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Abstract

The work presented in this monograph is a contribution to the field of granular rigid
body dynamics and its related subfields in computer science. The main contribution
of this work is an open-source granular rigid body simulation framework (GRSF) which
incorporates modern formulations and algorithms within the framework of non-smooth
rigid body dynamics to efficiently simulate granular materials. This work discusses gran-
ular simulations in the context of their mechanical theory, their computer science related
challenges and applications to real experiments.
In this work, a granular material is treated on the microscopic space scale where the par-
ticle interactions are treated as individual events over time. This modeling paradigm is of
special interest because it gives detailed insight into the rheology and impacting behavior
of granular materials in contrary to macroscopic models from fluid or continuum dynam-
ics. The increasing trend in parallel computing at the present point in time evermore
offers the performance needed to compute granular simulations also for large-scale mod-
els. The granular material model adopted in this work consists of a large-scale rigid body
assembly in the physical space. The time evolution of a body in space is driven by two
fundamental axioms in mechanics: the principle of virtual work and the variational law
of interaction. These two axioms are exploited to properly derive the equations of motion
of a rigid body starting from a scalable body which is parametrized by a quaternion.
Dissipation phenomena such as friction and impacts and the impenetrability condition
between bodies in a granular material are conveniently modeled by set-valued contact
laws. Concepts from convex analysis and convex optimization, such as normal cones and
projections to convex sets, are directly at hand to describe and solve common set-valued
contact laws, such as the unilateral contact with Coulomb friction. The contact laws are
complemented with a Newton-type impact law to allow for discontinuities in the velocities
of the bodies. The numerical time integration is performed with Moreau’s explicit time-
stepping scheme which discretizes the continuous and discontinuous motion of the bodies
over a time interval and provides a good trade-off between accuracy and efficiency for
large-scale multi-body simulations.
The aforementioned modern mechanical modeling aspects are implemented in the GRS
framework which is able to efficiently and accurately simulate hundred thousands up
to millions of rigid bodies. The parallel implementation, which mainly targets high-
performance distributed systems, makes use of the mass-splitting method which subdi-
vides the contact problem at each time step of the integration scheme. The contact
problem, consisting of millions of contacts, is solved using iterative projection algorithms
which are closely related to the methods from convex optimization. To spatially distribute
the workload of the simulation, namely the time-stepping of the rigid bodies, to several
processes, domain decomposition methods such as the grid or kd-tree decomposition are
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implemented in the GRS framework by the help of the open-source library ApproxMVBB
which was developed alongside the GRS framework. A simple load balancing strategy is
employed to leverage the parallel computing power for simulations where bodies rapidly
distribute over time. The Message Passing Interface (MPI) is used to provide the com-
munication interface on distributed systems and to communicate and synchronize the
numerical computations during the parallel simulation.
To demonstrate the functional ability of the GRS framework and to validate the numer-
ical implementation, a chute flow experiment is performed at the institute of Snow and
Avalanche Research (SLF) in Davos, Switzerland. The chute flow experiment consists of
approximately 1 million glass beads which are released from rest in a channel above an
inclined slope. A simulation study is performed where the friction coefficient between the
glass beads is varied. By the help of an advection-corrected image correlation algorithm,
the velocity field of the chute experiment is reconstructed and compared to the simulation.
Visualizations ranging from two-dimensional velocity field plots to three-dimensional ren-
derings provide meaningful insight into the results of the simulation and experiments.
The comparison between the simulations and the experiment confirm the validity and
usefulness of the numerical model implemented in the GRS framework.



Zusammenfassung

Die in der vorliegenden Abhandlung beschriebene Arbeit liefert einen Beitrag an die For-
schung im Bereich der granularen Starrkörperdynamik und deren verwandten Unterbe-
reichen der Computerwissenschaft. Der Hauptschwerpunkt der Arbeit liegt in der Umset-
zung von modernen mechanischen Formulierungen im Bereich der nichtglatten Dynamik
an Hand einer numerischen Softwareumgebung namens Granular Rigid Body Simulation
Framework (GRSF), welche es erlaubt granulare Medien zu simulieren und zu untersu-
chen. Die Herausforderungen lagen dabei in der Anwendung der mechanischen Theorie
im Bereich der computergestützten Wissenschaften und deren Übertragung auf reale Ex-
perimente.
Granulare Materialien werden in dieser Arbeit auf einer mikroskopischen Raumskala be-
trachtet, in welcher jede Partikelinteraktion im Verlaufe der Zeit als separates Ereignis
behandelt wird. Diese mikroskopische Modellierungsart ist von speziellem Interesse, da
sie exakten Einblick in das Fliess- und Stossverhalten von granularen Medien gibt, im
Gegensatz zu makroskopischen Modellen, zum Beispiel aus der Fluiddynamik oder Konti-
nuumsmechanik. Die Einführung des Hochleistungsrechnens in das Forschungsgebiet der
granularen Medien in der Mehrkörperdynamik eröffnet neue Möglichkeiten und Heran-
gehensweisen. Stiess die Rechenleistung von Simulationen auf einem Rechenkern bei un-
gefähr 10’000 Starrkörpern an ihre Grenzen, kann heute mit Hilfe eines Rechenclusters
ein Vielfaches dieser Menge simuliert werden. Das verwendete granulare Modell in die-
ser Arbeit besteht aus einer grossen Ansammlung von Starrkörpern im physikalischen
Raum. Die Bewegung eines Körpers im Raum ist im wesentlichen beschrieben durch zwei
fundamentale Axiome in der Mechanik: dem Prinzip der virtuellen Arbeit und dem varia-
tionellen Wechselwirkungsprinzip. Ausschliesslich diese zwei Axiome werden verwendet,
um ausgehend vom skalierbaren Körper, welcher über ein Quaternion parametrisiert wird,
die Bewegungsgleichungen des Starrkörpers auf konsistente Art herzuleiten.
Dissipationsmechanismen, wie Reibung und Stösse zwischen den Partikeln sowie deren
Undurchdringbarkeit, werden mit Hilfe von mengenwertigen Kraftgesetzen modelliert.
Konzepte der konvexen Analysis und konvexen Optimierung, wie zum Beispiel der Nor-
malkegel oder Projektionen auf konvexe Mengen, werden verwendet um Kontaktgesetze,
wie den unilateralen Kontakt mit Coulombscher Reibung, exakt abzubilden. Die diskutier-
ten Kontaktgesetze werden mit einem Newtonschen Stossgesetz ergänzt, welches Unstetig-
keiten in den Geschwindigkeiten der Körper ermöglicht. Die numerische Zeitintegration
wird an Hand des expliziten Zeitschrittverfahrens von Moreau ermöglicht, welches die
stossfreie und stossbehaftete Bewegung eines Körpers über ein Zeitintervall approximiert
und dadurch einen guten Kompromiss zwischen Exaktheit und Effizienz bildet.
Das GRS Framework, welches die erwähnten mathematischen Formulierungen implemen-
tiert, ermöglicht es, Hunderttausende bis einige Millionen von Körpern effizient und exakt
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zu simulieren. Die parallele Implementierung, welche hauptsächlich auf verteilte Hoch-
leistungsarchitekturen fokussiert ist, verwendet das Massenzerteilungsverfahren, um das
Kontaktproblem in jedem Zeitschritt zu unterteilen und parallel zu lösen. Das Kontakt-
problem, bestehend aus Millionen von gekoppelten Kontakten, wird anhand von iterativen
Projektionsalgorithmen gelöst, welche aus Methoden der konvexen Optimierung abgeleitet
sind. Um die Ansammlung von Körpern räumlich aufzuteilen, werden zwei Raumauftei-
lungsverfahren diskutiert: die uniforme Gitteraufteilung und die kd-Baumstruktur. Beide
Verfahren werden von der zusätzlich entwickelten Bibliothek ApproxMVBB unterstützt,
welche Algorithmen zur Berechnung einer Begrenzungsbox mit minimalem Volumen be-
reitstellt. Ein einfaches Lastverteilungsverfahren im GRS Framework sorgt für die sinnvolle
Ausnutzung der Computerressourcen für Simulationen mit sich schnell ausbreitenden Kör-
peransammlungen. Das GRS Framework verwendet das Message Passing Interface (MPI),
um die Kommunikation und die Synchronisation der numerischen Resultate während der
parallelen Simulation auf verteilten Rechnerarchitekturen zu gewährleisten.
Um die Funktionalität des GRS Framework zu testen und um die numerische Implementie-
rung zu validieren, wurde ein Schüttversuch am Institut für Schnee- und Lawinenforschung
(SLF) in Davos durchgeführt. Das Experiment besteht aus ungefähr einer Million Glasku-
geln, welche aus der Ruheposition in einem Kanal auf eine darunterliegende schiefe Ebene
fliessen. In einer Parametersimulationsstudie wird der Reibungskoeffizient zwischen den
Kugeln variiert, um einen Vergleich zwischen dem Experiment und dem numerischen Mo-
dell herzustellen. Mit Hilfe eines advektions-korrigierenden Bildkorrelationsalgorithmus
wird das Geschwindigkeitsfeld aus den Videodaten rekonstruiert und mit den Simulatio-
nen verglichen. Zweidimensionale Visualisierungen von Experiment und Simulation sowie
dreidimensionale Renderings der Simulation geben zusätzlich einen qualitativ wichtigen
Einblick in den Vergleich zwischen dem Glassgranulat und dem mechanischen Starrkörper-
modell. Der Vergleich zwischen Experiment und Simulation bestätigt die Anwendbarkeit
des entwickelten numerischen Simulationsmodells.
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Chapter1
Introduction

In the last few decades, the computing power of high-performance and desktop computers
has grown massively. Graphics processing units, which offer a thousandfold of small
computing cores compared to a multi-processor desktop computer, are nowadays the
state-of-the-art in high-performance computing. This fast progress enables to simulate
computationally more expensive physical models which are at the same time simpler,
more accurate and have less model parameters. This includes the modeling of granular
matter which is the focus of this monograph.
From a fundamental point of view, a granular material is an assembly of particles large
enough that thermal agitation can be neglected. Hence, a granular material can be viewed
as a zero temperature mechanical system and this definition of granular matter, although
applicable in the context of this thesis, is only one of many and highly depends on the
perspective and research field.
The research on granular dynamics over the last decades can be summarized by the
following apt quote:

“Granular materials represent a major object of human activities: as measured in
tons, the first material manipulated on earth is water; the second is granular matter …
This may show up in very different forms: rice, corn, powders for construction … In
our supposedly modern age, we are extraordinarily clumsy with granular systems …”

— P. G. de Gennes, [43]

Although granular materials are seemingly simple to describe, they exhibit a tremendous
amount of complex behavior much of which has not yet been satisfactorily explained,
in particular when studying granular matter in three-dimensions. Granular materials
behave differently than solids, liquids, and gases which justifies the characterization of
granular materials as a new form of matter. The everyday example of refilling a pepper
mill (wooden French ones preferred) by using a funnel with a too small outlet aptly
demonstrates this: the peppercorns will eventually get stuck and the clogging can only
be avoided by constantly shaking the mill1.

1 So happened to the author after some rough workdays and if not to spill pepper everywhere in the
kitchen, that may not be the suggested way of doing it.
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2 1 Introduction

The motivation of this thesis is twofold: First, simulating granular material models de-
scribed by rigid bodies and Coulomb-frictional interactions within the field of non-smooth
dynamics is extremely interesting and provides a way to study quantities which are dif-
ficult to obtain from experiments without affecting the dynamics. That includes, for ex-
ample, velocity field distribution, volumetric mass density distribution as well as pressure
and stress distributions. Second, the software implementation of such granular models is
fascinating and challenging and the applied algorithms, concepts and procedures for these
models reach far into the field of computer science.
This thesis aims at providing an impetus for the experimental, theoretical and numerical
study of granular materials.
The following literature review does not aim at giving a complete review on granular
materials and their mechanical treatment. As the study of granular matter spans multiple
disciplines such as geophysics, continuum mechanics, fluid dynamics, thermodynamics,
statistical mechanics, rigid body dynamics and computer science, the reader is referred
to literature which summarizes conducted and still ongoing work in agreement with the
three parts presented in this thesis: the theory of non-smooth rigid body dynamics, the
software implementation and the application of granular rigid body dynamics.

1.1 Literature Review
Since the development of the contact dynamics method in the field of non-smooth dy-
namics, today known as Moreau’s time-stepping scheme, by subsequent theoretic and
algorithmic contributions of Moreau and Jean in the late eighties and nineties (Moreau
[112, 113, 119, 114, 115], Jean & Pratt [79], Jean [80], Jean & Moreau [78], Jean et. al [77]
and Jean [76, 81]) and the rapid increase in computer power, many small up to large soft-
ware frameworks have emerged which offer the ability to simulate non-smooth dynamic
multi-body systems with constraints, contacts and friction for applications in different
fields such as mechanical engineering, biomechanics, robotics and computer graphics. We
will review some of the software frameworks later.
The non-smooth contact dynamics method is also said to belong to the class of discrete
element methods (DEM). The discrete element method, pioneered by Cundall [42] in the
seventies, is a procedure to simulate the dynamics of many particles which are treated
as small rigid bodies, mostly spheres. In a classical discrete element method, the particle
interactions are modeled as compliant contacts which leads to viscoelastic motion. Since
contacts are modeled with impressed forces which depend only on the displacements and
velocities of the particles, their numerical computation is simple except for long-range
forces such as gravity, electrostatic and magnetic forces. [41, 189, 72, 187, 190, 188, 98,
101, 104, 57, 59, 159]. Friction between contacting particles is modeled by nonlinear
springs and dampers. Resolving the impenetrability condition in a granular material
modeled with a discrete element method implies a small timescale for the integration of
the discretized equations of motion due to numerical instabilities.
The contact dynamics method, in contrast to the classical discrete element method, models
the interactions between contacting rigid bodies with set-valued force laws which can



1.1 Literature Review 3

be determined by additionally considering the non-smooth equations of motion which
includes continuous and non-continuous dynamics. The advantage of set-valued force
laws is that they allow to formulate the impenetrability condition of rigid bodies in an
exact form without introducing artificial penalization parameters or damping, that is, by
using unilateral contacts. A lot of constitutive force laws in a mechanical system can be
exactly represented in this framework such as isotropic and non-isotropic Coulomb friction
or simple bilateral constraints such as translational and rotational joints between bodies.
The non-smoothness of the contact dynamics method refers to different aspects: first, the
velocities are discontinuous due to impacts in the system and second, the set-valued forces
can also evoke discontinuities, for example, the stick-slip transitions caused by Coulomb
friction. Furthermore, the timescale of the time-stepping procedure used to integrate the
discretized non-smooth equations of motion can be chosen typically larger than in the case
of a classical discrete element method. This is mainly due to the discretized formulation on
velocity level which is numerically more stable and which approximates the interactions
between rigid bodies during a discrete time step with a single or multiple impulsive forces,
called percussions.
Non-smooth dynamics emerged from mechanical problems involving unilateral contacts
and its sound mathematical formulation employs powerful and well-studied concepts from
convex analysis and measure theory. For a complete history on the development of non-
smooth mechanics the reader is referred to [30, 3].
The contact dynamics method has been applied to study different aspects of granular ma-
terials, such as shear zones [116], indeterminacy of contact forces in granular arrays and
packings [149, 104], stress transmission [153], packing and rearrangements [29], velocity
fluctuations [152], instabilities in granular piles [177], the influence of different particle
shapes [138], shear instabilities and force transmission for two-dimensional discs [182], dy-
namic loading of ballast modeled with two-dimensional polygons [54], force transmission
and packing for pentagonal particles [15], shear zones for three-dimensional spheres [160]
and contact and force networks [154, 175]. Recent research with regard to the contact
dynamics method also includes aspects like cohesive granular materials [164, 44], frictional
contact models of soft-particle systems [133], the comparison between the material point
and contact dynamics method [88], flows of polyhedral grains down a rough inclined
plane [16], non-convex particle rheology in [165] and sedimentation transport [203] or
the comparison study of the discrete element method with the contact dynamics method
using the example of a granular material in a rotating drum [172]. Most of these stud-
ies have been conducted for two-dimensional granular materials. Studies on large-scale
three-dimensional granular setups is still an open research field. The three-dimensional
case is important especially for studying the rheology of granular flows with regard to
the research of ice avalanches [148]. The contact dynamics method became one of the
fundamental concepts in non-smooth rigid multi-body dynamics. It has been successfully
applied for frictional multi-body systems such as masonry [4], tensegrity structures [137],
rockfall [170], legged robots [58], bobsleigh models [155, 11] and microrobots [126], just
to name a few. The results obtained from applying a contact dynamics approach often
prove to be in good agreement with experimental observations as for example reported in
[151, 116, 90, 170, 155, 11]. The reader is also referred to [181, 30] for more references on
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modeling unilateral contacts and friction and its application.
Lots of effort has also been devoted to granular materials in the field of fluid and continuum
mechanics. We refer to [64] for a broad review on this topic and to [200] for an overview
of contact problems in continuum mechanics.
From a software perspective, rigid body dynamics became an attractive field in computer
science since the early nineties when the computer graphics community became interested
in efficient, plausible physics-based animations for computer games [18]. Nowadays, rigid
body simulations build an important part of many modern software tools in a wide range
of application areas such as virtual prototyping [199], training simulators in sports and
medicine [8, 155] and special effects in the film industry [45]. It was mainly the contact
dynamics method, developed by the effort of Jean and Moreau, which has opened up
a new era in computer graphics and is today the state-of-the-art method for physically
based interactive rigid body animations in computer games. The method is also better
known as impulse-based dynamics method and builds the central idea one finds today in
interactive rigid body engines such as Bullet [39] and ODE [176]. At time of writing, the
software library Bullet encompasses one of the most extensive and most powerful collision
detection back-ends available. The strength of Bullet lies in its recent developments for
parallel computation on graphics processing units (GPUs). The reader is referred to the
recent review [22] for an overview of the history of interactive rigid body dynamics in the
field of computer graphics over the last 20 years.
Rigid as well as deformable body dynamics are nowadays still large open research fields in
computer science since they offer many non-trivial challenges such as how to implement
fast collision detection algorithms between different geometries [52], how to efficiently par-
allelize the numerical algorithms related to rigid body dynamics on different architectures
[142, 17, 183, 40, 158] or how to design the different software layers in a general-purpose
rigid multi-body dynamics pipeline [73, 127]. Certain software implementations presented
in this work where inspired by the pe rigid multi-body engine [74, 75] which has set the
standards in simulating large-scale multi-body systems on high-performance distributed
systems. In [75], a simulation containing 1.1 billion rigid bodies has been conducted on
9120 processors on the HLRB-II supercomputer in Munich [75] with the fast frictional dy-
namics algorithm [83]. The application of the fast frictional dynamics algorithm mainly
targets fast animations for computer graphics and its formulation, despite containing inno-
vative ideas, is very intransparent in comparison to the sound formulation of impacts and
friction in non-smooth dynamics. Another software project aiming at simulating gran-
ular materials is the open-source engine Chrono [103] which has support for distributed
systems as well as for graphics processing units (GPUs) [183]. Both frameworks pe and
Chrono, at time of writing, are extending their functionalities towards the interaction
between fluid and rigid body dynamics. Another rigid multi-body software framework
with the same focus and targeting distributed systems is Solfec [85]. The frameworks
pe, Chrono and Solfec use spatial domain decomposition for the parallel time-stepping,
where Solfec relies on the data-management and load-balancing services of the library
Zoltan [25]. The framework Chrono relies on the collision detection capabilities of the
library Bullet whereas the other mentioned rigid multi-body frameworks implement own
collision detection routines. The frameworks pe, Chrono and Solfec all use iterative pro-
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cedures for solving the contact problem in each time step. The implementations in pe and
Solfec encompass projected fixed-point iterations (cf. SOR and JOR Prox algorithms in
section 8.3, [108, 181]) whereas Chrono also contains other related iterative procedures
from convex optimization [102].
The software packages Siconos [2], MBSim [169], LMGC90 [48], and DynamY [181] are other
multi-body frameworks with focus on the accurate and consistent simulation of multi-
body systems with set-valued force laws and impacts. They are/were primarily not fo-
cused on large-scale granular simulations, meaning a multiple of 105 bodies, and do not
primarily target parallel architectures. The framework Siconos also supports switched
electrical circuits which can also be modeled with set-valued forces [109, 110]. The soft-
ware LMGC90 also supports electrical and thermal couplings [156, 150] and fluid-particle
interactions [193].
The parallelization work in [174] for the simulation of granular materials using the contact
dynamics method is important as it is the dual analogue to the mass-splitting method used
in this work and discussed in chapter 13.

1.2 Aim & Scope
This thesis aims at unifying three aspects of the field of granular dynamics, namely the
modeling of a granular material within the sound framework of non-smooth rigid body
dynamics, the complex software implementation for the parallel simulation of granular
matter on high-performance distributed systems and the application of theory and soft-
ware to compare granular experiments with simulations.
The thesis main focus is the theory on non-smooth dynamics in part I and its related
software implementation in part II. The application field is briefly covered in part III by
applying the theory and software implementation to the example of a granular chute flow
experiment.
Depending on the interest in the space scale, that is, the macroscopic, mesoscopic or mi-
croscopic scale, a granular material can be modeled in different ways. At the macroscopic
scale, the granular material is considered as continuous which can be best described by
methods within the framework of continuum mechanics or fluid dynamics. At the meso-
scopic and microscopic scale, the methods mainly rely on modeling the behavior of each
particle and the behavior of all interactions of each particle in its neighborhood. One
major difficulty for building a macroscopic continuous model is the selection of relevant
phenomenological parameters to represent different complex behavior such as elasticity,
visco-plasticity or fracture. Because microscopic models are generally simpler and encom-
pass less model parameters compared to macroscopic, continuous models which entail lots
of model parameters to be identified, this thesis focuses on modeling a granular material
with the contact dynamics method at the particle and interaction scale. This is in agree-
ment with the endeavor of obtaining a model of a granular material which is as simple
as possible, but not simpler1. Hence, in this thesis, the microscopic granular material
1 with regard to the quote “Everything should be made as simple as possible, but not simpler.” attributed
to Einstein (1977)
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model is described within the sound framework of non-smooth dynamics by modeling the
particles as rigid bodies and their interactions with set-valued contact and impact laws.
The modeling task therefore reduces to the choice of geometry of the particles and the
modeling of the contact and impact laws. The main set-valued contact law discussed in
this work is the unilateral contact with Coulomb friction with a Newton-type impact law
extension for modeling the impact dynamics. The thesis also aims at giving a proper,
self-contained overview into the necessary concepts from non-smooth dynamics to model
granular materials such as: rigid body kinematics, rigid body dynamics, quaternions,
convex optimization, time discretization and the description and solution methods of a
contact problem.
Since the drawback of a microscopic model is mainly its increased computational cost, the
thesis focuses on the parallel simulation of granular materials on high-performance distrib-
uted systems by using the Message Passing Interface (MPI). The thesis aims at providing
a sound software framework, named Granular Rigid Body Simulation Framework (GRSF),
to simulate granular rigid body dynamics. The main intention of the GRS framework is to
provide a quality-conscious software implementation for the research community which
is consistent with the theory both from a notational and conceptual point of view. The
thesis aims at giving a proper discussion on the used parallelization techniques such as
the spatial domain decomposition, the mass-splitting method, the communication mech-
anisms for the parallel simulation and the load balancing strategies using the developed
library ApproxMVBB [139]. Some brief discussion is also provided for the data extraction
and visualization tasks by using the converter tools of the GRS framework.
From the application point of view, the thesis provides some small exemplary insight into
conducting an experiment of a chute flow of glass beads down a smooth inclined plane.
A brief discussion is given on the particle analysis necessary for the performed simulation
studies and on the velocity field reconstruction from the obtained video footage of the
experiment. The brief comparison between simulation and experimental results at the
end of the thesis aims at giving some first insight into the velocity field of the chute flow
when the friction coefficient is gradually increased.

1.3 Outline
As already mentioned, this work is separated into three parts in agreement with the
three major research fields of granular dynamics: theory, software and application. Part I
encompasses the state-of-the-art theory on granular non-smooth rigid body dynamics with
some new insights into deriving the equations of motion of a rigid body from a scalable
body by only using the principle of virtual work. Part II encompasses the discussion on
some of the more important intricacies of the software implementation with regard to the
developed framework GRSF [141] and the library ApproxMVBB [139]. Part III focuses on
the evaluation of a particular chute flow experiment conducted at the Institute for Snow
and Avalanche Research (SLF) in Davos, Switzerland, by applying the concepts discussed
in parts I and II. The reader is kindly referred to the pages 8, 80 and 138 for a detailed
outline of each part.
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Granular Rigid Body Dynamics

“’Obvious’ is the most dangerous word in mathematics.”
— E. T. Bell, Mathematics: Queen and Servant of Science, 1951
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This part discusses all mechanical aspects relevant for the context of this thesis. As this
thesis aims at modeling granular materials as large-scale rigid body systems, chapter 2
introduces the concept of a rigid body and its motion in the Euclidean space. Chapter 3
then discusses the parametrization of rotations using quaternions. Chapter 4 introduces
the kinematics of the scalable and rigid body and preludes the derivation of the equations
of motion for both of them. Chapter 5 gives a short overview of the two most fundamental
principles in mechanics, namely the principle of virtual work and the variational law of
interaction. The equation of motion of the scalable body, parametrized by a non-unit
quaternion, is then directly derived from the principle of virtual work. The equation of
motion for the rigid body follows directly by constraining the scalabilty of the scalable
body. Chapter 5 is closed with some concepts required later such as the derivation of the
equation of motion in generalized coordinates where the internal virtual work is omitted.
Chapter 6 familiarizes the reader with some basic notion from convex analysis and convex
optimization to describe different contact laws in chapter 7. Contact laws are used to
model the internal interaction of a granular material modeled with many rigid bodies.
Section 7.2 discusses the basics of the inclusion problem. The inclusion problem is the
key component of the numerical algorithm to solve the contact laws together with a
discretization of the equation of motion explained in chapter 8 and the impact equation
discussed in section 7.3. Chapter 8 concludes with a discussion on the contact problem
and its numerical treatise with the iterative projection algorithms.



Chapter2
Rigid Body Assumption

The following discussion of the concept of a rigid body is based on [51, 170]. As described
in [51], a three-dimensional continuous body is viewed as a three-dimensional compact
differentiable manifold B with boundary. Each material point of a body B is placed in
the physical space E3 by an embedding of B into the space E3 at any instant of time t.
The space E3 with an orgin O denotes the three-dimensional Euclidean inner product
space. An embedding of a body B at a time instant t is called the configuration of body B
at time t. The time evolution of the configuration of a body B describes the motion of
body B in the space E3 over time. The set of all material points of body B embedded
in E3 at time t is denoted as Bt ⊂ E3. For the initial configuration at time t = 0, the
subscript is omitted and the set is denoted by B. In contrast to the approach in [51],
where a coordinate chart of B is chosen independently of the initial configuration, we
identify this coordinate chart directly with coordinates of E3. Hence, the motion ξ of the
body B in the physical space E3 is given as

ξ(·, t) : B → Bt ⊂ E3

x 7→ ξ = ξ(x, t) ,
(2.1)

where x = x1eI1 + x2eI2 + x3eI3 ∈ B ⊂ E3 is the position vector of a material point P ∈ B
at the time instant t = 0. The coordinates Ix = [x1, x2, x3]⊤ ∈ R3 with respect to the
inertial coordinate system I with orthonormal basis ¯̄eI := (eI1, e

I
2, e

I
3) can be thought of as

the coordinate chart of the body manifold B (cf.[51, chapter 4]). Figure 2.1 visualizes the
above mentioned concepts of a body B ⊂ E3.
So far, the motion ξ of a body in E3 is assumed to be differentiable in both arguments and
bijective in the first argument for each time point t, that is, x = ξ-1(ξ(x, t), t). The map ξ
describes the motion of a deformable body B embedded in E3. Since only non-deformable
bodies, called rigid bodies, are considered in the context of this work, the motion ξ is
constrained such that it forms an isometry in the first argument. What that means is
explained in the following.
The map ξ is isometric in the first argument if the distance between any two points x1

and x2 is preserved in time. Measuring distances in the physical space E3 is given by
its induced Euclidean norm ∥x∥2 =

√
(x |x), where (x |y) is the standard Euclidean

inner product of E3. This renders the inner product space E3, called Hilbert space, also a

9
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Figure 2.1: The motion ξ applied to a body B ∈ E3.

normed space. The requirement on ξ to be isometric for a given t ∈ R is

∥ξ(x1, t)− ξ(x2, t)∥2 = ∥x1 − x2∥2 ∀x1,x2 ∈ B ⊂ E3 . (2.2)

It is important to note that at an instant of time t, equation (2.2) imposes uncountably
infinitely many bilateral constraints of the form g(x1,x2) = 0 for all possible pairs of
points x1,x2 ∈ B. These constraints restrict the motion ξ of a continuous body to be
rigid and are assumed to be perfect. A perfect constraint is defined by the principle of
d’Alembert-Lagrange, which will be discussed briefly in chapter 5.
From the Mazur-Ulam theorem [135] follows that any surjective isometry between two
normed vector spaces over the field R is an affine map. A map a : V → W between
two vector spaces V and W is said to be affine if there exists a linear map T : V → W
and a translation t ∈ W such that a(x) = T (x) + t holds. The translation is uniquely
determined by setting x = 0 which results in a(0) = t since T (0) = 0. Therefore, the
isometry (2.2) requires ξ to be affine in its first argument.
A decomposition of the motion ξ into a linear function and a translation at each time
instant t, that is, ξ(x, t) = T (t)(x)+ξ(0, t), is not directly possible as the domain B of the
motion ξ does not contain 0 in general. However, defining the material point vector x =
ρ+xR where xR ∈ B is an arbitrary reference point and ξ(x, t) = ξ(ρ+xR, t) =: ξaff(ρ, t),
the decomposition yields

ξaff(ρ, t) := T (t)(ρ) + rR(t)
KD

K-1
D

Dξaff = DT(t) Dρ+ DrR(t) , (2.3)

where rR(t) = ξaff(xR, t) denotes the translation of the reference point R (see figure 2.1).
The right-hand side in (2.3) is an example for the matrix-vector notation of representing
the motion ξaff in an arbitrary, not necessary orthonormal, coordinate system D where the
coordinate map is denoted as KD and where DT(t) = matD←D(T (t)) ∈ R3×3 is the matrix
representation of the map T (t) which maps coordinate tuples of vectors represented in
basis D to coordinate tuples in basis D (see appendix D). A basis ¯̄eD = (eD1 , e

D
2 , e

D
3 ) is said
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to be orthonormal if (eDi | eDj ) = δij, where δij denotes the Kronecker delta. Furthermore,
we abbreviate ρt := T (t)(ρ) (see figure 2.1).
If the notion of measuring angles given by the inner product of E3 is exploited together
with its induced norm, it can be shown that the isometric map T (t) needs to preserve the
inner product as well and T (t) is said to be orthogonal with respect to the inner product
(cf. [170]), that is,

(T (t)(x) | T (t)(y)) = (x |y) ∀x,y ∈ E3. (2.4)

Condition (2.4), evaluated in an orthonormal basis I, can be written in matrix-vector
notation as

(ITIx)
⊤(ITIy) = Ix

⊤
Iy ∀Ix, Iy ∈ R3 (2.5)

⇒ IT
⊤
IT = I , (2.6)

where I ∈ R3×3 denotes the identity matrix. From (2.6) follows that IR := IT(t) has deter-
minant det(IR) ∈ {−1,+1}. A rotation IR belongs to the special orthogonal group SO(3)
if it obeys equation (2.6) and additionally has determinant det(IR) = +1, which corre-
sponds to the preservation of orientation in E3 and thus IR is said to be proper. Improper
rotations with det(IR) = −1 include additional reflections which are excluded in the
context of rigid body dynamics.
By the constraint of isometry (2.2), the affine body motion ξaff in (2.3) becomes a rigid
body motion ξrig defined as

ξrig(ρ, t) := R(t)(ρ) + rR(t)
KD

K-1
D

Dξrig = DR(t) Dρ+ DrR(t) , (2.7)

where the time-dependent linear map of the rotation is denoted by R(t).
The rigid body motion in (2.7) parametrized by the rotation R(t) and translation rR(t)
defines a time-dependent path on the configuration manifold of a rigid body, which is
the special Euclidean group SE (3). Furthermore, the rigid body motion (2.7) builds the
essential ingredient for the variational law of interaction in mechanics. The variational
law of interaction presented in [51] is a requirement on the internal forces which asks their
virtual work to vanish for all rigid virtual displacements induced by (2.7).
The correct treatise of rotations in mechanics plays an essential role in the simulation of
rigid body systems. Rotations of SO(3) can be parametrized in a number of ways. An ele-
gant and commonly used parametrization is provided by quaternions which are described
in more detail in the next section. Using unit quaternions to parametrize rotations has be-
come the de facto standard in mechanics, robotics and computer graphics. A quaternion
does not have a singularity in the mapping between its time derivative and the angular
velocity of a rigid body. Three parameter formulations, for example the well-known Euler
and Kardan angles, suffer from the aforementioned singularity. Nevertheless, enforcing
the unit constraint of a quaternion used for a rigid body motion has the drawback of
imposing an additional bilateral constraint on displacement level together with constraint
forces in the equation of motion.





Chapter3
Quaternions as Parametrization for
Rotations

The theory on quaternions is well studied and possesses connections to many subfields
in mathematics. Quaternions are embedded within the field of differential geometry by
the Lie group theory, which is beyond the scope of this thesis. This section introduces
quaternions in a slightly different way compared to [108, 170] and is inspired by [55].
The beauty of introducing quaternions as matrices lies in the ease of approaching their
calculus and structure if the reader is already familiar with matrix-vector calculus. It
is the authors opinion that this approach simplifies the understanding of the connection
between rotations and quaternions considerably. The aim of this introduction is to com-
bine the best parts of the excellent mathematical derivations and notation in the thesis
of Schweizer [170] and Möller [108] as well as the theory in [55]. For more background on
quaternions the reader is referred to [69, 9, 87, 198].

3.1 Properties
The space of quaternions H is conveniently introduced as a subspace of the space of
complex matrices C2×2 and is given as

H := {p0I+ p1i+ p2j+ p3k , pi ∈ R} ⊂ C2×2 , (3.1)

with: I =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
i 0

]
. (3.2)

A quaternion P ∈ H consists of a scalar part with coefficient p0 ∈ R and basis vector I,
and a pure part consisting of three coefficients p1, p2, p3 ∈ R with basis vectors i, j and k.
The quaternion space H is a 4-dimensional linear space (vector space), with the canon-
ical basis (I, i, j,k) and the matrix addition + : H × H → H and scalar multiplica-
tion · : R×H→ H. Together with the standard matrix multiplication H × H → H, the
quaternion space H also forms a non-commutative ring in mathematical terminology.
As H is a linear space, we introduce the trivial canonical coordinate map K which maps

13
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a vector P ∈ H to a coordinate tuple p ∈ R4 in basis (I, i, j,k) as

K : H→ R4 , p = K(P) =

[
p0
pr

]
, (3.3)

where p0 is the coordinate of the scalar part and pr = [p1, p2, p3]
⊤ ∈ R3 is the coor-

dinate tuple of the pure part. Since the coordinate map is bijective, H is isomorphic
to R4. We abbreviate the inverse map as P = K-1(p0,pr). The identity element with
respect to the multiplication in H is the identity matrix I or represented in canonical
coordinates as [1, 0, 0, 0]⊤. For convenience, we abbreviate in the following the coordinate
tuple of a vector P ∈ H with a bold lower case letter p. It should be emphasized that
the multiplication operator is merely defined on the non-commutative ring H and is the
matrix-multiplication of two quaternions P and Q. The notion of some induced opera-
tor p ·q for the multiplication of their respective coordinate tuples p and q is not needed
in the further course of this section.
The conjugate P∗ of a quaternion P = K-1( p0 , pr) is defined as

P∗ = K-1( p0 , −pr) ⇔ p∗ =

[
p0
−pr

]
, (3.4)

where P∗ is the conjugate transpose of the complex matrix P and P∗ =
(
P
)⊤ = (P⊤)

and (PQ)∗ = Q∗P∗ holds, where (·) denotes element-wise complex conjugation.
The scalar part Re(P) and the pure part Im(P) of a quaternion P is given by

Re(P) =
1

2
(P+P∗) = p0I ,

Re(p) =
1

2
(p+ p∗) = [p0, 0⊤]⊤ ,

Im(P) =
1

2
(P−P∗) = p1i+ p2j+ p3k ,

Im(p) =
1

2
(p− p∗) = [0, pr

⊤]⊤ .
(3.5)

The space of quaternions with only a scalar part and with only a pure part are denoted
as RI and Hp, respectively. Note that

P ∈ Hp ⇔ Re(P) = 0 ⇔ P∗ = −P ⇔ p∗ = −p . (3.6)

The matrix multiplication of two quaternions PQ yields

PQ = K-1( p0 q0 − pr
⊤qr , p0 qr + q0 pr + p̃rqr) , (3.7)

where p̃r ∈ R3×3 is the real skew-symmetric matrix associated with the cross product,
that is, x̃y = x×y for any x,y ∈ R3. Due to the non-commutative property of the matrix
multiplication, the quaternion multiplication is not commutative in general. To make the
vector space H a Hilbert space, the inner product (P |Q) of two quaternions P and Q is
defined as

(P |Q) :=
1

2
Tr(PQ∗) = (p |q) = p⊤q = piqi , (3.8)
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which is the standard Euclidean inner product of E4 which is a symmetric, positive definite
bilinear form. Hence, the quaternion space H is said to be isomorphic to E4. In (3.8),
Einstein summation convention is used. By (3.8), the induced norm is then given as ∥P∥ =
∥p∥ =

√
(p |p) =

√
p20 + p21 + p22 + p23. The definition of the inner product (3.8) yields

that the space of scalar quaternions RI is orthogonal to the space of pure quaternions Hp.
Furthermore, the inverse P−1 of a quaternion P is obtained by evaluating

P
−1 =

[
p0 + ip1 p2 + ip3
−p2 + ip3 p0 − ip1

]−1
=

1

det(P)

[
p0 − ip1 −p2 − ip3
p2 − ip3 p0 + ip1

]
=

1

∥P∥2
P∗ , (3.9)

where one recognizes that the squared norm ∥P∥2 = det(P) and that PP∗ = P∗P =
∥P∥2 I. By (3.9), computing the inverse of a quaternion involves merely a conjugate
transpose. From (3.9) it also follows that ∥PQ∥ = ∥P∥ ∥Q∥ which can be shown by

∥PQ∥2 I = (PQ)(PQ)∗ = PQQ∗P∗ = P ∥Q∥2 IP∗ = ∥P∥2 ∥Q∥2 I . (3.10)

Due to the existence of the inverse for non-zero quaternions, the non-commutative ring H
becomes a non-commutative field.
The matrix multiplication Q = PX of two quaternions P and X in the field H can also be
expressed by a linear map φL(P) : H→ H in the vector space H such that Q = φL(P)(X).
In canonical coordinates, this is q = φL(P)x, where

φL : H → R4×4,

P 7→ φL(P) =

(
p0 −pr

⊤

pr p0I+ p̃r

)
, (3.11)

follows from (3.7) and similarly for the reversed order of multiplication Q = XP by q =
φR(P)x where

φR : R4 → R4×4,

P 7→ φR(P) =

(
p0 −pr

⊤

pr p0I− p̃r

)
. (3.12)

Writing the matrices φL(P) and φR(P) in component form similar to (3.9), one sees that
the columns are orthogonal to each other with respect to the defined inner product (3.8)
for any quaternion P. Additionally, the maps φL(P) and φR(P) fulfill

φL(P
∗) = φL(P)⊤ , φR(P

∗) = φR(P)⊤ (3.13)

and both maps are homomorphisms since they preserve matrix multiplication and matrix
addition in the non-commutative field H, that is,

φL(P+Q) = φL(P) +φL(Q) , φL(PQ) = φL(P)φL(Q) , (3.14)

and analogously for φR. Also note that the associative law of matrix multiplication
P(XQ) = (PX)Q holds true and therefore

φL(P)φR(Q) = φR(Q)φL(P) . (3.15)
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To extract more properties from the maps φL(P) and φR(P), we evaluate φL(P)⊤φL(P)
which yields

φL(P)⊤φL(P)
(3.13)
= φL(P

∗)φL(P)
(3.14)
= φL(P

∗P)

= φL(∥P∥
2 I) = ∥P∥2 I4 ∈ R4×4 (3.16)

and the same result holds true for φR(P)⊤φR(P).
The determinant of φL(P)⊤φL(P) follows from (3.16) as

det(φL(P)⊤φL(P)) = det(φL(P))2
(3.16)
= det(∥P∥2 I4) = ∥P∥8 (3.17)

⇒ det(φL(P)) = ∥P∥4 , (3.18)

and analogue for φR. The positiveness of det(φL(P)) in (3.18) follows from evaluating
it using (3.11). From the latter equality in (3.18) follows that if P is a unit quaternion,
that is, ∥P∥ = 1, then φL(P) and φR(P) are orthogonal matrices with determinant 1 and
thus proper rotation matrices given by the special orthogonal group SO(4) and preserve
length, angles and orientation in E4 with respect to the inner product in (3.8). Note that
an improper rotation has determinant −1 and is always expressed as a proper rotation in
combination with a reflection in a plane and thus does not preserve orientation. The set of
unit quaternions HU = {P ∈ H | ∥P∥ = 1} is exactly identical to the special unitary group
of dimension 2 which is defined as SU (2) := {P ∈ C2×2 | PP∗ = P∗P = I, det(P) = 1}.
The properties obtained so far are not yet linked to rotations in SO(3) which preserve
angles, length and orientation of vectors in E3. The following section shows the relation
between rotations in SO(3) and the linear maps φL and φR.

3.2 Rotation and Scaling in E3

We have seen in the last section that the maps φL(P) and φR(P) are proper rotations
in E4 if and only if ∥P∥ = 1. It is interesting to look at the composition of the two maps,
namely

φ(P,Q) : H → H
X 7→ PXQ = φL(P) ◦ φR(Q)(X) , (3.19)

where P,Q ̸= 0. The linear map φ(P,Q) is also a rotation in SO(4), if ∥P∥ = 1
and ∥Q∥ = 1 and the fact that the compositions of two rotations is still a rotation
in SO(4). In this case, the maps φL(P) and φR(Q) are called the left- and right-isoclinic
rotations of φ(P,Q), respectively. Actually, it is sufficient to require that ∥P∥ ∥Q∥ = 1
for the above to be a rotation. By using ∥P∥ ∥Q∥ = 1, the following computation

det(φ(P,Q)) = det(φL(P)φR(Q)) = ∥P∥4 ∥Q∥4 = (∥P∥ ∥Q∥)4 = 1 (3.20)
∥PXQ∥ = ∥P∥ ∥Q∥ ∥X∥ = ∥X∥ , (3.21)

shows that the map φ(P,Q) with ∥P∥ ∥Q∥ = 1 is an isometry which means that the
length given by the induced norm is preserved, and, furthermore, its determinant is 1
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which means that the orientation is preserved as well. The easiest way to fulfill the
constraint ∥P∥ ∥Q∥ = 1 is to chose Q := P−1 which leads to the linear map

φ(P) := φ(P,P
−1) : H → H with: s := ∥P∥2

X 7→ PXP
−1 =

1

s
PXP∗ =

1

s
φL(P) ◦ φR(P

∗)(X) ,

(3.22)

which is always an element of SO(4) for any non-zero quaternion P. The convenient
property of φ(P) is that if it is restricted to the space of pure quaternions Hp, it is
isomorph to a rotation in SO(3). This important property, which finally leads to a
quaternion representation of rotations in E3, is shown in the following.
The linear map φ(P) constructed from a quaternion P maps every scalar quaternion in RI
onto itself and thus, it is the identity map for scalar quaternions, that is, PRIP−1 = RI.
On the other hand, every quaternion can trivially be decomposed into a scalar and pure
part as X = Re(X) + Im(X). Since φ(P) is linear, it directly follows that

φ(P)(X) = PRe(X)P
−1+

1

s
P Im(X)P∗ (3.23)

= Re(X) +
1

s
P Im(X)P∗ . (3.24)

From (3.24), one can see that only the pure part of P is mapped by the definition
of φ in (3.22). It is left to check that 1

s
P Im(X)P∗ is always pure for every X, that

is, Re(1
s
P Im(X)P∗) = 0 ∀X. Indeed, an evaluation yields

Re(
1

s
P Im(X)P∗) =

1

2s

(
P Im(X)P∗ + (P Im(X)P∗)∗

)
(3.25)

=
1

2s

(
P Im(X)P∗ −P Im(X)P∗

)
= 0 . (3.26)

In summary, the space of pure quaternions Hp is mapped onto itself by the function φ
and this directly implies a 3-dimensional rotation in the subspace Hp ⊂ H by φ(P)(Hp).
Let us evaluate φ(P) ∈ SO(4) restricted to Hp in coordinates. A pure quaternion coordi-
nate tuple x = [0,xr

⊤]⊤ is transformed to y = [0,yr
⊤]⊤ by (3.22) as

y =

[
0
yr

]
=

1

s
φL(P)φR(P

∗)x =
1

s
φL(P)φR(P)⊤x . (3.27)

Multiplying (3.27) with [0 , I] ∈ R3×4 from the left and using x = [0 , I]⊤xr yields

yr =
1

s
[0 , I] φL(P)︸ ︷︷ ︸[
pr p0I+ p̃r

]φR(P)⊤[0 , I]⊤︸ ︷︷ ︸ pr
⊤

p0I+ p̃r


xr = Rxr . (3.28)
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The matrix R = 1
s
R̂ ∈ R3×3 in (3.28) with

R̂ =
[
pr p0I+ p̃r

] [
pr p0I− p̃r

]⊤ (3.29)

and P ̸= 0 is always a proper rotation matrix in E3 whether P is a unit quaternion or
not. Likewise, the matrix R̂ = sR is always a rotation matrix with an additional scaling
factor s. Hence, the coordinate tuple yr ∈ R3 in (3.28) is the rotated version of xr. By
using the Lagrange identity

a a⊤ = a⊤a I+ ãã ∀a ∈ R3 , (3.30)

a proper rotation matrix R is defined, given a non-zero quaternion P, as

R := I+
2

s
(p0p̃r + p̃2

r) , s := ∥P∥2 , P = K-1( p0 , pr)

=
1

s

 p20 + p21 − p22 − p23 2(p1p2 − p0p3) 2(p0p2 + p1p3)
2(p1p2 + p0p3) p20 − p21 + p22 − p23 2(p2p3 − p0p1)
2(p1p3 − p0p2) 2(p0p1 + p2p3) p20 − p21 − p22 + p23

 , (3.31)

and if a unit quaternion is used, (3.31) simplifies to

R := I+ 2(p0p̃r + p̃2
r) , s := ∥P∥2 = 1 , P = K-1( p0 , pr)

=

 1− 2p22 − 2p23 2(p1p2 − p0p3) 2(p0p2 + p1p3)
2(p1p2 + p0p3) 1− 2p21 − 2p23 2(p2p3 − p0p1)
2(p1p3 − p0p2) 2(p0p1 + p2p3) 1− 2p21 − 2p22

 . (3.32)

Remark: From a numerical viewpoint, computing the matrix R by (3.32) with a non-
unit quaternion is a bad choice, because the resulting matrix is no more a rotation matrix
and transforming a vector x results in a distortion. This can be circumvented by nor-
malizing the quaternion and using (3.32). However, it is computationally cheaper to
use (3.31) with a non-unit quaternion due to the expensive square root operation used for
the normalization.



Chapter4
Body Kinematics

To motivate the equation of motion of a rigid body in the next section, a set of generalized
coordinates q ∈ Rnq are derived from the affine motion in (2.3). In a further step, the
generalized coordinates q are complemented with generalized velocities u ∈ Rnu . The
coordinate representation of T (t) and rR(t) can be chosen as the generalized coordinates q
which parametrize the configuration manifold of an affine body B ⊂ E3. Therefore, an
affine body has 9 degrees of freedom for the affine map T (t) and 3 degrees of freedom
for the translation rR(t), and thus nq = 12. For a rigid body motion where T (t) =
R(t) ∈ SO(3), the rotationR(t) has three degrees of freedom because 6 additional linearly
independent constraints are imposed by (2.6). The rotation R(t) can be parametrized for
example by three Euler or Kardan angles. If a quaternion is used to describe the rotation,
the unit constraint of the quaternion needs to be taken into account. The parameters for
such a parametrization of a coordinate representation of R(t) together with a coordinate
representation of the translation rR(t) form the generalized coordinates q of a rigid body.
A scalable body possesses, compared to the rigid body, an additional degree of freedom
for a uniform scaling in all directions and has therefore 7 degrees of freedom. This uniform
scaling together with the rotation can be parametrized by the four parameters of a non-
unit quaternion. If the scaling direction of the scalable body is restricted, that is, if the
quaternion is enforced to be unit, a rigid body is obtained. In this sense, the equation of
motion for a scalable body derived in the sequel of this chapter, build the foundation for
the rigid body formulation using quaternions.
In the following, we will elaborate on the kinematics of a scalable body in detail to properly
prepare the derivation of the equation of motion in chapter 5.

4.1 Scalable Body Kinematics
The motion of a scalable body is obtained by setting T (t) = s(t)R(t), where s(t) is an
additional scaling parameter. The scalable body motion (omitting the time dependence
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for the coordinate representation) is then given as

ξscal(ρ, t) = s(t)R(t)(ρ) + rR(t)
KI

K-1
I

Iξscal = s IR Iρ+ IrR , (4.1)

and can be parametrized using a time-dependent non-unit quaternion p(t) = K(P(t)) ∈
R4, P(t) ∈ H as presented in (3.29) with s(t)R(t) = φL(P) ◦ φR(P

∗)
∣∣
Hp
∼=R3 which yields

ξscal(ρ,q(t)) = s(t)R(p(t))(ρ) + rR(t)
KI

K-1
I

Iξscal = s IR(p) Iρ+ IrR , (4.2)

with the definitions

q(t) :=

[
IrR(t)
p(t)

]
∈ R7 , s(t) := ∥p(t)∥2 . (4.3)

The rigid body motion in (2.7) can be obtain by enforcing the constraint g(q(t)) = s(t) =
∥p(t)∥2 = 1.
The time-dependent coordinate system K is fixed to the body B and at time t = 0 is
chosen to be identical to the inertial basis I, see figure 2.1. Therefore, the rotation R(t)
rotates the basis vectors ¯̄eI := (eI1, e

I
2, e

I
3) of the inertial coordinate system I to the basis

vectors ¯̄eK := (eK1 , e
K
2 , e

K
3 ) of the body-fixed coordinate system K which can be expressed

by the notation R(t) ⇔ RKI(t), and in a coordinate system D as DRKI. Note that
the representation of the rotation matrix RKI is the same for basis I and K, that is,
IRKI(t) = KRKI(t) (see appendix D.7). The choice of the coordinate system of the scalable
body motion in (4.1) and (4.2) and for all further derivations, including the equations of
motion, is irrelevant and could be neglected because of the coordinate independence of
the underlying mechanical principles that describe the time evolution of a mechanical
system. However, the notion of a representation in a basis is important since numerical
computations can only be done by using coordinate tuples, but not by vectors of an
abstract space. For that reason, we will only omit subscripts for coordinate system when
explicitly stated.
To extract the generalized velocities u of a scalable body, we first consider the motion (4.1),
where the rotation is not yet parametrized by a quaternion. As a guideline for the sequel
of this chapter, the motion (4.2) is regarded as the central equation for the derivation of
the equation of motion of the scalable body in the next section.
To obtain the absolute velocity of point P in figure 2.1, we differentiate equation (4.1)
represented in the inertial coordinate system I with respect to time which yields

Iξ̇scal = ṡ IR Iρ+ s IṘ Iρ+ IṙR . (4.4)

It is natural to choose the absolute velocity IṙR of the reference point R as the translational
part and the scaling velocity ṡ as the scaling part of the generalized velocity u. The
absolute angular velocity of a body B which is linked to IṘ will be chosen later as the
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rotational part of the generalized velocity u. The next paragraph will introduce the
angular velocity of a rotating coordinate system to finally define the angular velocity of
the orthonormal body-fixed coordinate system K of the scalable body B with respect to
the inertial basis I. The reader should note that the following discussion is rather technical
and the end result is given in (4.9).

