative non-isothermal

fiber spinning process to produce highly oriented glassy fibers and we

look at a deformation process with small simultaneous compression. Fi¬

nally, we give a short treatment of the problem of critical cooling rates.

Numerical examples appropriate to PE are given. In the final Sec. 6.5

we present conclusions and we give an outlook.

6.2 General Relationships

6.2.1 Non-isothermal Rheology of Viscoelastic Ma¬

terials

In the framework of non-isothermal rheology we study the evolution

equations [24] for the density, p, the temperature, T, and the elastic

Cauchy tensor, c,

dp

dt
V>«7) , (6.1)

PC—— = Qaß1e(^a'Vß)(V1Ve)+ pcR + T ZL "^
(V^ff)

,
dp
^ : A A ^ dzle

dcaß
dt

-

T——V7u7 + Aaß7ezaßZ7e
—

AaßlezaßT , (6.2)

-u7V7cQ/3 + c^aV7Vß + c1ßV1va — Aaßlezle . (6.3)

Eq. (6.1) is the ordinary continuity equation. Eq. (6.2) is the temper¬

ature equation for a compressible material with entropie and energetic

elasticity. In that equation D/Dt is the material time derivative, R is a

time dependent external cooling rate of units temperature/time and Q,
A denote the phenomenological matrices for viscous flow and rotational
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diffusivity, respectively. In this equation we adopted a constitutive re¬

lation for the heat flux vector, q = — 1/ipcRr. Furthermore, the field

em (Eq. (4.34), p. 77), is taken to be independent of c. All works on

non-isothermal rheology using an external cooling rate in the tempera¬

ture equation (e. g. [115, 49]) make use of a non-Fourier type heat flux

without stating it explicitly (cf. Sec. 4.2.6, p. 72). The first term on

the right hand side of Eq. (6.2) is the temperature rise due to viscous

dissipation. The second, third, and fourth term describe temperature

variations due to external heating or cooling, elastic stresses, and com¬

pression/dilatation of the material, respectively. Note that here the

elastic contribution to the extra stress (third term) is allowed to be a

nonlinear function of temperature. Hence we allow explicitly for ener¬

getic elasticity. The last two terms account for temperature variations

due to relaxational phenomena. In the case of purely entropie elastic¬

ity this equation reduces to the temperature equation of Astarita [43],
Eq. (4.7), p. 67. Eq. (6.3) is the conformation tensor equation describing
the macroscopic state of deformation of the material. The first three

terms on the right hand side arise from the (contravariant) codefor-

mational derivative and the last term describes the relaxation of the

internal microstructure. We left out the momentum equation (4.42b),

p. 79 since it is satisfied for elongational flows taking an appropriate

expression for the function em(p). In the above equations the pres¬

sure, heat capacity, and orientational field are denoted with p, c, and

z, respectively. These quantities are defined in terms of the Massieu

function, lj = Lo(p,T,c) [24], Chaps. 2, 4. The form of the pressure

rr,

dLJ
p = TVJ-pj-p (6.4)

arises naturally through the Poissonian structure of reversible dynamics
as has been shown in the framework of the single generator Bracket

formalism and the double generator GENERIC structure. The heat

capacity is

22.
= 2 —

T dT

d2LJ
+ T

p,c
dT2

(6.5)

which can be recovered from the definition of the heat capacity in terms

of the Helmholtz free energy using lj = —a/T. The orientational field

is the conjugate variable to the conformation tensor

,9w

-Tdc (6.6)

122 Chapter 6. Non-isothermal Rheology

and has dimensions force/length .
It can be regarded as the tensorial

force density per unit length in the material. We designate the diagonal
elements of z as direct forces and the off-diagonal elements as shear

forces in analogy to the elements of the extra stress tensor. Similar to

the definition of the shear stresses z2\ is the 1-component of the force

density per unit length acting on a face of a cubical element which is

perpendicular to the 2-direction.

The form of the extra stress tensor is recovered from a systematic

modeling approach through the Bracket formalism or the GENERIC

[2, 24]. It can be calculated a posteriori from the conformation tensor

and the orientational field,

oaß = 2zQ7c7/3 + Q^q7£V7u£ , (6.7)

where the fourth order tensor Q denotes the viscous contribution to the

extra stress. Note that here we are disregarding effects of non-affine

motion. Consideration of this effect leads to additional terms in the

temperature equation (6.2), the equation of the elastic Cauchy tensor

(6.3) and the definition of the extra stress tensor (6.7).

To quantify the material properties related to the basic equations of

motion (6.1)-(6.3) we recall the definition of the viscosity, the orientation

factor (related to the birefringence) and the tensorial force density in

the deforming specimen.

6.2.2 Material Properties

Since we are studying mainly elongational deformations in this work

it suffices to recall the material properties for this kind of flow. For

uniaxial extensional flow the velocity gradient tensor has diagonal com¬

ponents, e, —e/2, —e/2. The elongational viscosity is rje = (an —o22)/e,
and the amorphous orientation factor is / = (|cn — C22|)/trc [146].
The force density in the spinline per unit length is identical to the

orientational field, Eq. (6.6) and can be evaluated once a constitutive

assumption for the Massieu function has been specified.

In the next section we will adopt constitutive relations for the

Massieu function and the phenomenological matrices. Then we will

study the above set of equations for homogenous deformations assum¬

ing adiabatic conditions.



6.3. Constitutive Assumptions 123

6.3 Constitutive Assumptions

6.3.1 Thermodynamic Potential

The fundamental time evolution equations for the polymeric material

(6.1)-(6.3) have been constructed such that they obey the basic prin¬

ciples of mechanics and laws of thermodynamics. To apply them to a

special material a thermodynamic potential has to be specified. Similar

as in previous works [2, 24], Chap. 4 we take the Massieu function as a

sum of two contributions,

cj(p, T, c) = lj0(p, T) + ljx(p, T, c) , (6.8)

where ljq (p, T) is the liquid contribution that is independent of the

elasticity of the material, and tui(p,T, c) represents the contribution of

the internal microstructure. For the liquid contribution to the Massieu

function we adopt an expression which leads to a generalization of the

equation of state proposed by Flory, Orwoll and Vrij (FOV-equation)
[8, 9]. For the elastic contribution we take the expression for a Hookean

dumbbell which has been used in [2, 24]. It has proven to be useful

in non-equilibrium thermodynamics to recover most of the well estab¬

lished rheological fluid models including those with variable relaxation

time (e. g. the PTT model) and those with anisotropic drag (e. g. the

Giesekus model), Sec. 4.4.2, p. 91.

