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Abstract One explanation for large stock market fluctuations is its tendency to herd
behavior. We put forward an agent-based model where instabilities are the result of
liquidity imbalances amplified by local interactions through imitation, and calibrate the
model to match some key statistics of actual daily returns. We show that an “aggregate
market-maker” type of liquidity injection is not successful in stabilizing prices due to
the complex nature of the stock market. To offset liquidity shortages, we propose the
use of locally triggered contrarian rules, and show that these mechanisms are effective
in preventing extreme returns in our artificial stock market.

Keywords Herding · Robot trading · Financial regulation · Agent-based model

JEL Classification C63 · G02

1 Introduction

Stock markets are complex dynamic systems where the interactions between their
composing agents have a crucial role in determining aggregate outcomes. By fos-
tering the emergence of collective conformity, such as fads and social manias, these
interactions can propagate small deviations of individual behavior from the fundamen-
tal valuations to the overall market. The occurrence of large fluctuations in stock prices
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394 J. K. Galimberti et al.

can therefore be attributed to, at least to some extent, the emergence of herd behavior.
From this point of view, this paper offers two main contributions. First, we propose an
agent-based model that accounts for the role of imitation in individuals’ decisions and
is capable of generating the large swings observed in actual stock markets. Second, we
evaluate the effectiveness of policy mechanisms aimed at preventing the occurrence
of large fluctuations caused by herd behavior.

Stock market crashes can have harmful effects on economic activity. Large losses
of wealth can induce lower levels of consumption, and abrupt changes in the cost of
capital can lead to severe distortions in investment decisions. Macroeconomic policy
authorities should therefore be interested in the prevention of such stock market col-
lapses. But recognizing the complexity of stock markets poses daunting challenges for
policy making. Attempts to stabilize stock markets with monetary policy and financial
regulation raise several impracticalities. First, bubbles are hard to spot and, until very
recently, central banks were not inclined to respond to developments in asset prices
(see Blanchard et al. 2012, for an assessment of how this view might be changing).
Second, the experience of the recent crisis suggests that financial markets tend to
innovate around regulations and the nature of risk-taking changes as the financial sys-
tem gets more sophisticated (Edey 2009). Another example is given by the Chinese
authorities role and response to the 2014–2015 bubble and crash in the equity market,
where “broad-ranging interventions [...] appear to have increased investor uncertainty
about financial sector policies” (IMF 2015). In this paper, we argue that these aspects
are typical of large, dynamic and complex systems that can self-organize into a critical
state where minor perturbations may give rise to instabilities of macroscopic scales
(see, e.g., Scheinkman andWoodford 1994; Bak and Paczuski 1995). One key issue is
that such extreme events cannot be predicted and therefore require a different paradigm
for the design of effective interventions.

We set up an artificial stock market with autonomous agents that interact in a two-
dimensional lattice using simple decision rules based on imitative and fundamentalist
behavior. Imitation is a key component for the emergence of herding in our model,
and it can be motivated from different theoretical reasons: Private information can
generate incentives for a rational decisionmaker to follow others’ actions in sequential
environments (e.g., Banerjee 1992; Bikhchandani et al. 1992; Devenow and Welch
1996; Bikhchandani and Sharma 2001, for reviews of this literature). Imitation also
can arise from social (Bernheim 1994) and psychological factors that cause behavior to
deviate fromfully rational considerations (e.g.,Kirman1993;Lux1995).Nevertheless,
empirically, there is scarce evidence that distinguishes between these motives in real
markets [see Cipriani and Guarino (2014) for a discussion on the disconnect between
the empirical and theoretical literature]. To circumvent this debate, imitative behavior
is introduced in our model by the explicit assumption of a simple local interaction
rule, rather in the spirit of Herbert Simon’s bounded rationality (Simon 1982).

As usual, prices in our model are determined at the market level in response to
imbalances between aggregate demand and supply for the stock. Hence, the ulti-
mate cause of extreme returns in our model is oscillations of market liquidity, which
is consistent with recent accounts of how the 2008–2009 financial market turmoil
propagated (see Brunnermeier 2009, for a review). Nevertheless, the emergence of
large liquidity imbalances is not implicit in our model behavioral assumptions, nor by
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its market micro-structure. It is the local interactions architecture of our model that
amplify clustered shortages of liquidity and have a significant impact at the overall
market level.

The inherent complexity that these interactions prompt often restrict the feasibility
of standard analytical tools for realistic inferences. One solution is the use of the agent-
based computational approach (see Tesfatsion et al. 2006), where dynamic systems of
interacting agents are computationally modeled to facilitate generative explanations
(Epstein 2007). Because the estimation of agent-based models is complicated by the
lack of simple analytical solutions (see Grazzini and Richiardi 2015, and references
therein), we developed an empirical strategy based on a goodness-of-fit measure for
the whole distribution of stock returns generated by our model. Specifically, we cali-
brate our model to replicate actual stock markets data, which present distribution of
returns characterized by heavy tails, i.e., extreme returns are more likely to occur than
Gaussianity would imply. Using simulations, we then show that our model is capable
of matching the empirical distribution of daily returns of the Dow Jones Industrial
Average (DJIA) index from 1996 to 2012.

We then turn our focus to the design and evaluation of policy schemes aimed at the
prevention of sudden liquidity dry-ups. To that end, we conduct several counter-factual
exercises using our calibratedmodel. First, we show that an “aggregatemarket-maker”
type of liquidity provision policy is only partially effective for the stabilization of our
artificial stock market. More generally, we argue that a policy design that neglects
the interconnections between individual decisions and their scaling up to aggregate
outcomes can be misleading and costly.

To account for the complex nature of stock markets, we propose the use of a system
of trading algorithms, or robot traders, as described in Suhadolnik et al. (2010). Robot
traders have been around for years, but used only for private gain. More recently,
their use for high-frequency trading has been the cause of intense debate on whether
their effects are beneficial or harmful to the functioning of financial markets, and how
regulation should cope with the rapid pace of their technological innovation (see the
reviews by Foucault 2012; Kirilenko and Lo 2013; Farmer and Skouras 2013, for an
ecological perspective). Here, instead, we propose their systematic use for the benefit
of public policy making.

In contrast to the practice of responding to aggregate observations, our robot traders
are triggered locally to follow a contrarian rule in order to prevent stampede reactions
caused by herd behavior. To prevent financial imbalances we also introduce a self-
regulatory mechanism to decrease the robot’s contrarian behavior in response to its
individual financial position. Hence, every robot has the autonomy to trade on the
basis of its local information, but is also bound by its own track of transactions. Also,
addressing one of the key criticisms to asset price targeting, the robots’ intervention
does not depend on assessments of the stock’s fundamental value. The only require-
ment is the introduction of a parallel system of autonomous trading algorithms that
will gather information in real-time at key junctures of the market structure.

There is an interesting parallel between our approach and the role of independent
assessments in collective decision making. According to what is known as “Con-
dorcet’s jury theorem,” named after its proponent, the 18th century French intellectual
Marquis de Condorcet, the pooling of independent information held by multiple
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individuals can lead to better decisions than those relying on particular dictatorial
assessments (see, e.g., Grofman et al. 1983; Young 1988; Boland 1989). In other
terms, and nitpicking the popular belief that stock markets are sometimes driven by
the madness of crowds, we devise a “crowd of robot traders” to restore the wisdom
often associated with collective decisions (see Surowiecki 2005; Landemore et al.
2012, for many examples).

The existence of interdependencies between the individual decisions, however,
may lead to violations to the Condorcet’s principle. When decisions are correlated,
the effectiveness of information pooling through the majority rule tends to decrease
(Ladha 1992; Berg 1993; Ladha 1995). Clearly, this is the case in our crowd of robot
traders—even though the robot traders are devised to operate autonomously, the inter-
connectedness of agents in our artificial market can give rise to correlated contrarian
responses. To circumvent this issue, we further developed a coordination mechanism
that splits the robots’ action into two stages: First, the local information is collected
and pooled by a financial policy authority. Next, the decisions of the robot traders are
coordinated to take into account the general assessment of the market condition.