4.2 Angular Velocity
It is the authors opinion to rather introduce the absolute angular velocity of orthonormal
coordinate transformations with the help of the Euler differentiation rule (see appen-
dix D.8 and cf. [60]) instead of using time derivatives of rotation matrices. The Euler
differentiation rule relates the absolute velocity of a vector ċ expressed in a time-dependent
coordinate system D to the time-differentiated coordinate representation (Dc)

• by

D(ċ) = (Dc)
•
+AID

−1ȦID Dc , (4.5)

where the inertial coordinate system is denoted by I. The Euler differentiation rule (4.5)
holds for a general coordinate transformation AID = matI←D(1E3) = (ADI)

−1. For the
general case, one can differentiate the identity map in both frames which yields

AID
−1AID = DI ⇒ (AID

−1)
•

AID︸ ︷︷ ︸
=: DωDI

+AID
−1ȦID︸ ︷︷ ︸

=: DωID

= 0 ⇒ DωDI + DωID = 0 , (4.6)

ADI
−1ADI = II ⇒ (ADI

−1)
•

ADI︸ ︷︷ ︸
IωID

+ADI
−1ȦDI)︸ ︷︷ ︸

IωDI

= 0 ⇒ IωID + IωDI = 0 , (4.7)

where the matrices DωDI and DωID transform in the same way as the coordinate rep-
resentation of a linear map. The transformations are visualized with arrows in (4.6)
and (4.7). If only orthonormal coordinate systems are considered, the commutation rule
for transposition and derivation holds, that is, (AID

⊤)
•

= (ȦID)
⊤, and the term AID

−1ȦID

becomes

Dω̃ID := AID
⊤ȦID ∈ so(3) ⊂ R3×3 (4.8)

which is the angular velocity of a rotating coordinate system D with respect to the coor-
dinate system I represented in basis D. From (4.8) follows that the angular velocity Dω̃ID

forms a skew-symmetric matrix, that is, Dω̃ID
⊤ = −Dω̃ID. Since −Dω̃ID = Dω̃DI by (4.6),

it follows that the transpose operation and the negation reverses the relative reference,
meaning that Dω̃DI = Dω̃ID

⊤. By the definition in (4.8), the absolute angular veloc-
ity KΩ̃ of a rigid body B represented in its body-fixed coordinate system K is defines
as KΩ̃ := Kω̃IK = AIK

⊤ȦIK.
The Lie algebra so(3), to which the angular velocity belongs, is a vector space and is the
tangent space at the identity element of the space of rotions SO(3). The skew-symmetric
angular velocity Dω̃IK can be identified in E3 with a vector DΩ and the linear map it
describes, by the cross product in E3 such that DΩ × x = DΩ̃x. The map (̃·) from DΩ
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to DΩ̃ is linear and DΩ̃ transforms in the same way as the representation of a linear map
under a change of basis (see appendix D.7).
The angular velocity can be related to the rotationRKI by the relationship AIK = KRKI =

IRKI (see appendix D.7) and from (4.8) then follows

IΩ̃ = ȦIKAIK
⊤ = IṘ IR

⊤ , KΩ̃ = AIK
⊤ȦIK = KR

⊤
KṘ , (4.9)

where the subscripts (·)KI of the rotation matrix are omitted. Substituting the time
derivative of the rotation matrix in (4.4) with the relations in (4.9) yields the following
two representations

Iξ̇scal = ṡ IR Iρ+ s IṘ Iρ+ IṙR

= ṡ IR Iρ+ s IΩ̃ IR Iρ+ IṙR

= ṡ IR Iρ− s (IR Iρ)˜IΩ+ IṙR

=
[
I Iρ(t) −s Iρ̃(t)

]
u

with: u :=

 IṙR
ṡ

IΩ

 ∈ R6 ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Iξ̇scal = ṡ IR Iρ+ s IṘ Iρ+ IṙR

= ṡ KR Kρ+ s KR KΩ̃ Kρ+ IṙR

= ṡ KR Kρ− s KR Kρ̃ KΩ+ IṙR

=
[
I KR Kρ −s KR Kρ̃

]
u

with: u :=

 IṙR
ṡ

KΩ

 ∈ R6 ,

(4.10)

where we used

ρt := s(t)R(t)(ρ) = s(t)ρ , IR = KR , (4.11)
Kρ = AKI Iρ = AKI IR Iρ = Iρ , x̃y = −ỹx . (4.12)

The representation of the angular velocity Ω either in basis K or in basis I is chosen as the
rotational part of the generalized velocity u in (4.10). The choice of u on the right-hand
side in (4.10) with the angular velocity represented in the body-fixed basis K is preferred
because it leads to a time-independent inertia tensor when deriving the equations of
motion with the principle of virtual work in the next section.
For a mechanical system the relation between q̇ and u can always be written (cf. [60]) as

q̇ = F(q, t)u+ β(q, t) (4.13)

and is called the kinematic part of the equation of motion.
In the following, we derive expression (4.13) for the motion of the scalable body in (4.2)
and relate the time derivative of (4.2) to (4.10).

4.3 Minimal Velocities for the Scalable Body
As it will prove useful in the next chapter, we introduce minimal generalized velocities up

for q in (4.2). The choice of up is obtained by differentiating the definition of s(t) which
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yields

s(t) := ∥p∥2 ⇔ s(t)I = ∥P∥2 I = P∗P ⇒ ṡ(t)I = Ṗ∗P+P∗Ṗ (4.14)
= (P∗Ṗ)∗ +P∗Ṗ (4.15)
= Re(2P∗Ṗ︸ ︷︷ ︸

W

) . (4.16)

As can be seen from (4.16), it makes sense to represent the term 2P∗Ṗ by a time-dependent
quaternion

W(t) := 2P∗Ṗ ∈ H ⇔ w(t) = K(W) := [ν(t) , α(t)⊤]⊤ ∈ R4 , (4.17)

such that Re(w) = ν(t) = ṡ(t). From (4.17) and (3.9) follows

Ṗ =
1

2s
PW ∈ H ⇔ ṗ =

1

2s
φL(P)w ∈ R4 . (4.18)

The kinematic relation (4.13) for the scalable body between q̇ and up := [IṙR(t)
⊤,w(t)⊤]⊤

can be written as

q̇ = F(q)up,[
IrR(t)
p(t)

]•
=

[
I 0
0 1

2s(t)
φL(P)

] [
IṙR(t)
w(t)

]
with: F(q) ∈ R7×7, up := [IṙR(t)

⊤,w(t)⊤]⊤ ∈ R7 .

(4.19)

All relations are available now to evaluate the time derivative of (4.2). To do so, we
rewrite (4.2) in the space H and differentiate with respect to time, that is,

K-1(0, Iξ̇scal) =
d

dt
(P {0, Iρ}︸ ︷︷ ︸

X∈Hp

P∗) +K-1(0, IṙR) (4.20)

= ṖXP∗ +PXṖ∗ +K-1(0, IṙR) (4.21)
(3.6)
= ṖXP∗ − (ṖXP∗)∗ +K-1(0, IṙR) (4.22)

(3.5)
= 2 Im(ṖXP∗) +K-1(0, IṙR) (4.23)

(4.18)
= 2 Im(

1

2s
PWXP∗) +K-1(0, IṙR) (4.24)

(3.22)
= Im(φ(P)(WX)) +K-1(0, IṙR) (4.25)

(3.24)
= φ(P)(Im(WX)) +K-1(0, IṙR) (4.26)
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and converting back to coordinates yields

[0, Iξ̇scal
⊤]⊤ = φ(P) Im(φR(X)w) + [0, IṙR

⊤]⊤ (4.27)

⇒ Iξ̇scal = [0, I]φ(P) Im φR(X)w + IṙR(t) (4.28)

= [0, I]φ(P) [0, I]⊤︸ ︷︷ ︸
IR

[0, I]φR(X)︸ ︷︷ ︸
[Iρ, −Iρ̃]

w + IṙR(t) (4.29)

=
[
I KRKρ −KRKρ̃

]
up . (4.30)

Comparing (4.30) with (4.10) gives the following important relation between the two
minimal velocities up :=

[
IṙR
⊤, ν, α⊤

]⊤ and u =
[
IṙR
⊤, ṡ, KΩ

]⊤ as

ν(t) = ṡ(t), α = s(t)KΩ, ⇔ up = diag (I, 1, sI)u . (4.31)

The kinematic relation for the rigid body can now be written in terms of u by setting the
scaling degree of freedom in (4.19) to s(t) = ∥p∥2 = 1 ∀t from which follows
ṡ(t) = ν(t) = 0. Using (4.31) then directly yields the kinematic equation (4.13) for the
rigid body as

[
IrR(t)
p(t)

]•
=

[
I 0

0 1
2
φL(P) [0, I]⊤

] [
IṙR(t)

KΩ(t)

]
, ∥p∥2 = 1 . (4.32)

The most important property of the kinematic differential equation (4.19) is that the
matrix F(q) is never singular as long as ∥P∥ = s(t) ̸= 0, because the inverse of φL(P)
always exists since det(φL(P)) = s(t) ̸= 0 by (3.18). The inverse F−1(q) is obtained as

F
−1(q) =

[
I 0
0 2φL(P

∗)

]
∈ R7×7 . (4.33)

The property det(F(q)) ̸= 0 is the reason why a quaternion parametrization of the rotation
for the simulation of rigid bodies is very convenient. For other parametrizations, such as
Euler or Kardan angles γ ∈ R3, the map γ̇ = H(γ)KΩ(t) will always become singular
at certain angles γ, regardless in which order the elementary rotations are multiplied.
When numerically integrating equation (4.32), the constraint ∥p∥ = 1 has to be enforced
explicitly if the integration scheme does not preserve it implicitly. This can be achieved
by an additional normalization or by including the additional bilateral constraint ∥p∥ = 1
in the equation of motion. Interesting research on this issue has been conducted in [184,
108].
This side note concludes the preparations for the derivation of the equation of motion of
the scalable body in the next section.



Chapter5
Body Dynamics

A mechanical system S is a set of points which is embedded in the physical space E3.
The mechanical system S described in this work is a continuous body B embedded in the
physical space E3, denoted as B ⊂ E3. Each material point x ∈ B of the body is able to
interact with other points in the set B and with its environment by forces. Defining the
term force is one of the most fundamental yet difficult parts in the field of mechanics. From
the effort of a lot of famous mathematicians, physicians and philosophers. over the last 4
centuries, one representation has emerged to be extremely useful. A force F can be seen as
the dual quantity to a primal element δξ from the space of virtual displacement fields. The
virtual displacement field is induced by the kinematic parametrization of the mechanical
system. The definition of a force is solidified by the duality pairing δW = ⟨F | δξ⟩ ∈ R
(see appendix D.9), which is called virtual work. For the case of embedding the body
in E3, a virtual displacement δξ(x) ∈ TξE3 ∼= E3 at a material point x ∈ B is an element
of tangent space TξE3 located at the displaced point ξ(x). A force F is an element of
the dual space, namely F ∈ T ∗ξE3 ∼= E3∗. The following translated quote is helpful in
understanding the nature of a force:

“Forces cannot be seen or visualized in the physical space. Forces are sensed
point-wise by imposing virtual displacements on them to fully characterize them by
size and direction.”

— Ch. Glocker, Lecture Notes on Non-Smooth Dynamics, 2015

One can evaluate the duality pairing in a basis I as ⟨F | δξ(x)⟩ = IF
⊤
Iδξ(x), and since we

are given the standard Euclidean inner product in E3, the space E3 is isomorphic to its
dual E3∗, see section D.9.2. Note that the duality pairing, by the definition of the dual
basis, is independent of any coordinate system and left subscripts are neglected in the
following. The dynamic equilibrium of a mechanical system S is given by the principle of
virtual work (cf. [51]) as an axiom.
Axiom 5.1 (Principle of Virtual Work):
At any instant of time t, the virtual work δW of a body B ∈ E3 vanishes for all virtual
displacements δξ, that is,

δW (δξ) =

∫
B

⟨dF | δξ(x)⟩ = δW dyn(δξ) + δW int(δξ) + δW ext(δξ) = 0 ∀δξ . (5.1)
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26 5 Body Dynamics

The principle of virtual work is independent of the coordinate representation by definition
and the variation δc of a vector-valued function c(t) is understood as

δc(t) =
∂ĉ

∂ε
(t, ε0)δϵ , c(t) = ĉ(t, ε0) , (5.2)

where ĉ(t, ε) denotes the variational family parametrized by ε.
The main difficulty of applying the above integration over the body B is to find the
constitutive force laws, namely modeling the contributions δW dyn, δW int and δW ext. The
term δW dyn is the virtual work contribution of the inertia of the body. The terms δW int

and δW ext are the contributions of internal interactions, that is, interactions among points
of B, and external interactions between points of B and its environment.
The inertia contribution δW dyn for a body B is modeled in correspondence to Newtons
second law as

δW dyn(δξ) :=

∫
B

δξ(x)⊤dFdyn(x) , (virtual work contribution of the inertia) (5.3)

dFdyn(x) := −ξ̈(x)dm(x) , (constitutive force law) (5.4)

where dm(x) is the measure of the mass distribution of body B. The external contribution
is modeled as

δW ext(δξ) :=

∫
B

δξ(x)⊤dFe(x) , (external virtual work contribution) (5.5)

where dFe(x) denotes the measure for the force distribution on body B which may contain
Dirac-type contributions as well.
The variational law of interaction in [51] is the second axiom in mechanics and is a
requirement for the internal virtual work contribution δW int.
Axiom 5.2 (Variational Law of Interaction):
At any instant of time t, the internal virtual work δW int

B′ of any subsystem B′ ⊆ B vanishes
for all rigid virtual displacements δξ, that is,

δW int
B′ (δξ) = 0 ∀ δξ rigidifying, B′ ⊆ B . (5.6)

Rigidifying virtual displacements of some motion ξ, denoted by δξrfy, can be constructed
from the virtual rigid body displacements δξrig. Virtual rigid body displacements δξrig
are derived from varying the rigid body motion (2.7) which yields

δξrig(ρ, t) := δR(t)(ρ) ρ+ δrR(t)
KI

K-1
I

Iδξrig = IδrR + Iδϕ̃ Iρ , (5.7)

Iδϕ̃ := δAIKAIK
⊤ = δ(IRKI) IRKI

⊤ ,

Kδϕ̃ := AIK
⊤δAIK = KRKI

⊤ δ(KRKI) ,
(5.8)

for some given inertial basis I and a given body-fixed basis K. The vector δϕ in (5.7)
represents virtual quasi-angles and is in direct correspondence with the angular velocity Ω,
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that is, confer (4.9) and replace the time derivative with the ε-derivative given in (5.2).
Omitting the coordinate system in (5.7) and replacing ρ with ξ− rR yields the rigidifying
virtual displacment δξrfy of a motion ξ as

δξrfy := δrR + δϕ̃ (ξ − rR) , (5.9)

where the point R can be chosen arbitrarily. Equation (5.9) defines a rigid virtual dis-
placement field over all material points of B at its current configuration Bt.
The law of interaction can be understood in the way that internal forces formulated by
an internal virtual work contribution δW int must not produce any contribution to the
total virtual work δW among virtual displacements of material points which preserve the
isometry (2.2). In other words, internal forces are required to produce no virtual work
contribution when body B is not virtually deformed. To better understand this concept,
we consider a continuous body B with a subsystem B′ consisting only of two points ρ1 ∈ B
and ρ2 ∈ B as shown in figure 5.1a. The internal virtual work takes the form

δW int
B′ (δξ) := δξ(ρ1, t)

⊤F1 + δξ(ρ2, t)
⊤F2 , (5.10)

where F1 and F2 are Dirac-like forces as dual quantities to the virtual displacements
δξ(ρ1, t) and δξ(ρ2, t). Applying the law of interaction for δW int

B′ , with basis subscripts
omitted, yields

0 = δW int
B′ (δξ) = δξ(ρ1, t)

⊤F1 + δξ(ρ2, t)
⊤F2 ∀δξ = δξrfy (5.11)

= δϕ⊤(ρ̃1F1 + ρ̃2F2) + δrR(F1 + F2) ∀δϕ, ∀δrR , (5.12)

from which follows

F1 = −F2 , ρ̃1F1 = ρ̃2F2 ⇔ ρ1 × F1 = ρ2 × F2 , (5.13)

which requires the forces F1 and F2 to be anti-parallel and to have the same magnitude.
The requirement (5.13) on the forces F1 and F2 is a special case of the law of interaction,
namely for two Dirac-like forces at the points ρ1 and ρ2 and expresses the simple actio-
reactio principle by Newton’s third law.
In the following, we will model an internal virtual work contribution of a continuous
body B with which we will derive the equation of motion of the scalable body in the next
section. Therfore, we split the internal virtual work into an impressed internal virtual
work contribution δW int

I and a constraint internal virtual work contribution δW int
C as

δW int(δξ) = δW int
C (δξ) + δW int

I (δξ) . (5.14)

The constraint internal virtual work contribution defines internal forces which constrain
the continuous body B with infinite degrees of freedom to a scalable body with 7 degrees
of freedom given by the constraint motion in (4.2). The constitutive law for the constraint
internal virtual work contribution W int

C (δξ) is modeled to be perfect, which means it obeys
the principle of d’Alembert-Lagrange.
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Principle 5.1 (Principle of d’Alembert-Lagrange):
A constitutive force law formulated by an internal virtual work contribution δW int

C which
constrains a motion ξ to some submanifold C ⊂ E3 is said to be perfect if δW int

C vanishes
for all admissible displacements, that is

δW int
C (δξ) = 0 ∀δξ admissible . (5.15)

An admissible displacements δξ lives in the tangent space to the submanifold C at ξ, that
is, δξ ∈ TξC.

Hence, the constraint internal virtual work W int
C vanishes whenever the virtual displace-

ment field δξ acting on the continuous body is restricted to δξscal.
The impressed internal work contribution for the scalable body is modeled only as a
contribution in the direction s(t), which is the degree of freedom for the scalability and is
the only degree of freedom able to deform the body B or, in other words, able to violate
the isometry condition (2.2). The contribution is given by

δW int
I = δsλs , (impressed internal virtual work contribution) (5.16)

s, λs ∈ D , (constitutive force law) (5.17)

where D denotes some modeled relation between the scaling parameter s and its impressed
force λs.
The motion under consideration is the motion of a scalable body ξscal given in (4.1).
The law of interaction requires the total internal virtual work contribution for any sub-
system B′ ⊆ B in (5.14) to vanish for all rigidifying virtual displacements δξrfyscal given
as

δξrfyscal = δrR + δϕ̃ sRρ , (5.18)

which is obtained by definition (5.9) and (4.1). In the following, we choose B′ = B.
As will be seen in the next section, the rigidifying virtual displacements δξrfyscal are a
subset of δξscal, that is, δξrfyscal = δξscal|δs=0 ⊂ δξscal. Thus, since δW int

C was defined to
be perfect by the principle of d’Alembert-Lagrange, δW int

C also vanishes for all rigidifying
displacements δξrfyscal. Hence, the only remaining term still required to vanish by the law
of interaction is δW int

I . Applying the law of interaction to (5.16) yields

δsλs = 0 ∀δξrfyscal = δξscal|δs=0 , (5.19)

which is fulfilled for any λs. Thus, (5.16) directly fulfills the variational law of interaction1

for any subsystem since (5.16) is independent of any subsystem of B.
The approach to split the internal virtual work contribution into two parts as in (5.14) is
in analogy to the procedure demonstrated in chapter 4.2 in [51], where the motion of a
1 Precisely, the internal work contribution can be formulated with an impressed stress field which can
be split into a force in the direction of the scaling parameter s(t) and a generalized stress tensor σs as
dual quantity to the virtual rotations, that is, δW int

I = −δsλs− δϕ̃ : σs. In order to fulfill the variational
law of interaction which states δϕ̃ : σs = 0 ∀δϕ̃, δs = 0, the stress tensor σs turns out to be symmetric.
Furthermore, it will also vanish in the total virtual work of the scalable body and is therefore neglected.
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(a) (b)

Figure 5.1: (a): Visualization of a virtual displacement field of a subsystem B′

consisting of only two points ρ1 and ρ2 in (a). The forces F1 and F2 are indentified as
vectors in E3. (b): Visualization of two families of varied generalized coordinates q ∈
R. Family q̂1(t, ε) has a vanishing time gradient at t∗ and family q̂2(t, ε) has a
vanishing variation at time t∗.

continuous body is restricted to the kinematics of a deformable beam-like body. The law
of interaction, in this case, requires the impressed stress tensor of the impressed internal
virtual work to be symmetric.
The above brief discussion on the two fundamental axioms in mechanics, the principle of
virtual work and the variational law of interaction, lays the foundation for the following
derivation of the equation of motion of the scalable body.

5.1 Scalable and Rigid Body Dynamics
The derivations in this section is based on the work [108] and [170]. This derivation is
different as we derive the equation of motion for the scalable body directly by the virtual
work expression instead of using the Lagrange II formulation.
The virtual work δW of the scalable body is assembled from the contributions (5.4), (5.5)
and (5.14). The virtual work evaluated with the virtual displacements Iδξscal induced
by the constraint motion Iξscal of the scalable body represented in the inertial coordinate
basis I yields

0 = δW (Iδξscal) = δW dyn + δW int
I + δW int

C︸ ︷︷ ︸
=0 by principle 5.1

+ δW ext ∀Iδξscal, t (5.20)

=

∫
B

Iδξscal
⊤
Iξ̈scaldm− δsλs − Iδξscal

⊤
IdF

e ∀Iδξscal, t . (5.21)

To evaluate the virtual work (5.21), we directly use the time derivative Iξ̇scal of the
motion Iξscal in (4.30) with up :=

[
IṙR
⊤, ν, α⊤

]⊤. The variation Iδξscal can be de-
duced from (4.16) by replacing the time derivative with the ε-derivative, that is, δsI =



30 5 Body Dynamics

Re(2P∗δP) where we abbreviate 2P∗δP with the virtual quasi-quaternion K(δs, δa). The
virtual displacement Iδξscal, in analogy to (4.30), then becomes

Iδξscal =
[
I KR Kρ −KR Kρ̃

] IδrR
δs
δa

 . (5.22)

Replacing the time derivative with the ε-derivative in the derivation of (4.10) and using
the definition of the virtual quasi-angles Kδϕ in (5.8) then yields

Iδξscal =
[
I KR Kρ −s KR Kρ̃

] IδrR
δs

Kδϕ

 . (5.23)

From comparing (5.22) with (5.23) follows the correspondance between the pure virtual
quasi-quaternion parameters δa and the virtual quasi-angles Kδϕ in analogy to (4.31) as

δa = s Kδϕ . (5.24)

Furthermore, δξrfyscal = δξscal|δs=0 in (5.19) is verified by (5.23). The second time deriva-
tive Iξ̈scal of (4.30) evaluates to

Iξ̈scal =
[
I KR Kρ −KR Kρ̃

]
u̇p +

[
0 KṘ Kρ −KṘ Kρ̃

]
up (5.25)

=
[
I KR Kρ −KR Kρ̃

]
u̇p +

[
0 1

sK
R α̃ Kρ −1

sK
R α̃ Kρ̃

]
up (5.26)

=
[
I KR Kρ −KR Kρ̃

]
u̇p +

(
1

s
KR α̃ Kρν −

1

s
KR α̃ Kρ̃α

)
, (5.27)

where we have used (4.9) and (4.31) to replace KṘ with 1
sK

Rα̃.
Substituting the definitions (5.22) and (5.27) into the inertia contribution of the virtual
work (5.21) and omitting the subscript K yields

−δW dyn =

∫
B

Iδξscal
⊤
Iξ̈scaldm =

IδrR
δs

δa

⊤∫
B

 I Rρ −Rρ̃

× ρ⊤ρ −ρ⊤ρ̃
sym. × ρ̃⊤ρ̃

 dm u̇

+

∫
B

1

s

 Rα̃ρν +Rα̃ρ̃α

ρ⊤α̃ρν − ρ⊤α̃ρ̃α

−ρ̃⊤α̃ρν + ρ̃⊤α̃ρ̃α

 dm

 .

(5.28)

The expression for the inertia contribution (5.28) drastically simplifies if the reference
point is chosen to be the center of gravity S of the body, that is, R = S. Then, the
following integrals vanish:∫

B
KRKρ dm = KR

∫
B

Kρ dm = 0 ,

∫
B

KRKρ̃ dm = KR

∫
B

Kρ̃ dm = 0 . (5.29)
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The classical inertia tensor is given as

KΘS :=

∫
B

Kρ̃
⊤
Kρ̃ dm , Tr(KΘS) =

∫
B

Kρ
⊤
Kρ dm , (5.30)

where the latter expression can be derived from Lagrange’s identity ρ̃⊤ρ̃ = ρ⊤ρI − ρρ⊤.
Furthermore, the term ρ⊤ρ̃ = (ρ̃⊤ρ)⊤ = 0 vanishes and, with x̃a = −ãx, the terms ρ⊤ρ̃
and ρ⊤α̃ρ in (5.28) vanish as well. With the above definitions, the inertia contribution
simplifies to

−δW dyn =

∫
B

Iδξscal
⊤
Iξ̈scal dm =

IδrS
δs

δa

⊤mI 0 0

0 1
2
Tr(KΘS) 0

0 0 KΘS

 u̇p

+
1

s

∫
B

 0

−α⊤ρ̃⊤ρ̃α
ρ̃⊤ρ̃αν + ρ̃⊤α̃ρ̃α

 dm

 .

(5.31)

Evaluating the integral of the second component in (5.31) yields∫
B

−α⊤Kρ̃⊤Kρ̃αdm = −α⊤KΘSα . (5.32)

The term ρ̃⊤α̃ρ̃α in (5.31) can be rewritten as −ρ̃⊤α̃α̃ρ and, by the property of the
triple cross product ãb̃b̃a = −b̃ããb, as α̃ρ̃⊤ρ̃α. Evaluating the integral of the third
component in (5.31) yields∫

B
Kρ̃
⊤
Kρ̃αν + α̃Kρ̃

⊤
Kρ̃α dm = (νI+ α̃)KΘSα . (5.33)

Substituting (5.32) and (5.33) in (5.31) yields the simplified virtual work contribution of
the inertia as

−δW dyn =

IδrS
δs
δa

⊤mI 0 0
0 1

2
Tr(KΘS) 0

0 0 KΘS

 u̇p +
1

s

 0

−α⊤KΘSα
(νI+ α̃)KΘSα

 . (5.34)

Evaluating the external virtual work contribution yields

δW ext =

IδrS
δs
δa

⊤ IF
e

Ee
S

KM
e
S

 , (5.35)

IF
e :=

∫
B

IdF
e , Ee

S :=

∫
B

Kρ
⊤
KR
⊤
IdF

e , KM
e
S :=

∫
B

Kρ̃ KR
⊤
IdF

e , (5.36)

where IF
e denotes the resultant external force in basis I, and Ee

S and KM
e
S denote the

resultant external induced scaling force and moment, respectively, with respect to the
center of gravity S in basis K.
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Finally, the virtual work formulation (5.21) yields the variational formulation of the kinetic
part of the equation of motion for the scalable body, that is,IδrS

δs
δa

⊤mI 0 0
0 1

2
Tr(KΘS) 0

0 0 KΘS

 u̇p +
1

s

 0

−α⊤KΘSα
(νI+ α̃)KΘSα

−
 IF

e

Ee
S + λs

KM
e
S

 = 0 (5.37)

for all virtual displacements IδrS, δs, δa at every time instant t. Evaluating the variation
in (5.37) together with the kinematic part (4.19) yields the equation of motion of the
scalable body for the generalized coordinates q = [IrS

⊤,p⊤]⊤ and generalized velocities
u = [IṙS

⊤,w⊤]⊤ with w := [ν,α⊤]⊤ as[
IrS
p

]•
=

[
I 0
0 1

2s
φL(P)

] [
IṙS
w

]
,mI 0 0

0 1
2
Tr(KΘS) 0

0 0 KΘS

IṙS
ν
α

• + 1

s

 0

−α⊤KΘSα
(νI+ α̃)KΘSα

−
 IF

e

Ee
S + λs

KM
e
S

 = 0 .

(5.38)

(5.39)

The rigid body formulation is obtained from (5.39) if the scaling parameter s is restricted
to one, that is, s(t) = 1 ∀t. The constitutive force law (5.16) which enforces this restriction
can be written as

s, λs ∈ D = {s, λs | s = 1, λs ∈ R} . (5.40)

Equation (5.40) is the force law of a bilateral constraint which is perfect since it fulfills
the principle of d’Alembert-Lagrange, that is, δsλs = 0 ∀IδrR, δa, δs = 0 .
Using δa = s Kδϕ in (4.31) and α = s KΩ in (5.24) and the constraint s = 1 in (5.40), the
virtual work formulation in (5.37) can be transformed to obtain the rigid body formulation[

IδrS
Kδϕ

]⊤([
mI 0
0 KΘS

]
︸ ︷︷ ︸

M

[
IṙS
KΩ

]•
−
[

0

−KΩ̃ KΘS KΩ̃

]
︸ ︷︷ ︸

h(q,t)

−
[

IF
e

KM
e
S

])
= 0 ∀IδrS, Kδϕ, t . (5.41)

The matrix M denotes the constant mass matrix and vector h(q, t) denotes the nonlinear
term consisting of gyroscopic accelerations. Evaluating the variational term above yields
the classical Newton-Euler equations of a rigid body. The equation of motion consisting
of kinetic and kinematic part for the rigid body finally yields[

IrS
p

]•
=

[
I 0

0 1
2
φL(P) [0, I]⊤

] [
IṙS
KΩ

]
, (kinematic part)[

mI 0
0 KΘS

] [
IṙS
KΩ

]•
=

[
0

−KΩ̃ KΘS KΩ̃

]
+

[
IF

e

KM
e
S

]
. (kinetic part)

(5.42)

(5.43)

Note that the quaternion p describes a rotation IRKI = KRKI. The equations of mo-
tion (5.42) and (5.43) are used in the further course of this work to describe the dynamics
of a granular material by many rigid bodies.
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5.2 Equation of Motion for Generalized Coordinates
For the sake of completness, we briefly derive the virtual work expression for a mechanical
system B in E3 undergoing a constrained motion ξc(ρ,q(t), t), where the configurations
are described by generalized coordinates q. The following definitions will be used:

ξ := KD ◦ ξc(ρ,q(t), t) (representation in some basis D) , (5.44)

p :=

∫
B

[
∂ξ

∂q

]⊤
ξ̇dm ∈ Rnq , T (q, q̇, t) :=

∫
B

1

2
ξ̇⊤ξ̇dm ∈ R+

0 , (5.45)

ξ̇(t) =
∂ξ

∂q
q̇+

∂ξ

∂t
⇒ δξ =

∂ξ

∂q
δq (5.46)

⇒ ∂ξ

∂q
=

∂ξ̇

∂q̇
⇒ d

dt

∂ξ

∂q

[108]
=

∂ξ̇

∂q
. (5.47)

The term T (q, q̇, t) is the definition for the kinetic energy of the mechanical system B
and p denotes the generalized impulse (not to be confused with the aforementioned quater-
nion notation). The principle of virtual work (5.1) is now evaluated with the constrained
motion ξ given above. We assume that the impressed internal virtual work contribution
is zero and that the constraint internal virtual work contribution, which restricts the
unconstrained mechanical system B to the motion ξ with nq degrees of freedom, follows
the principle of d’Alembert-Lagrange and will thus vanish. The principle of virtual work
yields

0 = δW (δξ) =

∫
B

δξ⊤ξ̈dm− δξ⊤dFe ∀δξ , t (5.48)

=

∫
B

(
d

dt

(
δξ⊤ξ̇

)
− d

dt

(
δξ⊤
)
ξ̇

)
dm−

∫
B

δξ⊤dFe (5.49)

=

∫
B

(
d

dt

(
δξ⊤ξ̇

)
− δ

(
1

2
ξ̇⊤ξ̇

))
dm− δq⊤

∫
B

[
∂ξ

∂q

]⊤
dFe︸ ︷︷ ︸

fe

(5.50)

⇔ 0 =
d

dt

(
δq⊤
∫
B

[
∂ξ

∂q

]⊤
ξ̇dm

)
− δT (q, q̇, t)− δq⊤f e ∀δq , t (5.51)

=
d

dt

(
δq⊤p

)
− δT (q, q̇, t)− δq⊤f e (5.52)

= δq̇⊤p+ δq⊤ṗ− ∂T

∂q
δq− ∂T

∂q̇
δq̇− δq⊤f e (5.53)

= δq⊤
(
ṗ−

[
∂T

∂q

]⊤
− f e

)
︸ ︷︷ ︸

kinetic part

+δq̇⊤
(
p−

[
∂T

∂q̇

]⊤)
︸ ︷︷ ︸

kinematic part

. (5.54)

The term f e in (5.50) denotes all external generalized forces. Choosing virtual displace-
ments δq in the tangent space of the configuration manifold at q directly implies spe-
cific virtual displacements δξ = ∂ξ

∂q
δq ∈ TξE3 ∼= E3 for which equation (5.48) needs to
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hold as well which justifies formulation (5.51). Furthermore, at a specific time t∗, we
can restrict the set of virtual displacement fields δq ∈ Rnq in (5.54) to the family of
virtual displacement fields with δq(t∗) = q̂ε(t

∗, ε0)δε ̸= 0 but with a vanishing gradi-
ent δq̇(t∗) = q̂ε,t(t

∗, ε0)δε = 0, see q̂1 in figure 5.1b). For this specific choice, the second
variational term in (5.54) vanishes and only the first variational term is zero for all virtual
displacements in the chosen restricted set. By the fundamental lemma of calculus of vari-
ations, it follows that the first term in brackets needs to be zero for all times. With the
opposite restriction on δq ∈ Rnq , see q̂2 in figure 5.1b, the second term in brackets needs
to be zero as well. Since the principle of virtual work needs to be fulfilled point-wise in
time, both terms need to be zero for all times. It follows that

p =

[
∂T

∂q̇

]⊤
, ṗ =

[
∂T

∂q

]⊤
+ f e ∀t (5.55)

⇔ δW (δq) = δq⊤
(

d

dt

[
∂T

∂q̇

]⊤
−
[
∂T

∂q

]⊤
︸ ︷︷ ︸

−δWdyn

−f e
)

= 0 ∀δq , t . (5.56)

Equation (5.56) is the variational formulation of the equation of motion for a mechanical
system B undergoing a constrained motion ξc(ρ,q(t), t) enforced by perfect constraints
in the sense of d’Alembert-Lagrange under the assumption that the impressed internal
virtual work contribution is zero. Enforcing the bracket-enclosed term in (5.56) to be
zero is very close to Lagrange’s equation of the second kind. In fact, the Lagrange II
equations appear when the generalized external forces f e can be expressed as a potential
force f e = −∂V (q,t)

∂q
by a potential energy V (q, t).

The kinetic energy T (q, q̇, t) in (5.46) can be evaluated as

T (q, q̇, t) =
1

2
q̇⊤
∫
B

[
∂ξ

∂q

]⊤[
∂ξ

∂q

]
dmq̇+

∫
B

[
∂ξ

∂t

]⊤[
∂ξ

∂q

]
dmq̇ (5.57)

+

∫
B

1

2

[
∂ξ

∂t

]⊤[
∂ξ

∂t

]
dm (5.58)

=
1

2
q̇⊤M(q, t)q̇+m1(q, q̇, t)

⊤q̇+m2(q, t) , (5.59)

which shows that the kinetic energy in (5.46) is always a quadratic function in q̇, where
M(q, t) is generally the positive definite mass matrix and can be viewed as the metric
tensor on the configuration manifold. If the mechanical system B does not contain any
external excitation, then ξ is not explicitly dependent on t and it follows that m1(q, q̇, t) =
0, m2(q, t) = 0 in (5.59). Inserting the quadratic form in (5.59) into (5.56) yields

δW (δq) = δq⊤
(
M(q, t)q̈+ Ṁ(q, t)q̇+ ṁ1(q, q̇, t)−

[
∂T

∂q

]⊤
︸ ︷︷ ︸

h(q,q̇,t)

−f e
)
= 0 ∀δq , t , (5.60)

which finally yields the kinetic part of the equation of motion in variational form as

δW (δq) = δq⊤
(
M(q, t)q̈− h(q, q̇, t)− f e

)
= 0 ∀δq , t . (5.61)
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The term h(q, q̇, t) encompasses all nonlinear terms such as gyroscopic and Coriolis ac-
celerations. To introduce generalized velocities u by relation (4.13), the virtual work
expression in (5.61) is differentiated with respect to time and the time derivative δq̇ of
the virtual displacement field δq is restricted such that δq̇ = {δq̇ | δq = 0} (see q̂1 in
figure 5.1b) which yields the virtual power δP as

δP (δq̇) = δq̇⊤
(
M(q, t)q̈− h(q, q̇, t)− f e

)
= 0 ∀δq̇ , t . (5.62)

With the help of δq̇ = Fδu and equation (4.13), it is possible to completely substitute q̇
in (5.62) and obtain the virtual power δP in minimal coordinates as

δP (δq̇) = δu⊤
(
M̂(q, t)u̇− ĥ(q,u, t)− f̂ e

)
= 0 ∀δu , t

with:

 M̂(q, t) := F⊤MF , f̂ e := F⊤f e ,

ĥ(q,u, t) := F⊤
(
h(q,Fu+ β, t)−MḞu−Mβ̇

)
.

(5.63)

The reader should note, that equation (4.13) might arise from choosing generalized ve-
locities u which generate admissible velocities q̇ and admissible virtual velocities δq̇
with respect to some kinematic constraint γ(q, q̇, t) = 0. The generalized velocity u
is then said to be minimal with respect to the kinematic constraint. The kinematic
constraint γ(q, q̇, t) = 0 restricts the velocities q̇ to a subspace generated by u ∈ Rnu

in (4.13). Enforcing the kinematic constraint γ = 0 can be taken care of by an additional
internal virtual work contribution in (5.62), whose constitutive force law follows the prin-
ciple of Jourdain. The kinematic constraint is then said to be perfect and the constraint
force will vanish when performing the transition from (5.62) to (5.63).
Principle 5.2 (Principle of Jourdain):
A constitutive force law formulated by an internal virtual power contribution δP int

C which
constrains the velocities ξ̇ of a motion ξ to some submanifold is said to be perfect if δP int

C

vanishes for all admissible velocities, that is,

δP int(δξ̇) = 0 ∀δξ̇ admissible . (5.64)

For a given parametrized constrained motion ξc(ρ,q(t), t) of some continuous body, it
is possible to derive the equations of motion by (5.48) or by the identical formalism in
generalized coordinates in (5.56). However, for non-rigid bodies, the internal virtual work
contribution is missing and needs to be modeled to obtain a complete description of the
dynamics.
The next chapter will first introduce some basic concepts of convex optimization. These
concepts will help to describe different constitutive force laws to model the internal in-
teractions between rigid bodies in a granular material and possible external interactions
between the granular material and its environment. The constitutive force laws of main
interest in this work encompass two set-valued force laws, namely the unilateral contact
and the spatial Coulomb friction. These force laws are used to model the dissipative
dynamic behavior of a granular medium.





Chapter6
Convex Optimization

This chapter aims at providing a very basic understanding of convex optimization and
motivates the gradient projection algorithm, which is a solution method for a general
constrained convex optimization problem. The gradient projection algorithm is close to
the projected Jacobi and Gauss-Seidel iterations used to solve contact problems in rigid
body dynamics. Furthermore, this chapter discusses some basic concepts from convex
analysis and convex optimization which are used in the further course of this work. The
theory presented in this chapter has been summarized to the best of the authors knowledge
with the help of [161] and [32]. The reader should note that this chapter is neither
mathematically rigorous nor complete.
This chapter mostly deals only with primal and dual coordinate tuples in Rn. A co-
ordinate tuple may still be regarded as a representation of a vector in a given basis.
Therefore, we introduce the n-dimensional vector space V over the field R with stan-
dard basis (e1, . . . , en) and its corresponding dual vector space, the space of all lin-
ear functionals V ∗ := {α | α : V → R, α linear} with standard dual basis (ϵ1, . . . , ϵn)
such that ϵi(ej) := δij, where δij denotes the Kronecker delta. A vector x ∈ V can
be represented in the standard basis (e1, . . . , en) ∈ V as x = xiei ∈ V . The tu-
ple [x1, . . . , xn]⊤ ∈ Rn is the coordinate representation of x ∈ V in the standard basis. Due
to the choice of this basis and the fact that V is mostly chosen to be Rn itself, the coordi-
nate tuple exactly coincides with x ∈ V and therefore x ≡ [x1, . . . , xn]⊤ ∈ Rn. Therefore,
a bold written term such as a is used interchangeably for both a vector in V as well as for
its standard coordinate representation in Rn. Similarly, a dual vector α is represented in
its standard dual basis as α = αiϵ

i ∈ V ∗ with coordinate tuple α ≡ [α1, . . . , αn]
⊤ ∈ Rn.

We define the R-norm of a vector x ∈ V to be the induced norm ∥x∥R :=
√

(x |x)R ∈ R+
0

by the inner product (x |y)R ∈ R which evaluates to x⊤Ry ∈ R in the standard basis,
where R ∈ Rn×n is a positive definite symmetric matrix with entries Rij = (ei | ej). The
duality pairing of a vector α ∈ V ∗ and a vector x ∈ V is denoted by α(a) := ⟨α | a⟩ ∈ R
which evaluates in the standard basis to α⊤a ∈ R.
Since the vector space V is equipped with an inner product (x |y)R, the isomorphism ϕV
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induced by this inner product is defined by the linear map (cf. section D.9.2):

ϕV : V → V ∗

x 7→ α = ϕV (x) := (x | ·)R .
(6.1)

For finite-dimensional vector spaces, as considered here, the map ϕV is bijective and
therefore every primal vector x ∈ V can be identified with a dual vector α = ϕV (x) ∈ V ∗

and vice versa by ϕ-1
V . Our definition of the inner product evaluated in the standard basis

yields the relation α = Rx and the inverse relation x = R−1α.

6.1 Convex Constrained Optimization
An optimization problem P with convex constraints can be stated in the following form

P : min f(x)

subject to x ∈ C ⊆ V .
(6.2)

The set C ⊆ V is a non-empty closed convex set and the function f : V → R∪{∞} to be
minimized is proper and not necessarily convex nor continuously differentiable. Let the
extended real line be denoted as R := R ∪ {∞}. For the further course of this section,
we assume any function denoted by f to be proper, meaning that ∃x | f(x) < ∞. The
domain of a function f : V → R is the set dom(f) ⊆ V over which f is well-defined, that
is, dom(f) := {x | −∞ < f(x) < ∞}. For the optimization problem (6.2), we assume
that dom(f) ∩ C ̸= {}.
Definition 6.1 (Convex Set):
A set C ⊆ V is convex if and only if

λa+ (1− λ)b ∈ C ∀a,b ∈ C, λ ∈ [0, 1] . (6.3)

Definition 6.2 (Convex Function):
A function f : C → R, defined on a convex set C ⊆ V is said to be convex on C if and
only if

f(λa+ (1− λ)b) ⩽ λf(a) + (1− λ)f(b) ∀a,b ∈ C, λ ∈ [0, 1] . (6.4)

Definition 6.3 (Indicator Function):
The indicator function IC : V → R of a set C ⊆ V is defined as

IC(x) :=

{
0 if x ∈ C
∞ if x /∈ C .

(6.5)

If the set C is convex, then the indicator function IC is convex and it is also proper
if C ≠ {}.
The duality correspondence of convex functions is expressed by viewing a convex function
as an envelope of tangents instead of a locus of points. This duality correspondence is
defined by the conjugate of a convex function.
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Definition 6.4 (Conjugate of a Convex Function):
The convex conjugate f ∗ : V ∗ → R of a proper convex function f : V → R is defined as

f ∗(y) := sup
x∈V
{⟨y |x⟩ − f(x)} . (6.6)

The convex conjugate of the indicator function is called support function, that is,

I∗C(y) = sup
x∈C
{⟨y |x⟩} . (6.7)

The conjugation is denoted as ·(·)∗ and is called Legendre-Fenchel transformation. The
conjugate of the conjugate of a proper convex function is the function itself, that is,
(f ∗)∗ = f .
The notion of a cone will extensively be used to describe the set-valued force laws in
chapter 7. A set K ⊆ V is said to be a cone if ax ∈ K ∀x ∈ K, ∀a ≥ 0 which is the union
of all closed half-lines emanating from the origin 0. A cone is called pointed if it contains
no line, that is, K ∪−K ⊆ {0}, and otherwise blunt.
Definition 6.5 (Polar Cone):
The polar cone C◦ of a set C ⊆ V (not necessarily convex), is defined as

C◦ := {x∗ | ⟨x∗ |x⟩ ⩽ 0 ∀x ∈ C} ⊆ V ∗ , (6.8)

which is always a convex set.

For convex cones there is the special property that the support function of a convex cone K
is the indicator function of the polar cone, that is,

IK
∗ = IK◦ . (6.9)

This can be verified by using equations (6.7) and (6.8).
Definition 6.6 (Directional Derivative):
The one-sided directional derivative Dv[f(x)] in the direction v ∈ V of a function f :
V → R at x ∈ V is defined to be the limit

Dv[f(x)] := lim
0←t

f(x+ tv)− f(x)

t
(6.10)

provided it exists, (cf. [161] p. 241). The directional derivative is two-sided if−D−v[f(x)] =
Dv[f(x)].

If a function f : V → R is differentiable and finite at x, the directional derivative is
two-sided and is equal to the duality pairing of the differential df(x) ∈ V ∗ with the
direction v ∈ V , that is, Dv[f(x)] = ⟨df(x) |v⟩ and f is said to be Gateaux differentiable
with Gateaux derivative df(x). For better readability, df(x) is abbreviated to dfx. The
coordinate tuple of the differential dfa of a differentiable function f at a ∈ V yields

dfa =

[
∂f

∂x
(a)

]⊤
=

[
∂f

∂x1

(a), . . . ,
∂f

∂xn

(a)

]⊤
∈ V ∗ , (6.11)
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which can be verified by setting the direction v in (6.10) to all standard basis vectors,
which yields

∀i ∈ 1, . . . , n ⇒ ⟨dfa | ei⟩ = dfa
⊤ei = dfia = lim

0←t

f(a+ tei)− f(a)

t
=

∂f

∂xi

(a) . (6.12)

With the identification of primal and dual vectors by the inner product (cf. section D.9.2),
the gradient with respect to an inner product can be defined.
Definition 6.7 (Gradient):
The gradient ∇f(x) := ∇fx ∈ V of a differentiable function f : V → R at x ∈ V is defined
with respect to the inner product (x |y)R := x⊤Ry as

⟨dfx |v⟩ := (∇fx |v)R ∀v ∈ V . (6.13)

This leads to the identification R−1dfx = ∇fx, which is the identification of dfx with its
primal counterpart, the gradient ∇fx, by means of the metric tensor R.

For non-differentiable functions, the notion of the subgradient and subdifferential are
extremely useful in the further course of this work. They will be defined as dual quantities
belonging to V ∗.
Definition 6.8 (Subgradient):
A vector y ∈ V ∗ is said to be a subgradient of a function f : V → R at x ∈ dom(f) if

f(x̂) ⩾ f(x) + ⟨y | x̂− x⟩, ∀x̂ ∈ dom(f) . (6.14)

The subgradient inequality above has a simple geometric meaning when f is finite at x:
it says that the affine function

h(z) := f(x) + ⟨y | z− x⟩ (6.15)

with subgradient y is a global underestimator of f . For more information, the reader is
refered to [28] and to [161, p. 215] for the convex case.
Definition 6.9 (Subdifferential):
The subdifferential ∂f(x) at a point x ∈ V is the set of all subgradients y of a function f :
V → R at x, that is,

∂f(x) := {y | f(x̂) ⩾ f(x) + ⟨y | x̂− x⟩, ∀x̂ ∈ dom(f)} . (6.16)

The subdifferential is always convex as it is the intersection of an infinite system of
linear inequalities, (cf. [161] p. 215). A function is called subdifferentiable at x if there
exists at least one subgradient at x and f is called subdifferentiable if the latter holds for
all x ∈ dom(f). If f is differentiable at x, then ∂f(x) = {df(x)}. Furthermore, if f is
continuous at x, the subdifferential ∂f(x) is bounded and if f is convex then ∂f(x) is
bounded and non-empty.
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(a) (b)

Figure 6.1: (a): Visualization of the subdifferential of the convex function f(x) at
the points a and b by the tangent lines as given in (6.15). (b): Various normal cones
to the convex set C at the points x,y and z. Orthogonality in (a) and (b) is meant
with respect to the metric R.

The notion of the normal cone to a convex set C plays an important role for various
constitutive laws in mechanics, especially the ones considered in this work and explained
in chapter 7, that is, the unilateral contact and the spatial Coulomb friction.
Definition 6.10 (Normal Cone):
The normal cone to a closed convex set C ⊆ V at point x ∈ C is defined as the set

NC(x) := {y | ⟨y | x̂− x⟩ ⩽ 0, ∀x̂ ∈ C} ⊆ V ∗ . (6.17)

The normal cone is a convex cone and the normal cone at x /∈ C is defined to be the
empty set.

The normal cone NC(x) is identical to the subdifferential of the indicator function of C
at x, that is, NC(x) = ∂IC(x). The subdifferential and the normal cone are visualized in
figure 6.1

Proof:
By definition 6.10 it follows directly that

∂IC(x) = {y | IC(x̂) ⩾ IC(x) + ⟨y | x̂− x⟩, ∀x̂ ∈ dom(IC) = C} . (6.18)

For x /∈ C, this results in the empty set. For x ∈ C, this yields 0 ⩾ ⟨y | x̂− x⟩ ∀x̂ ∈ C
which is exactly the definition of the normal cone NC(x).