In their theoretical derivation of a temperature equation for non-

isothermal polymeric liquids Wapperom and Hülsen [64] take into ac¬

count the temperature dependence of various thermodynamic proper¬

ties: For the liquid contribution to (6.8) a thermodynamic potential
of the Tait (thermal) equation of state has been adopted [64, p. 1008,

Eq. (39)]. For the dependence of the shear modulus on the thermo¬

dynamic variables a phenomenological relationship has been used [64,

p. 1006, Eq. (35)]. The elastic contribution to (6.8) has been described

with the potential of the Hookean dumbbell and the FENE-P dumb¬

bell. The dependence of the mean squared end-to-end distance, (R2),
on temperature and density has also been considered. Usually, as strain

induced crystallization sets in a strong variation of the temperature co¬

efficient dln(i?2)/dT is observed [64, p. 1007]. The density dependence
of (R2) is caused by intermolecular forces [64, p. 1007 and references

therein].
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Liquid Contribution

For the liquid contribution to the total Massieu function we take the

thermodynamic potential of Eq. (2.17), p. 14. The thermal equation
of state in terms of the reduced thermodynamic variables (2.16) corre¬

sponds to the modified FOV equation (2.18). Upon substitution of the

thermodynamic potential (2.17) into (6.5) we find a linear relationship
between heat capacity and temperature

c0 = a0kB(q0 + qiT) , (6.9)

where q0 = cAT, qi = 2cT2/T*, and c = p*/a0/p*/kB/T* is a char¬

acteristic constant with order of magnitude one (cf. Sec. 2.3.2). The

parameters q0, qx take the values 1.4827 J/g/K, 1.2045 • 10~3 J/g/K2,
respectively [78]. In Sec. 2.3.2, p. 13 we have reported values of the

coefficients for PE appearing in the Massieu function (2.17) and in the

equations of state (2.18), (6.9).

Having specified the liquid contribution to the thermodynamic po¬

tential (first term in Eq. (6.8)) we want to turn our attention to the

material's elastic properties (second term in Eq. (6.8)).

Elastic Contribution

For the elastic part of the Massieu function we adopt the following

expression for a Hookean dumbbell [2, 24]

LJi(p,T,c) = -—paiA-(T)(trc - 3) + -paikB ln(detc) , (6.10)

where tr c and det c denote the trace and the determinant of the con¬

formation tensor, respectively. The constant cii is a measure of the

degree of elasticity and gives a quantitative measure of the strength of

elastic forces per unit mass. The nonlinear spring constant of a flexible

macromolecule determines the entropie and the energetic potential and

is defined as

K{T) = mk ("r>

where R is the end-to-end vector of the polymer chain or the distance

between crosslinks or entanglement points and (RR)0 is the second
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moment of the equilibrium end-to-end vector evaluated at temperature

T. This function contains details about the chemical structure of the

polymer under consideration and it has been calculated (cf. Chap. 3)
adopting the RIS models of physical chemistry [10, 11, 83]. In Tab. 6.1

we report the coefficients of a polynomial fit to the characteristic ratio

of PE (the denominator in Eq. (6.11)).

Table 6.1: Coefficients in the polynomial fit of the characteristic ratio

for PE, Coo = E^=o CtT1, for 100 < T [C°] < 250.

0 8.30784367 4 5.33287318 • lO"10

1 -0.0147529154 5 -8.72025919 • lO"1*3

2 5.09101339-10"5 6 6.2992149 • 10"16

3 -1.9319202-lO"7

Inserting Eq. (6.10) into (6.6) we calculate the force density per unit

length in the specimen

-paiK(T)5aß-

-,zaß =
-paiK(T)Saß-

-paxfaTc^ , (6.12)

where S denotes the unit tensor. Substituting Eq. (6.10) into (6.5) we

recover the conformational contribution to the heat capacity

1 d2K(T)
Cconf = --aiT(trc-3)^^i. (6.13)

For the total heat capacity we obtain

1 d2K(T)
c = a0kB(q0 + qiT) --ttlT (trc - 3)

^2
' (6'14)

where the first term arises from the liquid contribution to the Massieu

function, Eq. (6.9), and the second one from the conformational contri¬

bution, Eq. (6.13). In the undeformed state, trc = 3, the heat capacity
reduces to the measured value [78]. In Tab. 6.2 we present thermody¬
namic properties of PE for p0 = 100 bar and T0 = 443.15 K according
to the thermodynamic potential of Eq. (6.8).
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Table 6.2: Thermodynamic properties of PE at p0 = 100 bar and

T0 = 443.15 K according to Eq. (2.17). ß, 7, k, and c denote ther¬

mal expansion, temperature coefficient of the pressure, isothermal com¬

pressibility, and heat capacity, respectively. Coo = lim„_!»oo(-R2)o/?'i/^2
is the characteristic ratio, I = 1.53 A. Tm, Tg are melting and glass

temperature.

P l mole J 0.8283 C* 2.71

7 [T] 0.9503 Coo 6.6588

/3[10-4^] 4.9023 Tm [K] 403.15 + 10

k [10~4 MPa] 5.1585 Tg[K] 353.15 + 10

Having discussed the thermodynamic properties of the quiescent PE

melt we come to the specification of the phenomenological matrices

accounting for relaxation and viscous dissipation of the internal mi¬

crostructure.

6.3.2 Phenomenological Matrices

For the phenomenological matrices we have at our disposal several ex¬

pressions which have been proposed for isothermal, incompressible vis¬

coelastic materials and which have been generalized to non-isothermal

and compressible viscoelastic materials [2, 24]. For the relaxation ma¬

trix, A, we adopt the constitutive relationship of the Giesekus model

A
1

1*-aß'-ye
2paiX(T)K(T)

2ßK(T)

(1 - ß)(calöße + Cae5ß7 + Cß^Öae + Cßeöal)

kBT
\Ca^Cße -\- CaeCßsy ) (6.15)

where ß is a number between zero and one. The last term on the

right hand side is a second-order correction to the relaxation matrix
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for the Maxwell model and describes an anisotropic drag experienced

by the chains as the material deforms. In general, the parameter ß is

allowed to be an arbitrary function of temperature. Here, however, we

wish to take a constant value for this phenomenological parameter [153],
ß = 0.29.