We find that the robot traders are capable of stabilizing the stockmarket and reshap-
ing the distribution of returns towards aGaussian distribution,while the self-regulatory
mechanism guarantees its financial sustainability. Furthermore, with the aid of the
coordination mechanism, the number of robots required to mitigate extreme events
is substantially reduced, which means that our approach requires only tiny pertur-
bations to the usual functioning of the stock market. The calibration of our model
also evidenced some uncertainty regarding agent’s sensitivity to the observation of a
quorum in the local neighborhoods, and our results indicate the relevance of such a
specification for the design of effective stabilization policies.

The remainder of this paper proceeds as follows: In Sect. 2, we present our artifi-
cial stock market model and describe the calibration approach we adopted to match
statistical properties observed in the data. Section 3 describes the liquidity provision
policies we considered in the counter-factual exercises of Sect. 4. Section 5 concludes
the paper with some final remarks.

2 Complex Stock Market Model

The stock market is represented by a L × L square lattice where each cell, indexed
by i = 1, ..., N

(=L2
)
, represents an agent. Each agent holds a portfolio of money

(mi,t ) and assets (ai,t ). For simplicity, we assume there is only one stock being traded
and that there are no short sell constraints. Every period each agent has to decide
whether she (or he) wants to buy or to sell one unit of the stock. Agents are assumed to
make their decisions concurrently, after which a market clearing process takes place
aggregating the individual demands and adjusting the price of the stock accordingly.

2.1 Behavioral Rules

We model the agents’ decision-making process as a discrete choice, with the prob-
abilities of each action determined symmetrically and by merging two investment
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strategies: an imitative rule and a fundamentalist rule. Because we assume symmetry,
we can simplify the presentation by focusing on the determination of the probability
that agent i makes a buy order at period t , π B

i,t , which is given by

π B
i,t = ωi,tIB

i,t + (
1 − ωi,t

)F B
i,t , (1)

whereIB
i,t andF B

i,t are the probabilities that the agentwill choose to buy the stock based
on imitation and fundamentals, respectively, and ωi,t regulates the weight assigned to
imitation.

The imitative component is modeled according to a local interaction rule based on
the agent’s neighborhood, where the willingness to buy is an increasing function of
the number of neighbors who have made a buy order in the previous period (N B

i,t−1),
i.e.,

IB
i,t =

(
N B

i,t−1

)κ

(
N B

i,t−1

)κ +
(
N S

i,t−1

)κ , (2)

where κ > 0 controls the intensity of the response.
Inspired by the literature on consensual collective decision-making (see, e.g.,

Sumpter and Pratt 2009), rule (2) displays a quorum-type response when κ > 1:
the higher κ , the sharper is the increase in the probability of adopting a particular
behavior once a quorum of agents performing that behavior is met in the neighbor-
hood.Within the square lattice architecture, we assume agents interact with their eight
surrounding neighbors, also known as Moore neighborhood; a quorum is given by
a total of four neighbors adopting the same behavior. Furthermore, when κ = 1 the
response becomes linear, and as κ decreases below 1 the response becomes insensi-
tive to the quorum: the probability of imitation presents an initial sharp increase to
a mid-range value once the first adopters are observed, but then remains around that
level until a majority of adopters is observed. These responses are illustrated in panel
(a) of Fig. 1.

In the context of the theoretical literature on imitation, mentioned in the introduc-
tion, our imitative rule is not derived from rationality assumptions. In particular, notice
that (2) implies a naive assumption that the neighbors’ previous actions fully reflect
their private information, which neglects the correlation between the neighbors’ own
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Fig. 1 Behavioral rules. a Imitation rule. b Fundamental (solid) and weighting (dashed) rule
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decisions on the basis of common sources (see Eyster and Rabin 2010, 2014). Hence,
the imitative component in our model follows in the spirit of models of bounded
rationality (Simon 1982).

For the fundamentalist rule, we assume that the agent holds a belief about the
fair value of the stock, denoted by the fundamental value fi,t−1, and weighs her
willingness to buy or to sell the stock based on the gap between that evaluation and
the stock’s previous period price (pt−1): when the price of the stock is below (above)
its fundamental value, the agent will expect higher (lower) returns and therefore will
increase her willingness to buy (sell) the stock. LettingDi,t−1 denote the ratio between
fi,t−1 and pt−1, the probability that an agent will choose to buy based on fundamentals
is given by

F B
i,t = Dγ

i,t−1

Dγ

i,t−1 + D−γ

i,t−1

, (3)

where γ > 0 is a parameter regulating the agent’s response to the deviations of the
stock price from its perceived fundamental value. The different shapes of the responses
obtained with this rule are illustrated in panel (b) of Fig. 1.

The fundamental rule in (3) can be motivated from the literature on predictor selec-
tion under a discrete choice setup (Brock and Hommes 1997), where γ represents the
intensity of choice and measures how fast agents switch between different prediction
strategies. Translated to our context, the interchange is between different investment
strategies (buying low/selling high) that have corresponding prospects of return. Other
than introducing standard asset pricing concerns in our model, this fundamentalist
component also has a key role in supporting the uncertainty required for herding
behavior to emerge in a financial market (see Avery and Zemsky 1998). We discuss
this further below after introducing the price adjustment mechanism.

The fundamental beliefs are assumed to be determined exogenously to the model
according to a log-normal distribution with a time-varying median,1 μ̂t . In order
to calibrate the model to match the trend swings observed in the index series of
stock prices, we set μ̂t to correspond to a trend estimated from the data accord-
ing to a procedure detailed in the next section. The dispersion of the heterogeneous
beliefs across the agents is controlled by setting the variance of the log-normal
distribution so that the variance of the fundamentals remains a constant fraction
of the median fundamental value through time, i.e., Var

(
fi,t

) = σμ̂t . Using
conventional notation, these distributional assumptions require that log

[
fi,t

] ∼
N

(
log

[
μ̂t

]
, log

[
1/2 + √

1 + 4σ/μ̂t/2
])

. Notice that when σ = 0, agents hold iden-

tical fundamental beliefs, such that the only source of diversity in our model comes
from their interactions within neighborhoods.

The deviation of the stock market price from its fundamental value also plays a role
in the determination of the weights ascribed to each strategy. Here, we assume that the
agents give more attention to the fundamental rule as the distance between the stock

1 The median is the appropriate measure of central tendency in our model, where the number of agents
buying and selling is the ultimate determinant of price adjustments, according to (5)–(6) below. Therefore,
what matters for the “aggregate balance” of the fundamental rule is the number of agents with fi,t below
and above μ̂t , rather than the deviation of the mean of fi,t from μ̂t .
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Fig. 2 Agents’ response functions. The surfaces represent the probability that an agent will attempt to buy
(π B ) depending on the number of neighbors buying (N B ) and the ratio between the perceived fundamental
value of the stock and its price (D), according to (1)–(4)

price and its fundamental value increases. Conversely, the agents will increase their
reliance on the signal collected from their neighborhood as the fundamental price gap
decreases. This behavior is captured by

ωi,t = 1

1 + ηD̃2
i,t−1

, (4)

where D̃i,t−1 = log
[Di,t−1

]
, and η > 0 regulates the agents sensitivity to the relative

deviations of the stock price from its fundamental value, as illustrated in panel (b) of
Fig. 1. From a statistical mechanics perspective, Rule (4) can be accountable for pre-
venting the emergence of degenerate results in the dynamical system. In particular, the
presence of positive feedbacks in the imitation strategy in the form of self-reinforcing
collective behavior (see Sornette and Zhou 2006) may favor the dominance of that
rule in the determination of agents’ final behavior.

