GPU accelerated implementations of a generalized eigenvalue solver for Hermitian matrices with systematic energy and time to solution analysis

Author(s):
Solcà, Raffaele G.

Publication Date:
2016

Permanent Link:
https://doi.org/10.3929/ethz-a-010656066

Rights / License:
In Copyright - Non-Commercial Use Permitted
GPU Accelerated Implementations of a Generalized Eigenvalue Solver for Hermitian Matrices with Systematic Energy and Time to Solution Analysis

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Raffaele Giuseppe Solcà

Master of Science, ETH Zurich

born on 20.02.1986

citizen of Coldrerio TI

accepted on the recommendation of

Prof. Dr. Thomas C. Schulthess, examiner
Dr. Azzam Haidar, co-examiner
Prof. Dr. Joost VandeVondele, co-examiner

2016
Abstract

Density functional calculations are used to compute the properties of materials, which can be stored in a database for later use, or used on the fly in the screening phase of the material designing process. Since during the screening process, the properties of a large number of materials have to be computed, the time and the resources needed for all the simulations have to be minimized. The time to solution of density functional calculation is dominated by dense matrix operations, and in particular the generalized eigenvalue solver, for which new implementations have to be developed in order to exploit the performance of the emerging hybrid CPU+GPU supercomputers.

In the first part we present the algorithms used by the generalized eigenvalue solver, as well as the one-stage and two-stage approach for the tridiagonalization step, and their implementations for single-node hybrid CPU+GPU. The performance measurements of the solver show a significant speed-up of the hybrid solver compared to the state-of-art CPU-only implementations. This further show that the two-stage approach is preferable, especially when only a fraction of the eigenspace has to be computed. The implementation is then extended to support the single node multi-GPU architecture, and its benchmark show a good performance and scalability. We then present the implementation for the distributed memory hybrid CPU+GPU architecture of the generalized eigensolver, as well as its performance measurements.

In the second part of the thesis we develop a model for the time to solution and the energy to solution for distributed memory applications, which explains the affine relationship between the resource time and the energy to solution empirically observed previously for two stencil based algorithms. This model shows that the affine relationship holds for different classes of algorithms, among which linear algebra solvers are included. Furthermore we study quantitatively the measured performance of the eigensolver, using an error analysis based on Bayesian inference. The results of the analysis allow us to extract two parameters which depends on the algorithm and the underlying architecture used to perform the calculation.

The first parameter is the dynamic energy, and its scaling corresponds to the complexity of the underlying algorithm. The second parameter represents the static power consumed by the system, which has a strong dependence on the architecture and the parallelization scheme.
Riassunto

Le simulazioni basate sulla teoria del funzionale della densità sono utilizzate per calcolare le proprietà dei materiali, che possono essere inserite in un database per un utilizzo successivo oppure possono essere utilizzate al momento durante la fase di selezione e progettazione di un materiale.

Poiché durante il processo di selezione le caratteristiche di un numero elevato di materiali devono essere calcolate, il tempo e le risorse utilizzate per la simulazione devono essere minimizzate. La maggior parte del tempo richiesto dalle simulazioni basate sulla teoria del funzionale della densità è utilizzato per eseguire operazioni con matrici dense, e in particolare risolvere il problema generalizzato della ricerca degli autovalori e autovettori, per il quale nuove implementazioni devono essere sviluppate per sfruttare le prestazioni dei moderni supercomputer ibridi (CPU e GPU).

Nella prima parte della tesi, presentiamo gli algoritmi usati per la risoluzione del problema generalizzato agli autovalori e autovettori, e le loro implementazioni per architetture con un nodo e una singola GPU. La misure mostrano un aumento rilevante delle prestazioni dell’implementazione per sistemi ibridi confrontata alle migliori implementazioni che utilizzano esclusivamente le CPU. Il supporto dell’implementazione ibrida è successivamente esteso a più GPU per singolo nodo, che mostra buone prestazioni e una buona scalabilità. In seguito presentiamo l’implementazione per sistemi con memoria distribuita con una GPU per nodo e le misure delle sue prestazioni.

Nella seconda parte della tesi, sviluppiamo un modello per il tempo e l’energia richiesta da applicazioni eseguite su sistemi con memoria distribuita, da cui deriva la relazione affine tra il tempo delle risorse e l’energia consumata che è stata osservata precedentemente per due algoritmi basati su stencil. Utilizzando questo modello si può dimostrare che la relazione affine vale per gruppi differenti di algoritmi, in cui sono inclusi anche quelli usati nell’algebra lineare. Successivamente studiamo quantitativamente le misure di tempo ed energia consumati dal risolutore di autovalori e autovettori mediante un’analisi dell’errore basata sull’inferenza Bayesiana. I risultati dell’analisi ci permettono di estrarre due parametri che dipendono dall’algoritmo e dall’architettura del sistema utilizzati per il calcolo.

Il primo parametro è l’energia dinamica, la cui scalabilità riflette la complessità dell’algoritmo utilizzato, mentre il secondo parametro rappresenta l’energia consumata dal sistema per unità di tempo.
Acknowledgments

First of all, it is a great pleasure to thank my supervisor Prof. Thomas Schultess for giving me the possibility to work on this project, and for his suggestions and new ideas which helped me during the research and the writing of this thesis.

Next I also want to thank Azzam Haidar for his help and fruitful discussions and for being co-examiner. Furthermore I want to thank Prof. Joost VandeVondele for being co-examiner.

I have profited from fruitful discussions with many people. In particular I want to thank Stan Tomov for his explanations about GPUs and the MAGMA project.

I am grateful to my colleagues of Schultess group, especially Anton K., Urs H., Andrei P. and Peter S. with whom I shared the office. I want to thank them for all their interest and valuable hints.

I want to thank the members of CSCS who helped me with the problem I encountered running my codes on the supercomputing systems.

Thanks go to my friends for their friendship and for the beautiful time spent inside and outside the ETH, especially the members of the Sip’s group with whom I spent great Thursday evenings. Finally, I would like to thank my family for their love and support during my studies.
Contents

Abstract iii
Riassunto v
Acknowledgments vii
Contents ix

1 Introduction 1
 1.1 Density Functional Theory 2
 1.2 Eigenvalue solver ... 3
 1.3 Energy measurements ... 4
 1.4 Outline ... 7

2 The Hermitian positive definite generalized eigenvalue solver 9
 2.1 Generalized to standard eigenproblem 11
 2.1.1 Transformation to standard eigenproblem 11
 2.1.2 Eigenvectors back-transformation 13
 2.2 Solution of the standard eigenproblem 13
 2.2.1 Reduction to tridiagonal form 13
 2.2.2 Solution of the tridiagonal eigenvalue problem 14
 2.2.3 Eigenvectors back-transformation 15
 2.3 Two-stage reduction ... 16
 2.3.1 First stage .. 16
 2.3.2 Second stage .. 17

3 Hybrid CPU+GPU Hermitian implementation 19
 3.1 Original MAGMA implementation 19
 3.1.1 Cholesky decomposition 19
CONTENTS

3.1.2 One-stage eigenvalue solver .. 20
3.2 Transformation to standard eigenproblem 20
3.3 Improved divide and conquer implementation 21
3.4 Two-stage solver for the standard eigenproblem 22
 3.4.1 Reduction to band .. 22
 3.4.2 Tridiagonalization .. 23
 3.4.3 Eigenvectors back-transformation 25
3.5 Performance measurements ... 27

4 Multi-GPU implementation ... 33
 4.1 Original MAGMA implementations 33
 4.1.1 Cholesky decomposition ... 33
 4.1.2 One-stage tridiagonalization 34
 4.1.3 Two-stage tridiagonalization 34
 4.2 Generalized to standard eigenproblem 34
 4.2.1 Transformation to standard eigenproblem 34
 4.2.2 Eigenvectors back-transformation 35
 4.3 Solver for the standard eigenproblem 36
 4.3.1 Multi-GPU divide and conquer implementation 36
 4.3.2 Eigenvectors back-transformation 37
 4.4 Performance measurements ... 37

5 Distributed hybrid CPU + GPU eigenvalue solver 45
 5.1 The libsci library .. 45
 5.2 Generalized to standard eigenproblem 46
 5.2.1 Cholesky decomposition ... 46
 5.2.2 Transformation to standard eigenproblem 46
 5.2.3 Eigenvectors back-transformation 47
 5.3 Two-stage solver for the standard eigenproblem 48
 5.3.1 Reduction to band .. 48
 5.3.2 Tridiagonalization .. 48
 5.3.3 Tridiagonal eigensolver .. 50
 5.3.4 Eigenvectors back-transformation 50
 5.4 Performance measurements .. 53
 5.4.1 Eigensolver benchmark .. 53
 5.4.2 Full potential LAPW application 56
Quantum simulations can be used for an inexpensive screening in a material design process. For such work, ab initio electronic structure methods simulate the properties of a large number of different compounds, and the results are stored in a database. These results are used later during the screening process. Bahn et al. [7] and Ong et al. [8] describe this method and present the codes they developed to simplify the process.

As the performance of supercomputers is growing exponentially, a more flexible method could be considered. The properties of the materials, which are specific to a material design project, could be computed on the fly using a powerful electronic structure code. Since the properties of a large number of materials have to be computed, the total time of all simulations has to be minimized as much as possible. Therefore, the implementation has to be efficient and the resource time (measured in node-hours) has to be as small as possible. Since the parallel efficiency decrease, increasing the amount of nodes used, the simulations have to execute on the smallest possible amount of resources, which guarantee the requirements of the time to solution to be reasonable.

The method used by the electronic structure code should be able to compute the property of each material, especially of very large systems. However the nearsightedness property of electronic matter, described by Kohn [9] and Prodan et al. [10], limits the size of systems considered in such screening process to about 1000 atoms.

Kent [11] demonstrated that the performance and scalability of implementations of the plain wave method are limited by the performance of the generalized eigenvalue solver. The role of the eigensolver is even more prominent in all-electron methods. Therefore, to exploit the performance of supercomputers with
1.1 Density Functional Theory

The method based on density functional theory (DFT) [12] rely on the Kohn-Sham approach developed by Kohn et al. [13]. This approach transforms the many-body Schrödinger equation, which has exponential complexity, to a problem with polynomial complexity that requires the solution of the Kohn-Sham equation

\[
\left[\frac{\hbar^2}{2m} \nabla^2 + V_{\text{eff}}(\mathbf{r}) \right] \psi_i(\mathbf{r}) = \epsilon_i \psi_i(\mathbf{r}), \tag{1.1}
\]

where the complex wave functions \(\psi_i(\mathbf{r}) \) represent the single electron orbitals, and the effective potential \(V_{\text{eff}} \) is composed of three different terms. The first term includes all the potentials not generated by the electrons (e.g. the ionic potential of the nuclei) and is called the external potential. The second term, which includes the contributions of the classical Coulomb force, is the Hartree potential \(V_H(\mathbf{r}) = \int \rho_s(\mathbf{r}') |\mathbf{r} - \mathbf{r}'|^{-1} d^3r' \), where the electron density \(\rho_s = \sum_{\mathbf{r} \in \text{occ.}} |\psi_i|^2 \) is computed from the occupied orbitals. Finally, the third term includes the non-classical potentials, i.e. the exchange and correlation contributions of all other electrons in the system and depends on the electron density.

An approach to solve the Kohn-Sham equation is to introduce a basis-set \(\Phi_i(\mathbf{r}) \) for the electron orbitals \(\psi_i(\mathbf{r}) \), and to compute the Hamiltonian matrix

\[
H_{ij} = \int \Phi_i \left[\frac{\hbar^2}{2m} \nabla^2 + V_{\text{eff}}(\mathbf{r}) \right] \Phi_j d\mathbf{r}. \tag{1.2}
\]

If the basis-set \(\Phi_i(\mathbf{r}) \) is not orthonormal (e.g. the Linearized Augmented Plane Wave method (LAPW) [14, 15]) the overlap matrix

\[
S_{ij} = \int \Phi_i \Phi_j d\mathbf{r} \tag{1.3}
\]

has to be computed. The solution of the Kohn-Sham equation is then the solution of the generalized eigenvalue problem

\[
H \mathbf{x} = \lambda S \mathbf{x}. \tag{1.4}
\]

However, the Hamiltonian matrix depends on the electron density which depends on the electron orbitals, and the overlap matrix depends on the electron density.
orbitals too, therefore, the charge density and the potential should be iterated to convergence using the DFT loop (Algorithm 1). Therefore, the solution of the Kohn-Sham equation has to be computed many times to find the ground state.

Algorithm 1 DFT loop

1. choose initial electron density ρ_s
2. while ρ_s not converged do
 1. build the Hamiltonian
 2. solve the Kohn-Sham equation
 3. compute the new electron density
3. end while

1.2 **Eigenvalue solver**

Different packages that provide implementations of linear algebra algorithms are available. The LAPACK (Linear Algebra PACKage) library\(^1\) [16] includes the single-node implementation of the linear algebra routines, which are based on vendor optimized BLAS (Basic Linear Algebra Subroutines) library\(^2\). LAPACK includes the generalized eigenvalue solver based on the one-stage tridiagonalization algorithm.

To exploit the performance of the multi-core architecture the PLASMA project [17] has been developed to supply a multi-core optimized version of LAPACK. The PLASMA package\(^3\) includes a two-stage implementation of the eigensolver which is presented by Haidar et al. [18] and by Luszczek et. al. [19].

Dongarra et al. [20] showed that the two-stage approach allows to replace the memory-bound operations of the one-stage tridiagonalization approach with compute bound operations. Bishop et al. [21–23] described the successive band reduction framework they developed to reduce the band size of symmetric matrices and its two-stage variant. Gansterer et al. [24] used an approach similar to the two stage tridiagonalization, which uses the reduction to band and an eigensolver for band matrices.

For distributed memory architectures, ScaLAPACK (Scalable LAPACK)\(^4\) [25]

\(^1\)http://www.netlib.org/lapack/
\(^2\)http://www.netlib.org/blas/
\(^3\)http://icl.cs.utk.edu/plasma/
\(^4\)http://www.netlib.org/scalapack/
1.3 Energy measurements

provides the implementation of the LAPACK routines. It is based on PBLAS (parallel BLAS) which provides the distributed memory implementation of the BLAS routines.

Auckenthaler et al. [26] developed a communication optimized version of the eigensolver based on the one-stage tridiagonalization. To overcome the performance issue of the one-stage algorithm they implemented an eigensolver based on the two-stage tridiagonalization, using the bulge-chasing algorithm in the second stage. These two implementations are included in the ELPA library5.

All the packages described include implementations for CPU-only systems. The MAGMA project6 [17] has been created to provide GPU-enabled single-node implementation of the LAPACK routines, and also supports multiple GPU installed on the same node.

1.3 Energy measurements

Traditionally, the performance of the computation are measured in terms of time to solution, or FLOP/s (floating point operations per second). The FLOP/s metric is used in comparison with the peak-performance of the system used, to determine how efficiently the system is exploited by the program. On the other hand, the time to solution metric represents the natural quantity we want to minimize to obtain the best performance. In contrast to FLOP/s, the time to solution is not influenced by the complexity of the algorithm used, therefore it is a better metric to compare different algorithms.

On serial machines (von Neumann machines), the time to solution reflects the complexity of the implementation of the algorithm. If it is properly implemented this is equivalent to the theoretical complexity of the algorithm.

On parallel systems, there is an extra parameter that has to be taken into account, which represent the scalability of the algorithm. One example is the parallel efficiency $P_N = t_1/(N t_N)$, where N is the number of nodes used for a distributed system, or the number of threads for a shared memory system. t_1 and t_N represent the time to solution of the application on one, and, N nodes (or threads) respectively. Of course the parallel implementation has to maximize the parallel efficiency. This operation can be performed rigorously on single algorithms. On the other hand, real applications, which are composed of several

5http://elpa.mpcdf.mpg.de/
6http://icl.cs.utk.edu/magma/
elementary algorithms with comparable execution time, require an empirical optimization. The resulting parallel efficiency will deviate always from the perfect scaling.

Another metric for distributed applications is the resource time (the time to solution multiplied with the number of nodes used), which represent the amount of resources needed to perform the computation. Some supercomputing systems have been equipped with power sensors to allow the measurement of the instantaneous power and energy needed for the computation. E.g., the Cray-XC platform includes a power management database and provides pm counters to report power and energy consumption at node level. The description of these tools is provided by Fourestey et. al. [27], which also validated the values reported by the Cray software comparing them with the power measurements of the facility power meters available at CSCS.

The resource time and the energy to solution metric are important, since they are proportional to the cost of the computation. Unless the application scales perfectly, the resource time and energy to solution is larger for the parallel application, compared to the serial application. Therefore, the cost of the executions with a lower time to solution is larger, since it requires more resources. On the other hand, the optimization of an application which reduce the time to solution using the same amount of hardware resources reduces the energy to solution, as demonstrated by Frasca et al. [28] and Satish et al. [29], which, in the first case, developed an optimization for a shard-memory graph application, based on considerations on the Non-Uniform Memory Access (NUMA), and, in the second case, optimized a distributed memory graph application.

If a system does not provide power sensors, the measurement of the energy to solution may be difficult. Studying the energy to solution of parallel applications which cover a wide range of scientific areas with different algorithms, Hackenberg et al. [30] developed a model, which considers work unbalance and run-time power variations, to extrapolate the energy to solution of a simulation executed on a many-node cluster based on the power consumption of a subset of the nodes.

The energy to solution of an application can be predicted with models. Song et al. [31] developed the iso-energy-efficiency model and studied the behaviour of the energy to solution for distributed memory applications. They showed that energy to solution depends on many system and application dependent parameters. To model the energy consumption at node level Choi et al. [32] developed an energy roofline model. Song et al. [33] and Wu et al. [34] combined performance and energy measurements with machine learning to model the performance and
The relationship between the performance of an application and the energy to solution has been studied by Wittmann et al. [35]. They optimized the implementation for Intel Sandy Bridge CPUs of a lattice-Boltzmann CFD application and they analyzed the energy to solution of their implementation varying the CPU frequency at node level and at scale. They studied how to minimize the energy to solution of the parallel runs, without having a large impact on the time to solution.

The power consumption of supercomputing systems may be optimized by modifying the node architecture, e.g., using processors which need less power to operate. However, to reduce the energy to solution, the time to solution of the application should not increase drastically. Göddeke et al. [36] studied the time to solution and energy to solution of PDE solvers on a ARM-based cluster. They compared the results with the measurements of a x86-based cluster and showed that it is possible to reduce the energy to solution of the application affecting the time to solution by using the ARM-based cluster.

Ge et al. [37] studied the effects of the dynamic voltage and frequency scaling of the CPU and GPU for the matrix matrix multiplication, the travel salesman problem and the finite state machine problem, which are compute intensive tasks. They showed that the effects of the scaling system are similar for the two types of processing units, i.e. a high performance state delivers better application performance. However, they demonstrated that on the GPU the energy to solution of the application is comparable for the different settings, therefore, they have a similar system energy efficiency. On the other hand on the CPU a large difference between the different settings has been observed.

