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Abstract

Gaussian processes are powerful, yet analytically tractable models for supervised learn-
ing. As a generalization of the multivariate Gaussian distribution, a Gaussian process
is characterized by a mean function and a covariance function. The problem of model
selection is to determine a mean and covariance function with the aim of adapting the
Gaussian process to given data points – a difficult balancing act between data fit and
model complexity. The functions to be compared are in essence arbitrary, since they
do not just differ in their parametrization but in their fundamental structure. In do-
mains such as systems biology it is often not clear which function structure to choose,
for instance to decide between a squared exponential and a rational quadratic covari-
ance function. Based on the theory of approximation set coding (ASC), a framework
for model selection is developed, which is general enough to do hyperparameter op-
timization for any model that has a prior on its parameters. The framework is then
applied to Gaussian process regression. Experiments on synthetic and real-world data
are presented to compare approximation set coding to the classic model selection crite-
ria of maximum evidence (also known as marginal likelihood) and leave-one-out cross-
validation. Although approximation set coding shows promise to become a competitive
model selection criterion, it currently seems not to perform better than the classic crite-
ria in our experiments. Maximum evidence has the best performance in general, while
approximation set coding occasionally surpasses leave-one-out cross-validation. Fur-
ther work is needed on systematic ways to compare model selection criteria, or even
combine them in ensembles.
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Naming Conventions

The columns of a matrix A are denoted by an and its entries by ad,n. For a vector x, its
dth entry is denoted by xd.

Name Meaning

C Set of all hypotheses in approximation set coding
(·)CV Related to the criterion of cross-validation
c Hypothesis in approximation set coding
D Number of dimensions of a data set
D Data set; in case of regression, D = {(xn, yn) | n = 1, . . . ,N}

F (x) Cumulative distribution function
f Vector of Gaussian process latent function values
GP (m (x) , k (x, x ′)) Gaussian process with the mean function m and the covariance

function k

H Discrete set of possible functional forms (model structures)
Iθβ Mutual information in approximation set coding
J Number of random partitions to estimate the approximation ca-

pacity in approximation set coding
K Number of subsets in K-fold cross-validation
K Gaussian process covariance matrix in general
Kf Gaussian process covariance matrix for the noise-free f

Ky Gaussian process covariance matrix for the noisy y

k (x, x ′) Gaussian process covariance function
L Number of instances in approximation set coding
L Lower triangular matrix of the Cholesky decomposition
(·)l Related to the lth subset in approximation set coding
ℓ Characteristic length-scale hyperparameter of several covari-

ance functions
M Number of objects in approximation set coding
(·)ME Related to the criterion of maximum evidence (also known as

marginal likelihood)
m History size of the limited-memory BFGS optimization algo-

rithm [27]
m (x) Gaussian process mean function
m Gaussian process mean vector
N Number of cases in a data set
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Name Meaning

p (x) Probability density function
R (c,D) General cost function for a hypothesis given data
R2 (c,D) Cost function for hyperparameter optimization
R3 (c,D) Cost function for functional form selection
T Period hyperparameter of the periodic covariance function of

Equation (2.8) on page 14
wβ (c,D) Weight function in approximation set coding
X Matrix of regression inputs
y Vector of regression outputs

α Shape hyperparameter of the rational quadratic covariance
function of Equation (2.6) on page 14

α Parameter vector of a model such as linear regression
β Approximation precision in approximation set coding
ϵ Noise vector
ηβ Posterior agreement in approximation set coding
θ Single hyperparameter of a model
θ Hyperparameter vector of a model
µ0 Prior mean vector
Σ0 Prior covariance matrix
σ2
0 Prior variance

σ2
f Variance of the noise-free signal f

σ2
n Variance of the Gaussian noise added to f

τ Transformation in approximation set coding
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1. Introduction

A Gaussian process defines a distribution over functions. One would like to adapt this
distribution to a given set of data points, for example to explore periodicity of the data.
Model selection is to solve this problem of adapting to data. Selecting a Gaussian process
model essentially means to specify a mean function and a covariance function.

As one can imagine, selecting a function is a hard problem, since the options are vir-
tually unlimited. Typically, one considers a handful of parametrized function classes,
each of which has gaps to be filled with numbers in order to produce an actual function.
These gaps are the hyperparameters, while we refer to a function class as a functional
form. Table 1.1 on the facing page gives an intuition about how Gaussian processes look
like for various functional forms and hyperparameters, adapted to sample data points.
From the Gaussian processes of this example (and perhaps infinitely many more), which
one should we select? That is the problem of model selection. In domains such as sys-
tems biology [37], there is often no prior knowledge for selecting a certain functional
form.

Two well-known options to do model selection for Gaussian processes exist. The cri-
terion of maximum evidence (also known as marginal likelihood) maximizes the prob-
ability of the data under the model assumptions. Cross-validation, on the other hand,
minimizes an estimated generalization error of the model. Under certain circumstances,
maximum evidence is less resistant to model misspecification, whereas cross-validation
can suffer from a higher variance [2]. There is a lack of empirical studies about which of
these two criteria to use under which circumstances [30]. Going one step further, it is an
open problem how to combine the strengths of maximum evidence and cross-validation
into a unifying model selection criterion.

1.1. Contribution

Approximation set coding (ASC) is an abstract theory to determine an optimal trade-off
between the expressiveness of a model and the reproducibility of its inference [7]. For
instance, as a model selection principle applied to data clustering, it is able to compare
clustering models and choose the number of clusters [10]. A first contribution of this
work is to transfer approximation set coding to any models that define a parameter prior
and a likelihood, as is the case for Bayesian linear regression. This gives birth to a family
of algorithms to do model selection on the level of hyperparameters.

Second, the developed framework is instantiated for Gaussian process regression,
which naturally has a prior and a likelihood. The resulting model selection criterion is

8



Functional form Hyperparameters Gaussian process

Squared exponential covariance function ℓ = 1

σf = 2

Squared exponential covariance function ℓ = 2

σf = 1

Periodic covariance function ℓ = 1

T = 3

σf = 2

Periodic covariance function ℓ = 1

T = 5

σf = 2

Table 1.1.: Model selection for Gaussian processes means to select a functional form and
its hyperparameters. For given data points, the selected Gaussian process can
then be viewed as a distribution over functions. The mean of this distribution
is visualized, plus and minus one standard deviation.
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then compared to the classics of maximum evidence and leave-one-out cross-validation,
for both hyperparameter optimization and functional form selection. Although the ex-
periments do not suggest that approximation set coding performs better in general,
there are cases where it surpasses leave-one-out cross-validation. In one scenario for
hyperparameter optimization based on synthetic data, approximation set coding has a
similar median, but a lower variance than leave-one-out cross-validation, with respect to
the standardized mean squared error. Maximum evidence is mostly the top performer.
In another scenario for functional form selection based on real-world data, it is inter-
esting to see how maximum evidence and leave-one-out cross-validation disagree on
which covariance function should suit the data best.

The implications of this work are twofold. Approximation set coding has poten-
tial to be an alternative model selection criterion for Gaussian process regression, but
still needs improvement in future work to be competitive with maximum evidence and
cross-validation. In addition, it seems advisable to always try more than one criterion,
but the question about how to combine them remains unanswered.
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2. Background

In the following, we summarize relevant literature to set the stage. Regarding Gaussian
processes, Rasmussen and Williams [30] give a comprehensive treatment of the subject
in the context of machine learning.

2.1. Gaussian Processes

The multivariate Gaussian distribution is a generalization of the one-dimensional Gaus-
sian distribution from a distribution over scalars to a distribution over vectors. Similarly,
a Gaussian process is a generalization of the multivariate Gaussian distribution from a
distribution over vectors to a distribution over functions. See Table 2.1 for these levels of
abstraction. Informally speaking, a function f : RD → R can be seen as an infinitely long
vector [30]: given an argument x ∈ RD acting as a vector index, the function f produces
the value f (x) acting as a vector entry.

More formally, a Gaussian process is characterized by a mean function m : RD → R
and a covariance function k : RD × RD → R. We denote it by GP (m (x) , k (x, x ′)), which
defines a distribution over functions f : RD → R as follows. Given N inputs arranged
as columns of a matrix X ∈ RD×N, we get a joint distribution over the corresponding
N function values f (xn) arranged as a vector f ∈ RN. The distribution over f is an N-
dimensional Gaussian

f | X ∼ N (m,Kf) , (2.1)

where mn = m (xn) and (kf)n,n ′ = k (xn, xn ′). That is, the mean function defines the
mean vector m and the covariance function the covariance matrix Kf. To lift a mean or
covariance function from vectors to matrices, we write m (·) or Kf (·, ·), respectively.

Level of abstraction Distribution over Notation

Gaussian distribution Scalars N
(
µ, σ2

)
Multivariate Gaussian distribution Vectors N (µ,Σ)

Gaussian process Functions GP (m (x) , k (x, x ′))

Table 2.1.: Gaussian processes as a generalization of Gaussian distributions.
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2.1.1. Regression

When using Gaussian processes as a regression model, the vector f of latent function
values is hidden. Instead, we observe the corresponding outputs y ∈ RN with inde-
pendent Gaussian noise added. That is, y = f + ϵ with independent and identically
distributed ϵn ∼ N

(
0, σ2

n

)
for n = 1, . . . ,N, so that the likelihood is

y | f ∼ N
(
f, σ2

nI
)
. (2.2)

The “n” in σn stands for “noise” (not for an index n), which should avoid confusion
with other standard deviations later. The noise level σn is the first hyperparameter we
encounter, with the remaining hyperparameters defining the mean and covariance func-
tion m and k, respectively. In the context of Bayesian statistics, the vector f can be seen as
the parameters of this model with the prior p (f | X) given by Equation (2.1) on page 11.

With the knowledge of both the prior and the likelihood, the evidence can be inferred
using Proposition 3 on page 15 to be

y | X ∼ N (m,Ky) , (2.3)

where Ky = Kf+σ2
nI. With this in mind, we continue to make predictions. Suppose we

have already seen the noisy outputs y for the inputs X. We would like to know how the
noise-free function values f̃ are distributed for unseen inputs X̃. The joint distribution
is [

f̃

y

]
∼ N

([
m̃

m

]
,

[
K̃f A

A⊺ Ky

])
,

where

m̃ = m
(
X̃
)
, K̃f = Kf

(
X̃, X̃

)
, A = Kf

(
X̃,X

)
.