Thus, our behavioral assumptions associate twomain variables to the determination
of agents’ responses: the composition of their neighborhood and the deviation of the
stock price from its fundamental value. The shape of these responses is illustrated in
Fig. 2 for both quorum-insensitive and quorum-sensitive imitative responses.Although
π B is strictly increasing in N B , the shape of the response depends on whether κ is
smaller than or larger than 1. The response with respect to D depends on two effects:
the fundamental rule effect, making π B strictly increase with D; and the weighting
effect, which turns the relationship betweenπ B andD negative when IB is sufficiently
larger (smaller) than F B and D > 1 (D < 1).

2.2 Market Clearing

The model dynamics emerges as a result of the synchronous update of the agents’
demands and a market clearing mechanism that randomly matches individual orders
and adjusts the price of the stock according to an excess demand function. Letting

123



400 J. K. Galimberti et al.

Zt = N B
t − NS

t

N
, (5)

represent the (relative) excess demand for the stock. The price adjustment is modeled
through a hyperbolic tangent functional form (see Plerou et al. 2002) according to

pt = pt−1 (1 + tanh [Zt ]) . (6)

This price adjustment process can bemotivated as the action of a sluggish auctioneer
who attempts to balance demand and supply for the stock (Chiarella et al. 2006;
Lux 2009). In spite of this underlying mechanism, we assume that market activity is
generated solely by its composing traders. This is to say that, after the randommatching
between buyers and sellers is completed, any remaining orders will be unsatisfied.
Obviously, other than for regulating themarket aggregate liquidity, thismarket clearing
mechanism is also important for the record keeping of agents’ transactions and the
evolution of their portfolio, tracked by mi,t (money) and ai,t (assets).

When trade is sequential, Avery and Zemsky (1998) point out that the presence
of a price adjustment mechanism may hamper the emergence of rational herding
in financial markets. Because signals from the prices would temper the uncertainty
that leads agents to act against their own private information, there must be multiple
unknowns for herding to arise, e.g., agents must be uncertain about both the effect
and the occurrence of information events on the value of the asset (see Park and
Sabourian 2011, for more general conditions). Although our model of herding is
not explicitly based on rationality, and trade is simultaneous rather than sequential,
the convolution between imitative and fundamentalist behavior in (1) also reflects one
such case of multidimensional uncertainty. Particularly, our agents are uncertain about
the fundamental value of the stock (Eq. 3) and about the quality of their neighbors’
information (Eq. 4). Hence, our heuristic rule of imitation seems consistent with the
requirements for the emergence of rational herding in sequential trading.

2.3 Data and Calibration

We generated artificial series of prices simulating the model with a square lattice of
100 × 100 agents. For every simulation, the lattice is initialized randomly with half
the agents as buyers and the other half as sellers. As an empirical benchmark, we use
the daily log returns of the Dow Jones Industrial Average (DJIA) index, corrected for
inflation using the U.S. Consumer Price Index, from January 2, 1996 to December
31, 2012, consisting of a total of 4277 observations.2 We also hold three years of data
on the DJIA index, from 2013 to 2015, out of the calibration procedure in order to
run an out-of-sample validation later on. To avoid sensitivity to initial settings, we ran

2 The U.S. stock market is arguably among the most efficient and liquid stock markets nowadays, which
leads to the question of how would the model work in less efficient markets, such as those of emerging
economies. In fact, an earlier version of our model (Suhadolnik et al. 2010) provided a good adjustment to
Brazilian stock market data. We leave a comparative analysis of our present model’s adjustment to other
markets for future research.
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our model for 4400 periods, and therefore discarded the first 123 observations for the
comparison between the simulated and empirical distributions.

Our model is purposely designed to simulate trading at daily or higher frequencies.
In order to capture the lower frequencies of fluctuations, such as temporary trends com-
monly observed in series of stock price levels, we estimate the time-varying series
of fundamentals from the data using the Hodrick-Prescott (HP) filter (Hodrick and
Prescott 1997). The HP filter is one of the most-used tools for the measurement of
business cycles. It decomposes a series of observations into a trend and a cycle com-
ponent as an approximation to a high-pass filter, where the maximum frequency of the
cycles allowed to remain in the trend series is determined by a smoothing parameter,
λ. For our purposes we set λ = 30,000, a value that renders a trend that is stripped of
cycles with frequencies up to approximately one quarter.3

The HP filter is also two-sided by design, which means that a point trend estimate is
dependent on both lagged and leading observations of the original series. Hence, our
approach is geared towards the view that the fundamental value reflects not only past
prices information, but it is also a function of the future evaluations of the stock. One
potential problem with this approach is that the symmetry of the filter is lost at sample
endpoints (see, e.g., Galimberti and Moura 2016), but here we deal with this issue by
augmenting both ends of our sample with additional data; i.e., the fundamentals are
obtained by applying the HP filter to data on the DJIA index from January 03, 1995
to December 31, 2015. The estimated trend, presented in panel (a) of Fig. 3, is then
introduced in our model to represent the deterministic portion, μ̂t , of the exogenous
series of fundamentals that agents hold for their daily evaluations.

To calibrate the model parameters, namely κ , γ , η, and σ , we ran a grid search pro-
cedure for several combinations of these parameters, attempting tominimize ameasure
of fitness to the data. For that purpose we adopt the two-samples Anderson-Darling
(AD) goodness-of-fit statistic (see Scholz and Stephens 1987), which compares the
distribution of the simulated series of log returns to that obtained from the data. We
also attempted to match some key statistical properties of the data, such as the returns
auto-correlations, both in levels and absolute values to measure predictability and
volatility clustering, respectively, and the kurtosis of the distribution of returns to
measure the relevance of heavy tails. Table 1 presents statistics associated to some
selected parametrizations.4

2.4 Model Dynamics

Overall, our results show that the best adjustment of themodel to the data is foundwhen
the response of agents imitative rule is approximately linear. It was possible to find
calibrationswith a good fit for each of the three specifications of the imitative response,
though very low/high values for κ were found to provide slightly poorer adjustments.
It also was evident that as the quorum-sensitiveness of the agents’ imitative response

3 The value of λ is calculated from the filter’s frequency response function (see King and Rebelo 1993) for
the desired frequency at a 75 % cut-off.
4 Details of this calibration exercise are presented in Appendix 1.1.
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Fig. 3 Time evolution of data and calibrated model series. a Price indexes and estimated fundamentals.
b Standardized returns. The return series are standardized to have mean and standard deviation equal to
zero and one, respectively. The model’s series comes from the following parameter combination: κ = 0.75,
γ = 2.50, η = 750, and σ = 0

increased, the parameter on the intensity of choice in the fundamentalist rule had to
be decreased to keep up with the adjustment of the model to the data. Thus, our model
captures a trade-off between agents’ sensitivity to their neighborhoods’ information
and their perceived deviations of the stock prices from its fundamental value, though
the data and our calibration measures were not informative about this trade-off.
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Table 1 Statistics on series of returns series from data and simulated model

Series Auto-correlations AD test Kurtosis Tail

Returns Abs.Rets. Stat. p-val. Exponent

Dow Jones Industrial Average −0.06 0.21 – – 9.99 3.06

Model with quorum-insensitive imitative response

κ = 0.25, γ = 2.50, η = 750, σ = 0 −0.04 0.17 17.67 0.00 4.57 4.10

κ = 0.75, γ = 2.50, η = 750, σ = 0 −0.05 0.49 1.18 0.10 7.31 3.27

κ = 0.75, γ = 2.50, η = 750, σ = 0.1 −0.80 0.61 28.15 0.00 2.99 5.94

Model with linear imitative response

κ = 1.00, γ = 1.00, η = 750, σ = 0 0.47 0.38 43.70 0.00 2.79 6.24

κ = 1.00, γ = 2.00, η = 750, σ = 0 −0.06 0.54 0.66 0.18 5.98 3.39

κ = 1.00, γ = 2.00, η = 750, σ = 0.1 −0.64 0.37 27.55 0.00 3.00 5.91

Model with quorum-sensitive response

κ = 3.00, γ = 1.00, η = 1000, σ = 0 0.14 0.67 48.69 0.00 5.51 3.23

κ = 3.00, γ = 1.00, η = 15,000, σ = 0 −0.06 0.79 0.69 0.17 6.93 3.35

κ = 3.00, γ = 1.00, η = 15,000, σ = 0.1 −0.38 0.13 28.07 0.00 2.99 5.88

Statistics are averages of 100 simulations of the model for each combination of parameters, only varying
the random seed. The two-sample Anderson–Darling (AD) test compares the DJIA series of standardized
log returns to those obtained from model simulations, and the median standardized statistic is reported.
The null hypothesis is that both samples come from a common population and the p-values indicate the
significance level at which this hypothesis can be rejected. The power law tail exponents are estimated
according to Gabaix and Ibragimov (2011) focusing in the top 10 % absolute returns