For the temperature dependence of the relaxation time we take the

following empirical relationships

lot

Hp,t)

m

TvPr

Tp

ci(T

exp
R

1

TT

Tr)

c2 T -Tr

(6.16)

(6.17)

which are plotted in Fig. 6.1. Eq. (6.16) is the equation of Ferry [20],
where Ar is the characteristic relaxation time of the system at temper¬

ature Tr and density pr, Ag is the activation energy for viscous flow,

3

0 9 0 95

dimensionless Temperature T

Figure 6.1: Temperature dependence of the relaxation time according
to the equation of Ferry (6.16) and the WLF equation (6.17). For the

reference temperature we took Tr = 443.15 K.

R is the ideal gas constant, and we have used the Arrhenius form for

the temperature dependence of the viscosity. The reference tempera¬

ture may be taken as the melting temperature Tr = Tm; the activation
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energy is Aq = 13kcal/mole [155]. Eq. (6.17) is the WLF equation

[21] where Tr is a reference temperature, e g. the melting point, and

c\ = 8.86, C2 = 101.6 K. This equation has been proven to fit quite well

the relaxation time spectrum for a large class of glass forming materials

as they are supercooled. In Fig. 6.1 we have plotted the normalised

relaxation times according to Eqs. (6.16), (6.17) for To = 443.15 K. For

simplicity we took TT/T0 = 0.9. Effects of cooling rate on the relaxation

time can be easily incorporated into the present analysis by adopting
the appropriate modification of the WLF equation [62, 57].

To describe viscous dissipation of the material we have the following

expression for the viscous dissipation matrix

Qaß~,e = T](T)(5alöße + SaeSß7) , (6.18)

where n(T) denotes the shear viscosity. A well established temperature

dependence of the viscosity is the Arrhenius form

V(T) = mexp (j^j . (6.19)

The above expression for the phenomenological matrix Q can be mod¬

ified to include bulk viscous effects and higher order terms.

At this point we have at our disposal all constitutive relationships
which are necessary to solve the set of time evolution equations (6.1)-
(6.3) and we can begin to study particular applications.

6.4 Applications

The time evolution equations (6.1)-(6.3) have been solved in reduced

form introducing dimensionless quantities, p = p/po, T = T/Tq, c =

K(To)/(kBTo) c. The quantities po, To denote density and temperature

at the start-up of deformation. For the thermodynamic potential (6.8)
and the phenomenological matrices (6.15), (6.18) the time evolution

equations Eqs. (6.1)-(6.3) have been solved for homogenous velocity

gradients, Vv, and density, temperature fields, p, T using a fourth

order Runge-Kutta scheme. In this case we have a system of eleven

ordinary differential equations for the homogenous conformation tensor,

the temperature and the mass density. The coefficients appearing in the
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system equations are functions of temperature and density according to

the phenomenological relationships given in Sec 6 3 (Eqs (6 16), (6 17)
and (6 19))

6.4.1 Non-isothermal Stress Relaxation

Astarita and Sarti [46] and Sarti and Esposito [14] performed non-

isothermal stress relaxation experiments under adiabatic conditions to

test the validity of the Theory of Purely Entropie Elasticity [43, 44] In

these experiments they measured the temperature rise and the forces m

a specimen during shear- and elongational-deformations and how these

quantities change during relaxation For experimental details the reader

is referred to the literature [46, 14] For PVA above its melting temper¬

ature and for PIB the temperature remained constant during the relax¬

ational period of the stress relaxation experiment, i e these materials

can be considered to be of purely entropie elasticity in this temperature

range However, for PVA it was found in Ref [14] that the Theory
of Purely Entropie Elasticity fails dramatically near the glass transition

temperature This was seen as a decrease of temperature during the

relaxational part of the experiment which compensated the tempera¬

ture rise during deformation Thus, the frictional heating behaviour of

PVA near Tg is more complicated than for materials with purely en-

tropic elasticity Note that in all experimental runs the temperature

variations induced by deformation were a few tenth of one Kelvin which

is quite difficult to resolve experimentally2

To demonstrate how the above set of equations reduces to the The¬

ory of Purely Entropie Elasticity we performed computer experiments

of non-isothermal stress relaxation, Fig 6 2 In these calculations we

adopted the Maxwell model, i e ß = 0 in Eq (6 15) and Q = 0 The

material is considered as incompressible, p = const, and the elongation
rate was taken as eAo = 01,1 e we are working in the regime of small

deformations The phenomenological parameters ag and a\ have been

set equal to 30 and 0 03, respectively The other relevant parameters

are collected in Sec 2 3 2, p 14, (qo, qi p 124)

2
Preliminary attempts have been undertaken to measure temperature variations

induced by deformation and stress relaxation (Dr T Schweizer ETH Zurich, per

sonal communication)
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Figure 6.2: Temperature rise (a) and 11 component of the force den

sity per unit length (b) in non isothermal stress relaxation experiment

(e = 0 1) for a material with entropie and energetic elasticity (solid
line) and purely entropie elasticity (dashed line) The difference of the

results for K(T) oc T and a nonlinear K(T) in (b) cannot be resolved
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For the temperature dependence of the relaxation time we took

Eq. (6.16) with Tr = T0 = 443.15K [153]. Fig. 6.2a shows the temper¬

ature course in two non-isothermal stress relaxation experiments. The

dashed line is for a material with purely entropie elasticity, i. e. K(T) oc

T. In this run we see that the temperature remains constant during
relaxation. However, taking K(T) to be nonlinear in T we observe a

temperature relaxation after the elongation has been switched off (solid
line). The parameters a0, cti have been chosen to obtain a temperature

rise of approximately AT = 0.13 K corresponding to the experimentally
observed value [14]. Note that the temperature rise at the beginning of

the experiment is not linear but we observe a temperature rise of higher
order. This is confirmed by the experimental results. In Fig. 6.2b we

have plotted the force density in the drawing direction as a function of

dimensionless time. This quantity relaxes for a linear as well as for a

non-linear spring constant. The differences between the linear and the

nonlinear spring constant are small for our parameter set as it has been

observed by Sarti and Esposito [14].

6.4.2 Non-isothermal Fiber Spinning Process

The processing of most thermoplastics involves sequential heating, de¬

forming and cooling. In practice, the final shape, the internal structure

and gross physical properties of the article formed are normally found to

be dependent on the details of the processing operation as defined by the

thermal and deformation histories of the material processed. We want to

describe the flow and temperature fields, the physical state (thermody¬
namic properties) and internal microstructure (morphology) of a mate¬

rial for given deformation and thermal histories (i. e. imposed operating
conditions for the process) adopting the Maxwell model, i. e. ß = 0,

Q = 0. We have studied two non-isothermal processes, PI and P2,
for a material with a melting temperature of Tm = 403.15 ± 10 K and

a glass temperature of Tg = Tm — 50 K = 353.15 ± 10 K. The initial

temperature of both processes, T = 443.15 K, is taken as the reference

temperature and corresponds to a dimensionless temperature T = 1.