The choice of the configuration which has to be used to run an application represent a trade-off between the speed and the cost of the simulation. On one hand, the energy to solution of an application has to minimized to reduce the costs of the simulations, on the other hand the time to solution of the application should be reasonable. For instance for the simulation of materials the time to solution has an upper limit (to guarantee the results in a reasonable amount of time), on the other hand one wants to also reduce the cost of the simulation, therefore the energy to solution has to be minimized. A similar example is represented by weather forecasting, which has been studied by Cumming et al. [38]. The energy to solution of different run of the implementation of the COSMO model, which is employed for operational numerical weather prediction, has been compared, and the time to solution has been checked to determine if the run fulfilled
the requirements. Moreover [38] noticed that for the COSMO model the affine relationship

\[E_N = \pi_0 N t_N + E_0 \]

(1.5)
exists between the energy to solution, using \(N \) nodes, and the resource time \(N t_N \) of the computation. They also rewrote the relationship as

\[E_0 = E_1 - t_1 \pi_0 \]

(1.6)
\[E_N = E_1 + N t_N (1 - P_N) \pi_0, \]

(1.7)

where \(P_N \) is the parallel efficiency, and they proposed an interpretation for the fit parameters: \(E_0 \) represents the effective dynamic energy consumed by the simulation, while \(\pi_0 \) is the static power leakage of the computing system. They found that also the Conjugate Gradient benchmark [39] presents the same affine behaviour between resource time and energy to solution. Since the COSMO model and the Conjugate Gradient benchmark relies on stencil based algorithms, it has to be investigated if the the affine relationship holds for different algorithms which are not based on stencils.

1.4 Outline

This thesis is structured as follows. In the first part of the thesis we present the generalized eigenvalue solver and its implementations. In Chapter 2, the algorithms used by the generalized eigenvalue solver are presented in details. In Chapter 3, 4 and 5, we present the hybrid CPU+GPU implementations and the performance results for single-node hybrid CPU+GPU systems (Chapter 3), for single-node multi-GPU systems (Chapter 4) and for the distributed memory hybrid CPU+GPU architecture (Chapter 5).

In the second part of the thesis (Chapter 6), we develop a model for the time to solution and the energy to solution for distributed memory applications, which explains the affine relationship between the resource time and the energy to solution. This model shows that the affine relationship holds for different classes of algorithm, among which empirically the stencil based algorithms and linear algebra solvers are included. Furthermore we develop an error model, based on Bayesian inference, to determine the error of the energy measurements that is used to study quantitatively the measured performance of the generalized eigenvalue solver. The results of the analysis shows that we can extract two
1.4 Outline

parameters from the affine relationship which depend on the algorithm and the underlying architecture used to perform the calculation.

To explain the large variation of the static power of the multi-core architecture using different parallelization schemes, in Section 6.5 we performed an experiment to measure the power consumption of the system, when each thread is waiting for the reception of an MPI message.
Chapter 2

The Hermitian positive definite generalized eigenvalue solver

This section introduces the Hermitian positive definite generalized eigenvalue problem and the algorithm used to solve it. The generalized eigenvalue problem has the form

$$A\mathbf{x} = \lambda B\mathbf{x}, \quad (2.1)$$

where A is a Hermitian matrix and B is Hermitian positive definite.

The classical approach to the solution of Eq. 2.1 requires three phases:

1. **Generalized to standard eigenvalue transformation phase**
 Using the Cholesky decomposition, the matrix B is factorized into
 $$B = LL^H, \quad (2.2)$$
 where H denotes the conjugate-transpose operator, and the resulting factor L is used to transform the generalized eigenvalue problem (Eq. 2.1) into a standard Hermitian eigenvalue problem of the form
 $$A_s\mathbf{y} = \lambda\mathbf{y}, \quad (2.3)$$
 where $A_s = L^{-1}AL^{-H}$ is Hermitian, and $\mathbf{y} = L^H\mathbf{x}$, and L^{-H} represent the inverse of the conjugate-transpose of the matrix L.

2. **Solution of the standard eigenvalue problem**
 The technique to solve the standard Hermitian eigenproblem (Eq. 2.3), follows the three phases [40–42]:

9
(a) **Reduction phase**
A unitary transformation Q is applied on both the left and the right side of A_s, to reduce it to a matrix with tridiagonal form $T = Q^H A_s Q$. The reduced matrix T has the same eigenvalues of the matrix A_s, since a two-side unitary transformation was used.

(b) **Solution of the tridiagonal eigenvalue problem**
Different algorithms, which find the eigenvalues Λ and eigenvectors E of the tridiagonal matrix T such that $T = E \Lambda E^H$, has been developed. Examples are the QR iteration method, the bisection algorithm, the divide and conquer method and the multiple relatively robust representation (MRRR).

(c) **Back-transformation phase**
the eigenvectors Y of A_s are computed using $Y = QE$, where Q is the unitary matrix used in the reduction phase.

3. **Back-transformation to generalized eigenproblem phase**
the eigenvectors X of the generalized eigenvalue problem in Eq. 2.1 are computed using $X = L^{-H} Y$, where L is the Cholesky factor computed in the first phase.

Since each eigenvector can be back-transformed independently, only the requested eigenvectors have to be computed, reducing the number of operation executed during the back-transformation phases.

In the next sections we describe the LAPACK approach for each of the phases of the generalized eigensolver. Fig. 2.1 present the notation used to describe the different parts of the algorithms.
The Hermitian positive definite generalized eigenvalue solver

\[A^T(i) A_{0,ii} A_{0,i} A_{ii} A_i A_T(i) \]

Figure 2.1: Matrix notation used in the description of the algorithms. \(A \) is a \(n \times n \) Hermitian matrix, therefore only the elements of the lower triangle are needed to fully describe the matrix. \(A_{ii} \) is the diagonal block, \(A_i \) the panel, and \(A_T(i) \) the trailing matrix of the \(i \)-th step. The width of the panel is \(n_b \).

2.1 Generalized to Standard Eigenproblem

2.1.1 Transformation to Standard Eigenproblem

The first step of the generalized eigenvalue solver is the Cholesky decomposition, which factorizes the Hermitian positive definite matrix \(B \) as the product of the lower triangular matrix \(L \) and its conjugated-transposed, i.e. \(B = LL^H \). (See Appendix B.)

The LAPACK implementation uses the left-looking algorithm with block-size \(n_b \):

Algorithm 2 LAPACK Algorithm (left-looking) for the Cholesky decomposition

1: \textbf{for} \(i \) from 1 to \(n/n_b \) \textbf{do}
2: \quad \textbf{xHERK} \(B_{ii} = B_{ii} - B_{0,ii} B_{0,ii}^H \)
3: \quad \textbf{xPOTF2} \(B_{ii} = \text{Cholesky decomposition of} \ B_{ii} \)
4: \quad \textbf{xGEMM} \(B_i = B_i - B_{0,i} B_{0,i}^H \)
5: \quad \textbf{xTRSM} \(B_i = B_i (B_{ii})^{-H} \)
6: \textbf{end for}

On the other hand, the ScaLAPACK implementation uses the right-looking algorithm, which is presented in Algorithm 3.
Algorithm 3 Right-looking algorithm for the Cholesky decomposition

1: for i from 1 to n/nb do
2: $B_{ii} = \text{Cholesky decomposition of } B_{ii}$ \quad \triangleright xPOTF2
3: $B_i = B_i(B_{ii})^{-H}$ \quad \triangleright xTRSM
4: $B_{T(i)} = B_{T(i)} - B_iB_i^H$ \quad \triangleright xHERK
5: end for

Then the generalized eigenproblem can be transformed to a standard eigenvalue problem. Multiplying Eq. 2.1 on the left with the factor L^{-1} and substituting $y := L^Hx$ the problem becomes a standard Hermitian eigenvalue problem of the form

$$L^{-1}A L^{-H} y = \lambda y. \quad (2.4)$$

This transformation can be performed in two different ways. The first approach is to invert the Cholesky factor L and uses twice the general matrix-matrix multiplication. This method is easy to parallelize, but it does not take advantage of the fact that the matrix A and the resulting matrix A_s are Hermitian. This approach is used, for instance, by the ELPA solver.

On the other hand the second approach, which is used by LAPACK is described in Algorithm 4. It reduces the number of FLOP, taking advantage of the symmetry properties of the matrices A and A_s.

Algorithm 4 LAPACK Algorithm for the transformation from generalized to standard eigenproblem

1: for i from 1 to n/nb do
2: $A_{ii} = (L_{ii})^{-1} A_{ii}(L_{ii})^{-H}$ \quad \triangleright xHEGS2
3: $A_i = A_i - \frac{1}{2} L_i A_{ii}$ \quad \triangleright xTRSM
4: $A_{T(i)} = A_{T(i)} - A_i L_i^H - L_i A_i^H$ \quad \triangleright xHER2K
5: $A_i = A_i - \frac{1}{2} L_i A_{ii}$ \quad \triangleright xHEMM
6: $A_i = (L_{T(i)})^{-1} A_i$ \quad \triangleright xTRSM
8: end for

This approach proceed panel by panel, and each cycle be divided into three main parts. The first part partially update the panel (lines 2-4). The second part updates the trailing matrix, using the partially updated panel (line 5), and the third part finish the panel computation (lines 6-7).
2.1.2 Eigenvectors back-transformation

The eigenvector matrix X of the generalized eigenvalue problem, can be obtained by inverting the substitution $y = L^H x$, i.e. the linear triangular system $Y = L^H X$ has to be solved, where Y is the matrix which contains the eigenvectors of the standard eigenvalue problem (2.4).

This operation is executed by the xTRSM BLAS routine.

2.2 Solution of the standard eigenproblem

2.2.1 Reduction to tridiagonal form

The classical LAPACK approach to reduce the Hermitian eigenvalue problem to a real symmetric tridiagonal problem is called one-stage tridiagonalization. To guarantee that the eigenvalue of the two problems are equivalent, the reduction is performed using two-side Householder transformations, which are unitary similarity transformations. The tridiagonal matrix is then given by $T = Q^H A_s Q$, where Q is an unitary transformation found by the product of the Householder transformations (see Appendix C) used. However, the matrix Q is not explicitly computed.

Algorithm 5 shows the basic algorithm for the tridiagonalization [40].

Algorithm 5 Basic algorithm for the reduction to tridiagonal form.

1: for k from 1 to $n - 1$ do
2: $v, \tau = \text{Householder}(A_s(k+1:n,k))$
3: $p = \tau A_s(k+1:n,k+1:n)v$
4: $w = p - \frac{1}{2}(\tau p^H v)v$
5: $A_s(k+1,k) = ||A_s(k+1:n,k)||_2$
6: $A_s(k+1:n,k+1:n) = A_s(k+1:n,k+1:n) - vw^H - wv^H$
7: end for

This algorithm can be improved using the blocking technique, such that the matrix update (line 6) is performed using Level-3 BLAS operations. On the other hand the large matrix-vector multiplication of line 3 is not modified and remains the memory bound bottleneck as we will see shortly.

The analysis of the algorithm shows that the matrix-vector multiplications contribute to half of the total FLOP count, while the update of the trailing
2.2 Solution of the standard eigenproblem

matrix contributes to the remaining half of the operations. Therefore, even if the algorithm uses the blocking technique for the update of the trailing matrix, half of the FLOP are memory-bound. For this reason the compute efficiency of the algorithm is limited.

Another disadvantage of this algorithm is the fact that the panel factorization require the access to the whole trailing matrix, hence the full trailing matrix update has to be performed, before the factorization of the next panel can start.

In Section 2.3, we describe the two-stage tridiagonalization approach, which address these problems.

2.2.2 Solution of the tridiagonal eigenvalue problem

Among the different algorithms, which solve the tridiagonal eigenproblem, we choose the divide and conquer (D&C) algorithm. The matrix-matrix multiplications present in its implementation ensure that this algorithm is suitable for the hybrid CPU-GPU architecture.

The D&C Algorithm has been designed to computes all the eigenvalues and the whole eigenspace of a real tridiagonal matrix T. It has been introduced by Cuppen [43], and has been implemented in many different serial and parallel versions [26, 44–49].

The D&C algorithm splits the original problem in two child subproblems, which are a rank-one modification of the parent problem. The two child problems can be solved independently, and the solution of the parent problem can be computed merging the solutions of the child subproblems and the solution of the rank-one modification problem. The split process is applied recursively, and a binary tree, which represent all the subproblems, is created. The solution of the original tridiagonal eigenproblem is computed solving the subproblems of the bottom row, and merging the solution from the bottom to the top problem.

An iteration of the D&C algorithm is described by

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix} + \rho \mathbf{vv}^T$$

$$= \begin{pmatrix} \tilde{E}_1 & 0 \\ 0 & \tilde{E}_2 \end{pmatrix} \left\{ \begin{pmatrix} \tilde{\Lambda}_1 & 0 \\ 0 & \tilde{\Lambda}_2 \end{pmatrix} + \rho \mathbf{uu}^T \right\} \begin{pmatrix} \tilde{E}_1 & 0 \\ 0 & \tilde{E}_2 \end{pmatrix}^T \quad (2.5)$$

$$= \begin{pmatrix} \tilde{E}_1 & 0 \\ 0 & \tilde{E}_2 \end{pmatrix} \begin{pmatrix} \tilde{E}_0 \tilde{\Lambda}_0 \tilde{E}_0^T \\ 0 \end{pmatrix} \begin{pmatrix} \tilde{E}_1 & 0 \\ 0 & \tilde{E}_2 \end{pmatrix}^T = E \Lambda \Lambda^T. \quad (2.6)$$
The parent eigenproblem, represented by the tridiagonal matrix \(T \), is split into two subproblems, whose tridiagonal matrices are \(T_1 \) of size \(n_1 \), and \(T_2 \) of size \(n_2 = n - n_1 \) (Eq. 2.5). Let assume that the solutions of the child problems are \(T_1 = \tilde{E}_1 \tilde{\Lambda}_1 \tilde{E}_1^T \) and \(T_2 = \tilde{E}_2 \tilde{\Lambda}_2 \tilde{E}_2^T \), where \((\tilde{\Lambda}_j, \tilde{E}_j) \) are the eigenvalue and eigenvectors of the matrix \(T_j \).

To merge the solution the rank-one modification eigenproblem has to be solved, and we denote with \(\tilde{\Lambda}_0 \) its eigenvalues and with \(\tilde{E}_0 \) its eigenvectors. The eigenvalues of \(T \) are the same as the eigenvalue \(\tilde{\Lambda}_0 \) of the rank one modification, while the eigenvectors \(E \) are finally computed by multiplying the eigenvectors \(E_0 \) of the rank-one modification and the eigenvectors of the two subproblems (Eq. 2.7).

2.2.3 Eigenvectors back-transformation

The eigenvectors \(Y \) of the matrix \(A_s \) are computed by applying the unitary transformation \(Q \) to the eigenvectors \(E \) of the tridiagonal problem. The back-transformation can be applied independently to each eigenvector, hence the transformation can be applied only to the eigenvectors required in the simulation.

Since the matrix \(Q \) has not been explicitly built in the tridiagonalization phase, the operation is performed applying the Householder transformations, which define \(Q \), to the eigenvectors, i.e.

\[
Y = \left(I - v_1 \tau_1 v_1^H \right) \left(I - v_2 \tau_2 v_2^H \right) \cdots \left(I - v_{n-1} \tau_{n-1} v_{n-1}^H \right) E, \tag{2.8}
\]

where \((v_i, \tau_i) \) represent the \(i \)-th Householder vector. To improve the computational intensity of this operation, the compact WY representation [50] is used. The back-transformation is then performed in the following order

\[
Y = \left(I - V_1 T_1 V_1^H \right) \left(\left(I - V_2 T_2 V_2^H \right) \cdots \left(I - V_k T_k V_k^H \right) E \right), \tag{2.9}
\]

where the Householder vectors \(v_i (i = 1..n) \) are divided in the groups \(V_j (j = 1..k) \). The triangular factors \(T_j \) are computed using the xLARFT routine. Algorithm 6 summarizes the LAPACK implementation.

Algorithm 6 LAPACK Algorithm for the eigenvector back-transformation

1. for \(j \) from \(k \) to 1 do
2. Generate \(T_j \) from \(V_j \) \hspace{1cm} \(\triangleright \) xLARFT
3. \(W = V_j^H E \)
4. \(E = E - V_j T_j W \)
5. end for
2.3 TWO-STAGE REDUCTION

The two-stage approach splits the reduction to tridiagonal phase into two stages. It has been developed to replace the memory-bound operations which occur during the panel factorization of the tridiagonalization phase, with compute intensive operations. The first stage reduces the Hermitian eigenproblem to a problem, whose matrix has a band form. This part is compute intensive and contains $O(M^3)$ operations, where M is the matrix size. On the other hand, the second phase finally reduces the eigenproblem to a tridiagonal problem. The second stage is memory-bound, but contains only $O(M^2)$ operations.

Grimes et al. [51] describe one of the first uses of the two-stage reduction in the context of a generalized eigenvalue solver. Then, Lang [52] used a multi-stage method to reduce a matrix to tridiagonal forms. Auckenthaler et al. [26] used the two-stage approach to implement an efficient distributed eigenvalue solver. The development of tile algorithms have also recently increased the interest to the two-stage tridiagonal reduction [18, 19].

2.3.1 FIRST STAGE

The first stage is similar to the one-stage approach. It applies a sequence of Householder transformations to reduce the Hermitian matrix to a band matrix. Compared to the one-stage approach, the first stage eliminates the large matrix-vector multiplications, removing the memory-bound operations [20, 21, 23, 24].

The reduction to band proceed panel by panel. Each panel performs a QR decomposition which reduces to zero the elements below the n_b-th subdiagonal. The resulting Householder transformation defined by V and T is applied from the left and the right to the Hermitian trailing matrix as shown in Algorithm 7.

Algorithm 7 LAPACK Algorithm for reduction to band

1: for i from 1 to n/n_b do
2: $V_i, R_i = Q R(A_i)$ \[xGEQRF\]
3: $X_i = A_{T(i)} V_i T_i$
4: $W_i = X_i - \frac{1}{2} V_i T_i^H V_i^H X_i$
5: $A_{T(i)} = A_{T(i)} - W_i V_i^H - V_i W_i^H$
6: end for

Haidar et al. [18] developed a tile algorithm of the first stage, well suited for the multicore architecture, which is included in the PLASMA library.
Since the unitary transformation generated by this algorithm is not explicitly computed, but is represented by Householder reflectors in the same way as in the one-stage approach, the eigenvector back-transformation relative to the first stage can be executed using the implementation presented in Section 2.2.3.