Applying Proposition 4 on page 15, the predictive distribution is

f̃
∣∣∣ X,y, X̃ ∼ N

(
m̃+AK−1

y (y−m) , K̃f −AK−1
y A⊺

)
. (2.4)

In fact, this is the posterior (another Gaussian process) evaluated at X̃. It allows us to
make predictions associated with information about how uncertain they are.

2.1.2. Examples of Covariance Functions

The selection of a covariance function is crucial, as it models how similar outputs are
for close inputs. Figure 2.1 on the next page illustrates functions f drawn from various
example covariance functions. Covariance functions can be combined. For instance, a
sum or product of covariance functions is another valid covariance function.

Probably the most popular covariance function [13] is the squared exponential covari-
ance function

k
(
x, x ′) = σ2

f exp
(
−

1

2ℓ2

∥∥x− x ′∥∥2
2

)
. (2.5)
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(a) Squared exponential covariance function
of Equation (2.5) on page 12 where ℓ = 1

and σf = 1.

-2

0

2

-2 0 2
x

f

(b) Rational quadratic covariance function of
Equation (2.6) on the next page where ℓ =

1, σf = 1, and α = 1/2.

-2

0

2

-2 0 2
x

f

(c) Exponential covariance function of Equa-
tion (2.7) on the next page where ℓ = 1 and
σf = 1.

-2

0

2

-2 0 2
x

f

(d) Periodic covariance function of Equa-
tion (2.8) on the next page where ℓ = 1,
T = 2, and σf = 1.

Figure 2.1.: Sample functions f randomly drawn from Gaussian processes with the zero
mean function and various covariance functions. The x-axis is discretized
by 2048 equally spaced points.
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It is very smooth. The hyperparameter σf allows us to adapt to any desired variance.
The other hyperparameter ℓ is called the characteristic length-scale. For D = 1, a zero-
mean Gaussian process crosses the x-axis in expectation (2πℓ)−1 times upwards on the
unit interval [30].

An infinite sum of squared exponential covariance functions with different character-
istic length-scales is equivalent to the rational quadratic covariance function

k
(
x, x ′) = σ2

f

(
1+

1

2αℓ2

∥∥x− x ′∥∥2
2

)−α

. (2.6)

For the limit α→∞ of its shape hyperparameter, this is the squared exponential covari-
ance function [30].

Another interesting example is the exponential covariance function

k
(
x, x ′) = σ2

f exp
(
−
1

ℓ

∥∥x− x ′∥∥
2

)
, (2.7)

which is very rough. It is a special case of the so-called Matérn class of covariance func-
tions [30]. For D = 1, it is the covariance function of the Ornstein–Uhlenbeck process as
a model for the velocity of a particle in Brownian motion [34].

To express a process that repeats itself in periods of T , one may consider the periodic
covariance function [24]

k
(
x, x ′) = σ2

f exp
(
−

2

ℓ2
sin2

(π
T

∥∥x− x ′∥∥
2

))
. (2.8)

Gaussian processes are connected to linear regression. Consider Bayesian linear re-
gression with a simple model y = X⊺α + ϵ for independent and identically distributed
noise ϵn ∼ N

(
0, σ2

n

)
. When putting the prior α ∼ N

(
0, σ2

0I
)

on the parameter vector, we
infer X⊺α ∼ N

(
0, σ2

0X
⊺X
)

by the rule for linear transformations of a Gaussian random
variable [33, Theorem 3.3.3]. Introducing f = X⊺α, we conclude that this is just a Gaus-
sian process with the zero mean function and the covariance function k (x, x ′) = σ2

0x
⊺x ′.

Furthermore, Gaussian processes with a certain covariance function are connected to
neural networks [26].

2.2. Multivariate Gaussian Distribution

Gaussian processes are convenient in the sense that many of the involved calculations
can be done analytically instead of resorting to numerical approximations. It is thus
useful know a couple of rules for calculating with multivariate Gaussian distributions,
of which we first give a possible definition.

Definition 1. A D-dimensional random variable x with mean µ and covariance Σ has a
multivariate Gaussian distribution if and only if for all r ∈ RD, the distribution of r⊺x is a
univariate Gaussian N (r⊺µ, r⊺Σr) [33, Definition 3.2.5].

14



Note that this definition allows the covariance matrix Σ to be singular, in which case
the distribution is called degenerate and does not have a probability density function.
Otherwise, if Σ is invertible, the density is given as follows.

Proposition 1. The density of a multivariate Gaussian distribution with mean µ ∈ RD and
symmetric positive-definite covariance Σ ∈ RD×D is

N (x | µ,Σ) = (2π)−D/2
|Σ|−1/2 exp

(
−
1

2
(x− µ)⊺ Σ−1 (x− µ)

)
[33, Theorem 3.2.4]. The logarithm of the density is

logN (x | µ,Σ) = −
1

2

(
(x− µ)⊺ Σ−1 (x− µ) + log |Σ|+D log (2π)

)
.

Based on the density, we deduce a couple of corollaries, which shall be used without
reference later.

Proposition 2. A Gaussian density in general satisfies

1. N (x | µ,Σ) = N (x− µ | 0,Σ),

2. N (−µ | 0,Σ) = N (µ | 0,Σ), and

3. N (x | µ,Σ) = N (µ | 0,Σ) exp
(
x⊺Σ−1

(
µ− 1

2
x
))

.

Proof. These identities are immediate consequences of Proposition 1.

If a conditional distribution is a Gaussian with its mean itself being Gaussian dis-
tributed, then the marginal distribution is a Gaussian.

Proposition 3. If t ∼ N (µ,Σ) and u | t ∼ N (t,V), then u ∼ N (µ,Σ+V) [5, Equa-
tion (2.115)].

Conditioning one random variable on another one with joint Gaussian distribution
gives yet another Gaussian as follows.

Proposition 4. If [
t

u

]
∼ N

([
µ

r

]
,

[
Σ A

A⊺ V

])
then

t | u ∼ N
(
µ+AV−1 (u− r) ,Σ−AV−1A⊺)

[33, Theorem 3.3.4].

The next result helps us with a so-called Gaussian integral. The expression |Λ| N (µ | 0,Λ)

shall frequently reappear later.
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Proposition 5. If Λ is symmetric positive-definite, then∫
RD

exp
(
x⊺
(
µ−

1

2
Λx

))
dDx =

1

|Λ| N (µ | 0,Λ)

[36, page 14].

As with the entropy of a discrete random variable, the differential entropy of a con-
tinuous random variable is related to its shortest description length [11]. The unit of
information we use here is the nat, which measures to the base of Euler’s number e. In
case of a Gaussian distribution, the differential entropy does not depend on the mean,
but only on the determinant of the covariance.

Proposition 6. The differential entropy of a Gaussian distribution in D dimensions is

h (N (µ,Σ)) =
1

2
(log |Σ|+D log (2πe)) ,

where the unit is nats [11, Equation (8.44)].

2.3. Symmetric Positive-Definite Matrices

The covariance matrix of a Gaussian is always symmetric positive-semidefinite, which
can be seen as a generalization of nonnegative real numbers to matrices. If additionally,
the covariance matrix is invertible, then it is symmetric positive-definite.

Definition 2. A matrixΣ ∈ RD×D is called symmetric positive-definite (or symmetric positive-
semidefinite, respectively) if and only if it is symmetric and x⊺Σx > 0 (or x⊺Σx ⩾ 0, re-
spectively) for all x ̸= 0.

Symmetric positive-definite matrices are closed under inversion, multiplication by a
scalar, and addition to a symmetric positive-semidefinite matrix. For instance, the co-
variance matrix Ky = Kf + σ2

nI for Gaussian processes is symmetric positive-definite.
Furthermore, the diagonal entries of symmetric positive-definite matrices are positive.
However, a product of symmetric positive-definite matrices may generally not be sym-
metric positive-definite, so that they do not form a group under matrix multiplication.

Proposition 7. If Σ is symmetric positive-definite, then

1. Σ is invertible and Σ−1 is symmetric positive-definite [19, page 430],

2. γΣ and Σ+V are symmetric positive-definite for all γ > 0 and for all symmetric positive-
semidefinite V [19, Observation 7.1.3], and

3. every submatrix of Σ obtained by removing rows and columns corresponding to the same
index set is symmetric positive-definite [19, Observation 7.1.2].
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The next little helper is about combining a symmetric positive-definite matrix with a
possibly rectangular matrix.

Proposition 8. If Σ is symmetric positive-definite and A has full row rank, then AΣA⊺ is
symmetric positive-definite [19, Observation 7.1.8.(b)].

Every symmetric positive-definite matrix Σ ∈ RD×D has a unique decomposition of
the form Σ = LL⊺ called Cholesky decomposition, such that L ∈ RD×D is a lower trian-
gular matrix with positive diagonal entries [19, Corollary 7.2.9]. The Cholesky decom-
position of Σ can be computed in D3/2 floating-point operations, which is half of the
complexity for the LU decomposition [18, Algorithm 10.2].

Once the Cholesky decomposition of Σ is available, we can numerically evaluate a
Gaussian density with this covariance Σ. A system of linear equations Σx = t for x can
be solved in Θ

(
D2
)

floating-point operations: first solve Lu = t for u and then L⊺x = u

for x, where both times a system with a triangular matrix is easy to solve. Computing
the determinant of L, on the other hand, requires Θ (D) floating-point operations.

Proposition 9. If Σ ∈ RD×D is a symmetric positive-definite matrix with Cholesky decompo-
sition Σ = LL⊺, then its determinant equals

|Σ| =

D∏
d=1

l2d,d.

Proof. In general, the determinant of a product of matrices is the product of their deter-
minants [19, page 11]. Therefore, we have |Σ| = |L| |L⊺|. As the determinant of a triangular
matrix is the product of its diagonal entries [19, page 31], the statement follows.

The Cholesky decomposition enjoys a fantastic numerical stability. That is, there ex-
ists an exceptionally good guarantee how well L̃L̃⊺ approximates Σ for the numerically
computed L̃ [18, Theorem 10.3]. The LAPACK standard software library provides effi-
cient implementations of algorithms centered around numerical linear algebra [1]. Its
routine DPOTRF performs a Cholesky decomposition of a symmetric positive-definite ma-
trix, based on which DPOTRS solves linear systems of equations and DPOTRI computes
the inverse. Available since LAPACK version 3.2, the routines DPSTF2 and DPSTRF do
a so-called pivoted Cholesky decomposition for the more general case of symmetric
positive-semidefinite matrices [23].