All thermodynamic quantities are normalized with respect to the ini¬

tial values (Tab. 6.2, p. 126). In what follows we want to work with

dimensionless variables and we will drop the tilde. For the temper¬

ature dependence of the relaxation time we took the WLF equation

(6.17) with the melting temperature, Tm, as the reference temperature,
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i. e. Ar = A(Tm) = 1. The phenomenological coefficients ag and ct\ are

5000 and 0.2, respectively. In the figures to follow we have taken solid

lines for PI and dashed lines for P2.

£
o

01

1 ' 1 '—

z\0=0 lQ(40-tfh0)

eX0=0 05Q(60-tfh0)

1 ' 1

R=-0 005«2 21¥J%„

40 60 80

dimensionless time, t/ Xn

Figure 6.3: Deformation- (a) and temperature-history (b) for two

non-isothermal processes PI (solid line) and P2 (dashed line) with dif¬

ferent elongation rates, è and cooling rates, R. Deformation histories

and cooling rates are denoted with each curve; O denotes the Heavyside

step function.

Fig. 6.3 shows the temperature- and deformation-history of the two

non-isothermal processes. The deformation history is denoted with each

curve in the upper graph (Fig. 6.3a). For PI we have taken a constant

elongation rate éAo = 0.1 which is switched off at t/An = 40. The elon¬

gation rate of P2 is éAo = 0.05 and it is switched off at t/Ao = 60.

Fig. 6.3b shows the temperature histories in both processes. As the

elongation starts the material is quenched from the initial temperature,

To = 1. The cooling rates in dimensionless units and in units of the

relaxation time, Ao, are reported in the figure. The dimensionless melt¬

ing temperature and the glass temperature are located at Tm = 0.8

and Tg = 0.9, respectively and are marked with arrows in Fig. 6.3b.

The cooling process stops as the elongation rate is switched off. At the
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end of the process the temperature is slightly above the glass transition

temperature, Tg. Note that here we have not taken into account effects

of the material's thermodynamic properties on the externally imposed
deformation. However, the temperature history is more complicated
than the externally imposed cooling rate (cf. we solve Eq. (6.2)!).
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Figure 6.4: The time development of the relaxation time in the two

processes PI (solid line) and P2 (dashed line) Note how the time scale

of the processes and the rheological time scales overlap each other The

area below the dotted line, X = 50, marks the average duration of the

two processes.

In Fig. 6.4 we portray the time evolution of the relaxation time

in both processes. This quantity is a strong function of temperature

and it has a strong influence on the material properties. For P2 it has

a value of A « 7 • 10~2 at the start-up of deformation and it reaches

A « 7-102 at the end of the process. The deformation- and temperature

histories are denoted with each curve. The dashed horizontal line A = 50

marks the average duration of the processes and is the time scale of PI

and P2. Note how the rheological scales overlap the time scales of the

two processes. In what follows we want to look at the mechanical and

thermodynamic properties of the processed material.
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Figure 6.5: The conformation tensor (a) and the amorphous orienta¬

tion factor (b) for the two non-isothermal processes, PI and P2 The

dotted line and the dashed dotted line in (b) are for an isothermal process

at T = 0.9 and the deformation histories of PI and P2, respectively.
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In Fig. 6.5, p. 134 we have plotted the conformation tensor and

the amorphous orientation factor. Fig. 6.5a shows the development of

the conformation tensor during the processes. This quantity can be

viewed as the conformation of the polymer coils or the deformation of

the material. In the deformation period of the process the entries of the

conformation tensor increase rapidly. During the relaxation phase we

observe a slight decrease in cn. The changes in the conformation ten¬

sor during relaxation are more pronounced in PI than in P2. Fig. 6.5b

shows the orientation factor as a function of time for both processes. In

this quantity we observe only a small relaxation after the deformation

has been switched off. In Fig. 6.5b we have also included the orientation

factor for two isothermal processes at constant temperature, T = 0.9.

The deformation histories of these runs correspond to that of PI (dotted
line) and P2 (dot-dashed line). Our calculations show that a deforma¬

tion with simultaneous quenching yields a higher oriented state than

an isothermal process. The application of a deformation with simul¬

taneous quenching to the glass transition temperature, Tg, may be an

alternative to the common high speed fiber spinning process. In that

process the orientation in the spinline is induced by rapid deformation,
the temperature of the material being constant. The calculations show

that a similar effect may be obtained with a slow deformation and a

moderate cooling of the material.

Fig. 6.6, p. 136 shows the mechanical properties of the material

during the two processes. Fig. 6.6a displays the extra-stress tensor as a

function of dimensionless time. This quantity shows essentially the same

time evolution as the conformation tensor, c. Fig. 6.6b displays the force

density per unit length in the drawing direction as a function of time.

Also in this quantity we observe a strong increase during the process

and small variations after elongation and quenching have been switched

off. Whereas the conformation tensor (Fig. 6.5a) and the extra-stress

(Fig. 6.6a) show some variations during relaxation the orientation factor

(Fig. 6.5b) and the force density (Fig. 6.6b) vary only slightly after

deformation and quenching have been turned off. From Figs. 6.5 and 6.6

we note that the mechanical properties of the oriented material correlate

quite well with the orientation (birefringence) frozen into it, which in

turn correlates quite well with the stress induced in the melt at the time

of quenching. This is true whether the melt history is isothermal or non-

isothermal. Next we want to study the time evolution of the pressure,

the compressibility, and the heat capacity of the material during the

processes (Figs. 6.7, 6.8).
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Figure 6.6: The extra-stress tensor (a) and the 11-component of
the force density per unit length in the spinline (b) for the two

non-isothermal processes, PI and P2.
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We have mapped the thermodynamic properties of the specimen

during the processes. If we chose an initial pressure of po = 100 MPa

the density of the material is p « 0.83gcm~3. All thermodynamic prop¬

erties are taken relative to the initial values. In Fig. 6.7 we report the

thermodynamic properties of the specimen as a function of dimension¬

less time. Fig. 6.7a shows the pressure decrease during deformation;

Fig. 6.7b displays the compressibility as a function of time. The time

evolution of the pressure and the compressibility is rather complicated
and it can be analyzed by mapping the p(T) and k(T) curves of the

process onto the p(T) |p=const and the K(T)|p=const plane of the quies¬
cent material. Since the processes PI and P2 are incompressible, the

temperature coefficient of the pressure is constant and the thermal ex¬

pansion is equal to the isothermal compressibility.
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Figure 6.7: Pressure and isothermal compressibility of the drawn fil¬
ament in the two processes, PI and P2, as function of dimensionless

time.