Our preferred specification is that with κ = 0.75, γ = 2.50, η = 750, and σ = 0,
particularly for presenting a kurtosis closer to that observed in the data. Also, using
the AD test, we are not able to reject the null hypothesis that the simulated data and
the actual data returns came from the same distribution at the 10 % level of statistical
significance. A visual assessment of the series of prices and log returns generated by
this model specification is presented in Fig. 3.

One remarkable characteristic of stock market returns is the presence of heavy tails,
i.e., extreme events are more likely to occur than implied by a Gaussian distribution
(Mandelbrot 1963; Fama 1965). This is evident in the data we used and our calibrated
model seems to capture this property pretty well. Figure 4 shows that our model is able
to capture the data deviations from Gaussianity at the tails of the return distribution
up to ±5 standard deviations. Moreover, our model is also in agreement with an
established result of the econophysics literature regarding the decay of the probability
of extreme returns; namely, the existence of an inverse cubic power law (see, e.g.,
Gopikrishnan et al. 1999) is confirmed by the estimates of tail exponents presented in
Table 1.

When the fundamentals were allowed to vary across the agents, our calibration
also showed a poor fit to the data in that it generated approximately Gaussian returns.
Therefore, increasing agents’ diversity of beliefs about the fundamental value of the
stock is likely to dampen the destabilizing herding effects coming from their imitative
behavior. Such a result is in contrast to a growing volume of literature where the
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Fig. 5 Boxplots of model statistics versus data across nonoverlapping subsamples. a Anderson–Darling
goodness-of-fit statistic. b Kurtosis of returns distribution. The statistics come from 100 simulations of the
model with κ = 0.75, γ = 2.50, η = 750, σ = 0. Outliers, i.e., returns larger/smaller than the whiskers,
are not presented.

diversity of beliefs is found to generate endogenous volatility in the absence of local
interactions (see, e.g., Kurz 1994; Brock and Hommes 1998; Kurz et al. 2005; Branch
and McGough 2011). Hence, our analysis suggests that the effects of heterogeneous
beliefs on volatility can be conditioned by the underlying assumptions on how agents
interact, though we were not able to disentangle these features. We leave this issue
open for future research.

One potential concern with respect to the calibration of our model is that of data-
snooping, i.e., the repeated use of the same reference data series for model selection
purposes. In our case, the parameter sweep using the DJIA data series to calibrate the
modelmay lead to an overfitting of themodel to that series, particularly considering the
large number of degrees of freedom in our imitation-based model. Nevertheless, it is
important to recall that our approach is not dependent nor geared towards the model’s
predictive ability; instead, our focus is on matching some key statistical properties
of the distribution of stock market returns, particularly those statistics capturing the
incidence of instabilities.
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To enhance our understanding of the fit of the model to the data we look at some
adjustment statistics across nonoverlapping subperiods of the calibration sample (see
Brock et al. 1992), as well as over an out-of-sample period from 2013 to 2015. Figure 5
presents the results focusing on the distributions of the AD statistic and the kurtosis
of the returns distribution. Clearly, the statistics show that the fit of the model is not
independent of the sample period; particularly, the model’s ability to match the DJIA
returns distribution tends to deteriorate in periods of reduced volatility, such as in
the three years preceding the 2007–2008 financial crisis. Whereas this observation is
not surprising, given that our model is purposely designed to capture the emergence
of periods of high volatility, we interpret these results as positive evidence that our
approach is not severely affected by data-snooping.

2.5 Role of Fundamentals

Due to our assumption of a smoothly time-varying series of fundamental values, the
emergence of extreme returns in our model is mainly driven by the short-run effects of
local interactions. That may give the mistaken impression that our model downplays
the relevance of sharp fundamental reassessments in generating abrupt stock price
changes, such as inmass sells triggered by unexpected poor performance of the firm, or
a sudden deterioration of the macroeconomic conditions. In fact, an important feature
of our model is its flexibility to account for these distinct sources of disturbances.

To clarify this point we simulate themodel with a fictitious break in the fundamental
value to see how the model behaves. Particularly, we run the model for 500 periods
under the assumption of a constant fundamental value of 1.50, a value chosen to match
the median of fundamentals used in the data calibration of the model above. We also
adopt our preferred specification for the parameters κ = 0.75, γ = 2.50, η = 750,
and σ = 0. At period 501 we then hit the model with an abrupt 20 % negative shock
to the fundamental, reducing it to 1.20. After repeating this simulation 1,000 times the
resulting model dynamics is depicted in Fig. 6, where we present the distributions of
model returns over the periods that follow the fundamental shock.

We see that an abrupt change in the perceptions of the stock’s fundamental value has
an immediate impact on the model dynamics; in fact, the impact is initially stronger
than the original shock, with a median return of about−60% after the abrupt reassess-
ment of the fundamental; these effects tend to fade away as time goes by and themarket
price resettles around the new fundamental value. Hence, the break in fundamentals is
synergistically magnified by the herding effects, leading to an initial overshooting in
the pricing of the stock. To conclude, an interesting feature of our model is the pres-
ence of a holistic interaction between fundamental assessments and local interactions
that lead to the emergence of realistic stock market dynamics.

3 Liquidity Provision Policies

The emergence of extreme events in our stock market model is directly related to
temporary shortages of liquidity for those agents willing to buy or sell their stock, i.e.,

123



406 J. K. Galimberti et al.

-80

-60

-40

-20

0

20

40

60

M
od

el
 r

et
ur

ns
 %

-20% shock on
fundamental value

Simulation period

49
6

49
7

49
8

49
9

50
0

50
1

50
2

50
3

50
4

50
5

50
6

50
7

50
8

50
9

51
0

51
1

51
2

51
3

51
4

51
5

Fig. 6 Boxplots of simulated model returns before and after a sharp fundamental shock. The statistics
come from 1000 simulations of the model with κ = 0.75, γ = 2.50, η = 750, σ = 0, and fi,t = 1.50 for
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imbalances in the aggregate market demand for the stock relative to its supply.5 We
now introduce and evaluate alternative policy schemes of liquidity provision aimed at
offsetting these imbalances. Particularly, we look at the interesting and realistic case
where the aggregate excess demand cannot be observed before the price adjustment
process takes place. In these circumstances, the main challenge for policy design is to
find a good prediction for the upcoming imbalance in the market.

3.1 Aggregate Market Maker

Anobvious tentative solution to the problemof liquidity shortages is the introduction of
an aggregate market maker. The idea is that by supplying the extra liquidity demanded
by the market such a market maker may be able to prevent the occurrence of extreme
and destabilizing returns in our stock market model.