2.4. Model Selection for Gaussian Processes

For Gaussian process regression, the problem of model selection is to determine a mean
function, a covariance function, and a noise level σn. Determining a mean and a covari-
ance function means to select both their functional form and their hyperparameters,
if any. For instance, one may select as a functional form a zero mean function and a

17



squared exponential covariance function of Equation (2.5) on page 12. The hyperpa-
rameter optimization is then to select ℓ, σf, and σn. Solving the model selection should
not only improve the predictions of the model, but also let us interpret the data by dis-
covering patterns such as periodicity [30].

2.4.1. General Aspects

The functional form selection may be done manually, in particular if one is an expert
in the domain. More recently, search systems have been developed to automatically
explore a large number of models and combinations thereof [12]. Besides the subjective
examination by human users based on feedback such as visualizations, it is crucial to
let a system assign an objective cost to a model given the data – the lower the cost, the
better.

Cost functions occur at different levels of model selection. First of all, a cost function
serves as an objective function to compare hyperparameters for a single functional form.
On one level higher, a cost function compares functional forms on their optimized hy-
perparameters. To make this distinction clearer, let the data set be D. We would like
to decide for one of a discrete set H of possible functional forms and optimize its hy-
perparameters. Fixing the hyperparameters of a functional form h ∈ H to θ produces a
Gaussian process denoted by h (θ). For each functional form h ∈ H, we find an optimal
hyperparameter vector

θ⋆
h ∈ arg min

θ

R2 (h (θ) ,D) (2.9)

according to the cost function R2. Once the hyperparameters are optimized, we take
them to choose a functional form by

h⋆ ∈ arg min
h∈H

R3 (h (θ⋆
h) ,D) (2.10)

with the cost function R3. From the perspective of model selection by multi-level in-
ference [15], these two levels can be seen as instances of the second and third level of
inference, respectively, hence the names R2 and R3. The cost functions R2 and R3 can be
the same, but do not need to be. We use the name R for a general cost function at any
level of inference.

To minimize these cost functions, numerical optimization algorithms can be applied.
In the family of quasi-Newton methods, the algorithm of limited-memory BFGS solves
unconstrained optimization problems. It memorizes information from the last m iter-
ations, where m is defined by the user [27]. In D dimensions, it does Θ (mD) work
per iteration, oftentimes with a faster overall performance than the BFGS algorithm on
which it is based [32]. Limited-memory BFGS needs to evaluate the value and gradient
of the objective function, while it approximates the inverse of the Hessian matrix itself.
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2.4.2. Maximum Evidence and Cross-Validation

A well-known criterion for model selection is maximum evidence, also known as marginal
likelihood. Recall that we already have the evidence from Equation (2.3) on page 12. The
criterion of maximum evidence is then to select a model that minimizes the negative
log-evidence

RME = − logN (y | m,Ky ) . (2.11)

Note that the mean m and the covariance Ky in general depend on the hyperparameters,
even if the notation hides this fact for simplicity.

The criterion of cross-validation estimates the generalization error to minimize it. K-
fold cross-validation partitions the data into K subsets of approximately the same car-
dinality. For every subset, a model is trained on the other K − 1 subsets together in
order to evaluate a loss function on the current subset. Finally, the resulting K losses
are averaged, for example by their mean. One could even do more than one round of
K-fold cross-validation on multiple random partitions. In the extreme case of K = N

folds, K-fold cross-validation uses a single case per validation, which is called leave-
one-out (LOO) cross-validation. As a loss function for cross-validation, the negative
log-probability seems natural, but any other cost function such as the mean squared
error is possible as well [30]. The decision depends on the application.

For the kth fold, let Xk and yk belong to the kth subset of the data, while the data
without this subset is made of X−k and y−k. Our default is to do K-fold cross-validation
for the negative log-probability loss with the objective to minimize

RCV = −
1

K

K∑
k=1

logp (yk | X,y−k ) . (2.12)

To calculate it, we first reuse the posterior of Equation (2.4) on page 12 to get the density
of fk | X,y−k . We simply need to add the noise σ2

nI to its covariance matrix according
to Proposition 3 on page 15, so that we have

yk | X,y−k ∼ N
(
mk +AkK

−1
−k (y−k −m−k) ,Kk −AkK

−1
−kA

⊺
k

)
.

where

mk = m (Xk) , m−k = m (X−k) ,

Kk = Ky (Xk,Xk) , K−k = Ky (X−k,X−k) , Ak = Kf (Xk,X−k) .

The last criterion of probably approximately correct (PAC) learning tries to bound
the generalization error. One can do model selection by minimizing these generaliza-
tion bounds. However, the risk is that “this procedure may not be well-justified if the
generalization bounds are loose.” [30, page 163] Furthermore, while the involved PAC-
Bayesian theorem holds for Gaussian process classification, it seems unclear whether it
can be applied to Gaussian process regression [31]. We shall thus not further consider
PAC learning here.
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How do the criteria of maximum evidence and cross-validation compare? Leave-one-
out cross-validation has the same asymptotic time complexity as maximum evidence,
namely Θ

(
N3
)

due to the matrix decomposition of Ky. For K-fold cross-validation,
the trade-off between bias and variance generally depends on K. Leave-one-out cross-
validation is normally less biased, but has a higher variance compared to when the num-
ber of folds K is reduced [21]. Maximum evidence puts more emphasis on the model
than the data, so that it could be preferred over leave-one-out cross-validation if one has
a lot of trust in the prior [9]. On the other hand, cross-validation procedures have been
argued to perform better in cases of model misspecification [2].

2.5. Approximation Set Coding

Approximation set coding (ASC) is an abstract theory to do model selection. It selects
a model that neither underfits nor overfits the given data. In other words, an optimal
model should both be informative and have a reproducible inference. Clearly, this trade-
off is at the basis of model selection itself and has been popularized by the principle of
Occam’s razor. What distinguishes approximation set coding is the idea to map the
problem of model selection to an imaginary communication scenario, where the trade-
off is between a high information rate and a low communication error. Independently of
Gaussian processes, we review approximation set coding in the following, as developed
by Buhmann [7].

2.5.1. Inferring Posterior Distributions

Let the data set be D. We have a countable set of possible hypotheses C, each of which
is an interpretation of the data. A cost function R (c,D) measures how plausible the
hypothesis c ∈ C is in light of the data D. Now instead of just one cost function, we have
(possibly infinitely) many cost functions Rθ (c,D) indexed by θ.

To make things clearer, an instance of model selection is to determine the number of
clusters K in K-means clustering [10]. In this case, the data D is made of N points to be
clustered in D dimensions. The hypothesis space C is the set of all possible assignments
of the points to K clusters, so that it has cardinality KN. Each number of clusters K ∈ N
induces a cost function RK (c,D) defined as the sum of squared distances from each data
point to its assigned cluster mean. We assume here that for each number of clusters
K, the K cluster means are already estimated, for example by Lloyd’s algorithm [22].
Approximation set coding provides us with a principle to select an optimal cost function,
thereby selecting the number of clusters K.

Continuing with the general theory, once the cost functions are defined, we can find
an empirical minimizer c⊥ ∈ arg minc R (c,D) per cost function. The empirical mini-
mizer c⊥ depends on the noise that comes with the data D, so that identifying c⊥ as the
only interpretation of the data would not reflect the uncertainty of the data. What we
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would like to infer instead is a distribution over the hypothesis space such that hypothe-
ses with less costs are assigned more probability mass. This is expressed as a posterior
distribution Prβ (c | D) that depends on the so-called approximation precision β > 0.
The role of β is to control the trade-off between informativeness and robustness of the
inferred posterior Prβ (c | D): a high β assigns most of the probability mass to the hy-
potheses of low cost (informative), while reducing β results in spreading the probability
mass more equally over the hypotheses (robust).

How do we choose the approximation precision β? To answer this, approximation set
coding defines an imaginary communication scenario with a coding concept (the actual
approximation set coding). It is based on transformations of the data D that correspond
to transformations in the hypothesis space C. Without explaining the scenario here, it
essentially amounts to a bound on the communication error that depends on an expres-
sion Iθβ called mutual information. Note that this mutual information is not equal to any
mutual information between random variables, but rather just recycles the same name
due to its resemblance to the mutual information in the context of channel coding. The
idea is then to choose β such that the mutual information is maximal, that is,

β⋆
θ ∈ arg max

β>0

Iθβ. (2.13)

The maximum Iθβ⋆ of the mutual information with respect to β is known as the approx-
imation capacity.

2.5.2. Model Selection Principle

To do model selection, approximation set coding then simply tells us to select a cost
function Rθ (c,D) with maximal approximation capacity as in

θ⋆ ∈ arg max
θ

Iθβ⋆ . (2.14)

Since models normally come with cost functions such as a likelihood, this principle al-
lows us to compare models.

The mutual information is given by

Iθβ = h (τ) +
2

N
logηβ. (2.15)

While h (τ) is independent of β [14], both h (τ) and ηβ generally depend on the cost
function Rθ (c,D). The expression h (τ) measures the complexity of the transformations
in the communication scenario. For example, in the case of K-means clustering, h (τ) can
be estimated by the entropy of the empirical minimizer c⊥ [10, Equation (4)].

To define the other expression ηβ, we first need to state a strong assumption that ap-
proximation set coding makes. It is assumed that the data D with N cases can be parti-
tioned into two subsets D1 and D2 of equal size N/2 such that the nth case of D1 corre-
sponds to the nth case of D2. Expressing it in the language of approximation set coding,
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the nth cases of D1 and D2 are two measurements of the same object. In K-means clus-
tering, for instance, the nth points of D1 and D2 are assumed to be generated from the
same cluster. In that case, however, the assumption can be established by clustering the
data D in order to construct D1 and D2 by randomly partitioning the points assigned to
the same cluster into equally sized subsets.

Each of the subsets D1 and D2 gives rise to its own posterior distribution Prβ (c | Dl )

for l = 1, 2. This leads us to introducing

ηβ =
∑
c∈C

Pr
β
(c | D1 )Pr

β
(c | D2 ) . (2.16)

As the expression ηβ measures the overlap of the two posteriors, it is also called the
posterior agreement.1

A crucial ingredient is how to construct a posterior distribution for a given β. The
standard approach so far is to come up with nonnegative weights wβ (c,D) such that
hypotheses with less costs Rθ (c,D) get more weight. For example, one may decide for
so-called Boltzmann weights

wβ (c,D) = exp (−βRθ (c,D)) .