2.3.2 SECOND STAGE

The transformation from a band form Hermitian eigenproblem to a real symmetric tridiagonal eigenproblem can be performed in different ways. Schwarz [53] introduced an algorithm, which uses given rotations to decrease the bandwidth by one. Lang [54] developed an algorithm which uses Householder transformations to reduce a band matrix to tridiagonal form. Bishof et al. [22] developed an algorithmic framework for reducing band matrix to narrower banded or tridiagonal form. Haidar et al. [18] introduced a bulge-chasing algorithm which enhances the data locality, and profits from the cache memory.
2.3 Two-stage reduction
CHAPTER 3

HYBRID CPU+GPU HERMITIAN IMPLEMENTATION

The first step towards a distribute hybrid eigenvalue solver is the implementation of the single node hybrid CPU-GPU solver, which permits to study the challenges of the development of algorithm for the hybrid CPU-GPU architecture.

To develop an implementation for hybrid CPU+GPU systems of the generalized eigenvalue problem, some components of MAGMA, PLASMA, LAPACK, and vendor-optimized BLAS libraries were used (when sufficiently efficient) or improved including the GPU support.

In the MAGMA package some of the needed routine were already available. These routine are described in Section 3.1.

The description of the algorithm and the results of implementation of the hybrid CPU+GPU Hermitian positive definite generalized eigenvalue solver, has been published by Haidar et al. \[1\]. The implementation has been included in the MAGMA package.

3.1 Original MAGMA implementation

3.1.1 Cholesky decomposition

Tomov et al. \[55\] introduced a GPU implementation to compute the Cholesky decomposition of the B matrix. The algorithm used is the extension of the LAPACK algorithm (Algorithm 2), which include the GPU support. The Level 3 BLAS operations are performed by the GPU, while the computation of the B_{ii} block is performed by the CPU. To improve the performance the copies of the
3.1.2 ONE-STAGE EIGENVALUE SOLVER

The eigensolver that was originally present in MAGMA is a one stage solver composed by the following routines.

The tridiagonalization algorithm is described by Tomov et al. [56]. During the panel factorization, the GPU performs the large matrix-vector multiplication, profiting of the larger memory bandwidth of the device. The GPU also performs the update of the trailing matrix. This algorithm is the same algorithm used by the LAPACK implementation described in Section 2.2.1. Therefore, half of the total number of FLOP are memory bound operations and the panel factorization cannot be overlapped with the update of the trailing matrix.

The solution of the tridiagonal eigenproblem was performed using the LAPACK Divide and Conquer routine, and the accelerator was not used. This tridiagonal eigensolver has been replaced by the solver presented in Section 3.3.

The back transformation implementation follows directly from the algorithm discussed in Section 2.2.3. The triangular factors of the compact WY representation of the Householder transformation are computed using LAPACK xLARFT on the CPU, while the GPU applies the Householder transformations to the eigenvectors, using matrix-matrix multiplications.

3.2 TRANSFORMATION TO STANDARD EIGENPROBLEM

The first phase of the transformation of the generalized eigenvalue problem to a standard eigenproblem is the Cholesky decomposition, which is computed using the implementation described in Section 3.1.1.

The second phase requires the computation of $A_s = L^{-1}AL^{-H}$, which can be performed by the xHEGST routine included in LAPACK (Algorithm 4). We extended this routine to include the GPU support. The update of the diagonal block (Algorithm 4, line 2) is performed by the CPU while the remaining operations, which are Level 3 BLAS operations, are performed by the GPU, by using the implementations included in cuBLAS or MAGMA. Since the optimal panel width n_b of the hybrid implementation is larger than the optimal panel width
for the CPU-only implementation, the \texttt{xHEGS2} routine has been replaced by the LAPACK \texttt{xHEGST}, which performs the same operation more efficiently profiting from level 3 BLAS operations.

Since the diagonal blocks are modified by the CPU and the GPU, some communication between the host memory and the device memory is required. However, the communication does not affect the performance, since the data movements and the CPU computation can be overlapped with the operations performed by the GPU, and the GPU remains continuously busy. Fig. 3.1 shows how the overlap of CPU and GPU operation is used in this algorithm.

Finally, when the eigenvalue and eigenvectors of the standard eigenproblem are computed, the eigenvectors of the generalized eigenvalue problem are obtained back-solving $L^H X = Y$ on the GPU, using the \texttt{cublas.xTRSM} routine included in the cuBLAS library.

3.3 Improved Divide and Conquer Implementation

The Divide and Conquer algorithm presented in Section 2.2.2 has been chosen as tridiagonal solver. The most expensive part of this algorithm is that where the solutions of child subproblems are merged to find the solution of the parent
3.4 Two-stage solver for the standard eigenproblem

A. Haidar designed and implemented the two-stage reduction to tridiagonal and the eigenvectors back-transformation described in this sections.

3.4.1 Reduction to band

The hybrid CPU-GPU algorithm of the reduction to band follows Algorithm 7 presented in Section 2.3.1.

The panel is factorized using the QR algorithm, and the trailing matrix is updated applying from left and right the Householder reflectors, which represent the unitary matrix resulting from the QR factorization.

The QR decomposition (xGEQRT kernel) of the panel (the blue panel in Fig. 3.2) is first performed on the CPUs. Once the panel factorization is completed, the GPU can start the computation of the W matrix. Its computation involves only matrix-matrix multiplications. The dominant part of the computation of the W matrix is the Hermitian matrix-matrix multiplication $X_i = A_{T(i)}(V_iT_i)$ (Algorithm 7, line 3). Then the matrix W is used to update the trailing matrix using the cublas_xHER2K routine provided by cuBLAS.
To improve the performance of the routine the look-ahead technique has been used. The update of the trailing matrix on the GPU can be split in two parts. The first part updates only the next panel (the yellow panel in Fig. 3.2), while the second part computes the update of the rest of the trailing matrix (the green block). Immediately after the update of the yellow panel, this panel is copied in the host memory and it is factorized on the CPU using the QR decomposition. The resulting Householder reflectors are then copied back to the device memory. In the meantime that the CPU performs these three operations the GPU can perform the second part of the update of the trailing matrix.

The use of the look-ahead technique hides the CPU computation and the host-device communication, therefore the GPU has not to wait for the completion of the CPU tasks and is continuously busy, computing either W or the update of the trailing matrix.

3.4.2 Tridiagonalization

The bulge chasing technique is used to further reduce the band form to tridiagonal form. This procedure annihilates the extra band elements and avoids the increase of the band size, due to the creation of the fill-in elements. This stage involves memory-bound operations and requires multiple accesses to different locations of the band matrix.

Haidar et al. [18] developed an bulge-chasing procedure, which overcome these limitations using an element-wise elimination. To improve the data locality of
3.4 Two-stage solver for the standard eigenproblem

The Householder reflectors, which define the unitary matrix generated by the bulge-chasing, the algorithm has been modified to use column-wise elimination. The bulge-chasing algorithm is based on three kernels which are designed to enhance the data locality of the computation.

The $xHBCEU$ kernel is used at the beginning of each sweep. It generates the Householder reflector which annihilates the extra non-zero entries (represented by the rectangle with the red border in Fig. 3.3) within a single column. Then, the kernel applies the Householder transformation from the left and the right to the corresponding Hermitian data block (red triangle).

To conclude the application of the Householder transformation generated by the execution of either $xHBCEU$, the second kernel, $xHBREL$, applies from the right the Householder transformation to the blue rectangle. This operation creates non-zero elements in the orange triangular border shown in Fig. 3.3. Then, the $xHBREL$ kernel also generates the Householder vector which annihilates the first column, i.e. the elements contained in the rectangle with the blue border. The Householder transformation is then applied from the left to the blue rectangle. The application of this transformation to the rest of the band matrix is performed by the next call to the $xHBLRU$ and the $xHBREL$ kernel. The annihilation of these elements avoids that the band size of the matrix increases during the tridiagonalization process.

The classical implementation of the bulge-chasing technique annihilates the whole orange triangle at each step, however the comparison between the elements
affected by the different kernels, shows that only the first column has to be annihilated. The black rectangle in Fig. 3.3 represent the elements affected during the first execution of xHBREL of the first sweep, compared to the elements affected by the kernels of the second sweep. It is clear that the elements of the first column of the black rectangle are outside of the blue rectangle, but the rest of the elements is inside. Hence the rest of the elements will be annihilated in the next sweeps. As a result, both the computational cost of the bulge chasing as well as the number of Householder reflectors, which defines the matrix Q_2, are reduced compared to the classical implementation. The reduced number of Householder reflectors will also reduce the computational cost of the eigenvector back-transformation.

The third kernel, xHBLRU, applies the transformation generated in the previous kernel (xHBREL) from the left and from the right to the next Hermitian block (the green triangles in Fig. 3.3).

Each sweep of the bulge-chasing algorithm annihilates the extra elements of one column of the band matrix, thus $M - 2$ sweeps are needed to conclude the tridiagonalization, where M is the matrix size. Each sweep can be expressed as one call to the first kernel followed by a cycle of calls to the second and third kernel.

Since this algorithm relies on memory bound operation executed on small matrices which performs poorly on accelerators, the second stage is fully scheduled on the CPU cores using a static runtime environment.

3.4.3 Eigenvectors back-transformation

To obtain the eigenvectors of the matrix A_s, the eigenvectors of the tridiagonal eigenproblem E has first to be updated applying the Householder transformations generated during the bulge-chasing, and then updated applying the Householder transformations generated by the reduction to band.

First the back-transformation with the unitary matrix computed by the bulge-chasing has to be performed.

Let us denote with (v_{2i}^k, τ_{2i}^k) the k-th Householder reflectors generated during the i-th sweep by the bulge-chasing during the second stage. The reflector are stored in the matrix V_2 (see Fig. 3.4), such that the i-th column of the matrix contains the reflectors generated during the i-th sweep, in order of creation (first created on top).

The application of these reflectors is not simple and requires special attention,
3.4 Two-stage solver for the standard eigenproblem

![Diagram](image)

Figure 3.4: Order of application of the Householder reflectors block generated by the bulge-chasing.

especially on the order of application. The dependency order depends on the order in which the reflectors has been created by the bulge-chasing procedure, and on the rows of the eigenvectors affected. The reflectors represent the unitary matrix which reduces the band matrix to a tridiagonal matrix, thus each reflector has length n_b, where n_b is the band matrix bandwidth.

If the reflectors are applied one-by-one, the implementation would rely on level 2 BLAS. To avoid the memory bound operations, the reflectors are grouped and applied block-by-block, using Level 3 BLAS operations. Fig. 3.4 shows a possible grouping of the Householder reflectors and the order of application, which has to be followed.

Since the computation of each eigenvector is independent, we split the eigenvector matrix between the GPU and the CPUs to improve the performances of the transformation.

After the back-transformation which involves Q_2, the eigenvectors has to be back-transformed according to the unitary matrix generated in the reduction to band.

The application of the unitary matrix Q_1 generated is similar to the back-transformation used in the one-stage solver. Therefore the implementation described in Section 3.1.2 can be used for the two-stage solver.
3.5 Performance Measurements

The performance results of the generalized eigensolver presented in this section are collected running the hybrid CPU-GPU implementation with a system with 8-core Intel Xeon E5-2670 2.6 GHz CPUs and an Nvidia K20c Kepler GPU. To have a realistic assessment of the GPU accelerator, we keep the number of active sockets constant. Therefore, the non-GPU solvers are executed on a system with 16-core (two sockets) Intel Xeon E5-2670 2.6 GHz CPUs (16 threads for shared-memory routines, or 16 MPI processes for distributed-memory solvers).

Fig. 3.5 shows the time to solution of the one-stage hybrid standard eigensolver for different matrix sizes and different percentages of eigenvectors computed. The speedup of the computation of only a fraction of the eigenvectors compared to the computation of all the eigenvectors is small, since the tridiagonalization phase in this solver is the most-time consuming part and does not depend on the number of eigenvectors computed. Fig. 3.6 shows the time spent by each part of the solver, and shows the predominance of the tridiagonalization phase in the time to solution.

On the other hand, Fig. 3.7 shows the time spent by each routine of the two-stage approach. In this case the time spent in the tridiagonalization phase is divided in two parts, the reduction to band and the bulge-chasing. Compared to
3.5 Performance measurements

Figure 3.6: Time needed by the different subroutines of the MAGMA one-stage solver to compute the eigenvalue and eigenvectors of a symmetric double precision eigenproblem with matrix size 14,000 (left) and a Hermitian double complex precision eigenproblem with matrix size 10,000 (right).

Figure 3.7: Time needed by the different subroutines of the MAGMA two-stage solver to compute the eigenvalue and eigenvectors of a symmetric double precision eigenproblem with matrix size 14,000 (left) and a Hermitian double complex precision eigenproblem with matrix size 10,000 (right).
Hybrid CPU+GPU Hermitian implementation

Figure 3.8: Ratio between the time to solution of the MAGMA one-stage solver and the MAGMA two-stage eigensolver.

In the one-stage approach, the two-stage tridiagonalization is not the most expensive phase anymore. The eigenvector back-transformation (also divided in two parts) becomes the most expensive part in the two-stage solver.

Since the back-transformation algorithm complexity depends linearly on the number of computed eigenvectors, this phase, which is the most time consuming phase, is significantly reduced when only a small fraction of eigenvectors is required. Therefore, the speedup of the computation of only a small fraction of the eigenvectors compared to the computation of all eigenvectors is larger for the two-stage solver than the one-stage solver.

Fig. 3.8 shows the ratio of the time to solution of the symmetric and Hermitian solver using the one-stage versus the two-stage approach. For each fraction of eigenvectors required the two-stage eigensolver is always faster than the one-stage solver, in both double and double complex precision. The speed-up increase, when the fraction of eigenvector computed decreases.

We now compare the performance of the hybrid CPU-GPU solvers and the state-of-art CPU-only library. Fig. 3.9 presents a comparison between the hybrid eigensolvers, the divide and conquer eigensolver (xHEGVD) available in MKL\(^1\) version 10.3, and the one- and two-stage ELPA solver, when either all or 10% (excluding MKL) of the eigenvectors are computed. The comparison shows that the hybrid solver is faster than both MKL (shared memory) and ELPA (distributed

\(^1\)https://software.intel.com/en-us/intel-mkl/
3.5 Performance measurements

Figure 3.9: Comparison between the time to solution of different implementations of one-stage and two-stage eigensolver solving a double precision symmetric eigenproblem with matrix size 14,000 (top) and a Hermitian double complex precision eigenproblem with matrix size 10,000 (bottom).
Fig. 3.10 presents the time to solution of the hybrid CPU-GPU double complex precision generalized one-stage eigenvalue solver, for different matrix sizes and different percentages of eigenvectors. Since the overhead introduced by the transformation of the generalized eigenproblem to the standard problem and the final back-transformation is small compared to the solution of the standard eigenproblem, the results are similar to the results of the standard eigenvalue solver.

Fig. 3.11 shows the comparison between the one- and two-stage approach. The speed up is slightly smaller compared to Fig. 3.8, since the extra computation
3.5 Performance measurements

Figure 3.12: Comparison between the time to solution of different implementations of one-stage and two-stage generalized eigensolver solving a Hermitian double complex precision eigenproblem with matrix size 10,000. GEVP \rightarrow EVP (General eigenvalue problem to eigenvalue problem) denotes both the Cholesky decomposition and the reduction to standard form.

due to the generalized solver is performed by the same routines that takes the same time in both approaches. Overall the two-stage solver is always faster than the one-stage solver.

Fig. 3.12 shows the comparison of the hybrid solvers with the generalized eigensolvers included in the state-of-art library, when either all or 10% of the eigenvectors are computed. To solve the generalized eigenvalue problem, the hybrid two-stage solver is faster than the other solvers.
Chapter 4

Multi-GPU implementation

To exploit the performance of systems which includes multiple GPUs per node, a hybrid multi-GPU implementation of the generalized eigensolver has been developed.

As for the implementation of the single-GPU solver, some components of MAGMA, PLASMA, LAPACK, and vendor-optimized BLAS libraries were used (when sufficiently efficient) or improved including the support to multiple GPU per node.

The MAGMA package already provided some of the routines needed for the implementation of the generalized eigenvalue solver. These routines are described in Section 4.1.

The description of the algorithm and the results of the implementation of the hybrid multi-GPU Hermitian positive definite generalized eigenvalue solver, has been published by Haidar et al. [2]. The implementation has been included in the MAGMA package.

4.1 Original MAGMA implementations

4.1.1 Cholesky decomposition

Yamazaki et al. [57] present an implementation of Cholesky decomposition for multiple GPUs per node. The algorithm is an extension of the single GPU implementation. The matrix B is distributed using a 1D block cyclic row distribution. As for the single GPU implementation the computation of the B_{ii} block is performed by the CPU, while the level 3 BLAS operations are performed in parallel by the GPUs.
4.1.2 One-stage tridiagonalization

Yamazaki and al. [3] present the algorithm and implementation of the one-stage multi-GPU Hermitian tridiagonalization. I. Yamazaki developed and implemented the Hermitian (symmetric) multi-GPU matrix-vector multiplication and used it for the implementation of the one-stage tridiagonalization. The algorithm uses a 1D block cyclic column distribution and executes the xHEMV and xHER2K operation with multiple GPUs.

4.1.3 Two-stage tridiagonalization

Haidar el al. [58] developed the multi-GPU implementation of the reduction to band form, similar to the single-GPU implementation described in section 2.3.1. The algorithm uses a 1D block cyclic column distribution. The QR decomposition is performed by the CPU, while the computation of the W matrix and the update of the trailing matrix are performed using communication optimized multi-GPU implementations of the xHEMM and xHER2K routines. To improve the performance, this implementation uses the look-ahead technique.

The second stage is represented by the bulge-chasing. Since it is composed by fine-grained memory-bound computational tasks, which perform poorly on the accelerators, it is executed by the CPUs. The algorithm and implementation of this routine can be found in Section 3.4.2. Therefore the time spent by this routine will be independent on the number of GPU used.

4.2 Generalized to standard eigenproblem

4.2.1 Transformation to standard eigenproblem

The hybrid CPU-GPU implementation of the xHEGST routine (section 3.2), which transforms the generalized to a standard eigenvalue problem, has been extended to allow the use of multiple GPU per node.

The matrix A is distributed between the memory of the GPUs in a column-wise 1D block-cyclic layout. On the other hand the L matrix remains in the host memory, and is partially copied to the GPU memory, when is required by the computation.

The computation can be divided in three phases. (A) The CPU performs the update of A_{ii} using the LAPACK xHEGST routine, and the GPU, which owns the
Multi-GPU implementation

Figure 4.1: Matrix notation used in the transformation of the eigenvectors of the standard to the generalized problem. \(L \) is a lower triangular matrix, while \(Y \) is the matrix containing the eigenvectors.

panel, partially updates the panel. (B) The panel is then distributed to each GPU and the trailing matrix is updated in parallel. (C) The finalization of the computation of the panel is also performed only by the GPU where it is stored.