With the above definitions, it is possible to give some necessary conditions on a mini-
mizer x∗ of the optimization problem P in (6.2).
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Theorem 6.1 (First-Order Optimality Theorem):
Let x∗ be a solution to problem P in (6.2), meaning x∗ belongs to the set of all
minimizers x∗ ∈ {x | f(x) ⩽ minz∈C f(z)} then it holds that

0 ∈ ∂f(x∗) +NC(x∗) , (6.19)
0 ∈ dfx∗ +NC(x∗) (if f differentiable) , (6.20)
0 ∈ dfx∗ +NC(x∗) ⇔ x∗ global minimizer of P (if f diff. and convex) . (6.21)

If the function f is strictly convex and differentiable, then x∗ is also a unique global min-
imizer. The statements above can be obtained by writing problem P as a unconstrained
optimization problem min g(x) with g(x) := f(x) + IC(x) and requiring that 0 ∈ ∂g(x).
Definition 6.11 (Generalized Proximal Mapping):
The proximal mapping of a convex function f : V → R at x is

proxRf : V → V

x 7→ y = argmin
x∗

f(x∗) + 1
2
∥x− x∗∥2R . (6.22)

Definition 6.12 (Projection onto Convex Set):
The proximal function proxRC which maps a point x to a point y ∈ C such that the
squared R-norm distance is minimized is given as

proxRC : V → C ⊆ V

x 7→ y = argmin
x∗∈C

∥x− x∗∥2R . (6.23)

This definition follows directly from definition 6.11 with f = IC and therefore proxRC =
proxRIC .

With this definition, the following projection theorem can be stated:

Theorem 6.2 (Projection Theorem for Convex Sets):
Let x ∈ R and let C ⊆ V be a non-empty closed convex set. Then y ∈ C solves the
problem y = proxRC (x) (i.e., y is a proximal point) if and only if R(x− y) ∈ NC(y).

Theorem 6.2 can be proven by taking the subdifferential of proxRIC and invoking (6.21)
(cf. [108]). Theorem 6.2 can be stated as

y = proxRC (x) ⇔ R(x− y) ∈ NC(y) ,
y ∈ NC(x) ⇔ x = proxRC (x+R−1y) .

(6.24)

The second relation in (6.24) can be obtained from the first one by setting z = R(x−y).
It is worth noting that the tuple (x− y) in (6.24) has been transformed with the help of
the isomorphism (6.1) from the primal to the dual space. This means that R(x − y) is
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a dual tuple which is in accordance to the fact that the normal cone belongs to the dual
space. For the sake of completeness, the following useful transformation rules derived
in [108] are presented:

y ∈ NC(x) ⇔ y ∈ A⊤NAC(Ax)

⇕ ⇕

x = proxRC (x+R−1y) ⇔ Ax = proxR̂AC(Ax+ R̂−1A−⊤y) ,

(6.25)

where A is a linear bijective transformation and R and R̂ are two metrics, that is,
two symmetric positive definite matrices. The transformations in (6.25) can be used to
simplify projections. For example, if C is an ellipsoid in R3, the map A can be used to
transforms C to a sphere AC onto which a projection of a vector can easily be computed.
The projective mapping proxRC fulfills the following three important properties:
Lemma 6.1 (Prox Properties):
Let P := proxRC be the projection onto the convex set C:

(a) P : V → C is surjective.
(b) (P(x)− x |P(x)− x∗)R ⩽ 0, ∀x∗ ∈ C, x ∈ V .
(c) P is a monotone function with respect to the R-norm, that is,

(P(x1)− P(x2) |x1 − x2)R ⩾ 0 ∀x1,x2 ∈ V .

If P(x1) ̸= P(x2) then strict inequality holds.
(d) P is a non-expansive operator, that is, ∥P(x1)− P(x2)∥R ⩽ ∥x1 − x2∥R.

The proof of lemma 6.1 is given in appendix A.1.
If the function f of the optimization problem P in (6.2) is differentiable, a minimizer x∗

of P fullfils

−dfx∗ ∈ NC(x∗) ⇔ x∗ = proxRC (x
∗ −R

−1dfx∗) . (6.26)

6.2 The Gradient Projection Algorithm
The gradient projection algorithm explained in the following was pioneered by Goldstein
[65] at the University of Washington in 1964. The equivalent projection method was
further developed by Levitin and Polyak [97] in the late seventies, by Bertsekas [23] in
the late eighties and recently in [202].
With the help of the aforementioned concepts, we can now state a useful proposition
which is used to describe the gradient projection algorithm.
Definition 6.13 (Projected Descent Direction):
We define the projected descent direction at a point x ∈ C as

t(x) := proxRC (x−∇fx)− x ∈ V with: ∇fx = R
−1dfx . (6.27)
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The reader should note that the descent direction is a function of the negative gradient.
For better readability, we abbreviate t(x) to tx in the further course of this section.
Proposition 6.1 (Descent):
The projected descent direction tx fulfills the property

−∥tx∥2R ⩾ (∇fx | tx)R, ∀x ∈ C . (6.28)

Proof:
Expanding the norm of tx at point x ∈ C yields

∥tx∥2R = (tx | tx)R = (tx +R
−1dfx | tx)R − (R

−1dfx | tx)R .

Inserting the definition for tx and using the abbreviation z := x−R−1dfx yields

(tx | tx)R = (proxRC (z)− z | proxRC (z)− x)R︸ ︷︷ ︸
⩽0 with lemma 6.1(b)

−(R−1dfx | tx)R

⩽ −(R−1dfx | tx)R = −(∇fx | tx)R .

Definition 6.1 means that the gradient ∇fx projected onto tx or equivalently Dtx [f(x)] :=
⟨dfx | tx⟩ = (∇fx | tx)R is always non-positive for all x ∈ C. This result is especially useful
for obtaining a solution to an optimization problem like P in (6.2). A lot of numerical
optimization methods use a descent direction to be able to iteratively converge to a feasible
optimal solution of the problem (6.2). The gradient projection algorithm, explained in the
following, uses exactly the descent direction tx in (6.27) to converge to a feasible optimal
solution.
Based on the observations of the direction tx, we are able to formulate the basic gradient
projection algorithm shown in algorithm 6.1.
The update formula in (6.31) can be rewritten as

xk+1 = (1− γopt)xk + γoptproxRC (x
k −R

−1dfxk) , (6.32)

which is a convex combination of two points in the set C with the parameter γopt ∈ (0, 1].
Therefore, using this update with an initial x0 ∈ C, the sequence {xk} is guaranteed to
stay feasible, that is, xk ∈ C ∀k. Another important observation is that (6.32) is basically
a weighted step towards the minimum value y ∈ C of the second-order approximated
objective function f at xk in (6.2), that is,

y = proxRC (x
k −R

−1dfxk) (6.33)

= argmin
x∗∈C

1

2

∥∥∥x∗ − xk +R
−1dfxk

∥∥∥2
R

(6.34)

= argmin
x∗∈C

⟨dfxk |x∗ − xk⟩+ 1

2

∥∥x∗ − xk
∥∥2
R
+

1

2

∥∥∥R−1dfxk

∥∥∥2
R

(6.35)

= argmin
x∗∈C

⟨dfxk |x∗ − xk⟩+ 1

2
(x∗ − xk)⊤R(x∗ − xk) (6.36)
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Algorithm 6.1 (Basic Gradient Projection Algorithm):
Let x0 ∈ C and γ, c ∈ (0, 1] and compute xk+1 from xk as follows:

1. Search Direction: Compute the descent direction as

tk := proxRC (x
k −∇fxk)− xk with: ∇fxk = R

−1dfxk . (6.29)

2. Line Search: Do a backtracking line search with the Armijo-Goldstein
termination condition as follows:

γopt = argmin
s

(γ)s

subj. to s ∈ {1, 2, 3, . . . },
f(xk + γstk) ⩽ f(xk) + c γs⟨dfxk | tk⟩ .

(6.30)

3. Update:
xk+1 = xk + γopttk . (6.31)

= argmin
x∗∈C

f(xk) + ⟨dfxk |x∗ − xk⟩+ 1

2
(x∗ − xk)⊤R(x∗ − xk) . (6.37)

From (6.37) it follows that the metric R plays the role of the Hessian of the objective
function f in (6.2). The optimization problem in (6.37) can also be stated in the descent
direction t = x∗ − xk as

tk = argmin
t∈C−xk

f(xk) + ⟨dfxk | t⟩+ 1

2
t⊤Rt . (6.38)

If R is chosen to be an approximation of the Hessian of f at xk when determining the
search direction in the first step in algorithm 6.1, the gradient projection method becomes
a proximal Newton-type method as presented in [92]. It has to be noted that evaluating
the projection in a general metric R is anything but trivial for a general convex set C.
However, if the convex set C is a Cartesian product of several convex sets, that is, C =
Ci× · · ·× Cn, the projections can be split up into individual projections onto the sets Ci if
the metric R is split up into diagonal block entries Ri ∈ Rdi×di with di = dim(Ci), that is,
R = diag (R1, . . . ,Rn). Furthermore, the projection in (6.29) drastically simplifies if R
(or equivalently Ri) is chosen proportional to the identity matrix, that is, R = rI, r > 0
or Ri = riI, ri > 0. These simplifications become especially important for solving the
contact problem in section 8.3.
Why the choice of R to be an approximation of the Hessian of f at xk is favorable can
be seen by the following simple example. Take the quadratic optimization function

min
x∈C

f(x) = min
x∈C

1

2
x⊤Gx+ c⊤x (6.39)
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Figure 6.2: Gradient projection algorithm applied to the convex constrained opti-
mization problem in (6.39) with a convex set C in the space E2 with metric R = I,
c = 0 and γ = 1.

over the convex set C and assume G to be symmetric and positive definite such that f
is strictly convex. Assume x∗ is a minimizer of f . Then by the first order optimality
condition, x∗ fullfils

−(Gx∗ + c) ∈ NC(x
∗) ⇔ x∗ = proxRC (x

∗ −R
−1dfx∗) . (6.40)

If we choose the metric R to be the Hessian of f , that is, R = G, and apply the update
step in (6.32) with γ = 1 as

xk+1 = proxRC

(
xk −R

−1(Gx∗ + c)
)
= proxRC (c) (6.41)

directly results in the solution x∗ = proxRC (c) to the optimization problem (6.39) in just
a single step. The level sets of the quadratic optimization function in (6.39) for the two-
dimensional case R2 with c = 0 are depicted in figure 6.2. The unconstrained minimum
lies at the center 0. The orthogonality between vectors in figure 6.2 is meant with respect
to the inner product with metric R = I. The optimal value x∗ fullfils the first-order
optimality theorem in (6.1), that is, the negative differential dfx∗ is an element of the
normal cone at the point x∗. Two descent steps tx at x and tz at z are visualized. Since
the result of the step tz is inside the set C, the mapping proxRC is the identity map.
Depending on the choice of the metric R, the update step might directly project to the
optimal value x∗ as indicated with gray dashed lines denoted by ¬ and . The descent
step denoted by ¬ is obtained if R = G and step  if R = sI with s > 0. The gradient
projection algorithm 6.1 will mentioned again when discussion the contact problem in
section 8.3. The next chapter discusses several contact laws between rigid bodies with
the help of the preliminaries introduced in this chapter.



Chapter7
Contact Laws

To model the interaction between bodies in a rigid body assembly, constitutive force laws
are formulated which fulfill the variational law of interaction 5.2. A constitutive force law
is a relation between a geometric quantity g(q, t) on displacement level or a kinematic
quantity γ(q,u, t) on velocity level and a corresponding dual quantity, that is, a force λ.
Formulating a constitutive force law on displacement level means adding a corresponding
internal (or external) virtual work contribution to the virtual work expression in axiom 5.1.
An internal (or external) virtual power contribution is needed if the force law is formulated
on velocity level. In the following, we discuss constitutive force laws in the physical space
E3 and subscripts denoting the coordinate representation are neglected since the virtual
work is independent of any coordinate representation. Furthermore, we concentrate on
internal forces as the discussion for external forces is similar. A constitutive force law on
displacement level can be expressed in generalized coordinates q as

δW int(δg) := δg⊤λ , (internal virtual work contribution)
(g(q, t),λ) ∈ R . (constitutive force law)

(7.1)

The f -dimensional geometric quantity g ∈ V ∼= Rf measures some abstract form of
displacement in the mechanical system of interest. Such a measurement can include a
length between two points or a relative angle between two bodies or some more abstract
measure as the sum of various angles between lines. The dual quantity to the virtual
displacement δg is the force λ ∈ V ∗ ∼= Rf∗. The internal virtual work contribution in (7.1)
can be rewritten in terms of the generalized virtual displacement δq and generalized force f
in analogy to the virtual work of the external forces in (5.50) as

δW int(δq) = δq⊤f
!
= δg⊤λ =

(
∂g

∂q
δq

)⊤
λ ⇒ f = Wλ , W(q, t) :=

[
∂g

∂q

]⊤
. (7.2)

The change of coordinates in (7.2) allows to add the term δq⊤Wλ to the virtual work
expression of the mechanical system in the variational formulation (5.61). The matrix W
denotes the generalized force direction of the constitutive force law. The binary relation
(V, V ∗,R) with graph R ⊆ V × V ∗ in (7.1) defines the constitutive force law. Specifying
the graph R is a modeling task and can represent, for example, a nonlinear spring or a
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bilateral constraint in a mechanical system. In general, a graph R can be of set-valued
nature.
A force law on velocity level can be expressed in the same way by an internal virtual
power contribution as

δP int(δγ) := δγ⊤λ , (internal virtual work contribution)
(γ(q,u, t),λ) ∈ S . (constitutive force law)

(7.3)

The f -dimensional kinematic quantity γ(q,u, t) ∈ V ∼= Rf measures some abstract form
of velocity in the mechanical system of interest, this includes for example a relative velocity
between two bodies, either translational or rotational or some sort of combination. As for
the geometric constraint in (7.1), the binary relation with graph S ⊂ V × V ∗ links the
kinematic quantity γ ∈ V ∼= Rf to its corresponding force λ ∈ V ∗ ∼= Rf∗. The internal
power contribution can be written as

δP int = δu⊤f̂
!
= δγ⊤λ =

(
∂γ

∂u
δu

)⊤
λ = δu⊤Ŵλ (7.4)

⇒ f̂ = Ŵλ , Ŵ :=

[
∂γ

∂u

]⊤
. (7.5)

The gap function in (7.1) can be differentiated with respect to time as

ġ(q, q̇, t) =
∂g

∂q
q̇+

∂g

∂t
= W(q, t)⊤q̇+ χ(q, t) (7.6)

and can formulated in terms of u with help of (4.13) as

ġ(q, q̇, t) = ġ(q,F(q, t)u+ β(q, t), t) = Ŵ(q, t)⊤u+ χ̂(q, t) = γ(q,u, t) , (7.7)

where

Ŵ(q, t) := F(q, t)⊤W(q, t), χ̂(q, t) := W(q, t)⊤β(q, t) + χ(q, t) . (7.8)

The relation between the generalized force f and f̂ is given as f̂ = F(q, t)⊤f . The internal
power contribution in (7.5) can be added to the variational formulation (5.63).
The opposite way is in general not possible, meaning that not every constitutive law
on velocity level, for example ġ(q, q̇, t) or γ(q,u, t) in (7.7), can be described with an
equivalent formulation (7.1) on displacement level. One example of such a constitutive
force law is the Coulomb friction law discussed in the further course of this chapter.
Binary relations which describe bilateral geometric and bilateral kinematic constraints,
respectively, can be described by the following graphs

Rc := {(g,λ) ∈ V × V ∗ | g(q, t) = 0} , (geometric constraint) (7.9)
Sc := {(g,λ) ∈ V × V ∗ | γ(q,u, t) = 0} . (kinematic constraint) (7.10)

The geometric constraint in (7.9) fulfills the principle of d’Alembert-Lagrange 5.1 and
analogously, the kinematic constraint in (7.10) fulfills the principle of Jourdain 5.2. A
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kinematic constraint which can not be described by an equivalent geometric constraint is
called non-holonomic.
The graph R (or S) of a binary relation can be represented by a set-valued (also called
multi-valued) function F : V → P(V ∗), where P(V ∗) denotes the power set of V ∗ such
that the graph GF of F is identical to R, that is,

GF := {(x,y) ∈ V × V ∗ | y ∈ F (x)} = R . (7.11)

We will see in the next section, when discussing constitutive force laws for contacts, that
the set-valued function F is given by a subdifferential of a proper convex lower semi-
continuous function, also called potential. This is especially convenient as it embeds the
constitutive force laws in the field of convex analysis and convex optimization which are
two well-studied fields in mathematics. The algorithm used in this work for solving set-
valued force laws in multi-body dynamics is based on the gradient projection method
presented in section 6.2.
The bilateral constraints in (7.9) and (7.10) can be formulated with the help of the normal
cone in definition 6.10 as

Rc := {(g,λ) ∈ V × V ∗ | −λ ∈ N{0}(g)} (geometric constraint) , (7.12)
Sc := {(γ,λ) ∈ V × V ∗ | −λ ∈ N{0}(γ)} , (kinematic constraint) (7.13)

where −N{0} corresponds to F in (7.11).

7.1 Force Laws for Contacts
This section covers different formulations of set-valued contact laws between rigid bodies,
especially the unilateral contact with Coulomb friction. For a broader treatment of set-
valued force laws the reader is referred to [60, 93].
A constitutive force law for a contact, referred to as contact force law, describes the
interaction of two contacting surfaces of two different bodies. The contact surfaces of
interest in the context of this work are boundary surface points of two convex rigid bodies
in E3. To overcome the convexity restriction for a general multi-body simulation with
non-convex bodies, lots of geometric precautions and intricacies have to be dealt with.
For the context of this work, we will look only at convex rigid bodies which simplifies the
discussion a great deal. Figure 7.1 shows a free-body diagram of two detached contacting
convex bodies Ba and Bb which share a common contact point C which is denoted by Ca

for body Ba and by Cb for body Bb. The gap distance g is given as the difference of the
displacement vectors of two points Ca and Cb, that is, g := rCa − rCb

. If the gap distance
g = 0, then Ca = Cb = C. The convex tangent cone at the contact point C to the convex
set Ba is denoted as TCa

:= TBa(rCa) ⊂ E3 and TCb
⊂ E3 for body Bb. Especially for the

case of the unilateral contact, which describes the impenetrability condition of the two
bodies, it is necessary to define a common tangent plane TC at the contact point C. A
common tangent plane TC which separates the two bodies (except for the contact point)
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Figure 7.1: Detached contact configuration for two convex bodies Ba ⊂ E3 and
Bb ⊂ E3 having contact at a common contact point C. Body Ba with center of
gravity Sa has a smooth boundary surface and body Bb with center of gravity Sb

has a polygonal boundary surface. The convex tangent cone TCa covers the entire
half-line in direction −eCn and similar for the tangent cone TCb

which is generated by
the three outgoing edges of body Bb at Cb. The contact force is identified in E3 and
denoted by λ.

can be defined by choosing a normal vector eCn from the intersection of the orthogonal
cones T ⊥Ca

and −T ⊥Cb
, that is,

eCn ∈ T ⊥Ca
∩ −T ⊥Cb

. (7.14)

The orthogonal cone T ⊥ ⊆ E3 to a convex cone T ⊆ E3 with respect to a given inner
product (· | ·) is defined as

T ⊥ := {x | (x |y) ⩽ 0 ∀y ∈ T } (7.15)

and is also convex. A local orthonormal contact coordinate system C with basis vectors
¯̄eC := {eCn , eCt1 , e

C
t2
} is then defined such that the two tangential vectors eCt1 , e

C
t2

span the
tangent plane TC with normal vector eCn . The local contact coordinate system C at a
contact C is used to represent set-valued contact force laws explained in the following.
The intersection for the case depicted in figure 7.1 is trivial since T ⊥Ca

= {αeCn , α ⩾ 0}. The
gap distance in normal direction gN is the first coordinate of the representation of rCaCb

in coordinate system C, that is, gN = (eCn | rCaCb
). For certain geometries, the intersection

in (7.14) yields not a unique element. In figure 7.1, this would be the case if body Ba

had the same polygonal geometry as body Bb. In this case, there exists a set of possible
(infinitely many) tangent planes TC . A constitutive force law for the impenetrability of
two convex bodies which takes this ambiguity of the normal direction into account is out
of the scope of this work, and the choice of the common tangent plane TC defined by the
normal vector eCn is treated in this work as a model assumption. Thus, the impenetrability
condition described by the unilateral contact discussed in the next section is formulated
with a single normal direction eCn fulfilling (7.14), a scalar normal gap distance gN and a
scalar normal force λN .
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A set-valued force law for a contact on velocity level relates the relative velocity γ(q,u)
between Cb and Ca expressed in coordinate system C as

γ := γNe
C
n + γT ∈ E3 , γT := γT1e

C
t1
+ γT2e

C
t2

(7.16)

to the contact force

λ := λNϵ
C
n + λT ∈ E3∗ , λT := λT1ϵ

C
t1
+ λT2ϵ

C
t2
, (7.17)

where (ϵCn , ϵ
C
t1
, ϵCt2) is the dual basis to (eCn , e

C
t1
, eCt2). The formulation of contact laws on

velocity level is important for the discretization of the equations of motion of a multi-body
system in chapter 8.
The relative velocity Cγ(q,u) = [γN , γT1 , γT2 ]

⊤ can be computed with the help of the
right-hand side of (4.10) by omitting the scaling parameter s as

Cγ(q,u) = Cġ = ACI(Iξ̇rig,Cb
− Iξ̇rig,Ca

) (7.18)
= ACI

[
I −RKbI AKbI Iρ̃t,Cb

AKbI
⊤ ]ub (7.19)

−ACI

[
I −RKaI AKaI Iρ̃t,Ca

AKaI
⊤ ]ua (7.20)

= ACI

[
I − Iρ̃t,Cb

AKbI
⊤ ]ub −ACI

[
I −Iρ̃t,Ca

AKaI
⊤ ]ua (7.21)

= ŴC,Bb

⊤ub − ŴC,Ba

⊤ua . (7.22)

7.1.1 Unilateral Contact

The impenetrability condition for the two bodies Ba and Bb in normal direction eCn in
figure 7.1 can be expressed by the complementarity condition on displacement level as

gN ⩾0 ∧ λN ⩾0 ∧ ⟨gN |λN⟩ = 0 ⇔ 0 ⩽ gN ⊥ λN ⩾ 0 (7.23)

or equivalently by a normal cone inclusion given as

RN = {(gN , λN) ∈ R× R∗ | −gN ∈ NCN (λN)}, CN := R+
0 . (displ. level) (7.24)

The notation ⊥ in (7.23) represents the annihilation by the duality pairing. In the field of
continuum mechanics, especially in linear elasticity, the complementarity condition (7.23)
is also known as Signorini’s problem (cf. [86]). The graph RN describing the constitutive
force law of the unilateral contact is visualized in figure 7.2a. The normal cone inclusion
in (7.24) is simply the subdifferential ∂ICN (λN) of the convex indicator function ICN at
the point λN . By the dual relationship of convex functions given by the conjugation in
definition 6.4, the indicator function ICN can be viewed as the dual of (ICN )

∗, which is
the support function of the set CN . Since CN is a pointed convex cone, it follows by
relation (6.9) that (ICN )

∗ = IC◦N = IR−
0

and applying the subdifferential yields

λN ∈ ∂IR−
0
(−gN) = NR−

0
(−gN) ⇔ −λN ∈ NR+

0
(gN) , (7.25)
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where NR+
0
= ∂IR+

0
corresponds to −F in (7.11). We could have written the unilateral

contact in (7.24) also as

gN ∈ NR−
0
(−λN) , (7.26)

which is more consistent with the concept of deriving force laws from potential and com-
plementary potential energies. The indicator function IR+

0
can be viewed as the potential

energy and its convex conjugate IR−
0

as the complementary potential energy. The opposite
formulation in (7.24) is natural as the convex set CN can directly be seen as the force
reservoir for the normal force λN and the notation becomes simpler when combining the
unilateral contact (7.24) with other set-valued force laws. The formulation of the unilat-
eral contact on velocity level is necessary to be able to combine it with the formulation
of the Coulomb friction discussed in the following. The formulation on velocity level is
discussed in [60] and with γN := ġN given as

SN(gN) =

{
(γN , λN)

∣∣∣∣∣−γN ∈ NR+
0
(λN) if gN = 0

γN ∈ R, λN = 0 if gN > 0

}
. (velocity level) (7.27)

In a numerical context, a unilateral contact is not considered if the normal gap distance
gN is positive and thus we simply write SN without the dependence on gN . Also, the gap
function gN is conveniently replaced by gN ⩽ 0 in a discretized framework as discussed in
chapter 8.

(a) (b)

Figure 7.2: Two set-valued force laws. (a): constitutive force law for the unilateral
contact in (7.24). (b): the two-dimensional Coulomb friction in (7.28).

7.1.2 Spatial Coulomb Friction

Coulomb friction is the dissipative effect of sticking and sliding of two surfaces relative to
each other. The relative movement of the two contact points Ca and Cb in the common
tangent plane TC is described by the relative tangential contact velocity γT ∈ TC ⊂ E3.
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Coulomb friction relates the two-dimensional friction force λT ∈ T ∗C ⊂ E3∗ to the two-
dimensional tangential relative velocity γT . The two surfaces slide relative to each other
in the tangential plane TC if the magnitude of γT is positive and the friction force λT

points in the opposite direction of γT . In the case of sliding, its magnitude is constant and
proportional to the normal force by the friction coefficient µ ⩾ 0, that is, ∥λT∥2 = µλN .
In the case of sticking, the relative velocity γT is zero and the magnitude of the friction
force is ∥λT∥2 ⩽ µλN . The graph ST of the binary relation for the constitutive force law
on velocity level which describes this sticking and sliding behavior can be formulated by
a normal cone inclusion as

ST :=
{
(γT ,λT ) | −γT ∈ NCT (µλN )(λT ), CT (r) := rB2

}
, (velocity level) (7.28)

where the convex set CT (µλN) is the force reservoir of the tangential friction force λT .
The closed two-dimensional unit ball is denoted by B2 := {x ∈ E2 | ∥x∥2 ⩽ 1}.
The normal cone inclusion in (7.28) is depicted in 7.2b. Strictly speaking, the normal cone
in (7.28) lives in the primal space, that is, the space of relative velocities, and drawing the
cone in the dual space in figure 7.2b is achieved by the choosing the standard Eucledian
metric I (cf. section D.9.2). Note that, if λT is inside of CT (µλN), the normal cone
evaluates to the zero element, that is, −γT ∈ {0}, which describes the sticking state.
The formulation in (7.28) describes an isotropic Coulomb friction law because every tan-
gential direction has the same maximal force range [−µλN , µλN ]. In the interior of this
range, the contact is in the sticking state. The convex conjugate of ICT is the support
function of the set CT which can be evaluated to (ICT )

∗(γT ) = µλN ∥γT∥2 with the help
of definition 6.4. The support function is called quasi-potential in [6] because of its de-
pendence on the normal force λN . The Coulomb friction in (7.28) fulfills the principle
of maximal dissipation which states that the friction force λT maximizes the dissipa-
tion DγT

(λT ) = −⟨λT |γT ⟩ for every relative velocity γT . Indeed, a minimizer of the
optimization problem

min
λT

−DγT
(λT )

subject to λT ∈ CT (µλN)
(7.29)

fulfills the normal cone inclusion in (7.28). This can be checked by rewriting the constraint
optimization problem into a unconstrained problem with an additional indicator func-
tion ICT (λT ) and applying the first order optimality theorem in 6.1. On the other hand, a
constitutive force law described by maximizing the dissipation Dγ(λ) := ⟨λ |γ⟩ modeled
as the duality pairing between force λ and relative velocity γ together with a closed convex
set C as the force reservoir directly implies a normal cone inclusion force law. The principle
of maximal dissipation also applies, for example, for the non-isotropic Coulomb friction
law. Other isotropic and non-isotropic friction laws, such as the Coulomb-Contensou
formulation can be found in [108, 94, 95].
In the following, we discuss four different formulations on velocity level for the combination
of the unilateral contact (7.27) with the two-dimensional Coulomb friction (7.28).
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7.1.3 Formulations of Unilateral Contact with Coulomb Friction

A closed unilateral contact with Coulomb friction at a contact point C between two
bodies Ba and Bb as depicted in figure 7.1. In the following, four different formulations
on velocity level for a unilateral contact with Coulomb friction are presented.

Non-Linear Complementarity Formulation (NCF)

The unilateral Coulomb frictional contact can be formulated with a complementarity in
the normal direction, a nonlinear complementarity in the tangential direction and an
additional anti-collinearity constraint as

0 ⩽ γN ⊥ λN ⩾ 0,

0 ⩽ ∥γT∥2 ⊥ µλN − ∥λT∥2 ⩾ 0 ,

(unilateral contact)
(sticking and sliding)

∥λT∥2 γT + ∥γT∥2 λT = 0 . (anti-collinearity)
(7.30)

By substituting s := ∥γT∥2 and t := µλN − ∥λT∥2, the above problem can be formulated
as two complementarity conditions with three nonlinear equations.

Separated Normal Cone Formulation (SNCF)

The separated normal cone formulation was first introduced by Alart & Curnier in [6]
and directly follows from combining (7.24) and (7.28) as

SC =

{
(γ,λ)

∣∣∣∣∣−γN ∈ NCN (λN), CN := R+
0

−γT ∈ NCT (µλN )(λT ), CT (r) := B2 · r

}
. (velocity level) (7.31)

Note that the normal cone inclusion for the normal and tangential direction depend
asymmetrically on each other, that is, only the tangential direction depends on the nor-
mal direction. The dependence on λN , as required by the Coulomb friction, is the reason
for the intricacies arising when trying to solve contact problems with Coulomb friction.
The dependence on λN leads to a quasi-optimization problem. Depending on the mechan-
ical problem, the existance of a solution compared to the convex case with µ = 0 is no
more guaranteed. The inclusion problem for unilateral contacts with Coulomb friction is
further explained in section 7.2.1.

Unified Normal Cone Formulation (UNCF)

The unilateral frictional contact can also be expressed by a single normal cone inclusion
to the closed convex friction cone Kµ given by

Kµ :=
{
λ ∈ E3∗ | ∥λT∥2 ⩽ µλN , λN ⩾ 0

}
. (7.32)
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Figure 7.3: Visualization of De Saxé’s unified normal cone formulation in (7.33)
and the cone complementary condition in (7.38). The Coulomb friction cone Kµ

is polar to the cone K◦µ which is the space of all negative perturbed velocities −γ̃.
The normal cone at λs is {0} which is the only feasible element to fulfill the cone
complementarity condition ⟨λ | γ̃⟩ and is an example for sticking.

Using the friction cone Kµ, the unilateral Coulomb frictional contact in combined form
can be written as

SC =
{
(γ,λ) | −γ̃ ∈ NKµ(λ), γ̃ := γ + µ ∥γT∥2 e

C
n

}
. (velocity level) (7.33)

This formulation is described in the extensive work of De Saxé [166]. If the normal cone is
evaluated for the sliding case, that is, λ is at the boundary of the friction cone Kµ, exactly
the correction term µ ∥γT∥2 en needs to be added to the left side of the inclusion in (7.33)
to be in accordance with the unilateral contact in normal direction. If the correction
term is neglected, that is, if γ̃ is replaced by γ in (7.33), then the resulting normal cone
at the boundary of Kµ would lead to an incorrect positive relative velocity (take off)
in normal direction. The unified normal cone formulation is depicted in figure 7.3. As
shown in [166], there does not exist a complementary potential π(λ) such that−γ ∈ ∂π(λ)
describes the Coulomb friction because the set-valued mapping defined by the two normal
cone inclusions in (7.31) is not cyclically monotonic (cf. [166] and [161]). However, there
exists a bipotential πµ(x,α) given as

πµ(x,α) := IR−
0
(xN) + IKµ(α) + µαN ∥xT∥2 (7.34)

such that both inclusions

−γ ∈ ∂2πµ(−γ,λ) = NKµ(λ)− µλN ∥λT∥2 (7.35)
⇕ (7.36)
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λ ∈ ∂1πµ(−γ,λ) =
[
NR−

0
(−γN)

∂(µλN ∥λT∥2)

]
(7.37)

describe the unilateral contact with Coulomb friction. The bipotential πµ(x,α) is only
biconvex, which means that it is convex in the first argument if the second argument is
fixed and vice versa. The bipotential (7.34) is not a convex function due to the non-convex
term µαN ∥xT∥2.

Cone Complementarity Formulation (CCF)

The formulation in (7.33) can also be stated in a (second order) cone complementarity
formulation between the convex friction cone Kµ ⊂ E3∗ and its convex polar cone K◦µ ⊂
E3∗∗ which is isomorphic to {y ∈ E3 | ⟨λ |y⟩ ⩽ 0, ∀λ ∈ Kµ} by the reflexivity1 of E3.
The cone complementarity formulation is given as

SC =

{
(γ,λ)

∣∣∣∣∣−γ̃ ∈ K◦µ, λ ∈ Kµ, ⟨λ | γ̃⟩ = 0

γ̃ := γ + µ ∥γT∥2 e
C
n

}
. (velocity level) (7.38)

In the literature, equation (7.38) is also written as K◦µ ∋ −γ̃ ⊥ λ ∈ Kµ, where the notation
⊥ denotes the annihilation of the two vectors by the duality pairing. The equivalence of
the cone complementarity formulation and the unified normal cone formulation is shown in
appendix A.2. The cone complementary formulation with the duality pairing is visualized
in figure 7.3.
The formulation of set-valued force laws as normal cone inclusions is the main approach
used to simulate large-scale multi-body systems in this work. With the relations in (6.24),
any normal cone inclusion to a convex set C can be rewritten as an implicit equation with
a projection onto the convex set C. In the next chapter, the general inclusion problem is
introduced which is the combination of the equations of motion together with set-valued
force laws of normal cone type. The case of only Coulomb frictional contacts formulated
with the unified normal cone formulation in (7.33) is given at the end of the next chapter
and allows to see that a corresponding optimization problem does not exist on acceleration
level.

1 A space V is reflexive if its natural embedding into the bidual space V ∗∗ is an isomorphism.
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7.2 The Inclusion Problem
The equations of motion for a mechanical system without impacts together with k set-
valued force laws of normal cone type on velocity level can be written as

M(q, t)u̇− h(q,u, t)−W(q, t)λ = 0 ,

q̇ = F(q, t)u+ β(q, t) ,

(equation of motion, cf. (5.63))
(kinematic equation, cf. (4.13))

(7.39)

γi = Wi(q, t)u+ χi(q, t) ,

γi,λi ∈ Si

}
∀i ∈ [1 ; k] ,

(relative velocity)
(force law of normal cone type)

(7.40)

Si := {(γi,λi) | −γi ∈ NCi(λi), Ci := Ci,1 × · · · × Ci,l} . (7.41)

Each set-valued force law with set Si may contain a Cartesian combination of k normal
cone inclusions. The reason for this notation is that each force law i represents an entity,
for example a unilateral contact with Coulomb friction consisting of two normal cone
inclusion as given in (7.31). Consequently, the convex sets Ci might also depend on λ
in general. The reader should note that for simplicity reasons, the formulation (7.40)
excludes normal cone inclusions which use some perturbed relative velocity γ̃ as for De
Saxé’s unified normal cone inclusion in (7.33) and also excludes the damped versions of
the unilateral constraint with Coulomb friction. For simplicity, we assume that all k
set-valued force laws are potentially active on acceleration level such that the resulting
force λ cannot be determined by a given state (q,u) and they cannot be incorporated as
impressed forces in the nonlinear term h(q,u, t).
To combine all k set-valued force laws with the equation of motion, each force law has
to be stated in terms of accelerations instead of velocities or displacements. This step
involves a lot of intricacies and is much more difficult for the Coulomb friction introduced
in (7.28) as compared to a simple unilateral contact given in (7.27). In the following, we
give a mathematical non-rigorous motivation to obtain a formulation of a set-valued force
law of normal cone type on acceleration level.
The time-dependent vector −γi stays in the closed convex cone NCi(λi) if the absolute
time derivative −γ̇i belongs at every instance of time to the tangent cone of NCi(λi) at
γi, that is, −γ̇i ∈ TNCi (λi)(γi) ∀t (cf. in [60, sec. 7.2] and in [96, p. 75]). For a definition
of the tangent cone the reader is referred to [61]. In this way, it is ensured that γi stays in
the set NCi(λ) over time. The tangent cone TK(x) of a closed convex cone K at x ∈ K is a
superset of the closed convex cone K itself, that is, TK(x) ⊃ K. This reasoning motivates
the requirement −γ̇i ∈ NCi(λi) which is more restrictive and still ensures that γ stays in
the set NCi(λi) for all times. This reasoning could also be applied to transfer normal cone
inclusions on displacement level to normal cone inclusions on acceleration level. Stating
every force law in (7.40) on acceleration level yields

γ̇i = Wi(q, t)
⊤ u̇+ χ̂i(q,u, t) ,

−γ̇i ∈ NCi(λ)

}
∀i ∈ [1 ; k] ⇔ γ̇ = W⊤u̇+ χ̂ ,

−γ̇ ∈ NC(λ) ,
(7.42)

where C := C1 × · · · × Ck is the Cartesian product of all convex sets Ci and all individual
terms have been assembled such that W := [W1, . . . ,Wk] denotes the generalized force
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direction of the force λ := [λ1
⊤, . . . ,λk

⊤]⊤ corresponding to the relative velocity γ̇ :=
[γ̇1
⊤, . . . , γ̇k

⊤]⊤.
Inserting the equation of motion (7.39) into (7.42) yields

−(Gλ+ c) ∈ NC(λ)

with:
[
G(q, t) := W⊤M

−1W , c(q,u, t) := W⊤M
−1h+ χ̂

γ̇ = Gλ+ c .

(7.43)

Equation (7.43) is the inclusion problem of the force λ for a given displacement q and
velocity u. The matrix G is the symmetric positive semi-definite Delassus operator and
defines the coupling between all contact forces, which is called contact graph. The inclusion
problem can be converted directly to an implicit proximal equation by (6.24) which yields

λ = proxRC

(
λ−R

−1(Gλ+ c)
)
. (7.44)

If the set C does not depend on λ, the inclusion problem in (7.43) can be interpreted as
a necessary condition for a minimizer λ∗ of the convex quadratic optimization problem

min
λ

1

2
λ⊤Gλ+ c⊤λ+ IC(λ) ⇔ min

λ∈C

1

2
λ⊤Gλ+ c⊤λ (7.45)

for some given displacement q and velocity u. The reader should note that (7.45) is not
valid for unilateral contacts with Coulomb friction in (7.31) since the convex set CT,i for
each contact i depends on its normal force λN,i and (7.43) is not the optimality condition
of (7.45). In the next section, the discussion of the case for frictional contacts with the
formulation of De Saxé in (7.33) will provide some more insight why no optimization
problem exists on acceleration level.
If the set C does not depend on λ, the primal convex optimization problem in the variable u̇
can be obtained by conjugating all normal cone inclusions in (7.42) which yields the
subdifferential of the support function (6.7) as

λ ∈ ∂I∗C(−γ̇) = ∂I∗C
(
− (Wu̇+ χ̂)

)
⇔ f ∈ −W∂I∗C

(
− (Wu̇+ χ̂)

)
. (7.46)

The equation of motion in (7.39) can then be written as

M(q, t)u̇− h(q,u, t)−W∂I∗C
(
− (Wu̇+ χ̂)

)
∋ 0 . (7.47)

The inclusion in (7.47) can be viewed as the optimality condition of the following convex
unconstrained optimization problem for a given q and u at a time instant t:

min
u̇

1

2
u̇⊤Mu̇+ h⊤u̇+ I∗C

(
γ̇(q,u, u̇, t)

)
. (7.48)

For more information on the dual and primal optimization problems in (7.45) and (7.48),
the reader is referred to [60].
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7.2.1 Inclusion Problem for Unilateral Contacts with Coulomb
Friction

In the following, we investigate the case where all k set-valued force laws in (7.40) are
unilateral contacts with Coulomb friction. All these contact laws are formulated using
the unified normal cone formulation in (7.33), that is, Si = SC ∀i ∈ [1 ; k]. The set-valued
force laws for k unilateral contacts with Coulomb friction can be expressed as

γi = Wi
⊤(q, t)u+ χi(q, t) ,

−γ̃i ∈ NKµi
(λi)

}
∀i ∈ I(q, t) .

(relative velocity for contact i)
(force law for contact i)

(7.49)

The set I(q, t) := {i | gN,i(q, t) = 0} consists of k indices for the contacts which are
closed on displacement level. The shifted relative velocity is defined according to (7.33)
as γ̃i := γi + µi

∥∥γT,i

∥∥
2
eCi
n .

All normal cone inclusions in (7.49) can be combined as

γ̃ = γ + E µ s(γ) ∈ NK(λ) , (7.50)

E :=


eC1
n 0 · · ·

0
. . . 0

... 0 eCk
n

 ∈ R3k×k ,

µ := diag ([µ1, . . . , µk]) ∈ Rk×k ,

s(γ) :=
[∥∥γT,1

∥∥
2
, . . . ,

∥∥γT,k

∥∥
2

]⊤ ∈ Rk ,

γ :=
[
γ1
⊤, . . . ,γk

⊤
]⊤
∈ R3k ,

(7.51)

where K := Kµ1 × · · · × Kµk
is the Cartesian product of all friction cones.

Taking the derivative γ̃ with respect to time, the force laws on acceleration level can be
assembled as

γ̇ = W⊤u̇+ χ̂, −
([

I+ Eµ
∂s

∂γ

]
︸ ︷︷ ︸

E(q,u,t)

γ̇ + Ėµs(γ)︸ ︷︷ ︸
s(q,u,t)

)
∈ NK(λ) . (7.52)

The matrix E(q,γ, t) is upper unitriangular and thus always invertible. Substituting γ̇
and u̇ in (7.39) into (7.52), results in the following normal cone inclusion:

−
(
EGλ+ Ec+ s

)
∈ NK(λ)

with:

 G(q, t) := W⊤M
−1W , c(q,u, t) := W⊤M

−1h+ χ̂ ,

E(q,u, t) := I+ Eµ
∂s

∂γ
, s(q,u, t) := Ėµs(γ) .

(7.53)

Equation (7.53) is the resulting inclusion problem for a given state q and u at a time
instant t. Unfortunately, the left-hand side of (7.53) can not be interpreted anymore as
the negative differential of a function f(λ) simply because the non-singular matrix EG
is non-symmetric for which does not exist an anti-derivative. This is directly reflected in
the fact that there does not exist an optimization problem in the form of minλ∈K f(λ)
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for unilateral contacts with Coulomb friction. Rewriting (7.53) with a proximal equation
yields

λ = proxRK
(
λ−R

−1(EGλ+ Ec+ s
))

. (7.54)

For the case that the equation of motion is discretized, as for example with Moreau’s
time-stepping scheme discussed in chapter 8, the inclusion problem for one time step can
be written as a non-convex optimization problem for a given fixed s(γ) in (7.50) as shown
in [33]. For the case of using the separate formulation in (7.31) for the set Ci in (7.40),
that is,

C := CN,i × CT,1(µiλN,1)︸ ︷︷ ︸
C1

× · · · × CN,k × CT,k(µkλN,k)︸ ︷︷ ︸
Ck

, (7.55)

one recognizes that the optimization problem (7.45) becomes convex in the normal direc-
tion if all tangential forces λT,i are known and convex in the tangential direction if all
normal forces λN,i are known. This biconvexity can be used to solve the inclusion problem
by iteratively solving normal and tangential direction in an interleaved fashion.
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7.3 Impacts
This short chapter deals with impacts in non-smooth mechanical systems and does not
aim to be a complete treatise. We will rather give a brief summary based on the profound
introduction in [61]. In reality, a collision or impact between two bodies of a mechanical
system is a wave or energy propagation phenomenon which takes place over a short amount
of time. The model used in rigid body dynamics to describe these collision phenomena is
to condense the time interval of the collision dynamics into a single time instant, where the
velocity eventually becomes discontinuous. The interaction between the collision partners
producing this discontinuity is modeled by forces of Dirac-like character, namely impulsive
forces.
In the following, we consider k unilateral constraints imposed on a mechanical system
described by a Riemannian configuration manifold M with metric M(q, t), precisely the
mass matrix of the variational equation of motion in (5.63). In this way, the configuration
manifold M is restricted to a non-empty set C given as

C := {gi(q) ⩾ 0 ∀i ∈ [1 ; k]} , (7.56)

where we assume the gap distances gi to be C1-continuous and such that their level curves
gi(q) = 0 intersect.
The constraints in (7.56) can be comprised, for example, of k unilateral contacts among
rigid bodies in a multi-body system. The time evolution of a mechanical system is de-
scribed by a continuous path q(·) on the manifold M restricted to the set C. The
trajectory q(·) is therefore required to remain in the set C and any crossing of the bound-
ary of C is prohibited. This is ensured by allowing discontinuities in the velocities u.
Whenever the trajectory q(t∗) collides with the boundary of C at a certain time t∗, the
velocity u of the mechanical system may jump and ensures that the resulting future time
evolution of q either stays on the boundary or leaves the boundary towards the interior
of C. The event at which a discontinuity in u occurs is called impact and the pre-impact
velocity and post-impact velocity at an impact time t∗ are denoted as u−(t∗) and u+(t∗)
and correspond to the left and right limit of u at t∗, respectively. A solution curve q(·)
on the submanifold C is visualized in figure 7.4a together with the tangent space TqM
at q(t∗). The classical approach [119, 120, 78, 78] to handle discontinuities in u is to
introduce a measure-differential formulation of the equation of motion given as

M(q, t)du− h(q,u, t)dt−WdP = 0 , (7.57)
q̇dt = F(q, t)udt + b(q, t)dt . (7.58)

The velocities u and unilateral constraint forces λ have been replaced by measures du
and dP, respectively. A measure is intrinsically connected to an integral and (7.57) it is
understood as an equation of measures rather than a differential equation. The measures
in (7.57) are comprised of a continuous part with Lebesque measure dt and an atomic
part with atomic measure dη as

du := u̇dt+ (u+ − u−)dη , dP := λdt+ (Λ+ −Λ−)︸ ︷︷ ︸
Λ

dη . (7.59)
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The density of the Lebesque measure dt is denoted by u̇ and λ, respectively. The density
with respect to the atomic measure dη in du and dP consists of a velocity jump density
u+−u− and a force jump density Λ := Λ+−Λ−, respectively. The Lebesque measure dt
and the atomic measure dη are singular. This means that if there is a velocity jump at a
singleton {t∗}, that is, the set with a single time instant t∗, the integral of the Lebesque
part u̇dt over this singleton vanishes and the integral of the atomic part (u+ − u−)dη
measures the jump in u, that is,∫

{t∗}

du =

∫
{t∗}

(u+ − u−)dη = u+(t∗)− u−(t∗) ̸= 0 . (7.60)

Vice versa, the atomic measure vanishes in intervals where u is continuous. The measure
du, for example, can be integrated over a closed non-empty interval [t0, t1] ⊂ R, t1 > t0
containing the singletons {t0} and {t1} which yields∫

[t0,t1]

du =

∫
{t0}

du+

∫
(t0,t1)

du+

∫
{t1}

du (7.61)

= u+(t0)− u−(t0) + u−(t1)− u+(t0) + u+(t1)− u−(t1) (7.62)
= u+(t1)− u−(t0) . (7.63)

The integral in (7.61) is the limit of the Riemann-Stieltjes sum and du is the Lebesque-
Stieltjes measure (cf. [96]). The equation of measures in (7.57) contain both the continuous
and discontinuous motion of the mechanical system. If the equation of measures in (7.57)
is integrated over a singleton {t} (or equivalently evaluated with {t}), the impact equation
is obtained, that is

M(q, t)
(
u+(t)− u−(t)

)
−W(q, t)Λ = 0. (7.64)

We assumed from the beginning that the nonlinear term h(q,u, t) consisting of Coriolis
forces, gyroscopic forces and impressed forces, does not contain any contribution which
can generate a discontinuity in u. The impact equations above need to be completed
with an impact law which is a relation between the pre- and post-impact velocity, u−

and u+, respectively, and the corresponding impulse Λ given by the graph P, that is,
(u−,u+,Λ) ∈ P .

7.3.1 Geometric Concepts

In the following, we briefly explain the geometric concepts of a perfect impact and its re-
quirements on the graph P of the constitutive impact law. We consider in this discussion
only impacts in normal direction and thus exclude friction. To simplify the discussion, we
assume that F(q, t) = I and b(q, t) = 0 in (7.58) and that the mechanical system does
not contain external excitations. Furthermore, we assume that at an impact configura-
tion q(t∗) at time t∗, abbreviated as q, several unilateral constraints in (7.56) are active
and pre- and post-impact velocities at t∗ are abbreviated as u− and u+, respectively. The
reader is referred to figure 7.4 for the remainder of this chapter.
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We denote the differential of the gap distance dgi(q) by wi and the indices of the set of
active constraints by I, that is,

dgi(q) := wi :=

[
∂gi
∂q

]⊤
∀i ∈ I(q) := {i | gi(q) = 0 ∀i ∈ [1 ; k]} . (7.65)

The gradient of a function gi can be defined similar to definition (6.7) as ∇gi(q) =
M−1dgi(q). The normal cone NC(q) to the set C at q is then finitely generated by the
negative differentials dgi(q) as

NC(q) :=
{
f | f =

∑
i∈I(q)

−dgi(q)Λi , Λi ⩾ 0
}
⊂ T ∗qM . (7.66)

The impact equation (7.64) for all active constraints becomes

u+ − u− =
∑

i∈I(q)

∇gi(q)Λi , Λi ⩾ 0 ∀i ∈ I(q) . (7.67)

By the isomorphism induced by the inner product (· | ·)M with metric M(q, t) (cf. sec-
tion D.9.2), the normal cone can be mapped to its associated primal cone in the tangent
space TqM, which is the orthogonal tangent cone T ⊥C (q) = M−1NC(q) to the set C at the
point q given by

T ⊥C (q) :=
{
v | v =

∑
i∈I(q)

−∇gi(q)Λi , Λi ⩾ 0
}
⊂ TqM . (7.68)

The tangent cone TC(q) to C at q can either be constructed by the polar cone to NC(q)
analogously to definition 6.5 or by the orthogonal cone to T ⊥C (q) similar to (7.15). Both
constructions lead to

TC(q) :=
{
u | ⟨dgi(q) |u⟩ = (∇gi(q) |u)M ⩾ 0 ∀i ∈ I(q)

}
⊂ TqM , (7.69)

where ⟨· | ·⟩ denotes the duality pairing. The tangent cone TC and its orthogonal coun-
terpart T ⊥C are visualized in figure 7.4.
A perfect impact needs to fulfill three requirements which leads to its geometric concept.
First, the kinematics of all unilateral constraints need to be consistent. This means that
the relative post impact velocity fulfills γ+

i = γi(q,u
+) ⩾ 0 such that the unilateral

constraint either becomes inactive or stays active in the future. The relative pre-impact
velocity is assumed to be γ−i = γi(q,u

−) ⩽ 0 which means that the mechanical system
has arrived at gi(q) = 0 from an admissible state in the past. The second and third
requirements are that the impact equation (7.67) is fulfilled and that the total energy, that
is, the kinetic energy, does not increase over the impact time t∗. All these requirements
can be summarized to the following restrictions for all i ∈ I(q):

γi(q,u) = ⟨dgi(q) |u⟩ = wi
⊤u , γ+

i ⩾ 0 , γ−i ⩽ 0 , (kinematic consistency) (7.70)
u+ − u− =

∑
i∈I

∇gi(q)Λi , Λi ⩾ 0 , (kinetic consistency) (7.71)

T (u) =
1

2
∥u∥2M T (u+) ⩽ T (u−) . (energetic consistency) (7.72)
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(a) (b)

Figure 7.4: (a): Configuration manifold M with two unilateral constraints which
restricts the trajectory q(·) to the submanifold C. (b): Geometric visualization of
the requirements in (7.73) for an impact configuration at q. The set of all admissible
post-impact velocities is denoted as S. The shown post-impact velocity u+ is given
by Moreau’s impact law with ϵ = 0.5.