Once the weights are defined, we only need to normalize them for a probability distri-
bution over the hypothesis space as in

Pr
β
(c | D) =

wβ (c,D)∑
c∈Cwβ (c,D)

.

As we shall see later, models with a prior provide an alternative posterior via Bayes’
theorem.

2.5.3. Uncountable Hypothesis Spaces

The original formulation of approximation set coding addresses a countable hypothesis
space C. Frank and Buhmann [14] solve the problem of selecting the rank K for a trun-
cated singular value decomposition (SVD) by approximation set coding. The theory is
thereby transferred to the uncountable hypothesis space of that particular application.
Two interesting variants are presented. The first variant is to discretize the hypothesis
space by an equispaced grid in a finite hypercube. However, it is unclear how to choose
the limits of this hypercube for a model at hand.

The second, presumably more attractive variant for uncountable hypothesis spaces
is to replace the sums over hypotheses by integrals with respect to a measure γF (c).
F (c) denotes a cumulative distribution function over the hypothesis space, scaled by a
positive scalar γ. Frank and Buhmann [14] choose a Gaussian F (c) for the integration of

1The Bhattacharyya coefficient between two distributions happens to be of a related form, but it addition-
ally takes the square root of the probabilities [4].
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both the weights and the expression ηβ. More concretely, instead of directly transferring
the weight sums to

∫
Cwβ (c,D) dDc, they become∫

C

wβ (c,D) dD (γF (c)) = γ

∫
C

wβ (c,D)p (c) dDc,

where p (c) is the probability density function of F (c). The expression ηβ is transferred
in the same way. In this case, the involved expression

wβ (c,D)

γ
∫
Cwβ (c,D) dDF (c)

is not a density any more, since it does not integrate to 1 for the default integration
measure. Therefore, ηβ does not measure a posterior agreement in this case. A further
contribution is to take the complexity of the transformations h (τ) as

h (τ) =
2

N
log

(
γ

∫
C

dDF (c)

)
=

2

N
log

(
γ

∫
C

p (c) dDc

)
=

2

N
logγ.

In general, we assume that F (c) has a probability density function p (c) exactly over the
hypothesis space.
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3. Model Selection by Approximation Set
Coding with a Prior

Given a model with parameters, we would like to solve the problem of selecting its
hyperparameters by approximation set coding. The central requirement is that we have
a prior over the parameters, as is the case for Bayesian linear regression. The treatment in
this chapter is of an abstract nature, preparing the ground for Gaussian process models
in Chapter 4 on page 30.

3.1. Using a Prior on the Hypothesis Space

Let a model have parameters α ∈ RD and hyperparameters θ. We assume that it comes
with a likelihood p (D | α) and a prior p (α), both of which may depend on the hyper-
parameters. The goal is to select the hyperparameters based on the given data D.

In the context of approximation set coding, we designate the parameters α as the hy-
potheses. A natural cost function is the negative log-likelihood

R (α,D) = − logp (D | α) . (3.1)

Since the hyperparameters θ affect the costs, we can optimize the hyperparameters by
comparing cost functions. Table 3.1 relates this instantiation of approximation set coding
to other examples of model selection.

Based on a fixed cost function, we define a family of posteriorspβ (α | D)parametrized
by the approximation precision β. There exist several ways to define the posteriors, one
of which is via Boltzmann weights. For now, we abstract from this choice.

The data D of size N is partitioned into L subsets Dl, each of its own cardinality Nl

for l = 1, . . . , L. Unlike in the original theory of approximation set coding [7], we do
not assume a direct correspondence of the cases in these subsets, but rather think of the

Application Model θ to select Hypothesis c

K-means clustering [10] Number K of clusters Cluster assignment
Truncated SVD [14] Rank K Matrix decomposition
Model with parameter prior Hyperparameters θ Parameters α

Table 3.1.: Instantiations of approximation set coding for various applications.
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subsets being indirectly connected through the parameters α. We look at the subsets
as measurements of the parameters. This means that we are free to choose the subsets,
including their cardinalities. For abstraction, the number L of subsets is arbitrary as
well, which at the same time shortens the notation without adding much complexity to
the derivations.

Given such a partition of the data D, the posterior agreement in resemblance with
Equation (2.16) on page 22 is

ηβ =

∫
RD

L∏
l=1

pβ (α | Dl ) d
DF (α) , (3.2)

where F (α) is the cumulative distribution function of the prior on α. If F (α) has a prob-
ability density function p (α), then

ηβ =

∫
RD

(
L∏

l=1

pβ (α | Dl )

)
p (α) dDα.

Inspired by Frank and Buhmann [14], we choose a density as an integration measure
to reweight the hypothesis space. Intuitively, it is natural to let the prior p (α) take this
role, since we care more about the agreement of the posteriors on the hypotheses that
are a priori more plausible.

While defining the complexity of the transformations h (τ) is not entirely clear, it is
believed to be a design decision to some degree. One can simply resort to

h (τ) = 0. (3.3)

That way, approximation set coding reduces to a pure posterior agreement, which can
be a good base to build upon. As an alternative, it makes sense to take h (τ) as a measure
for the complexity of the integration measure. Thus, the differential entropy of the prior
would be a candidate, that is,

h (τ) = h (p (α)) . (3.4)

This is related to the shortest description length of the parameters α under the prior and
hence to the richness of the transformations τ on the hypothesis space. For simplicity,
we omit the factor 2/N for h (τ), as it appears for log ηβ in Equation (2.15) on page 21,
too. Therefore, the mutual information equals

Iθβ = h (τ) + logηβ. (3.5)

For model selection, we maximize the approximation capacity as in

θ⋆ ∈ arg max
θ

(
max
β>0

Iθβ

)
. (3.6)

Instead of a single partition of the data D, one can average over the approximation ca-
pacity of J partitions. The abstract Algorithm 1 on the next page summarizes this model
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Algorithm 1 Model selection by approximation set coding for the data D. The approxi-
mation capacity is computed as the mean of J partitions into L subsets.

for j← 1, . . . , J do in parallel
D

(j)
1 , . . . ,D

(j)
L ← random partition of D into L subsets

end for

function I(θ)
for j← 1, . . . , J do in parallel

γ(j) ←maxβ>0 I
θ
β

(
D

(j)
1 , . . . ,D

(j)
L

)
▷ Equation (3.5) on page 25

end for
return 1

J

∑J
j=1 γ

(j)

end function

θ⋆ ← arg maxθ I (θ)

return θ⋆

selection. Because the computations for the J partitions are independent per round, they
can easily be done in parallel.

Next, we shall look at several variants to construct posteriors pβ (α | D) based on the
cost function of Equation (3.1) on page 24.

3.2. Boltzmann Approximation Set Coding

One can use Boltzmann weights to transform the costs into weights as in

wβ (α,D) = exp (−βR (α,D)) = p (D | α)β .

We then normalize the weights to obtain the posterior

pβ (α | D) =
p (D | α)β∫

RD p (D | α)β dDα
. (3.7)

Note that unlike Frank and Buhmann [14], we thereby get a density, because the inte-
gration is simply with respect to α instead of the changed measure F (α).

We now look at such a posterior for the special case of a Gaussian likelihood. The
resulting posterior is another Gaussian. Its mean is the empirical minimizer of the cost
function – as expected, since the posterior is a monotonically increasing function of the
likelihood. Its covariance matrix, on the other hand, changes with the approximation
precision β.
Proposition 10. Let wβ (c) = N (A⊺c | µ,Σ)β for arbitrary β > 0. Under the assumption
that A ∈ RD×N has full row rank,

wβ (c)∫
RD wβ (c) dDc

= N

(
c

∣∣∣∣ r, 1βΛ−1

)
,
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where r = Λ−1AΣ−1µ and Λ = AΣ−1A⊺.

Proof. We first separate a factor from wβ (c) that is independent of c, namely

wβ (c) = N (A⊺c | µ,Σ)β = N (µ | 0,Σ)β exp
(
βc⊺

(
AΣ−1µ−

1

2
Λc

))
.

Then
wβ (c)∫

RD wβ (c) dDc
=

exp
(
βc⊺

(
AΣ−1µ− 1

2
Λc
))∫

RD exp
(
βc⊺

(
AΣ−1µ− 1

2
Λc
))

dDc
.

We now calculate the integral. It can be seen that βΛ is symmetric positive-definite by
Proposition 7 on page 16 and Proposition 8 on page 17, since A is assumed to have full
row rank. This allows us to apply Proposition 5 on page 16, so that∫
RD

exp
(
βc⊺

(
AΣ−1µ−

1

2
Λc

))
dDc =

1

|βΛ| N (βAΣ−1µ | 0, βΛ)
=

1

N
(
r
∣∣∣ 0, 1

β
Λ−1

) .
Finally, we have

wβ (c)∫
RD wβ (c) dDc

= N

(
r

∣∣∣∣ 0, 1βΛ−1

)
exp

(
βc⊺

(
AΣ−1µ−

1

2
Λc

))
= N

(
r

∣∣∣∣ 0, 1βΛ−1

)
exp

(
βc⊺Λ

(
r−

1

2
c

))
= N

(
c

∣∣∣∣ r, 1βΛ−1

)
.

We need one more intermediate proposition as a preparation to infer a specific poste-
rior agreement. Integrating over a product of Gaussian densities is analytically feasible,
which proves once more the convenience of Gaussians.

Proposition 11. We have∫
RD

L∏
l=1

N (x | µl,Σl ) d
Dx =

∏L
l=1N (µl | 0,Σl )

|Λ| N (r | 0,Λ)
,

where

r =

L∑
l=1

Σ−1
l µl, Λ =

L∑
l=1

Σ−1
l .

Proof. We shorten γ =
∏L

l=1N (µl | 0,Σl ) and move this factor γ independent of x out
of the integral as in∫

RD

L∏
l=1

N (x | µl,Σl ) d
Dx = γ

∫
RD

L∏
l=1

exp
(
x⊺Σ−1

l

(
µl −

1

2
x

))
dDx

= γ

∫
RD

exp
(

L∑
l=1

x⊺Σ−1
l

(
µl −

1

2
x

))
dDx

= γ

∫
RD

exp
(
x⊺
(
r−

1

2
Λx

))
dDx.
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The remaining integral can again be calculated by Proposition 5 on page 16 and the
statement follows.