With our timing assumption, the aggregate excess demand cannot be observed
before the prices adjust. Hence, we suggest that such a market maker will respond to
lagged measures of market activity. The aggregate excess demand in our model can be
approximated as a linear function of the market clearing implied return.6 Using such

5 Within our model that is a direct implication of our assumption that stock prices are determined by a
market clearing process that balances aggregate demand and supply for the stock (see Eq. 6).
6 See Appendix 1.2 for this derivation.
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an approximation, our rationalization of the market-maker intervention as a response
to perceived excess demand for the stock is given by

Kt = {	rt−1 + Kt−1}+K
−K

, (7)

where Kt denotes the number of stocks supplied by the market maker at period t ,
rt−1 is the previous period log return of the stock, 	 = (

N + K
)
/2, and {•}max

min is
a truncation operator used to impose a limit to the participation of the market maker.
As a result, K may be interpreted as a measure of the magnitude of the intervention.
The presence of the lagged term Kt−1 arises from the additional demand introduced
by the market maker in the previous period.

3.2 Self-regulatory Robot Traders

The channel through which the liquidity imbalances arise in our model has, by design,
a complex architecture due to the distributed effects of local interactions between the
agents in this market. Thus, we argue that an aggregate intervention disregarding the
complex nature of the market is of limited effectiveness for the stabilization of stock
returns. To account for these local connections, we propose a novel self-regulatory
scheme based on locally triggered automatic trading algorithms, or “robot traders” for
short.

At any given period, the stock market model is now populated by two types of
agents: human and robot traders, the latter indexed by j = 1, ..., Q and randomly
distributed on top of the baseline model square lattice architecture of the market.
We also assume that the robot traders are able to collect information about the last
period decisions of the human agents within the neighborhood of their location. The
distinctive feature of the policy rule of the robot traders is that they follow a contrarian
rule relative to such information. Also in contrast to the human traders, the robots
decisions are solved deterministically. Namely, robot j decides to make a buy order
at period t if it observes that7

(
Ñ S

j,t−1

)β[−a j,t ]
>

(
Ñ B

j,t−1

)β[a j,t ]
, (8)

where Ñ S
j,t−1 and Ñ B

j,t−1 denote the number of humans in the robot’s neighborhood
who have made a sell and a buy order in the previous period, respectively, and β [•]
regulates the intensity of the contrarian response, which is assumed to be a function
of the robot assets holdings. Particularly, we found that the functional form given by
β [x] = 1+ tanh [φx] renders the effects of interest. When the robot’s holdings is off-
balance, for example a j,t is large and positive (negative) due to successive buys (sells)
of the stock in the previous periods, the contrarian response becomes less sensitive to
the number of human sellers (buyers) in the neighborhood. The solid black schedules
in Fig. 7 illustrate how the robot’s decision is affected by its portfolio position for

7 In Appendix 1.3. we show that this contrarian rule is symmetric to the humans imitative rule.
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which condition (8), or (9) with θ = 0, of the contrarian rule is satisfied as an equality. The gray schedules
represent cases with coordination, setting θ = 1/2, for different levels of CB , which stands for the fraction
of robots deciding to buy in the interim stage

different values of φ. Logically, the robot places a sell order if condition (8) is not
observed.

The mechanism underlying the robot traders’ decisions is intentionally designed to
counteract the human agents tendency to herd. We advanced a similar rule in a pre-
vious work (Suhadolnik et al. 2010). Here, in contrast, we abandoned the unrealistic
assumption that the human agents are directly influenced by the robots through imita-
tive behavior.8 This allows us to focus on the liquidity provision effects that the robots
have in the market prices, which in turn end up affecting agents’ decisions through
their fundamentalist concerns.

3.3 Coordinated Robots Intervention

Although the robot traders consist of a population of autonomous trading algorithms
distributed across the market, there is still a unique financial policy authority behind
their implementation.9 That means there is some scope for communication and coor-
dination among the robot traders. Namely, the financial policy authority can collect
information about the market conditions that every robot can infer from their individ-
ual neighborhoods, and then alter each robot’s action in a coordinated fashion. Such a
coordinated intervention may also be viewed as a mixture of the previous approaches.

We modeled this intervention in a two-stage process. In the first stage, the “consul-
tation round,” the robot traders solve condition (8) for an interim decision based on
their corresponding neighborhood information. The financial authority then collects
all these decisions so as to compute the fraction of robots that would be buying and
selling without coordination, denoted by CB

t = QB
t /Q and CS

t = QS
t /Q, respec-

tively. In the second stage, this information is sent back to the robots in the form of

8 Results under the assumption of integrated robots are similar to what we find without this assumption.
These are available upon request.
9 In the case of the United States, for example, such an authority could be represented by the Securities
and Exchange Commission.
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a multiplier that will determine their final decision of buying (or selling otherwise)
according to10

(
1 − 2θCS

t

) (
Ñ S

j,t−1

)β[−a j,t ]
>

(
1 − 2θCB

t

) (
Ñ B

j,t−1

)β[a j,t ]
, (9)

where θ ∈ (0, 1) is a parameter that controls the degree of interdependence between
the robot traders. If θ = 0, there is no coordinated action, and, as θ → 1, coordination
among the robots grows in importance. Hence, in our model we attempt to find the
right mix of independence and interdependence between the robot traders by tuning
parameter θ .

Furthermore, there are two additional effects to notice when this coordination rule
is activated. First, if CB

t < 1/2, the multiplier on the left-hand side of (9) is smaller
than the multiplier on the right-hand side, and vice versa for CB

t > 1/2, which
implies that coordinationwill push the individual robot’s behavior towards themajority
interim decision. This is illustrated by the gray schedules in Fig. 7. Second, when
θ = 1, the right-hand side of (9) becomes negative if CB

t > 1/2, whereas if CB
t <

1/2, it is the left-hand side that becomes negative; i.e., in full coordination, all the
robots will follow the majority interim decision, entirely disregarding their individual
neighborhood information.

This idea of a coordinated intervention can be further motivated by the intriguing
effects that communication has on the pooling of independent information in collective
decision making. By creating interdependencies between decision makers, commu-
nication can facilitate information pooling (Ladha 1995) at the same time that it can
also cause the phenomenon known as “group-think” (Janis 1982), where pressure to
conform among the members of a group can narrow the range of opinions and lead to
the emergence of informational cascades that amplify individual errors (Bikhchandani
et al. 1992). A key issue in this context is to find the “right mix” of independence and
coordination between the individuals in the group,11 which in our model is done by
tuning θ .

3.4 Market Clearing Considerations

The policy interventions we have introduced in this section also require adjustments to
the process of market clearing defined in the baseline model. To take into account the
introduction of the aggregate market maker and the robot traders, the market aggregate
excess demand is more generally defined as

Z̃t = N B
t − NS

t − Kt + QB
t − QS

t

N + K + Q
. (10)

10 See Appendix 1.4 for the origins of this rule as a linearly weighted response to the pooled and the
individual pieces of information.
11 Nature appears to have solved this problem by endowing ants (Kirman 1993) and bees (List et al. 2009)
with simplistic rules.
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The process of random matching between supply and demand in the market also
needs to take into account the additional offers submitted by both themarketmaker and
the robot traders. Therefore, we also need to track the portfolio of money and assets
of each robot, say by m j,t and a j,t , respectively, and of the market maker, which can
be traced at an aggregate level by mK ,t and aK ,t , respectively.

Furthermore, we assume anonymous trading in our artificial stock market, so that
there are no asymmetries between the orders originated from the different agents in the
market. This has two important implications. First, the chances that a buy (sell) order
submitted during a bullish (bearish) period does not find a matching sell (buy) order
in the market are the same irrespective of whether the order originated from a human
agent, a robot or the market maker. Second, robots occasionally end up trading among
themselves, which means that the intervention is artificially generating some extra
market activity. In spite of this downside for the robot traders approach, anonymity pro-
vides an important safeguard against the possibility that the human agents uncover the
participation of the contrarian algorithms and attempt to exploit it for their own gains.

4 Counter-factual Exercises

We now evaluate the effectiveness and the costs associated with the different inter-
ventions we have formulated in the previous section. In the spirit of a counter-factual
exercise, we took our calibrated model as representative of how actual prices and
returns are determined in a stock market and evaluated the effectiveness of the liq-
uidity provision policies to prevent the occurrence of extreme events in this artificial
market.