One can note that the \(i \)-th cycle of Algorithm 4, except line 7 requires only the diagonal block \(L_{ii} \) and the panel \(L_i \) of the \(L \) matrix. Since the panel \(A_i \) is not accessed anymore during this routine the triangular solve in line 7 may be delayed. Moreover, the triangular solve may be performed panel by panel, using a block algorithm. Therefore, during the \(i \)-th cycle, each GPU can compute the part of the triangular solves which involves \(L_{ii} \) and \(L_i \) which has been delayed in the previous cycles.

To improve the performance of the routine, the copy of the diagonal block and the panel of the matrix \(L \) which are used in the \(i+1 \)-th cycle is overlapped with the computation of \(i \)-th step. We use a look-ahead technique to reduce the idle time of the GPUs that do not own the panel. During the update of the trailing matrix of the \(i \)-th cycle (phase (B)), the GPU which holds the next panel \((A_{i+1}) \), prioritize its update. Then, this GPU updates partially this panel (phase (A) of \(i+1 \)-th cycle) and broadcasts it to the other GPUs. Afterwards it concludes the trailing matrix update of the \(i \)-th step (phase (B)).

4.2.2 Eigenvectors back-transformation

Since the transformation of each eigenvector is independent the tranformation \(X = L^{-H}Y \) can be computed independently by each GPU on a subset of eigenvectors.

The eigenvectors are distributed among the GPUs, using a 1D column block
distribution (see Fig. 4.1), and the triangular solve is performed panel by panel using a block algorithm. The the \(i\)-th block of rows of the Cholesky factor \(L\) is copied to the memory of the GPUs, which perform the operations \(Y_i = L_{ii}^{-H}Y_i\), and \(Y_{1:i-1} = Y_{1:i-1} - L_i^HY_i\) independently. To improve the performance of the routine, the \(i+1\)-th block of rows is copied to the memory of each GPU, when they are performing the computation which involves the \(i\)-th block of rows of \(L\).

4.3 Solver for the standard eigenproblem

4.3.1 Multi-GPU divide and conquer implementation

As discussed in Section 3.3, the most expensive part of the Divide and Conquer algorithm described in Section 2.2.2 is the part in which the solutions of child subproblems are merged to find the solution of the parent problem.

While the eigenvectors of the child problems are distributed among the GPUs, the eigenvalues and the eigenvectors of the rank-one modification problem are computed by the CPU cores. The resulting eigenvectors are then distributed between the GPUs. The different eigenvectors matrix are distributed according to Fig. 4.2. The multiplications between the eigenvectors of the child problems and the eigenvectors of the rank-one modification are performed by the GPUs.

The specific shape and distribution of the matrix-matrix multiplication constrains the number of GPU used to be even. Half of the GPU performs the upper part of the multiplication, while the other half performs the lower part. The implementation can be generalized to use any number of GPUs, but, since the tridiagonal solver is not one of the parts that requires most of the time, we do not expect a large improvement of the full solver.

![Figure 4.2: Distribution of the eigenvector matrices during the Divide and Conquer phase.](image)
To increase the performance, the number of FLOP executed can be reduced computing only the required eigenvectors during the last merge-phase.

4.3.2 Eigenvectors back-transformation

The multi-GPU extension of the back-transformations of the eigenvectors does not require special attention, since the transformation of each eigenvector is independent.

The eigenvectors are distributed among the GPUs, using a 1D column block distribution, and each GPU performs the back-transformation independently. A block of Householder reflectors is copied to the memory of each device, which applies the transformation to its block of eigenvectors. To improve the performance, the host-device communication is overlapped with the GPU computation. The block of Householder reflectors needed by the \(i+1\)-th cycle is copied, while the GPU is applying the \(i\)-th block of reflectors.

4.4 Performance measurements

The hybrid multi-GPU generalized eigensolver has been tested on an experimental machine, which provides a dual-socket six-core Intel Xeon 5675 running at 3.07 GHz and 8 NVIDIA Fermi M2090 GPUs. On the other hand we tested the CPU-only distributed memory libraries on a tightly coupled computing cluster system. Each node of the cluster offers a the dual-socket six-core Intel Xeon 5650 processor architecture, running at 2.6 GHz.

To study the performance of the multi-gpu implementation we examine the scaling of the multi-GPU implementation of the generalized eigenvalue solver.

Fig. 4.3 shows the speedup obtained by the multi-GPU double precision implementation of real symmetric positive definite generalized eigenvalue solver compared to the single GPU implementation. Since the memory of a single GPU is not large enough to run problems, whose matrix size is larger than 20000, the missing results are extrapolated from the 20000 results, based on the \(O(M^3)\) FLOP required by the routines, where \(M\) is the matrix size. The extrapolation is applied to each routine, except the bulge-chasing, since it is executed by only the CPUs and its results are constant for different number of GPUs.

The strong scalability of the routines can be observed comparing the results with a given matrix size. When the speedup is equivalent to the number of GPU used, perfect scaling is observed. The results show a very good scalability for our
4.4 Performance measurements

Figure 4.3: Scaling of the hybrid implementation with respect to the number of GPUs.

implementation. Although some kernels of this algorithm are strictly multicore CPU implementations (the bulge chasing and the computation of the eigenvalues and eigenvectors of the rank-one modification during the Divide and Conquer eigensolver), the multi-GPU implementation provides an attractive scalability. E.g. using four GPUs, the eigensolver is three time faster than using a single-GPU, which is considered a very good result.

Using a larger number of GPUs, larger matrices are required to achieve the asymptotic scaling behaviour. The reason is simple, for small matrix sizes each GPU receive a small portion of the full matrix, which is not enough to perform intensive operations.

Fig. 4.4 and Fig. 4.5 reports the speedup obtained by the multi-GPU implementation of each of the routine (except the bulge-chasing which executes on the CPUs only) which are used in by the generalized eigensolver. The Cholesky decomposition doesn’t obtain a very good scalability, however, since it is the part which requires less time to execute it does not have an important impact on the scalability of the full solver. On the other hand the transformation from generalized to standard eigenproblem an the band reduction achieve a very good scalability.

The divide and conquer results show the limitation of the number of GPU
Figure 4.4: Scaling of the double precision hybrid implementation of the routines of the generalized eigensolver with respect to the number of GPUs.
Figure 4.5: Scaling of the double precision hybrid implementation of the routines of the standard eigensolver, with respect to the number of GPUs.
that can be used, and show a limited scalability. When the computing intensive
kernels are executed by multiple GPUs, the time needed reduces, and thus the
time required to solve the memory bound operations becomes dominant limiting
the scalability. Finally the back-transformations obtain very good scalability
results.

Fig. 4.6 shows how the time to solution is divided between the different routines
for both the real and complex version of the solver.

In Fig. 4.7 the performance of the multi-GPU eigensolver are compared with the
performance of the optimized state-of-art eigensolvers included in ScaLAPACK
and ELPA library. The results show that the two-stage ELPA implementation
has better scalability compared to ScaLAPACK.

The time to solution of the two-stage ELPA solver with 8 respectively 32 CPU
sockets nodes and of the multi-GPU solver with 1 and respectively 4 GPUs are
similar when all the eigenvectors are computed. Therefore the results shows that
the hybrid multi-GPU solver can achieve the same performances as a CPU-only
solver using less resources. This behavior has also been observed for matrix of
size 30000 (Fig. 4.8). The ELPA solver running on 16 nodes cores requires 327
seconds to find all the eigenpairs, while the hybrid multi-GPU solver running on
two CPU sockets and 4 Fermi GPUs needs 314 seconds.

The same behaviour has been observed when only 20% of the eigenvectors

Figure 4.6: Time to solution of the different routines for the generalized eigen-
solver with 1 and 4 GPUs.
4.4 Performance measurements

Figure 4.7: Comparison of the time to solution of different double precision implementations of the generalized eigenvalue solver. A problem with matrix size $M = 20000$ is solved computing either all or only 20% of the eigenvectors.

Figure 4.8: Comparison of the time to solution of different double precision implementations of the generalized eigenvalue solver. A problem with matrix size $M = 30000$ is solved computing either all or only 20% of the eigenvectors.
is computed. For example, for matrices of size 20000 and 30000, the ELPA solver running on 192 processors requires 63 seconds and 218 seconds respectively, while our solver running on four GPUs requires 57 seconds and 174 seconds respectively. Similar to the results for the single GPU implementation (Section 3.5), we observe that the two-stage approach, used by our implementation and by the ELPA library, is significantly faster than the one stage approach implemented in ScaLAPACK, when only a fraction of the eigenvectors is computed.
4.4 PERFORMANCE MEASUREMENTS
Chapter 5

Distributed hybrid CPU + GPU eigenvalue solver

The implementation of the distributed hybrid eigenvalue solver, is based on the Cray’s custom implementation of the linear algebra routines. The description of the routines used and the reason we use implementation only available on Cray’s systems are presented in Section 5.1.

The description of the algorithm and the results of implementation of the hybrid multi-GPU Hermitian positive definite generalized eigenvalue solver, has been published by Solcà et al. [4].

5.1 The libsci library

Similarly to cuBLAS for the single node implementation, our implementation of the distributed eigen solver requires a GPU-aware implementation of the PBLAS routines. Precisely, our implementation requires that the PBLAS routines can be executed when the matrices involved are located in the GPU memory distributed among the nodes, to avoid unnecessary copies between the host and device memory.

Beside the CPU implementation of the linear algebra routines, Cray provides on their hybrid supercomputing systems hybrid CPU-GPU implementations of a selection of routines. Precisely the libsci library provide the vendor optimized CPU implementations of the BLAS, LAPACK, PBLAS and ScaLAPACK routines, while libsci_acc provides hybrid CPU-GPU implementation of some of the routines included in libsci.
5.2 Generalized to standard eigenproblem

The Cray’s libraries fulfill the requirements of the hybrid distributed implementation of the generalized eigensolver. In particular libsci_acc provides a hybrid CPU-GPU implementation of the level 3 PBLAS routines which can be executed when the matrix are distributed in the GPU memory, as well as when the matrices are distributed in the host memory.

5.2 Generalized to standard eigenproblem

5.2.1 Cholesky decomposition

The Cholesky decomposition is the first step of the transformation from generalized to standard eigenvalue problem. The matrix B is distributed among the compute nodes in a 2D block cyclic fashion with block size n_d (same distribution as ScaLAPACK), and is stored in the GPU memory, to avoid unnecessary copies between host and device memory. The diagonal block B_{ii} is always located on a single node, while the panel B_i is owned by a single column of nodes (Fig. 5.1).

We use the right-looking algorithm (Algorithm 3), which proceeds panel by panel. The width n_b of the panel is chosen such that the Cholesky decomposition of the diagonal block $B_{ii} = L_{ii}L_{ii}^H$, can be executed on a single node, using the hybrid Cholesky decomposition ($xPOTRF$) included in the libsci_acc library. Therefore n_b has to be a divisor of the block distribution size n_d. The update of the panel $L_i = B_iL_{ii}^{-H}$ and of the trailing matrix $B_{T(i)} = B_{T(i)} - L_iL_i^H$ are executed using the hybrid CPU-GPU Level 3 PBLAS operations $pxTRSM$ and $pxHERK$ provided by the libsci_acc library.

5.2.2 Transformation to standard eigenproblem

The transformation of the generalized eigenvalue problem to a standard eigenproblem, computing $A_s = L^{-1}AL^H$, is based on the ScaLAPACK $pxHEGST$ algorithm. The matrices A and L are distributed in a 2D block cyclic way with block size n_d, the same way used by ScaLAPACK, in the device memory.

The algorithm proceed panel by panel, as described by Algorithm 4, and the computation can be divided in four phases. (A) the computation of the diagonal block A_{ii}, which is located in a single node, is performed using the single GPU implementation presented in section 3.2, and (B) the panel A_i is partially updated using $pxTRSM$ and $pxHEMM$ included in libsci_acc. Afterwards, (C) the trailing
Distributed hybrid CPU + GPU eigenvalue solver

Figure 5.1: Matrix notation used in the description of the algorithms. \(A \) is a \(n \times n \) Hermitian matrix, therefore only the elements of the lower triangle are needed to fully describe the matrix. The matrix is distributed between the nodes with a 2D block cyclic distribution with block size \(n_d \). Each black square represent one of these block and it is stored on a single node. \(A_{ii} \) is the diagonal block, \(A_i \) the panel, and \(A_{T(i)} \) the trailing matrix of the \(i \)-th step. The width of the panel is \(n_b \).

The matrix is updated using \texttt{pxHER2K}, and (D) the final update of the panel \(A_i \) is computed.

To increase the parallelism of the routine, phase (D) is delayed at the end of the implementation. This modification of the execution order is possible, since the panel \(A_i \) is not accessed anymore after the \(i \)-th cycle. At the end of the routine phase (D) of all the cycles are executed in parallel using level 3 PBLAS routines provided by \texttt{libsci_acc}.

Similarly to the Cholesky decomposition the width \(n_b \) of the panel has to be chosen such that each diagonal block \(A_{ii} \) is located on a single node. Thus, \(n_b \) has to be a divisor of the block distribution size \(n_d \).

5.2.3 Eigenvectors back-transformation

The transformation of the eigenvectors of the standard eigenvalue problem to the eigenvectors of the generalized problem, doesn’t require any additional implementation, since it is performed directly using the \texttt{libsci_acc} hybrid implementation of the \texttt{pxTRSM} routine.
5.3 Two-stage solver for the standard eigenproblem

In the two-stage tridiagonalization, the first stage reduces the dense Hermitian matrix A_s to band form (band reduction), and the bulge-chasing reduce the band matrix to tridiagonal form.

5.3.1 Reduction to band

The first stage of the tridiagonalization process is represented by the reduction to band. The matrix A_s is distributed among the compute nodes in a 2D block cyclic fashion with block size n_d, and it is stored in the device memory.

We use Algorithm 7, which factorizes each panel and updates the trailing matrix. The computation of the panel A_i, which consists in a QR factorization shifted by n_b under the diagonal, is performed by the CPUs of the column of MPI ranks which store the panel, using the ScaLAPACK pxGEQRF routine. The resulting Householder vectors V_i are then copied to the GPUs, which prepares the temporary matrix $W_i = X_i - \frac{1}{2}V_iT^H_iV_i^HX_i$, where $X_i = A_r^T(i)V_iT_i$, using the implementation of the general and Hermitian matrix-matrix multiplication provided by libsci_acc. Then, the trailing matrix is updated on the GPUs using pxHER2K.

Similar to the single node implementation, the look ahead technique can be used. The update of the trailing matrix is divided in two parts, the first updates the panel A_{i+1} (yellow panel in Fig. 5.2), and the second updates the rest of the trailing matrix (green portion in Fig. 5.2), such that the factorization of the $i+1$-th panel can be performed simultaneously to the second part of the update. Unfortunately, in this case, the look ahead technique provides limited speedup to the computation, since both the trailing matrix update and the panel computation require communication between the nodes.

5.3.2 Tridiagonalization

The distributed implementation of the bulge-chasing algorithm requires extra attention to the data dependencies and data movements between the different nodes.

The band matrix A_b is distributed using a 1D block cyclic fashion, and the communication happens only between neighbour nodes. To minimize the com-
Distributed hybrid CPU + GPU eigenvalue solver

Figure 5.2: Notation for the sub-matrices used in the reduction to band. A is an Hermitian matrix which is distributed between the nodes with a 2D block cyclic distribution with block size n_d. Each black square represent one of these block and it is stored on a single node.

Communication between nodes, a ghost region (Fig. 5.3) has been created. This region contains the part of the matrix which is moved back and fourth between the two neighbour nodes.

The computation is performed with the same kernels used for the single node implementation (Section 3.4.2). Fig. 5.3 shows the ghost region and the elements modified by the kernels (red for the first sweep, green for the second sweep). Only the tasks which affect the data in the ghost region require special attention. It is easy to notice that the fifth green task (G5), requires just an extra column on the right compared to the fifth red task (R5). Therefore at each sweep one column of the matrix has to be copied to the node of the previous rank, while the Householder vector created by the sixth task, is copied to the node of the next rank to perform the seventh and eighth task. Proceeding in this way, after n_b sweeps the full ghost region is stored on the left, hence it has to be copied completely on the node of the next rank.

As in the single node hybrid CPU-GPU implementation, the bulge-chasing is implemented to perform entirely on the CPUs. The main reasons of this choice are the large communication requirements and the poor performance of the GPUs during the execution of fine-grained memory-bound operations. The tasks of the bulge-chasing are distributed among the CPUs in the following way. The first CPU thread manage the communication with the neighbour nodes, while computational tasks are scheduled between the remaining CPU threads.
5.3 TWO-Stage Solver for the Standard Eigenproblem

Figure 5.3: The ghost region which contains the shared data region between two neighbour nodes of the bulge chasing. The red and green regions represent the memory affected by the kernels during the first sweep and respectively the second sweep.

5.3.3 Tridiagonal eigensolver

The solution of the tridiagonal eigenproblem is performed using the Divide and Conquer Algorithm.

The implementation is derived from the ScaLAPACK implementation of the pxSTEDC routine, in which we included the same improvements used for the single node implementations (See Section 3.3). The eigenvector matrices of the child problems E_1 and E_2 are distributed in the memory of the GPUs, while the eigenvectors of the rank 1 modification are generated in parallel by the CPU threads, and copied to the GPUs. The matrix-matrix multiplication which find the eigenvectors E of the parent problem are performed using the libsci_acc routines.

To reduce the number of FLOP only the requested eigenvectors are computed during the last merge of the child problems.

5.3.4 Eigenvectors back-transformation

In the two-stage approach, the first stage reduces the original dense matrix A_s to a band matrix $A_b = Q_1^H A_s Q_1$, while the bulge-chasing reduces the band matrix A_b to the tridiagonal matrix $T = Q_2^H A_b Q_2$. Therefore the eigenvectors Z of the Hermitian eigenproblem represented by the matrix A_s are found by back-transforming the eigenvectors E of the tridiagonal matrix using $Z = Q_1 Q_2 E$.
Figure 5.4: The distribution of the householder reflectors and their order of application V_2 (Left), and the distribution of the eigenvector matrix (right) on a (2x2) MPI grid.

Figure 5.5: The part of the eigenvector matrix affected by the application of the transformation defined by two of the diamond shaped Householder reflectors blocks. The green block with purple border belong to the first category while the yellow block with orange border belong to the second category.
The matrix Q_2 is stored in a diamond shaped way, in a row-wise block-cyclic fashion. Figure 5.4 shows an example of the distribution of the Householder vectors among 4 nodes of a 2 by 2 grid. Each node is represented by a different color. The blocks of Householder vectors can be divided into two categories. The first category consist of the block of Householder vectors which modify only the eigenvector part stored by one row of the node grid, e.g. the green block with purple border in Fig. 5.5, which affect only the region of the eigenvectors highlighted with the purple border. On the other hand the second category consists in the Householder blocks which modify the data owned by two rows of the node grid, e.g. the yellow block with orange border in Fig. 5.5 which affect the region of the eigenvectors highlighted by the orange border. These blocks are identified with the red border in Fig. 5.4.