Now we are ready to derive the case when both the likelihood and the prior are a
Gaussian, which is to be applied to Gaussian processes later.

Proposition 12. Let
R (c, l) = − logN

(
A

⊺
l c
∣∣ µl,Σl

)
be a cost function with Al ∈ RD×Nl having full row rank for l = 1, . . . , L. Assume a Gaussian
prior

c ∼ N (µ0,Σ0)

on the hypotheses. When using Boltzmann weights wβ (c, l) = exp (−βR (c, l)), the posterior
agreement is

ηβ =

∏L
l=1 |βΛl| N (βrl | 0, βΛl )

|P| N (s | 0,P)
N (µ0 | 0,Σ0 ) ,

where

rl = AlΣ
−1
l µl, Λl = AlΣ

−1
l A

⊺
l ,

s = β

L∑
l=1

rl + Σ−1
0 µ0, P = β

L∑
l=1

Λl + Σ−1
0 .

Proof. Using Proposition 10 on page 26, we can write the posterior agreement according
to Equation (3.2) on page 25 as

ηβ =

∫
RD

(
L∏

l=1

wβ (c, l)∫
RD wβ (c, l) dDc

)
N (c | µ0,Σ0 ) d

Dc

=

∫
RD

(
L∏

l=1

N

(
c

∣∣∣∣ Λ−1
l rl,

1

β
Λ−1

l

))
N (c | µ0,Σ0 ) d

Dc.

Such an integral over a product of L+ 1 Gaussians equals

ηβ =

∏L
l=1N

(
Λ−1

l rl

∣∣∣ 0, 1
β
Λ−1

l

)
|P| N (s | 0,P)

N (µ0 | 0,Σ0 )

by Proposition 11 on page 27. Finally, we apply the fact that

N

(
Λ−1

l rl

∣∣∣∣ 0, 1βΛ−1
l

)
= |βΛl| N (βrl | 0, βΛl ) .
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3.3. β-Noise Approximation Set Coding

There are models that intrinsically come with a notion of noise. If there is a hyperparam-
eter σn that represents a noise level, then it may be worth trying to identify β = 1/σn.
Remember that the approximation precision β intuitively tells us with how much res-
olution we can distinguish hypotheses with statistical significance. If the noise level is
lower, then the resolution should be higher. Unlike in K-means clustering or truncated
singular value decomposition, for example, modeling noise is omnipresent in domains
such as linear regression.

Consequently, in case of a model with a noise level σn, it is justified to turn the cost
function of Equation (3.1) on page 24 into a posterior distribution without the approx-
imation precision β. Since this variant injects β via the noise instead, we call it β-noise
approximation set coding. We define the weights with the help of the exponential func-
tion as

w1 (α,D) = exp (−R (α,D)) = p (D | α) .

This is nothing else than the expression for the likelihood. However, we look at it as a
function of the parameters α instead of the data D and thus need to normalize it to

p1 (α | D) =
p (D | α)∫

RD p (D | α) dDα
. (3.8)

Technically, β-noise approximation set coding is equivalent to fixing β = 1 in Boltzmann
approximation set coding. To see this, compare the posterior p1 (α | D) to the one of
Equation (3.7) on page 26.

The special case of L = 1 subset reveals an interesting connection. The posterior agree-
ment of Equation (3.2) on page 25 is then related to the evidence p (D) as in

η1 =

∫
RD

p1 (α | D)p (α) dDα =

∫
RD p (D | α)p (α) dDα∫

RD p (D | α) dDα
=

p (D)∫
RD p (D | α) dDα

.

In contrast to model selection by maximum evidence, this posterior additionally penal-
izes with the expression

∫
RD p (D | α) dDα to select the hyperparameters θ.

3.4. Bayesian Approximation Set Coding

The last variant is to derive the posterior by making use of the prior. Applying Bayes’
theorem, we easily find

p (α | D) =
p (D | α)p (α)

p (D)
=

p (D | α)p (α)∫
RD p (D | α)p (α) dDα

. (3.9)

We refer to the corresponding criterion as Bayesian approximation set coding.
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4. Approximation Set Coding for Gaussian
Process Regression

At the core of Gaussian processes lies the prior of Equation (2.1) on page 11. Together
with the likelihood for Gaussian process regression, we can apply the framework of
Chapter 3 on page 24.

4.1. Abstract Algorithm for Model Selection

Suppose we are given the inputs X ∈ RD×N with known outputs y ∈ RN. In addition,
let X̃ ∈ RD×M be arbitrary inputs with latent function values f̃ ∈ RM. Since the function
values f̃ are the parameters, we identify them as the hypotheses in approximation set
coding. We write f̃ instead of f, as these function values f̃ do not need to correspond to
the inputs X. In fact, the choice of X̃ and the size M is a design decision with trade-offs
as we shall see in Chapter 5 on page 39. In the context of approximation set coding, the
columns of X̃ are our M objects. For a fixed M less than or equal to N, a simple way
to choose the objects X̃ is by sampling M columns of X uniformly at random without
replacement.

Instead of vectors f̃, one could consider taking functions f : RD → R as hypotheses, but
it is not clear how to do the integration over functions that is required for the posterior
agreement.

The given data is partitioned into L subsets represented by (Xl,yl), each with its in-
dividual number Nl of cases. Although the sizes Nl can be chosen to approximately
equal N/L, the framework allows them in principle to vary significantly. In summary,
Algorithm 2 on the next page describes on an abstract level how hyperparameters can
be optimized.

The next goal is to instantiate the variants identified in Chapter 3 on page 24. Recall
from Equation (3.5) on page 25 that the criterion of approximation set coding is the
mutual information

Iθβ = h (τ) + logηβ, (4.1)

where there are several variants for the transformation complexity h (τ) and for the pos-
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Algorithm 2 Hyperparameter optimization for Gaussian process regression by approxi-
mation set coding for the data D = {(xn, yn) | n = 1, . . . ,N}. The approximation capacity
is computed as the mean of J partitions into L subsets for M objects.

for j← 1, . . . , J do in parallel
D

(j)
1 , . . . ,D

(j)
L ← random partition of D into L subsets of respective size Nl

X̃(j) ←M distinct columns of X chosen at random (as a D×M matrix)
end for

function I(θ)
for j← 1, . . . , J do in parallel

γ(j) ←maxβ>0 I
θ
β

(
D

(j)
1 , . . . ,D

(j)
L ; X̃(j)

)
▷ Equation (4.1) on page 30

end for
return 1

J

∑J
j=1 γ

(j)

end function

θ⋆ ← arg maxθ I (θ)

return θ⋆

terior agreement ηβ. The following derivations share the definitions

ml = m (Xl) ∈ RNl , Kl = Ky (Xl,Xl) ∈ RNl×Nl ,

m̃ = m
(
X̃
)
∈ RM, K̃ = Kf

(
X̃, X̃

)
∈ RM×M,

K̃l = Kf

(
Xl, X̃

)
∈ RNl×M.

To numerically optimize the resulting objective functions, we analytically calculate their
gradients. More precisely, we provide the derivative with respect to an arbitrary hyper-
parameter θ, which is an entry of the hyperparameter vector θ. A little collection of
helpful derivatives can be found in Appendix A on page 61.

4.2. Variants for the Transformation Complexity

For a pure posterior agreement, one may simply ignore the complexity of the transfor-
mations by taking h (τ) = 0. As an alternative suggested by Equation (3.4) on page 25,
h (τ) could summarize the integration measure via the differential entropy of the prior
on f̃. Using Proposition 6 on page 16, a variant is therefore

h (τ) = h
(
N
(
m̃, K̃

))
=

1

2

(
log

∣∣∣K̃∣∣∣+M log (2πe)
)
. (4.2)

The derivative of the latter is
∂ h (τ)

∂θ
=

1

2
tr
(
K̃−1∂K̃

∂θ

)
.
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4.3. Variants for the Posterior Agreement

We continue to derive the variants for the posterior agreement ηβ presented in Chapter 3
on page 24.

4.3.1. Boltzmann Approximation Set Coding

Boltzmann approximation set coding infers a posterior by normalizing Boltzmann weights
associated with a cost function. A natural cost function for Gaussian process regression
is the negative log-likelihood

R
(
f̃, (Xl,yl)

)
= − logp

(
yl

∣∣∣ X̃, f̃,Xl

)
.

In order to apply Proposition 12 on page 28, we would like to express the cost function
in the required form of a Gaussian. Since we have a Gaussian process,[

yl

f̃

]
∼ N

([
ml

m̃

]
,

[
Kl K̃l

K̃
⊺
l K̃

])
.

For this Gaussian distribution to be non-degenerate, we need K̃ to be symmetric positive-
definite. Thus, we constrain the choice of X̃ such that K̃ is invertible. Note that as K̃ is a
covariance matrix, it is at least symmetric positive-semidefinite by construction. Using
Proposition 4 on page 15, we find the likelihood

yl

∣∣∣ X̃, f̃,Xl ∼ N
(
ml + K̃lK̃

−1
(
f̃− m̃

)
,Kl − K̃lK̃

−1K̃
⊺
l

)
.

Introducing

Al = K̃−1K̃
⊺
l ∈ RM×Nl ,

µl = yl −ml +A
⊺
l m̃ ∈ RNl ,

Σl = Kl − K̃lAl ∈ RNl×Nl ,

we can rewrite the cost function as

R
(
f̃, (Xl,yl)

)
= − logN

(
yl

∣∣∣ml +A
⊺
l

(
f̃− m̃

)
,Σl

)
= − logN

(
ml +A

⊺
l

(
f̃− m̃

)
− yl

∣∣∣ 0,Σl

)
= − logN

(
A

⊺
l f̃
∣∣∣ µl,Σl

)
.

Together with the Gaussian process prior

f̃ ∼ N
(
m̃, K̃

)
,
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Figure 4.1.: Examples for Iθβ as a function of β for various covariance functions based on
synthetic data sets. In each case, h (τ) = 0 is used. The objective functions
appear to be well-behaved from the perspective of numerical optimization.

we are ready make use of Proposition 12 on page 28, assuming that Al has full row rank
for l = 1, . . . , L. Hence, the posterior agreement equals

ηβ =

∏L
l=1 |βΛl| N (βrl | 0, βΛl )

|Λ| N (r | 0,Λ)
N
(
m̃
∣∣∣ 0, K̃) , (4.3)

where

rl = AlΣ
−1
l µl, Λl = AlΣ

−1
l A

⊺
l ,

r = β

L∑
l=1

rl + K̃−1m̃, Λ = β

L∑
l=1

Λl + K̃−1.