4.1 Visual Inspection

We begin with a visual inspection of the results from one typical simulation of our
preferred specification of the model. In order to evaluate the stabilization effects of
different policies, Fig. 8 presents the distributions of returns associated with varying
magnitudes of the interventions. Taking the Gaussian distribution as a reference, the
goal was simply to flatten the distribution of the model-generated returns towards
Gaussianity.

Clearly, the results in Fig. 8 favor the robots intervention: panel (a) shows that
although the aggregate market-maker intervention is partially successful in stabilizing
returns, increasing the magnitude of the intervention brings no further improvements
beyond that achieved with K = 500; a different picture emerges for the robots’ case,
in panel (b), where a 15 % intervention is capable of bringing the model distribution
of returns very close to the Gaussian distribution. Similar stabilization results are
obtained when the robots are not self-regulated, i.e., φ = 0.

To assess the costs associated with the interventions, we look at the evolution of the
aggregate financial position of these liquidity provision mechanisms. Particularly, we
track the amounts of money and stocks accumulated by the purchases and sells of the
interventions. Because we do not impose short selling constraints in our model, the
participants of the artificial stock market can accumulate negative positions either in
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Fig. 8 Density estimates of model returns distribution with and without interventions. a Market-maker
intervention. b Robots intervention. Densities estimated using the Gaussian kernel smoothing function.
The model’s series come from the following combination of parameters: κ = 0.75, γ = 2.50, η = 750,
and σ = 0. The magnitude of the interventions are denoted in relative terms to the number of human agents
in the grid. The robots are self-regulated with φ = 0.1

money or in stocks holdings. Nevertheless, from a policymaking, practical standpoint,
the sustained provision of liquidity to themarket by selling stocks will require an equal
amount of purchases in order to cover such positions. Hence, both the accumulation of
a positive or negative balance of money by the intervention policy may be interpreted
as a measure of its cost. To circumvent this issue, we also consider the wealth positions
associated with each intervention, which are calculated taking into account the stock
prices.

Figure 9 presents the evolution of the financial position of the interventions for
the particular simulation we are considering in this section. There are three policy
specifications to consider: the market maker, the robots without self-regulation (φ =
0), and the robots with self-regulation (φ = 0.1). The former two are plotted jointly
in panel (a), and the latter is plotted in panel (b).

We reach two main conclusions from these results. First, the costs associated with
the market-maker intervention are substantially higher than those incurred with the
robots. Comparing the instances where both policies are free to operate without any
self-regulation feature, as illustrated in panel (a), we calculated that the maximum
(minimum) wealth of the market-maker intervention is about 70 (50) times larger than
that of the robots.

Our second conclusion relates to the evident success achieved by our self-regulatory
scheme to control the financial sustainability of the robots’ operation, as illustrated
in panel (b) of Fig. 9. The self-regulatory robots incurred costs much smaller than
their corresponding unregulated versions and the aggregate market maker. Clearly,
this improvement resulted from the robots’ ability to avoid the lingering financial
imbalances at the individual level, while keeping upwith the intervention effectiveness
at the aggregate level.

4.2 Averaged Statistics and Robustness

Given the stochastic nature of our model, drawing conclusions on the basis of one
particular simulation may be subject to the effects of random noise. We now extend
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Fig. 9 Evolution of intervention costs. aMarketmaker and robotswithout self-regulation.bSelf-regulatory
robots. The financial positions are obtained by simulating the model individually for each intervention, with
the following parameter combination: κ = 0.75, γ = 2.50, η = 750, and σ = 0. The magnitude of the
interventions are given by Q = K = 1000, and the self-regulated robots in b have φ = 0.1

our analysis to account for these effects by looking at averaged statistics related to the
costs and effectiveness of the liquidity provision policies. For robustness purposes,
we also consider alternative calibrations of the model with respect to the assumption
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Table 2 Interventions effectiveness

Policies Returns statistics, by agents imitative response

Quorum-insensitive Linear Quorum-sensitive

Kurt. AC AC Abs. Kurt. AC AC Abs. Kurt. AC AC Abs.

Without intervention 7.31 −0.05 0.49 5.98 −0.06 0.54 6.93 −0.06 0.79

Robots without self-regulation (φ = 0)

Q = 100 7.09 −0.00 0.48 6.66 0.00 0.56 6.78 −0.06 0.79

Q = 500 5.37 0.12 0.40 5.19 0.20 0.53 7.14 −0.07 0.75

Q = 1000 4.36 0.11 0.28 3.68 0.26 0.39 4.71 −0.05 0.63

Robots with self-regulation (φ = 0.1)

Q = 100 7.02 −0.00 0.48 6.42 −0.00 0.56 6.89 −0.06 0.79

Q = 500 5.37 0.11 0.41 5.32 0.20 0.54 7.35 −0.06 0.76

Q = 1000 4.26 0.12 0.29 3.56 0.26 0.40 4.99 −0.05 0.65

Market maker

K = 100 4.84 −0.00 0.20 4.63 0.14 0.29 4.47 −0.16 0.44

K = 500 5.09 −0.10 0.19 4.71 0.12 0.28 6.94 −0.39 0.44

K = 1000 4.67 −0.29 0.21 4.33 −0.03 0.22 8.24 −0.47 0.42

Statistics are averages of 100 simulations of themodel for each specification, according to Table 1, only vary-
ing the random seed. Kurt. stands for kurtosis, AC for autocorrelation, and AC Abs. for the autocorrelation
of absolute returns

on the agent’s response to their neighborhood information. Namely, we consider the
parameter combinations highlighted in italics in Table 1, covering the cases of quorum-
insensitive, linear, and quorum-sensitive responses.

Table 2 presents statistics related to the effectiveness of the interventions. Particu-
larly, the kurtosis of the distribution of returns generated by themodel is ameasure that
captures the essence of our stability analysis: the closer it gets to 3, the closer the dis-
tribution is to the desired Gaussian benchmark. In the quorum-insensitive responses,
we can see that our previous conclusions are statistically confirmed, with the robots
presenting important improvements as the magnitude of the intervention increases.
But, this is not generally true under the alternative specifications of the agents’ imita-
tive response: There are some cases (italics) where the intervention was not effective
to reduce the return kurtosis. However, notice that even under these specifications,
increasing the intensity of the intervention to 10 % tends to bring the desired stabi-
lization goals.

The statistical results for the market-maker intervention are again informative of its
partial success. In terms of kurtosis reduction,we can see that amarketmaker restricted
to operate at a maximum share of 1 % of the market is better, on average, than the
same quantity of robots. Besides, notice that the measure of volatility clustering (AC
Abs.) tends to be lower under the market-maker intervention. However, the downside
of this mechanism comes with the increase of its intensity, where we can see that there
is no general improvement to its stabilization effectiveness. For the case of a market
populated by quorum-sensitive agents, there is evidence that the market maker may
even destabilize the market.
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Table 3 Interventions costs

Policies Interventions wealth relative to volume, by agents’ imitative response

Quorum-insensitive Linear Quorum-sensitive

Min. WV Max. WV Min. WV Max. WV Min. WV Max. WV

Robots without self-regulation (φ = 0)

Q = 100 −0.04 0.09 −0.05 0.14 −0.06 0.33

Q = 500 −0.14 0.24 −0.17 0.38 −0.14 0.74

Q = 1000 −0.25 0.32 −0.29 0.40 −0.17 0.52

Robots with self-regulation (φ = 0.1)

Q = 100 −0.00 0.01 −0.00 0.02 −0.00 0.07

Q = 500 −0.01 0.00 −0.01 0.01 −0.00 0.23

Q = 1000 −0.05 0.00 −0.07 0.00 −0.00 0.19

Market maker

K = 100 −0.30 0.73 −0.20 0.75 −0.21 0.81

K = 500 −9.15 28.10 −8.02 24.22 −8.53 18.35

K = 1000 −17.16 75.15 −15.98 68.81 −16.73 60.99

Statistics are averages of 100 simulations of the model for each specification, according to Table 1, only
varying the random seed.WV stands for the ratio betweenwealth and volume of the corresponding interven-
tion, and the statistics reported are averages of the minimum and maximum values of this ratio throughout
each simulation

The statistical evaluation of the costs associated with the interventions is rather
challenging. Following our previous discussion, we summarize the financial position
of each policy by tracking thewealth associatedwith itsmoney and stocks holdings.We
then turn these measures into relative terms calculating ratios relative to the volume
traded each period. Finally, we average the minimum and maximum values of this
ratio over the simulations conducted for each model specification and intervention
policy.