The application of the transformation defined by one of the Householder reflector blocks included in the first category proceeds in the following way. The block of reflectors is broadcasted to each node of the corresponding row of the node grid, then each node applies independently the transformation to the local part of the eigenvector matrix.

On the other hand the application of the transformation defined by a Householder reflector block which belong to the second category, requires an extra communication step. The block of reflectors is broadcasted between the two rows of the node grid. The application of the transformation is not independent since it requires a sum reduction between the two rows.

In our implementation the CPUs are responsible to manage the communication, while the GPUs apply the Householder transformations using local Level 3 BLAS operation (cuBLAS), which allow to have an overlap between communication and computation, since during the application of an Householder block the next block can be distributed. However, the overlap is full only for the transformations which belong to the first category. For the transformation which belong to the second category the sum reduction cannot be overlapped, hence the performance of this routine is not optimal.

The back transformation with Q_1 is similar to the classical back transformation for the one-stage algorithm. It correspond to the ScaLAPACK pxUNMQR routine which use efficient Level 3 PBLAS operations. In our implementation both the Householder reflectors and the eigenvectors are stored in the device memory, and the operation are performed using the implementation of the level 3 PBLAS operations provided by libscic_acc.
5.4 Performance Measurements

5.4.1 Eigensolver Benchmark

To study the performance of the distributed hybrid CPU-GPU solver we compare it to the multicore implementation of the ELPA2 solver. The performance of the solver is compared using \(n \) nodes for the hybrid solver and \(2n \) nodes for the CPU-only ELPA2 solver. This choice satisfies the condition that the number of active sockets is equal for the different configurations. Moreover, since the multi-core solver allows the use of different MPI + OpenMP configurations, we denote them with the notation \((N_r,R:N_t,T)\), where \(N_r \) is the number of MPI ranks per socket, while \(N_t \) is the number of OpenMP threads per rank. The configurations tested have been chosen such that \(N_r \cdot N_t = 8 \), i.e. all the CPU cores of each node are used. On the other hand, the hybrid CPU-GPU configuration used is one MPI rank per node, 8 OpenMP threads.

Fig. 5.6a and Fig. 5.6b show the weak scaling of the time and respectively energy to solution of the generalized eigenvalue solver, when all resp. 20% of the eigenvectors are computed. The run were performed using \(n = (M/10240)^2 \), where \(M \) is the matrix size. The quantity of nodes used represent the minimum amount of resources needed by the hybrid solver to execute. In fact the size of the eigenproblem that can be solved by our implementation is limited by the amount of memory available in the NVIDIA K20X GPU. The ELPA2 solver has better performance, when it is executed using the configuration with more MPI ranks, i.e. one rank per core, however the application may require that the computation is run on a configuration that is not optimal (see next Section). The hybrid solver is \(\sim 3 \) times more energy efficient and 1.5 times faster, compared to the ELPA2 executed using the best configuration.

Fig. 5.7a and Fig. 5.7b shows the results doubling the number of nodes, i.e. \(n = 2(M/10240)^2 \). In this case the hybrid implementation and ELPA2 executed using the optimal configuration have a comparable time to solution to solve a problem of the same size. However, the CPU-only runs requires between 2 and 3 times more energy, than the hybrid architecture.

The comparison of Fig. 5.6a and Fig. 5.7a shows that the strong scaling of the ELPA2 solver is better than the hybrid eigenvalue solver.
5.4 Performance measurements

Figure 5.6: Weak scaling of the time and the energy to solution of ELPA2, being run with different configuration, compared to the hybrid generalized eigen-solver. The hybrid solver is executed on \((M/10240)^2\) nodes, while ELPA2 on \(2(M/10240)^2\) nodes, where M is the matrix size. The ratio is computed using the value of the hybrid solver as reference.
Figure 5.7: Weak scaling of the time and the energy to solution of ELPA2, being run with different configuration, compared to the hybrid generalized eigen-solver. The hybrid solver is executed on $2(M/10240)^2$ nodes, while ELPA2 on $4(M/10240)^2$ nodes, where M is the matrix size. The ratio is computed using the value of the hybrid solver as reference.
5.4 Performance measurements

<table>
<thead>
<tr>
<th>set HOC [s]</th>
<th>HC = εOC [s]</th>
<th>the rest [s]</th>
<th>total [s]</th>
<th>energy [kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>28×28 (2R:4T) ScaLAPACK</td>
<td>382.5</td>
<td>3166.8</td>
<td>69.2</td>
<td>3618.5</td>
</tr>
<tr>
<td>28×28 (2R:4T) ELPA2</td>
<td>383.2</td>
<td>705.3</td>
<td>63.6</td>
<td>1152.1</td>
</tr>
<tr>
<td>20×20 (1R:8T) ELPA2</td>
<td>374.0</td>
<td>720.5</td>
<td>61.1</td>
<td>1155.6</td>
</tr>
<tr>
<td>14×14 (1R:8T) hybrid</td>
<td>159.9</td>
<td>741.8</td>
<td>84.8</td>
<td>986.5</td>
</tr>
<tr>
<td>20×20 (1R:8T) hybrid</td>
<td>96.9</td>
<td>652.1</td>
<td>58.9</td>
<td>807.9</td>
</tr>
</tbody>
</table>

Table 5.1: Execution time (in seconds) and energy consumption (kWh) per iteration of major parts of the CPU-only and hybrid CPU-GPU versions of the LAPW code

5.4.2 Full potential LAPW application

A. Kozhevnikov, developed and implemented the new LAPW library SIRIUS\(^1\), using the algorithm presented in Section 3 of [4]. The main goal of the library is to fix the main performance bottleneck in the ground-state calculations in both Exciting\(^2\) and Elk\(^3\) codes, or any other LAPW-based all-electron code.

SIRIUS is designed to invoke the appropriated architecture dependent backend and the distributed eigensolvers, for the system used.

To test the library and the eigensolver, the full-potential DFT ground states simulation of a Li-ion battery cathode has been chosen. The unit cell of the material contains 432 units of \(CoO_2\) and 205 atoms of lithium, which corresponds to a total of 1501 atoms. In this example the matrix size of generalized eigenvalue problem is \(\sim 115000\), and \(\sim 7900\) eigenvectors are required.

The results of the test are collected in Table 5.1. The first column represent the node configuration and the eigensolver used in the simulation. The second and the third columns present the time spent to set-up and respectively to solve the generalized eigenvalue problem. The fourth column includes the time spend by the remaining parts of the DFT iteration, which include the construction of the wave-functions, the construction of the new charge density, and the calculation of the new effective potential. This part is executed only with the CPUs. The fifth and sixth columns present the total time spent respectively the total energy consumed by an iteration.

The results show that the full-potential simulation of large unit cells can be performed in less than 20 minutes per iteration, which represent an acceptable time using a relatively small amount of resources.

\(^1\)https://hpcforge.org/projects/exciting-elk
\(^2\)http://exciting-code.org
\(^3\)http://elk.sourceforge.net
The test of the SIRIUS library, conducted by A. Kozhevnikov, has been executed using different eigensolver implementations. The CPU-only runs were executed on a 28×28 MPI grid with 2 MPI ranks per node, and 4 OpenMP threads per MPI task (using ScaLAPACK, and ELPA2 solvers), and on a 20×20 MPI grid with a MPI rank per node and 8 OpenMP threads per task (ELPA 2). The total number of nodes used is 392 in the first case, and 400 in the second case, which are comparable.

As shown in Section 5.4.1 the ELPA2 solver performs more efficiently with more MPI ranks per socket and less OpenMP threads, however, a memory limitation in the entire application, forced the use of the configurations with fewer MPI ranks per node. The results shows that the ELPA2 solver is much more efficient than the ScaLAPACK solver. The results of the ELPA2 solver are similar in terms of time and energy to solution. These results do no surprise, since both configurations use a similar number of nodes.

The hybrid CPU-GPU solver has been tested on a 14×14 MPI grid using 8 OpenMP threads per node, i.e. 196 nodes. The total number of active socket (counting CPUs and GPUs) is 392, which is the same as the number of used CPU sockets for the CPU-only runs. This run is about 15% faster and two times more energy efficient compared to the ELPA2 solver runs.

As comparison a 20×20 hybrid CPU-GPU run has been performed. The result shows the large configuration is about 20% faster than the smaller hybrid run, however it consumes about 50% more energy, hence it is less energy efficient.
CHAPTER 6

MODELING POWER CONSUMPTION

6.1 RELATION BETWEEN TIME AND ENERGY TO SOLUTION

6.1.1 MACHINE ABSTRACTION

To develop the time and energy to solution model we consider a system composed of homogeneous nodes connected through a network. We assume that the parallel decomposition is divided into two levels, the inter-node and the intra-node parallelism. The inter-node communication is handled by a message passing library, e.g., MPI. At the node-level, the parallel decomposition depends on the architecture used.

We assume two different node-architectures, one with one or multiple sockets with multi- or many-core processors, and the second has a multi-core CPU socket and a GPU accelerator. For the first architecture, the parallelism is handled by a mixture of a communication library (the same used for the inter-node parallelism) and a threading library (e.g. OpenMP). Therefore the number of process n_p per node, and as well the number of threads n_t associated with a process may vary. In the study of the eigenvalue solver, we keep the total number of threads running on a node $n_p \times n_t$ equal to the total number of physical cores on a node, however the model will not include this limitation.

For the second architecture, we assume that the parallelism in handled by OpenMP on the host and CUDA for the accelerator. In this case the decomposition has one process per node, i.e. $n_p = 1$, and we fix n_t to the number of physical cores of the CPU socket.
6.1 RELATION BETWEEN TIME AND ENERGY TO SOLUTION

6.1.2 TIME AND ENERGY TO SOLUTION

For simplicity we start to analyze a CPU-only application, which is parallelized exclusively with the MPI library. In Section 6.1.3 the model is extended to the remaining architectures we consider.

For the sake of analysis, we split the computation performed by the application in three parts. The parallel part contains all the operations that can be split between the different nodes. The serial part contains the operations which are executed identically on the different nodes or which cannot be parallelized. The communication time, the time spent in the last part, can be divided into two sub-parts, one independent on the number of nodes \(N \) (e.g., next neighbour communication), and one part which is proportional to the logarithm of \(N \). The linear combination of the two terms allows for describing any collective communication (except MPI_Alltoall) within a communicator of size \(\alpha N^\beta \), where \(\alpha, \beta > 0 \), since \(\log_2(\alpha N^\beta) = \log_2(\alpha) + \beta \log_2(N) \).

We denote with \(\tau_{c,cst} \) the first part of the communication time which is constant, and with \(\tau_{c,co} \log_2(N) \) the time of the second sub-part. Furthermore we write as \(\tau_p, \tau_s \), the times needed to run the parallel and, respectively, the serial part, using a single process (MPI-rank). The time to solution of the model can be written as

\[
\tau = \frac{\tau_p}{N_p} + \tau_s + \tau_{c,cst} + \tau_{c,co} \log_2(N).
\]

(6.1)

For convenience we define the following parameters

\[
\tau_0 = \frac{\tau_p}{n_p},
\]

(6.2)

\[
\tau_1 = \tau_s + \tau_{c,cst},
\]

(6.3)

\[
\tau_2 = \tau_{c,co},
\]

(6.4)

which are independent of \(N \). The resource time \(T_N = N \tau \) consumed by the application is thus given by

\[
T_N = \tau_0 + N \tau_1 + N \tau_2 \log_2(N).
\]

(6.5)

To model the energy to solution consumed by the application, we proceed in a similar manner. Again, we divide the energy consumed by the application into the same three parts. We denote with \(P_p, P_s, \) and \(P_c \) the average power consumed in the parallel, the serial, and the communication part of the computation,
respectively. For convenience we also define the constants

\[P_0 = P_p, \]
\[P_1 = \frac{1}{\tau_1} (P_s \tau_s + P_c \tau_{c,\text{est}}), \]
\[P_2 = P_c, \]

which are independent of \(N \). The total energy to solution is then

\[E = P_0 \tau_0 + N P_1 \tau_1 + N P_2 \tau_2 \log_2 (N). \]

6.1.3 MODEL EXTENSION

The model presented in the previous section, should be extended to cover multi- and many-core based node architecture as well as hybrid node architectures, and their respective node-level parallel decomposition. The multi-core architecture allows two different node-level decompositions, using a communication library and a threading library. We again divide the computation into parallel, serial, and communication parts. In this case, the parallel part can also be divided into a single and multi-thread part. On the other hand, the serial part is composed of three sub-parts: a single thread part, a multi-thread part in which each thread executes the same computations, and a second multi-thread part in which the threads cooperate to perform the operations in parallel.

We can now redefine the constants of the model, since the decompositions do not depend on the number of nodes. The parallel time \(\tau_0 \) becomes the sum of the time spent in the parallel sub-parts on one node, and \(P_p \) becomes the weighted average of the power needed by these sub-parts. Similarly, we redefine \(\tau_s \) as the time needed by the sub-components of the serial part, and \(P_s \) as the weighted average of the power needed by the serial sub-parts. Furthermore, the two components of communication time depend on the number of MPI-ranks per node.

The resource time \(T_N \) and the energy to solution \(E \) consumed by the application remain in the form of Eq. (6.5) and, respectively, Eq. (6.9).

The same procedure can be used to extend the model to the hybrid architecture.

6.1.4 RELATING THE MODEL TO OBSERVATIONS

Cumming et al. [38] observed that an affine relationship exists between the energy to solution and the consumed compute resources (measured in node-
6.1 Relation between time and energy to solution

Figure 6.1: Energy to solution vs. node-hours for the hybrid and ELPA generalized eigenvalue solvers, solving a problem with matrix size $M = 20480$. The same run was executed using different sets of physical nodes for each number of nodes N, which were also varied.

6.1.1 Time to solution

Specifically they found that

$$E = \pi_0 T_N + E_0$$ \hspace{1cm} (6.10)

holds for the regional climate model COSMO and the HPCG benchmark. In these two codes the global communication is negligible, thus $\tau_2 \approx 0$, hence we can rewrite our model for energy to solution as

$$E = P_0 \tau_0 + N P_1 \tau_1 + N P_2 \tau_2 \log_2 (N)$$

$$= (P_0 - P_1) \tau_0 + P_1 T_N + (P_2 - P_1) N \tau_2 \log_2 (N)$$ \hspace{1cm} (6.11)

$$\approx (P_0 - P_1) \tau_0 + P_1 T_N.$$

We can thus conclude from the model that the affine relationship between the energy to solution and the consumed compute resources time holds for any application in which the global communication is negligible.

Furthermore, the measurements collected for the generalized eigensolver for dense, complex, Hermitian matrices shows the same relationship holds, as demonstrated by the data presented in Fig. 6.1.
With this motivation in mind, we want to analyze the relationship between the resource time and the energy to solution, and compare with its linear regression. In order to determine how well it fits with this model, we compute the coefficient of determination r^2 of the linear regression.

Since the parallel part only adds a constant term to the resource time and to the energy to solution, we will neglect it to simplify the next calculations. Let us then define

$$\bar{T}_j = N_j \tau_1 + N_j \tau_2 \log_2 (N_j)$$ \hspace{1cm} (6.12)
$$\bar{E}_j = P_1 N_j \tau_1 + P_2 N_j \tau_2 \log_2 (N_j),$$ \hspace{1cm} (6.13)

where N_j is the number of nodes used in the j-th measurement, and \bar{T}_j, \bar{E}_j are the value of the measurements according to the model. We also define the following quantities

$$\alpha = \frac{\sum_{j=1}^{k} N_j^2 - \left(\frac{\sum_{j=1}^{k} N_j}{k} \right)^2}{k}$$ \hspace{1cm} (6.14)
$$\beta = \frac{\sum_{j=1}^{k} N_j \tau_2 \log_2 (N_j) - \left(\frac{\sum_{j=1}^{k} N_j}{k} \right) \left(\frac{\sum_{j=1}^{k} N_j \log_2 (N_j)}{k} \right)^2}{k}$$ \hspace{1cm} (6.15)
$$\gamma = \frac{\sum_{j=1}^{k} (N_j \log_2 (N_j))^2 - \left(\frac{\sum_{j=1}^{k} N_j \log_2 (N_j)}{k} \right)^2}{k},$$ \hspace{1cm} (6.16)

where k is the total number of measurements. The value of the fitting parameters is then given by

$$\pi_0 = \frac{P_1 \tau_1^2 \alpha + (P_1 + P_2) \tau_1 \tau_2 \beta + P_2 \tau_2^2 \gamma}{\tau_1^2 \alpha + 2 \tau_1 \tau_2 \beta + \tau_2^2 \gamma}$$ \hspace{1cm} (6.17)
$$\tilde{E}_0 = (P_1 - \pi_0) \tau_1 \frac{\sum_{j=1}^{k} N_j}{k} + (P_2 - \pi_0) \tau_2 \frac{\sum_{j=1}^{k} N_j \log_2 (N_j)}{k},$$ \hspace{1cm} (6.18)

where $\tilde{E}_0 = E_0 - (P_0 - \pi_0) \tau_0$ due to the shift in the resource time and energy to solution introduced.

Therefore, the coefficient of indetermination is given by

$$1 - r^2 = \frac{\tau_1^2 \tau_2^2 (P_2 - P_1)^2 (\alpha \gamma - \beta^2)}{\left(\tau_1^2 \alpha + 2 \tau_1 \tau_2 \beta + \tau_2^2 \gamma \right) \left(P_1^2 \tau_1^2 \alpha + 2 P_1 P_2 \tau_1 \tau_2 \beta + P_2^2 \tau_2^2 \gamma \right)}$$ \hspace{1cm} (6.19)

$$= \frac{(\alpha \gamma - \beta^2)}{D}. \hspace{1cm} (6.20)$$
6.1 Relation between time and energy to solution

The denominator D can be written as

$$(P_2 - P_1)^2 D = \left(\frac{\tau_1}{\tau_2}\right)^2 P_1^2 \alpha^2 + \left(\frac{\tau_2}{\tau_1}\right)^2 P_2^2 \gamma^2 + 4P_1 P_2 \beta^2 + (P_1^2 + P_2^2) \alpha \gamma$$

$$+ 2 \left(P_1^2 + P_1 P_2\right) \frac{\tau_1}{\tau_2} \alpha \beta + 2 \left(P_1 P_2 + P_2^2\right) \frac{\tau_2}{\tau_1} \beta \gamma. \quad (6.21)$$

Since we are interested in the upper bound of $1 - r^2$, the lower bound of the denominator D has to be found. The minimization over the value of τ_1/τ_2 gives

$$D \geq \frac{2P_1 P_2 (\alpha \gamma + 2 \beta^2) + (P_1^2 + P_2^2) \alpha \gamma + 4(P_1 + P_2) \sqrt{\tau_1 \tau_2} \alpha \gamma \beta}{(P_2 - P_1)^2}$$

$$= \alpha \gamma + \frac{4f}{(f - 1)^2} (\alpha \gamma + \beta^2) + \frac{4(f + 1) \sqrt{f}}{(f - 1)^2} \sqrt{\alpha \gamma \beta}, \quad (6.22)$$

where $f = \max(P_1, P_2)/\min(P_1, P_2) \geq 1$. Assuming that the time to solution and the energy to solution are measured using $1, 2, 4, ..., 2^k$ nodes, and that $f \leq 10$, the upper bound of the coefficient of indetermination is smaller than $3 \cdot 10^{-3}$. Table 6.1 presents the values for different k. Similarly using $4, 8, 16, ..., 2^k$ nodes the upper bound of $1 - r^2$ is smaller than $1.3 \cdot 10^{-3}$.