In Fig. 6.8 we report the heat capacity of the specimen as a function

of dimensionless time. The upper curve shows the heat capacity for PI

and P2. The lower graph shows that part of the heat capacity which is

related to conformational changes induced by orientation. These varia-
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tions are very large due to the high orientation which is reached in the

material. However, since the ratio a/a^ is very small these effects are

not observed in the heat capacity, c. (Here we have assumed that the

relative strength of the liquid contribution to the Massieu function, ag,

is greater than the relative strength of the conformational contribution,

ai; oji/ojo = 4 • 10~5.)
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Figure 6.8: The heat capacity c (a), and the conformational contribu¬

tion to the heat capacity cconf (b) of the material as a function of time

in the two processes.

In this section we have studied exclusively incompressible processes.

However, polymeric materials possess a considerable free volume and

the assumption of incompressibility is questionable.

6.4.3 Non-isothermal Deformation with Compres¬
sion

We have studied a compressible process, P3, which has the same elonga¬
tion rate and the same external cooling rate as PI. In contrast to PI we

have an additional slight compression perpendicular to the stretching
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direction. The deformation history of P3 is defined as follows

Vv:

£ 0 0

0 -\i + 6 0

0 0 -¥ + s

©(to -1) , (6.20)

where è, 5 denote the elongation rate and the compression rate, respec¬

tively. O is the Heavyside function and t0 the time when the deforma¬

tion stops. Here we adopted the Maxwell model, i. e. ß = 0, Q = 0

to describe the processes as in the previous paragraph. The phenom¬

enological parameters, «o and cti, are taken as 5000 and 0.2, as before.

01

1 1 ' 1 1 '

zX0=016(40-tfh0)

-

1 I

S 09 -

08 -

0

1 1 1
_

R=-0 005 - 2 21¥JX0
R=-0 005~2 21¥JX0

x^.
NN.

X^s.

-

I.I.I.

20 40 60 80

dimensionless time, t/ Xn

Figure 6.9: Deformation- and temperature-history for non-isothermal

processes PI (solid line) and PS (dashed line). In PS there is an addi¬

tional compression which affects the temperature history of the specimen.

In Fig. 6.9 we display the elongation- and temperature-history of PI

and P3. As before the solid line is for PI and now the dashed line is

for P3 for all figures to follow in this paragraph. Due to the additional

density changes taking place in the material the final temperature of

P3 is slightly higher than that of PI. In the upper graph we report the

elongation history, eA0, of both processes. In the lower figure we have

140 Chapter 6. Non-isothermal Rheology

included the cooling rate, R, in dimensionless units and in units of the

relaxation time Ao. Melting point and glass temperature are denoted

with Tm and Tg, respectively and are marked with arrows in the lower

graph.
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Figure 6.10: Density as a function of temperature in PS. The com¬

pression, V7t>7, is perpendicular to the drawing direction and causes a

density increase of 0.8%, approximately.

Fig. 6.10 shows the density rise in the material due to the pressure

history of Fig. 6.12a, p. 142. Assuming a compression of the sample in

the 2- and 3-direction we obtain a density variation (governed by the

continuity equation (6.1)) as shown in Fig. 6.10. The compression as a

function of time, V7t>7, stops at t Ao = 40 and is reported in the figure.

The pressure history has been taken to yield SXo = 10~4 in Eq. (6.20).

Fig. 6.11a, p. 141 displays the time evolution of the orientation factor

in the amorphous material for the non-isothermal processes PI and P3.

Note that the additional compression lowers the final orientation in

the material. This is due to the fact that the final temperature in P3

is slightly higher than in PI which has a drastic effect on the time

evolution of the relaxation time. Furthermore, we have included the

result of the isothermal and incompressible process with temperature

T = 0.9 and density p = 1 (dotted line in Fig. 6.11). Fig. 6.11b maps

the 11-component of the tensorial force density in the spinline as a

function of time. At the beginning, t/Xg « 0, and towards the end,

t/Xo « 60, of the process, we observe the same force density as in the

incompressible run. In the intermediate time interval there are small

differences.

Vv =2*1046(40-t/X0) -

20 40 60 80

dimensionless time, t/X0
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Figure 6.11: Development of the orientation factor (a) and the

11-component of the force density m the spinline (b) with time in the

incompressible process, PI, and in the process with an additional com¬

pression, PS.
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Figure 6.12: Thermodynamic properties of the two processes, PI and

PS: (a) pressure p, (b) compressibility k, (c) temperature coefficient of
the pressure 7, and (d) thermal expansion coefficient, ß.
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Figs. 6.12a and 6.12b, p. 142 show the pressure and compressibility
of the material as a function of dimensionless time. For the incompress¬
ible process, PI, the decrease in pressure p, and compressibility k, is

more pronounced than for the compressible one, P3. In P3 this effect

is compensated due to the additional density variations. Fig. 6.12c and

6.12d display the temperature coefficient of the pressure 7, and the ther¬

mal expansion coefficient ß, as a function of dimensionless time. For PI

the temperature coefficient of the pressure is constant since the process

is incompressible and the thermal expansion coefficient increases with

decreasing temperature. In P3, we have an increase of both, the temper¬

ature coefficient of the pressure and the thermal expansion coefficient.
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Figure 6.13: Development of the heat capacity in the two processes PI

and PS. The lower graph shows the development of the conformational

part to the heat capacity.

The time evolution of the heat capacity, c, and its conformational

contribution, cconf, are reported in Fig. 6.13. The upper graph shows

the total heat capacity during PI and P3. The lower graph displays
the conformational contribution to the heat capacity. Similar as with

the incompressible processes we observe large variations in this quan¬

tity. Due to the smaller orientation induced in P3 the conformational

contribution to c is less pronounced than in PI.
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6.4.4 The Problem of Critical Cooling

Following [115, 49, 152, 153] it is instructive to study the macroscopic
deformation and the elongational viscosity for an incompressible mate¬

rial with the temperature history T = T0 + Rt, where R is a constant

externally imposed cooling rate and To is the initial temperature of

the sample. This shows how our theory is related to the other ap¬

proaches to non-isothermal rheology in the literature. In contrast to

previous works in the field we wish to take into account explicitly en¬

ergetic elasticity and we adopt an approximation of the equation of

Ferry (6.16) for the temperature dependence of the relaxation time

A(T)/Ar = Tr/Texp[r(l - T/Tr)}, with Tv = T0 = 483.15K correspond¬

ing to the initial temperature and r = 20 [153]. Note that the density
has disappeared in the prefactor since the material is incompressible.