These restriction can also be formulated by using the tangent cone and its orthogonal
counterpart defined above which yields

u+ ∈ TC(q) , u− ∈ −TC(q) , (kinematic consistency)
u+ ∈ u− − T ⊥C (q) , (kinetic consistency)
u+ ∈ B∥u−∥M (q) :=

{
u | ∥u∥M ⩽

∥∥u−∥∥
M

}
, (energetic consistency)

(7.73)

where B∥u−∥M (q) denotes the engery ball with radius ∥u−∥M . The restrictions in (7.73) are
visualized in figure 7.4b and the resulting admissible set for the post-impact velocity u+ is
denoted as S. If the pre-impact velocity u− is uniquely decomposed into two orthogonal
velocities (with respect to the inner product (· | ·)M), that is, u− = v + v⊥, such that v
belongs to the tangent cone and v⊥ belongs to the orthogonal counterpart T ⊥C (q), then
by inverting v⊥ and adding it back to v to obtain u+ = v − εv⊥ for any ε ∈ [0, 1], the
post-impact velocity u+ lies in the [0, 1]-interval of Moreau’s half-line depicted in 7.4b.
This impact law was proposed by Moreau in [120] and fulfills all properties in (7.73). It
was shown in [61], that Moreau’s impact law is equivalent to the following normal cone
formulation in local contact coordinates given as

−ξi := −(γ+
i + εiγ

−
i ) ∈ NR+

0
(Λi) , εi ∈ [0, 1] ∀i ∈ I(q) (7.74)

if all restitution coefficients εi are chosen equal to each other, that is, εi = ε ∀i ∈ I(q).
The impact law in (7.74) is called Newton-type impact law of normal cone type because
whenever the impact force of a unilateral constraint i is such that Λi > 0, the kinematics
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fulfills Newton’s impact law, that is, γ+
i = −εiγ−i . If no impact takes place, that is,

Λi = 0, the kinematics requires that γ+
i ⩾ −εiγ−i . It is possible to equip all set-valued

force laws of normal cone type, including the ones discussed in chapter 7, with the above
Newton-type impact law. For the unilateral contact with Coulomb friction in (7.31), the
following graph PC for the impact law is obtained:

PC =

{
(ξ,Λ)

∣∣∣∣∣−ξN := −(γ+
N + εNγ

−
N) ∈ NCN (ΛN) , CN := R+

0

−ξT := −(γ+
T + εTγ

−
T ) ∈ NCT (µΛN )(ΛT ) , CT (r) := B2 · r

}
. (7.75)

The restitution coefficient εT in tangential direction is useful for modeling a super-ball
behavior as presented in [62]. With regard to a multi-body system which models a gran-
ular material, the Newton-type impact law (7.74) provides a simple and effective way
to introduce dissipation into the mechanical system. However, the Newton-type impact
law is guaranteed to be energetically consistent if a single global restitution coefficient
ε is used. This includes the case for only inelastic impacts, where the global restitution
coefficient is zero and also for systems using Coulomb friction as in (7.75) (cf. [62]). As
granular flows are highly dissipative, a common choice for the restitution coefficients is a
completely inelastic impact, that is, εN = 0 and εT = 0, which corresponds to the point v
of maximal dissipation in figure 7.4b. The reader should note that the Newton-type im-
pact law in (7.74) may produce incompatible post-impact velocities u+ if u− /∈ −TC(q).
That is the case if some relative pre-impact velocities γ−i are strictly positive with ε > 0 as
can be deduced from figure 7.4b. A completely inelastic impact circumvents this problem,
which is important from a numerical point of view.
An alternative impact law is the extended Poisson impact law as discussed in [63]. It
splits the impact process into a compression and a expansion phase and treats the com-
pression phase as a completely inelastic Newton-type impact and the expansion phase
differently. Poisson’s impact law does not suffer from inadmissible post-impact velocities
but also suffers from energetic inconsistencies under certain circumstances. To the best
of the authors knowledge, an impact law with a local parametrization to access the entire
admissible space of post-impact velocities S in a tractable manner is not known. Broader
and in-depth information on the Newton-type impact law and Poison’s impact law is given
in [62, 63] and with a focus on granular materials in [134].
The next chapter discusses the time discretization of the equation of measures in (7.57)
and (7.58) and provides insight into the contact problem.





Chapter8
Time Discretization

In this chapter, the time discretization of a non-smooth rigid multi-body system is dis-
cussed. Event-capturing time-stepping methods in non-smooth dynamics discretize the
equation of motion and the impact equation together. Event-driven methods split the in-
tegration into smooth and non-smooth parts where all non-smooth events, such as impacts
or stick-slip transitions, are captured and resolved at the time they occur. In contrast,
event-capturing time-stepping methods approximate the integrated smooth forces and
impulsive forces over the time interval by percussions.
With the aim of simulating a multi-body system consisting of millions of rigid bodies to
approximate a granular material, time-stepping methods are preferred and do not have dif-
ficulties resolving impact accumulation points. Furthermore, due to performance reasons,
explicit time-stepping methods, despite being less accurate, are favorable compared to
implicit schemes. Implicit integration schemes consist of additional non-linearities which
need to be solved in each time step for the displacement and velocity update. Time-
stepping methods can be obtained from manually discretizing the equation of motion
in (5.61) together with the impact equation (7.64). By proceeding in this way, enforc-
ing certain properties such as energy consistency or conservation of angular momentum
during continuous free motion of a rigid body, is a painstaking process and needs a lot
of ingenuity to arrive at a discretization scheme which fulfills such requirements. In this
respect, the trend in future research is devoted to deriving time-stepping schemes directly
from the principle of virtual action, which is the time-integrated virtual work expression
in (5.1). This is analogue to the discretization procedures used in continuum mechanics
where the discretized equation of motion of a deformable body in space is obtained by
approximating the displacement with elementary trial functions which are substituted
directly into the virtual work expression. The same approach can be done in time which
leads to so called variational integrators which may possess an additional nice structure
by construction, such as symplecticity or the weak enforcement of constraints. References
and further work on this topic can be found in [71].
One major numerical problem when simulating large-scale multi-body systems is that
time-differentiated constraints are in general prone to drift. A time-stepping procedure
on velocity level for a system with geometric unilateral constraints for example does not
enforce the impenetrability condition a priori. After some time steps the bodies start to

67



68 8 Time Discretization

penetrate progressively and this behavior can only be diminished but not avoided by a
smaller time step although the gap function is strictly enforced to be positive in theory.
From a numerical point of view, one common method to alleviate these artifacts is often
to introduce constraint stabilization techniques, also called drift correction. Constraint
stabilization is a broad field and several methods exist. The reader is referred to the ref-
erences in [185, 20]. Some methods introduce drift correction terms in the numerical time
stepping scheme which are mostly of pure non-physical nature and rather a numerical
trickery. Other methods perform a projective drift correction at the end of the time step
to fulfill the constraint equations to a certain accuracy. Constraint stabilization, when
not applied carefully, may lead to unexpected results, such as unwanted energy increase
or unwanted impact behavior which can lead to strange non-physical phenomena, for
example non-physical wave propagation phenomena in large-scale granular simulations.
Furthermore, the numerical parameters of such drift correction techniques are directly
coupled to the underlying mechanical system and adjusting these parameters quickly be-
comes a nightmare. For large-scale multi-body systems with complex geometries, the gap
functions of geometric bilateral or unilateral constraints are generally not available in an-
alytical form and only time derivatives are available. This fact makes the development of
better time-stepping schemes, which enforce such constraints by construction, a difficult
task. Future research on variational integrators might help to address such constraint vi-
olation during integration by fulfilling the constraints over a time interval on average. In
this work, we mainly use Moreau’s time-stepping scheme with and without drift correction
for the simulation of a large-scale multi-body system which models a granular material.
The drift correction procedure to correct the penetration of unilateral contacts is either
performed on velocity level as shown in section 8.2 or on displacement level by an inte-
grated impulse which allows for displacement jumps in the generalized coordinates. The
drift correction on displacement level is derived from an explicit integration method and
discussed in appendix C. In the following, we briefly summarize Moreau’s time-stepping
scheme and refer the reader to [108, 170, 120, 117] for a more elaborate discussion and
derivation of it.
For the time discretization discussed in the following, the complete set of equations are
briefly summarized. The non-smooth equation of motion of a multi-body system can be
written as the equation of measures in (7.58) together with set-valued force laws of normal
cone type and corresponding Newton-type impact laws as
M(q, t)du− h(q,u, t)dt−WdP = 0 ,

q̇dt = F(q, t)udt + b(q, t)dt ,

(equation of motion/impact equation)
(kinematic equation)

γi = Wi(q, t)
⊤u+ χi(q, t) ,

γi,λi ∈ Si

}
∀i ∈ [1 ; k] ,

(relative velocities)
(force laws of normal cone type)

Si := {(γi,λi) | −γi ∈ NCi(λ) , Ci := Ci,1 × · · · × Ci,l} ,

γ±i = Wi(q, t)
⊤u± + χi(q, t) ,

ξi := γ+
i + εiγ

−
i ,

ξi,Λi ∈ Pi

 ∀i ∈ [1 ; k] ,

(pre-/post impact relative velocities)

(Newton-type impact laws)
Pi := {(γi,Λi) | −ξi ∈ NCi(Λi)} . (8.1)
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For reasons of simplicity and in the context of this work, all k set-valued force laws are
contact laws discussed in section 7.1 and are formulated on velocity level. Other set-valued
laws, such as geometric or kinematic bilateral constraints, can be added to the above set
of equations without increasing the complexity of the underlying contact problem. Note
that the convex sets Ci,l for a contact i can depend on the contact force λ as for the case
of a unilateral contact with Coulomb friction. This dependence is omitted for clarity in
the remainder of this chapter.

8.1 Moreau’s Time-Stepping Scheme
Moreau’s explicit event-capturing time-stepping scheme was first introduced in [120] and
is basically a midpoint discretization on displacement level and an Euler backward method
on velocity level. The intricacies in deriving Moreau’s time-stepping method lie in the
discretization of the equation of measures together with an approximation of the set-
valued force laws in (8.1) over a time interval. Moreau’s time-stepping scheme is given in
algorithm 8.1.
The reader should note that in the literature the update in step 4 in algorithm 8.1 is
commonly written as

qE = qM +
∆t

2
(F(qM , tM)uE + b(qM , tM)) (8.2)

⇒ qE = qS +
∆t

2
(FSuS + FMuE + bS + bM) , (8.3)

which is a non-symmetric update due to FS := F(qS, tS) and FM := F(qM , tM). We
suggest the symmetric version in step 4 because it is closer to Moreau’s original update
and a better approximation of the implicit update which maintains the unit quaternion
constraint for rigid bodies parametrized by quaternions (cf. section 5.2.5 in [108] where
b = 0). The numerical treatise of step 3 in algorithm 8.1 is discussed in detail in
section 8.3. The next section briefly discusses a commonly used drift correction term in
Moreau’s time-stepping scheme to reduce the penetration of unilateral contacts and shows
why it should not be used for elastic Newton-type impacts.

8.2 Drift Correction in Moreau’s Scheme
Some modifications of Moreau’s time-stepping scheme exist to add a drift correction
term in the discrete normal cone inclusion on velocity level for every inelastic unilateral
contact i ∈ [1 ; k] with εN,i = 0 in the form

−γE
N,i ∈ NR+

0
(PN,i) → −

(
γE
N,i + α

gMN,i

∆t/2

)
∈ NR+

0
(PN,i) ∀i ∈ [1 ; k] , (8.4)



70 8 Time Discretization

Algorithm 8.1 (Moreau’s Time-Stepping Scheme):
For a given start time tS and known displacement qS := q(tS) and velocity uS := u(tS)
the following 4 steps compute an approximation qE ≈ q(tE) and uE ≈ u(tE) at the
end time tE of the time interval (tS, tE) with ∆t := tE − tS.
Step 1 : Calculate the displacement qM at the midpoint tM = tS + 1

2
∆t by:

qM = qS +
1

2
∆t
(
F(qS, tS)uS + b(qS, tS)

)
. (8.6)

Step 2 : Calculate the mass matrix M := M(qM , tM) and nonlinear term h :=
h(qM ,uS, tM) at the midpoint. Detect all closed contacts and define the
index set

I := {i | gN,i(q
M , tM) ⩽ 0 ∀i ∈ [1 ; k]} . (8.7)

Compute all generalized force directions Wi := Wi(q
M , tM) and nonlinear

terms χi = χi(q
M , tM) for all contacts in i ∈ I and set up the contact

graph.

Step 3 : Compute the velocity uE by solving the following contact problem:
M (uE − uS)− h∆t−WP = 0 ,

γS
i = W⊤

i u
S + χi , ξi := γE

i + ϵiγ
S
i

γE
i = W⊤

i u
E + χi , ξi ,Pi ∈ Pi

}
∀i ∈ I ,

(8.8)

with the assembled generalized force direction W := [. . . ,Wi, . . . ] corre-
sponding to the contact percussion P := [. . . ,Pi

⊤, . . . ]⊤ ≈ dP
(
(tS, tE)

)
.

Step 4 : Compute the displacement at the end time tE = tM + 1
2
∆t as

qE = qS +∆t F(qM , tM)
uS + uE

2
+ ∆tb(qM , tM) . (8.9)

where α is a tuning parameter in a reasonable range α ∈ [0, 1]. The additional term
in (8.4) can be motivated by the analysis shown in the following. Enforcing every unilateral
contact i at the end time is equivalent with

−gN,i(q
E, tE) ∈ NR+

0
(PN,i) ∀i ∈ [1 ; k] . (8.5)

Substituting gN,i(q
E, tE) in (8.5) by the first order terms of the Taylor expansion of

gN,i(q
E, tE) at qM and tM yields (subscript i omitted)

gN(q
E, tE) ≈ gN(q

M , tM) +
∂gN
∂q

∣∣∣∣
qM ,tM
(qE − qM) +

∂gN
∂t

∣∣∣∣
qM ,tM
(tE − tM)︸ ︷︷ ︸
χM
N

∆t
2

. (8.10)
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By using Moreau’s midpoint rule qE = qM + ∆t
2
(FMuE + bM), one obtains

gN(q
E, tE) ≈ gMN +

(
∂gN
∂q

∣∣∣∣
qM ,tM
(FMuE + bM) + χM

N

)
∆t

2
(8.11)

≈ gMN + γE
N

∆t

2
. (8.12)

Inserting the approximation (8.12) into (8.5) gives

−
(
γE
N,i

∆t

2
+ gMN,i

)
∈ NR+

0
(PN,i) ∀i ∈ [1 ; k] . (8.13)

Multiplying the left-hand side with 2/∆t leads to the drift correction in (8.4). The drift
correction term 2gMN,i/∆t is a quantity for a relative velocity which can be interpreted
as a term εiγ

B
N,i where εi is an artificial restitution coefficient for a Newton-type impact.

This artificial restitution coefficient εi is dependent on the gap distance in normal direction
which differs among different impact configurations and time step lengths ∆t. Some simple
numerical simulations with few rigid bodies show that already small changes in ∆t lead to
completely different impact behavior and solutions of the mechanical system. This drift
correction, although counteracting the penetration in normal direction, leads to strange
behavior such as energy increase which manifests itself in arbitrary wave propagation
phenomena when used for large-scale rigid body simulations. This is an undesirable side-
effect and occurs whenever the tuning parameter α is chosen too large. Using the same
drift correction for elastic normal impacts, where εN,i ∈ [0, 1], is not suggested since the
aforementioned behavior is even worse due to the direct interference with the Newton-type
impact law.
A better drift correction method can be obtained by allowing displacement jumps in the
kinematics equation in (8.1). Appendix C presents some experimental work of an explicit
integrator with displacements jumps which has been proven useful for obtaining a drift
correction on displacement level that does not interfere with the impact law.

8.3 The Contact Problem
The contact problem in (8.8) within Moreau’s time-stepping scheme can be rewritten with
the property (6.24) as implicit proximal equations, that is,

ξ = GP+ c ,

ξi = γE
i + ϵiγ

S
i , (ξi,Pi) ∈ Pi , ∀i ∈ I

with: Pi :=
{
(ξi,Pi) | Pi = proxRi

Ci,1×···×Ci,l(Pi −Ri
−1ξi)

}
,

(8.14)
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where the following definitions are used

G := W⊤M
−1W , c := W⊤M

−1h∆t+ (I+ ϵ)(W⊤uS + χ) ,

P := [. . . ,P⊤i , . . . ]
⊤ , ξ := [. . . , ξ⊤i , . . . ]

⊤ ,

χ := [. . . ,χ⊤i , . . . ]
⊤ , ϵ := diag (. . . , ϵi, . . . ) ,

Ri := diag (Ri,1, . . . ,Ri,l) , ϵi := diag (ϵi,1, . . . , ϵi,l) .

(8.15)

A contact law i consisting of a unilateral contact with Coulomb friction possesses the
following structure

Ci := Ci,N × Ci,T (µPN) , γi := [γN ,γT
⊤]⊤ ∈ R3 , Pi := [PN ,PT

⊤]⊤ ∈ R3 , (8.16)
ϵi,N := εN , ϵi,T := diag (εT , εT ) , Ri,N := rN , Ri,T := rT I2 , (8.17)

where the projection metric for every normal cone inclusion, that is, Ri := diag (Ri,N ,Ri,l),
is chosen proportional to the identity matrix and positive definite with rN , rT > 0, to sim-
plify the projection.
The contact problem in (8.14) is the discretized version of the general inclusion prob-
lem (7.43). Equation (8.14) can be rewritten as a compact global proximal equation
including all contacts i ∈ [1 ; k], that is,

P = proxRC1×···×Ck
(
P−R

−1(GP+ c)
)

with: R
−1 := diag (. . . ,Ri , . . . )

⇔ −(GP+ c) ∈ NC1×···×Ck(P) . (8.18)

The nonlinear implicit proximal equation (8.18) needs to be solved for the contact percus-
sion P at every time step within Moreau’s time-stepping scheme. The Delassus matrix G
couples all set-valued force laws and its shape depends on the contact situation at the
midpoint time tM . A contact graph with its corresponding Delassus matrix G is visual-
ized in figure 8.1 for the example of three contacting bodies {A,B,C} and four contacts
{1, 2, 3, 4}. For a granular material model consisting of millions of rigid bodies and con-
tacts, most of the computation time is spent in solving the contact problem (8.14). The
formulation in (8.14) with implicit proximal equations can be solved iteratively with a
fixed-point iteration scheme over all contacts i ∈ I(q, t). The next section briefly discusses
the JOR and SOR Prox iteration schemes which are useful for dense contact problems
where the Delassus matrix G is highly non-sparse. The JOR and SOR Prox iteration
schemes on velocity level are used for sparse contact problems and are discussed in the
last section. Since the inclusion problem is related to a convex optimization problem,
although biconvex for contacts with Coulomb friction but fully convex for only unilat-
eral contacts, the solution strategy directly suggests the use of methods from convex
optimization. Solving a convex optimization problem is a broad field and many differ-
ent approaches exist, for example accelerated gradient projection methods, interior point
methods, Krylov subspace methods and many more.
The gradient projection algorithm explained in section 6.2 is a first-order method and is
directly related to the JOR Prox fixed-point iteration. For large-scale granular systems,
first-order convex optimization procedures provide a good trade-off between accuracy and
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(a)

G11 G12 G13 0

G21 G22 G23 G43

G31 G32 G33 G34

0 G43 G43 G44




G

(b)

Figure 8.1: Three contacting bodies {A,B,C} with a static ground floor D and
four contacts {1, 2, 3, 4} in (a) and the corresponding Delassus matrix G where the
diagonal block entries contain a sum from both collision partners, e.g. G11 = G11,A+
G11,C .

efficiency and are favorable. The reader is referred to the work in [3] for an extensive over-
view of current state of the art solution methods used in multi-body dynamics, to the
work in [142, 170, 108, 180] for the JOR and SOR Prox algorithms, and to [102] as an-
other reference for different state of the art optimization procedures used especially for
granular multi-body systems including their promising accelerated gradient projection al-
gorithm based on the method of Nestrov. Three popular accelerated first-order methods,
which achieve ϵ-suboptimality within O (1/

√
ϵ) iterations, are presented in [21, 195, 14]

and originated from the four ideas of Nestrov in [130, 129, 132, 131] and are well suited
for granular rigid body simulations. A projective conjugate gradient method with appli-
cation to granular dynamics has also been studied in [157] for the case of a polyhedral
approximation of the Coulomb friction.

8.3.1 JOR and SOR Prox Iteration

The projected over-relaxed Jacobi (JOR Prox) and projected over-relaxed Gauss-Seidel
iteration (SOR Prox) in [142, 170, 108, 181] are two common iteration schemes imple-
mented in the GRS framework explained in part II. As a good instructional practice, a
motivation of both methods is presented in the following.
Both algorithms are closely related to the classical Jacobi and SOR schemes for the linear
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system of equations GP+ c = 0 which can be written as

Pη+1 = Pη−αD−1(GPη+ c) , (JOR iteration) (8.19)
Pη+1 = Pη−αD−1(LPη+1+ (U+D)Pη+c) , (SOR iteration) (8.20)

where η denotes the iteration step, α is the relaxation parameter, and the Delassus matrix
G = L+D+U is split into a diagonal matrix D and a strictly lower and upper triangular
matrix L and U, respectively. By choosing R−1 = αD−1, it is possible to obtain a similar
iteration scheme for the proximal point equation in (8.18) compared to (8.19) and (8.20).
However, this choice of the projection metric R determines the metrics Ri,j of all normal
cone inclusions j of a contact i and they are in general not positive proportional to the
identity matrix and the projections are nontrivial (cf. Ri,T in (8.17)). To simplify the
projections, for each normal cone inclusion j of a contact i, one proportional value is
chosen, that is, Ri,j = rjI. A good choice for rj is to take the maximum of all diagonal
entries D corresponding to the block Ri,j. This is reflected in an adapted matrix D and
our choice becomes R−1 = αD−1. The JOR Prox scheme is then obtained as

Pη+1 = proxRC1×···×Ck

(
Pη −R

−1(GPη + c)
)

, R
−1 := αD

= proxRC1×···×Ck (TPη + d)

⇒ η+1
= proxRC1×···×Ck

(
· η

+
)

,

(8.21)

(8.22)

(8.23)

where η denotes the global iteration step with T = (I− αD−1G) and d = −αD−1c.
The SOR Prox scheme on the other hand is obtained as

Pη+1 = proxRC1×···×Ck

(
Pη−R−1(LPη+1+(U+D)Pη+c)

)
, R

−1 := αD

= proxRC1×···×Ck

(
L̃Pη+1+ŨPη+d

)
.

⇒ η+1
= proxRC1×···×Ck

(
· η+1

+ · η
+
)
.

(8.24)

(8.25)

(8.26)

The matrix L̃ = −αD−1L is the strictly lower triangular iteration matrix and Ũ =
I − αD−1(U + D) is the upper triangular matrix of T. Both schemes are based on the
same iteration matrix T and vector d. The symbolic matrix-vector multiplications are
visualized in (8.23) and (8.26). As can be seen in (8.26), the only difference of (8.25) to
the JOR Prox scheme is that it subsequently introduces the new calculated values Pη+1

by matrix L̃. This row-wise succession pattern leads to much faster convergence compared
to the JOR Prox scheme. In the literature, the SOR Prox iteration is also called per-
cussion (impulse) propagation method because the succession pattern defines a random
order in which the old percussions are updated by the new ones. The succession pattern
has influence on the convergence, such as for stacked rigid bodies where a top-down (or
bottom-up) pattern is useful. Randomizing the succession pattern during the SOR Prox
iteration, at least for Coulomb friction, has a negative effect on the convergence. De-
spite the fact that both schemes are robust in their convergence behaviour, which merely
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depends on the Lipschitz constant of T, it is not trivial to show that they converge to
the fixed-point of (8.18). A proof for convergence of the JOR Prox algorithm under the
assumption that the convex sets Ci do not depend on the contact percussion P and a
detailed discussion for these two iteration schemes is given in [170, 108, 181]. The JOR
Prox scheme converges if the underlying over-relaxed Jacobi scheme converges for some
initial condition. The relaxation parameter should be chosen as α ∈ (0, 2).
The termination criterion for the JOR Prox and SOR Prox iteration in (8.22) and (8.25)
can be chosen for each element in P as

|Pη+1
(i) −Pη

(i)| ⩽ |Pη
(i)| Trel + Tabs ∀i , (8.27)

where the subscript ·(i) denotes the i th scalar value of the global contact percussion P.
The scalars Trel and Tabs in (8.27) are the relative and absolute tolerance. The termination
criterion (8.27) controls the absolute error if |Pη

(i)| ≪ 1 and the relative error otherwise.
Both iteration schems, JOR and SOR Prox, can be evaluated with a sparse representation
of T or G and for the SOR Prox scheme there is an additional choice in which order to
update the entries of the percussion Pη+1. We assembled the normal cone inclusions
per contact and this can also be done differently. For example, by sorting the entries
in P with respect to the type of the normal cone inclusion. For the unilateral contact
with Coulomb friction this would mean to update first all unilateral contact forces and
then all Coulomb friction forces, which is more in correspondence to the biconvexity of
the underlying quasi-optimization problem. The reader should note that the JOR Prox
scheme (8.21) can be seen as a gradient projection step given in algorithm 6.1 without
the line search and with a step length γ = 1 as

λη+1 = (1− γ)λη + γ proxRC
(
λη −R

−1(Gλη + c)
)
. (8.28)

Furthermore, applying the line search proposed in algorithm 6.1 can be costly because
it involves the evaluation of the objective function given in (7.45) which contains the
Delassus matrix G. Note that for unilateral contacts with Coulomb friction, there does
not exist an optimization problem and using (7.45) with a line search is regarded from a
numerical perspective rather as an experimental method.
As a general note, the SOR Prox scheme should always be preferred to the JOR Prox
scheme because it has faster convergence behavior in most cases. The numerical paral-
lelization of both schemes in (8.22) and (8.25) for graphics processing units (GPU) has
been conducted in [142].

8.3.2 Velocity JOR and SOR Prox

The inclusion problem in (8.18) can also be rewritten as two equations in the variables uE

and P instead of only P, that is,

P = proxRC1×···×Ck(P+R
−1(W⊤uE + b)) , (8.29)

uE = uS +M
−1(h∆t+WP) (8.30)

with: b := (I+ ϵ)χ+ ϵW⊤uS. (8.31)
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The equations above suggest the following JOR iteration from Pη → Pη+1 as

Pη+1 = proxRC1×···×Ck(P
η +R

−1(W⊤uE,η + b)) ,

uE,η := uS +M
−1(h∆t+WPη) ,

(8.32)

which can be expressed as an iteration from (uE,η,Pη)→ (uE,η+1,Pη+1) as

Pη+1 = proxRC1×···×Ck(P
η +R

−1(W⊤uE,η + b)) ,

uE,η+1 = uE,η +M
−1W(Pη+1 −Pη) .

(8.33)

From a numerical and software perspective and with regard to the underlying contact
graph defined by the Delassus operator G, it is convenient to formulate (8.33) contact-
wise as

Pη+1
i = proxRCi(P

η
i −Ri

−1ξηi ) ∀i ∈ I ,

uE,η+1 = uE,η +M
−1∑

i∈I

Wi(P
η+1
i −Pη

i )

with:


uE,η := uS +M

−1(h∆t+WPη) ,

ξηi := Wi
⊤uE,η + bi ,

bi := (I+ ϵi)χi + ϵiWi
⊤uS

∀i ∈ I
(8.34)
(8.35)

(8.36)

which is the velocity JOR Prox scheme. The velocity SOR Prox scheme, with a one-
contact succession pattern, is simply obtained by fully evaluating (8.34) and (8.35) (note
the gray bracket) for one single contact i and continuing in this fashion over all contacts.
This procedure yields the velocity SOR Prox scheme with a one-contact succession pattern
as

Pη+1
i = proxRCi(P

η
i −Ri

−1ξsi ),

uE,s+1 = uE,s +M
−1Wi(P

η+1
i −Pη

i )

with:


uE,s=0 := uS +M

−1(h∆t+WP0),

ξsi := Wi
⊤uE,s + bi,

bi := (I+ ϵi)χi + ϵiWi
⊤uS.

∀i ∈ I
(8.37)
(8.38)

(8.39)

The reader should note that the summation (8.35) simplified to only one term in (8.38),
because all other contact percussion deltas (Pη+1

i −Pη
i ) are zero when iterating contact-

wise over the contact graph. To provide a better understanding of how the loop is per-
formed in (8.37) and (8.38), the velocity SOR Prox procedure is again summarized in
algorithm 8.3. As a general note, a contact i corresponds only to two contacting bodies,
lets say Bm and Bn where one of them can also be static or excited. The velocity up-
date (8.38) for contact i corresponding to the simulated bodies Bm and Bn will therefore
only update the velocities uBm and uBn of these two bodies. One loop over all contacts
in (8.37, 8.38) is denoted as one global SOR Prox iteration with corresponding counter η.
One especially useful termination cirterion is the comparison of the norm of the veloc-
ity ∥u∥M with respect to the metric M, which is the kinetic energy of the mechanical
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1 def velocitySORProx(. . . ) :
Data: I,M,h,uS and Wi,Ri, ϵi ∀i ∈ I in (8.37, 8.38)

2 converged ← false
3 η, s← 0 , nc ← |I| ▷ initialize counters k, s and number of contacts nc

4 P0 ← getCachedPercussion(default = 0) ▷ init. start percussion from cache
5 uE,0 ← uS +M−1(h∆t+WP0) ▷ initialize end velocity
6 while ¬converged :
7 uE,c ← uE,s ▷ save velocity for convergence check
8 for i ∈ I : ▷ start one global SOR Prox iteration
9 ξsi ←Wi

⊤uE,s + bi ▷ might depend on contact law
10 Pη+1

i ← proxRCi(P
η
i −Ri

−1ξsi ) ▷ update contact percussion of contact i
11 uE,s+1 ← uE,s +M−1Wi(P

η+1
i −Pη

i ) ▷ update velocity (only two bodies)
12 s← s+ 1

13 converged ← checkConvergence(uE,s,uE,c,M, Trel, Tabs)
14 η ← η + 1

15 return uE,s,Pη

Algorithm 8.3: Basic velocity SOR Prox algorithm.

system. Let the velocity u consist of each rigid body velocity uBi
of a body Bi with mass

matrix MBi
, then the termination cirterion∣∣∣∥uE,η+1

Bi
∥MBi

− ∥uE,η
Bi
∥MBi

∣∣∣ ⩽ ∥uE,η
Bi
∥MBi

Trel + Tabs ∀i (8.40)

terminates the velocity JOR or SOR Prox algorithm when the change in the kinetic ener-
gies of all bodies is below some relative and absolute tolerance Tabs, Trel, respectively. A
termination cirterion stated in the velocity u has the advantage of not being influenced
by the non-uniqueness of the percussion P which is likely the case for millions of contacts
where the generalized force directions Wi assembled in W become linearly dependent
and G positive semi-definite. For the case that all force reservoirs Ci are convex and
not dependent on other forces, the velocities u are always unique since the existing pri-
mal optimization problem (7.48) is strictly convex. For the case of unilateral contacts
with friction the velocities u may be non-unique. The reader should note that the def-
initions for ξηi and consequently also bi needs to be replaced when using normal cone
inclusions of different type than formulated in (8.1). This includes the unified normal
cone inclusion of De Saxé where ξi can be replaced with ξ̃i := ξi + µ∥ξi,T∥2eCn similar to
γ̃ in (7.33). The velocity SOR Prox scheme is the main iterative technique implemented
in the GRS framework discussed in chapter 9. Various termination criteria as well as other
succession patterns, such as the normal-tangential interleaved pattern, are implemented
in ContactGraphVisitors[35]. Parallel implemenations using graphics processing units
have been studied in [17, 183]
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8.4 Side Note on the Application
The conducted simulations during this thesis showed that the unified formulation of De
Saxé (7.33) does in general not converge faster than Alart-Curnier’s separated formula-
tion (7.31). However, De Saxé’s variant has a slightly improved convergence behavior for
high friction coeffiecients µ > 1 when compared in simulations with identical computa-
tions for the metric R and identical over-relaxation parameter α. The promising idea to
add a linear damper in series to the normal cone inclusions on velocity level presented in
section 7.1, to be able to fade from a completely soft contact problem to a hard contact
problem, or to fade from a frictionless problem to a problem with high friction coefficients
during the SOR Prox iteration did not speed up the convergence. In contrary, the manip-
ulation of the damping parameters during the SOR Prox iteration resulted in a restarting
behavior of the residual. The idea of using damped contact laws, although not yet suc-
cessful for the SOR Prox iteration, is considered future work and it is still promising to
investigate this idea in combination with a line search either for the dual quasi-objective
function in (7.45) or the primal quasi-objective function in (7.48). The reader should note
that the velocity JOR Prox scheme consists of a dual feasible update (8.34) and a primal
update (8.35) and the velocity JOR/SOR Prox iteration should be extended with a line
search in either P or u as already included in the basic gradient projection algorithm
in (6.30). The line search could be applied contact wise or after one global iteration in
the velocity SOR Prox scheme. Future work also focuses on accelerated gradient projec-
tion algorithms which have better convergence behavior as shown in the recent promising
work [102].



PartII
Software Implementation

“One of the things I really like about programming languages is that it’s the perfect
excuse to stick your nose into any field. So if you’re interested in high energy physics
and the structure of the universe, being a programmer is one of the best ways to get
in there. It’s probably easier than becoming a theoretical physicist.”

— Bjarne Stroustrup, The Essence of C++, Edinburgh, 2014
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This part deals with some of the more difficult software related issues implemented in the
Granular Rigid Body Simulation Framework GRSF [141] and the Approximate Minimal
Volume Bounding Box library ApproxMVBB [139] developed in the course of this thesis. In
this part, we mainly focus on the parallel capabilities of the GRS framework which have
been used for the simulation of the granular chuteflow discussed in the last part on the
high-performance cluster Euler at the ETH Zurich. The content throughout this part is
discussed in a rather conceptual way instead of providing deep insight into the source
code and actual implementation intricacies. The reader is therefore only required to
have a minimal knowledge in object-oriented programming. Nevertheless, the discussion
throughout this part is as specific as needed to empower a reader fluent in an object-
oriented programming language and with the knowledge of the theory introduced in part I
to understand, reuse, improve and re-implement the source code.
Chapter 9 gives a short overview about the GRS framework on a high-level basis and
roughly explains the simulation procedure from a user and implementation perspective.
Chapter 10 profoundly discusses the requirements and theory of the spatial domain de-
composition for the uniform grid and kd-tree decomposition which are two different meth-
ods for the parallel load balancing discussed in chapter 11. Chapters 10 and 11 prelude
the communication concepts discussed in chapter 12. Chapter 13 explains the theory
and algorithms of the mass-splitting method used to parallelize the contact problem in
section 8.3. The part concludes with a brief discussion on the visualization and data
extraction methods implemented within the GRS framework in chapter 14.
Abbreviations such as RigidBody[8] or [8]c++ and [3]file used in the remainder of this thesis
correspond to source code and file references given in appendix E.



Chapter9
The GRS Framework

In this chapter, we discuss the software implementations used to simulate large-scale
granular multi-body systems. The main software discussed in this chapter is the Granular
Rigid Body Simulation Framework (GRSF) which encompasses 4 applications: the main
granular rigid body application GRSFSim, the application GRSFSimGUI for the graphical
visualization, a parallel version GRSFSimMPI which uses the Message Passing Interface
(MPI) and the converter tool GRSFConverter.
This chapter will rather explain the software framework from a high-level perspective to
give the user an overview about the used abstractions and layers instead of focusing on
low-level technical aspects. Throughout this section the interested reader is referred to
source code locations given in appendix E.1. The source code of the GRS framework is
available in [141] and is, at the time of writing, not claimed to be a rigid body software
development kit but rather a valuable quality-conscious well-structured research tool in
the style of the following quote:

“Good code is its own best documentation. As you’re about to add a comment, ask
yourself, ‘How can I improve the code so that this comment isn’t needed?’ Improve
the code and then document it to make it even clearer.”

— Steve McConnell, Code Complete, 1993

The source code in [141] has been developed with a special focus on efficiency, memory-
safety and the separation of data structures and logic. At time of writing, software
frameworks with a focus on granular rigid-body dynamics include the physics engines
pe [74], Chrono [103], Bullet [39], the framework Siconos [2] and the software project
Solfec [85]. The software framework GRSF has been written in C++11/14 and depends
mainly on the following libraries ApproxMVBB, Boost, Eigen3, Ogre, pugixml, hdf5 and
assimp (see [141]). Numerical parallel extensions for the GPU in [17, 142] have been
written in CUDA C.

9.1 User Perspective
From a user perspective, the execution of a rigid body simulation with the GRS framework
starts at specifying the mechanical system to be simulated and the various parameters
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of the numerical methods to be used for the simulation by means of a scene file in the
XML format. The structure of the XML scene description is defined by an XML Schema
Definition (XSD). The compact description allows rigid bodies to be defined in groups
where each group holds a certain amount of rigid bodies. For each rigid body group, most
of the dynamic properties, such as the mass distribution, the initial conditions and the
geometries, can be varied over the number of rigid bodies. The scene description also
allows to define external forces, in the simplest case, a gravitational force field. A con-
tact parameter map can be specified to define the parameters of contact laws for certain
combinations of collision partners. Time-stepper and inclusion solver settings include
various parameters for the numerical integration of the dynamical system. The scene
description also includes various settings for the load balancing and topology rebuilding
techniques explained in chapter 10 for the parallel application GRSFSimMPI. The scene file
XML description is used at the start of a simulation and also while redistributing bodies
during a parallel computation on the cluster to reload the owning rigid bodies by each
process. The interpretation of this scene file is performed by the modular implementation
in SceneParser[15] (see appendix E.1). The simulation can then be launched by any of the
three mentioned applications, that is, GRSFSim, GRSFSimGUI and GRSFSimMPI. The graph-
ical version GRSFSimGUI allows on-the-fly visualization of the simulation. The output of
the simulation consists mainly of a binary file with suffix .sim implemented in Multi-
BodySimFile[16] and other various log and data files of the simulation. The output of a
simulation can again be visualized with the playback capabilities of GRSFSimGUI. Post-
processing, data extraction and data conversion can be performed by the GRSFConverter
explained in some more detail in chapter 14. Data conversion also includes the generation
of Renderman Interface Bytestream (RIB) for rendering a movie from the simulation out-
put. All applications are single-threaded except for the GUI version GRSFSimGUI which
uses a separate visualization thread aside of the computational thread. All applications,
GRSFSim, GRSFSimGUI and GRSFSimMPI, use the same core functionality of the framework
and the visualization part in GRSFSimGUI and the communication part in GRSFSimMPI are
decoupled from the core functionality as much as possible.
The next section briefly explains the main components of the implementation and their
interaction. Without loss of generality, the following discussion focuses on the parallel
implementation for the application GRSFSimMPI.

9.2 Implementation Perspective
For the discussion of the core components in the following, we refer to figure 9.1 which
shows their simplified dependency graph. The SimulationManager[1] is the central part
of the framework and controls the input, the integration of the mechanical system and
its output. The simulation manager contains some sort of TimeStepper[3], a storage class
DynamicsSystem[5] for the mechanical system, a StateRecorder[6] to record the output
and for the parallel version also a BodyCommunicator[28], a ProcessCommunicator[30] and
a TopologyBuilder[25]. The storage class DynamicsSystem[5] is able to construct scene
parser modules such that a SceneParser[15] directly constructs all objects in-place inside
an instance of DynamicsSystem[5]. The DynamicsSystem[5] storage contains static and
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simulated RigidBody[8] objects, global geometries, external forces, initial conditions and
other simulation related data. The TimeStepper[3] is responsible for the integration of the
stored objects in DynamicsSystem[5] and contains a CollisionSolver[9] which detects all
contacts at each time step and an InclusionSolver[11] which solves the contact problem
discussed in section 8.3.

SimulationManager[1]

StateRecorder[6]

TopologyBuilder[25]

DynamicsSystem[5]

TimeStepper[3]

MultiBodySimFile[16]

InclusionCommunicator[29]

ProcessCommunicator[30]

ProcessTopology[17]

BodyCommunicator[28]

InclusionSolver[11]

ContactGraph[13]

CollisionSolver[9]

Collider[22]

Figure 9.1: A simplified dependency graph of the GRS framework. The core parts
are shown in light gray and all communication parts are shown in dark gray.

Each iteration of the simulation loop performed by the SimulationManager[1] mainly
consists of a call to the time-stepping routine of the TimeStepper[3] and a successive call
to the StateRecorder[6] which writes all rigid body states into the MultiBodySimFile[16].
Each iteration also checks some heuristic to determine if the ProcessTopology[17] needs to
be rebuilt to achieve better load balancing. The ProcessTopology[17] contains informa-
tion about the spatial domain decomposition of the simulation. The notion of a process
topology is important for the distribution of the workload during the parallel simulation
and is discussed in-depth in chapter 10.
The time step routine of the TimeStepper[3], for the case of Moreau’s time-stepping
scheme, consists of a single communication step performed by the BodyCommunicator[28]

after the first half-time step in (8.6), a successive collision detection step performed by the
CollisionSolver[9] at the midpoint as given in (8.7), a contact resolution step for the
contact problem in (8.8) performed by the InclusionSolver[11] and a final second half-
time step as in (8.9). The contact resolution step performed by the InclusionSolver[11]

iteratively solves the contact problem as discussed in section 8.3 and performs the most
time consuming computations of the rigid body simulation. In between the iterative solu-
tion procedure, the InclusionSolver[11] performs additional communication managed by
the InclusionCommunicator[29] for the solution of all mass-split constraints (split-nodes)
due to the applied mass-splitting method discussed in chapter 13 for the parallelization
of the contact problem. The InclusionSolver[11] contains a ContactGraph[13] which is
a storage container for all contact and constraint related data and provides an efficient
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Figure 9.2: The GRSFSimGUI application in playback mode to visualize a chute flow
experiment of 1 million spheres. The graphical visualization is not real-time due to
the read bottleneck of the hard drive.

visitor interface implemented with a static type dispatch system. Different variants of
the velocity SOR Prox iteration in section 8.3 have been implemented as visitors1 in
ContactGraphVisitors[35] which can be applied efficiently over the ContactGraph[13] to
iteratively solve the contact problem.
Implementing the communication among processes and keeping the communication in-
terface separated from the numerical computations is one of the most challenging tasks
of a parallel implementation. Parallel communication inherently produces a lot of data
management and bookkeeping tasks. Maintaining a correct communication pattern for
the simulation of large-scale rigid body systems can bring even an experienced program-
mer to the verge of despair. All communication related bookkeeping tasks are separated
from all other parts and implemented in the BodyCommunicator[28] and the Inclusion-
Communicator[29]. The BodyCommunicator[28] is responsible to correctly communicate the
data of shared and non-shared rigid bodies among the neighbors of a process. Although
the communication logic implemented in the BodyCommunicator[28] is not a mystery once
the concept is understood, following the source code is very intricate. For that reason,
chapter 12 has been especially devoted to the communication concepts of the GRS frame-
work with a focus on the communication logic executed by the BodyCommunicator[28].
The sequence diagram in figure 9.3 gives a chronological overview on the time-stepping
procedure during a rigid body simulation performed by the application GRSFSimMPI.

1 The visitor design pattern is a method of separating an algorithm from the object on which it operates.
A visitor is a function object which accepts an instance of the object on which it operates. For the case
of a contact graph, a visitor operates on contacts and constraints in the contact graph.
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The next chapter discusses the spatial domain decomposition used to build the Pro-
cessTopology[17] which governs the communication logic of the parallel rigid body sim-
ulation performed by the BodyCommunicator[28] and the InclusionCommunicator[29].
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Chapter10
Spatial Domain Decomposition

When simulating a large-scale rigid multi-body system, such as millions of beads of a
granular material, in parallel by using p processes, the computational formulation of
the underlying mechanical problem has to be divided into equal shares among the par-
ticipating processes i ∈ [1 ; p]. In this section, we discuss some methods to tessellate
the domain covered by a rigid body assembly in E3 at a fixed time t into p process do-
mains Pi ⊆ E3 ∀i ∈ [1 ; p] which forms a process topology T =

∪
i∈[1 ; p] Pi. The topology T

is used to split the workload of the simulation, namely the numerical time-stepping proce-
dure of all rigid bodies, into p shares. The static approach at a time t is discussed first and
more detailed insight into the dynamic approach, including load balancing and topology
rebuilding techniques, is given in chapter 11. In the next sections, the notation Pi is used
to simultaneously denote the process domain of process i as well as the process i itself.

10.1 Requirements
The requirements of a process topology T in the context of this work are summarized in
the following:

• Non-overlapping and Unique Owner: Each process domain Pi has a set BPi,loc

of belonging rigid bodies, also called local bodies, given as

BPi,loc := {Bj | rSj
∈ Pi} , (10.1)

where all sets BPi,loc ∀i ∈ [1 ; p] are unique and must not overlap. Therefore
by (10.1), each body Bj corresponds to a unique process domain determined by the
location of its center of gravity rSj

. This implies that also the process domains Pi

must not overlap.
• Coverage: The topology should cover the maximal possible space occupied by a

rigid body assembly. In the context of this work, we assume this to be the space E3,
that is, T = E3. This strong requirement is justified by the fact that the location
of a body outside of T with no belonging process domain is unacceptable.

• Convexity: The process domains Pi of a process topology T should be convex.

87
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Figure 10.1: Three domain decompositions of a rigid body assembly (gray dots):
a rectlinear and a hexagonal-like decomposition, Trect and Thex, respectively, and a
non-convex generic decomposition Tnonconv. The boundary cells extend to ±∞ such
that the whole space E2 is covered.

This requirement allows for more efficient search queries, for example, membership
or collision queries of a body.

Figure 10.1 shows a rectlinear decomposition Trect, a hexagonal-like decomposition Thex
and a generic decomposition Tnonconv in E2, where the latter does not fulfill the require-
ments above.
In order to use a process topology T for the simulation, the following two queries have
emerged to be useful (see the interface in ProcessTopology[17]):

• Owner Query: A function belongsBodyToProcess(b) which returns the unique
process domain index/reference to which the center of gravity rS of body b belongs
as well as a boolean flag telling if the calling process is the direct owner or not.

• Overlap Query: A function checkOverlap(b) which reports the indices/references
of all process domains which the geometry of body b overlaps.

It is important to mention that the overlap query checkOverlap is efficiently implemented
such that when evaluated by a process Pi, it only reports indices/references of process
domains in a certain neighborhood around process domain Pi for a body b and is thus
named checkOverlapLocal.
The neighborhood Ni of a process Pi is important from a communication perspective.
The neighborhood Ni defines the set of processes to which a process Pi can communicate
which implicitly determines the knowledge a process Pi can obtain during a simulation.
It is most natural, and also implemented in this way, to define the neighborhood Ni of a
process Pi as the set of all adjacent process domains to Pi. The definition of adjacency
is dependent on the domain decomposition and will be explained for each decomposition
individually.
Our definition of the neighborhood immediately leads to the strong limitation that a
body Bi with owning process Pj must not overlap processes not contained in Nj, since
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otherwise an overlap cannot be communicated. For a given topology class and a simulation
setup of rigid bodies with a too large disparity in their geometry, this limitation may
inhibit an efficient tessellation of the assembly. This again leads to performance issues
during the parallel simulation. An example is a simulation of small and very large spheres.
For another example, consider the dark gray body Bi in Thex in figure 10.1: if its belonging
process is P5, the overlap query checkOverlapLocal(b = Bi) evaluated in process P5

would only return P17 and falsely neglect the non-adjacent domain P18 and process P5

has no knowledge about body Bi overlapping P18.
This locality restriction for a given process decomposition T can be weakened by either
expanding the neighborhood Ni of a process Pi by incorporating more process domains
than just all adjacent neighbors. In the worst case this leads to a neighborhood consisting
of all processes for each process which leads to inefficient communication. Or, by com-
puting the tessellation such that all rigid bodies are fully contained in their associated
neighborhood, that is, the neighborhood of their belonging process.
Two domain decomposition approaches have been implemented GRS framework: A simple
uniform grid decomposition implemented in GridTopology[18] and a more elaborate kd-
tree decomposition implemented in KdTreeTopology[20]. Both topologies are accompanied
by their corresponding topology builder GridTopologyBuilder[19] and KdTreeTopology-
Builder[21], repsectively, and explained in some more detail in the following sections. We
will especially elaborate on the aforementioned topology requirements for both the grid
and kd-tree decomposition.

10.2 Uniform Grid Decomposition
A grid decomposition is a tessellation of an n-dimensional euclidean space En into paral-
lelotopes (rectangular cuboids). In the context of this thesis, the uniform grid where all
parallelotopes are congruent, also called regular grid, in E3 is of most interest. A uniform
grid Tgrid ⊂ En is specified by four parameters: the orientation given by a transformation
matrix AIK ∈ Rn×n of a coordinate system K together with its displacement rOK ∈ En, a
tuple g ∈ Nn

+ for the subdivisions in the direction of each basis vector and a tuple d ∈ Rn
+

for the uniform cell extents in each direction. Without loss of generality, the transfor-
mation matrix AIK is assumed to be orthogonal and maps coordinates from the grid
coordinate system K to an inertial coordinate system I. Figure 10.2 visualizes a grid in E3

with g = [3, 3, 3]⊤.

10.2.1 Properties

All derivations in the following are conducted for the n-dimensional case and simplified re-
sults for the three-dimensional case are provided by using d = [dx, dy, dz]

⊤, g = [gx, gy, gz]
⊤

and i = [ix, iy, iz]
⊤ which denotes the index of an arbitrary grid cell. The set of all feasible

grid cell indices is defined as

Ig := {i ∈ Nn
0 | i(k) ∈ [0;g(k) − 1]} . (10.2)
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Figure 10.2: A uniform grid Tgrid in E3 with an orthogonal coordinate system K at
the position rOK , a subdivision g = [3, 3, 3]⊤ and a cell extent d = [dx, dy, dz]

⊤. The
grid cell which contains point A has the zero-indexed index i = [2, 1, 1]⊤.