Statistics on these wealth/volume ratios (WV) are presented in Table 3. Clearly, we
again confirmed our conclusions from the visual assessment of a typical simulation.
First, the results show that the self-regulation of the robots intervention is successful in
reducing themagnitudes of financial imbalances accumulated by the intervention in the
three characterizations of the agents imitative responses. One interesting observation
in this respect is that the self-regulatory robots tended to accrue profits under the
assumption of quorum-sensitive responses. But apart from this case, the distortionary
effects due to the self-regulatory robots over the agents’ distribution ofwealth remained
below 10 % of the traded volume in the market.

Finally, the results in Table 3 for the market maker show that there could be a
very high cost associated with this intervention. Whereas in the case with a small
intervention the distortions to the distribution of wealth between the agents can vary
between −30 % to about 80 % of the traded volume, as the intervention intensifies,
these distortions become astronomical.
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Fig. 10 Coordinated intervention with 2 % robots. Statistics are averages of 100 simulations of the model
for each specification, according to Table 1, only varying the random seed. The specification of the robots’
intervention is given by Q = 200 and φ = 0.1

4.3 Results With Coordinated Interventions

Overall, our experiments indicate that introducing coordination reduces the number of
robots required to achieve our previous stabilization results, though there is a greater
sensitivity to the assumption of how agents react to their neighborhood. Figure 10
summarizes some of the results we obtain under coordination, focusing on the case
with only 200 robots, or 2 % of the number of humans in the baseline model. Clearly,
there is some heterogeneity with respect to how the coordination affects the robots
effectiveness.

For the cases of quorum-insensitive and linear-response agents, increasing the coor-
dination parameter up to θ = 0.8 brings gradual improvements to the stabilization of
the stock returns. Beyond this threshold the coordination strategy may lead to unde-
sirable effects, such as the generation of bimodal distributions. A different picture
emerges for the case with quorum-sensitive agents: The benefits from coordination
only start to appear for θ > 0.6, meaning that a tendency towards the majority rule
seems towork better under these particular circumstances. Hence, one key issue for the
successful design of the coordinated approach is the identification of which behavioral
assumption better characterizes how agents react to the information collected among
their peers in actual stock markets.

4.4 Risk of Counter-Robots Developments

One potential problem with the approach of mixing the aggregate and the local inter-
ventions is that it may increase the risk that the human agents uncover the ongoing
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policy and use such information to systematically exploit the contrarian measures for
private gain. Besides, unlike our public-service robots, software-based traders have
been around for years but used for private gain. They have sometimes been considered
as culprits for extreme moves in markets. Some observers blame the first generation
of robots for the crash of 1987 as they were the tools for delivering so-called “port-
folio insurance.” Currently, programs are far more sophisticated and responsible for
billions of dollars traded every day, particularly in the form of high-frequency trades.
In practice, because no one knows whether an order is placed by a robot rather than a
human trader, the regulator can only react in the aftermath of extreme events.

Conventional regulatory frameworks such as this have to adapt to circumstances
that are changing too fast for regulation to succeed, and the robots have something to do
with this. Financial regulation implemented by the authorities are too conspicuous to
succeed. It is in the nature ofmarkets that theywill tend to innovate around regulations,
and the nature of risk takingwill inevitably keep changing as financial systemsgetmore
sophisticated (Edey 2009). An advantage of contrarian algorithms is their crypticness;
by stealthily taking contrarian positions at key junctures in the movement of stock
markets, the advantage of the stabilizing robots over conventional financial regulation
is unmistakable.

Nevertheless, one cannot at first rule out counter-actions from the profit-seeking
human traders, which may even lead to catastrophic outcomes such as a biological
arms race for the development of the most sophisticated automated trading mecha-
nism. Thus, it is important to devise further mechanisms that introduce uncertainty
about the form and the timing of the robots interventions. One possibility would be to
add extraneous variability to such policy measures, which could be accomplished by
turning the determination of the robot’s trades stochastic. Another interesting exten-
sion would be to consider an evolutionary approach (see Evstigneev et al. 2009, for a
review), where investment strategies are allowed to adapt, and selection and reproduc-
tion forces could be assigned to the maintenance of an appropriate degree of diversity.
We leave these considerations for future research.

5 Concluding Remarks

Wedeveloped an agent-basedmodel of a stockmarket that, in spite of endowing agents
with simple behavioral rules, incorporates complex structures of local interactions
that lead to the emergence of herd behavior. After calibrating the model, we have
shown that it is capable of matching some statistical properties observed in actual
stock market data, such as the low degree of serial predictability; moderate levels of
volatility clustering; and leptokurtic distributions of returns. One key feature of our
model was that periods of market instabilities were generated as the result of liquidity
imbalances amplified by the local interactions.

Our main contribution came with an attempt to stabilize the artificial stock market
through the design of liquidity provision policies. Remarkably, we have shown that an
intervention in response to the aggregate state of the market is only partially effective
for stabilization and incurs high financial costs. We argued that the complex nature of
the stock market needs to be taken into account, and accordingly we proposed the use
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of contrarian robot traders. These robots are spread through the market to collect local
information on the market conditions and trade autonomously using a contrarian rule.

We showed that the robot traders can successfully offset periods of liquidity short-
ages and, as a result, are effective in keeping market volatility under control. We
also devised a self-regulatory mechanism that prevents the costs associated with their
implementation to become excessively burdensome. Additionally, we analyzed the
case for a coordination mechanism where the robot intervention occurs in two stages:
First, the robots collect the information from their neighborhoods and communicate
it to a financial authority. Then, the authority aggregates this information and regu-
lates a coordinated action. We found this additional mechanism to allow a substantial
reduction in the number of robots required for an effective stabilization.

Therefore, we conclude that in spite of the problem of predicting the evolution
of complex systems, extreme events caused by herd behavior may be potentially
avoidable with the use of a locally triggered intervention strategy, together with an
understanding of the underlying mechanisms of decision-making in stock markets. Of
course, there are many open practical issues in the way between turning our proposal
into a realistic intervention mechanism, e.g.: Who will conduct the robots implemen-
tation? Who will finance their operation costs? How to control their risks? At this
stage we can only foresee that the actual implementation of our proposed mechanisms
shall be subject to a great deal of experimentation to guide their actual design and
feasibility.
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Appendix 1

Appendix 1.1: Calibration Exercise

The final calibration was split into two stages.12 In the first stage, we simulated the
model with a gross grid of parameter combinations, and compared the associated
evaluation statistics in order to learn the relevance of each parameter. Apart from
the return auto-correlations and kurtosis measures, we adopted an Anderson-Darling
goodness-of-fit statistic as an evaluation statistic,whichwas adjusted for the possibility
of ties (see Scholz and Stephens 1987, Eq. 7). This statistic was used in two ways:
in pairs, comparing the distribution of returns from each replication of the simulation
against the data; and, in amultiple sample versionwherewe testedwhether the different
replications of the simulation came from the same distribution in order to check for
the role of randomness in the model. To capture the level of disorder in the overall
system, we also adopted an averaged measure of the entropy in our two-dimensional
lattice of agents, which we attempted to maximize in order to prevent the emergence

12 During the model design stage, massive simulations were conducted.
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Fig. 11 Box-plots of Key Statistics from Model Simulations. The statistics come from 100 replications
(varying the random seed) of each of the 900 combinations of parameter values, i.e., a total 90,000 simula-
tions of the model. Our calibration aims tominimize the AD goodness-of-fit statistics (dotted lines represent
critical values at the 25 % significance level), to match the data in relation to return auto-correlation and
kurtosis (dotted lines represent statistics from data), and to maximize averaged entropy

of persistent clustering patterns. Following Wolfram (1983), we computed a block
entropy, with the block corresponding to the neighborhood definition.