0 7 70 700

dimensionless time, t/X0

Figure 6.14: Oldroyd-B model for inception of steady elongational

flow. Dashed lines are isothermal runs, solid lines are non-isothermal

runs with initial temperature T = 1. The temperatures and cooling
rates are denoted with each curve as horizontal and vertical strings,

respectively.
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Fig. 6.14, p. 144 shows the dimensionless elongational viscosity for

the Oldroyd-B model. The reference temperature is To = 483.15K. The

strain rate, eAo, the parameter in the equation of Ferry, Aq, and the

Giesekus parameter, ß, are reported in the graph. The phenomeno¬

logical parameter for the strength of elasticity of the material, ai, has

been set equal to one. The dashed lines are isothermal runs; the tem¬

perature of these runs being reported with each curve. The solid lines

are non-isothermal runs with an initial temperature of T = T0. The

dimensionless cooling rate, R, of these runs is denoted with each curve.

JQ I I I I I I I I I

0 7 70 700

dimensionless time, t/X0

Figure 6.15: The same as Fig. 6.14 for the Oldroyd-B model with

Giesekus contribution for inception of steady elongational flow.

Fig. 6.15 shows the same predictions for the Giesekus model with

an Oldroyd-B contribution. The Giesekus parameter was taken as

ß = 0.29; all other parameters are the same as in Fig. 6.14. As be¬

fore the dashed lines are isothermal runs with the constant temperature

denoted with each curve (as horizontal strings) and the solid lines are

non-isothermal runs with the cooling rate denoted with each curve (as
vertical strings). The strong increase of the elongational viscosity in

cooling (a so called blow up in the elongational viscosity) has been ob-
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served in several experiments on non-isothermal rheology and has also

been explained theoretically (e. g. [62]). Note the differences in the

dashed curves T = 0.9. The Oldroyd-B model predicts a considerable

strain hardening effect which is not encountered if a Giesekus contribu¬

tion is taken into account.

Furthermore, we have studied the Trouton viscosity of the non-

isothermal Maxwell model, i. e. ß = 0, Q = 0, for different cooling
rates R and elongation rate èA0 = 0.1 as in [115]. The Trouton viscos¬

ity is »jei/^sh = ("il — o22)/(èaipkBTexp(rRt)). In Fig. 6.16 we display
the viscosity ratio, as a function of dimensionless time. The strain rate,

eAo, arid the activation energy, Aq, are reported in the graph.
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Figure 6.16: Viscosity ratio for several non-isothermal runs with dif¬

ferent cooling rates.

The long dashed line in Fig. 6.16 is the Trouton asymptote, rje\/n^h =
3. The solid line 1 is an isothermal run (R = 0), the other solid

lines, 2...8, are non-isothermal runs with increasing cooling rate (R =

-0.0005, -0.001, -0.005, -0.0075, -0.009, -0.01, -0.02). As the cool¬

ing rate increases the viscosity blows up, r/ei/^sh —^ °° (curve 2...4).
For further increase of the cooling rate, curve 5, we observe the oppo-
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site trend. For even higher cooling rates (curve 6...8) the viscosity ratio

breaks down, f7ei/^sh —^ 0. This suggests [115] that there may exist a

cooling rate (between curve 5 and 6) where the viscosity ratio attains a

constant value, r]ei/n^h = 2.

6.5 Conclusions

We wish to summarize briefly the results that we obtained by using
a continuum approach to non-isothermal rheology of amorphous glass

forming polymeric materials. We started from a set of thermodynamic
consistent partial differential equations for the density, the tempera¬

ture, and the elastic Cauchy tensor. To solve this set of equations

we adopted constitutive relations for the material's thermodynamic po¬

tential and for the phenomenological matrices of rotational diffusivity
and viscous dissipation. The characteristic elastic constant of the ma¬

terial was taken as a non-linear function of temperature to allow for

energetic elasticity. For the temperature dependence of the relaxation

time we adopted the equation of Ferry and the WLF equation for su¬

percooled glass forming liquids. The evolution equations have been

solved for arbitrary three dimensional homogenous deformations and

results for elongational flows have been presented. We gave a brief ac¬

count on non-isothermal stress relaxation experiments to illustrate the

effect of energetic elasticity on temperature relaxation. Furthermore,
we have discussed a non-isothermal fiber spinning process to produce

highly oriented glassy fibers with low elongation rates and we simulated

non-isothermal stretching with a simultaneous small compression. The

material properties and the morphology of the finished article have been

discussed for various deformation and temperature histories. We showed

that the mechanical and thermodynamic properties of the processed
material correlate quite well with the orientation (morphology) frozen

into it and that the morphology of the finished product depends on

the chosen process conditions. Finally we studied how the elongational

viscosity blows up in cooling experiments and we saw that it seems

difficult to establish a critical cooling rate in non-isothermal rheology.
Further work in this direction should focus on the numerical treatment

of more sophisticated rheological models, e. g. models with deforma¬

tion dependent relaxation times and FENE models, the inclusion of
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non-affine motion into the system equations, the investigation of higher
deformation rates, and the application to other glass forming polymers
such as PS and PVA. The discussion of shear flows, nonlinear material

properties, and the effects of heating are other interesting points.
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Conclusions

In the present thesis we have applied classical equilibrium thermody¬

namics, Physical Chemistry (RIS approximation), and a modern frame¬

work of non-equilibrium thermodynamics (GENERIC) to give a con¬

tinuum description of non-isothermal and compressible polymeric ma¬

terials. These methods have been applied to describe the rheology of

isothermal polymeric materials with purely entropie elasticity and to

discuss alternative industrial processes to produce highly oriented fibers

taking into account energetic elasticity of the material. The RIS mod¬

els have been used as a microscopic input for the macroscopic material

description.