The subscript x(i) denotes the i th component of the tuple x. The zero-indexed process
index p corresponding to a grid cell with index tuple i ∈ Ig is defined as

p = idxP(i,g) :=
n∑

k=1

i(k)(g(1) · g(2) · · ·g(k−1)) = ix + iy gx + iz gx gy ∈ N+
0 . (10.3)

The inverse function i := idxP
-1(p,g) is given by the inverse recursion from k = n→ k = 1

as

i(k) :=


p−

n∑
j=k+1

i(j)(g(1) · g(2) · · ·g(j−1))

g(1) · g(2) · · ·g(k−1)

 . (10.4)

The grid cell index i ∈ Ig of the cell containing a point A with displacement KrKA ∈ Rn

in coordinate system K (see figure 10.2) can be computed as

i = idxC(KrKA,g) := clampIg

(⌊
KrKA,(k)

g(k)

⌋)
, (10.5)

where the function clamp operates component-wise and clamps each index v(k) onto the
feasible range [0 ; g(k)− 1]. This exactly returns the index i of the closest cell in Tgrid also
for points rKA /∈ Tgrid.
The index set AdjNbs(i) of all adjacent neighbor cells (set of strict 1-neighbors or Moore
neighborhood, see definitions in [125]) to a cell with index i ∈ Ig can be defined as

AdjNbs(i) := {j ∈ Ig | max(|i− j|) = 1} . (10.6)

The neighborhood Ni for process domain Pi with cell index i = idxP
-1(i,g) is then given

as

Ni := {Pj | j = idxP
-1(j,g) ∈ AdjNbs(i)} . (10.7)
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It is useful to define a k-boundary cell as a boundary cell where k indices are chosen
at the possible limit of the range [0 ; g(k) − 1]. This definition will later be useful when
elaborating on the communication aspects of a uniform grid. For a k-boundary cell with
grid index i, the size of the adjacent neighbor set |AdjNbs(i)| can be computed as

adjNbs(k) := 3n−k2k − 1 . (10.8)

The combinatoric result in (10.8) follows from the fact that for a k-boundary cell with
index i, the values of k indices in i can be chosen at the possible minimum or maximum
limit, that is, the term 2k, and n − k non-limited indices can be shifted by +1,−1 or 0,
that is, the term 3n−k, and subtracting one for the exclusion of the zero shift.
From (10.8), the case for the non-boundary cell (0-boundary cell) follows directly as

adjNbs(0) = 3n − 1 =
n−1∑
m=0

En,m , En,m := 2n−mCn
m . (10.9)

Equation (10.9) results in the maximum number of 26 adjacent neighbors or a grid in E3.
The scalar En,m in (10.9) represents the number of m-dimensional faces, also called m-
faces, of a hypercube with dimension n. The reason for the summation is that each m-
face of a 0-boundary cell shares this m-face with one neighbor cell. A 4-dimensional
hypercube for example, representing a grid cell in E4, has E4,0 = 16 vertices (0-faces),
E4,1 = 32 edges (1-faces), E4,2 = 24 faces (2-faces) and E4,3 = 8 3-faces which totals
up to 80 = 34 − 1 four-dimensional neighboring hypercubes1. For a grid cell in E3, this
yields E3,0+E3,1+E3,2 = 8+12+6 = 26 neighbor cells. The second last equality in (10.9)
can be shown by using

n∑
m=0

amCn
m = (1 + a)n , (10.10)

where Cn
m denotes the binomial coefficient with property Cn

m = Cn
n−m.

Furthermore, the total amount of k-boundary cells in a grid is given by

nBndr(k,g) :=
∑
t∈Ik

2k
n∏

i=1
i/∈t

max(g(i) − 2, 0) , (10.11)

where Ik represents the collection of all k-subsets of the range {1, . . . , n}, for example, I2 =
{(1, 2), (1, 3), (2, 3)} for n = 3. An element t ∈ Ik in (10.11) represents one combination
of index positions of a grid index which all have a possible minimum or maximum value,
and for each t there are 2k possibilities. The other possibilities for the remaining n − k
non-limited indices, meaning that a value of an index i at position i /∈ t is in the range
[1;g(i)−2], is taken account by by the product in (10.11). The product in (10.11) evaluates
to zero combinations when the maximum function returns zero for some i /∈ t with 0 <
g(i) < 2, which means that the index i /∈ t is necessarily at the limit.
1 See Wikipedia: https://de.wikipedia.org/wiki/Hypercube or [27] for a corresponding table.

https://de.wikipedia.org/wiki/Hypercube
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Summing up all amounts of k-boundary cells for k ∈ [0 ; n] gives the total number of cells
in the grid, that is,

n∑
k=0

nBndr(k,g) =
n∏

i=1

g(i) . (10.12)

The above relation holds true and is non-trivial to show for the general case but is tractable
if g = [g, . . . , g]⊤ ∈ Nn

+ and g > 2, which yields

n∑
k=0

nBndr(k,g) =
n∑

k=0

2k(g − 2)n−kCn
k = (g − 2)n

n∑
k=0

2k

(g − 2)k
Cn

k (10.13)

(10.10)
= (g − 2)n

(
1 +

2

g − 2

)n

= gn . (10.14)

The grid in figure 10.2 with g = [3, 3, 3] has exactly nBndr(2,g) = 12 two-boundary cells.

10.2.2 Construction

Assumed that AIK, rOK , and g is given, there is no need to construct anything else as these
values already define the grid itself. However, finding good parameters highly depends on
the requirements discussed in detail in chapter 11 and is a non-trivial task.
So far, we defined the uniform grid Tgrid to be bounded in the space En. It is possible to
extend the limit faces of all boundary cells to infinity and denote it by T ∞grid to fullfil the
total coverage requirement, that is, T ∞grid = En.

10.2.3 Search Queries

The overlap query checkOverlapLocal(b) in E3 evaluated in a 0-boundary grid cell with
index i reduces to a total of adjNbs(0) = 26 collision tests between each neighbor cell’s
axis aligned bounding box in coordinate system K and body b. Although the overlap check
is not a full collision query where other information is returned, such as the contact point
or the contact normal, its evaluation is non-trivial for arbitrary geometries. An efficient
sphere-box overlap test presented in [91] has been implemented in ColliderAABB[24] and
ColliderOOBB[23]. For other combinations of geometries, the reader is referred to standard
literature [50]. For the implementation of the search queries, it is also useful to compute
the neighborhood Ni for a process Pi. Computing it as in (10.7) is simple and involves
merely some combinatorial index computations.
The grid index function in (10.5) is the main ingredient of the required search query
belongsBodyToProcess which by construction returns the same result for a bounded
grid Tgrid as well as for an extended grid T ∞grid, namely the closest cell to the center of
gravity rS of a body b.
The implementation of the search queries can be found in GridTopology[18].



10.3 Kd-Tree Decomposition 93

10.2.4 Communication

In the following, we evaluate the total number of messages sent by all processes if they
communicate with their neighbors. For that, it is necessary to sum up the total amount
of neighbors for all k-boundary cells which yields

nMessages(g) :=
n∑

k=0

nBndr(k,g)adjNbs(k). (10.15)

Simplifying this would involve a lot of mathematical intricacies. However, evaluating the
uniform split case with g = [g, . . . , g]⊤ and g > 2 yields

nMessages(g) = (g − 2)n
n∑

k=0

2k

(g − 2)k
Cn

k (3
n−k2k − 1) (10.16)

(10.10)
= (3g − 2)n − gn ∈ O (gn) . (10.17)

The presented grid topology is one of the simplest topologies for a parallel simulation.
Table 10.1 lists some of its strengths and weaknesses.

Strengths Weaknesses

• No effort for construction given AIK

and rOK .
• Simple implementation of the search

queries.
• Simple computation of the

neighborhood Ni for a process Pi.
• Small efficient data structure.

• Number of neighbors is exponential
to the dimension of the space En.
Maximal 26 neighbors in E3.

• The upper bound of total messages
sent is O (max(g)n).

• Uneven data distribution over the
cells.

Table 10.1: Advantages and disadvantages of using a uniform grid decomposition
for the parallel simulation.

10.3 Kd-Tree Decomposition
A kd-tree is a space-partitioning data structure in a k-dimensional linear space, in the
following assumed to be En. For a given input data set in En, a kd-tree subsequently
divides the data set in two new data sets by a (n− 1)-dimensional hyperplane H(n,p) =
{x ∈ En | (n |x− p) = 0} ⊆ En with normal n ∈ En and displacement p ∈ En. One data
set lies in the upper closed half-space H+

0 (n,p) = {x ∈ En | (n |x− p) ⩾ 0} whereas the
other lies in the open lower half-space H−(n,p) = {x ∈ En | (n |x − p) < 0}. At first
glance, kd-trees may appear to be more theoretical than practical in nature. However,
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they are extremely useful in a lot of applications ranging from ray tracing [70] and colli-
sion detection [168] in computer graphics through data clustering in the field of machine
learning [111] to applications in astronomy [56]. Not to forget the efficient computation of
the measure (area for n = 2 or volume n = 3) of a union of multidimensional rectangles,
also known as Klee’s measure problem. The space partitioning of a kd-tree is also called
coordinate bisection in the literature.
Kd-trees are efficient data structures for a lot of algorithms in computer science, such as
range searches or the archetypical k-nearest neighbor search query (cf. section 11.1). A
kd-tree is a special case of a binary space partition tree in En, in short BSP tree. Binary
space partition is a general method of recursively dividing a data set or space in two.
If hyperplanes are used for constructing a BSP tree, they can have in general arbitrary
orientation. This is not the case for kd-trees where the splitting hyperplanes are aligned
with a coordinate system, in this context denoted as K.
A kd-tree is described by a binary tree which can be unbalanced or balanced depending
on its construction. Figure 10.3 shows a kd-tree decomposition in a coordinate system K
in E3 together with its binary graph representation. The description of a kd-tree, as
visualized in figure 10.3, is given by the following parameters: the orientation given by
a transformation matrix AIK ∈ Rn×n for the coordinate system K together with its
displacement rOK ∈ En, a list of all nodes S = {. . . , ni, . . . } and an optional tuple e for
the extent in each direction of the basis K. Each non-leaf node ni ∈ S stores its two
child nodes, the index of the splitting axis sidx ∈ [1 ; n], and the location s of the splitting
hyperplane measured in the direction of the splitting axis and other useful information.
The union of all disjoint bounding boxes of all leaf nodes in the kd-tree forms the process
topology Tkd-tree ⊂ En.

10.3.1 Construction

Given AIK and rOK , the construction process of a kd-tree consists of finding the splitting
positions {. . . , si, . . . } for all non-leaf nodes. A kd-tree can be built recursively in top-
down, breadth-first fashion. There exist a variety of methods to obtain the splitting
positions and an optimal method highly depends on the used context. In the application of
ray tracing in computer graphics where huge triangle meshes are subdivided, surface area
heuristics are used to choose the optimal splitting positions. The surface area heuristic
uses a cost function based on probabilistic considerations which optimizes ray-triangle
intersection tests. In our context, the data set from which the kd-tree topology Tkd-tree
is constructed, is a point cloud of the center of gravities of all rigid bodies used for the
simulation. The following three splitting methods are useful:

• Midpoint Split: At each level during construction, the splitting position of the
hyperplane is located at the midpoint of the bounding box to be split in the direction
of the splitting axis.

• Median Split: At each level during construction, the splitting position is located
at the median of the point cloud in the direction of the splitting axis.
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Figure 10.3: A Tkd-tree in E3 with an orthogonal coordinate system K in (a) and its
corresponding tree structure in (b). The letter inside the non-leaf nodes in (b) denote
the used splitting axis at this node. The number inside the leaf nodes corresponds
to the numbered bounding box in (a). The left child corresponds always to the lower
open half-space. The gray arrows leaving leaf node 8 point to the root nodes of its
four boundary subtrees.

• Geometric Mean Split: At each level during construction, the splitting position
is located at the geometric mean of the point cloud in the direction of the splitting
axis.

A simplified recursive breadth-first construction method is shown in algorithm 10.1. At
each level during construction (cf. line 7 in algorithm 10.1), independent of the chosen
splitting method described above, a splitting heuristic choses the splitting position s and
axis sidx according to a quality function. The splitting heuristic implemented in KdTree[27]

is fully customizable and the default implementation for our application contains a linear
quality evaluator which evaluates the splitting quality function

splitQ(rs, rp, re) := 2ws · rs + 2wp · rp + we · re, ws, wp, we ∈ R+
0 (10.18)

with weighting parameters ws, wp and we. The parameter rs ∈ (0, 0.5] denotes the splitting
ratio of a potential split along the current axis, that is, a split ratio rs = 0.5 is an exact
midpoint split. The second parameter

rp =
min(nH− , nH+

0
)

nH− + nH+
0

∈ [0, 0.5] (10.19)

is the point ratio of a potential split of the point cloud contained in the current node
where nH− and nH+

0
represent the point count in the lower and upper half space. A point

ratio rp = 0.5 means that the lower half space contains the same amount of points as
the upper half space which is exactly obtained by a median split. The third important
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parameter re ∈ (0, 1] denotes the lowest extent ratio of the two new resulting bounding
boxes of a potential split. The extent ratio of a bounding box is defined as the quotient
of its minimal extent divided by its maximal extent.
The implemented splitting heuristic maximizes the quality function (10.18) over all pos-
sible directions and all specified splitting methods, that is, the midpoint, median and
geometric mean split. The splitting recursion is continued till the tree has reached its
maximum number of leaf nodes or reached its maximum allowed depth. The splitting
heuristic also rejects splits for which the ratios rs, rp, re are below specified minimal val-
ues. Thus, it can happen that the heuristic does not find a feasible split among all specified
splitting methods which results in a new leaf node (cf. line 10 in algorithm 10.1).
The two parameters rp and re are of special importance. Keeping the point ratio rp
around 0.5 is essential since it directly influences the workload distribution during the
parallel simulation. Keeping the extent ratio re at the same time as high as possible
leads to less degenerated bounding boxes and counteracts the situation where huge long-
drawn bounding boxes have lots of neighboring cells which is bad for communication.
Figure 10.4 shows two splitting results of a kd-tree construction. Figure 10.4a shows a
tessellation where all methods, the midpoint, median and geometric mean split, are used
to maximize (10.18). This results in a high average split, point and extent ratio r̄s, r̄p
and r̄e, respectively, and a low maximal neighbor count compared to the splitting result
in figure 10.4b, where only the midpoint split is used. From a performance viewpoint,
figure 10.4a is a better tessellation since the average point count per leaf node and maximal
neighbor count is lower which are two determining factors for the overall performance of
the parallel simulation.
The complexity for building a kd-tree, as shown in algorithm 10, is dependent on the
used splitting method. The median, midpoint and geometric mean methods have best
case build complexity O (n log n) ,O (log n) and O (n log n), respectively, for n points1.
Using all methods over all axes results in a best case build complexity O (dn log n) in
a d-dimensional space.
Although the kd-tree construction subdivides a start bounding box given by the extent e,
it also recursively divides the space En in two which results in a binary tree as shown
in figure 10.3b: the resulting tessellation already covers the whole space E3 and every
point p ∈ E3 belongs to a unique leaf node which is found by traversing the tree from
the root. In this way, the coverage requirement is fulfilled, that is, Tkd-tree = En. For the
implementation, it is useful to extend the boundary faces of the bounding boxes of the
leaf nodes to infinity.

10.3.2 Search Queries

The search query belongsBodyToProcess to obtain the belonging process Pi for a body b
with center of gravity rS is simple and is implemented with a top-down traversal of the
binary tree starting at the root node. This simple procedure is shown in algorithm 10.2
and it is worth mentioning this works also for points outside of Tkd-tree. The query check-
1 Confer [197] and the master theorem in [38].
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(a) Good splitting by using all methods:
midpoint, median, geometric mean.
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(b) Bad splitting by using only the
midpoint method.

rs rp re ∅ neighbor count max. neighbors ∅ point count
(a) 0.40 0.49 0.23 7.3 10 115
(b) 0.5 0.31 0.11 6.74 15 447

(c) Properties of the splits (a) and (b).

Figure 10.4: Two kd-tree decompositions with 400 leafs of 29429 points in E2 with
splitting heuristic weights ws = 0, wp = 1 and we = 1 in (10.18).

OverlapLocal is similar to the function belongsBodyToProcess except that it returns
all overlapping neighbors and takes the geometry of the rigid body into account, that is,
isInUpperHs(b.rS, nt) in algorithm 10.2 needs to be replaced by more advanced collision
detection queries. The query checkOverlapLocal can be implemented efficiently for a
process Pi by starting not at the root node of the kd-tree but at the common ancestor of
all boundary subtrees. The boundary subtree of a leaf node i is the subtree starting at
the node whose splitting hyperplane is a boundary face of the bounding box of node i.
In figure 10.3, the gray arrows a, b, c and d point to the root nodes of the four bound-
ary subtrees of leaf node 8. The implementation of the search queries can be found in
KdTreeTopology[20].

10.3.3 Communication

Determining the exact number of sent message between neighbors in a kd-tree is not
deducible since it is highly dependent on the resulting tessellation for a certain data set.
Furthermore, the number of neighbors for a certain leaf node can not be bounded from
above like for the grid decomposition in section 10.2. One can imagine extremely bad
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1 def builKdTree(aabb, points) :
Data: aabb is an axis aligned box around points in the list points .

2 nr ←createNewNode(aabb, points) ▷ create new root node.
3 splitList .push(nr) ▷ push root node onto FIFO queue splitList .
4 while ¬splitList .empty() :
5 if treeDepth < maxTreeDepth and leafs .size() < maxLeafs :
6 f ←splitList .front()
7 if f .split(h) : ▷ try to split node with heuristic h.
8 splitList .push(f .leftChild(), f .rightChild())
9 else:

10 leafs .add(f) ▷ this node is a leaf.
11 else:
12 leafs .add(f) ▷ no more splitting allowed.
13 splitList .pop() ▷ pop node at the front.

Algorithm 10.1: Principle of a kd-tree construction in top-down, breadth-first
fashion.

1 def belongsBodyToProcess(b) :
Data: Tkd-tree with root node nr and leaf node ni for a process Pi.

2 nt ← nr ▷ start the traversal at the root node.
3 while nt ̸= null :
4 if isInUpperHs(b.rS, nt) : ▷ check if point rS of body b is in H+

0 .
5 nt ← nt.rightChild
6 else:
7 nt ← nt.leftChild

8 return (nt, nt = ni)

Algorithm 10.2: Principle of belongsBodyToProcess(b) for the kd-tree topol-
ogy Tkd-tree.

subdivisions which result in an enormous neighbor count for certain leaf nodes. Never-
theless, this is rarely a problem in practice and using the described splitting heuristic with
quality function (10.18) for the construction especially counteracts such cases. As long as
artificially constructed data sets are excluded, the kd-tree decomposition results mostly
in less than 26 neighbors compared to the grid decomposition. Reducing the maximal
neighbor count improves the performance for the communication a lot.
Building the neighborhood set Ni as in (10.7) is not simple since the data structure of
a leaf node does not encode neighbor information a priori as trivially given for case of
the grid decomposition. To obtain this information, additional boundary information
has to be propagated during the top-down construction. The boundary information for
each node contains all links to boundary subtrees (see gray arrows in figure 10.3) and is
continuously updated during the splitting procedure. At the end of the construction, the
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boundary information is then available at the leaf nodes which helps in finding all adjacent
neighbors. Obtaining the neighbor leaf nodes of a leaf node nl is achieved by expanding
the bounding box of nl by 99% of the minimal extent of all leaf nodes encountered during
construction in all directions. Intersecting the faces of the expanded bounding box of nl

(2n hypersurfaces in En−1, 6 faces in E3) with the closest leaf nodes in the 2n boundary
subtrees. In figure 10.3, expanding the bounding box of leaf node 8 by a small amount and
intersecting with the closest nodes in the boundary subtrees given by the arrows a, b, c
and d results in the neighborhood N8 = {P3, P5, P6, P7}. The neighborhood Ni in E3

incorporates all domains which share an edge,vertex or face with domain Pi and is similar
to the neighborhood for the grid decomposition.
The following table summarizes some of the strengths and weaknesses of using a kd-tree
decomposition.

Strengths Weaknesses

• Obtaining an approximate uniform
distribution of the data set over all
leaf nodes is possible.

• Number of neighbors is not bounded
from above but in general less than
26 as for the grid decomposition
in E3.

• Best case build
complexity O (n log n).

• Implementation of search queries is
non-trivial.

• Neighbor extraction for a process
domain is non-trivial.

• Data structure handling is more
complex (trees).

Table 10.2: Advantages and disadvantages of using a kd-tree decomposition for the
parallel simulation.





Chapter11
Load Balancing

In this chapter, load balancing strategies and techniques for the parallel simulation of
large-scale rigid body systems are discussed in more detail. Load balancing in computer
science, as the name suggests, is the distribution of a workload onto several processes.
This can be done statically or dynamically. Statical load balancing distributes the work-
load once and keeps the distribution fixed whereas dynamic load balancing constantly
redistributes the workload in between the computations. Static load balancing is mainly
useful for embarrassingly parallel tasks where it is guaranteed that the load is balanced
among all processes during computation. In the context of this thesis, dynamical load
balancing is of great importance since the simulations conducted in part III include a
fast moving granular material, where a fixed-time domain decomposition as described
in chapter 10 is not going to leverage the parallel processing power. The reason is that
an approximate uniform distribution of rigid bodies given by an initial domain decom-
position only holds for a small time period and the body distribution quickly becomes
non-uniform over the processes topology. This slows down the parallel simulation because
the process with the largest workload, that is, the one with the largest amount of bod-
ies, is the bottleneck because of the communication and computation overhead for the
time-stepping and inclusion solving procedure in each time step (cf. chapter 8). From
a high-level perspective, a dynamic load balancing strategy is basically a control loop
where a load balancer uses profiling information of the simulation, such as run times of
certain expensive routines of the simulation and other heuristics, to optimally balance the
total work among all processors. Our method is closely related to [174] where a kd-tree
domain decomposition is applied for a simulation of a granular material consisting of up
to 1× 106 two-dimensional discs.
The two important requirements for a dynamic load balancing technique in the context
of this thesis are

• Uniform Workload Distribution: The computational time for one time step
used by a process is dependent on a lot of parameters, such as the number of bodies
and the size of the inclusion problem in the process domain and the size of the
adjacent neighborhood Ni. One can define a workload heuristic Wi depending on
these and other factors which approximately determines each process’s workload.
This heuristic can then be used together with profiling information to uniformly

101
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balance the workload among all processes. For reasons of simplicity, we mainly
considered this parameter Wi to be the total number of bodies located in a process
domain Pi.

• Small Overhead: The load balancing should only take a fraction of the time of
the overall rigid body simulation and its communication overhead should be small.

There exist a lot of dynamic load balancing techniques (e.g. [37, 25]) which could be
studied for a parallel rigid body simulation. One technique is to continuously update the
domain decomposition depending on a simple heuristic, for example, the distribution of
the bodies over the process topology. Together with a pool of available processes, which is
managed by a master process, one can imagine a setup where processes are continuously
assigned and re-assigned to a group of non-empty process domains in the process topology.
This thought experiment quickly raises some very difficult questions as: how should the
communication between the processes work since every process needs to know its exact
neighbors which constantly change due to the dynamic assignment of the processes? Even
though it is certainly possible to implement such a system with a master-slave approach,
its intricate communication logic and overhead is significant. A simpler approach is chosen
in the context of this work and briefly outlined in the remainder of this chapter.

11.1 Simple Topology Rebuilding
The approach described in the following is the simplest one can imagine. It is a master-
slave method where the master process rebuilds the decomposition and shares its results
with all other processes. The decision to rebuild the decomposition is determined by
communication with the master process which decides based on the workload heuris-
tic Wi, for example, the distribution of the number of bodies or the computational time
spent for the last iterations. At time of writing, the topology building process in Grid-
TopologyBuilder[19] and KdTreeTopologyBuilder[21] has not yet been parallelized. The
parallelization of certain subtasks, such as point cloud filtering or rigid body prediction
explained in more detail in this section, is straight forward and left for future work. For the
following discussion, the time points during a simulation at which a topology rebuilding
takes place are denoted as {tk, tk+1, . . . }.
The rebuilding procedure, implemented in TopologyBuilder[25], at a time tk performed
by the master process can be cast into the six steps shown in algorithm 11.1 independent
of the used domain decomposition method. Steps 2,3 and 4 are explained in more detail
in the sequel of this section.

Step 2: Outlier Removal

The outlier removal method has been added later in the development process of the GRS
framework. This step is extremely necessary especially for the uniform grid decomposition
which despite the bounding box fit can still result in unfavorable distribution of the
workload. This is experienced especially for simulations where the body distribution
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Algorithm 11.1 (Simple Topology Rebuilding):
Step 1 : Send/Receive Information: The master process receives all necessary

data from all other processes (cf. [33]c++). This includes mainly all center
of gravities rSi

and masses mi of all bodies Bi and optional local computed
data depending on the bounding box fit in step 3.

Step 2 : Outlier Removal: The received point cloud P consisting of all centers of
gravity is filtered by a statistical outlier removal method with the help of
a kd-tree and a k-nearest neighbor search algorithm.

Step 3 : Point Mass Prediction: The filtered point cloud Pf consisting of all
relevant point masses is predicted over time which results in a bigger final
point cloud Pp.

Step 4 : Bounding Box Fitting: A bounding box B(Pf ) ⊂ E3 is fitted to the fil-
tered point cloud Pf . For this task, three methods have been implemented:

• Approximate MVBB: An approximate minimal volume bounding
box fitting described in section 11.2. Some variations of this algorithm
include user provided hints such as one or two predefined directions
of the resulting bounding box.

• AABB: An axis aligned bounding box fitting.
• PCA: The principle component analysis (PCA) described in appen-

dix B is based on an Eigenvalue decomposition of the binet tensor
of the point cloud where the Eigenvectors define the bounding box
directions.

• Specified OBB: The user specifies the object oriented bounding box
(OBB) or two direction vectors.

Step 5 : Topology Construction: One of the decompositions explained in chap-
ter 10, either a uniform grid or a kd-tree decomposition, is computed by
the master process for the point cloud Pp (cf. [19, 21]c++).

Step 6 : Broadcast: The data structure of the computed process topology is broad-
cast (cf. [34]c++) to all participating processes. This process topology is
used for the next time range [tk, tk+1) of the simulation.

becomes inhomogeneous over time. This is also the case for the conducted simulations in
part III. The k-nearest neighbor search for the statistical outlier removal is a non-trivial
standard algorithm which efficiently operates recursively on a kd-tree data structure in
bottom-up fashion by using a priority queue data structure with maximal size k which
sorts the points according to their distance. The algorithm returns the k nearest neighbor
points of a point cloud for an input point p with respect to some metric. The k-nearest
neighbor search is shown in algorithm 11.3. The implementation of the outlier removal
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1 def getKNearestNeighbors(p) :
Data: Tkd-tree with root node nr, priority queue kNpQ with maximal size k

for k nearest points, a LIFO node stack nStack to trace parent nodes.
2 nStack ← getNodePathOfPoint(nr,p) ▷ obtain node stack nStack such that

node nStack .front() is a leaf node containing p
3 maxDistSq ← 0 ▷ initialize the maximal squared distance of the found points
4 while ¬nStack .empty() :
5 nc ← nStack .front() ▷ get current parent node
6 if ¬nc.isLeaf() : ▷ if current node is not a leaf
7 if ¬nc.isleftVisited() : ▷ visit left subtree (H−) if not done
8 nc.setLeftVisited()
9 if kNpQ .full() : ▷ if we have k points already

10 i← nc.splitAxis()
11 d← nc.splitPos()− p(i) ▷ distance to splitting hyperplane
12 if d ⩽ 0 ∧ d2 ⩾ maxDistSq :
13 continue ▷ p ∈ H+

0 , no overlap of current max ball with H−

14 nStack .push(nc.leftChild) ▷ go to left child
15 continue
16 elif: ¬ nc.isRightVisited() : ▷ visit right subtree (H+

0 ) if not done
17 nc.setRightVisited()
18 if kNpQ .full() : ▷ if we have k points already
19 i← nc.splitAxis()
20 d← nc.splitPos()− p(i) ▷ distance to splitting hyperplane
21 if d > 0 ∧ d2 > maxDistSq :
22 continue ▷ p ∈ H−, no overlap of current max ball with H+

0

23 nStack .push(nc.rightChild) ▷ go to right child
24 continue
25 else: ▷ if current node is a leaf, add all points to the priority queue
26 if nc.size() > 0 :
27 kNpQ .push(nc.getPoints()) ▷ add all points of nc to the prio.

queue
28 maxDistSq ← ∥kNpQ .top()− p∥22 ▷ update max. squared distance
29 nStack .pop() ▷ go to parent node by removing nc

30 return kNpQ

Algorithm 11.3: Principle of obtaining the k nearest neighbor points of a point
cloud to an input point p.

in NearestNeighbourFilter[26] computes the mean of the distances of the k-nearest
neighbors for every point in the point cloud. These means result in a histogram from
which the standard deviation and mean can be used in a second step to classify outlier
points in the point cloud.
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Step 3: Point Mass Prediction

By predicting the time evolution of the filtered point masses in Pf , the decomposition
in the last step is prepared such that the uniform distribution requirement for the next
simulation interval [tk, tk+1) is better fulfilled. The two important parameters for this
step are the duration and the accuracy of the prediction. Finding the optimal duration
is not straight forward. The process decomposition built from a point cloud predicted
over a too long interval may have worse performance over the next time interval [tk, tk+1)
due to the imbalance of the body distribution. Thus, the duration is manually adjusted
depending on the underlying mechanical problem. The accuracy of the prediction is in
direct relation to its computational complexity. For the simulation of a granular material,
the explicit standard Euler method is used for the time-stepping of the point masses
in Pf . All external forces, except contact forces, acting on the original bodies are reduced
to the point masses such that their movement is close to the original bodies. In this
context, only the gravitational force is of relevance and already acts at the center of
gravity. Collisions during the prediction are only detected between point masses and
static geometries in the scene, for example, walls and floors. As soon as a point mass
collides, it is projected onto the surface of the colliding object and the prediction for this
point mass is stopped. Collision detection is necessary to prevent mass points from being
located outside of the feasible space of the given scene. The collision detection has been
implemented with point-to-object collision routines which work for all objects which have
a well defined inside, for example, half spaces, spheres or capsules, and do not work well
for open triangle meshes, for example. Further work focuses on the implementation of a
more robust collision detection by finding the collision between a point mass trajectory
and the objects of interest. This results in ray-object collision tests as used in ray tracing
in computer graphics. The time step for the prediction is typically chosen to be a multiple
of the real time step of the simulation.

Step 4: Bounding Box Fitting

It is worth noting that the computation of a bounding box B(P ) of an arbitrary point
cloud P ⊂ En with k points is only dependent on the convex hull cHull (P ) of P . This is
true since P ⊆ cHull (P ) ⊆ B(P ) ⊂ En. Finding the exact minimal bounding box B(P )
of a point cloud P in En is a very difficult task. The algorithm presented in [194] for
a point cloud in E2, also called the rotating calipers method, requires O (k log k) time,
and O (k) if cHull (P ) is known. In E3, the problem is more intricate and the current
best-known exact algorithm, published by O’Rourke [143], requires O (k3) time and O (k)
space. O’Rourke’s algorithm is known to be extremely difficult to implement and is non-
applicable for large point clouds with millions of points. The state of the art is to use
approximation algorithms which can be classified into two categories, the direct methods
which only compute one approximation of the bounding box, the enumerative algorithms
which choose the best bounding box among a computed set of boxes and the iterative
ones which iteratively improve the approximation.
The principal component analysis (PCA) as described in appendix B belongs to the class
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κn,i ∈
En

n = 2 n = 3 n = 4

i = 0 {∞} {∞} {∞}
i = 1 [2, 2.654] {∞} {∞}
i = 2 [2, 2.104] [4, ?] {∞}
i = 3 [4, 7.81] [16, ?]

i = 4 [16, ?]

Table 11.1: An extraction from [46] of the approximation factors κn,i in (11.1)
for the PCA bounding boxes of a point cloud P for different dimensions n and
dimensions i of the considered faces of cHull (P ). Question marks denote currently
unknown bounds.

of direct algorithms. This algorithm computes the eigenvectors of the Binet inertia tensor
of P which form the directions of the resulting bounding box. The classical PCA approach
is performed over all points in P . The PCA method in general has the deficiency of
being extremely sensitive to the distribution of the point cloud due to the Eigenvalue
decomposition. Symmetric point clouds are the archetypical bad examples where the PCA
method fails to provide a good fitting. Improved adaptations exist where the analysis is
performed only over the points on the boundary of the convex hull cHull (P ) for example
or where the associated 2-dimensional minimum area rectangle problem of the projected
point cloud onto a single principal direction, that is, the eigenvector to the smallest
or largest eigenvalue, is solved. In the thesis in [46], lower and upper bounds on the
approximation ratio of PCA bounding boxes are derived. The approximation factor κn,i

in En for a PCA bounding box is defined in [46] as

κn,i := sup

(
vol (Bpca,i(P ))

vol (Bopt(P ))
| P ∈ En, vol (cHull (P )) > 0

)
, (11.1)

where Bopt(P ) denotes the exact minimal volume bounding box of point cloud P and Bpca,i(P )
is the bounding box obtained from the principal component analysis of the i-dimensional
faces of cHull (P ). A 0-,1-, and 2-dimensional face of cHull (P ) in E3 is a vertex, edge or a
bounding surface respectively. The approximation factor for the whole convex hull is κn,n.
Table 11.1 gives an overview of the lower and upper bounds on the above approximation
ratio κn,i extracted from the extensive work [46]. Table 11.1 shows that, in the worst case,
the PCA bounding box computed from cHull (P ) ∈ E3 can still be 7.81 times bigger than
the optimal one. At the time of developing the GRS framework, the quality of available
efficient implementations of certain approximate bounding box algorithms was extremely
poor and some implementations were not written in the preferred language C++. As a
consequence the open-source library ApproxMVBB [139] has been developed alongside the
GRS framework to provide a robust, efficient and safe implementation of an approximate
bounding box algorithm. This library and its enumerative algorithm is briefly explained
in the next section.
There exist several more enumerative methods for obtaining an approximate bound-
ing box. They are also called brute-force methods, which sample the space of rota-
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tions SO(3) or choose sample directions di in a unit sphere to obtain several approxi-
mations Bopt(P,di). These methods perform in general worse than the exhaustive grid
search method described in section 11.2. An excellent review on this topic and the so
far mentioned algorithms can be found in [35] where an iterative optimization method is
proposed. In [35], the minimal volume bounding box problem is simply cast into a volume
optimization problem as

min
IRKI∈SO(3)

f(IRKI) , (11.2)

where the objective function f(IRKI) is simply the volume of the axis-aligned bounding
box in coordinate system K, that is,

f(IRKI) :=

 min
IrOK , Kc∈R3

e(1)e(2)e(3)

subject to: − e

2
⩽ (IRKI)

⊤
Ipi − Kc ⩽ e

2
∀pi ∈ P

 . (11.3)

The vector Kc denotes the center of the bounding box in the coordinate system K
and IRKI ∈ R3×3 is the rotation matrix rotating an inertial coordinate system I to a
coodinate system K expressed in system I and e is the extent of the bounding box (note
that IRKI = KRKI). The objective function f(IRKI) cannot be differentiated at all points
for certain rotations IRKI which align at least one face of the bounding box to be flush with
one edge of the convex hull cHull (P ), and is thus C0. Evaluating the function f(IRKI) is
expensive and can be done in O (k) time. Nevertheless, the optimization algorithm in [35]
applied to the above optimization problem tends to be even faster than our implemented
approach in [139]. An efficient implementation of the presented approach which uses the
proposed genetic optimization method, that is, the Nelder-Mead simplex algorithm in
[128, 89], is left for further work. Applying it to a representation of (11.2) using quater-
nions discussed in chapter 3 is even more interesting. The work in [47] can be considered
for a good reference about the application of the Nelder-Mead algorithm to Riemannian
manifolds such as the special orthogonal group SO(3).
The following combinations of step 3 and 4 for the uniform grid and kd-tree decomposition
have been proven useful in practice:

• Uniform Grid: Fitting a bounding box is an essential step for this decomposition
to improve the uniform distribution of the point cloud. All box fitting methods can
be used in step 3. It is however strongly recommended to use the ApproxMVBB pro-
cedure because it almost always gives superior results than the other two methods.
The ApproxMVBB method, although being more accurate, is significantly slower
than the AABB and PCA approach. The AABB or user-provided OOB method
are only useful for simple simulation setups where the change of the displacement
and orientation of the granular material over time is very low and can be predicted
beforehand.

• Kd-Tree: This decomposition already fulfills the uniform distribution requirement
if the splitting heuristic is chosen adequately, independent of the given transforma-
tion matrix AIK (cf. section 10.3). Therefore, no expensive bounding box fitting
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is required. Since the most expensive method, that is, the ApproxMVBB fitting,
can be adjusted to have a reasonable run time to accuracy ratio, its application in
combination with the kd-tree does not harm at all and is recommended.

11.2 The ApproxMVBB Library
The library ApproxMVBB [139] is a modern C++11/14 library developed in the context of this
thesis whose focus lies in computing an approximation of the oriented minimal volume
bounding box of a given input point cloud in E3 consisting of k points.
The enumerative algorithm for computing a minimal volume bounding box approximation
is based on the work [19] and [99]. The algorithm presented in [19] provides for a value ϵ ∈
(0, 1) an approximation in O (k log k + k/ϵ3) time whose volume is at most (1 + ϵ) times
the optimal volume. The algorithm can be cast into the following five steps:

Algorithm 11.4 (Approximation of a Minimal Volume Bounding Box):

Step 1 : Approximate Diameter: An approximation of the diameter d and its
direction x of the point cloud P is computed as described in [99].

Step 2 : Initial Bounding Box: The points P are projected onto the plane per-
pendicular to the direction x and the diameter y of the projected point
cloud is computed. The initial bounding box A := B(P,x,y, z) is com-
puted from the orthogonal basis vectors x,y, z.

Step 3 : First Optimization Loop: An optimization loop successively improves A
by cycling through all three basis vectors, that is, d ∈ {x,y, z}, and com-
puting the exact optimal bounding box for the projected point cloud in
the direction d. The exact optimal bounding box given a direction d is
denoted as Bopt(P,d). This procedure is demonstrated in algorithm 11.5.

Step 4 : Sample Point Cloud: A representative sample of the point cloud P is
chosen by snapping all points to a uniform grid defined by the initial box A
and keeping only the extreme points.

Step 5 : Exhaustive Grid Search: The optimal bounding box is searched among
all boxes Bopt(P,d) with direction d being collinear to the grid cell positions
in a uniform grid defined by box A and subdivisions g = [gx, gy, gz]

⊤.

The optimal bounding box computation for Bopt(P,d) in step 3 and 5 involves geometric
algorithms such as the convex hull and minimal area rectangle of a two-dimensional point
cloud, where the latter is dependent on the first one. The fundamental building blocks
of such geometric algorithms, such as the computation of a convex hull in two or three
dimensions, are called geometric predicates. A geometric predicate is mostly a two- or
three-way decision algorithm, for example, the routine which determines if a point is left,
right or on a straight line in two dimensions. If the implementation of such geometric
predicates are numerically fragile, geometric algorithms relying on them may provide
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completely wrong results if given bad conditioned input data. Exact arithmetics, that
is, by using higher precision floating point arithmetics in combination with floating-point
filters, can be necessary for geometric algorithms designed to only return approximate
results. An excellent in-depth discussion about geometric robustness can be found in the
report by Shewchuk [173]. The ApproxMVBB library uses the source code of the geometric
predicates provided along with the work in [173]. Special care has been taken to ensure
the implementation in [173] works with extended precision internal floating-point registers
by using the source code in [171]. Also worth mentioning at this point is the famous
Computational Geometry Algorithms Library CGAL [186] , which has the goal of providing
efficient and reliable geometric algorithms in the form of a C++ library. Unfortunately at
time of writing, the bounding volumes module in CGAL [53] is lacking an implementation
of an approximate minimal volume bounding box algorithm in E3.
The library ApproxMVBB provides the following additional features:

• Convex hull of a two-dimensional point cloud (see the graham scan algorithm in [144]).
• Minimal area rectangle of a two-dimensional point cloud (see the rotating calipers

algorithm in [144]).
• Efficient kd-tree (n-dimensional, generic) implementation with sophisticated split-

ting technique which optimizes the quality criterion in (10.18) (cf. section 10.3). It
can also support other data structures than just n-dimensional points.

• Efficient k-nearest neighbor search in a point cloud in En by the help of a kd-tree
(cf. algorithm 11.3).

• Fast statistical outlier removal in a point cloud in En with the help of a k-nearest
neighbor search.

The Point Cloud Library PCL [163] is also worth mentioning. It provides various algorithms
for processing point clouds arising in the field of robotics. Future work includes the
integration of certain parts of the ApproxMVBB library into PCL.
The ApproxMVBB library provides its own kd-tree implementation, although there exists
a wide variety of kd-tree implementations, such as the implementation in the Compu-
tational Geometry Algorithms Library CGAL [186], the Approximate Nearest Neighbor
library ANN [121] or the Fast Library for Approximate Nearest Neighbor Search FLANN
[124, 123, 122]. The reason for this is that our implementation on the one hand provides
support for the domain decomposition by the flexible splitting process during construc-
tion (see section 10.3) and on the other hand provides efficient support for the outlier
removal step discussed in section 11.1. Furthermore, it is difficult to define efficient in-
terfaces to the aforementioned libraries such that existing data structures, such as the
point cloud data structure, can be used directly without the need for inefficient copies.
The library nanoflann [24] is very promising because its fast nearest neighbor queries can
operate directly on user-defined data structures and is considered as a further improve-
ment of the ApproxMVBB library. The kd-tree implementation in the library ApproxMVBB
pursues similar paradigms and its genericness allows the direct use of user-provided data
structures.
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1 def optimizeBB(A,P ,nLoops) :
Data: Input bounding box A of point cloud P in E3, a list dirCache to save

the last three directions and epsilon values ϵv, ϵd ≪ 1.
2 cacheIdx← 0
3 for loops in range(0,nLoops) :
4 d← A.getDirection(0) ▷ get first normalized direction
5 for i in range(0,min(3, nLoops)) : ▷ compare to cache
6 dotp← |d⊤(dirCache.get(i))|
7 if |dotp− 1| ⩽ ϵd : ▷ direction almost the same as in cache
8 d← A.getDirection(1) ▷ choose another direction
9 dirCache.get(cacheIdx)← d ▷ save to cache

10 cacheIdx← (cacheIdx+ 1) mod 3 ▷ move cache write index
11 O ← computeMVBB(P,A,d) ▷ compute Bopt(P,d), 3rd direction of O is d
12 if ϵv · A.volume() < O.volume() < A.volume() :
13 A← O ▷ overwrite OBB with smaller one
14 return A

Algorithm 11.5: Principle of a simple minimal volume bounding box optimization
by successively computing the optimal bounding box Bopt(P,d) of a point cloud P
for different directions d ∈ E3.

The library ApproxMVBB has only a few dependencies, namely, the matrix-vector library
Eigen [68] (at least version 3), the library Meta by Niebler [136] for sophisticated functional
metaprogramming in C++11/14, the library pugixml by Kapoulkine [82] for XML export
functionalities and the programming language python (at least version 3) for visualizing
the examples and tests.



Chapter12
Communication during Parallel
Execution

This chapter is dedicated to the heart of the parallelization of large-scale multi-body
systems, namely the communication among all processes in a process topology T .
The concept and underlying implementation of exchanging information among processes
is dependent on the parallelization technique used for a certain parallel application. If
the parallelization of the simulation uses several threads or processes on a multi-core ar-
chitecture, the exchange of information can be realized by exploiting the shared memory
architecture (SMA) with certain synchronization mechanisms. Synchronization mecha-
nisms, such as locks ,also called mutexes, or semaphores, ensure that processes follow a
certain concurrency policy such that the integrity of the shared memory is guaranteed,
for example, two processes may not write to the same shared data block at the same time.
Similar synchronization paradigms also apply to the parallelization on graphic processing
units (GPUs), which is at time of writting achieved by the CUDA or OpenCL technology.
However, if the application runs on a distributed system, such as a high-performance
cluster, the de facto standard communication technique is the so called Message Pass-
ing Interface MPI [106]. The Message Passing Interface is a standardized and portable
message-passing system to function on a wide variety of parallel computers. The GRS
framework mainly uses MPI as a top-level parallelization technique on a distributed sys-
tem where multiple compute nodes consisting of several processors are connected over
a high-speed network. Additional lower level parallelization techniques, especially GPU
parallelization, can be added to increase the performance even more. Extensive work
on GPU parallelization techniques, related to large-scale rigid body dynamics, has been
conducted in [142, 183, 40]. In the following, we describe the communication during a
parallel multi-body simulation with focus on the parallelization technique MPI.
The communication during a parallel rigid body simulation is directly coupled to the
discretized integration scheme used for the equations of motion. In the case of the ex-
plicit Moreau time-stepping scheme described in section 8.1, the communication can be
divided into two parts: the body communication and the inclusion communication. This
separation is also possible in particular for related explicit time-stepping schemes where
the integration on displacement level is clearly separated from the integration on velocity
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level. The body communication operates on displacement level and is explained in more
detail in the remaining part of this chapter. The second part, the inclusion communi-
cation, is responsible for the communication during the solution process of the contact
problem and is described in chapter 13.

12.1 Sending and Receiving Messages
In the design of MPI’s message passing model, there is the notation of a communicator.
A communicator is a group of processes identified by their id, called rank, which have the
ability to communicate with each other. The foundation of the message passing model is
built upon send and receive operations. The process of sending and receiving messages
with MPI is fully described in the weighty standard [106] or in more educational references
such as [145] and [67]. To familiarize the reader to the MPI functionality, the resource [84]
is highly recommended. We will in the following only describe some of the concepts of the
actual send and receive implementations of the ProcessCommunicator[30], which provides
a layer around several MPI functionalities. MPI’s send and receive operations are classified
into collective and non-collective routines. We will briefly elaborate on these two types in
the following.
Non-collective MPI routines are point-to-point communications, where for example a
process Pi sends a message to a process Pj. Each sent message is identified by a tag,
that is, an integral value. Some process may submit a send operation with the blocking
function call MPI_Send and another receiving process posts its matching receive operation
with a blocking function call MPI_Recv. A matching receive means that in order to suc-
cessfully receive the message, the sender rank, the message tag, the message type and the
used communicator specified for the receive call needs to match with the specified values
for the send call (exceptions apply, see [106]). A blocking send operation will not return
till the message data has been stored away such that the sender can again freely access
and overwrite the sent data. A blocking point-to-point send operation can be used in stan-
dard-, synchronous-, buffered- or ready-mode, that is, MPI_Send, MPI_Ssend, MPI_Bsend
and MPI_Rsend, respectively. A blocking send operation in standard mode, that is, routine
MPI_Send, is a non-local routine: successful completion may depend on an occurrence of
a matching receive posted on another process. However, a blocking send operation in
standard mode may return early if the message has been copied into an internal send
buffer even if no matching receive has been posted. Internal buffering is dependent on the
MPI implementation and not directly specified by the MPI standard. A synchronous send
operation, that is, routine MPI_Ssend, is always non-local and can only successfully com-
plete if a matching receive on the receiving process has been posted. For the rather exotic
ready-mode, the reader is referred to [106]. The point-to-point communication functions
MPI_Send and MPI_Recv also have a non-blocking, also called asynchronous, counterpart,
that is, routine MPI_Isend and MPI_Irecv, which when called will return as soon as pos-
sible to allow for other computations while the sending or receiving operations are being
processed in the background by light-weight threads. Of course the user should not access
or modify the sent message data until the non-blocking operation MPI_Isend has finished.
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Process P1

1 MPI_Send(m1, P2) ▷ may deadlock!
2 MPI_Recv(m2, P2)

⇓

1 MPI_Isend(m2,P2) ▷ non-block. send
2 MPI_Irecv(m1,P2) ▷ non-block. send
3 MPI_Waitall() ▷ wait for completion

Process P2

1 MPI_Send(m2,P1)
2 MPI_Recv(m1,P1)

⇓

1 MPI_Isend(m2,P1) ▷ non-block. send
2 MPI_Irecv(m1,P1) ▷ non-block. send
3 MPI_Waitall() ▷ wait for completion

Algorithm 12.0: An unsafe MPI program at the top with its safe counterpart
at the bottom. If the MPI implementation dores not use internal buffering or the
internal buffer is to small for receiving message m1 on process P2, the send operation
on process P1 will never return and thus the application deadlocks.

This can be achieved by waiting for completion by using the routine MPI_Wait.
As mentioned above, an MPI conform implementation may use internal buffers for send
routines in standard mode. If an MPI application relies on internal buffering, it is called
unsafe. An unsafe MPI application may run correctly if the MPI implementation uses
internal buffering but may eventually deadlock if the implementation does not so. If a
deadlock occurs or not is not Turing computable due to the Halting problem1 and thus
it is crucial to prevent deadlocks from the beginning. This can be done by writing safe
MPI applications in the first place and by using deadlock-free parallel synchronization
paradigms as discussed in [100, 66]. An example of a safe versus unsafe MPI program is
shown in algorithm 12.0. The safe and deadlock-free implementation in algorithm 12.0
uses the non-blocking function calls MPI_Isend and MPI_Irecv in combination with a
blocking call to MPI_Waitall to wait for the termination of the send and receive opera-
tions. A collective MPI routine, as the name suggests, is a communication routine in
which all processes of a given communicator are involved. A collective routine combines
sending and receiving operations into a high-level communication function. A common
collective function is the broadcast function MPI_Bcast which distributes a message from
a root process to all other processes in the communicator. Other functions include the
gathering and scattering of information on and to a set of processes, which is achieved by
the routines MPI_Gather and MPI_Scatter, respectively. Figure 12.1 visualizes these rou-
tines together with routine MPI_Allgather. The MPI standard defines several message
data types, such as MPI_INT, MPI_DOUBLE, MPI_BYTE etc., to be used with the send and
receive routines. MPI also provides functionalities to define aggregates of these data types
by routines such as MPI_Type_contignuous or MPI_Type_struct, for example. Sending
a message at the user-level in general needs one copy to encode the message data, encom-
passing data from different data structures in an application, into a user-defined buffer
of some MPI data type, such as an aggregate of types MPI_INT and MPI_DOUBLE. Re-
ceiving a message might even take two copies: one to copy the received data into the
user-provided buffer (e.g., MPI_BYTE) and another copy to decode the message back into
the data structures used in the application. If a message of arbitrary length needs to
1 See Wikipedia: https://en.wikipedia.org/wiki/Halting_problem

https://en.wikipedia.org/wiki/Halting_problem
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Figure 12.1: Behavior of four collective MPI routines for 3 processes P1, P2 and P3

using messages a, b and c, respectively.

be sent multiple times and the shape of the data stays the same, then the skeleton &
content approach implemented in [26] is beneficial. Sending and receiving dynamic-sized
messages, where the shape and content of the message highly varies, is realized with a
serialization & deserialization approach in the GRS framework. Serialization is the process
of translating data structures into a continuous data buffer, for example a memory buffer
or a file, such that it can be transmitted over the network. Deserialization is the opposite
process, namely the reconstruction of the data structure from the continuous data buf-
fer. Serialization and deserialization of messages in the GRS framework is implemented by
using the Boost library [26, 167]. The implementation in MPIMessages[31] encompasses
serialization/deserialization wrappers for all messages sent during the execution of the
application GRSFSimMPI. The major advantage of serializing a message into a continuous
memory block is to be able to send messages of arbitrary size and shape over the network.
The serialization implementation in the Boost C++ library is extremely versatile and also
deals with byte ordering, called endianness. At the time of writing, byte ordering is not
considered for the serialization and deserialization as the parallel application GRSFSimMPI
is assumed to run on a cluster with a homogeneous architecture. The next section covers
the aforementioned body communication in detail.