The greater uncertainty about the interval of parameter values relied on the determi-
nation of γ and η, which are both related to the model’s sensitivity to the deviation of
the stock price from its perceived fundamental value. Hence, we considered a broader
range of values of these parameters. The results from this exercise are summarized in
the box-plot diagrams in Fig. 11, from which we can draw the following inferences:

Imitative response (κ) This parameter appeared to have small effects over the
model’s sensitivity to the other parameters. Most variation in the dispersion of
each statistic occurred for values of κ < 5.
Fundamentalist response (γ ) This parameter presented similar patternswithin each
statistic for γ > 5, with the fit of the model deteriorating for higher values of γ ;
we also found that higher values of γ tended to cause degenerate results (the entire
grid turning to the buy or the sell state) due to its exponential effect; particularly,
notice that the box-plots on the AD statistic for the test that all replications came
from the same distribution are below the rejection line only for γ = 1 and γ = 2.
This indicates that higher values increase the effects of randomness in the model.
For the auto-correlation of returns and for the averaged entropy, γ = 1 and γ = 2
are also closer to the desired targets of low predictability and high disorder in the
lattice of agents.
Weighting rule sensitivity (η) Similar results were observed regarding the insen-
sitivity of the distribution of each statistic for η > 1, 000; focusing on the AD
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statistic and the return kurtosis we can readily rule out η = 10, because it turns
the model results on these statistics insensitive to the other parameters. However,
smaller ηs tend to bring better results in terms of auto-correlation of returns and
averaged entropy.
Diversity of fundamental beliefs (σ ) Overall, the adjustment of themodel tended to
deteriorate for higher values of σ . In particular, the returns generated by the model
tended to the Gaussian distribution as diversity increased. Our main conclusion is
that the simplifying assumption, which is that there is no diversity of beliefs about
the fundamentals, i.e., σ = 0, is critical for the emergence of heavy tails in the
distribution of our model returns.

In the second stage of calibration, we constructed a finer grid of parameter com-
binations focused on the regions around the values that performed well in the
first stage. Namely, we focused on the case of homogeneous fundamental beliefs,
σ = 0, and evaluated the model for every combination of the following parame-
ter values: κ = {0.10, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00}; γ =
{1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00}; andη = {500, 750, 1000, 1250,
1500, 1750, 2000, 2500, 3000, 5000, 7500, 10,000, 15,000, 20,000}. This yielded a
total of 1,386 parameter combinations, which, after multiplying by the 100 replica-
tions, resulted in a total of 138,600 simulations. The calibrations presented in Table 1
were selected from these results, which are also available upon request.

Appendix 1.2: Market-Maker Response

To invert the price adjustment function with respect to the excess demand, first notice
that from (6) the stock market log returns are given by

rt = log [1 + tanh [Zt ]] .

Because tanh x = ex−e−x

ex+e−x , this can be simplified to

rt = log 2 + 2Zt − log
[
1 + e2Zt

]
,

or

ert = 2e2Zt

1 + e2Zt
,

which, after manipulation, leads to

e2Zt = ert

2 − ert
,

Zt = rt − log
[
2 − ert

]

2
. (11)
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Assuming rt is small, so that ert � 1 ⇒ log
[
2 − ert

] � 0, we can approximate the
excess demand implied by a given return by a linear function as advocated in the main
text. Substituting for the modified excess demand of (10), and assuming there are no
robots, i.e., Q = QB

t = QS
t = 0, the linearly approximated excess demand is given

by

N B
t − NS

t − Kt

N + K
= 1

2
rt ,

which implies

N B
t − NS

t =
(
N + K

)

2
rt + Kt . (12)

The market maker is assumed to respond to lagged excess demand according to

Kt =
{
N B
t−1 − NS

t−1

}+K

−K
. (13)

Substituting (12), lagged by one period, into (13) produces the final specification of
the market maker response function given by (7).

Appendix 1.3: Symmetry Between Robot and Human Rules

Assuming that the robots behave according to a counter-imitative rule symmetric to
that of the humans, (2), the probabilities that robot j makes a buy/sell order at period
t are given by

IB
j,t =

(
Ñ S

j,t−1

)κ̃

(
Ñ B

j,t−1

)κ̃ +
(
Ñ S

j,t−1

)κ̃
, IS

j,t =
(
Ñ B

j,t−1

)κ̃

(
Ñ B

j,t−1

)κ̃ +
(
Ñ S

j,t−1

)κ̃
, (14)

respectively. Because the robots make deterministic decisions, they would choose to
buy if IB

j,t > IS
j,t , but because IB

j,t ≡ 1− IS
j,t , robot j’s decision to buy simplifies to

(
Ñ S

j,t−1

)κ̃

(
Ñ B

j,t−1

)κ̃ +
(
Ñ S

j,t−1

)κ̃
>

1

2
,

(
Ñ S

j,t−1

)κ̃

>
(
Ñ B

j,t−1

)κ̃

,

which is identical to condition (8) after substituting the exponents for the self-
regulatory mechanism.
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Appendix 1.4: Robots Coordination Through Pooling of Information

With the two-stages coordination approach, the robots have to decide on the basis
of two pieces of information: (1) what they collect from their neighborhood, and (2)
the signal they receive from the financial authority about the other robots’ interim
decisions. Assuming that the robots combine this information linearly, the probability
that robot j will place a buy order at period t is given by

π B
j,t = (1 − θ) IB

j,t + θCB
t , π S

j,t = (1 − θ) IS
j,t + θCS

t ,

whereIB
j,t andIS

j,t follows from (14), and the other terms are explained in themain text.

Because the robots make a deterministic decision, they choose to buy if π B
j,t > π S

j,t ,
and sell otherwise. i.e., robot j’s condition to buy is given by

(1 − θ) IB
j,t + θCB

t > (1 − θ) IS
j,t + θCS

t , (15)

but as IB
j,t ≡ 1 − IS

j,t ,

(1 − θ)
(
1 − 2IS

j,t

)
> θ

(
CS
t − CB

t

)
,

(1 − θ)

⎛

⎜
⎝

(
Ñ S

j,t−1

)β[−a j,t ] −
(
Ñ B

j,t−1

)β[a j,t ]

(
Ñ S

j,t−1

)β[−a j,t ] +
(
Ñ B

j,t−1

)β[a j,t ]

⎞

⎟
⎠ > θ

(
CS
t − CB

t

)
,

(1 − θ)

((
Ñ S

j,t−1

)β[−a j,t ] −
(
Ñ B

j,t−1

)β[a j,t ]
)

> · · ·

· · · θ
(
CS
t − CB

t

) ((
Ñ S

j,t−1

)β[−a j,t ] +
(
Ñ B

j,t−1

)β[a j,t ]
)

,

where we used the definition of IS
j,t according to (14). After manipulation we find

(15) to be equivalent to

(1 − θ)
(
Ñ S

j,t−1

)β[−a j,t ] − (1 − θ)
(
Ñ B

j,t−1

)β[a j,t ]
> · · ·

· · ·
(
2θCS

t − θ
) (

Ñ S
j,t−1

)β[−a j,t ] −
(
2θCB

t − θ
) (

Ñ B
j,t−1

)β[a j,t ]
,

(
1 − 2θCS

t

) (
Ñ S

j,t−1

)β[−a j,t ]
>

(
1 − 2θCB

t

) (
Ñ B

j,t−1

)β[a j,t ]
,

which is identical to condition (9) in the main text.
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