In Chap. 2 we presented thermodynamic potentials for polymeric liq¬
uids. The thermodynamic potentials depend on the material's density,
its temperature and the polymer conformation. For the liquid contribu¬

tion to the potential we proposed two mathematical expressions leading
to a SG and to a modified FOV equation of state, respectively. For the

elastic contribution to the potential we adopted the thermodynamic po¬

tential of the Hookean spring to capture the material's elastic properties
related to the internal microstructure. To apply the elastic part of the

potential to linear polymers we adapted the RIS approximation of Phys¬
ical Chemistry and we calculated the averages of the chain conformation

as a function of temperature. Numerical examples appropriate to PE

and to hexadecane were given and comparison with experimental data

above their melting temperature yielded satisfactory results.
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The combination of thermodynamics (Hookean dumbbell) and sta¬

tistical mechanics (RIS approximation) pursued in Chap. 2 allowed us

to determine the entropie and the energetic potential for linear poly¬
mers (Chap. 3). A recipe to check the validity of the Theory of Purely

Entropie Elasticity emerged from this analysis and numerical examples

appropriate to PE and to PIB have been presented. PE cannot be con¬

sidered to be of purely entropie elasticity since the energetics of the bond

conformations is more than 40% of the total elastic energy. PIB was

seen to obey the Theory of Purely Entropie Elasticity since the ener¬

getic potential is approximately 1% of the total elastic free energy. This

result is consistent with experimental findings in non-isothermal stress

relaxation experiments. Since the Theory of Purely Entropie Elasticity
turned out to be insufficient to the description of polymeric materials a

new set of time evolution equations had to be derived. This is the topic
of Chap. 4.

In Chap. 4 the recently proposed GENERIC framework of non-

equilibrium thermodynamics has been applied to derive a full set of

thermodynamically consistent time evolution equations for the dynam¬
ical variables. These are the thermodynamic variables of Chap. 2 and

the momentum density as an additional dynamical variable to describe

macroscopic flow phenomena. Our set of PDE's (Eqs. (4.42a)-(4.42d),

p. 79) describes the dynamical behaviour of a non-isothermal, compress¬

ible viscoelastic fluid with entropie and energetic elasticity, Fourier-type
heat flux, and relaxation of the internal microstructure. Many popular
constitutive equations of polymer rheology can be obtained from this set

of time evolution equations. Furthermore, modified constitutive equa¬

tions for non-isothermal and compressible polymeric materials with en-

tropic and energetic elasticity have been derived. They represent coun¬

terparts of the established constitutive equations. The conformation

tensor equation (4.42d), p. 79 has been solved for arbitrary homogenous
deformations assuming incompressibility and isothermal conditions. In

this case we deal with a material of purely entropie elasticity. Popu¬
lar rheological models for amorphous polymeric materials in elongation,

stretching, shearing, and mixed flows can be solved numerically. We are

able to compute transient and steady state viscosities and to discuss the

stress optical rule for the FENE-P, Giesekus, and PTT/PT models. In

Cap. 5 possibilities to determine microscopic friction parameters which

appear in the time evolution equations have been proposed. Chap. 6

deals with the numerical analysis of the time evolution equations for

non-isothermal homogenous deformations.
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Chap. 5 deals with isothermal and incompressible polymers in the

liquid state. We discussed the recently proposed FETA models and

showed how they may be expressed in a conformation tensor formalism.

These models can be obtained from the time evolution equations de¬

rived in Chap. 4. The equivalence of both approaches has been shown

and the advantages of the conformation tensor approach with respect

to the stress-tensor description have been addressed. The dependence
of mesoscopic friction coefficients appearing in these constitutive equa¬

tions on the conformation tensor have been analyzed and possibilities
to extract these coefficients from atomistic simulations of polymer melts

have been suggested.

In Chap. 6 we returned to amorphous polymeric materials. We

solved the time evolution equations derived in Chap. 4 for homoge¬
nous deformations taking into account compressibility of the material

and non-isothermal conditions (i. e. we solved Eqs. (4.42a) and (4.42d),

p. 79 together with Eq. (4.51), p. 83). We adopted a thermodynamic

potential discussed in Chaps. 2 and 3 and we evaluated thermodynamic
material properties under homogenous deformations. For the tempera¬

ture dependence of the relaxation time spectrum we took phenomeno¬

logical relationships. For materials with energetic and entropie elastic¬

ity we discuss adiabatic, non-isothermal stress relaxation experiments
and we compare our theoretical results with experimental findings. We

proposed an alternative fiber spinning processes with simultaneous su¬

percooling to the glass transition temperature for incompressible and

compressible materials. We found that small deformations are sufficient

to produce highly oriented samples if the material is quenched simul¬

taneously. The practical realization of such processes may be the topic
of further studies. The problem of critical cooling in non-isothermal

rheology was touched briefly.

Non-equilibrium thermodynamics and statistical mechanics are a

possible starting point if one is interested in a continuum description
of polymeric materials. Non-isothermal conditions and compressibil¬

ity effects are included naturally in the framework of non-equilibrium

thermodynamics. Statistical mechanics has been adopted to take into

account energetic elasticity of the material.
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A = coefficient, 14, 104