12.2 Body Communication
As mentioned in section 10.1, a body Bi is assigned to its belonging process domain ac-
cording to its center of gravity rSi

. During the simulation of a multi-body system, rigid
bodies may change their belonging process domain multiple times. Therefore, during the
whole simulation, all processes need to maintain consistent information on which bodies
they do or do not own and on which bodies do or do not overlap their process domain.
This is crucial for a correct collisions detection and to correctly solve the corresponding
contact problem in a later step. The body communicator of a process Pi in BodyCommu-
nicator[28] is responsible for maintaining this information by communicating with its
neighborhood Ni, that is, all adjacent neighbors of process Pi. The communication for
the case of Moreau’s time-stepping scheme is performed by the BodyCommunicator[28]

after the first half-time step in step 1 and before the collision detection in step 2 in
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algorithm (8.1).
The consistency of information among all processes is of tremendous importance since
missing or wrong information quickly leads to wrong numerical computations. Consis-
tency at the bottom-level includes the geometric correctness of the required routines be-
longsBodyToProcess and checkOverlapLocal described in section 10.1. Situations such
as bodies suddenly belonging to two process domains or falsely removed bodies in processes
should not occur in all circumstances. Achieving consistency of all exchanged information
therefore requires the implementation of a sophisticated book-keeping procedure and the
design of corresponding data structures. The following explanations cover some of the
combinatoric issues involved in the book-keeping procedure in the body communication
part and should support the understanding of the implementation in BodyCommunica-
tor[28]. The body communication was greatly influenced by the extensive work [75] for
the rigid body engine pe [74] developed at the university of Erlangen. Differences to their
implementation will be pointed out in the remaining part of this section.
Each process Pi maintains a set of local bodies BPi,loc and a set of remote bodies BPi,rem. A
body Bi is said to be local, that is, Bi ∈ BPi,loc), if it is owned by process Pi, meaning that
its center of gravity rSi

is contained in the process domain Pi. A remote body Bi ∈ BPi,rem

is the exact opposite, namely, it is not owned by process Pi and its geometry overlaps
the process domain Pi. Only local bodies, that is, bodies in the set BPi,loc, take part
in the time-stepping procedure and are updated exclusively by process Pi. In contrary,
all remote bodies, that is, bodies in the set BPi,rem, are updated exclusively by received
messages during the communication stage from other neighboring processes owning these
bodies. The reader should note that

∪p
i=1 BPi,loc yields the set containing all simulated

bodies by the unique owner requirement in section 10.1. In this way, the task of a body
communicator in process Pi at time tk is to send and receive messages from and to the
neighboring processes Pn ∈ Ni to guarantee that its own set of remote bodies BPi,rem

and the sets BPn,rem of all neighbors Pn ∈ Ni are consistent and their contained body
data is up-to-date. A message sent by process Pi to a neighbor Pn ∈ Ni contains update
information for local bodies in BPi,loc which are classified as remote bodies in the neighbor
process Pn. Vice versa, a message received by process Pi sent from a neighbor Pn ∈ Ni

contains update information for remote bodies in the set BPi,rem of process Pi, which are
owned by neighbor process Pn and thus in its set BPn,loc.
One single body communication message sent by the BodyCommunicator[28] of process Pi

to a neighbor Pn contains basically a number of sub-messages, where each sub-message
corresponds to one body and is either a body notification, a body update or a body removal
message. These three types of sub-messages encoded in a single body communication
message sent at time tk are explained briefly in the following:

• Notification Message: If a body Bi, owned by process Pi at time tk, starts over-
lapping a neighbor process Pn at time tk, process Pi sends a notification message to
process Pn.

• Update Message: If a body Bi, owned by process Pi at time tk, is at time tk
overlapping a neighbor process Pn which has already been informed by a notification
message about body Bi at the previous communication time point tk−1, process Pi



116 12 Communication during Parallel Execution

sends an update message to process Pn.
• Removal Message: If a body Bi, owned by process Pi at time tk, becomes a non-

remote body in neighbor process Pn at time tk, process Pi sends a removal message
to process Pn.

For a better understanding of the communication procedure, figure 12.2 visualizes all pos-
sible communication patterns between two processes P1 and P2 demonstrated with only
one single body Bi at an arbitrary time tk. Figure 12.2 shows three possible situations
for sending a notification message, denoted by A(tk), B(tk) and C(tk), three possible
situations for sending an update message, denoted by D(tk), E(tk) and F (tk), and one
possible situation for sending a removal message, denoted by G(tk). The arrows in fig-
ure 12.2 visualize the fictitious displacement of body Bi from time tk−1 to time tk. The
description at the bottom of all seven situations in figure 12.2 describes the classification
of body Bi in process P1 before and after sending and in process P2 before and after
receiving the message. In situation F (tk) in figure 12.2, for example, process P1 sends
an update message for body Bi to process P2 since body Bi was already overlapping at
time tk−1 and is thus classified as a remote body in process P2 and classified as a local
body in process P1. After sending and receiving the message, process P1 needs to delete
body Bi from its local set BP1,loc because body Bi is no more overlapping process P1 and
is solely owned by process P2 which consequently moves body Bi from its set of remote
bodies BP2,rem to the its set of local bodies BP2,loc. All other situations in figure 12.2 can
be understood analogously.
The transition diagram shown in figure 12.3 for all sending states of process P1 can
be obtained by tracking the communication states A(tk) to G(tk) of body Bi over a
time interval. All black transitions in figure 12.3 are time step updates where time tk
is updated by the new time tk+1. Note that the sending state transitions in figure 12.3
applies to all local bodies in any process and are used for the implementation of the
message NMessageWrapperBodies[32] used by the BodyCommunicator[28].
The communication algorithm for exchanging information among processes in the neigh-
borhood Ni of a process Pi is demonstrated in algorithm 12.2 and is based on the work [75].
The reason for explicitly mentioning algorithm 12.2, is that a correct deadlock-free imple-
mentation of such an information exchange is not simple for users being new to MPI. The
algorithm 12.2 is generic and safe in MPI terminology and thus does not rely on buffering.
Not relying on buffering is achieved in algorithm 12.2 by first posting all send operations
(line 2) of all messages by the non-blocking call MPI_Isend. After that, the algorithm di-
rectly proceeds to receiving all message by a polling loop over all processes from which a
message has not yet been received (line 9). The function MPI_Iprobe checks if a message
with tag tag from process with rank n in communicator comm is available. If so, the size
of the message is determined (line 13) and the receiving archive rar is resized (line 14)
and prepared to receive the message from rank n (line 15). The message is then received
and written into the binary archive rar by the standard blocking function call MPI_Recv
in line 17. The binary archive rar is then deserialized in line 18. After all messages have
been received, all send operations may still be incomplete and need to be waited for by
using the function MPI_Waitall in line 21, which when complete marks the end of the
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Figure 12.2: A visualization of all communication types between process P1 (black
rectangular domain) and P2 (gray rectangular domain) caused by the displacement
of a body Bi from time tk−1 to time tk. In the situations A,B and C, a notification
message is sent to process P2. In the situations D,E and F , an update message is
sent to process P2. The removal message is denoted in situation G. The description
below each situation denotes the change in the classification of body Bi before and
after sending/receiving the message.
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Notification Update

Removal

tk ← tk+1tk ← tk+1

tk ← tk+1

start A(tk)

B(tk)

C(tk)

D(tk)

E(tk)

F (tk)

G(tk)

done

tk ← tk+1

Figure 12.3: Visualization of all possible transitions between the different commu-
nication states shown in figure 12.2 for a process P1 and a body Bi. The state start
marks the situation at time tk where body Bi is solely contained in process P1 and
does not overlap any process. The state done marks the termination of sending sub-
message for Bi to P2. All black transitions tk ← tk+1 update the time tk to the new
time tk+1.

information exchange. Its worth noting that the message object msg in algorithm 12.2 is
indentical to NMessageWrapperBodies[32] and that the MPI datatype of the archives sar
and rar is MPI_BYTE.
Algorithm 12.2 builds the central part of the communication in the GRS framework and is
used not only in the BodyCommunicator[28], but also in the InclusionCommunicator[29].
The main difference between the rigid body engine pe [74] is that the GRS framework does
not use any kind of overlap region as presented in [75] where the separating boundary
faces between processes are thickened up by a value dx. The pe rigid body engine starts
sending notification or update messages to a neighbor Pj for a body Bk owned by Pi

when Bk enters the overlap region between Pi and Pj. Such an overlap region introduces
an additional vague parameter dx whose value needs to be chosen in reasonable bounds
in accordance to the given extents of the simulated rigid body geometries. However, it is
sufficient to consider only the sole boundary faces between a process and its neighbors,
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1 def exchangeInformationAsync(msg,tag,comm) :
Data: A list sArchs of binary archives for all sent neighbor messages. A set Ni

of all neighbor processes of process Pi with rank i. A binary archive rar
for the received messages.

2 for Pn in Ni :
3 sar ← sArchs .getArchive(n)
4 msg .setRank(n) ▷ prepare the message to be serialized for process Pn

5 sar ≪ msg ▷ serialize message msg into the binary archive sar
6 MPI_Isend(sar .data(), sar .size(), sar .mpiDataType(),
7 i, tag, comm, sar .request) ▷ send binary archive to process Pn

8 pL← [ Pn for Pn in Ni ]
9 while ¬pL.empty() :

10 for Pn in pL :
11 flag , status ← MPI_Iprobe(n, tag , comm) ▷ status of message from Pn.
12 if flag :
13 size ← MPI_Get_count(status, rar .mpiDataType())
14 rar .resize(size) ▷ resize the archive to receive the binary data
15 msg .setRank(status .source()) ▷ prepare deserialization for Pn

16 MPI_Recv(rar .data(),rar .size(),rar .mpiDataType(),
17 status .source, tag , comm)
18 rar ≫ msg ▷ deserialize the binary archive rar by msg
19 pL.remove(Pi)
20 requests ← [ sar .request for sar in sArchs ] ▷ put all send requests into a list
21 MPI_Waitall(requests .size(), requests , . . . ) ▷ wait for all send operations

Algorithm 12.2: Sending and receiving a message msg with tag tag to and from
the neighborhood Ni of process Pi in a given communicator comm.

exactly as shown and explained in this section, to successfully implement a correct body
communication. Therefore, an additional overlap region appeared to be impracticable
and has not been used in the GRS framework.





Chapter13
The Mass Splitting Method

In this chapter, we review the mass-splitting procedure to solve the non-smooth contact
problem of a domain-decomposed assembly of rigid bodies. The mass-splitting procedure
is independent of the used process topology and any domain decomposition approach
in E3 as the ones described in chapter 10 can be used.
In each time step of a rigid body simulation, the collision detection results in a contact
graph G in E3 which involves all contacting bodies Bi. The spatial domain of a contact
graph G does generally overlap the domains of the process topology T . Splitting a body
overlapping several process domains at a fixed time t into multiple virtual geometrically
identical copies with a smaller mass than the original body is the simple yet powerful key
component of the mass-splitting procedure. Additionally, bilateral constraint forces then
literally glue all copies together such that the coalesced assembly of all virtual bodies still
represents the original body. In other words, bilateral constraints enforce that all copies
have the same displacement and velocity as the original body. This mass-splitting results
in replacing all domain overlapping edges on the split body in G with several bilateral
constraint nodes. This is convenient for dividing G into distinct subgraphs Gk within
each process domain of the process topology T which is essential to efficiently compute
the solution of the inclusion problem in (8.1).
The remainder of this chapter explains the consequences of the mass-splitting procedure
more mathematically by often referring to figure 13.1 which visualizes a contact graph
of a rigid body assembly in E2 where the process topology T consists of 3 rectangular
process domains.

13.1 Splitting a Domain-Overlapping Body
The equations of motion for one rigid body Bi with generalized displacement qBi

∈ Rnq

and velocity uBi
∈ Rnu is given by the kinetic and kinematic part in equations (5.42)
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and (5.43). Together with set-valued contact laws, this yields

q̇Bi
= F(qBi

, t) uBi
+ β(qBi

, t) ,

MBi
u̇Bi
− hBi

(qBi
,uBi

, t)−
∑

k∈CBi

Wk(qBi
, t)λk = 0 ,

γk = W⊤
k uBi

+ χk

(γk,λk) ∈ Sk

}
∀k ∈ CBi

⊆ I(q, t) .

(13.1)

(13.2)

The index set CBi
in (13.2) refers to all closed contacts k on body Bi, which is a subset

of all closed contacts I(q, t) in the mechanical system. Without loss of generality, it is
assumed that body Bi overlaps p process domains {P1, . . . , Pp} at time t and belongs to
domain P1.
At time t, body Bi is now split into p virtual copies {V1, . . . , Vp}, each with the exact
same geometry such that each domain Pj, which body Bi overlaps, has its own virtual
copy Vj. Body Bi is then said to have a multiplicity factor of p. Body Bi in figure 13.1,
for example, belongs to domain P1 and overlaps the neighbor process domains P1 and P2

and therefore has multiplicity factor 3.
Each virtual copy Vj has the same displacement as the orginal body, that is,
qVj

= qBi
∀j ∈ [1 ; p], but different velocity uVi

, different constant mass matrix MVj
∈

Rnu×nu and different nonlinear term hVj
(qBi

,uVi
) ∈ Rnu , where the latter two are not yet

known and conditions on these quantities are developed in the following.
The next step is to find a unique distribution of all contacts k on the original body Bi

onto the p virtual copies {V1, . . . , Vp}. This choice is arbitrary and from a collision solving
perspective, it makes most sense to assign a contact k to the copy Vj in process domain Pj

where it has been detected, such that CBi
=
∪p

j=0CVj
. In figure 13.1, for example, body V1

contains the set of all contacts detected in domain P1, that is, CV1 = {C1, C2}.
Consequently, each virtual copy Vj has its own equation of motion written as

MVj
u̇Vj
− hVj

(qBi
,uVj

, t)−
∑
k∈CVj

Wk(qBi
, t)λk = 0 ∀j ∈ [1 ; p] . (13.3)

To make the description of the new mechanical system including the p virtual bodies
consistent with the original equation of motion (13.1), bilateral constraints on velocity
level are introduced to enforce the equality of velocity of all virtual rigid bodies at time t,
that is,

sm ∈ Rnu ∧ γBi,m
(uVm ,uVn) = uVm − uVn

!
= 0

=
[
I −I

]︸ ︷︷ ︸
Wm
⊤

[
uVm

uVn

]
, ∀m ∈ [1 ; p− 1] : n = m+ 1, (13.4)

where the vector sm represents the bilateral force of constraint m. All linearly independent
force directions Wm ∈ R2nu×nu are assembled as W :=

[
W1, . . . ,Wp−1

]
, the same for the

relative velocities, that is, γBi
=
[
γBi,1

⊤, . . . ,γBi,p−1
⊤]⊤. If another bilateral constraint is
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Figure 13.1: Visualization of the mass-splitting procedure. Left: The process
topology consists of three process domains P1, P2 and P3 over which several bodies
are spread and form a contact problem with 5 contacts C1, C2, . . . , C5 on the body of
interest Bi. Right: The same problem is shown but with three virtual bodies V1, V2

and V3 with the same geometry and position but different velocities. Two bilateral
constraints (long gray bars) form one split-node which enforces the equality of velocity
among all virtual bodies. The contact graph is nicely split into subgraphs for each
process domain.

included such that uV1 − uVp = 0, then the directions {W1, . . . ,Wp−1,Wp} will become
linearly dependent. In figure 13.1, that additional redundant constraint is shown as a long
dashed gray bar. The combined equation of motion of the p virtual bodies Vj expressed
with the principle of virtual power in (5.63) yields

δP = δu⊤
(
M u̇− h(q,u, t)− fC(q, t)−Ws

)
= 0 ∀δu , (13.5)

γBi
∈ NR(p−1)nu (s) , (13.6)

γk = W⊤
k uVl

+ χk

(γk,λk) ∈ Sk

}
∀k ∈ CVl

∀l ∈ [1 ; p], (13.7)

where the following definitions are used throughout the remainder of this chapter:

q :=

qBi

...
qBi

 , u :=

uV1

...
uVp

 , s :=

 s1
...

sp−1

 , M :=

MV1 0 0
0 MV2

0
0 0 MVp


 ,

h(q,u, t) :=

hV1(qBi
,uV1 , t)
...

hVp(qBi
,uVp , t)

 , fC(q, t) :=


∑

k∈CV1
Wk(qBi

, t)λk

...∑
k∈CVp

Wk(qBi
, t)λk

 .

(13.8)
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The p−1 linearly independent constraints in (13.4) with constraint forces s eliminate p−1
velocities out of {uV1 , . . . ,uVp}. This is a well known reduction step to a new set of
minimal velocities with respect to the perfect constraints in (13.4) consisting only of the
velocity uBi

and the transformation yields

u =
[
I · · · I

]⊤uBi
= QuBi

, ⇒ δu = QδuBi
. (13.9)

Transforming the variational formulation in (13.5) with (13.9) yields for all δuBi

δuBi

⊤

[
p∑

l=1

MVl
u̇Bi
−

p∑
l=1

hVl
(qBi

,uBi
, t)−

p∑
l=1

∑
k∈CVl︸ ︷︷ ︸∑

k∈CBi

Wk(qBi
, t)λk−Q⊤W︸ ︷︷ ︸

=0

s

]
= 0 . (13.10)

The evaluation of the variational formulation (13.10) and the equation of motions in (13.1)
are identical if the following conditions are fulfilled:

MBi

!
=

p∑
l=1

MVl
, hBi

(qBi
,uBi

, t)
!
=

p∑
l=1

hVl
(qBi

,uBi
, t) . (13.11)

This shows that the mass-splitting is completely arbitrary as long as the above simple
conditions are fulfilled. In the following, we choose a simple scalar convex combination of
the original terms given as

MVl
:= αlMBi

, hVl
(qBi

,uVl
, t) := αlhBi

(qBi
,uVl

, t)

with:
p∑

l=1

αl = 1, αl ⩾ 0 ∀l ∈ [1 ; p] .
(13.12)

As can be seen in figure 13.1, the mass-splitting procedure results in 3 bilateral constraints
which act as in-between nodes to couple all local contact graphs in each process domain
together. The collection of all bilateral constraints belonging to one split body Bi in
the contact graph is called split-node. The next section explains the strategy to solve a
split-node analytically.

13.2 Direct Iterative Solution of a Split-Node
In the following, we are interested how the velocity vBi

is determined from all virtual body
velocities vVj

once the constraint (13.4) is enforced and all other contact forces are known.
The question arises if the procedure is as simple as averaging all virtual velocities, that
is, vBi

= 1
p

∑p
i=1 vVi

? To forestall the derivation in the next section, it turns out that,
at least for the simplest splitting choice, averaging the velocities is the intuitive correct
solution. In the following, the analytical solution for one split-node which belongs to an
arbitrary body Bi is described within the framework of Moreau’s time-stepping method
in algorithm 8.1.
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As mentioned before, a split-node for a body Bi with multiplicity p consists of p − 1
bilateral constraints written in the form:

γBi
= W⊤u ∈ NR(p−1)nu (s) ⇔ γBi

= 0 ∧ s ∈ R(p−1)nu . (13.13)
During a time-stepping procedure at time t, all constructed split-nodes are used in the
inclusion solving step together with all other contact nodes from detected collisions. For
Moreau’s time-stepping scheme explained in section 8.1, the bilateral constraint in (13.13)
is formulated at the end time tE which results in

γE
Bi

= W⊤uE = W⊤(uS +∆tM
−1h+M

−1fC +M
−1WS

)
= 0, (13.14)

where the terms h and fC are evaluated at the midpoint tM with qM and uS, the vector S
denotes the bilateral percussion corresponding to the generalized force s and fC(q

M , t)
is identical to definition (13.8) except that the contact forces λk are now understood as
percussions Λk.
If the iterative velocity SOR Prox scheme in (8.37) and (8.38) is applied to the inclu-
sion (13.13) then (13.14) becomes

γE,s
Bi

= W⊤uE,s = 0 (13.15)

with:
[
uE,s := uE,s

C +M
−1WSη,

uE,s
C := uS +∆tM

−1h(qM ,uS, tM) +M
−1fηC(q

M , tM) ,
(13.16)

where η and s denote the percussion and velocity update counters, respectively (see (8.37)
and (8.38)). The end time velocity uE,s

Vj ,C
at step s of body Vj contains only the percussive

contribution ∑
k∈CVj

Wk(q
M
Bi
, tM)Λη

k (13.17)

of the contacts in CVj
⊆ Gj on body Vj, which belongs to process domain Pj.

Supposed that uE,s
C is known at iteration (η, s) of the velocity SOR Prox iteration in (8.37)

and (8.38), equation (13.15) suggests to directly solve for the percussion Sη, that is,

Sη = −G−1W⊤uE,s
C , G := W⊤M

−1W ∈ R(p−1)nu×(p−1)nu , G⊤ = G (13.18)
and substituting back into (13.15) to get

uE,s =
(
I−M

−1WG
−1W⊤

)
uE,s
C . (13.19)

Equation (13.19) is meaningful since the symmetric Delassus matrix G is positive definite
and thus invertible since W only contains linearly independent columns. The matrix G
and W can be written as

W =

I 0 0
−I I
0 −I

0

I
0 0 −I



 ∈ Rpnu×(p−1)nu , (13.20)
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G =

MV1+MV2 −MV2 0 0
−MV2 MV2+MV3 −MV3

0 0
−MVp−1

0 0 −MVp−1 MVp−1+MVp


 . (13.21)

The matrix G in (13.21) is a tridiagonal symmetric block matrix which depends on the
chosen mass matrices of the virtual bodies. An analytical inverse of a general tridiagonal
symmetric block matrix exists, nevertheless its derivation is mathematically very intricate
and can be found in [107]. Applying the result in (13.18) naively results in computing
the inverse for each splitting configuration and multiplicity p which is not efficient from
a computational perspective. However, it is possible to simplify the above structure of G
a great deal, if (13.12) is considered. By doing so, the matrix G then only depends on
the splitting factors {α1, . . . , αp} and on the mass matrix MBi

. By the choice in (13.12),
it is simple to factor out a diagonal matrix α ∈ Rpnu×pnu consisting of all splitting ratios
from the mass matrix M as

M = αMp ⇒ M
−1 = α

−1Mp
−1 (13.22)

with: α := diag (α1I, . . . , αpI) , Mp := diag (MBi
, . . . ,MBi

) ∈ Rpnu×pnu , (13.23)

where the latter equality in (13.22) follows from M and Mp being symmetric. The bilateral
Delassus operator G becomes

G = W⊤M
−1W = W⊤α

−1Mp
−1W = LMp−1

−1 (13.24)
with: L := W⊤α

−1W ∈ R(p−1)nu×(p−1)nu . (13.25)

The last equality in (13.24) follows from the property1 Mp
−1W = WMp−1

−1, where Mp−1
only contains p− 1 diagonal block entries of value MBi

.
The inverse Delassus matrix G−1 is now obtained as

G
−1 = Mp−1L

−1 = L
−1Mp−1 , (13.26)

where the latter is true due to the symmetry of G. The velocity update in (13.19)
simplifies to

uE,s =
(
I−M

−1WMp−1L
−1W⊤

)
uE,s
C (13.27)

=
(
I−α

−1Mp
−1WMp−1L

−1W⊤
)
uE,s
C (13.28)

=
(
I−α

−1WL
−1W⊤

)
uE,s
C , (13.29)

where we used again the property WMp−1 = MpW.
1 This result can be checked by multiplying out the left- and right-hand side or by the idea of double
contracting the second and forth slot of the 4th order tensor Mp

−1 = δijm
l
kei⊗ ϵj ⊗el⊗ ϵk with the first

and third slot of the tensor W = sijδ
l
kei ⊗ ϵj ⊗ el ⊗ ϵk, where ml

k, sij ∈ R.
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Result (13.26) is of special interest since the real effort of computing G−1 lies merely in com-
puting the inverse L−1 which is only dependent on the chosen splitting factors {α1, . . . , αp}.
The matrix L is still a tridiagonal block matrix in the form:

L =

( 1
α1

+ 1
α2
)I − 1

α2
I 0 0

− 1
α2
I ( 1

α2
+ 1

α3
)I − 1

α3
I

0 0

− 1
αp−1

I

0 0 − 1
αp−1

I ( 1
αp−1

+ 1
αp
)I



 , I ∈ Rnu×nu . (13.30)

The values for the symmetric inverse L−1 can be found with a symbolic algebra program or
by applying the analytical solution for a simple tridiagonal matrix since the sub-matrices I
can be neglected. The inverse L−1 yields

L
−1 =

l1,1I l1,2I l1,p−1I

l2,1I

lp−2,p−1I

lp−1,1I lp−1,p−2I lp−1,p−1I


 , (13.31)

where the scalars lm,n are given as

lm,n :=

{
(α1 + · · ·+ αm)(αn+1 + · · ·+ αp) if n ⩾ m ∈ [1; p− 1]

ln,m if n < m ∈ [1; p− 1]
(13.32)

The inverse L−1 is analogue to the inverse obtained for the example of a p-linear ball chain
in chapter 8 in [5].
The non-symmetric term A := I−α−1WL−1W⊤ ∈ Rpnu×pnu in (13.29) has the same block
matrix structure as L−1 in (13.31) but with different indices denoted as am,n. The scalar
multipliers am,n for the identity sub-matrices I in A yield

am,n := δm,n −
1

αm

(
(lm,n − lm,n−1)− (lm−1,n − lm−1,n−1)

)
, ∀m,n ∈ [1 ; p]. (13.33)

To make (13.33) a proper definition, we define lm,p = 0, ∀m ⩽ p ⇒ lp,m = 0 and note
that l0,n = 0⇒ ln,0 = 0. Furthermore from (13.32) follows

lm,n − lm,n−1 = −αn(α1 + · · ·+ αm) ∀n ⩾ m+ 1 (13.34)
ln,m − ln−1,m = +αn(αm+1 + · · ·+ αp) ∀n ⩽ m . (13.35)

Equation (13.33) needs to be evaluated for three cases: the diagonal part, the strictly
lower and strictly upper diagonal part:

• Strictly upper diagonal part with n ⩾ m+ 1 and m ∈ [1 ; p− 1]:

am,n
(13.33,13.34)

= − 1

αm

(
−αn(α1 + · · ·+ αm) + αn(α1 + · · ·+ αm−1)

)
(13.36)

= − 1

αm

(
−αnαm

)
= αn . (13.37)
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• Strictly lower diagonal part with n ⩽ m−1 and m ∈ [2 ; p]: in this case, the indices
of all l-values in (13.33) need to be switched when applying (13.32), that is,

am,n
(13.33,13.32)

= − 1

αm

(
(ln,m − ln−1,m)− (ln,m−1 − ln−1,m−1)

)
(13.38)

(13.35)
= − 1

αm

(
−αnαm

)
= αn . (13.39)

• Diagonal part with n = m and m ∈ [1 ; p]: switching the second l-value in (13.33)
yields

am,m
(13.33,13.32)

= 1− 1

αm

(
(lm,m − lm−1,m)− (lm−1,m − lm−1,m−1)

)
(13.40)

(13.35,13.34)
= 1− 1

αm

(
αm(α1 + · · ·+ αm−1 + αm+1 + · · ·+ αp)

)
(13.41)

= αm . (13.42)

The velocity update in (13.29) drastically simplifies to

uE,s = A uE,s
C , uE,s

V1

...

uE,s
Vp

 =

 α1I · · · αpI
...

...
...

α1I · · · αpI


 uE,s

V1,C
...

uE,s
Vp,C

 .
(13.43)

The above states that each end velocity update uE,s
V1

is the affine combination of all virtual
body velocities uE,s

Vj ,C
with the splitting factors αj ∀j ∈ [1; p]. If the splitting factors are

chosen uniformly, that is, αj = 1/p ∀j ∈ [1; p], the intuitive averaging of all velocities
suspected at the beginning of this chapter immediately follows from (13.43).
The mass-splitting method is not restricted to certain set-valued force laws between bod-
ies. For the sake of simplicity, set-valued contact laws have been used in this section
to explain the mechanism of this method. However, other constraints such as bilateral
constraints, that is, translational or rotational joints between bodies, or other set-valued
force laws can be added. This only results in additional nodes in the contact graph and
does not change the mathematical derivation explained in this section.

13.3 Parallel Considerations
Supposed that the total contact problem at a time instance t is solved iteratively in parallel
by all processes. Then in each global iteration, a process Pi computes one velocity SOR
Prox iteration over the nodes in its local contact graph Gi, that includes contacts on
virtual bodies as well, and afterwards collaborates with all other processes to compute
an update of all currently existing split-nodes by (13.43). In figure 13.1, for example,
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this would mean that process P1, P2 and P3 iterate first over their local contact nodes,
adding up to 3, 2 and 4 contact nodes, respectively, and afterwards collaborate to compute
one iteration over the single split-node (consisting of two bilateral constraints) to update
velocities of the virtual bodies V1, V2 and V3 by (13.43).
Collaboration always involves communication among processes and the two common
methods for computing the update of a split-node are presented in the following:

• Gather on Master Process: One process acts as the master process for one
split-node corresponding to one split body Bi and is responsible for evaluating the
update (13.43). For this approach, all processes associated with this split-node need
to send their virtual body velocities to the master process which then computes the
bilateral constraint update (13.43). In figure 13.1, for example, process P1 takes
the role of the master because it also owns body Bi since its center of gravity is
contained in its domain. The master process P1 receives uE,s

V2,C
from process P2

and uE,s
V3,C

from P3 among other data to successfully compute the update (13.43). Of
course, the master process is also responsible to scatter the result of (13.43) back
to the processes P2 and P3 for the start of a next iteration over the contact graph.
This totals up to 2(p− 1) sent messages for a split-node with multiplicity p.

• Gather on All Processes: All processes send their virtual body velocity uE,s
Vi,C

to all other associated processes for a particular split-node. After receiving, all
associated processes compute the update (13.43). This totals up to p(p − 1) sent
messages for a split-node with multiplicity p. Since this is quadratic in p, the master
method is the preferred solution.

The last question which remains is how to communicate the multiplicity factor of a split
body. Since each body Bi is managed by a master process, for example Pm, determined
by is center of gravity, a simple way to achieve this is that each neighbor process Pk

maintaining a remote body of Bi informs the master process about the external forces,
contact forces and possible other constraints on the remote body Bi determined in its
process domain. It is important to note that a remote body Bi in some neighbor process Pk

might be free of any interaction, and therefore Pk does not need to be involved in a
potential split of body Bi. The master process determines if a body split is necessary and
communicates all split-node multiplicities to the involved processes which then prepared
for the local contact graph iteration. This means each process, including the master
process, splits the mass MBi

and nonlinear terms hBi
of body Bi according to (13.12).

The procedure of solving the contact problem (8.8) in parallel on k processes by using
the mass-splitting procedure is summarized in algorithm 13.1 and implemented in Inclu-
sionSolverMPI[12].
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1 parfor process Pi ∈ {P1, . . . , Pk} :
2 Determine all domain overlapping bodies in domain Pi.
3 nbcomm among processes {P1, . . . , Pk} :
4 Determine the multiplicity factor p of all split bodies by their master process.
5 parfor process Pi ∈ {P1, . . . , Pk} :
6 Split remote and local domain overlapping bodies in Pi according to their

multiplicity (cf. (13.12)).
7 for each global contact graph iteration η :
8 parfor process Pi ∈ {P1, . . . , Pk} :
9 Iterate over the local contact graph Gi and perform a velocity SOR Prox

update.
10 nbcomm among processes {P1, . . . , Pk} :
11 Collaborate to solve all split-nodes on their corresponding master

processes.

Algorithm 13.1: Basic SOR Prox iteration for solving the contact problem in
parallel on k processes in (8.8) by using the mass-splitting method . Abbrevations:
parfor: parallel for, nbcomm: neighborhood communication.

13.4 Related Work
The mass-splitting procedure explained in this section has mostly been inspired by [196,
7] at time of implementing it into the GRS framework discussed in chapter 9. In [196], the
mass-splitting method is also called non-smooth contact domain decomposition and the
minor difference to our method lies in the resolution of the bilateral constraints. In [196],
the bilateral forces Sη are directly computed by (13.18) and substituted back into (13.16)
to get the velocity update. This procedure results in computing the inverse L−1 or itera-
tively solving the implicit proximal equation of (13.13). With the help of the analytical
solution in (13.43), this is not necessary for a chosen mass distribution in (13.12). The
mass-splitting approach is also discussed in the field of computer graphics in [192] where
it is used to simulate large multi-body systems. In [192], the focus lies more on real-time
simulation, where the accuracy of the contact resolution is sacrificed by an early termi-
nation of the contact iteration. In contrast to the mass-splitting method being used as a
contact graph decomposition approach presented here and in [196, 7], the ulterior motive
in [192] is the parallelization of a JOR Prox algorithm (cf. section 8.3.1). Unfortunately,
the proof of (13.43) in the additional supplemental material in [192] is not clear.
The parallelization effort in [174] is of much interest for the discussed mass-splitting
method. The work in [174] showed that the parallelization of the contact problem does not
influence the solution of the contact forces in a statistical sense. For the kd-tree domain
decomposition in [174] also an opaque overlap region is introduced similar to [75] (cf.
section 12.2). The iterative scheme is very much comparable to the mass-splitting method
used in this work. The parallel scheme in [174] does not split the bodies but rather splits
the contact graph into local and remote contacts defined by the overlap region. Instead
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of communicating velocities, as in the case of the mass-splitting method for solving the
bilateral constraints, contact forces on remote bodies are communicated to neighboring
processes. Therefore, the method in [174] can be seen as a dual analogue to the mass-
splitting method. From an implementation perspective, the contact force communication
in [174] is supposed to be more complex compared to velocity communication, especially
when considering different contact laws.





Chapter14
Visualization and Data Extraction

Several converter tools integrated in the command-line application GRSFConverter have
been developed to help visualize and analyze the simulation output of one of the rigid
body applications GRSFSim, GRSFSimGUI or GRSFSimMPI. The main input file used by these
tools is the binary simulation file with suffix .sim which contains all rigid body states
of all simulated bodies of the provided XML scene file. A certain rigid body simulation
mostly consists of several large .sim files and therefore all tools can handle a list of these
files. The GRSFConverter provides the following functionalities:

• SimConverter: This application resamples, joins or splits a set of .sim files.
• SimInfo: This small application shows information of a set of .sim files and also

provides state index information for certain striding patterns over the specified files
to be used with the SimConverter tool.

• Analyzer: This tool feeds several .sim files to an execution graph network which
contains several execution nodes specified in an XML file. This concept is essentially
similar to the one used in the application Matlab Simulink or in certain audio tools
used in the music industry. More is said in the further course of this chapter.

• Renderer: This application produces render input data which can be handed to
a ray tracing application to render images of the simulated scene. Currently, the
application supports the generation of Renderman Interface Bytestream RIB output.
The Renderman Interface Specification RISpec [146] specification, also described in
more detail in [178], is a three-dimensional scene description language understood
by a RISpec-compliant renderer to render an image of the scene. The RISpec is
the de facto standard for rendering and supported by a lot of commercial and non-
commercial renderers. This includes the famous photorealistic renderer Renderman
developed at Pixar Animation Studios. This tool is also based on an execution graph
provided by an XML file and analogue to the analyzer.

• Gridder: This tool is used to collect certain data inside a specified Cartesian grid,
such as positions, velocities, process ids, collision information etc., provided by a set
of .sim files . The output is a HDF5 file which can be easily read and manipulated
in python for further data visualization and validation tasks.

133
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In the following, we briefly describe the sophisticated execution graph implementation
used for both the analyzer and the render tool of the GRSFConverter application in more
detail.

14.1 Execution Graph
The execution graph implemented in ExecutionTree[39] is a directed acyclic graph con-
sisting of several connected logic nodes derived from LogicNode[36] which define a simple
input/output control flow. Each logic node in the execution graph contains several in-
put/output sockets (LogicSocket[38]) with a certain type out of the predefined types
defined in LogicSocketTypes[37]. An execution graph works in the way that each logic
node contains a specific compute routine which provides values for the output sockets by
using the values from the input sockets. Each output of a logic node can be linked to an
input of the same type of another logic node. This means an output socket of the arith-
metic type double cannot be linked to an input socket of integral type int for example.
Each logic node can be assigned to one or more execution groups which are collections of
logic nodes and form directed acyclic subgraphs. For each execution group, an execution
order is computed such that the data flow defined by the input/output links in the group
is respected. An execution order of an execution group is called a topological ordering in
computer science, and such an ordering always exists for a directed acyclic graph, despite
being non-unique. A topological ordering of an execution group is an ordering of all logic
nodes such that for all connections from a logic node A to B, A precedes B in the ordering.
Each execution graph network consists of several input logic nodes whose output sockets
are initialized before executing the network. The implementation in LogicSocket[38] al-
lows two types of directed links between an input and output socket, namely a get and a
write connection. A write link is a link from an output socket i of a node A to an input
socket j of some node B, denoted as {A, i} → {j, B}. A write link basically duplicates a
write request to the output socket i of A also to an additional write request to the input
socket j of B. A get link is the exact opposite and is a link from an input socket j of a
node B to an output socket i of a node A, denoted as {A, i} ← {j, B}. A get link basically
forwards any read access on the input socket j of B to a read access on the input socket i
of A. Most of the time only get nodes are necessary but as soon as the execution graph
becomes more complex and certain switching behavior should be reproduced, the addi-
tional write links are a convenient tool to realize this. Cyclic paths between logic nodes
are detected and result in an error when building the execution network. The write and
read access of input and output sockets is implemented using a fast static type dispatch
system in LogicSocket[38] which is based on the famous CRTP pattern [36] and analogue
to the dispatch used in the boost::variant class in [26]. Static type dispatching avoids
the use of virtual calls when using polymorphic objects in object-oriented programming
languages. At time of writing, the related work to be used in further work is the open-
source library TensorFlow™ [1]. Figure 14.2 visualizes a simplification of an execution
graph used for the simulation studies discussed in part III. It basically counts the number
of bodies inside an object oriented box and writes the result into an XML file. The execu-
tion graph was especially useful for rendering tasks. It gives the user the ability to setup
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(a)

(b)

Figure 14.1: Two renderings of the chute flow simulation B-7 in figure 17.1b at
time t = 0.5 s in (a) and t = 1.3 s in (b). The Renderman Interface Byte stream for
the bodies was generated by an execution graph with the render tool implemented in
GRSFConverter. The frame was rendered with Pixar Renderman on the Euler cluster
at ETH Zurich. The color map (blue-green-red) indicates the velocity magnitude.

an input/output work flow which converts bodies and their geometry into render specific
input such as a Renderman Interface Bytestream by providing render-specific logic nodes
([40, 41]c++). This allows the user to easily colorize the rigid bodies of a simulation ac-
cording to their velocity magnitude or for example by their accumulated gap penetration
depth.
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PartIII
Application to Chute Flows

“Programming today is a race between software engineers striving to build bigger and
better idiot-proof programs, and the Universe trying to produce bigger and better
idiots. So far, the Universe is winning.”

— Rich Cook, The Wizardry Compiled, 1989
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This part discusses all application related work of this thesis. Chapter 15 introduces some
useful notions from statistics and particle size analysis which is necessary to properly
describe a granular material. Chapter 16 discusses the mechanical model of the chute
flow experiments which were performed at the WSL Institute for Snow and Avalanche
Research SLF in Davos. Chapter 16 gives insight into the evaluation of the experiments,
the subsequent advanced velocity field reconstruction from the recorded video footage
and the simulation studies computed on the high-performance cluster Euler at the ETH
Zurich. Chapter 17 discusses some results of the comparison between experiment and
simulation. The thesis closes with a conclusion and outlook in chapter 18.



Chapter15
Particle Size Analysis

In reality, the particle sizes of a granular material, for example sand, gravel, glass beads
etc., are heterogeneous and statistically distributed. Estimating and approximating the
size distribution of a granular material, also referred to as granulometry, is important
when comparing experimental data and results obtained from simulations. A common
measure for an arbitary shaped particle is its equivalent diameter of an enclosing sphere.
The outcome of a particle or grain size analysis is the particle size distribution expressed in
terms of the equivalent diameter of the particle. This chapter gives a brief theoretical and
experimental overview about obtaining these quantities. A reader experienced in the field
of statistics may find the discussion in this chapter rather trivial. However, the proper
and brief demonstration in this chapter is justified mainly because the intricacies of the
presented results lie in the details which when misunderstood lead to severe consequences
for validating simulation results by experiments. The subtle differences between, for
example, a cumulative diameter distribution based on the mass of particles or based
on the number of particles quickly leads to confusion and does not become clear from
references such as [179, 105], also due to the use of insufficient notation.

15.1 Measurement Methods
Particle size measurements can be done with several procedures, for example by a sieve
analysis, by sedimentation or optical granulometry, to name a few. The sieve analysis,
also called gradation test, is a simple and effective method which is commonly applied to
material in the sub-millimeter to meter range and often used in the agriculture industry.
The particle size distribution, that is, the density function with respect to the equivalent
diameter, of a granular material can be expressed in terms of either the number, the
surface area, the volume or the mass of particles, which is again implicitly given by
the used measurement method. The sieve analysis, for example, generally provides an
equivalent diameter distribution in terms of the mass of particles. The procedure of the
sieve analysis is as follows: a sample of the granular material is passed through a stack of
sieves from largest to smallest opening size. After shaking the sieves for some amount of
time, each sieve contains its retained mass. By weighting the retained mass in each sieve,
a histogram of the particle size distribution is obtained.
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15.2 Particle Size Distribution
Some concepts from probability theory and statistics are introduced first to later properly
describe the mass or count distribution of a granular material depending on its equivalent
diameter.
Let X : Ω→ R be a real continuous random variable with a density differential measure dr
such that

∫
(−∞,∞]

dr = rtot. The probability space is denoted as Ω.

Definition 15.1 (Cumulative Distribution Function):
The cumulative distribution function F r

X of X can be defined as

F r
X(x) :=

∫
(−∞,x]

dr(τ)∫
(−∞,∞]

dr(τ)

=
1

rtot

∫
(−∞,x]

dr(τ) , (15.1)

where the superscript r denotes the used measure, that is, the measure dr.

The Lebesque-Stieltjes measure dr in (15.1) can be split into the sum of a Lebesque
measure, a pure atomic measure and a possible singular measure, which, for the sake of
simplicity, is assumed to be zero. A nonvanishing atomic part in dr results in a cumulative
distribution function which contains jumps at certain points. For a given value x, the
value F r

X(x) describes the percentage with respect to dr of the total value rtot. If the
measure contains only a Lebesque integrable part, the above integral can be written as

1

rtot

∫
(−∞,x]

dr(τ) =

∫
(−∞,x]

f r
X(τ)dτ ⇔ dr(τ)

rtot
= f r

X(τ)dτ , (15.2)

where f r
X is recognized as a normalized density function with respect to the Lebesque

measure dτ .
Definition 15.2 (Quantile Function):
The inverse of the cumulative distribution function FX is the quantile function QX given
as

Qr
X(p) := F r

X
-1(p) = inf

x∈R
{F r

X(x) ⩾ p} . (15.3)

Let D be a real continuous random variable for the equivalent diameter d of a particle.
The cumulative diameter distribution function Fm

D and its normalized density fm
D in terms

of the mass measure dm(d) is given as

Fm
D (d) :=

1

mtot

∫ d

0

dm(τ) =

∫ d

0

fm
D (τ)dτ, (15.4)

where mtot denotes the total mass of the granular material. The cumulative density Fm
D

given by its normalized mass density fm
D can be approximated by an experimental sieve

analysis explained in more detail in the following. The functions Fm
D and fm

D are illustrated
in figure 15.2. The following section describes the sieve analysis and shows how the
cumulative size distribution Fm

D in terms of the mass of particles is mapped to to a
cumulative size distribution in terms of the number of particles.
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15.3 Sieve Analysis
Consider n stacked sieves with nominal screen openenings d1 > d2 > · · · > dn = 0 through
which a granular material of total mass MT passes. Each sieve i ∈ [1, n− 1] with opening
size di retains particles with an equivalent diameter greater than di. The last sieve n has
an opening dn = 0 such that no material can pass and is considered to simulate the floor
which retains the rest material at the end of the sieving process. The sieve analysis is
depicted in figure 15.1.

Figure 15.1: Sieve analysis

The mass ratio si of the retained mass Mi in sieve i
to the total mass MT is defined as

si :=
Mi

MT

. (15.5)

The cumulative retained mass ratio ki for a sieve i
is given as

ki :=
∑
j⩽i

sj =
1

MT

∑
j⩽i

Mj. (15.6)

The cumulative retained mass ratio ki in a sieve i
corresponds to

ki =
1

mtot

∫ dmax

di

dm(τ) = 1− Fm
D (di). (15.7)

Discrete function values of the cumulative size distribution Fm
D can be computed for all

sieves, that is, Fm
D (di) = ki − 1 ∀i ∈ [1 ; n]. The more sieves are used for the analy-

sis, the more discrete evaluations of the cumulative size distribution are known. These
points can be used as sample points for a fitted curve to obtain a smooth approximation
of Fm

D . Figure 15.2 shows a piecewise linear approximation F̄m
D of the cumulative size

distribution Fm
D which results in a piecewise constant density approximation f̄m

D .
The mass measure dm(d) depending on the equivalent diameter d can also be related to
the count measure dn(d) which when integrated over the domain of d sums up to the total
amount of particles ntot contained in the granular material, that is,

ntot =

∫ dmax

dmin

dn(d). (15.8)

Using the volume d3 π
6

of a sphere with diameter d yields the equality of measure

mtot =

∫ dmax

dmin

dm(d) =

∫ dmax

dmin

ρd3
π

6
dn(d) ⇔ dm(d) = ρ

π

6
d3dn(d), (15.9)

where the volumetric mass density ρ is assumed to be independent of d and constant for
simplicity. The factor Ψm = ρπ

6
is also called form factor in the terminology of particle
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Figure 15.2: The particle diameter density fm
D with respect to the mass of particles

and the transformed density F n
D with respect to the number of particles. The discrete

points on the left, for example, (d3, F3), are obtained from a particle size analysis,
such as the sieve analysis described in section 15.3.

size analysis (see section 2.5 in [179]). The cumulative count distribution function F n
D can

now be expressed in terms of the density fm
D as

F n
D(d) :=

1

ntot

∫ d

dmin

dn(τ) =

∫ d

dmin

Ψ−1m τ−3dm(τ)∫ dmax

dmin

Ψ−1m τ−3dm(τ)

(15.10)

=

∫ d

dmin

Ψ−1m τ−3fm
D (τ)dτ∫ dmax

dmin

Ψ−1m τ−3fm
D (τ)dτ

, (15.11)

where the form factor Ψm can be canceled out if it is not dependent on d. The particle
size density fn

D based on the number of particles then follows as

fn
D(d) :=

Ψ−1m d−3fm
D (d)∫ dmax

dmin

Ψ−1m τ−3fm
D (τ)dτ

. (15.12)

15.4 Particle Generation for Simulation
The measure on which the diameter density and cumulative diameter distribution func-
tion depends on is directly given by the measurement method used for the particle size
analysis. The last section described the sieve analysis which yields an approximation of
the equivalent diameter density fm

D and cumulative distribution Fm
D which are based on

the mass of particles. These functions can be transformed to a number based representa-
tion fn

D and F n
D by using (15.12) and (15.10), respectively. The important question arises
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d50 := Med[d] 1.554 1.481 1.500
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Figure 15.3: Diameter density and cumulative distribution of the granural material
Starlitebead ®1400 based on the mass (black) and based on the number of particles
(red). The functions fn

D and F n
D are obtained by (15.10) and (15.12). The approxi-

mative piecewise linear distribution F̄ n
D of the density f̄n

D (dashed red) is used for the
particle generation. The vertical lines in (a) show the median values d50.

which of the two distributions Fm
D or F n

D should be sampled to obtain a representative
collection of particles for the numerical simulation. This does not become evidently clear
from book references such as [179] and should be addressed in the following.
For the following discussion, the number of particles to simulate is known and denoted
by nsim. All particles are assumed to have a spherical shape and are represented on the
computer by spheres. The distribution to sample to obtain a collection of nsim parti-
cles for the simulation is the diameter distribution based on the number of particles F n

D.
The reason why this is correct is that sampling from the mass based diameter distribu-
tion Fm

D would give a collection which when run through the sieve analysis again would
produce a perturbed result compared to Fm

D . This is not the case for a collection sampled
according to F n

D, since performing again a sieve analysis would result in a mass based
distribution Fm

D , at least for nsim →∞.
The granular material used in the experiments is called Starlitebead ®1400 and is produced
by the European division of Potters Industries LLC. The main properties of the material
Starlitebead ®1400 are given in table 15.1. The sieve analysis 3° from the certification of
conformity [147] of the material Starlitebead ®1400 for the 5 sieves is shown in table 15.2.
The diameter density and cumulative diameter distribution based on the mass and number
of particles computed by (15.10) and (15.12) are shown in figure 15.3. The mean equivalent
diameter E[D] = µ and median Med[D] = d50 given a density fD(d) and distribution FD(d)
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volumetric mass density 2400 kgm−3

bulk density 1590 kgm−3

angle of repose 26± 1 °
nominal diameter 1.4 mm

Table 15.1: Properties extracted from [34, 147] of the granular material
Starlitebead ®1400.

sieve number 1 2 3 4 5

diameter di [mm] 2.36 2 1.7 1.4 1.18

retained mass ratio range ki [%] 0-2 0-10 0-40 60-100 95-100
average retained mass ratio ki [%] 1 5 20 80 97.5
Fm
D (di) = 1− ki [%] 99 95 80 20 2.5

Table 15.2: The sieve analysis in [147] for the granular material Starlitebead ®1400.

is computed by

E[D] :=

∫ dmax

dmin

τfD(τ)dτ , Med[D] := QD(0.5) . (15.13)

It is important to note that all aforementioned densities and cumulative distributions
describe the equivalent diameter of the particles. To enrich the picture about distributions
and densities in the following, we consider the mass density fn

M and mass cumulative
distribution F n

M based on the number of particles. The mass density which describes how
the mass of the particle is distributed can be derived from the diameter density fn

D. If
the density ρ is constant and the particles are assumed to be perfectly spherical then the
mass m of a particle with diameter d is given as m = g(d) = π

6
d3ρ. The function g is

strictly increasing, that is, ∀d1, d2 ∈ Id = [dmin, dmax] : d2 > d1 ⇒ g(d2) > g(d1) which
admits a strictly increasing inverse g−1(m) on the support of m ∈ Im = {m = g(d) : d ∈
Id}. The cumulative distribution function F n

M for the mass m can be computed by

F n
M(m) :=


1 if m > x ∀x ∈ Im

F n
D(g

−1(m)) if m ∈ Im = [g(dmin), g(dmax)]

0 if m < x ∀x ∈ Im .

(15.14)

Because D is an absolutely continous random variable, the mass density is

fn
M(m) :=

{
fn
D(g

−1(m))dg
−1(m)
dm

if m ∈ Im

0 if m /∈ Im .
(15.15)

Another important value for the calibration of a numerical simulation and a real experi-
ment is the expected mass E[Mtot] = E[M1 + · · ·Mk] of k particles, where Mi(Di) is the
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E[M ] with D ∽ F n
D 4.412 51× 10−6 kg

E[M ] with D ∽ F̄ n
D 4.525 94× 10−6 kg

Table 15.3: Expected mass for one particle for the cumulative distributions F n
D

and F̄ n
D of the granular material Starlitebead ®1400.

random variable of the mass of particle i. It can be computed by

E[Mtot(D1, . . . , Dk)] = E

[
k∑

i=1

g(Di)

]
with: Di ∽ F n

Di
(15.16)

=

∫ dmax

dmin

. . .