We can thus conclude from the model that the affine relationship of the form of

$$E = \pi_0 T_N + E_0,$$

between ETS and consumed compute resources, does not only hold for the applications in which the global time is negligible, but it also applies approximately to all the applications which time and energy to solution can be decomposed according to the model we presented. This is the case of the eigensolver we study below, in which τ_2 is not small. Furthermore, from Eq. 6.17 it is clear that the measured parameter π_0 is in the range between P_1 and P_2 and that its precise interpretation will depend on the application and the system architecture.

<table>
<thead>
<tr>
<th>k</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - r^2 \cdot 10^{-3}$</td>
<td>2.24</td>
<td>2.82</td>
<td>2.75</td>
<td>2.44</td>
<td>2.09</td>
<td>1.77</td>
<td>1.49</td>
<td>1.25</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Table 6.1: Upper bound for the indetermination coefficient $1 - r^2$ assuming measurements according to the model using $1, 2, 4, ..., 2^k$ nodes.
6.2 ENERGY MEASUREMENTS

The energy and power measurements presented in this work have been performed on the Cray XC platform installed at the Swiss National Supercomputing Centre (CSCS). It is composed by two sub-systems, “Piz Daint” a 28 cabinet Cray XC30 system with 5272 hybrid compute nodes, and “Piz Dora” a 7 cabinet Cray XC40 system with 1256 compute nodes. Each hybrid compute node of the XC30 system contains an 8-core Intel Xeon E5-2670 CPU and an Nvidia K20x GPGPU. The compute node of the XC40 system contains two 12-core Intel Xeon E5-2690-v3 CPUs.

The Cray XC platform is ideal for studying energy and power consumption models, since it is equipped with fine grained power measuring capabilities, as well as advanced software functionalities that allow the users to extract power and energy readings for their applications.

Each computing node has a dedicated power sensor, which measures the power consumed by the entire node, and each hybrid node has an additional sensor that measures the power consumption of the GPGPU module. The rest of the components that are located outside the node, i.e., the blowers and the Aries network, can be measured individually.

The power measurements of the Cray XC platform has been studied and validated by Fourestey et al. [27]. This study finds that the Aries network has a constant power consumption of 25W per node (100W per blade), and that the blower power consumption is typically 4400W per blower under normal production conditions, but it may have peaks at 5600W per blower when the system executes exceptionally high loads. “Piz Daint” is equipped with 17 blowers, this means that the contribution to the power consumption by the blower is about 15 W per node. Hence the difference between the average load and the peak is of the order of 2W and can be neglected.

Let us denote t as the time to solution and N as the number of nodes used. Furthermore, E_{nodes} denotes the energy consumed by the compute nodes used for a simulation. E_{nodes} is the integral over the time of the power measured at node-level and summed over the N nodes. The total energy to solution can be calculated from

$$E_{\text{nodes}} + (25 \text{ W} \times N + 4400 \text{ W} \times \alpha) \frac{t}{0.95},$$

where α is the fraction of blowers contributing to the simulation. The denominator corresponds to the 95% efficiency for AC/DC conversion [27].
6.3 Measurements error

In this work we just consider the energy consumed by the nodes, since we are only interested in the comparison of different node architectures. In any case, since the power consumption of the Aries Network per node and the AC-DC conversion factor are constant, and the power consumption of the blowers is almost constant, they are not of real interest. Therefore we use

$$E = E_{\text{nodes}}.$$ \hfill (6.25)

To determine the energy consumption of the application, the information that the system stores in cumulative counters can be accessed during the execution. Each node provides these counters in the form of pm counters files:

- `/sys/cray/pm_counters/energy`, and
- `/sys/cray/pm_counters/accel_energy`.

The first counter provides the cumulative energy consumed by the whole compute node, while the second provides the same information for the GPU module.

6.3 Measurements error

6.3.1 Energy error model

To validate the energy to solution model, we develop an error model to determine the error of any energy measurement with respect to the measured time to solution. The energy consumed by the i-th node can be found by integrating the power consumption, i.e.,

$$E_i = \int_0^t P_i(t')dt' \approx \frac{1}{\nu} \sum_{j=0}^{\nu t} P_i\left(\frac{j}{\nu}\right),$$ \hfill (6.26)

where t represents the time to solution and $P_i(t')$ is the power consumption at the instant t'. ν represents the update frequency of the energy measurements. The measured power consumption, \bar{P}_i, is assumed to differ from the real value in the following form

$$\bar{P}_i(\tau) = P_i(\tau)(1 + \delta_1) + \delta_2 + \bar{\delta}_3,$$ \hfill (6.27)

where δ_1 and δ_2 are systematic errors that originate primarily from the calibration of the sensor, which, by assumption, are constant in time. $\bar{\delta}_3$ represents the
Modeling power consumption

statistical error, which we assume is Gauss distributed with standard deviation σ_3. The measured value of the energy consumed by the i-th node then becomes

$$\bar{E}_i = \frac{1}{\nu} \sum_{j=0}^{\nu} \bar{P}_i(j)$$

$$= E_i(1 + \delta_1) + t\delta_2 + \sqrt{t}\delta_3,$$

where δ_3 is Gauss distributed with standard deviation $\sigma_3 = \bar{\sigma}_3/\sqrt{\nu}$. We assume then that, for the calibration of the sensors, δ_1 and δ_2 are Gauss distributed with standard deviation σ_1, and σ_2, respectively. It follows that the measured total Energy \bar{E} for N nodes is

$$\bar{E} = E + \frac{E}{\sqrt{N}} \Delta_1 + \sqrt{N} t\Delta_2 + \sqrt{N} t\Delta_3.$$

(6.30)

The probability distribution of Δ_1, Δ_2, and Δ_3 are Gauss distributions with standard deviation σ_1, σ_2, and σ_3, respectively.

6.3.2 ENERGY ERROR DETERMINATION

In order to determine the statistical error of the energy measurements, we have to briefly understand which effects may lead to fluctuations in the time to solution and in the energy to solution measurements. The first possible variation that can affect the time to solution, is due to differences in hardware performance, and contributes to the systematic error. This effect has two origins, on one hand the simple variation of the node performance, and the position of the nodes inside the network topology that varies the communication performance. On the other hand, environmental factors may affect the system performance, e.g., communication intensive jobs, running on the system may congest the network and increase communication time. Those variations contribute to the statistical error.

To determine the statistical error we have to determine the qualitative origins of the fluctuations. Since the systematic error depends exclusively on which nodes are used to execute the job, the statistical error (σ_3) can be determined by executing the same experiment using an identical set of nodes many times. Fig. 6.2 shows the distribution of the time to solution and energy to solution measurements. From those measurements we can infer a probability distribution for σ_3.

67
6.3 Measurements error

To find the probability distribution of σ_3, we use Bayes theorem [59] that in our case states
\[P(\sigma_3|\text{data}, I) \propto P(\text{data}|\sigma_3, I) \times P(\sigma_3|I), \tag{6.31} \]
where \text{data} represents the collected measurement and I refers to the background information.

The prior probability term, $P(\sigma_3|I)$, represents the state of the knowledge about the validity of the hypothesis on σ_3 before the analysis of the data. This probability is then modified by the likelihood function $P(\text{data}|\sigma_3, I)$ generated from the measurements, and yields the posterior probability $P(\sigma_3|\text{data}, I)$ that represents the state of knowledge after the analysis of the data.

From the energy model 6.10 we know that the measurements lie on the line given by $E = \pi_0 T + E_0$. Hence we can rewrite 6.31 as
\[P(\sigma_3|\text{data}, I) = \int d\pi_0 \int dE_0 P(\sigma_3, \pi_0, E_0|\text{data}, I) \]
\[\propto \int d\pi_0 \int dE_0 P(\text{data}|\sigma_3, \pi_0, E_0, I) \times P(\sigma_3, \pi_0, E_0|I). \tag{6.32} \]

We assume we don’t have any knowledge about the value of the parameters of the affine fit π_0 and E_0, hence the prior probability $P(\pi_0, E_0, \sigma_3|I) = 1$ for $\sigma_3 > 0$.

![Figure 6.2: Energy to solution vs. node-time for the ELPA generalized eigenvalue solver solving a problem with matrix size $M = 20480$, using the same set of 64 nodes for each measurement.](image)

Figure 6.2: Energy to solution vs. node-time for the ELPA generalized eigenvalue solver solving a problem with matrix size $M = 20480$, using the same set of 64 nodes for each measurement.
and vanishes otherwise. So the posterior probability is given by

$$P(\sigma_3|\text{data}, I) \propto \int_{-\infty}^{\infty} d\pi_0 \int_{-\infty}^{\infty} dE_0 P(\text{data}|\sigma_3, \pi_0, E_0, I), \tag{6.34}$$

for $\sigma_3 > 0$. The likelihood function is determined using the least-squares method, hence it becomes

$$P(\text{data}|\sigma_3, \pi_0, E_0, I) = \prod_k \frac{1}{\sqrt{2\pi} \delta_{3,k}} \exp\left(-\frac{(E_k - \varepsilon_k)^2}{2\delta_{3,k}^2}\right), \tag{6.35}$$

where E_k and T_k are the k-th measurement of the energy to solution, respectively of the time to solution, $\varepsilon_k = \pi_0 T_k + E_0$ and $\delta_{3,k} = \sigma_3 \sqrt{T_k}$.

Defining $\delta_k := \delta_{3,k}$, the posterior probability evaluates to

$$P(\sigma_3|\text{data}, I) \propto P(\text{data}|\sigma_3, I) \times P(\sigma_3|I), \tag{6.36}$$

where

$$P(\text{data}|\sigma_3, I) := \left(\prod_k \frac{1}{\delta_k}\right) \frac{\Delta}{\sqrt{C_2}} \exp\left(-\frac{1}{2} \left(C_0 - \frac{C_1^2}{C_2}\right)\right), \tag{6.37}$$

and the prior probability $P(\sigma_3|I) = 1$ for $\sigma_3 > 0$ and vanishes otherwise. The coefficients are defined as

$$\frac{1}{\Delta^2} = \sum_k \frac{1}{\delta_k^2},$$

$$C_0 = \sum_k \left(\frac{E_k}{\delta_k}\right)^2 - \left(\sum_k \frac{E_k}{\delta_k^2}\right)^2 \Delta^2,$$

$$C_1 = \sum_k \left(\frac{E_k T_k}{\delta_k^2}\right) - \left(\sum_k \frac{T_k}{\delta_k^2}\right) \left(\sum_k \frac{E_k}{\delta_k^2}\right) \Delta^2,$$

$$C_2 = \sum_k \left(\frac{T_k}{\delta_k}\right)^2 - \left(\sum_k \frac{T_k}{\delta_k^2}\right)^2 \Delta^2. \tag{6.38}$$

Using $\delta_k = \sigma_3 \sqrt{Nt}$ the result simplifies to

$$P(\sigma_3|\text{data}, I) \propto \sigma_3^{-m} \exp\left(-\frac{1}{2\sigma_3^2} C_3\right), \tag{6.39}$$

for $\sigma_3 > 0$, where m is the number of measurements and $C_3 = \sigma_3^2 (C_0 - C_1^2/C_2)$ is constant with respect to σ_3. 69
The posterior probability can now be approximated with the Gauss distribution, yielding

\[
\sigma_3 = \sqrt{\frac{C_3}{m-2}} \left(1 \pm \sqrt{\frac{1}{2(m-2)}} \right).
\]

(6.40)

Fig. 6.3 and Fig. 6.4 show the comparison between the posterior probability for \(\sigma_3 \) and its Gauss approximation.

The second type of error that has to be determined is the systematic error. This type of error depends on the position of the nodes in the network topology. To estimate its value, the same problem is executed several times using different nodes (different number of nodes and different physical nodes). These measurements are denoted with \(\text{data} \), and, when integrating the systematic error in Eq. 6.33 we get

\[
P(\sigma_1, \sigma_2, \sigma_3 | \text{data}, I) = \int d\pi_0 \int dE_0 P(\sigma_1, \sigma_2, \sigma_3, \pi_0, E_0 | \text{data}, I)\]

\[
\propto \int d\pi_0 \int dE_0 \left(P(\text{data} | \sigma_1, \sigma_2, \sigma_3, \pi_0, E_0, I) \times P(\sigma_1, \sigma_2, \sigma_3, \pi_0, E_0 | I) \right) .
\]

(6.41)

(6.42)

We define, for convenience

\[
c_k = \frac{1}{\sqrt{2\pi \delta_{1,k} \delta_{2,k} \delta_{3,k}}}. \tag{6.43}
\]

The likelihood function becomes

\[
P(\text{data} | \sigma_1, \sigma_2, \sigma_3, \pi_0, E_0, I) \]

\[
= \prod_k \int d\varepsilon_1 \int d\varepsilon_2 \ c_k \exp \left(-\frac{\varepsilon_1^2}{2\delta_{1,k}^2} - \frac{\varepsilon_2^2}{2\delta_{2,k}^2} - \frac{(E_k - \varepsilon_k - \varepsilon_1 - \varepsilon_2)^2}{2\delta_{3,k}^2} \right) \tag{6.44}
\]

\[
= \prod_k \frac{1}{\sqrt{2\pi \delta_k}} \exp \left(-\frac{(E_k - \varepsilon_k)^2}{2\delta_k^2} \right), \tag{6.45}
\]

\[
\text{where } E_k \text{ and } T_k \text{ are the } k\text{-th measurement of the energy to solution, respectively, of the time to solution, } \varepsilon_k = \pi_0 T_k + E_0, \ \delta_{1,k} = \sigma_1 E_k/\sqrt{N}, \ \delta_{2,k} = \sigma_2 T_k/\sqrt{N}, \ \delta_{3,k} = \sigma_3 \sqrt{T_k}. \ \delta_k := \sqrt{\delta_{1,k}^2 + \delta_{2,k}^2 + \delta_{3,k}^2} \text{ represent the size of the error of the measurement } E_k. \ \text{The likelihood function has the same form as in the statistical error calculation. Assuming we don’t have any knowledge about the value of } \pi_0 \text{ and } E_0, \ \text{the posterior probability evaluates to}
\]

\[
P(\sigma_1, \sigma_2, \sigma_3 | \text{data}, I) \propto P(\text{data} | \sigma_1, \sigma_2, \sigma_3, I) \times P(\sigma_1, \sigma_2, \sigma_3 | I), \tag{6.47}
\]

70
Figure 6.3: Left: Energy to solution vs. node-time for the ELPA generalized eigenvalue solver solving a problem with matrix size $M = 20480$. The same set of 64 nodes was used for all the measurements. Right: The probability distribution found for the value of σ_3 and its Gaussian approximation.

Figure 6.4: Left: Energy to solution vs. node-time for the hybrid generalized eigenvalue solver solving a problem with matrix size $M = 20480$. The same set of 16 nodes was used for all the measurements. Right: The probability distribution found for the value of σ_3 and its Gaussian approximation.
where
\[P(data|\sigma_1, \sigma_2, \sigma_3, I) = \left(\prod_k \frac{1}{\delta_k} \right) \frac{\Delta}{\sqrt{C_2}} \exp \left(-\frac{1}{2} \left(C_0 - \frac{C_1^2}{C_2} \right) \right), \] (6.48)

with the coefficients defined in Eq. 6.38.

In the previous experiment the value for \(\sigma_3 \) has already been determined. Therefore, the posterior probability of the first experiment is used as prior probability \(P(\sigma_1, \sigma_2, \sigma_3|I) \) for the second experiment, where the measurements of the first experiment are included in the background information \(I \).

Let us denote with \(I_0 \) the background information, before any experiment was executed, and with \(I_1 \) the background information after the execution of the first experiment used to find \(\sigma_3 \). The prior probability for the second experiment becomes
\[
P(\sigma_1, \sigma_2, \sigma_3|I = I_1) = P(\sigma_3|data_1, I = I_0) \times P(\sigma_1, \sigma_2|I = I_0)
= P(data_1|\sigma_3, I = I_0) \times P(\sigma_1, \sigma_2, \sigma_3|I = I_0), \] (6.49)

where \(data_1 \) are the measurements of the first experiment, and the initial prior probability \(P(\sigma_1, \sigma_2, \sigma_3|I) = 1 \) for \(\sigma_1, \sigma_2, \sigma_3 > 0 \).

Furthermore, since the experiments have been performed measuring the time to solution and the energy to solution of problems with different matrix sizes, we can use, as prior probability, the result of the posterior probability. The resulting posterior probability is therefore
\[
P(\sigma_1, \sigma_2, \sigma_3|\{data_{2,i}\}_i, data_1, I_0)
= \left(\prod_i P(data_{2,i}|\sigma_1, \sigma_2, \sigma_3, I_0) \right) \times P(data_1|\sigma_3, I_0) \times P(\sigma_1, \sigma_2, \sigma_3|I_0), \] (6.50)

where \(data_{2,i} \) represents the measurements for the \(i \)-th matrix size used.

To determine the probability distribution of a single parameter, the posterior probability has to be integrated with respect to the other parameters. For instance, the probability distribution for \(\sigma_1 \) is found by computing
\[
P(\sigma_1|\{data_{2,i}\}_i, data_1, I_0) = \int_0^\infty d\sigma_2 \int_0^\infty d\sigma_3 P(\sigma_1, \sigma_2, \sigma_3|\{data_{2,i}\}_i, data_1, I_0) \] (6.51)

Fig. 6.5 and Fig. 6.6 shows the probability distribution of the error parameters, while their medians are summarized in Table 6.2.
Figure 6.5: Probability distribution of the error parameters found for ELPA executed on Piz Dora. The vertical line represents the median of the probability distribution.