When does the premise hold that Al has full row rank? Because Al is an M×Nl matrix,
it has full row rank by definition if and only if its row rank is M. At the same time, the
row rank is at most Nl. That provides us with another constraint on the choice of X̃: the
number M of objects should not exceed any Nl.

Determining the Optimal Approximation Precision

For fixed hyperparameters θ, the optimal approximation precision is

β⋆ ∈ arg max
β>0

Iθβ.

Figure 4.1 illustrates examples of the behavior of Iθβ as a function of β.
As β is positive, we technically optimize with respect to logβ instead of β in order to

make algorithms for unconstrained optimization applicable. Since h (τ) never depends
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on β, the derivative of the mutual information is
∂Iθβ

∂ logβ
=

∂ h (τ)

∂ logβ
+

∂ logηβ

∂ logβ

=

L∑
l=1

∂ log (|βΛl| N (βrl | 0, βΛl ))

∂ logβ
−

∂ log (|Λ| N (r | 0,Λ))

∂ logβ
.

Using Proposition 16 on page 62, we get
∂ log (|βΛl| N (βrl | 0, βΛl ))

∂ logβ
=

β

2

(
r
⊺
lΛ

−1
l (rl − 2rl) +

M

β

)
=

1

2

(
M− βr

⊺
lΛ

−1
l rl

)
and

∂ log (|Λ| N (r | 0,Λ))

∂ logβ
=

β

2

(
r⊺Λ−1

(
L∑

l=1

ΛlΛ
−1r− 2

L∑
l=1

rl

)
+ tr

(
Λ−1

L∑
l=1

Λl

))
.

Gradient with Respect to the Hyperparameters

Given an arbitrary hyperparameter θ, the derivative of the logarithm of the posterior
agreement is

∂ logηβ

∂θ
=

L∑
l=1

∂ log (|βΛl| N (βrl | 0, βΛl ))

∂θ
−

∂ log (|Λ| N (r | 0,Λ))

∂θ

+
∂

∂θ
logN

(
m̃
∣∣∣ 0, K̃) ,

where with Proposition 14 on page 61,

∂

∂θ
logN

(
m̃
∣∣∣ 0, K̃) = −

1

2

(
m̃⊺K̃−1

(
2
∂m̃

∂θ
−

∂K̃

∂θ
K̃−1m̃

)
+ tr

(
K̃−1∂K̃

∂θ

))
.

Applying Proposition 15 on page 61, we have
∂ log (|βΛl| N (βrl | 0, βΛl ))

∂θ
=

1

2

(
βr

⊺
lΛ

−1
l

(
∂Λl

∂θ
Λ−1

l rl − 2
∂rl

∂θ

)
+ tr

(
Λ−1

l

∂Λl

∂θ

))
,

∂ log (|Λ| N (r | 0,Λ))

∂θ
=

1

2

(
r⊺Λ−1

(
∂Λ

∂θ
Λ−1r− 2

∂r

∂θ

)
+ tr

(
Λ−1∂Λ

∂θ

))
,

where
∂rl

∂θ
=

∂Al

∂θ
Σ−1
l µl +AlΣ

−1
l

(
∂µl

∂θ
−

∂Σl

∂θ
Σ−1
l µl

)
,

∂Λl

∂θ
=

∂Al

∂θ
Σ−1
l A

⊺
l +AlΣ

−1
l

(
∂A

⊺
l

∂θ
−

∂Σl

∂θ
Σ−1
l A

⊺
l

)
,

∂r

∂θ
= β

L∑
l=1

∂rl

∂θ
+ K̃−1

(
∂m̃

∂θ
−

∂K̃

∂θ
K̃−1m̃

)
,

∂Λ

∂θ
= β

L∑
l=1

∂Λl

∂θ
− K̃−1∂K̃

∂θ
K̃−1.
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Finally, we infer

∂Al

∂θ
= K̃−1

(
∂K̃

⊺
l

∂θ
−

∂K̃

∂θ
Al

)
,

∂µl

∂θ
=

∂A
⊺
l

∂θ
m̃+A

⊺
l

∂m̃

∂θ
−

∂ml

∂θ
,

∂Σl

∂θ
=

∂Kl

∂θ
−

∂K̃l

∂θ
Al − K̃l

∂Al

∂θ
.

4.3.2. β-Noise Approximation Set Coding

Gaussian process regression always has the noise standard deviation σn built-in. For
this reason, the role of β is reflected in σn to obtain the variant of β-noise approximation
set coding. As mentioned earlier, it can be recovered by fixing β = 1 in Boltzmann
approximation set coding.

4.3.3. Bayesian Approximation Set Coding

To calculate the posterior of Gaussian process regression, first note that[
f̃

yl

]
∼ N

([
m̃

ml

]
,

[
K̃ K̃

⊺
l

K̃l Kl

])
.

For this Gaussian to be non-degenerate, the objects X̃ need to be chosen such that K̃

is invertible, like in the other variants. Given Equation (2.4) on page 12, the posterior
evaluated at X̃ is

f̃
∣∣∣ X,yl, X̃ ∼ N (sl,Vl) ,

where

sl = m̃+ B
⊺
l (yl −ml) ∈ RM,

Vl = K̃− K̃
⊺
lBl ∈ RM×M,

Bl = K−1
l K̃l ∈ RNl×M.

According to Equation (3.2) on page 25, the posterior agreement in its raw form is
then

η =

∫
RM

(
L∏

l=1

N
(
f̃
∣∣∣ sl,Vl

))
N
(
f̃
∣∣∣ K̃, m̃) dMf̃.

Reusing Proposition 11 on page 27, we have

η =

∏L
l=1N (sl | 0,Vl )

|P| N (s | 0,P)
N
(
m̃
∣∣∣ 0, K̃) , (4.4)

where

s =

L∑
l=1

V−1
l sl + K̃−1m̃, P =

L∑
l=1

V−1
l + K̃−1.
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Gradient

The derivative with respect to an arbitrary hyperparameter θ is

∂ logηβ

∂θ
=

L∑
l=1

∂ logN (sl | 0,Vl )

∂θ
−

∂ log (|P| N (s | 0,P))

∂θ
+

∂

∂θ
logN

(
m̃
∣∣∣ 0, K̃) .

By Proposition 14 on page 61,

∂ logN (sl | 0,Vl )

∂θ
= −

1

2

(
s
⊺
lV

−1
l

(
2
∂sl

∂θ
−

∂Vl

∂θ
V−1

l sl

)
+ tr

(
V−1

l

∂Vl

∂θ

))
,

∂

∂θ
logN

(
m̃
∣∣∣ 0, K̃) = −

1

2

(
m̃⊺K̃−1

(
2
∂m̃

∂θ
−

∂K̃

∂θ
K̃−1m̃

)
+ tr

(
K̃−1∂K̃

∂θ

))
,

and by Proposition 15 on page 61,

∂ log (|P| N (s | 0,P))

∂θ
=

1

2

(
s⊺P−1

(
∂P

∂θ
P−1s− 2

∂s

∂θ

)
+ tr

(
P−1∂P

∂θ

))
.

We further have

∂s

∂θ
=

L∑
l=1

V−1
l

(
∂sl

∂θ
−

∂Vl

∂θ
V−1

l sl

)
+ K̃−1

(
∂m̃

∂θ
−

∂K̃

∂θ
K̃−1m̃

)
,

∂P

∂θ
= −

L∑
l=1

V−1
l

∂Vl

∂θ
V−1

l − K̃−1∂K̃

∂θ
K̃−1,

and

∂sl

∂θ
=

∂m̃

∂θ
+

∂B
⊺
l

∂θ
(yl −ml) − B

⊺
l

∂ml

∂θ
,

∂Vl

∂θ
=

∂K̃

∂θ
−

∂K̃
⊺
l

∂θ
Bl − K̃

⊺
l

∂Bl

∂θ
,

∂Bl

∂θ
= K−1

l

(
∂K̃l

∂θ
−

∂Kl

∂θ
Bl

)
.

4.4. Implementation

Let us look at important aspects of a possible implementation.

4.4.1. Asymptotic Time Complexity

First of all, Table 4.1 on the next page gives an overview of the asymptotic time com-
plexity to evaluate Iθβ once. Matrix computations dominate the complexity. We assume
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Variants Decompositions Linear systems Multiplications

Boltzmann ASC K̃ Θ
(
M3
)

K̃−1K̃
⊺
l Θ

(
M2Nl

)
K̃lAl Θ

(
MN2

l

)
β-noise ASC Σl Θ

(
N3

l

)
Σ−1
l A

⊺
l Θ

(
MN2

l

)
Al

(
Σ−1
l A

⊺
l

)
Θ
(
M2Nl

)
βΛl Θ

(
M3
)

Λ Θ
(
M3
)

Bayesian ASC K̃ Θ
(
M3
)

K−1
l K̃l Θ

(
MN2

l

)
K̃

⊺
lBl Θ

(
M2Nl

)
Kl Θ

(
N3

l

)
Vl Θ

(
M3
)

P Θ
(
M3
)

Table 4.1.: Asymptotic time complexity of the dominant computations to evaluate the
mutual information Iθβ of approximation set coding (ASC) once: matrix de-
compositions, solving linear systems of equations with multiple right-hand
sides, and matrix multiplications.

standard algorithms for the Cholesky decomposition, solving a linear system of equa-
tions with such a decomposition, and matrix multiplications. Based on this analysis,
the time for one such evaluation is asymptotically the same for every criterion, namely

Θ

(
L∑

l=1

(
N3

l +MN2
l +M2Nl

)
+M3

)
. (4.5)

For instance, a realistic scenario could be a constant number L ∈ Θ (1) of subsets with
M,Nl ∈ Θ (N). The evaluation time would then be Θ

(
N3
)
, on a par with the criteria of

maximum evidence or leave-one-out cross-validation. When averaging the approxima-
tion capacity of J partitions as in Algorithm 2 on page 31, the time grows to Θ

(
JN3

)
.

However, this is only the case for a fixed approximation precision β. Boltzmann ap-
proximation set coding optimizes with respect to β for each fixed θ, which multiplies
its total number of evaluations. In stark contrast, β-noise and Bayesian approximation
set coding do not add β to the optimization, making them significantly faster.