∫ dmax

dmin

(
k∑

i=1

g(di)

)
f(d1, . . . , dk) dτ1 . . . dτk, (15.17)

where f is the joint density for all random variables Di. Because all Di are statisti-
cally independent from each other, the density can be split into the multiplication of the
densities fn

Di
such that

E[Mtot] =

∫ dmax

dmin

. . .

∫ dmax

dmin

(
k∑

i=1

g(τi)

)
k∏

j=1

fn
Dj
(dj) dτ1 . . . dτk (15.18)

=
k∑

i=1

∫ dmax

dmin

. . .

∫ dmax

dmin

g(τi)
k∏

j=1

fn
Dj
(τj) dτ1 . . . dτk (15.19)

=
k∑

i=1

(∫ dmax

dmin

g(τi)f
n
Di
(τi)dτi

)∫ dmax

dmin

. . .

∫ dmax

dmin

k∏
j=1,j ̸=i

fn
Dj
(τj) dτ1 . . . dτk︸ ︷︷ ︸

without dτi︸ ︷︷ ︸
=1

(15.20)

=
k∑

i=1

∫ dmax

dmin

g(τi)f
n
Di
(τi)dτi =

k∑
i=1

E[Mi]. (15.21)

Equation (15.21) shows the linearity of the expected value operator E[·] in the case of
statistically independent random variables. If we assume that all k particles have the
same cumulative diameter distribution F n

D, that is, Di ∽ F n
Di

= F n
D , equation (15.21)

yields

E[Mtot] = k E[M ] = k

∫ dmax

dmin

g(τ)fn
D(τ)dτ. (15.22)

The expected values for the mass of a particle of the granular material Starlitebead ®1400
are shown in table 15.3.





Chapter16
Mechanical Model and Experiment

The mechanical model for the conducted chute flow experiments in this work is visualized
in figure 16.1. Due to the simplicity of the experimental setup shown in figure 16.2, the
mechanical model can be cast as an accurate replica with respect to the used geometry
in the experiment. The mechanical model in figure 16.1 therefore also represents the
experimental setup. Differences to the experimental setup, the model assumptions and
parameter choices will be explained throughout this section.

Figure 16.1: A visualization of the mechanical model for the chute flow experiments.

The mechanical model presented in figure 16.1 for the chute flow consists of an inclined
channel where the granular material is retained until the discharge flap is opened and
the material flows down the channel and spreads on the slope attached at the end of
the channel. The inertial coordinate system I with basis (eIx, e

I
y, e

I
z) is located at the

origin O at the end of the channel. The direction of the gravitational acceleration is given

147
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as g := −geIz, where g denotes the gravitational acceleration. The rectangular channel is
rotated positively by an angle α (also called angle of dip) around the axis eIy which defines
the channel-fixed coordinate system C := (eCx , e

C
y , e

C
z ) located at the origin O. The axis eCx

marks the center line of the channel. The channel consists of two flat parallel boundary
walls and a flat bottom surface. All three walls are aligned with the coordinate system C.
The lower slope is rotated positively around the axis eIy by an angle π

2
− β which defines

the surface-fixed coordinate system S := (eSx, e
S
y , e

S
z) located at the origin O. The surface

is equipped with several tree models Ti each located at rTi
from the origin O. Each tree

consists of a cylinder with diameter dTi
. The cylinder axis is pointing in the normal

direction of the slope, namely in the direction eSz . The discharge flap is shifted along the
axis eCx by the amount xinit which marks the initial configuration of the front boundary
of the granular material at time t = 0. At the initial configuration, the boundary of
the poured granular material defines a height hinit and a length linit in the direction eCz
and eCx , respectively. For conducting the experiment, a camera is mounted above and
normal to the slope such that the image and visual plane are aligned with the eSx and eSy
axes. The visual plane is defined by the displacement vectors rOF and rOG of the two
points F and G, respectively.
Since the glass beads of the granular material Starlitebead ®1400 used in the experiment
have spherical shape, the granular material is modeled likewise as a polydisperse rigid
body assembly consisting of nb spheres. The spheres are generated by drawing nb samples
from the cumulative diameter distribution F̄ n

D in figure 15.3b which results in a total
simulated mass denoted by Mtot.
The interactions among the rigid bodies itself and between all other static objects in the
scene are modeled as unilateral contacts with spatial Coulomb friction in combination
with a Newton-type impact law as given in (7.75). The contact parameters: the friction
coefficient µi ∈ R+

0 and the normal and tangential restitution coefficient ϵN,i and ϵT,i
can be chosen individually for each contact i. However, the restitution coefficients of
all contacts are chosen identical to prevent a further potential inconsistency in the total
kinetic energy caused by the Newton-type impact law.
The only additional external force exerted on the simulated rigid body assembly is the
gravitation given as IF

e
Bi

= mBi Ig in (5.43). The mass for a body Bi is given as mBi
=

ρVBi
, where VBi

denotes its volume and ρ is the volumetric mass density. It is worth
noting that the mass mBi

cancels out in the equation of motion and thus does not change
the outcome of the granular simulation. This holds true for the case when the external
forces consist only of gravitation and set-valued force laws of normal cone type with a
Newton-type impact extension (cf. (7.75)) where all convex sets (force reservoirs) are
convex cones. Even if the density of the granular material does not play a role, it is
chosen such that the average mass of the rigid bodies is around 1 kg. This is a simple
numerical precaution: the values of the inverse of a mass matrix with small entries can
become large and computations with large numbers is less accurate due to the logarithmic
distribution of floating point numbers on the computer.
The different model parameters used for the conducted simulations are discussed in the
further course of this chapter.
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Geometry Experimental Setup Mechanical Model

granular material
group id: 0

granular glass beads
Starlitebead ®1400 [147]

dynamic rigid bodies with
sphere geometries sampled
from diameter distribution F̄ n

D

as in figure 15.3
channel surface
group id: 1

flat wood surface covered with
sandpaper P180 (FEPA)

static rigid body with a
polygonal mesh geometry

sidewalls of
channel
group id: 3

12 mm thick acrylic glass static rigid bodies, mesh
geometries

lower slope
group id: 1

flat wood surface covered with
the backside of a sandpaper
(P24)

static rigid body with a
half-space geometry

trees
group id: 2

wooden cylinders with diame-
ter dTi

, axially grooved

static rigid bodies with
capsule geometries of
diameter dTi

discharge flap acrylic glass, not directly
mounted on the channel not modeled

Table 16.1: Comparision between the geometries used in the experimental setup
and their representation in the mechanical model in figure 16.1.

(a) (b)

Figure 16.2: The used experimental setup as described in [34] at the SLF test
facility located in the Flüela valley. Figure (a) and (b) show a side and front view of
the channel and slope.
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16.1 Performing the Experiment
The experiments were performed on 11th March 2015 at the WSL Institute for Snow and
Avalanche Research SLF. The test facility is located in the Flüela valley close to Davos
in Switzerland. The experimental setup is the one used by Carisch in the excellently
documented work [34]. To record the granular flow, the high-speed camera S-PRI F1 [10]
by AOS Technology AG was used. The camera and the camera lens were the same as
used in [34]. The camera was set to record monochrome images at a speed of 1000 frames
per second with a resolution of 800× 600 pixels per frame. A total mass Mtot, the same
as used for the simulation, of the granular material Starlitebead ®1400 was filled into the
channel and distributed such that the initial value linit was within a tolerance of ±3mm
of the value obtained from the simulation of the initial condition of the granular material.
We also assured that the shape of the initial material closely resembled the form of a
triangular prism. The resulting constrained value hinit was then measured and found to
be within a tolerance of ±3mm to the values obtained from the simulation of the initial
condition. In this way, we validated the accuracy of the sampled diameter distribution F̄ n

D

used for the simulation to reassure that the number of particles used in the experiment
is in the same range as in the simulation. The discharge flap was held by hand and on
countdown to zero rapidly turned and moved away from the granular material towards
the slope in negative eCx direction. The experimental setup was illuminated by 2 halogen
headlights with approximately 200W. The high-speed camera was triggered manually
by hand and recorded approximately 2 seconds of footage. Focusing the camera lens on
the surface was not satisfactory and we were not able to remove the blur in the image
completely. Furthermore, the only cheap halogen spots available at the facility were not
at all supposed to be used for high-speed imaging since their 100Hz flickering illumination
directly causes image intensity fluctuations which render image correlation algorithms as
described in section 16.2 less accurate. Similar headlights have been used in [34]. The
frequency of the power of the halogen spot, which is mainly an electric resistor, is 100Hz,
wich is twice the frequency of the alternating current provided to the lamp, which is 50Hz
in Switzerland. Another unwanted side effect for further image processing was the specular
reflections from the illuminated glass spheres. Unfortunately, a polarization filter which
could have reduced this effect was not readily available at the time of performing the
experiment. The experiment was setup and performed during one single day due to time
limitations. Therefore, there was small room for improvements of the experimental setup
and we tried our best to obtain a satisfactory output from the available hardware at the
facility. The discussion at the end of section 16.2 summaries all occurred problems during
the analysis of the footage and lists improvements for future experiments of this kind.
Three different types of experiments have been performed in total. We recorded 3 chute
flows (experiment 1-3) where the slope was covered with a sand paper P24 (FEPA norm)
to stop the granular material on the slope. We also recorded two unhindered flows (exper-
iment 4 and 5) where the backside of the sandpaper was used: one flow without trees and
one with 3 trees arranged in a triangular pattern on the slope. Two frames of experiment 4
and 5 are shown in figure 16.3.
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Figure 16.3: Two monochrome video frames at time t = 0.42 s for experiment 4
without trees in (a) and experiment 5 in (b) with three trees. Figure (c) shows
the image mean intensity value E[I(t)] over time of experiment 4 and a smoothed
fitting s(E[I(t)]). Figure (d) shows the discrete frequency spectrum of the original
image mean signal E[I(t)] in (c).

16.2 Velocity Field Reconstruction
In this section, we briefly describe the velocity field reconstruction from the video footage
of the experiments. To extract a gridded velocity field from the video footage, an im-
age correlation tool called Advection Corrected Correlation Image Velocimetry (ACCIV)
developed in [12, 13] has been applied. The extreme blurriness of the images rendered
particle tracking algorithms unsuccessful. The reader is referred to [12] for an extensive
overview about the strength and weaknesses of several image correlation techniques as
well as to [191, 162] for a profound overview about the more mathematical details of these
techniques.
The image correlation technique ACCIV can capture a full 8-degree-of-freedom projective
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transformation of infinitesimal patches of a two-dimensional flow. That is, it can reproduce
two-dimensional translation, rotation, shear and distortion in the resulting velocity field.
ACCIV is an iterative mulit-pass technique of lets say np passes, where each pass improves
the velocity field by incorporating the results from the previous pass. Each pass p ∈ [1 ; np]
in ACCIV can contain an image sequence Sp := {I(ti), I(ti+1), . . . , I(tk)} with arbitrary
times ti < ti+1 < · · · < tk for which image correlation is performed. The two-dimensional
tensor I(ti) := I(ti,m, n) denotes the image at time ti where m and n are the indices for
the pixel row and pixel column of the image, respectively.
Based on the user input, ACCIV performs image correlation between two images from the
set Sp, lets say I(ti) and I(ti+1) which are separated by a time period ∆t. Image correlation
in the first pass p = 1 is performed by maximizing the cross-correlation between the
intensity of a fixed-size correlation box Cl in the image I(ti) with correlation boxes Cs of
the same size in the image I(ti+1). The correlation boxes Cs are shifted systematically
over a search range around the center point of Cl in the image I(ti+1). In this way, the
maximum of the correlation function is searched up to sub-pixel accuracy for a given
correlation box Cl. This leads to a velocity vector located at the mean of centers between
to adjacent correlation boxes, Cl and Cl+1, in the image I(ti). Computing the correlation
for all correlations boxes in I(ti) yields a rough approximation of a gridded velocity field.
At the end of each pass p, an outlier rejection method and a hierarchical b-spline smooth
fitting procedure is used to combine all results from the correlations of all image pairs
in Sp into a gridded velocity field.
After the first pass, each next ACCIV pass p ∈ [2 ; np] uses the information of the velocity
field approximation of the last pass p− 1 to advect an image pair from Sp, lets say I(tl)
and I(ts), to a common time point tc : tl ⩽ tc ⩽ ts. The velocity values are computed
by maximizing cross-correlation between the images I(tl) and I(ts) as in the first pass.
In our context the image sequences of two successive passes remain the same, that is,
S = Sp = Sp+1. In each successive pass, the correlation box size is, in general, decreased
to increase the resolution of the velocity field. For our rather blurred images, 2-3 passes
have been used. The settings, which we found to produced good results, are given in
table 16.2. In order to minimize noise due to the specular reflections and blur in the
images, the correlation box size could not be decreased below ≈ 20 pixels and sufficient
smoothing had to be applied in the smooth fitting step to produce a satisfactory result.
Finding parameters such as correlation box size, correlation box shifts, correlation search
range and number of passes, to produce the best velocity field approximation is time-
consuming and requires a lot of experience. Xylar Asay-Davis, one of the developers
of ACCIV, was very helpful in this endeavor. The variance of the reconstructed velocity
field was quite stable for smaller correlation box sizes, that is, ⩽ 20 px. That means, that
further correlation passes with smaller correlation box sizes only lead to an amplification of
the variance of the magnitude of the velocity field and that the mean values at each point
of the magnitude did not vary much. The mean of the correlation velocity uncertainty
as defined in [12] for experiment 5 is extremely high during the first 0.5 seconds when
the glass beads start to appear in the image. This observation is also confirmed by the
comparison in section 17.2. After the first 0.5 seconds, the mean of the correlation velocity
uncertainty stabilizes around 0.25m s−1 which is satisfactory for the given quality of the
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video footage. The correlation velocity uncertainty is only a measure of how good the
advection and image correlation performed and gives an indication of the quality of the
reconstructed velocity field.
In the following, we list improvements in descending order of importance for future high-
speed video recordings of granular flow experiments:

• The dynamic and static specular reflections from the glass beads, which occur in the
image sequence, were a real issue for the correlation algorithm to produce accurate
results. The static specular reflections at certain locations where so bright that the
correlation algorithm returned pixel displacements around zero in these region of
the image. The negative effect of the dynamic specular reflections on the resulting
vector field was less severe than for the static ones and only affected the variance of
the resulting velocity field. It is highly recommended to use a polarization filter and,
if possible, to mat the glass beads in some way to reduce their specular reflections.

• Illuminate the granular material with flicker-free lamps. A metal-halide gas dis-
charge medium arc-length lamp in combination with electric ballasts are not prone
to flickering.

• Set up the camera and lens at a distance from the slope such that the plane of
interest can be focused properly.

• The images of the video footage should be stored in a lossless image format such
as JPEG2000, TIFF or BMP. The files were accidentally saved in high-quality in the
lossy compression format JPEG which is a bad starting point for applying image
correlation algorithms.

An in-depth discussion about the main sources of errors in granular particle image ve-
locimetry is given in [49].
To compute time-dependent velocity fields from all frames of the video footage, a special
job has been built within the developed HPCJobConfigurator [140] to leverage the parallel
execution on a high-performance cluster. A set of video frames, for which a velocity field
should be extracted, is assigend to each process. Each process then executes a tool pipeline
consisting of two tools. The first tool is the image processing task which subtracts the
background from the image, shifts all pixel intensities by the value d = E[I(ti)]−s(E[I(ti)])
as shown in figure 16.3c to remove the intensity flickering from the halogen spotlights,
extracts some binary mask and boundary contour of the granular material and finally
outputs the HDF5 file which is the input file for the second tool, that is, the correlator.
The correlator simply performs all ACCIV passes for each frame. An ACCIV job with 3
correlation passes for 1656 frames and 4 images per frame took approximately 50 minutes
on 552 processors.
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pass i image set Si
correleation
box size [px]

correlation search
range [xmin, xmax],
[ymin, ymax] [px]

correlation box
stride [px]

1 {I(ti), . . . , I(ti+3)} [32, 32] [−5,−1], [−3,−3] [16, 16]
2 {I(ti), . . . , I(ti+3)} [24, 24] [−5,−5], [−5,−5] [8, 8]
3 {I(ti), . . . , I(ti+3)} [20, 20] [−5,−5], [−5,−5] [4, 4]

Table 16.2: Image correlation parameters from [3]file for the three correlation passes
over 4 consecutive images for the application ACCIV developed in [12].

16.3 Simulation Studies
The parameters of the mechanical model in figure 16.1 have been varied over a sequence
of rigid body simulations of the granular flow. These simulations are compared with
the experiments in a further step. The parameters of the mechanical model consist of
the ones shown in figure 16.1 and the contact parameters for each possible combination
of the group ids in table 16.1. The initial condition, namely the situation where the
granular material is at rest after filling it into the channel above the discharge flap, is
simulated with Moreaus time-stepping scheme in algorithm 8.1 using the drift correction
algorithm explained in section 8.2. This ensures that the penetration of the glass beads
after the settlement is as low as possible to provide a good initial condition for the further
granular flow simulations. The time step for the simulation of the initial condition could
be chosen large, that is, ∆t ∈ [10−3, 10−2], as we were only interested in the low-penetrated
simulation state at the end of the settlement. For the main simulation, namely the chute
flow, Moreau’s time-stepping scheme has been used as well but without a drift correction
due to its undesired side-effect of a potential increase in the total energy of the granular
material. An extract of the main parameters and settings specified in the scene file used
to simulate the chute flows is listed in table 16.3.
Two simulation studies A and B, each consisting of 15 chute flow simulations, were per-
formed where only the friction parameter µ between the glass beads was varied, that is,
µ ∈ S as given in table 16.3. Simulation study A corresponds to experiment 4 where the
flow of the glass beads on the slope is unhindered (see figure 16.3b). Simulation study B is
identical to A but includes three trees positioned in a triangular pattern on the slope and
corresponds to experiment 5. The performance of the simulation with the GRSFSimMPI
application is visualized in figure 16.4 and shows the time evolution of the kd-tree topol-
ogy as well as the computation time per time step which is split into the time spent for
the communication, for the collision detection and for the solution of the contact problem.
The amount of data output of a single simulation summed up to approximately 100GB
for the binary simulation file.
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solver settings for simulation studies A and B
time-stepper type : Moreau without drift correction (algorithm 8.1)

time step ∆t : 2× 10−4 s
time steps/recorded state : 10

inclusion solver type : SOR Prox iteration per contact in (8.37, 8.38)

inclusion solver parameters :
α = 1.5,
R matrix strategy : max (cf. sec. 8.3.1),
maxIter = 1000

number of processes : 384
total computation time : 12 h

memory per process : 1024MB
high-performance cluster : Euler at ETH Zurich
load balancing technique : kd-tree with approximate MVBB (cf. sec. 10.3)

topology rebuilding heuristic: every 250th time step (cf. sec. 11.1)

model parameters for simulation studies A and B
total number of glass beads nb: 1× 106

total mass of glass beads Mtot: 4.525× 10−6 kg (cf. sec. 15.4)
gravity g : 9.81m s−2

start distances xinit, linit, hinit : 29.6 cm, ≈ 238mm , ≈ 116mm
channel width w : 10 cm

angle α : 30°
angle β : 70°

pixels/meter on visual plane : 967.5931
tree thickness dTi

: 5mm

visual plane point SrOF : [−783, −311, 0]⊤ px
visual plane point SrOG : [17, 289, 0]⊤ px

tree positions SrT0 , SrT1 , SrT2

for study B : [−0.1254, 0.004, 0] m,
[−0.1794, 0.0277, 0] m, [0.1829, −0.02704, 0] m

contact parameters for simulation study A and B
group id pair

(cf. table 16.1) contact model model parameters

{0, 0} UCF µ varied over S, ϵN = 0, ϵT = 0
{0, 1} UCF µ = 0.5, ϵN = 0, ϵT = 0
{0, 2} UCF µ = 0.3, ϵN = 0, ϵT = 0
{0, 3} UCF µ = 0.1, ϵN = 0, ϵT = 0

UCF : unilateral contact with Coulomb friction
S := {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3}

Table 16.3: Extract of simulation parameters of the scene file [2]file for the simula-
tion studies of the mechanical model in figure 16.1.
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(a) Time evolution of kd-tree topologies. See figure 16.1.
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Figure 16.4: Performance measures of 384 processes for the simulation B-0 of the
simulation study B with parameters given in table 16.3. The average computa-
tion time of a time step could be kept approximately constant due to the topology
rebuilding steps during the simulation shown in (a). The maximal overlap is be-
low 4.5× 10−4 m. The computation time was set to 12 h which resulted in approxi-
mately 5000 time steps.



Chapter17
Comparison of Simulation Studies
with Experiments

In this section, the chute flow experiments are compared against the simulation studies.
The discussion will mainly focus on comparisons between the velocity fields and related
quantities and will be rather qualitative than quantitative. The reason lies in the accuracy
of the velocity reconstruction of the video footage obtained from the experiments which
is described in more detail in section 16.2.

17.1 Cumulative Body Count
To sync the time between the experiments and the simulation studies A and B discussed
in section 16.3, there was the need to extract the start time from the simulations when
the first glass beads enter the slope below the channel. We extracted the number of
bodies nb,S(t) overlapping the half-space H+

S := {x ∈ E3 | (x | −eSx) ⩾ 0} defined by the
normal vector −eSx at the origin O in figure 16.1. This data extraction task has been
performed with the analyzer tool of the GRSFConverter and a similar execution graph as
shown in figure 14.2.
The normalized cumulative body count distribution F n(t) is given as

F nb,S(t) =
1

nb

∫ t

t0=0

dnb,S(τ) =
nb,S(t)

nb

, (17.1)

where nb denotes the total number of glass beads. The derivative of the above yields the
density over time, namely the normalized flow count into the half-space H+

S , this is

fnb,S(t) =
d

dt

nb,S(t)

nb

≈ nb,S(tk+1)− nb,S(tk)

nb∆t
, (17.2)

where tk denotes the discrete simulation time and ∆t the time step, see table 16.3. The
quantity in (17.1) and (17.2) are shown in figure 17.1 for all 15 simulations of the sim-
ulation study B. The flow duration ∆tf depending on the friction coefficient is depicted
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in 17.2a. The flow duration ∆tf is defined as

∆tf := t0.95 − t0.05 = Qnb,S(0.95)−Qnb,S(0.05), (17.3)

which is the time duration until 90% of the bodies have entered the half-space H+
S . The

quantile function Qnb,S is given in (15.3).
Figure 17.1 shows that the time duration of the simulation B-0 with no friction, that is,
µ = 0, compared to the simulation B-14 with friction coefficient µ = 3.0, is doubled.
Figure 17.2a shows that the flow duration ∆tf seems to stagnate for higher friction co-
efficients. It is important to note that the iteration for solving the contact problem is
terminated after maxIter iterations for all time-steps in each simulation (see table 16.3).
High friction coefficients make the contact problem more difficult to solve and the stag-
nation in figure 17.2a might be a numerical artifact which could only be unraveled if the
contact problem is solved to a certain precision. However, this is currently infeasible due
to the undetermined run time of the simulation. An additional simulation B-14 similar
to simulation B-14 but with 20 times more SOR Prox iterations (20’000 global iterations)
has been conducted to investigate any difference in the count flow. The flow count of
simulation B-14 in figure 17.1b shows that the granular flow is not much affected by the
increased number of iterations. However, a proper argument can only be given when the
residual of the SOR Prox iteration over the time-steps is properly investigated, which
should be considered in future work.
The gray bars in figure 17.1b mark the approximate start and end time of experiment 5
which have been extracted manually from the video footage. These marks show that a
rigid body simulation with friction coefficient µ ∈ [0.8, 1.5] provides enough dissipation
such that the flow duration comes close to the one of experiment 5.
Figure 17.2b is interesting as it shows that the time evolution of the number of contacts
is decreased over the whole simulation period for higher friction coefficients. This finding
is not very intuitive at first and strongly suggest the study of the velocity fluctuations in
the flow (also called granular temperature) in future work.
The next section tries to validate the findings of the above results by a qualitative com-
parison of the velocity field and flow shapes between the simulations and the experiment.

17.2 Qualitative Velocity Comparison
By using the gridder tool of the GRSFConverter, gridded velocity fields for simulation
study B have been extracted which are identical in shape and position to the reconstructed
gridded velocity field from the image correlation of experiment 5. The two-dimensional
velocity field is denoted by V ∈ Rgx×gy×2 (cf. table 16.3) and is the result of projecting the
three-dimensional gridded velocity field constructed from bodies at the top of the chute
flow onto the visual plane in figure 16.1. The magnitude is computed as

VM,(i,j) =
√

V(i,j,1)
2 +V(i,j,2)

2 . (17.4)
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The magnitude of the two-dimensional projected velocity field from simulation B-9 and
the corresponding reconstructed velocity field from the image correlation is shown in
figure 17.3b and 17.3a. The overlap ratio of the simulation and the experiment is defined
as

overlap ratio :=

∑
i,j(BS ∧BE)(i,j)∑
i,j(BS ∨BE)(i,j)

, (17.5)

where BS,BE ∈ {0, 1}gx×gy denote the extracted binary masks of the simulation and
experiment and the operator ∧ and ∨ denote the element-wise logical and and or opera-
tions, respectively. The binary mask BE used for the velocity magnitude in figure 17.3a
was obtained by using thresholding techniques which gave satisfactory but not brilliant
results. The overlap ratio shown in figure 17.4a shows the tendency of a better match
(higher overlap ratio) between simulation and experiment for higher friction coefficients.
The root mean square error of two scalar tensors X ∈ Rm×n and Y ∈ Rm×n is computed
as

RMSE(X,Y) :=

√
E
i,j

[
(X(i,j) −Y(i,j))2

]
, (17.6)

where the expected value Ei,j is computed over the values of the tensor of the squared
difference. Figure 17.4b shows that the root mean square error of the velocity magnitude
between experiment 5 and the simulations decreases for higher friction coefficients. It
has to be noted that the results presented in figure 17.4a, 17.4b depend on the extracted
binary mask from the experiment.
Furthermore, the high RMSE error in figure 17.4b at the beginning of the flow is explained
by the bad velocity reconstruction at the beginning of the video footage. Although the
realization of the experiment and the velocity field reconstruction were far from optimal,
a visual comparison of figure 17.3a with 17.3b shows that the solutions are not far apart.
A video analysis of all comparisons between simulation B-0 – B-14 and the experiment
showed that simulation B-9 with friction coefficient µ = 0.9 provides the best match also
with regard to the flow shapes developed after all particles passed the triangular tree
pattern. The three-dimensional renderings (see figure 14.1) also showed that the front
regime of the chute flow becomes more agitated with increasing friction coefficient despite
the use of a completely inelastic impact. A similar observation is made for chute flow
experiments in a channel in [31, section 3.4].
It is promising that conducting more simulations with increased accuracy for the contact
resolution and with different coefficient of frictions for the slope and channel as well as
better experimental results would lead to an even better agreement between experiment
and simulation.
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Figure 17.1: Body count analysis of the simulation study B in table 16.3.
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Figure 17.2: Body count analysis of the simulation study B in table 16.3.
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Figure 17.3: Comparison of velocity magnitude between study B-9 (subscript S,
see table 16.3) and experiment 5 (subscript E, see figure 16.3b).
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Chapter18
Conclusion and Outlook

This work aims at modeling granular materials by large-scale rigid multi-body systems
and is a contribution in the field of granular dynamics. This thesis is structured in three
parts. Whereas the first part introduces all necessary concepts from mechanics, convex
analysis and numerics, the second part applies these concepts for the parallel simulation
of a granular material by means of a developed modern software framework encompassing
simulation, visualization and data extraction tools. The last part discusses the simulation
and partial validation of a chute flow experiment which is used at the WSL Institute for
Snow and Avalanche Research (SLF) in Davos, Switzerland.
A granular material is described in this work within the framework of non-smooth rigid
body dynamics which allows to formulate internal interactions between bodies by set-
valued force laws. By applying the two most fundamental and powerful axioms in me-
chanics, the principle of virtual work and the variational law of interaction, the mechanical
formulation of a rigid body is derived in a concise and systematic way starting from a
continuous body embedded in a three-dimensional Euclidean space. To obtain a rigid
body formulation using quaternions for the parametrization of the rotation, the equations
of motion of the scalable body are derived in a first step and restricted in a later step
to the constraint of isometry quintessential for the rigid body. In contrast to using the
Lagrangian formalism as shown in [108, 170], the presented derivation of the scalable
body by the principle of virtual work is elegant, more concise and simpler and serves as
an educational example for a more rounded understanding of the nontrivial mechanical
principles.
The interactions between the rigid bodies in a granular material are modeled in this
thesis with set-valued force laws by using concepts from convex analysis. The unilateral
contact with Coulomb friction, formulated by a normal cone to a convex set, has been
proven to be a particularly useful contact law to model the dissipative behavior of a
granular material and to provide a concise formulation of the impenetrability condition
of its contained particles. Four mathematically identical formulations of this model have
been discussed with special regard to convex optimization. Casting the solution of a
mechanical system with contact laws of normal cone type into a constrained optimization
problem, which is convex for only unilateral contacts, is useful for understanding the
discussed iterative solution methods for the contact problem during the time-stepping
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procedure. Moreau’s time-stepping efficient, explicit scheme is used for the numerical
integration of the equation of measures which contains both the smooth and non-smooth
motion of a large-scale rigid multi-body system. All set-valued contact laws are extended
with a Newton-type impact law which consequently renders the velocities discontinuous.
An impact law provides a second dissipation mechanism in the case of partially elastic
impacts. A inelastic Newton-type impact has been adopted for the simulation studies in
the last part.
Simulation of granular media consisting of many rigid bodies is a large open research field
in mechanics, computer science and computer graphics. Using parallelization techniques
such as the Message Passing Interface MPI on high-performance distributed systems or
writing specialized parallel code for graphics processing units are two ways of leverag-
ing enough computational power to solve systems consisting of millions of bodies in a
meaningful time. The open-source software framework GRSF developed in this thesis pro-
vides a quality-conscious and efficient implementation for simulating granular materials
on high-performance distributed systems. Two domain decomposition methods, the grid
decomposition and kd-tree decomposition, have been presented, implemented and suc-
cessfully tested. The implemented simple load balancing strategy has been supported by
the open-source software library ApproxMVBB, also developed in the course of this thesis.
The body communication during the time-stepping procedure, inspired by [75], plays a
substantial role for the parallel simulation and its intricate book-keeping process has been
discussed in detail.
Furthermore, another contribution is given in the form of a proper and concise discus-
sion on the mass-splitting method studied in [196, 7, 192] which builds the fundamental
concept of the parallelization procedure of the rigid body simulation. Our presented
analytical solution of the bilateral constraints which are constructed from the virtual
splitting of domain overlapping bodies, called split-nodes, is properly derived and shows
that the solution of a global contact problem can be split into local contact iterations in
combination with a simple averaging of the velocities of all domain overlapping bodies.
We developed several data extraction tools such as a generic execution graph network
which allows for all sorts of data extraction tasks such as producing input data for ren-
dering a simulated scene. The job preparation and submission workflow on the high-
performance cluster was structured and simplified a great deal by the open-source job
configurator HPCJobConfigurator developed in the course of this work. Its application
is independent of any particular cluster. In this work, the Euler cluster at ETH Zurich in
Switzerland has been used.
In the last part, we made a first step in validating a chute flow experiment performed at
the SLF in Davos, Switzerland, by comparing velocity fields extracted from experimental
data with gridded data from the simulation. The friction coefficient has been varied in
a simulation study for two different setups, one with and one without tree models. The
results showed that a friction coeffiecient µ ∈ [0.8, 1.5] provides enough dissipation such
that the root mean square error of the velocity magnitude is approximately 0.15m s−1.
The author is aware that the validation could only be performed qualitatively instead of
quantitatively, mainly because of the low quality of the recorded video footage. Further-
more, it should be pointed out that conducting the experiment was far from optimal and
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was performed in a single day due to time constraints and the announced discontinuation
of the experimental setup by the SLF. The domain decomposition methods, in particular
the kd-tree decomposition, and the presented simple load balancing strategy were espe-
cially beneficial for the conducted simulation study as it increased the performance of the
time-stepping procedure during the rapid distribution of the rigid spheres on the slope.
In the following, we give a brief outlook on future work related to the presented three
parts: the mechanical theory, the parallel software implementation and the validation of
granular chute flow experiments.

Outlook
From a theoretical and numerical perspective, one urgent need is to improve the con-
vergence behavior of the iterative solution technique of the contact problem by apply-
ing better numerical methods from convex optimization, in particular improved efficient
first-order methods. One step in this direction has already been conducted in recent
research [102]. Furthermore, robust and efficient constraint stabilization and drift correc-
tion techniques is another open research field. Drift correction is important for granular
simulations since an increasing penetration leads to all sorts of unpleasant problems, not
to mention the growth in the number of contacts. It is also promising to investigate
time discretization schemes derived from variational principles which may lay the founda-
tion of obtaining time-stepping schemes with a better trade-off between averaged energy
conservation or average constraint violation and computational efficiency.
From a software perspective, the GRS framework is far from complete in respect to a full-
fledged rigid body engine. However, further improvements include mainly all mentioned
aspects which should as well be implemented and validated in further work. Another
important open question is how to improve the communication overhead due to the applied
mass-splitting procedure during the contact solution phase? Further work is also devoted
to scalability testing and other performance analyses of parallel simulations computed by
the GRS framework. This has not been properly treated at the time of writing.
From a validation perspective in the field of experimental mechanics, there are lots of
open questions which have only been partially answered in this thesis. The realization of
a well-prepared experiment and a proper data evaluation is extremely time consuming and
almost encompasses a thesis by itself. The velocity comparisons presented in chapter 17
showed that the velocity fluctuations are of utmost interest which might explain the
decreased count in the number of contacts for higher friction coefficients. Furthermore, it
is intriguing to investigate and compare a granular chute flow simulation with a hindered
chute flow experiment as performed in experiment 1–3 where the slope has been covered
with a sand paper. This, however, requires the implementation of some special collision
detection routines in the GRS framework which supports polygonal mesh patches with
which the slope can be tiled.
Another field which has been completely abandoned in the course of this thesis is the field
of fluid dynamics which has contributed the most to the research of granular materials in
the past, especially in the field of avalanche research. In the authors opinion, a large-scale
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rigid multi-body system with frictional contacts and possible other force laws is a better
model to study impact regimes and velocity fluctuations in dry granular materials in the
future because such a model has less model parameters and provides more detailed insight
since the modeling scale is on the particle interaction level. The experimental results and
references in [31] should be considered in future work to compare velocity fluctuations
obtained from similar granular simulations as presented in this thesis.
The validation of the chute flow experiments presented in this thesis lacks also the study
of dual quantities such as contact forces or stresses. In a first step, the focus was mainly
on primal quantities such as velocities and displacements because the concept of force in
mechanics, despite its simple mathematical model as a multi-linear functional, is a very
difficult concept to grasp. However, data of force quantities would give more insight into
understanding intriguing aspects in granular dynamics. In regard to the chute flow ex-
periments such aspects may include the study of force networks, impact regimes, pressure
distributions on the tree models, the described decrease in the number of contacts for
high friction coefficients and the potentially associated velocity fluctuations. The stress
distribution in granular materials is a very interesting aspect. However, to successfully
study stress distributions in a granular material, a proper understanding of the stress
tensor itself and its application to granular materials is needed in a first step. Recent
visionary work has been presented recently by Moreau [118]. Another difficulty lies in the
comparison of force quantities with force measurements from experiments which involves
another layer of modeling abstraction since there exists no sensor which outputs force
per se. The mechanism behind a force sensor is always the evaluation of a mechanical
model with measured primal quantities such as time, displacements or velocities. In a
first step, future work in this direction includes the study of contact percussions between
rigid bodies.
A proper comparison between discrete element formulations, which are basically large-
scale rigid body systems where the interactions are purely modeled as impressed forces,
is another topic for future research. Studies in this direction have been conducted in
[172]. A time-stepping scheme of a discrete element method which models a dry granular
material is in general much simpler and, in contrast to the presented approach in this
thesis, does not involve the solution of a global coupled contact problem in each time
step. This fact, however, does not make them less applicable for dry or also wet granular
flows. The presented non-smooth dynamics approach is a neat framework which allows
elegant, mathematical formulations to accurately model impenetrability and stick-slip
phenomena without being prone to stability issues which lead to high stiffness coefficients
in the contact laws in a discrete element formulation. This advantage, however, comes at
the prize of a higher computational burden which also entails numerical problems such as
the lack of fast convergence, not to mention the issue of highly linear dependent contact
problems. It is also interesting to study the influence of different parallelization methods
for the contact problem on the motion of a granular material in a statistical sense.
Since granular particles are never completely rigid in nature, another open question is how
a certain additional degree of freedom, allowing for a certain deformation of the body,
changes the outcome of a chute flow simulation. Doing so, results in a large-scale nonlinear
continuum dynamics problem and additional constitutive force laws need to be formulated
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for the internal virtual work contributions of the deformable degrees of freedom. Using
millions of deformable bodies is currently infeasible due to an extremely complex collision
detection which would need to deal with deforming volumetric polygonal meshes which
can even become non-convex over time. The increased computational costs for integrating
the spatially discretized deformable bodies is another challenge.
A set-valued force law which models an adhesive frictional contact law is another interest-
ing topic for the modeling of granular materials. A concise formulation of the problem is
difficult since the set-valued force law of a unilateral contact with adhesion is not mono-
tone (cf. first chapter in [201]) which renders its treatise in the framework of convex
analysis problematic. Research in this direction has already been conducted in [164, 44,
59].
The endeavor of creating a granular material model consisting of a body formulation which
allows for a smooth transition between rigid and deformable motion is intriguing. Such
a model may provide an even better approximation for granular matter in the future. A
certain allowed deformation is not only more realistic, the additional degrees of freedom
may also help to alleviate the ambiguity problems of contact forces so far present in a
rigid formulation. This difficult modeling challenge entails many new visionary research
areas in the field of rigid body and continuum dynamics such as multi-impact modeling,
material modeling and the study of weak variational formulations for the integration of
the equations of motion of a mechanical system with unilateral constraints.





AppendixA
Proofs

A.1 Prox Properties
Proof: (Lemma 6.1)
Statement (a) is true if ∀y ∈ C there exists at least one x subject to proxRC (x) = y.
Since C ⊆ V , any y ∈ C can be attained by taking x = y since proxRC does not project
in this case.
Statement (b) can be shown with (6.24). The equality z = proxRC (x) is equivalent to
the normal cone inclusion

R(x− z) ∈ NC(z)⇔ ⟨R(x− z) |x∗ − z⟩ ⩽ 0, z ∈ C, ∀x∗ ∈ C,
⇔ (x− z |x∗ − z)R ⩽ 0, z ∈ C, ∀x∗ ∈ C
⇔ (z− x | z− x∗)R ⩽ 0, z ∈ C, ∀x∗ ∈ C
⇔ (proxRC (x)− x | proxRC (x)− x∗)R ⩽ 0, ∀x∗ ∈ C, ∀x ∈ V.

Let z = proxRC (x)⇔ R(x−z) ∈ NC(z). The normal cone NC(z) is equal to the subdif-
ferential of the indicator function ∂IC(z) which is maximal monotone. By exploiting
this property and taking two points z1 = proxRC (x1) and z2 = proxRC (x2), it follows
that

⟨R(x1 − z1)−R(x2 − z2) | z1 − z2⟩ ⩾ 0

⇔ ⟨R(x1 − x2) | z1 − z2⟩ ⩾ ⟨R(z1 − z2) | z1 − z2⟩
⇔ (x1 − x2 | z1 − z2)R ⩾ (z1 − z2 | z1 − z2)R = ∥z1 − z2∥R ⩾ 0

⇔ (proxRC (x1)− proxRC (x2) |x1 − x2)R ⩾ 0.

This inner product is only zero for proxRC (x1) = proxRC (x2) or x1 = x2 ⇒ proxRC (x1) =
proxRC (x2) and only positive if proxRC (x1) ̸= proxRC (x2). This proofs statement (c).
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Statement (d) is obtained by expanding the following norm

∥(x1 − x2)− (z1 − z2)∥2R ⩾ 0 ⇔
∥x1 − x2∥2R ⩾ −∥z1 − z2∥R + 2 (x1 − x2 | z1 − z2)R︸ ︷︷ ︸

⩾∥z1−z2∥R with (c)

⇔

∥x1 − x2∥2R ⩾ ∥z1 − z2∥R =
∥∥proxRC (x1)− proxRC (x2)

∥∥
R

The inequality of the right term in the second line occurs in proof (c).

A.2 Frictional Contact Formulations
Proof: (Equivalence of Cone Complementarity (7.38) and De Saxé’s Formulation (7.33))
UNCF⇒ CCF: Show that the cone complementarity problem can be extracted from
the unified normal cone formulation. As a good practice, we give a self-contained proof
which is analogue to lemma 4.2 in [61]. Recall the definition 6.10 of the normal cone
at a point λ ∈ Kµ as

−γ̃ ∈ NKµ(λ) :=
{
y ∈ E3∗∗ | ⟨y |λ∗ − λ⟩ ⩽ 0, ∀λ∗ ∈ Kµ

}
⊂ E3∗∗ (A.1)

∼=
{
y ∈ E3 | ⟨λ∗ − λ |y⟩ ⩽ 0, ∀λ∗ ∈ Kµ

}
⊂ E3, (A.2)

and it follows that for a particular λ ∈ Kµ

⟨λ∗ − λ | γ̃⟩ ⩾ 0 ∀λ∗ ∈ Kµ. (A.3)

If we set λ∗ = 0 ∈ Kµ, we get ⟨λ | γ̃⟩ ⩽ 0. For every λ ∈ Kµ we can choose
λ∗ = 2λ ∈ Kµ which results in ⟨λ | γ̃⟩ ⩾ 0. These two inequalities are the same as
stating ⟨λ | γ̃⟩ = 0.
It is left to show that −γ̃ ∈ K◦µ. This is true if NKµ(λ) at λ ∈ Kµ is a subset of K◦µ,
that is, NKµ(λ) ⊆ K◦µ. We reformulate the normal cone inclusion (A.2) as

NKµ(λ) :=
{
y ∈ E3 | ⟨z∗ |y⟩ ⩽ 0 ∀z∗ = Kµ − λ

}
. (A.4)

Because of the convexiy of Kµ, every x ∈ Kµ is also in the set Kµ − λ and it follows
that Kµ ⊆ Kµ − λ. Equation (A.4) is the definition of the polar cone to Kµ but with
a more restrictive ∀-quantifier. It follows that K◦µ is a superset of NKµ(λ), because it
is less restrictive on y which finalizes this proof. Furthermore, K◦µ = NKµ(0).
UNCF⇐ CCF: To show the contrary, start with the cone complementarity and take
two vectors

−γ̃ ∈ K◦µ ∼=
{
y ∈ E3| ⟨λ∗ |y⟩ ⩽ 0, ∀λ∗ ∈ Kµ

}
(A.5)
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and λ ∈ Kµ and write ⟨λ | γ̃⟩ = 0 as two inequalities ⟨λ | − γ̃⟩ ⩽ 0 ∧ ⟨λ | − γ̃⟩ ⩾ 0
and combine them with the polar cone which results in

⟨λ∗ | − γ̃⟩ ⩽ 0 ⩽ ⟨λ | − γ̃⟩ ⇔ ⟨λ∗ − λ | − γ̃⟩ ⩽ 0, ∀λ∗ ∈ Kµ. (A.6)

From (A.6) follows the definition −γ̃ ∈ NKµ(λ).





AppendixB
Principal Component Analysis

The principal component analysis is a statistical method to obtain orthogonal principal
directions {d1, . . . ,dn} ∈ Rn from a set of observations of possibly correlated variables
in Rn. This procedure has many names depending on the field of application. It is
also named proper orthogonal decomposition in mechanical engineering or singular value
decomposition of A⊤A of a matrix A ∈ Rn×n. The principal directions form an orthogonal
basis {di} such that the first direction d1 is associated with the greatest variance of the
observations projected onto d1 and the last direction dn is associated with the smallest
variance. In this chapter, the principal component analysis is explained in detail with a
focus on mechanics, and links to quantities used in the field of statistics are given at the
end.
The observation data of interest in this work is a point cloud of n points Si with dis-
placement vectors rOSi

in the Eucledian vector space E3. The origin is denoted by O.
The weighted mean point (center of mass) G is given as rOG := 1

mT

∑n
i=1mirOSi

where
the weights (masses) mi are positive and the total mass is given as mT :=

∑n
i=1mi.

The point cloud is described, in the following relative, to its mean point, that is, pi =
rGSi

= rOSi
− rOG. The whole derivation in the following is independent of the choice of

a coordinate system. A principal direction d∗ can be found by minimizing the projection
residuals over all possible directions d. Given a direction d, the projection residual is
the total sum of the normed differences between the projection p̂i of pi onto d and pi

over all points with i ∈ [1 ; n]. Using the induced Mi-norm ∥·∥Mi
of the inner product

(x |y)Mi
= x⊤Miy, the minimization problem can be stated as

min
d

f(d) = min
d

n∑
i=1

1

2
∥pi − p̂i(d)∥2Mi

, (B.1)

subj. to: g(d) := ∥d∥22 − 1 = 0 . (B.2)

The positive definite metric Mi is chosen proportional to the identity matrix as miI3, such
that mi is the weighting factor for the projection residual of each point. The constraint
g(d) = 0 ensures that d is of unit length, which is crucial because otherwise d = 0 ⇒
p̂i(d) = 0 ∀i ∈ [1 ; n] would minimize the above problem and is treated as an infeasible
solution. An example in R2 is shown in figure B.1.
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Figure B.1: A gray point cloud in R2. The optimal principal direction which
minimizes (B.1) is denoted by d∗. The direction with the greatest and smallest
variance is denoted by d∗ and d∗⊤, respectively.

The projection p̂i of a point i can be expressed as

p̂i = αid , ∀i ∈ [1 ; n] , (B.3)

where the scalar αi is a yet unknown projection length for every point i. As seen in the
following, the principal direction d will depend on the choice of the reference point G.
Inserting the above into the minimization problem B.1 and adding the indicator function
I{0}(g(d)) to the convex set {0} results in a unconstrained minimization problem in the
variables d and α = [α1, · · · , αn]

⊤ as

argmin
d,α

h(d,α) = argmin
d,α

f(d,α) + I{0}(g(d)) (B.4)

= argmin
d,α

1

2

n∑
i=1

(pi − αid)
⊤mi(pi − αid) + I{0}(g(d)) (B.5)

= argmin
d,α

n∑
i=1

−αimid
⊤pi +

1

2
α2
imid

⊤d+ I{0}(g(d)) . (B.6)

A necessary condition for a local optimum is that the zero vector 0 is contained in the
subdifferential of the objective function, that is, 0 ∈ ∂h(d,α), see theorem 6.1. Note
that h(d,α) does not need to be convex for the application of the subdifferential. Under
the restriction that some function f(d) is monotone, the composition I{0}(f(d)) would
still be convex. Unfortunately, the above constraint g : Rn → R is an increasing function
in all directions and is not monotone. One could possible say, that g is at least locally
monotone, and thus the composition I{0}(f(d)) might be locally convex. Evaluating
the subdifferential with respect to d and α yields the following equations for the local
optimum d∗, a∗:

0
!
∈ ∂αi

h(d∗,α∗) =
∂f

∂αi

(d∗,α∗) (B.7)

⇒ 0 = −d∗⊤pi
⊤+ α∗id

∗⊤d∗⊤ ∀i ∈ [1 ; n] , (B.8)
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0
!
∈ ∂dh(d

∗,α∗) =
∂f

∂d
(d∗,α∗) + ∂dI{0}(g(d)) (B.9)

=
n∑

i=1

−α∗imipi + α∗i
2mid

∗ + ∂gI{0}(g)
∂g

∂d

⊤
∣∣∣∣∣
d∗

(B.10)

⇒ 0 =
n∑

i=1

−α∗imipi + (α∗i
2mi + λ)d∗, (B.11)

where λ ∈ R∗ = 2 ∂gI{0}(g) is the set-valued placeholder or lagrange multiplier which will
be chosen such that the constraint g(d∗) = 0 is enforced. It is essential to note that (B.8)
and (B.11) and g(d∗) = 0 is the complete set of conditions to enforce for finding the
optimum value d∗,α∗. Solving the first equation (B.8) results in

α∗i =
d∗⊤pi

d∗⊤d∗
, ∀i ∈ [1 ; n] (B.12)

and substituting into (B.5) results in the simplified unconstrained optimization problem

min
d,α

1

2

n∑
i=1

mipi
⊤(I− dd⊤)2pi + I{0}(g(d)), (B.13)

where (I− dd⊤)2 = (I− dd⊤) is the imdepotent projection operator onto the hyperplane
with unit normal direction d. By substituting (B.12) into (B.11) one gets a condition for
the optimal direction d∗, that is,

n∑
i=1

mipipi
⊤ d∗ = d∗⊤d∗︸ ︷︷ ︸

=1

(
n∑

i=1

α∗i
2mi + λ)d∗. (B.14)

One may notice that the above equation is an Eigenvalue problem and that d∗ is an
Eigenvector of the matrix

EG =
n∑

i=1

mipipi
⊤ =

n∑
i=1

mi(rOSi
− rOG)(rOSi

− rOG)
⊤ = P⊤P ,

with: P⊤ := [
√
m1p1, . . . ,

√
mnpn]

(B.15)

and that the term s =
∑n

i=1 α
∗
i
2mi + λ is the corresponding Eigenvalue. Note, that

λ is still free and can be determined when s and d∗ are known. In mechanical terms,
matrix EG is the Binet inertia tensor at point G of all mass points with masses mi. In
a statistical setting, the matrix 1

mT
EG corresponds to the weighted covariance matrix of

the observations rOSi
with weighted sample mean rOG and weights mi. A smaller weight

might account for outlier points which should not contribute as much as regular points.
It is still left to show that the eigenvector to the largest eigenvalue minimizes h(d∗,α∗).
This can be seen if we reformulate (B.6) by subtituting (B.12) and using g(d) = 0, which
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yields

argmin
d,α

n∑
i=1

−(d⊤pi)mid
⊤pi +

1

2
(d⊤pi)

2mi d
⊤d︸︷︷︸
=1

+I{0}(g(d)) (B.16)

=argmax
d,α

n∑
i=1

1

2
mid

⊤pipi
⊤d− I{0}(g(d)) (B.17)

=argmax
d,α

n∑
i=1

1

2
d⊤EGd− I{0}(g(d)) . (B.18)

If d is a unit Eigenvector of EG with Eigenvalue s, then (B.18) simplifies to the maxi-
mization over the Eigenvalue s, since d⊤EGd = sd⊤d = s by (B.14). The Binet tensor
EG is symmetric and real and thus diagonalizable and an orthogonal normalized basis can
be constructed. It can be shown that the Eigenvector to the smallest Eigenvalue corre-
sponds to the principal direction with a maximal projection residual. Instead of using an
Eigenvalue decomposition, one can use the singular value decomposition of P = USV⊤

and extract the Eigenvectors from V⊤.
The principal component analysis has been used in this thesis for the construction of a
fitted bounding box in section 11.1.
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Integrator with Displacement Jumps

The explicit integrator discussed in this section is an adaptation obtained from commu-
nications with Ondrej Papes and presented here as a rather experimental motivation to
obtain a drift correction acting directly on displacement level, instead of the numerical
trickery presented in section 8.2.
The equations of motion and the kinematic equation in (8.1) are written as two measure
differential equations in the form:

du = M(q, t)
−1 (h(q,u, t)dt−W(q, t)dP) (C.1)

dq = F(q, t)udt + b(q, t)dt+Q(q, t)dΣ. (C.2)

These measure differential equations can describe smooth continuous time intervals as
well as intervals with discontinuities in the displacement q and velocity u. Similar to the
impulse measure dP, a measure dΣ is introduced in the kinematic equation (C.2) which
allows the displacement q to jump at certain time instants. All measures above contain
a Lebesgue measure dt and an atomic measure dη and are given as

dq := q̇dt+ (q+ − q−)dη

du := u̇dt+ (u+ − u−)dη

dP := λdt+Λdη, Λ := Λ+ −Λ−

dΣ := kdt+Kdη, K := K+ −K−.