<table>
<thead>
<tr>
<th>System</th>
<th>σ_1</th>
<th>σ_2 [W]</th>
<th>σ_3 [W$^{\sqrt{3}}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piz Dora</td>
<td>0.011</td>
<td>7.30</td>
<td>24.2</td>
</tr>
<tr>
<td>Piz Daint (2 CPUs)</td>
<td>0.009</td>
<td>13.5</td>
<td>37.4</td>
</tr>
<tr>
<td>Piz Daint Hybrid</td>
<td>0.011</td>
<td>3.66</td>
<td>14.5</td>
</tr>
<tr>
<td>Piz Daint Hybrid (CPU)</td>
<td>0.069</td>
<td>1.05</td>
<td>12.5</td>
</tr>
<tr>
<td>Piz Daint Hybrid (GPU)</td>
<td>0.040</td>
<td>3.05</td>
<td>6.80</td>
</tr>
</tbody>
</table>

Table 6.2: The values of the standard deviation of the distribution of the different the errors for different systems.
Figure 6.6: Probability distribution of the error parameters found for the hybrid solver executed on Piz Daint. The vertical line represents the median of the probability distribution.
We can see that the values for Piz Daint and Piz Dora agree. In fact, for Piz Daint we have twice the number of sensors, since we simulate a dual-socket multi-core CPU node using two single-socket nodes neglecting the GPU. Hence σ_1 is around a factor $\sqrt{2}$ smaller, while σ_3 is around a factor $\sqrt{2}$ larger. σ_2 is more than a factor $\sqrt{2}$ larger, since the idle GPU and its sensor add an extra source of error that is constant during the execution.

6.4 Energy results

To validate the energy to solution model we benchmark the distributed hybrid CPU-GPU solver presented in Chapter 5 and the ELPA2 generalized eigenvalue solver presented in Section 1.2.

The results presented in this section were produced fixing the P state of the CPU governor to the nominal frequency of the CPU (2.6 GHz for both the Intel Xeon E5-2670 of the Cray XC30 and the Intel Xeon E5-2690-v3 of the Cray XC40) for the runs with ELPA. This means that we disabled the Turbo Boost of the CPUs.

Moreover, when running CPU-only algorithms (in this case ELPA2) on the hybrid Cray XC30 system a, “node” is considered to be a set of two physical nodes, since we want a comparison of systems using two sockets per node. The power consumption of the idle GPU is, in this case, subtracted from the total power consumption of the node in the reported results.

The ELPA solver is implemented using both MPI libraries for the inter-process communication and the OpenMP programming model intra-process parallelism. Therefore, it is capable of running different combinations of MPI processes per node and OpenMP threads per process on the same number of nodes, as discussed in section 6.1.1.

Fig. 6.7 and Fig. 6.8 present the weak scaling of the time and the energy to solution of the solvers. These results are similar to the results presented in 5.4.1; the only difference is that the Turbo Boost of the Intel CPUs was disabled for the ELPA runs. The algorithmic complexity of the generalized eigensolver is $O(M^3)$, where M is the matrix size, therefore the weak scaling of the energy to solution is proportional to M^3. On the other hand, since the number of nodes N used is proportional to M^2, the perfect weak scaling of the time to solution is proportional to M. As expected, the results show a deviation from the perfect scaling.

The strong scaling of the time and energy to solution for a problem of matrix
6.4 Energy results

Figure 6.7: Weak scaling of time to solution on Piz Daint and Piz Dora of the hybrid and ELPA generalized eigenvalue solvers, using \((M/10240)^2\) nodes. The results are normalized to the value of the hybrid solver solving a problem with matrix size \(M = 10240\).

Figure 6.8: Weak scaling of energy to solution on Piz Daint and Piz Dora of the hybrid and ELPA generalized eigenvalue solvers, using \((M/10240)^2\) nodes. The results are normalized to the value of the hybrid solver solving a problem with matrix size \(M = 10240\).
Figure 6.9: Strong scaling of the time and the energy to solution for the hybrid and ELPA generalized eigenvalue solvers, solving a problem with matrix size $M = 51200$.

Figure 6.10: Strong scaling of the time and the energy to solution for the hybrid and ELPA generalized eigenvalue solvers, solving a problem with matrix size $M = 51200$.
Figure 6.11: ETS vs. node-hours on Piz Daint for the hybrid and ELPA generalized eigenvalue solvers, solving a problem with matrix size $M = 51200$. The results show an affine relationship between the two quantities. The solid line represents the affine fit.
Figure 6.12: ETS vs. node-hours on Piz Dora for the ELPA generalized eigenvalue solver, solving a problem with matrix size 51200 and computing all the eigenvectors. The solid line represents the affine fit.
6.4 Energy results

<table>
<thead>
<tr>
<th>Type</th>
<th>n_p</th>
<th>n_t</th>
<th>π_0 [W]</th>
<th>E_0 [MJ]</th>
<th>$1 - r^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>1</td>
<td>8</td>
<td>114.9 ± 0.4</td>
<td>0.91 ± 0.01</td>
<td>$6.5 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>E. sb</td>
<td>16</td>
<td>1</td>
<td>213.5 ± 2.2</td>
<td>1.17 ± 0.08</td>
<td>$1.24 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>E. sb</td>
<td>8</td>
<td>2</td>
<td>199.5 ± 1.7</td>
<td>1.56 ± 0.07</td>
<td>$9.6 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>E. sb</td>
<td>4</td>
<td>4</td>
<td>187.6 ± 2.0</td>
<td>1.80 ± 0.09</td>
<td>$5.7 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>E. sb</td>
<td>2</td>
<td>8</td>
<td>184.8 ± 1.8</td>
<td>1.78 ± 0.08</td>
<td>$1.27 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>E. hw</td>
<td>24</td>
<td>1</td>
<td>162.3 ± 1.3</td>
<td>0.68 ± 0.03</td>
<td>$5.4 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>E. hw</td>
<td>12</td>
<td>2</td>
<td>139.9 ± 1.5</td>
<td>1.10 ± 0.04</td>
<td>$4.4 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>E. hw</td>
<td>6</td>
<td>4</td>
<td>130.4 ± 1.6</td>
<td>1.20 ± 0.04</td>
<td>$1.63 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>E. hw</td>
<td>4</td>
<td>6</td>
<td>129.5 ± 1.8</td>
<td>1.19 ± 0.04</td>
<td>$1.52 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>E. hw</td>
<td>2</td>
<td>12</td>
<td>131.0 ± 1.7</td>
<td>1.09 ± 0.05</td>
<td>$6.5 \cdot 10^{-4}$</td>
</tr>
</tbody>
</table>

Table 6.3: Values of the fit parameters π_0 and E_0 of the results of hybrid and the ELPA generalized eigenvalue solver, for a problem with matrix size $M = 51200$. The results are shown in Fig. 6.11 and 6.12.

For a given node architecture and intra-node parallelism, π_0 and $\epsilon_0 := E_0/M^3$ show a constant behaviour within the errorbars. This is remarkable, since E_0 reflects the complexity of the underlying algorithm even if the data were extracted from parallel runs at scale which do not have perfect parallel efficiency. Therefore E_0 can indeed be interpreted as the dynamic energy of the bare computation [38]. On the other hand, the parameter π_0 can be interpreted as the static contribution for all the parts of the computation which do not scale or in which the system is idle. It is clear that the the value of π_0 increases when
the number of MPI ranks per node increase. This fact is related to the MPI implementation, specifically to the operation executed when a process is waiting for a message. This behaviour is further investigated in Section 6.5.

The average values of \(\pi_0 \) and \(\epsilon_0 := E_0/M^3 \) for the hybrid and the ELPA generalized eigenvalue solver, found in Fig. 6.14 and Fig. 6.13

<table>
<thead>
<tr>
<th>Type</th>
<th>(n_p)</th>
<th>(n_t)</th>
<th>(\pi_0) [W]</th>
<th>(\epsilon_0) [nJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>1</td>
<td>8</td>
<td>115.5 ± 0.1</td>
<td>6.63 ± 0.02</td>
</tr>
<tr>
<td>E. sb</td>
<td>16</td>
<td>1</td>
<td>214.5 ± 0.9</td>
<td>8.59 ± 0.25</td>
</tr>
<tr>
<td>E. sb</td>
<td>8</td>
<td>2</td>
<td>201.7 ± 0.7</td>
<td>10.90 ± 0.22</td>
</tr>
<tr>
<td>E. sb</td>
<td>4</td>
<td>4</td>
<td>188.7 ± 0.7</td>
<td>12.91 ± 0.23</td>
</tr>
<tr>
<td>E. sb</td>
<td>2</td>
<td>8</td>
<td>182.0 ± 0.8</td>
<td>13.94 ± 0.24</td>
</tr>
<tr>
<td>E. hw</td>
<td>24</td>
<td>1</td>
<td>161.3 ± 0.5</td>
<td>5.32 ± 0.11</td>
</tr>
<tr>
<td>E. hw</td>
<td>12</td>
<td>2</td>
<td>140.0 ± 0.5</td>
<td>8.16 ± 0.11</td>
</tr>
<tr>
<td>E. hw</td>
<td>6</td>
<td>4</td>
<td>129.1 ± 0.6</td>
<td>9.09 ± 0.12</td>
</tr>
<tr>
<td>E. hw</td>
<td>4</td>
<td>6</td>
<td>128.8 ± 0.7</td>
<td>8.94 ± 0.14</td>
</tr>
<tr>
<td>E. hw</td>
<td>2</td>
<td>12</td>
<td>128.4 ± 0.6</td>
<td>8.71 ± 0.15</td>
</tr>
</tbody>
</table>

Table 6.4: Values of the averages of \(\pi_0 \) and \(\epsilon_0 := E_0/M^3 \) for the hybrid and the ELPA generalized eigenvalue solver, found in Fig. 6.14 and Fig. 6.13

Using the value given in Table 6.4, we compute the energy to solution from Eq. (6.10) from the time to solution measurements, and we can compare these with the energy measurements. On one hand we can compare the the computed values for the time to solution depicted in Fig. 6.7 with the measured value depicted in Fig. 6.8. As expected, the comparison in Fig. 6.15 shows that the predicted energies agree with the measurements within the error bar.

On the other hand we can also compare the measured value of the energy to solution shown in Fig. 6.11 with the model predicted values. Even if the value of the fit parameters \(\pi_0 \) and \(E_0 \) are not close to the average value (see values with \(M = 51200 \) in Fig. 6.13a and Fig. 6.14a), the comparison in Fig. 6.16 shows a good agreement of the measurements and the model predicted values within the error bar.

We also applied the same procedure to measurements of the generalized eigensolvers, computing only 50% of the eigenvectors. Fig. 6.17 and Fig. 6.18 show the values of \(\pi_0 \) and \(\epsilon_0 \), and their average values found for the different configu-
6.4 Energy results

Figure 6.13: Values of π_0 of the hybrid and the ELPA generalized eigenvalue solver.

Figure 6.14: Values of ϵ_0 of the hybrid and the ELPA generalized eigenvalue solver, normalized to the value for the hybrid solver solving a 10240 size matrix.
Figure 6.15: Weak scaling of energy to solution on Piz Daint and Piz Dora of the hybrid and of ELPA generalized eigenvalue solver, using $(M/10240)^2$ nodes. The values are normalized to the value of the hybrid solver solving a problem with $M = 10240$. The model predictions using the parameters from Table 6.4 (black) are compared with measurements (colored).
6.4 Energy results

Figure 6.16: ETS vs. node-hours on Piz Daint for the hybrid and for ELPA generalized eigenvalue solver, solving a problem with matrix size $M = 51200$. The results show an affine relationship between the two quantities. The solid line represents the model predicted energy to solution.
Modeling power consumption

<table>
<thead>
<tr>
<th>Type</th>
<th>(n_p)</th>
<th>(n_t)</th>
<th>(\pi_0) [W]</th>
<th>(\epsilon_0) [nJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>1</td>
<td>8</td>
<td>116.2 ± 0.1</td>
<td>4.27 ± 0.02</td>
</tr>
<tr>
<td>E. sb</td>
<td>16</td>
<td>1</td>
<td>215.9 ± 0.9</td>
<td>5.47 ± 0.20</td>
</tr>
<tr>
<td>E. sb</td>
<td>8</td>
<td>2</td>
<td>199.8 ± 0.7</td>
<td>7.61 ± 0.15</td>
</tr>
<tr>
<td>E. sb</td>
<td>4</td>
<td>4</td>
<td>189.1 ± 0.8</td>
<td>8.56 ± 0.20</td>
</tr>
<tr>
<td>E. sb</td>
<td>2</td>
<td>8</td>
<td>183.6 ± 0.7</td>
<td>8.84 ± 0.17</td>
</tr>
<tr>
<td>E. hw</td>
<td>24</td>
<td>1</td>
<td>160.5 ± 0.4</td>
<td>3.69 ± 0.07</td>
</tr>
<tr>
<td>E. hw</td>
<td>12</td>
<td>2</td>
<td>142.3 ± 0.5</td>
<td>5.14 ± 0.07</td>
</tr>
<tr>
<td>E. hw</td>
<td>6</td>
<td>4</td>
<td>133.5 ± 0.5</td>
<td>5.42 ± 0.08</td>
</tr>
<tr>
<td>E. hw</td>
<td>4</td>
<td>6</td>
<td>131.7 ± 0.5</td>
<td>5.49 ± 0.09</td>
</tr>
<tr>
<td>E. hw</td>
<td>2</td>
<td>12</td>
<td>129.9 ± 0.5</td>
<td>5.57 ± 0.09</td>
</tr>
</tbody>
</table>

Table 6.5: Values of the averages of \(\pi_0 \) and \(\epsilon_0 := E_0/M^3 \) for the hybrid and the ELPA generalized eigenvalue solver computing 50% of the eigenvectors, found in Fig. 6.18 and Fig. 6.17

The same approach used to analyze the total energy to solution can be used to independently analyze the energy used by the CPU and by the GPU during a hybrid run.

Fig. 6.19 shows that even for the GPU-only part and the CPU-only part of an affine relationship exists between the node-hour and the energy to solution. The coefficient of indetermination \(1 - r^2 \) shows that the quality of the affine fit is good. The values are presented in Table 6.6 as well as the parameters \(\pi_0 \) and \(E_0 \), which fit the measurements. As expected, the results show that the GPU has a large dynamic power consumption, since the main computation is done by the accelerator. On the other hand, the CPU has a larger static power consumption.

The fit parameters \(\pi_0 \) and \(E_0 \) have been computed for each size, and Fig. 6.20 and Fig. 6.21 show the values of \(\pi_0 \) and \(\epsilon_0 := E_0/M^3 \) for different matrix sizes, computing either all or 20% of the eigenvectors. \(\pi_0 \) and shows a constant behaviour within the errorbars. For the energy measurements of the GPU, \(E_0 \) reflects the complexity of the underlying algorithm. The CPU energy measurements show a constant behaviour of \(\epsilon_0 \) when computing all the eigenvectors, while it shows a decaying behaviour when computing only 20% of the eigenvectors.
6.4 Energy results

Figure 6.17: Values of π_0 of the hybrid and the ELPA generalized eigenvalue solver computing 50% of the eigenvectors.

Figure 6.18: Values of ϵ_0 of the hybrid and the ELPA generalized eigenvalue solver computing 50% of the eigenvectors, normalized to the value for the hybrid solver solving a 10240 size matrix.
Figure 6.19: ETS vs. node-hours on Piz Daint for the hybrid generalized eigenvalue solver, solving a problem with matrix size $M = 51200$. The results show an affine relationship between the two quantities. The solid line represents the affine fit.

<table>
<thead>
<tr>
<th>Type</th>
<th>π_0 [W]</th>
<th>E_0 [kJ]</th>
<th>$1 - r^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>114.9 ± 0.5</td>
<td>913 ± 13</td>
<td>6.5 · 10^{-6}</td>
</tr>
<tr>
<td>Hybrid GPU</td>
<td>46.7 ± 0.5</td>
<td>819 ± 14</td>
<td>9.8 · 10^{-5}</td>
</tr>
<tr>
<td>Hybrid CPU</td>
<td>68.2 ± 0.5</td>
<td>92 ± 14</td>
<td>9.8 · 10^{-5}</td>
</tr>
</tbody>
</table>

Table 6.6: Values of the fit parameters π_0 and E_0 of the results of the hybrid solver, for a problem with matrix size $M = 51200$. The results are shown in Fig. 6.19.
6.4 Energy results

The energy results are listed in Table 6.7, showing the values of the fit parameter E_0 for the CPU of the full hybrid solver (total) and of the back-transformation with the matrix Q_1 (back Q_1), for a problem with matrix size M, computing either all or 20% of the eigenvectors.

<table>
<thead>
<tr>
<th>M</th>
<th>E_0 total [kJ]</th>
<th>E_0 back Q_1 [kJ]</th>
<th>E_0 total [kJ]</th>
<th>E_0 back Q_1 [kJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10240</td>
<td>0.91 ± 0.45</td>
<td>0.39 ± 0.16</td>
<td>0.68 ± 0.30</td>
<td>0.103 ± 0.044</td>
</tr>
<tr>
<td>20480</td>
<td>8.3 ± 2.2</td>
<td>4.7 ± 1.2</td>
<td>4.5 ± 1.2</td>
<td>0.79 ± 0.22</td>
</tr>
<tr>
<td>30720</td>
<td>21.0 ± 4.6</td>
<td>12.7 ± 2.0</td>
<td>10.0 ± 2.8</td>
<td>2.42 ± 0.60</td>
</tr>
<tr>
<td>40960</td>
<td>50.4 ± 8.3</td>
<td>32.6 ± 3.6</td>
<td>25.9 ± 4.8</td>
<td>6.34 ± 0.81</td>
</tr>
<tr>
<td>51200</td>
<td>92 ± 14</td>
<td>64.9 ± 5.8</td>
<td>48 ± 8.2</td>
<td>10.3 ± 1.8</td>
</tr>
<tr>
<td>61440</td>
<td>165 ± 20</td>
<td>107 ± 10</td>
<td>80 ± 12</td>
<td>19.0 ± 2.3</td>
</tr>
<tr>
<td>71680</td>
<td>273 ± 27</td>
<td>182 ± 11</td>
<td>116 ± 16</td>
<td>27.0 ± 3.3</td>
</tr>
<tr>
<td>81920</td>
<td>415 ± 35</td>
<td>276 ± 16</td>
<td>118 ± 21</td>
<td>31.3 ± 4.2</td>
</tr>
<tr>
<td>92160</td>
<td>546 ± 50</td>
<td>386 ± 25</td>
<td>244 ± 30</td>
<td>51.3 ± 7.7</td>
</tr>
<tr>
<td>102400</td>
<td>737 ± 60</td>
<td>498 ± 30</td>
<td>324 ± 37</td>
<td>66.7 ± 8.6</td>
</tr>
</tbody>
</table>

Table 6.7: Values of the fit parameter E_0 of the measurements for the CPU of the full hybrid solver (total) and of the back-transformation with the matrix Q_1 (back Q_1), for a problem with matrix size M, computing either all or 20% of the eigenvectors.

Since the complexity of the part of the algorithm executed on the CPU is $O(M^2)$, we expect the value of e_0 for the CPU to have a linear decaying behaviour. A further analysis of the energy measurements (100% Eigenvectors) shows that the back-transformation with the matrix Q_1 contributes most (∼65%) to E_0 for the CPU and shows an $O(M^3)$ behaviour. On the other hand, when only 20% of the eigenvectors are computed, this back-transformation contributes to only ∼20% to the values of E_0 for the CPU. The value of E_0 of the full eigensolver and for the back-transformation are presented in Table 6.7 for different matrix sizes.