4.4.2. Issues with Numerically Singular Matrices

In theory, only noise-free covariance matrices Kf can be singular, but not so the covari-
ance matrices Ky due to the added σ2

nI. Yet in practice, it happens more than one might
expect that either kind of matrices is numerically considered singular, triggered by a
failing Cholesky decomposition. This occurs because the eigenvalues of a covariance
matrix “can decay very rapidly.” [30, page 201] Out of the J random partitions, we ex-
clude those where failures like this happen from the average.
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4.4.3. Numerical Software Used

The specific implementation of this thesis uses of a number of software libraries for
its numerical processing. Their authors deserve proper credit for their brilliant work.
Developed in Scala, the implementation relies on Breeze [16] for linear algebra, random
number generation, and the optimization algorithm of limited-memory BFGS [27]. Effi-
cient LAPACK routines related to the Cholesky decomposition are invoked through the
wrapper netlib-java [17]. Regarding computations with Gaussian processes, the covari-
ance functions of the GPML toolbox [29] are reused, calling them via matlabcontrol [20].
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5. Results

The twofold aim of model selection is hyperparameter optimization and functional form
selection, according to which we design our experiments. We compare the variants
of approximation set coding (ASC) with each other and with the classics of maximum
evidence and leave-one-out (LOO) cross-validation.

5.1. Setup

On the one hand, we generate synthetic data sets drawn from Gaussian processes with
noise σn. More precisely, for random inputs X, their outputs y are drawn from the
evidence distribution of Equation (2.3) on page 12. The matrix entries of the inputs X

are independent and identically distributed with a standard Gaussian distribution as
in xd,n ∼ N (0, 1). This way, the inputs are concentrated around the origin, but are
occasionally still farer away from it for a wider spread. The generative model is also
known as the teacher, while the student is the learned model. A misspecification is thus
described by a situation where the teacher and student have different functional forms.

Besides synthetic data, we work with a simple real-world data set to check against an
instance with the typical complexity of nature. Berkeley Earth1 provides a data set with
Earth’s daily average temperature from 1880 until 2014 on the land surface, given as a
difference from 8.68 ◦C (anomaly) [3]. From this, our real-world data is aggregated as
the mean anomaly per day of the year, shown in Figure 5.1 on the following page. It has
N = 365 cases in D = 1 dimension.

We always fix the mean function of Gaussian processes to the zero mean function. In
contrast, the functional form of the covariance functions is varied. We focus on the co-
variance functions of Figure 2.1 on page 13, of which the squared exponential covariance
function is given most attention due to its popularity [13].

The standardized mean squared error serves as a measure of how good predictions
are. If the predictive mean is f ∈ RN, but the actual outputs are y, then the standardized
mean squared error equals ∥∥y− f

∥∥2
2

Nσ2
y

, (5.1)

where σ2
y is the sample variance of y. The predictive distribution for Gaussian process

regression is Equation (2.4) on page 12.

1http://www.berkeleyearth.org
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Figure 5.1.: Earth’s land temperature averaged per day of the year from 1880 until 2014,
given as a difference from 8.68 ◦C (anomaly) [3].

The visualizations are created with ggplot2 [35]. For certain plots, we visualize the
mean of a sample, plus and minus one standard deviation. Other plots indicate confi-
dence intervals estimated by the basic nonparametric bootstrap not assuming normality.

5.1.1. Optimization Algorithm

Any objective function is numerically optimized based on the same setup. For variables
that are constrained to be positive such as σn or β, we optimize with respect to their
natural logarithm to make the optimization unconstrained. The algorithm of limited-
memory BFGS [27] is configured with memory m = 4 and a relative tolerance of 10−7.
For an initial guess of an optimization run, we randomly draw from the standard Cauchy
distribution due to its fat tails. How should the number of iterations be limited?

Experiment 1. From a Gaussian process as a teacher model, we randomly draw 256

data sets, each of dimension D = 1 with N = 64 cases. The student model has the same
functional form as the teacher model, but does not know any of its hyperparameters. For
a given criterion, we run the optimization algorithm once, without limiting the number
of its iterations. If the optimization succeeds, we remember the number of iterations to
get there. See Figure 5.2 on the next page.

Based on these samples summarized in Figure 5.2 on the facing page, we decide to
configure the optimization algorithm with a maximum of 16 iterations. While this looks
quite tight, we repeat an optimization several times, as an objective function can have
many local optima. In fact, we do 16 runs per optimization problem and take the solution
with the best value. If all of these optimization runs fail for a criterion applied to a certain
data set, we still count the data set instead of drawing a fresh one.
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Figure 5.2.: Number of optimization iterations according to Experiment 1 on page 40 for
various criteria and covariance functions.

5.2. Hyperparameter Optimization

First of all, we examine the objective functions of approximation set coding. It is inter-
esting to see where their optima lie in relation to the hyperparameters with which the
synthetic data is generated. We focus on the squared exponential covariance function.

Experiment 2. From a Gaussian process as a teacher model, we randomly draw 256 data
sets, each of dimension D = 1 with N = 64 cases. The student model is the same as the
teacher model, except that it has one unknown hyperparameter θ at a time. For a given
criterion, we draw one objective function per data set. Approximation set coding is done
with L = 2 subsets and M = 8 objects. The θ-axis is discretized by 128 equally spaced
points. To remove outliers caused by numerical issues, the statistics solely consider ap-
proximation capacities over −128 nats. See Figures 5.3 to 5.5 on pages 42–44.

Looking at the optima, β-noise approximation set coding with h (τ) = 0 seems to per-
form well in every case. Boltzmann approximation set coding has similar optima, except
that its objective functions for the hyperparameter σn appear quite flat. For Bayesian ap-
proximation set coding, an optimum exists each time, which is good in case of σn but
not otherwise. So far, there is no clear favorite.

We now optimize the objective functions to do hyperparameter optimization. The
criteria are then compared on the test error for a test data set drawn from the same
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Figure 5.3.: Mean of objective functions drawn according to Experiment 2 on page 41 for
the squared exponential covariance function where σf = 1 and σn = 1/10.
The generative model additionally fixes ℓ = 1.
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Figure 5.4.: Mean of objective functions drawn according to Experiment 2 on page 41
for the squared exponential covariance function where ℓ = 1 and σn = 1/10.
The generative model additionally fixes σf = 1.
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Figure 5.5.: Mean of objective functions drawn according to Experiment 2 on page 41 for
the squared exponential covariance function where ℓ = 1 and σf = 1. The
generative model additionally fixes σn = 1/10.
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Figure 5.6.: Test errors for the variants of approximation set coding according to Exper-
iment 3.

generative model.

Experiment 3. From a Gaussian process as a teacher model, we randomly draw 256

data sets, each of dimension D = 1 with N = 64 training and 2048 test cases. The student
model has the same functional form as the teacher model, but does not know any of its
hyperparameters. It selects hyperparameters based on the training data set. Approxi-
mation set coding is done with J = 32 partitions, L = 2 subsets, and M = 4 objects. The
standardized mean squared error on the test data set is reported. See Figures 5.6 and 5.7
on the current page and on the following page.

Figure 5.6 suggests that Boltzmann andβ-noise approximation set coding with h (τ) =

0 have the best performance. For little noise σn, Bayesian approximation set coding with
h (τ) = 0 has a competitive median, but there exist more outliers in general. Figure 5.7
on the following page then compares those winners of approximation set coding to the
classics. There is no doubt that maximum evidence is strongest here. Leave-one-out
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Figure 5.7.: Test errors for approximation set coding with h (τ) = 0 compared with the
classics according to Experiment 3 on page 45.
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Figure 5.8.: Test errors on real-world data according to Experiment 4 for the squared
exponential covariance function. Approximation set coding is done with
h (τ) = 0.

cross-validation is good, too, but has many outliers compared to the other criteria. β-
noise approximation set coding seems compete with it, especially for little noise.

We now turn to the real-world data set described in Section 5.1 on page 39.

Experiment 4. We randomly partition our real-world data 256 times into 64 training and
301 test cases. Each time, the hyperparameters are then optimized on the training data
set to record the standardized mean squared error on the test data set. Approximation
set coding is done with J = 32partitions, L = 2 subsets, andM = 8 objects. See Figure 5.8.

The criterion of maximum evidence works best again, with the distribution of its test
errors being very peaked at a level unreached by any other criterion. Leave-one-out
cross-validation comes second with a higher variance. Boltzmann approximation set
coding has a similar mode, but a second peak at a significant test error of almost 1 causes
trouble. Clearly, β-noise approximation set coding is worse. Bayesian approximation set
coding is widely spread between the two peaks with a couple of outliers.

Next, we would like to see if approximation set coding could help to decide between
two optimized hyperparameter vectors: one estimated by maximum evidence and the
other by leave-one-out cross-validation.

Experiment 5. The real-world data is repeatedly partitioned into 64 training and 301

test cases. We optimize the hyperparameters once with maximum evidence and an-
other time with leave-one-out cross-validation to get θ⋆

ME and θ⋆
CV , respectively. Then

the standardized mean squared error on the test data set is computed for θ⋆
ME and θ⋆

CV ,
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Figure 5.9.: Chances that approximation set coding with h (τ) = 0 correctly decides be-
tween maximum evidence and leave-one-out cross-validation according to
Experiment 5 on page 47. The mean is visualized with a 95% confidence
interval.

which ranks them. We compare this ranking with the ranking induced by the approx-
imation capacity. If these two rankings are the same, that is, if the hyperparameters θ

with a lower test error have a higher approximation capacity, we count it as a correct
decision, otherwise not. The number of random partitions is 256, where for exactly half
of them, θ⋆

ME has a lower test error than θ⋆
CV , and vice versa for the other half. Approx-

imation set coding is done with J = 32 partitions, L = 2 subsets, and M = 8 objects. See
Figure 5.9.

Overall, Boltzmann approximation set coding appears to help most with making a
decision, giving the top improvement for the periodic covariance function. Bayesian
approximation set coding is best in case of the squared exponential covariance function,
while it can worsen the decision for the periodic covariance function. If any at all, β-
noise approximation causes gentle improvements.

5.3. Functional Form Selection

We proceed to compare the criteria on function form selection. Regarding synthetic
data, when a criterion is given a number of functional forms to select from, it should
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select the one the generative model is based on. The game we play is thus to let a criterion
rank a number of student functional forms, of which exactly one belongs to the teacher
model. The ranking is simply induced by the cost function of the respective criterion.
In order to separate concerns, we optimize the hyperparameters by a fixed criterion.
Leave-one-out cross-validation is first assigned this role, as it should be more resistant
to model misspecification than maximum evidence [2].