(displacement measure)
(velocity measure)
(impulse measure)
(impulse-impulse measure)

(C.3)

The term Q(q, t) corresponds to some yet unknown generalized force direction for the
impulse-impulse quantity dΣ. In the following, we are interested in finding an approx-
imate solution of (C.1) and (C.2) in a time interval [tS, tE] with ∆t := tE − tS. This
interval is split into three distinct intervals such that ∆t = ∆tS1 + ∆t12 + ∆t2E with
intermediate times t1 and t2 and t2 > t1. It is assumed that a displacement jump may
occurs at time t1 and is solely caused by the impulse-impulse K1. Similarly, a velocity
jump occurs at time t2 and is exclusively caused by the impulse Λ2. We assume that the
force and impulse density λ(·) and k(·), respectively, are both zero in the time interval
∆t. Furthermore, it is assumed that all quantities M,F,b,W,Q are constant within the
time interval ∆t. The time line is given as
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t
∆tS1 ∆t12 ∆t2E

− tS + − t1 + − t2 + − tE +

K1 Λ2

The integration of (C.1) and (C.2) over the interval (tS, tE) can be split into the following
integrals: ∫

(tS , tE)

dq =

∫
(tS , t1)

dq+

∫
{t1}

dq

︸ ︷︷ ︸
displacement jump

+

∫
(t1, t2)

dq+

∫
{t2}

dq+

∫
(t2, tE)

dq , (C.4)

∫
(tS , tE)

du =

∫
(tS , t1)

du+

∫
{t1}

du+

∫
(t1, t2)

du+

∫
{t2}

du

︸ ︷︷ ︸
velocity jump

+

∫
(t2, tE)

du . (C.5)

The time integration over a time interval without impulsive forces can be evaluated as∫
(ti, t)

du = u(t)− ui = M
−1h(t− ti), (C.6)

∫
(ti, t)

dq = q(t)− qi =

∫
(ti, t)

F(M
−1h(t− ti) + ui) + b dt (C.7)

= Fui(t− ti) + FM
−1h

(t− ti)
2

2
+ b (t− ti). (C.8)

The integrated intervals evaluate to the following 10 equations:

(tS, t1):

u−1 = u+
S +M

−1h∆tS1

q−1 = q+
S + Fu+

S∆tS1 + FM
−1h

∆tS1
2

2
+ b∆tS1

(C.9)

displacement jump at {t1}:
[
u+
1 = u−1

q+
1 = q−1 +QK1

(C.10)

(t1, t2):

u−2 = u+
1 +M

−1h∆t12

q−2 = q+
1 + Fu+

1 ∆t12 + FM
−1h

∆t12
2

2
+ b ∆t12

(C.11)

velocity jump at {t2}:
[
u+
2 = u−2 +M

−1WΛ2

q+
2 = q−2

(C.12)

(t2, tE):

u−E = u+
2 +M

−1h∆t2E

q−E = q+
2 + Fu+

2 ∆t2E + FM
−1h

∆t2E
2

2
+ b ∆t2E .

(C.13)
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Given q+
S and u+

S , the equation can be solved for the remaining 10 variables which results
in the update equations

q−E = q+
S + (F u+

S + b)∆tSE + FM
−1h

∆tSE
2

2
+QK1 + FM

−1WΛ2∆t2E

u−E = u+
S +M

−1h∆tSE +M
−1WΛ2.

(C.14)

The integration of the time line, where an impulse Λ1 is acting at time t1 instead of an
impulse-impulse K1, given as

t
∆tS1 ∆t12 ∆t2E

− tS + − t1 + − t2 + − tE +

Λ1 Λ2

results in the following update equation

q−E = q+
S + (F u+

S + b)∆tSE + FM
−1h

∆tSE
2

2
+ FM

−1W(Λ1∆t1E +Λ2∆t2E)

u−E = u+
S +M

−1h∆tSE +M
−1W(Λ1 +Λ2) .

(C.15)

Comparing (C.14) with (C.15), the impulse-impulse term QK1 can be identified as

QK1 = FM
−1WΛ1∆t1E , (C.16)

from which follows the generalized force direction Q = FM−1W of the impule-impulse
K1. By the motivation to only have one single dual variable influencing the displacement
update in (C.15), we introduce the following transformation K := Λ1∆t1E +Λ2∆t2E and
Λ := Λ1 +Λ2 which is written as[

K
Λ

]
=

[
∆t1E ∆t2E
1 1

] [
Λ1

Λ2

]
. (C.17)

The transformation is singular if both impulses Λ1 and Λ2 are acting at the same time,
that is, ∆t1E = ∆t2E. This means, that a pair (K,Λ) can not be split anymore into two
impulses Λ1 and Λ2. Avoiding this singularity as much as possible, we set ∆t1E = ∆t and
∆t2E = 0 which results in the time line

t .
∆t

tS = t1 t2 = tE

Λ1 Λ2

The update schemes (C.14) and (C.15), omitting left and right limits, result to

qE = qS + (F uS + b)∆t+ FM
−1h

∆t2

2
+ FM

−1WK

uE = uS +M
−1h∆t+M

−1WΛ .

(C.18)
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Algorithm C.1 (Papes Time-Stepping Scheme for Unilateral Contacts):
For a given start time tS and known displacement qS := q(tS) and velocity uS := u(tS)
the following 3 steps compute an approximation qE ≈ q(tE) and uE ≈ u(tE) at the
end time tE of the time interval ∆t := [tS, tE].
Step 1 : Compute the approximations

tE = tS +∆t, tM = tS +
∆t

2
F = F(qS, tS), b = b(qS, tS)

qM = qS + (F uS + b)
∆t

2
h = h(qM ,uS, tM)

M = M(qM , tM), W = W(qM , tM) .

(C.19)

Step 2 : Solve the impenetrability condition for qE and K for all contacts i ∈ [1 ; k]
given as

K = proxRR+
0 ×···×R

+
0

(
K−R

−1gN(q
E, tE)

)
qE = qE∗

+ FM
−1WK ,

(C.20)

where gN(q
E, tE) := [gN,1(q

E, tE), . . . , gN,k(q
E, tE)]⊤,

K := [KN,1, . . . , KN,k]
⊤ and qE∗

:= qS + (F uS + b)∆t+ FM−1h∆t2

2
.

Step 3 : Solve the Newton-type impact law for uE and Λ only for the contacts
i ∈ IE := {i | gN,i(q

E, tE) ⩽ 0} given as
γS
N = WuS + χ(qM , tM) , γE

N = W(qE, tE)uE + χ(qE, tE)

Λ = proxRR+
0 ×···×R

+
0

(
Λ−R

−1(γE
N + ϵγS

N)
)

uE = uS +M
−1h∆t+M

−1WΛ ,

(C.21)

where Λ = [ΛN,1, . . . ,ΛN,k]
⊤ and all other terms γN ,W,χ,R only account

for the contacts in the set IE.

The update scheme (C.18) is convenient as the impulse Λ does not influence the dis-
placement update. The impulse Λ and impulse-impulse K can be used to formulate two
different independent requirements, namely the enforcement of the unilateral contact on
displacement level at the end of the time step by K and the enforcement of the Newton-
type impact law of the unilateral contact on velocity level formulate by Λ.
If the mechanical system of interest has k possible unilateral contacts, the impenetrability
requirement and the impact law are then formulated as

−gN,i(q
E, tE) ∈ NR+

0
(KN,i) ∀i ∈ [1 ; k] (C.22)

−(γE
N,i + εN,i γ

S
N,i) ∈ NR+

0
(ΛN,i) ∀i ∈ IE , (C.23)

where IE := {i | gN,i(q(t
E), t∗) ⩽ 0}. The reader is referred to (8.1) and (7.75) and (7.27)

for the used notation in (C.22). Solving the update equations (C.18) in combination with
the two force laws (C.22) and (C.23) suggests the time-stepping scheme in algorithm C.1.
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The resolution process for qE in (C.20) clearly influences the total energy of the system and
influences only the potential energy if the mechanical system is not externally excited and
has a constant mass matrix. It is important to note that all possible unilateral contacts
need to participate in step 2, and repeated evaluations of gN(q

E, tE) during the resolution
in step 2 can be rather expensive. Step 2 poses one significant problem for large-scale
multi-body systems: the number of possible unilateral contacts and the combinations
between all possible collision partners quickly becomes intractable. Furthermore, the gap
functions are not available analytically. This means that only an active set of closed
contacts can be computed for some qE in (C.20). Including a changing active set of
penetrated contacts during the iterative resolution of (C.20) is not suggested as this leads
to a chaotic iteration where contacts are switched on and off continuously. Step 2 can be
modified, for example, such that only contacts in an active set IM at the mid point tM

are included in the resolution of (C.20). This, however, leads to the same on-off switching
behavior over multiple time steps for certain configurations of the mechanical system.
Nevertheless, an approximate solution to (C.20) can be viewed as a drift correction on
displacement level, and by using a linearized version of gN(q

E, tE) together with a fixed
active set of contacts yields a drift stabilization which does not interfere with the impact
law.
The gap function at the end time can be linearized around qE∗

:= qS + (F uS + b)∆t+
∆t2

2
FM−1h with the approximations in (C.19). By applying the displacement update

in (C.18) and using tE − tE
∗ this yields

gN(q
E, tE) ≈ gN(q

E∗
, tE

∗
) +

∂gN

∂q

∣∣∣∣
qE∗ ,tE∗
(qE − qE∗

) +
∂gN

∂t

∣∣∣∣
qE∗ ,tE∗
(tE − tE

∗
)︸ ︷︷ ︸

0

= gN(q
E∗
, tE

∗
) +

∂gN
∂q

∣∣∣∣
qE∗

,tE
∗

FM
−1WK

≈ gE∗

N +W⊤M
−1WK = gE∗

N +GK . (C.24)

The approximation (C.24) can be substituted into (C.20) to obtain a drift correction step
as

K = proxRR+
0 ×···×R

+
0
(K−R

−1(GK+ gE∗

N )) ,

qE = qE∗
+ FM

−1WK.
(C.25)

The above proximal equation can be solved by the following JOR Prox iteration (cf. (8.26)
for SOR Prox iteration) till convergence in K as

qk+1 = M
−1WKk

Kk+1 = proxRR+
0 ×···×R

+
0

(
Kk −R

−1(W⊤qk + gE∗

N )
)

qE := qE∗
+ αF qk

(C.26)

with a given initial impulse-impulse K0 ∈ (R+
0 )

n and initial displacement correction
q0 := M−1WK0. The parameter α ∈ [0, 1] is some drift correction parameter to tune
the influence of the correction for an early termination of the iteration.
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The iteration scheme (C.26) can also be used as a drift correction in Moreau’s time-
stepping scheme as a fifth step in algorithm (8.1) with

qE∗
:= qS +∆t F(qM , tM)

uS + uE

2
+ ∆tb(qM , tM) . (C.27)

If the evaluation of gE
N is not too expensive and is done by a collision detection step which

only returns closed contacts, one might try to continuously enlarge the contact set during
an iteration of (C.26) or (C.20). Also of interest might be to use a fixed index set of
contacts detected in a certain neighborhood around each body.

C.1 Test Example: Mass Point inside Circle
In this section, we demonstrate Papes time-stepping scheme in algorithm C.1 for a simple
mechanical system consisting of a mass point under gravity with position vector Ig =
[0,−g]⊤ inside a circle visualized in figure C.1. The gap function between the mass point
and the circle is nonlinear and can be stated analytically. The equation of motions for
the generalized coordinate q = [x, y]⊤ and velocity u = [ẋ, ẏ]⊤ of the system are given
in figure C.1. Three evaluations of Papes time-stepping scheme versus Moreau’s time-

Mu̇− h−Wλ = 0, q̇ = u

M :=

[
m 0
0 m

]
, h :=

[
0
−mg

]
,

gN = R− ∥rOS∥2 = R−
√

q⊤q

γN = W(q)u, W(q) :=
∂gN

∂q
= − q√

q⊤q
.

Parameters:
m = 1kg, R = 1m, g = 9.81 kgm s−2

Initial Condition:
q = [0.5, 0.5]⊤, u = 0

Figure C.1: Mass point m under gravity inside a circle and the corresponding
mathematical description.

stepping scheme are shown in figure C.2. All simulations use the same ∆t = 0.05 s but
once with an inelastic impact with ϵN = 0, with an elastic impact ϵN =

√
0.5 and also with

a fully elastic impact with ϵN = 1. All simulations are compared to a roughly accurate
reference simulation with Moreau’s time-stepping scheme with ∆t = 10−4. Figure C.2
shows that impenetrability is fulfilled for the whole integration period for Papes scheme
whereas the position in Moreau’s scheme is prone to large drift for large time steps. Papes
time-stepping scheme is not energy consistent and also not for a fully inelastic impact such
as Moreau’s scheme.
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Figure C.2: Mass point under gravity inside a circle (gray). Moreau’s time-stepping
scheme (red) versus Papes time-stepping scheme (blue) compared to an exact refer-
ence (black), Settings (a-d): ∆t = 0.05 s and ϵN = 0. Settings (e-f): ∆t = 0.05 s and
ϵN = 1.





AppendixD
Linear Algebra in Mechanics

This chapter should help the reader to familiarize himself with some concepts from lin-
ear algebra in the context of mechanics. The lack of notational strictness, also due to
commonly regarding this fundamental basics as trivial1, often causes confusion between
concepts such as coordinate tuples, vectors, transformation matrices, rotations and so
forth. Proper use of these concepts and its notation is not only important for correct
computations but also extremely useful for collaborative software development in me-
chanics. This chapter makes an attempt to remove these confusions as much as possible.
When not stated differently, Einstein summation convention is applied throughout this
chapter. The reader should note that the proofs shown in this chapter may not be com-
plete.

D.1 Linear Space
The mathematical concept which is of most interest in mechanics is the notion of a vector
space or linear space.
Definition D.1 (Linear Space, Vector Space):
A linear space (V,F,⊕,⊙) is a set V (of vectors) and a field F (of scalars) equipped with
two binary operations, ⊕ : V ×V → V , called vector addition, and ⊙ : F×V → V , called
scalar multiplication, such that:

• the vector addition satisfies the following properties:
Associativity: ∀x,y, z ∈ V, x⊕ (y ⊕ z) = (x⊕ y)⊕ z .
Commutativity: ∀x,y,∈ V, x⊕ y = y ⊕ x .
Identity Element: 0 ∈ V, ∀x ∈ V, x⊕ 0 = x .
Inverse Element: ∀x ∈ V ∃(−x) ∈ V, x⊕ (−x) = 0 .

• the scalar multiplication satisfies the following properties:
Associativity: ∀a, b ∈ F, z ∈ V, a⊙ (b⊙ z) = (a · b)⊙ z .
Multiplication by Identity of F: ∀x ∈ V, 1⊙ x = x .

1 In disagreement to the authors opinion.

187
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Distributivity: ∀a, b ∈ F, ∀x,y ∈ V , (a ⊕ b) ⊙ x = (a ⊙ x) ⊕ (b ⊙ x) and
a⊙ (x⊕ y) = (a⊙ x)⊕ (b⊙ y) .

In the following, the two operators ⊕ and ⊙ are omitted for the notation of a linear
space, that is, (V,F), and are written with the normal operators used for multiplication
and addition of scalars, that is, “+” and “·”, respectively.
Definition D.2 (Linear Independence):
A set of vectors S = {v1, . . . ,vn} ⊆ V is called linearly independent if and only if

n∑
i=1

aivi = 0 ⇔ ai = 0 ∀i ∈ [1 ; n] . (D.1)

Definition D.3 (Basis of a Vector Space):
For a linear space (V,F), a set of vectors ¯̄eA := {ai} := {a1, . . . , an} ⊆ V is called a basis
of (V,F) if and only if they are linearly independent and they span the linear space V .
The letter A denotes the name of the basis.
Definition D.4 (Dimension of a Vector Space):
If a basis of a linear space (V,F) with a finite number of elements exists, the number of
elements of this basis is called the dimension of (V,F) and denoted by dimF(V ) and the
linear space (V,F) is called finite-dimensional. If not, (V,F) is called infinite-dimensional.

If the linear space (V,F) has dimension dimF(V ) = n, then there exist n linearly in-
dependent vectors which form a basis. Any set of n + 1 or more vectors are linearly
dependent.
The reader should note that in this chapter only finite-dimensional vector spaces are
considered.

D.2 Linear Map
A linear map maps elements from one linear space into another and is defined as the
following:
Definition D.5 (Linear Map):
Let (U,F) and (V,F) be two linear spaces. Then, the function or map A : U → V is called
linear if and only if ∀u1,u2 ∈ U, a1, a2 ∈ F and

A(a1u1 + a2u2) = a1A(u1) + a2A(u2) .

If, for example, (U,F) = (Rn,R) and (V,F) = (Rm,R) with a matrix A ∈ Rm×n then the
matrix multiplication u 7→ v = Au is a linear map.

D.3 Coordinate Map with respect to a Basis
The coordinate map is a linear map which maps elements from a linear space (V,F) to a
linear space (Fn,F). A vector x ∈ V can be represented by a linear combination of the



D.4 Representation of a Linear Map 189

basis vectors ¯̄eA as

x = Ax
1a1 + · · ·+ Ax

nan . (D.2)

The coordinate map KA(x) of x is defined as

KA : V → Fn

∈ ∈
x 7→ KA(x) := Ax =

[
Ax

1 · · · Ax
n
]⊤ .

(D.3)

The reader should note the difference between a vector x and its coordinate representation
or coordinate tuple Ax. The coordinate mapping KA(·) is a linear map and bijective and
thus has an inverse K-1

A(·).

D.4 Matrix Representation of a Linear Map
We briefly explain the matrix representation T of a linear map T . For the remainder of
this chapter, we consider mostly two vectors spaces (V,F) and (W,F) with dimensions
dimF(V ) = n and dimF(W ) = m and bases ¯̄eA := {ai} and ¯̄eB := {bj}, respectively.
A linear map T from the linear space V to the linear space W is given as

T : V → W

∈ ∈
{ai} {bi}
x 7→ T (x) = y .

(D.4)

Let the input argument of T be x ∈ V and is be mapped to coordinates Ax ∈ Fn in basis
A and the image y = T (x) ∈ W is mapped to coordinates By ∈ Fm in basis B. There
exists a map B,AT corresponding to T which maps the coordinate tuples represented in
basis A to coordinate tuples in basis B, that is,

B,AT : Fn → Fm

∈ ∈
Ax 7→ B,AT(Ax) = Bx .

(D.5)

Using the bijective coordinate maps KA and KB introduced in appendix D.3, the commu-
tative diagram of interest looks as the following:

V W

Fn Fm

basis ¯̄eA basis ¯̄eB

T

B,AT = matB←A(T )

matB←A

A,BT
-1 = matA←B(T -1)

(if n = m)

KA K-1
A KB K-1

B (D.6)
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By the above diagram, the linear map B,AT results in the following composition of func-
tions:

B,AT = KB ◦ T ◦ K-1
A . (D.7)

Due to the fact that the composition of linear maps remains a linear map, the map B,AT
is linear too. The map from the linear function T to B,AT is denoted as matB←A, that
is, B,AT := matB←A(T ), and is shown as a dashed line in (D.6).
As will be seen in the following, the linear map matB←A(T ) can be represented as a
matrix in Fm×n, hence the word “mat” for its notation. Take two vectors x = Ax

iai ∈ V
and y = By

ibi ∈ W . Then it follows that

By = B,AT ◦ KA(x) = KB ◦ T ◦ K-1
A ◦ KA(x) = KB ◦ T (x) = KB ◦ T (ai) Ax

i (D.8)
=
[
KB ◦ T (a1) . . . KB ◦ T (an)

]
Ax (D.9)

= matB←A(T ) Ax (D.10)

and therefore B,AT = matB←A(T ) := [ KB ◦ T (a1), · · · ,KB ◦ T (an) ] ∈ Fm×n.
The images of T (ai) ∈ W can be represented in basis B as

T (a1) = T 1
1b1 + T 2

1b2 + · · ·+ Tm
1bm

...

T (aj) = T 1
jb1 + T 2

jb2 + · · ·+ Tm
jbm

...

T (an) = T 1
nb1 + T 2

nb2 + · · ·+ Tm
nbm


or: T (ai) = bj T

j
i . (D.11)

The coordinate tuple [ T 1
i, · · · , Tm

i ]
⊤ corresponds to the vector T (ai) represented in

basis B, that is, KB ◦ T (a1). This yields the following matrix B,AT :

B,AT = matB←A(T ) = [ KB ◦ T (a1), · · · ,KB ◦ T (an) ] ∈ Fm×n

=


T 1

1 T 1
2 . . . T 1

n

T 2
1 T 2

2 . . . T 2
n

...
...

. . .
...

Tm
1 Tm

2 . . . Tm
n

 ∈ Rm×n or: B,AT =
[
T i

j

]
,

(D.12)

and results in the matrix-vector multiplication:

By = B,AT Ax . (D.13)

The left subscripts of B,AT denote from which basis in the domain to which basis in the
codomain this function maps, that is, from basis A to basis B. In the field of multilinear
algebra, the linear map T is represented by the tensor T := T i

j bi⊗αj, which is no more
a matrix but a multilinear map where bi ⊗αj is called the tensor product between basis
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vector bi and the dual basis vector αj to aj. The dual basis is briefly introduced later in
this chapter.
The inverse T -1 : W → V of the linear map T exists if dimF(V ) = n = m = dimF(W ) and
its coordinate representation from basis B to basis A is given as A,BT

-1 = matA←B(T -1)
with the notation A,BT

-1 = [T -1i
j] and the property A,BT

-1 = (B,AT)−1. The reader should
take attention between the corresponding notations A,B(T

-1)↔ A,BT
-1 which denotes the

matrix representation of the inverse map T -1 and the similar corresponding notations
(B,AT)−1 ↔ B,AT

−1 which means the inversion of the matrix B,AT. In correspondence
to (D.13) it follows that

Ax = A,BT
-1

By . (D.14)

In multilinear algebra, the map T -1 is represented as a tensor T-1 := T -1i
j ai ⊗ βj where

βj is the dual basis vector to bj.

D.5 Matrix Representation of the Identity Map or
Coordinate Transformation

The change of a coordinate tuple Ax in basis A of a vector x ∈ V to a new representa-
tion Bx in basis B can be obtained by the identity map 1V illustrated in the following
commutative diagram:

V V

Fn Fn

basis ¯̄eA basis ¯̄eB

1V

B,A1 = matB←A(1V ) = KB ◦ K-1
A

A,B1 = matA←B(1V ) = KA ◦ K-1
B

KA K-1
A KB K-1

B (D.15)

Then the matrix representation B,A1 by (D.12) yields

B,A1 = matB←A(1V ) = [ KB(a1), . . . ,KB(an) ] ∈ Fn×n . (D.16)

This matrix is denoted by Glocker [60] in a way which is useful for manipulating coordinate
tuples, that is,

ABA := B,A1 = [ABA
i
j] = KB ◦ K-1

A ∈ Fn×n . (D.17)

The matrix ABA is called coordinate transformation matrix, which changes a coordinate
tuple Ax to the tuple Bx. The vector x remains physically the same by the definition of
the identity map and only the representation x changes from basis A to basis B. The
inverse coordinate map is given as AAB = ABA

−1.
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To summarize, by (D.11), the bases and coordinate tuples transform in the following way:

Bx = ABA Ax , Ax = AAB Bx , (coordinate tuples)
ai = bj ABA

j
i , bi = aj AAB

j
i (basis vectors)

with: AAB = ABA
−1

(D.18)

(D.19)

In multilinear algebra this transformation is often called contravariant basis transfor-
mation. Because the basis transforms with the inverse ABA

−1 as bi = aj AAB
j
i , the

coordinate tuple is said to transform contravariantly.

D.6 Basis Change of a Linear Map
Assume that the matrix representation matB←A(T ) is given which maps coordinate tu-
ples in basis A to coordinate tuples in basis B. The relation to a new representation
matD←C(T ) can be found by the following commutative diagram:

V WV W

Fn Fm

basis ¯̄eA basis ¯̄eB
Fn Fm

basis ¯̄eC basis ¯̄eD

T1V 1V

matB←A(T )
KAKC KB KD

matD←C(T ) = KD ◦ T ◦ K-1
C

matC←A(1V ) matD←B(1V ) (D.20)

The basis change for the matrix matD←C(T ) is then given as:

matD←C(T ) = matD←B(1V ) matB←A(T ) matA←C(1
-1
V ). (D.21)

With the relationship that matA←C(1
-1
V ) = matA←C(1V ) = matC←A(1V )

−1 and (D.12)
and (D.17), equation (D.21) translates to the matrix multiplication

D,CT = ADB B,AT AAC . (D.22)

The next sections address the question how a rotation matrix is related to a coordinate
transformation.

D.6.1 Relation between Linear Maps and Coordinate
Transformation

Assume that a linear map T : V → V with dimF(V ) = n represented as B,AT from basis
A to B has the property that it also transforms the basis vectors ai into the basis vectors
bi, that is,

T (ai) = bi ∀i ∈ [1 ; n] , (D.23)
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then by (D.12) follows that B,AT = I, where I is the identity matrix. If B,AT is represented
in a single basis A by a basis change (D.22), it simply follows that

A,AT = AAB B,AT AAA = AAB B,AT = AAB . (D.24)
Hence, the specific linear map T represented in basis A, that is, A,AT, is the coordinate
transformation AAB.

D.7 Rotation Matrix
Without loss of generality, we assume in the following that the field F of the vector space
V is R. Rotating a vector x ∈ V is achieved by a bijective map denoted as R : V → V
which is called rotation and yields a new vector y ∈ V as

y = R(x) . (D.25)
It makes most sense to represent a rotation R in only a single coordinate system A, that
is, AR := A,AR := matA←A(R) such that Ay = AR Ax is the rotated version of the tuple
Ax. The commutative diagram then looks as the following:

V V

Rn Rn

basis ¯̄eA basis ¯̄eA

R

AR = matA←A(R)

matA←A

AR
−1 = matA←A(R-1)

KA K-1
A KA K-1

A (D.26)

A general rotation R preserves length and angles which can be expressed by preserving a
given inner product (· | ·) : V × V → R as (R(x) |R(y)) = (x |y) (cf. (2.4)). The inner
product induces the norm ∥x∥ =

√
(x |x). A rotation is called proper when it preserves

the orientation of vectors as well. Any inner product preserving map is necessarily linear1

and thus a rotation R is a linear map.
Assume that the inner product in V is given in some basis A as (x |y) := Ax

⊤ M Ay,
where M is a symmetric positive definite matrix (metric). A rotation then needs to fulfill
AR
⊤ M AR = M and additionally det(AR) = 1 if it is proper (cf. (2.4)). A general

rotation is therefore an element of the generalized orthogonal group GO(n,M) := {R ∈
Rn×n | R⊤MR = M} with property det(R) = ±1. The relation between the rotation
matrix AR and the linear map R is given by (D.7) as

AR = KA ◦ R ◦ K-1
A . (D.27)

The matrix representation AR of the rotation R in a different basis B can be obtained by
the relationship (D.22) as

BR = ABA AR ABA
−1 . (D.28)

1 This can be checked by evaluating ∥R(v +w)−R(v)−R(w)∥2 and ∥R(λv)− λR(v)∥2 for any two
vectors v,w ∈ V which results in zero for both terms from which follows linearity.
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ax

ay

az

bx

by

bz x

RBA

If a new basis B with basis vectors {bi} is defined by a given
proper rotation R := RBA and its inverse R-1 = RAB as

bi := RBA(ai) ⇒ ai = RAB(bi) ∀i ∈ [1 ; n] . (D.29)

Then, by (D.24) one obtains AAB = ARBA and by (D.28) we
get

BRBA = ARBA = AAB . (D.30)
Therefore, it does not matter in which basis the rotation ma-
trix is represented. Either A or B correspond to the same
transformation matrix AAB. This makes sense because the
Euler-Rotation theorem says that any rotation can be parametrized by a tuple (n, φ),
where n is the rotation axis and φ the rotation angle. The rotation vector n is coordinate-
dependent and does not change under its rotation, that is,RBA(n) = n, from which follows
An = Bn.
If the vector space is an n-dimensional Euclidean space En where M = I ∈ Rn×n, a proper
rotation matrix belongs to the n-dimensional special orthogonal group SO(n) := {R ∈
Rn×n | R⊤R = I, det(R) = 1}.

D.8 Kinematics in a Vector Space
Assume two bases ¯̄eI := {eIi} and ¯̄eB := {bi} in vector space V are given together with
a time-dependent vector x(t) = Ix

i(t)eIi represented in basis I or in basis B as x(t) =

Bx
i(t)bi(t). The reference basis I is special in the sense that it is not dependent on time

and is thus considered non-moving. The basis vectors bi(t) are dependent on time and
they can be expressed by a coordinate transformation as

ABI(t) := [Ai
j(t)] , AIB(t) := [A-1i

j(t)] (D.31)
eIi = bj A

j
i(t) , bi = eIj A

-1j
i(t) . (D.32)

The time dependence (·)(t) is omitted in the following. Taking the time derivative d
dt
(·) :=

(·)• of vector x(t) results in the absolute velocity vector (x)
•
= ẋ, that is,

x(t) := Ix
i(t)eIi , x(t) := Bx

i(t)bi(t) (D.33)
⇓ ⇓ (D.34)

d

dt
(x) = (Ix

i)
•
eIi ,

d

dt
(x) = (Bx

i)
•
bi + Bx

i (bi)
•
. (D.35)

The total time derivative (bi)
• can be obtained from (D.32) as

(bi)
•
= eIj(A

-1j
i)
•
= bk Ak

j(A
-1j

i)
•
. (D.36)

From (D.36), equation (D.35) follows to
d

dt
(x) := ẋ = (Bx

i)
•
bi + Ak

j(A
-1j

i)
•

Bx
i bk (D.37)

=
(
(Bx

k)
•

+ Ak
j(A

-1j
i)
•

Bx
i
)
bk (D.38)
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The coordinate representation B(ẋ) = [. . . , Bẋ
i, . . . ]⊤ of the velocity vector ẋ = Bẋ

ibi in
basis B yields

Bẋ
k = (Bx

k)
•

+ Ak
j (A

-1j
i)
•

Bx
i ⇔ B(ẋ) = (Bx)

•
+ABI(ABI

−1)
•

Bx . (D.39)

Equation (D.39) is called the Euler differentiation rule which accounts for a moving
reference frame.

D.9 The Dual Space
The dual vector space V ∗ (abbreviated as dual space) for a finite vector space V with
dimF(V ) = n is of utmost interest in mechanics.
To define the dual space, one needs the definition of a functional. A function f defined as
f : V → F is called a functional and maps a vector x ∈ V to the underlying field F, which
is most often R. A functional is called linear if it satisfies the properties in appendix D.2.
A linear functional is sometimes also called 1-form, linear-form or covector or covariant
1-tensor.
Definition D.6 (Dual Space):
The dual vector space V ∗ to the vector space V is defined as the set of all linear functionals
on the vector space V , that is,

V ∗ := {f : V → F, f linear}. (D.40)

A linear functional f applied on a vector x := xiai ∈ V yields f(x) = f(ai)x
i. The scalars

f(ai) ∈ R define the functional uniquely. Since the functional is a linear map, the matrix
representation mat1←A(f) of the functional f (cf. appendix D.4) is given by (D.12) as

mat1←A(f) = [f(a1), f(a2), . . . , f(an)] . (D.41)

The tuple 1f := mat1←A(f) maps Ax to the representation in the trivial basis 1 ∈ R as
f(x) = f⊤Ax. Note that the addition of two functionals f ,g ∈ V ∗ is again a functional on
V since

f(x) + g(x) = (f(ai) + g(ai))x
i = h(ai)x

i = h(x) ∈ V ∗ . (D.42)

Definition D.7 (Duality Pairing):
The duality pairing of a dual vector f ∈ V ∗ with a primal vector x ∈ V is simply the
functional f applied to x. The duality pairing is written as f(x) := ⟨f |x⟩.
Definition D.8 (Dual Basis):
Let ¯̄eA = {ai} be a basis for V , then there exists a dual basis ¯̄ϵα = {αi} such that

⟨αi | aj⟩ = αi(aj) = δij =

{
1 if i = j
0 if i ̸= j

, (D.43)
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where δij denotes the Kronecker delta. The set of vectors ¯̄ϵα are linearly independent
and is a basis for V ∗. Therefore the dimension of the dual space is the same, that is,
dimF(V ) = dimF(V

∗) = n.

The dual basis vectors αi are also called coordinate forms, because it is a linear functional
which selects the i th coordinate in its primal basis ai, that is, αi(x) = Ax

i for some
x = Ax

iai ∈ V .
Proof: (Dual Basis and Representation)
Let x ∈ V and g ∈ V ∗ be defined as g = giα

i with dual and primal basis ¯̄eA = {ai}
and ¯̄ϵA = {αi}, respectively. Let g be the zero functional, then

⟨g |x⟩ = 0 = ⟨giαi | xiai⟩ = gix
i = 0 ∀x ∈ V , (D.44)

which implies that gi = 0 and shows the linear independence of the vectors αi and
thus dimF(V ) = dimF(V

∗).
If f ∈ V ∗ and define fi = ⟨f | ai⟩ then

⟨f |x⟩ = ⟨f |xiai⟩ = ⟨f | ai⟩xi = fix
i = fi⟨αi |x⟩ = ⟨fiαi |x⟩, (D.45)

which holds for every x and shows that every linear functional f ∈ V ∗ can be expressed
through its basis

f = ⟨f | ai⟩αi. (D.46)

The bidual space V ∗∗ is analogue to the dual space V ∗ and defined as the space of all
linear functionals which map from the dual space to the underlying field F as

V ∗∗ := {f : V ∗ → F, f linear} . (D.47)

D.9.1 Natural Injective Map into V ∗∗ and Reflexivity

We search a map φ : V → V ∗∗ such that the functional φ(x) : V ∗ → F is such that
φ(x)(f) ∈ F for some f ∈ V ∗. The most natural way to define the mapping φ(x)(f) ∈ F
is to define it as φ(x)(f) := f(x) ∈ F. This results in the map φ as

φ : V → V ∗∗

∈ ∈
x 7→ φ(x) := ⟨• |x⟩ .

(D.48)

Without defining additional structure, it can be shown that the map φ is linear and in-
jective (one-to-one), also for infinte-dimensional vector spaces. For the finite-dimensional
case, as assumned, φ is bijective. That means we can uniquely associate to each vector x
a bidual vector ⟨• |x⟩ and therefore V is isomoprhic to V ∗∗ by the natural isomorphism
φ, denoted as V ∼= V ∗∗. This is called reflexivity and all finite dimensional vector spaces
are reflexive.
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Proof: (Reflexivity (finite case))
With x = xiai ∈ V and y = yiai ∈ V and a ∈ F and basis ¯̄eA = {ai} and dual basis
¯̄ϵα = {αi} and f ∈ V ∗ it follows that

φ(x+ y)(f) = f(x+ y) = f(x) + f(y) = φ(x)(f) + φ(y)(f)

φ(ax)(f) = f(ax) = af(x) = aφ(x)(f),

from which follows linearity. Given φ(x) = φ(y), it follows φ(x)(αi) = φ(y)(αi) ⇒
αi(x) = xi = yi = αi(y) ∀i ∈ [i ; n], which shows injectivity, and because dimF(V ) =
dimF(V

∗∗) = n it is also bijective.

It is important to note that the duality pairing ⟨x̂ |α⟩ with x̂ = φ(x) ∈ V ∗∗, α ∈ V ∗, x ∈
V is equivalent to the pairing ⟨α |x⟩.

D.9.2 Injective Map into the Dual Space

For the injection (D.48) into the bidual space V ∗∗, it was not necessary to rely on any
sort of basis. Defining a map from the primal space V to the dual space V ∗ is in general
not possible without relying on a basis. That is exactly where the role of a bilinear form
comes into play. Abstracting the notion of an inner product in a vector space V over the
field F is that of a bilinear form or bilinear pairing.
A bilinear form ϕ is in general a function ϕ : V ×W → F with vector spaces V and W
over the same field F. A bilinear form is linear in both arguments. The duality pairing
is a bilinear form ⟨· | ·⟩ : V ∗ × V → F. A bilinear form ϕ : V × V → R in a real vector
space (A := R) which is symmetric, that is, ϕ(x,y) = ϕ(y,x) and positive definite, that
is, ϕ(x,x) > 0 ∀x ̸= 0, is called inner product in the vector space V . For a vector space
V with a complex field F := C, the concept of a bilinear form needs to be generalized to
the notion of a sesquilinear form to become an inner product in V .
Any bilinear form ϕ : V × V → F can be used to define a map ϕV as

ϕV : V → X ⊆ V ∗

∈ ∈
x 7→ ϕV (x) := ϕ(x, •) ,

(D.49)

which maps a primal vector x to a dual vector ϕV (x). If ϕV is bijective then ϕV defines
an isomorphism from the primal space V to a subspace X in the dual space V ∗ for
infinite-dimensional vector spaces and to the whole space V ∗ for finite-dimensional vector
spaces.
Any inner product therefore defines an isomorphism from V to its dual V ∗ in the finite
case. An inner product also induces a norm by ∥x∥ =

√
(x |x) which is useful to measure

lengths. Specifying an inner product is done by representing it in some basis, lets say
A and B, which yields (x |y) = (Ax

iai | Byjbj) = Ax
i
By

j(ai |bj) = Ax
⊤

α,BM By, where
α,BM = [M ij] ∈ Rn×n with M ij = (ai |bj) denotes the metric and M = M ijα

i ⊗ βj is
the metric tensor.
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D.9.3 Transpose of a Linear Map

The transpose T ⊺ : W ∗ → V ∗ of a linear map T : V → W is defined on the relationship
between the duality pairing as

⟨ T ⊺(f) |v ⟩ = ⟨ f | T (v) ⟩ ∀f ∈ W ∗,v ∈ V . (D.50)

This can also be written as T ⊺(f) = f ◦T which is visualized in the following commutative
diagram:

V W

basis {ai} basis {bi}

V ∗ W ∗

F

basis {αi} basis {βj}

T
f ∈ W ∗

f ◦ T
∈ V

∗

T ⊺

ϕV ϕW

Remark that, the adjoint map T ⋆ : W → V of a linear map is defined on the inner
product and not the same as the transpose defined above. The next step is to derive the
matrix representation matα←β(T ⊺) of the transpose map. This is done the same way as
for any linear map as described in appendix D.4. Assume x ∈ V and y = T (x) ∈ W
and x = Ax

i ai and y = By
i bi. Note also that By = B,AT Ax or By

i = T i
j Ax

j and
accordingly the basis as T (ai) = bj T

j
i and by (D.12) we have

(T ⊺(βi))(x) = βi ◦ T (x) = βi(y) = By
i = T i

j Ax
j = αj(x) T i

j , (D.51)

which holds for all x. Therefore, T ⊺(βi) = αj T i
j and this is exactly the transpose of the

relationship T (ai) = bj T j
i in (D.11). Therefore, the matrix representation α,β(T

⊺) :=
matα←β(T ⊺) yields

α,βT
⊺ = (B,AT)⊤ or α,β(T

⊺) =
[
T ⊺

i
j
]
=
[
T j

i

]
. (D.52)

The reader should note the difference of the transpose of a matrix denoted by A,BT
⊤

and the representation of the transpose map T⊺ as α,βT
⊺. Relation (D.52) gives the true

meaning of taking the transpose of a matrix: if a matrix represents an operator on some
finite-dimensional space, then its tranpose represents the dual operator. According to
appendix D.4, the matrix representation α,βT

⊺ maps a coordinate tuple βg in basis β to
a coordinate tuple αf in basis α.
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D.9.4 Coordinate Transformation in the Primal and Dual

If we take the indentiy map 1V : V → V with matB←A(1V ) = ABA = [Ai
j], then the

matrix representation of the transpose operation matα←β(1
⊺
V ) = Aαβ of the transpose

map 1
⊺
V : V ∗ → V ∗ results in the map ABA

⊤ which transforms from basis ¯̄ϵβ = {βi} to
the basis ¯̄ϵα = {αi} and vice versa with its inverse. The transformation relationships
between the dual and the primal space can be summarized in the following:

primal space V dual space V ∗

Bx = ABA Ax ⇔ By
i = ABA

i
j Ax

j

Ax = AAB Bx ⇔ Ax
i = AAB

i
j Bx

j

βf = (AAB)
⊤
αf ⇔ βfi = αfj AAB

j
i

αf = (ABA)
⊤
βf ⇔ αfi = βfj ABA

j
i

tuples

ai = bj ABA
j
i

bi = aj AAB
j
i

αi = βj AAB
i
j

βi = αj ABA
i
j

bases

In multilinear algebra, the transformation in the dual space is often called covariant basis
transformation. The reason for this terminology comes from the fact that the primal basis
transforms as bi = aj AAB

j
i whereas the coordinate tuple transforms as βf = (AAB)

⊤
αf .

On the contrary, the primal tuple transforms with the inverse of AAB as Bx = AAB
−1

Ax,
which is called contravariant basis transformation. If the coordinate tuple is written as
a row vector, the transpose vanishes and the row tuple transforms with AAB which is
identical to the transformation of the bases. Therefore, it makes sense to write dual
vectors in their coordinate representation as row tuples.

D.9.5 Annihilator

The annihilator N of a subspace S ⊆ V is defined as:

N := {α | ⟨α |x⟩ = 0 ∀x ∈ S} . (D.53)

The annihilator is depicted in the following diagram:

primal space V , dimF(V ) = n

x
0

S

dimF(S) = m

dual space V ∗, dimF(V
∗) = n

α

N

dimF(N) = n−m

0

⟨α |x⟩ = 0

If the subspace N has dimension dimF(S) = m < n with dimF(V ) = n, then the annihi-
lator has dimension dimF(N) = n−m.
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Proof:
Assume a basis ¯̄eA = {ai} for V with dimF(V ) = n. Assume that the subspace S is
spanned by the first m basis vectors {a1, . . . , am} of V . The dual basis of V for V ∗ is
given as ¯̄ϵα = {αi}.
Every vector x in S can be written as x = xiai with i ∈ [1 ; m]. A functional f ∈ V
can be written in V ∗ as f = fiα

i with i ∈ [1 ; n]. For f to be in the annihilator N ,
we need ⟨f |x⟩ = 0 ∀x ∈ S. Which implies that fix

i = 0, ∀xi with i ∈ [1 ; m]. This
means that the first m coordinate components fi are zero which implies further that
any f ∈ N can be expressed by f = fiα

i, i ∈ [m + 1 ; n]. Which means that the basis
vectors αi with i ∈ [m+ 1 ; n] span the annihilator and therefore dim(N) = n−m.

D.10 Used Notation

x ∈ F a scalar in the field F.
(V,F) or (V,F,⊕,⊙) vector space or linear space V to the

field F with addition ⊕ and
multiplication ⊙.

T , T ⊺, T -1, A, general maps.
T : V → W a map from vector space V to W .
T -1 : W → V inverse map of T from vector space W

to V .
T ⊺ : W ∗ → V ∗ transpose map of T from vector space

W ∗ to V ∗.
1V : V → V and 1W : W →W linear identity map in vector space V

and W .
x ∈ V vector in the vector space V .
¯̄eA := {ai} ∈ V set of basis vectors for the vector space

V .
Ax ∈ Fn coordinate tuple of a vector x ∈ V in

the basis A.
matB←A(T ) or B,AT or [T i

j] ∈ Fn×m matrix representation of the linear map
T from basis A to basis B.

matα←β(T ⊺) or α,βT
⊺ or [T ⊺

i
j] ∈ Fn×m matrix representation of the map T ⊺

from basis β to basis α

matA←B(T -1) or A,BT
-1 or [T -1i

j] ∈ Fn×m matrix representation of the linear map
T -1 from basis B to basis A

matB←A(1V ) or B,A1 or ABA or [Ai
j] ∈ Fn×n coordinate transformation from basis A

to basis B.
(ABA)

⊤ or ABA
⊤ the transpose of the matrix ABA

(ABA)
−1 or ABA

−1 the inverse of the matrix ABA



AppendixE
Additional References

E.1 Source Code References
The following table helps the reader to locate the relevant source code of the GRS frame-
work [141] for all discussed software implementations throughout this thesis. The follow-
ing path abbreviations are used:

• [CS] : Source code directory of the common source code files of the GRS framework.
• [MPI] : Source code directory of the MPI application GRSFSimMPI.
• [CV] : Source code directory of the converter application GRSFConverter.
• [A] : Source code directory of the library ApproxMVBB [139].

nr. abbreviation
▶ C++ class/namespace

file path

[1] SimulationManager [SIM]/include/GRSF/states/simulationManager/
SimulationManager.hpp

[2] SimulationManagerMPI [MPI]/include/GRSF/states/simulationManager/
SimulationManagerMPI.hpp

[3] TimeStepper
▶TimeStepperBase

[CS]/include/GRSF/dynamics/general/
TimeStepperBase.hpp

[4] MoreauTimeStepperMPI [MPI]/include/GRSF/dynamics/general/
MoreauTimeStepperMPI.hpp

[5] DynamicsSystem [CS]/include/GRSF/dynamics/general/
DynamicsSystem.hpp

[6] StateRecorder [CS]/include/GRSF/dynamics/buffers/
StateRecorder.hpp

[7] StateRecorderMPI [MPI]/include/GRSF/dynamics/buffers/
StateRecorderMPI.hpp

201
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[8] RigidBody [CS]/include/GRSF/dynamics/general/
RigidBody.hpp

[9] CollisionSolver [CS]/include/GRSF/dynamics/collision/
CollisionSolver.hpp

[10] CollisionSolverMPI [MPI]/include/GRSF/dynamics/collision/
CollisionSolverMPI.hpp

[11] InclusionSolver [CS]/include/GRSF/dynamics/Inclusion/
InclusionSolver.hpp

[12] InclusionSolverMPI [MPI]/include/GRSF/dynamics/Inclusion/
InclusionSolverMPI.hpp

[13] ContactGraph [CS]/include/GRSF/dynamics/inclusion/
ContactGraph.hpp

[14] ContactGraphMPI [MPI]/include/GRSF/dynamics/inclusion/
ContactGraphMPI.hpp

[15] SceneParser [CS]/include/GRSF/systems/SceneParser.hpp

[16] MultiBodySimFile [CS]/include/GRSF/dynamics/general/
MultiBodySimFile.hpp

[17] ProcessTopology [CS]/include/GRSF/Dynamics/General/
MPIToplogy.hpp

[18] GridTopology
▶ProcessTopologyGrid

[MPI]/include/GRSF/dynamics/general/
MPITopologyGrid.hpp

[19] GridTopologyBuilder [MPI]/include/GRSF/dynamics/general/
MPITopologyBuilder.hpp

[20] KdTreeTopology
▶ProcessTopologyKdTree

[MPI]/include/GRSF/Dynamics/General/
MPIToplogyKdTree.hpp

[21] KdTreeTopologyBuilder [MPI]/include/GRSF/dynamics/general/
MPITopologyBuilder.hpp

[22] Collider
▶ColliderBody

[CS]/include/GRSF/dynamics/collision/
Collider.hpp

[23] ColliderOOBB [CS]/include/GRSF/dynamics/collision/
Collider.hpp

[24] ColliderAABB [CS]/include/GRSF/dynamics/collision/
Collider.hpp

[25] TopologyBuilder [MPI]/include/GRSF/Dynamics/General/
MPIToplogyBuilder.hpp

[26] NearestNeighbourFilter [A]/include/ApproxMVBB/KdTree.hpp

[27] KdTree
▶Tree

[A]/include/ApproxMVBB/KdTree.hpp

[28] BodyCommunicator [MPI]/include/GRSF/dynamics/general/
BodyCommunicator.hpp
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[29] InclusionCommunicator [MPI]/include/GRSF/dynamics/inclusion/
InclusionCommunicator.hpp

[30] ProcessCommunicator [MPI]/include/GRSF/dynamics/general/
MPICommunication.hpp

[31] MPIMessages [MPI]/include/GRSF/dynamics/general/
MPIMessages.hpp

[32] NMessageWrapperBodies
▶NeighbourMessage
WrapperBodies

[MPI]/include/GRSF/dynamics/general/
MPIMessages.hpp

[33] TBMessageWrapperBodies
▶TopologyBuilderMessage
WrapperBodies

[MPI]/include/GRSF/dynamics/general/
MPIMessages.hpp

[34] TBMessageWrapperResults
▶TopologyBuilderMessage
WrapperResults

[MPI]/include/GRSF/dynamics/general/
MPIMessages.hpp

[35] ContactGraphVisitors
▶*

[CS]/include/GRSF/dynamics/inclusion/
ContactGraphVisitors.hpp

[36] LogicNode [CS]/include/GRSF/logic/LogicNode.hpp

[37] LogicSocketTypes [CV]/include/GRSF/logic/LogicTypes.hpp

[38] LogicSocket [CS]/include/GRSF/logic/LogicSocket.hpp

[39] ExecutionTree
▶ExecutionTreeInOut

[CS]/include/GRSF/logic/ExecutionTreeInOut.
hpp

[40] ColorList
▶ColorList

[CV]/include/GRSF/converters/renderer/
RenderExecutionGraphNodes.hpp

[41] BxdfMaterial
▶BxdfDisneyMaterial

[CV]/include/GRSF/converters/renderer/
RenderExecutionGraphNodes.hpp

E.2 File References
The following table lists some relevant files discussed throughout this thesis. The following
path abbreviations are used:

• [GRSF] : The root directory of the GRS framework.

nr. file path

[1] [GRSF]/simulations/examples/jobs/simulationStudies/
avalanche1M-Tree-SimStudy/analyzeStartJob/analyzerLogic/FindStart.xml

[2] [GRSF]/simulations/examples/jobs/simulationStudies/
avalanche1M-Tree-SimStudy/simulationJobs/config/SceneFile.xml
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[3] [GRSF]/simulations/examples/jobs/correlationImageVelocimetry/
experiments-3Passes/scripts/exp5/3Passes-4FramesFine/
accivParametersPass{1,2,3}.ascii
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