The back-transformation with the matrix Q_1 consists by two phases. The first phase includes the computation of the T matrix of the compact WY representation of a householder reflector block with a $O(M^2)$ operation executed by the CPU. The second phase consist of the application of the Householder transformations, which are $O(M^3)$ operations, executed with libsci_{acc} routines and depends on the number of eigenvectors computed. Therefore the $O(M^3)$ contribution of the CPU is given by the libsci_{acc} routines, which requires further analysis to determine the exact type of contribution of the CPU.
Figure 6.20: Values of π_0 of the hybrid generalized eigenvalue solver.

Figure 6.21: Values of ϵ_0 of the hybrid eigenvalue solver, normalized to the value for the hybrid solver solving a 10240 size matrix.
6.5 A FURTHER POWER EXPERIMENT

In the previous section, different value of π_0 has been found for different parallel decompositions on the multi-core architecture. We designed an experiment to investigate the power consumption of the MPI library implementation available on the Cray XC platform (Cray MPICH) to investigate the reason for this behaviour. Therefore, we measure the power consumption for some different ways to receive an MPI message, and we compare the measurement with the idle power consumption and the power consumption executing a compute-intensive operation, varying the number of MPI processes per CPU socket n_p and the number of threads per process n_t.

The experiment has been performed on 4000 nodes of Piz Daint and 800 nodes on Piz Dora. In both cases the experiment was executed the first time using the default P state of the CPU governor, which allows a small increase of the operating frequency due to the Turbo Boost, and the second time setting the P state to 2.6 GHz. The analysis of the measurements performed on Piz Daint showed that 4 nodes had a defective GPU power sensor. Therefore this experiment can be used to diagnose the functionality of the power sensors during operation.

The experiment has been designed to measure the average power consumption per node for the following six different cases:

1. the MPI processes sleep for 20s;
2. the threads sleep for 20s and execute a blocking receive;
3. the threads execute a blocking receive;
4. the threads execute a non-blocking receive, sleep for 20s, and wait for the completion of the receive;
5. the threads execute a non-blocking receive and wait for the completion of the receive;
6. the MPI processes execute a multi-threaded matrix-matrix multiplication (DGEMM).

The threads which send the MPI message are executed on a different node and their power consumption is not measured. They sleep for 20s and then send a 40kB message, for the cases in which communication occurs. Case 1 and Case 6 serve as a reference for a fully idle and fully active socket, respectively.
Figure 6.22: Distribution of the CPU power consumption for the 6 cases on Piz Daint, using $n_p = 8$ processes per socket and $n_t = 1$ threads per process. The P state of the CPU governor is set to 2.6 GHz.
6.5 A FURTHER POWER EXPERIMENT

Figure 6.23: Average and standard deviation of the measurement of CPU power consumption for the 6 cases on Piz Daint, using different combinations of n_p and n_t.

(a) Default P state of the CPU governor

(b) P state of the CPU governor set to 2.6 GHz
Figure 6.24: Average and standard deviation of the measurement of CPU power consumption for the 6 cases on Piz Dora, using different combinations of n_p and n_t.
6.5 A further power experiment

Fig. 6.22 shows the distribution of the average power measurements for all six cases, using 8 MPI process per node on Piz Daint. The distributions of the measurements might be considered to be single Gaussian when the processor is under compute intensive load, but in reality is a superposition of more Gaussian distributions, in the other cases. This variation of the power consumption may indicate that the processors and the power sensors are produced in different batches which have very small differences in the production parameters.

The average and the standard deviation of the power measurements performed with different parameters n_p and n_t, for the Cray XC30 and the Cray XC40 systems are presented in Fig. 6.23 and 6.24. As expected the difference between case 1 and cases 2 and 4 is small, since the processors are sleeping for most of the time. However, it clearly emerges that in cases 3 and 5 the power consumption increases when a larger number of task per node n_p is used. Moreover the power consumption when n_p is large is not small as showed by the comparison with case 6, where the processor executes compute intensive operation. Therefore the processes remain busy during the blocking receive and the blocking wait. On the other hand, the power consumption does not vary substantially when the number of threads per task n_t increases. These results explain the different values of π_0 found for the different intra-node parallel decomposition of the eigensolver.

The behaviour found for case 3 and case 5 depends on the MPI implementation, and can be explained in the following way. For a single-thread application, MPI uses a loop, which keeps the CPU occupied (busy-waiting) to check the completion of the reception of a message. In a multi-thread application the MPI resources cannot be accessed by multiple threads at the same time, hence the access has to be serialized. In this way, just one thread, the one accessing the MPI resources, is doing a busy wait, while the other threads use a non-busy wait mechanism.

This detail can explain the behaviour of the power measurements we found in the experiment. If the MPI implementation and the network interface supports non-busy waiting, the latency of the communication can increase, but, the average power consumption decreases. Therefore, the static power consumption π_0 decreases, and, depending on the application, this could reduce the overall energy to solution of a parallel run.
Chapter 7

Conclusions

In the first part of this thesis we presented the implementation of the generalized Hermitian positive definite eigenvalue solver. As starting point for the distributed implementation of the eigensolver we first developed a single-node single-GPU hybrid implementation, using both the memory bound one-stage algorithm, and the two-stage compute-bound algorithm. We demonstrated that both the one- and the two-stage hybrid CPU-GPU implementation of the standard eigensolver, using a CPU socket and one GPU, show a significant speed-up compared to the state-of-art CPU-only implementations for shared and distributed memory architecture, using two CPU sockets. The same results were observed for the generalized eigenvalue solver. The results also showed that the two-stage approach has better performance compared to the one-stage approach, especially when only a fraction of the eigenvectors has to be computed.

We presented the first parallel approach of the implementation of the eigensolver for the single-node multi-GPU architecture. The multi-GPU implementation of the two-stage solver showed good performance and scalability, as well as a good speed-up compared to the distributed memory CPU-only implementations. The multi-GPU implementation demonstrates the possibility to develop efficient and scalable algorithms for hybrid systems, the components of which have a very large computing performance compared to the interconnection bandwidth.

We presented the hybrid CPU-GPU distributed memory implementation of the generalized eigenvalue solver based on the two-stage approach. We compared the the time to solution and the energy to solution of the hybrid implementation with the results of the ELPA two-stage solver, and demonstrated that the performance of the two solvers are comparable, and that the hybrid implementation is more energy efficient. We then presented the benchmarks of the SIRIUS library, which
can be the base of any all electron LAPW code running a realistic problem with a 1501 atoms super cell. The results demonstrated that both the architectures are comparable in term of time to solution. On the other hand, due to the larger energy efficiency, the hybrid architecture is significantly favorable over the traditional multi-core architecture.

In the second part of the thesis we developed a model for the time to solution and the energy to solution for distributed memory architectures, based on multi-core processor or hybrid CPU+GPU node-architecture. The model explains the affine relationship between the resource time and the energy to solution which was observed previously for the COSMO model and the HPCG benchmark. The model shows the affine behaviour can be found for different classes of algorithms, such as linear algebra algorithms.

To validate quantitatively the model we studied the time to solution and the energy to solution of the generalized eigenvalue solver. The measurements, carried out for different matrix sizes and different number of nodes used, were studied quantitatively performing an accurate error analysis based on Bayesian inference, and allowed to extract the dynamic energy E_0 and the static power π_0. We demonstrated that the dynamic energy reflects the complexity of the underlying algorithm, therefore this parameter can be used to analyze the implementation of complex applications on large parallel machines, and to compare the scaling of E_0 with the complexity of the underlying algorithm. On the other hand, the static power is related to the architecture of the computing system used. We observed that for different parallel decompositions on the multi-core architecture the static power change significantly.

We studied the benchmarks of different implementations to receive a message on a distributed memory system, and compared the measurements with the power consumption of a completely idle and a fully active socket. We found that the variation of the static power is related to the power consumption of a MPI process when it is waiting for a message to be received. We observed that during the waiting process a thread per MPI process is doing a busy wait. For energy efficiency, non busy waiting should be considered in the case that the performance penalty due to the increase of the latency of the communication is not relevant.
APPENDIX A

LIST OF BLAS AND LAPACK ROUTINES

The BLAS and LAPACK routines use a specific name convention [16]. The name is composed by three different parts. The first letter describes the type of the elements of the matrices. There are 4 possibilities: “s” stands for single precision, “d” for double precision, “c” for single complex precision and “z” for double complex precision. The letter “x” is often used to refer to a routine without specifying the precision. For routines which involves matrices, the next two letters represent the type of the matrix, e.g. “GE” stand for general matrix, “HE” for complex Hermitian matrix, “SY” for real symmetric matrix and “PO” for symmetric/Hermitian positive definite matrix. The rest of the routine name identify the algorithm used. For example, ZGEMM is the general matrix-matrix multiplication in double complex precision, while DPOTRF is the symmetric triangular factorization (Cholesky decomposition) for positive definite double precision matrices. The parallel version of the routines implemented in PBLAS and ScALAPACK have the letter “p” in front of the single node routine name, E.g. pZGEMM, pDPOTRF

Table A.1 indicates the BLAS level 3 routines. The implementation of these routines are available in BLAS (single node), PBLAS (distributed), cuBLAS (single node, matrix stored on the GPU), libsci_acc (hybrid implementations of single node and distributed routines, with the matrices stored either on the host memory or in the GPU memory).

Table A.2 indicates the LAPACK routines, related to the Hermitian positive definite generalized eigensolver.
Table A.1: Description of the level 3 BLAS operations.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xGEMM</td>
<td>Matrix-matrix multiplication</td>
</tr>
<tr>
<td>xSYMM</td>
<td>Symmetric matrix-matrix multiplication</td>
</tr>
<tr>
<td>xHEMM</td>
<td>Hermitian matrix-matrix multiplication</td>
</tr>
<tr>
<td>xSYRK</td>
<td>Symmetric rank-k update to a matrix</td>
</tr>
<tr>
<td>xHERK</td>
<td>Hermitian rank-k update to a matrix</td>
</tr>
<tr>
<td>xSYR2K</td>
<td>Symmetric rank-2k update to a matrix</td>
</tr>
<tr>
<td>xHER2K</td>
<td>Hermitian rank-2k update to a matrix</td>
</tr>
<tr>
<td>xTRMM</td>
<td>Triangular matrix-matrix multiply</td>
</tr>
<tr>
<td>xTRSM</td>
<td>Solving triangular matrix</td>
</tr>
</tbody>
</table>

Table A.2: Description of the LAPACK routines relative to the generalized eigensolver. For real precision the eigenproblems are symmetric, therefore “HE” is replaced with “SY”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xHEGV</td>
<td>Generalized Hermitian eigensolver (implicit QR method)</td>
</tr>
<tr>
<td>xHEGVD</td>
<td>Generalized Hermitian eigensolver (divide and conquer)</td>
</tr>
<tr>
<td>xHEGVX</td>
<td>Generalized Hermitian eigensolver (bisection and inverse iteration)</td>
</tr>
<tr>
<td>xHEGVR</td>
<td>Generalized Hermitian eigensolver (multiple relatively robust representations)</td>
</tr>
<tr>
<td>xHEEV</td>
<td>Standard Hermitian eigensolver (implicit QR method)</td>
</tr>
<tr>
<td>xHEEVD</td>
<td>Standard Hermitian eigensolver (divide and conquer)</td>
</tr>
<tr>
<td>xHEEVE</td>
<td>Standard Hermitian eigensolver (bisection and inverse iteration)</td>
</tr>
<tr>
<td>xHEEVR</td>
<td>Standard Hermitian eigensolver (multiple relatively robust representations)</td>
</tr>
<tr>
<td>xPOTRF</td>
<td>Cholesky decomposition</td>
</tr>
<tr>
<td>xHEGST</td>
<td>Transformation from generalized to standard eigenproblem</td>
</tr>
<tr>
<td>xHETRD</td>
<td>One stage tridiagonalization</td>
</tr>
<tr>
<td>xSTEDC</td>
<td>Tridiagonal eigensolver (Divide and Conquer)</td>
</tr>
<tr>
<td>xUNMTR</td>
<td>Eigenvectors back-transformation (one-stage)</td>
</tr>
</tbody>
</table>
Appendix B

Triangular factorization

This section briefly describe the triangular factorization of a matrix. Further details can be found in [40]. Each invertible matrix \(A \), i.e. a matrix for which \(\det(A) \neq 0 \), has a unique triangular factorization (LU decomposition) such that

\[
A = LU,
\]

where \(L \) is a unit lower triangular matrix, i.e. a lower triangular matrix, with ones in the diagonal, and \(U \) is an upper triangular matrix. This operation can be executed using the LAPACK routine \texttt{xGETRF}.

Since \(\det(L) = 1 \), it follows \(\det(U) = \det(A) \neq 0 \), i.e. all the diagonal elements of \(U \) are different than zero. Therefore \(U = DU' \), where \(D \) is a diagonal matrix and \(U' \) is a unit upper triangular matrix.

If \(A \) is an Hermitian (or symmetric) matrix it follows that \(U' = L^H \) (or \(U' = L^T \)), therefore the matrix can be factorized as \(A = LDL^H \) (or \(A = LDL^T \)). The LAPACK routine \texttt{xHETRF} (or \texttt{xSYTRF}) executes this factorization.

Moreover if the matrix \(A \) is an Hermitian (or symmetric) positive definite matrix all the entries of the diagonal matrix \(D \) are positive. Therefore we can define the lower triangular matrix \(L' = LD^\frac{1}{2} \), and the matrix \(A \) can be factorized as \(A = L'L^H \) (or \(A = L'L^T \)). This operation is called Cholesky decomposition or Cholesky factorization and is performed by the LAPACK routine \texttt{xPOTRF}.

Writing

\[
A = \begin{pmatrix} A_1 & A_2^H \\ A_2 & A_3 \end{pmatrix} \quad \text{and} \quad L' = \begin{pmatrix} L_1 & 0 \\ L_2 & L_3 \end{pmatrix},
\]

where \(A_1 \) and \(A_3 \) are Hermitian matrices, \(L_1 \) and \(L_3 \) are lower triangular matrices,
we get

\[
\begin{pmatrix}
A_1 & A_2^H \\
A_2 & A_3
\end{pmatrix} = \begin{pmatrix}
L_1 & 0 \\
L_2 & L_3
\end{pmatrix} \begin{pmatrix}
L_1^H & L_2^H \\
0 & L_3^H
\end{pmatrix} = \begin{pmatrix}
L_1 L_1^H & L_2 L_1^H \\
L_1 L_2^H & L_2 L_2^H + L_3 L_3^H
\end{pmatrix}. \tag{B.3}
\]

Therefore \(L_1\) is the Cholesky decomposition of \(A_1\), \(L_2 = A_2 \left(L_1^H\right)^{-1}\), and \(L_3\) is the Cholesky decomposition of \(A_3 - L_2 L_2^H\).
APPENDIX C

HOUSEHOLDER TRANSFORMATIONS

This section briefly describe the Householder transformations. Further details can be found in [40]. An Householder transformation is a transformation of the form

\[\mathbb{R}^n \to \mathbb{R}^n, \quad x \mapsto Qx = \left(I - \frac{2}{v^Hv} vv^T \right) x, \]

(C.1)

where \(I \) is the \(n \times n \) identity matrix, \(v \in \mathbb{R}^n \) is the Householder reflector. Clearly the matrix \(Q \) is symmetric, since \(Q^T = Q \). It also holds

\[Q^T Qx = QQx = x, \]

(C.2)

therefore the matrix \(Q \) and, consequently, the Householder transformation are orthogonal.

In the complex space the transformation

\[\mathbb{C}^n \to \mathbb{C}^n, \quad x \mapsto Qx = \left(I - \frac{2}{v^Hv} vv^H \right) x, \]

(C.3)

is an Householder transformation, which is clearly Hermitian and unitary.

Let us choose \(v = x - \|x\|_2 e \), where \(e \in \mathbb{C}^n \) and \(\|e\|_2 = 1 \). It follows that

\[Qx = \left(1 - 2 \frac{v^Hx}{v^Hv} \right) x - 2 \frac{v^Hx}{v^Hv} e = \|x\|_2 e, \]

(C.4)

since

\[2 \frac{v^Hx}{v^Hv} = 2 \frac{x^Hx - \|x\|_2 e^Hx}{x^Hx - 2 \|x\|_2 x^He + \|x\|_2^2} = 1. \]

(C.5)

Therefore if we choose \(e = (1, 0, \ldots, 0)^H \) the Householder transformation annihilates all but the first component of the vector \(x \), and the first component of the result is real.
The LAPACK routine `xLARFG` is used to determine the Householder reflector for a vector x. It return the vector v which has the first component equal to one, and also return the value of the coefficient $\tau := \frac{2}{v^Tv}$.

The application of a set of Householder transformation $\{\tau_j, v_j\}_j$ can be performed applying each Householder transformation in the correct order. This procedure involves memory bound operations. However a block of transformations can be applied at the same time involving compute bound operation using the compact WY representation.

The compact WY representation is defined by Schreiber et al. [50] as
\[
\prod_j (I - \tau_j v_j v_j^H) = I - YTY^H,
\]
(C.6)

where Y whose columns store the householder reflectors, while T is an upper triangular matrix. With $W := YT$ this reduce to the WY representation
\[
\prod_j (I - \tau_j v_j v_j^H) = I - WY^H.
\]
(C.7)

The proof that a product of Householder transformation can be rewritten using the compact WY representation is simple ([50]). Suppose that $Q = I - YTY^H$ is a unitary transformation and $P = I - v\tau v^H$ is an Householder transformation than
\[
QP = (I - YTY^H) (I - v_j \tau v^H^H)
= I - YTY^H - \tau vv^H + \tau YTY^H vv^H.
\]
(C.8)

We assume that $QP = I - Y_+ T_+ Y_+^H$, where
\[
Y_+ = (Y \ v) \quad \text{and} \quad T_+ = \begin{pmatrix} T & z \\ 0 & \rho \end{pmatrix}.
\]

It follows that
\[
QP = I - Y_+ T_+ Y_+^H
= I - (Y \ v) \begin{pmatrix} T & z \\ 0 & \rho \end{pmatrix} \begin{pmatrix} Y^H \\ v^H \end{pmatrix}
= I - YTY^H - Yzv^H - \rho vv^H,
\]
(C.9)

therefore $\rho = \tau$ and $z = -\tau TY^H v$.

102
The block of Householder reflectors is applied to the matrix C following Algorithm 8.

Algorithm 8 Algorithm to compute $(I - YT^HY)C$

1: $X = TY^H C$
2: $C = C - YX$
List of publications

BIBLIOGRAPHY

[33] Shuaiwen Song, Chunyi Su, Barry Rountree, and Kirk W Cameron. A Simplified and Accurate Model of Power-Performance Efficiency on Emergent