Aq = activation energy, 86, 127

ai = elastic free energy, 39

A = symmetric part of Vv, 25,

68, 106

a = persistence vector, 31

at = coefficients, 73, 86

cto = liquid strength, 12, 14

cti = elastic strength, 20, 40,
124

a = thermal conductivity ma¬

trix, 73, 78, 86

anisotropic drag, 106, 110

a, a(T) = degree of non-affine

motion, 94, 103, 104,

110, 113

Arrhenius form, 62, 86, 128

aT = shift factor, 62

a = coefficient, 104

B = coefficient, 14, 71

b = coefficient, 104

balance equations, 79

conformation tensor, 79,

101, 120

density, 79, 80, 120

entropy, 81

internal energy, 79, 80

momentum, 79, 80

temperature, 81, 83, 120

b = body force vector, 66, 80

ß = thermal expansion, 10

ß, ßc = Giesekus parameter,

110, 126

bracket formalism, 102, 121

c = specific heat capacity, 10,

67, 90, 121, 125

Cayley/Hamilton theorem, 73,

86, 90

c = conformation tensor, 9, 39,

74, 102, 120

c = FOV/SG parameter, 12,
124

cconf = specific heat capacity,

21, 40, 125

chain

freely rotating, 30, 45

hindered rotations

independent, 30, 45

interdependent, 30, 45

characteristic ratio

temperature coefficient of,
35

Cn = characteristic ratio, 34,
125

compressible process

non-isothermal, 138, 139

force density, 141

history, 139, 140

morphology, 141

thermodynamics, 142,

171

172 INDEX

143

contour length, 35

Cox-Merz rule, 106, 109

cp = specific heat capacity, 11

critical cooling, 144, 146

A = coefficient, 14

5 = coefficient, 14

density variable formulation, 39

E = total energy (generator),
76

Ea = energy barrier, 30

Ev = energy barrier, 30

E(. = energy barrier, 49

Es = identity matrix, 22

Ellis-model, 106

em = external field, 77

entropy density
Hookean spring, 41

e = PTT parameter, 104, 110

e = internal energy density, 40,
74

equation of Ferry, 127, 144

Eçv = energy of uqv, 21, 43

F = functional, 76

/ = orientaion factor, 122

F = deformation gradient, 102

Ft = generator matrix, 22

FENE-P model, 92

conformation tensor, 92

extra stress tensor, 92

force law, 55

Massieu function, 92

Feta models, 109

fiber spinning

isothermal, 134, 135

non-isothermal, 131

force density, 135, 136

history, 132

morphology, 134

relaxation time, 133

thermodynamics, 137,
138

force density, 122

FOV

compressibility, 16

equation of state, 14

heat capacity, 20, 124

Massieu function, 14

temperature coefficient of

P, 16

thermal expansion, 16

functional derivative, 76

T, r0 = coefficients, 14

7 = temperature coefficient of

P, 10

Gj = generator matrix, 44

GENERIC, 75, 102, 121

degeneracy, 76, 77, 79

generator, 76, 77

master equation, 75, 76

metric matrix, 76, 78, 93,
94

Poisson operator, 76, 77

Giesekus model, 111, 112

conformation tensor, 91

non-isothermal, 91, 145

relaxation matrix, 91

Helmholtz free energy, 39

r\ = specific entropy, 65

n = viscosity, 86

hexadecane

compressibility, 19

density, 15

isotherms, 28

temperature coefficient of

P, 17
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thermal expansion, 18

It = invariants of c, 90

internal energy density
Hookean spring, 41

k = bulk viscosity, 86

k = compressibility, 10

kB = Boltzmann constant, 12

K(T) = spring constant, 20, 40,

70, 85, 110, 124

L = Poisson operator, 76

A = relaxation matrix, 78, 102,

103, 121, 126

Ar = relaxation time, 127

Lennard-Jones potential, 55

\t = bond vector, 23, 44

M = metric matrix, 76

Massieu function, 9, 75, 85, 121,
123

elastic part, 10, 102, 123

FENE-P spring, 92

Hookean spring, 20, 85,

103, 124

liquid part, 10, 123

Maxwell model, 129, 131, 139

conformation tensor, 87

extra stress tensor, 87, 95

internal energy, 87

modified, 106

non-isothermal, 87, 129,

131, 139

relaxation matrix, 87

temperature balance, 89

MC, 110

MD, 110

molar gas constant, 30, 45, 127

p = stiffness parameter, 70

Myy = molecular weight, 12

n = ct\p = number density of

dumbbells, 70

Na = Avogadro number, 12

n-alkanes, 27

characteristic ratio, 31

persistence vector, 24

second moment, 26

spring constant, 34

n = normal vector, 65

NEMD, 55

non-affine motion, 92, 113, 114

v = coefficient, 71

Oldroyd-B model

conformation tensor, 87

extra stress tensor, 87

internal energy, 87

non-isothermal, 87, 144,
145

relaxation matrix, 87

temperature balance, 90

p = pressure, 10, 75, 85, 121

p* = FOV parameter, 13

PDMS, 53

PE, 27, 45, 125

characteristic ratio, 125

compressibility, 19, 126

density, 15

heat capacity, 29, 126

isotherms, 28

pressure, 126

temperature coefficient of

p, 17, 126

thermal expansion, 18, 126

</>, = torsional angle, 23, 44

it = SG parameter, 12

PIB, 49, 129

PS, 53

tp = statistical weight, 30, 45

174 INDEX

^1)^2 = normal stress coeffi¬

cients, 110

PTT model

conformation tensor, 94

non-affine motion matrix,
94

non-isothermal, 95

relaxation matrix, 94

PVA, 53, 129

Q = specific radiation energy,

65, 67, 80

Q = viscous dissipation matrix,

78, 86, 121, 128

q = heat flux vector, 65, 72

quasi equilibrium, 74, 76

R = cooling rate, 120

Rational Thermodynamics, 66,
80

R = end-to-end vector, 20, 124

r = position vector, 63

relaxation time, 110

conformation, 105, 107

extra stress, 104, 108

i?G = radius of gyration, 113

p = density, 9, 39, 65, 74, 102,
120

Po = SG parameter, 12

p* = FOV parameter, 13

p = second moment, 25

pr = reference density, 127

RIS, 21, 43, 111, 125

Rouse model, 111

S = total entropy (generator),
76

s = entropy density, 40

SG

compressibility, 13

equation of state, 12

heat capacity, 13

Massieu function, 12

temperature coefficient of

P, 13

thermal expansion, 13

shear thinning, 109

a = statistical weight, 30, 45

<r = extra stress tensor, 68, 79,

102, 103, 122

(y(a) = Gordon Schowalter

derivative, 106

<t'c),<t(c) = upper convected

derivative, 88

<re, crv = elastic, viscous part of

stress tensor, 69

os = local entropy source term,

65, 81

slip, see non-affine motion

stress relaxation

non-isothermal, 129, 130

T = temperature, 9, 39, 65, 74,

102, 120

t = time, 63

T* = FOV parameter, 13

T = total stress tensor, 66, 80

Tj = transformation matrix,

23, 44

temperature equation, 67-69

Theory

Purely Entropie Elasticity,

67, 129

Simple Fluids with Fading

Memory, 65

6t = bond angle, 23, 44

time-temperature superposition

principle, 62

Tm = melting temperature, 127

Tr = reference temperature, 127

Trouton viscosity, 146
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u = specific internal energy, 67

Uj = statistical matrix, 21, 43

u = pv = momentum density,
76

v = statistical weight, 30, 45

U(t) = statistical weight, 21, 43

v = velocity, 66, 102

viscosity

elongational, 122

shear, 109

White Metzner model, 106

WLF equation, 127, 132

x = set of system variables, 74,
76

X = non-affine motion matrix,

93, 94, 102, 103

£ = pseudo time, 63

£ = statistical weight, 49

Z = partition function, 22

Z = relaxation matrix, 69

z = orientational field, 75, 102,

103, 121, 125

( = friction coefficient, 70, 111

£ = mobility tensor, 91, 111

Zimm model, 55
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