Experiment 6. From a Gaussian process as a teacher model, we randomly draw 256

data sets, each of dimension D = 1 with N = 128 cases. For every data set, we optimize
the hyperparameters of a number of student functional forms by leave-one-out cross-
validation, not revealing any information about the teacher model. We then plug the
resulting student models into the cost functions of various criteria, which gives rise to
a ranking. The student model of rank 1 has the lowest costs, meaning that it would be
selected. Approximation set coding is done with J = 32 partitions, L = 2 subsets, and
M = 8 objects. See Figure 5.10 on the following page.

The criterion of maximum evidence has again the best performance, selecting the
right model each time. This might be surprising, given that in other misspecification
scenarios, it appears to do worse than cross-validation [2]. Overall, leave-one-out cross-
validation does quite well, but there is a chance that it could confuse a squared exponen-
tial and a rational quadratic for a periodic covariance function. Bayesian approximation
set coding with h (τ) = 0 performs not bad, either. Except that on average it confuses a
rational quadratic for a squared exponential covariance function, it almost unambigu-
ously selects the right model otherwise. The remaining variants of approximation set
coding, including those with h (τ) ̸= 0 not shown here, seem not to work well for func-
tional form selection.

How do things change if we choose the criterion of maximum evidence for hyperpa-
rameter optimization?

Experiment 7. This is the same as Experiment 6, except that the hyperparameters are
optimized by maximum evidence instead of leave-one-out cross-validation. See Fig-
ure 5.11 on page 51.

No criteria does really become better. On the contrary, maximum evidence could
now possibly confuse a squared exponential for a rational quadratic covariance func-
tion. Other than that, it is again the leader. Leave-one-out cross-validation stays about
the same. Approximation set coding is still not really good, with Bayesian approxima-
tion set coding even confusing the exponential for the periodic covariance function.

We would next like to see functional form selection on the real-world data set de-
scribed in Section 5.1 on page 39. As the teacher model is unknown, we compare to the
test error on separate test data.

Experiment 8. We randomly partition our real-world data 256 times into 64 training
and 301 test cases. Given a training data set, the hyperparameters are optimized for a
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Figure 5.10.: Functional form selection for synthetic data drawn from the teacher model
according to Experiment 6 on page 49. The hyperparameters are optimized
by leave-one-out cross-validation for each student functional form. The re-
sulting models are then ranked according to various criteria, with rank 1

being the best. The mean rank is visualized with a 95% confidence interval.
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Figure 5.11.: Functional form selection for synthetic data drawn from the teacher model
according to Experiment 7 on page 49. The hyperparameters are optimized
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best. The mean rank is visualized with a 95% confidence interval.
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Figure 5.12.: Functional form selection for real-world data according to Experiment 8 on
page 49. Given the training data, the hyperparameters are optimized by
leave-one-out cross-validation to then rank them by various criteria, with
rank 1 being the best. The test error on separate test data serves as a guide.
The mean rank is visualized with a 95% confidence interval.

number of student functional forms by leave-one-out cross-validation. We then rank
the resulting models by various criteria, with rank 1 being the best. As a guide for
comparison, we do the ranking according to the standardized mean squared error on
the corresponding test data set. Approximation set coding is done with J = 32partitions,
L = 2 subsets, and M = 8 objects. See Figures 5.12 and 5.13 on this page and on the next
page.

According to the test error, the exponential covariance function seems the most suit-
able on average, followed by the rational quadratic, squared exponential, and periodic
covariance functions in that order. The criterion of maximum evidence exactly repro-
duces this ranking. Leave-one-out cross-validation favors the rational quadratic over the
exponential covariance function, but otherwise suggests the same ranking. No approx-
imation set coding with h (τ) = 0 does well compared to the test error. On average, they
consistently rank the exponential covariance function last, often favoring the squared
exponential covariance function instead.

Figure 5.13 on the facing page illustrates the predictive means for an example parti-
tion. Note that the test errors for that partition have the same ranking as on average for
many partitions. It can be seen that the squared exponential and the periodic covari-
ance functions are steadier than the others, explaining the data with a higher noise level
σn. The rational quadratic and especially the exponential covariance functions fit more
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Figure 5.13.: Predictive mean for the real-world data according to Experiment 8 on
page 49. The hyperparameters are optimized by leave-one-out cross-
validation on an example partition into a training data set (big points) and a
test data set (small points). The test error is the standardized mean squared
error on the test data set. Note that mean of the squared exponential mostly
overlaps the one of the periodic covariance function.
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to the data, hence the lower noise level σn. Based on this manual evaluation, it seems
not entirely sure which functional form should be best, as we face the central trade-off
between underfitting and overfitting. Only focusing on the test error is perhaps overly
simplistic. In the example, the periodic and the squared exponential covariance func-
tion both appear justified options, but the test error ranks them last, which is also what
the classics of maximum evidence and leave-one-out cross-validation do on average.

5.4. Diversity of Approximation Set Coding

Not only does approximation set coding have several principal variants, but one has to
decide for its diverse parameters. In particular, these are the number J of partitions, the
number L of subsets, and the number M of objects. In the remainder, we explore these
options, which at the same time explains the rationale behind typical setups.

Suppose that the M objects X̃ ∈ RD×M are chosen uniformly at random from the
inputs X ∈ RD×N without replacement. Then the probability that a fixed case xn of the
data set is chosen as an object is M/N. Therefore, the chance that it is chosen at least
once during J partitions equals

1−

(
1−

M

N

)J

. (5.2)

For a typical setup of J = 32, M = 8, and N = 64, this probability is approximately 0.99,
so that the objects should cover the input distribution enough.

The decision for L = 2 subsets corresponds to the two-instance scenario in the original
theory of approximation set coding. On the other hand, the number M of objects is an
addition. The selection of M affects whether the objective function of approximation set
coding can be numerically evaluated at all.

Experiment 9. We randomly draw 256 data sets from a Gaussian process, each of di-
mension D = 1 with N = 64 cases. Approximation set coding is done with h (τ) = 0 and
L = 2 subsets. For each data set, we try to compute the value of a criterion at the hyper-
parameters of the generative model. An evaluation of a criterion counts as a success if it
is numerically possible to do the involved matrix decompositions and the optimization
with respect to β, if any. The number of objects is varied in the range M = 1, . . . , 32. See
Figure 5.14 on the next page.

Except for Bayesian approximation set coding for the exponential covariance function,
the chances for a success generally decrease with an increasing numberM of objects. The
decay is varies significantly with the covariance function, with the squared exponential
covariance function being the most sensitive one. In conclusion, M needs to be adapted
to the specific application. Instead of fixing M, an interesting twist could be to choose it
at random.

Next, we would like to explore how the mutual information Iθβ of Boltzmann approx-
imation set coding behaves as a function of the approximation precision β. In addition,
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where ℓ = 1, σf = 1, α = 1/2, and σn =
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(c) Exponential covariance function where ℓ =
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(d) Periodic covariance function where ℓ = 1,
T = 2, σf = 1, and σn = 1/10.

Figure 5.14.: Chances that approximation set coding can be numerically evaluated at all
according to Experiment 9 on page 54. The mean is visualized with a 95%
confidence interval.
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we thereby hope to gain insight into the connection toβ-noise approximation set coding,
which can be viewed as a special case fixing β = 1.

Experiment 10. Let a Gaussian process have hyperparameters θ. From it, we randomly
draw 256 data sets, each of dimension D = 1 with N = 64 cases. Approximation set
coding is done with h (τ) = 0, L = 2 subsets, and M = 8 objects. For one drawn objec-
tive function per data set, we compute the mutual information Iθβ as a function of the
approximation precision β. The β-axis is discretized by 128 equally spaced points. See
Figure 5.15 on the facing page.

On average, the optimum seems to be close to β = 1, no matter what the covariance
function is. Even though this could hint at a connection to β-noise approximation set
coding, note that these objective functions are fixed to the hyperparameters θ of the
generative model.
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Figure 5.15.: Mean of mutual information Iθβ of Boltzmann approximation set coding
according to Experiment 10 on page 56.
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6. Discussion

In light of our experiments, maximum evidence appears to be the best model selection
criterion. It does remarkably well for both hyperparameter optimization and functional
form selection. The other classic of leave-one-out cross-validation is a strong competi-
tor, but typically suffers from more variance, which is a potential risk for model selec-
tion [8]. It would be interesting to see whether K-fold cross-validation for K ̸= N could
significantly reduce this variance.

The performance of approximation set coding can be described as unsteady. Boltz-
mann and β-noise approximation set coding for h (τ) = 0 seem to have the potential
to approach leave-one-out cross-validation for hyperparameter optimization, but fall
behind for functional form selection. Bayesian approximation set coding for h (τ) = 0

seems to perform the other way around for synthetic data, often being able to identify
the covariance function of the generative model. On the real-world data, approxima-
tion set coding is rather indecisive to rank the functional forms. One could interpret
this uncertainty as a sign that no single functional form is really suitable, but further
exploration is needed instead, considering other options such as combinations of co-
variance functions.

One should be careful not to overgeneralize about the performance of the criteria. The
experiments of this work are very specific and by no means exhaustive, with the data
sets being limited in their diversity. For example, the number N of cases is hardly ever
altered. What further prevents us from drawing strong conclusions is the decision to
settle for a single error measure. The standardized mean squared error of Equation (5.1)
on page 39 solely takes the mean of the predictive distribution into account, but not its
covariance. Whereas this error is applicable to any regression model, an alternative that
assesses the full predictive distribution is the mean standardized log loss [30]. Moreover,
note that the test error on the real-world data is assigned the critical responsibility of
guiding which functional form to select. However, this is a quite simplistic way to tell
which functional form suits best, as indicated by the visualized example predictions of
Figure 5.13 on page 53.

Apart from the model selection abilities of the criteria, there are practical aspects sum-
marized in Table 6.1 on the next page. Both maximum evidence and leave-one-out cross-
validation are not hard to implement and run fast. There are no parameters to decide for,
saving one from solving yet another selection problem. K-fold cross-validation would
already pose the question of how to select the number K of folds. On the other end of the
spectrum, approximation set coding is generally harder to implement and runs much
slower. To give a rough idea of the scale, Boltzmann approximation set coding might

58



Criterion Parameters Complexity of implementation Runtime

Evidence None Very simple Fast
LOO cross-validation None Simple Fast
Boltzmann ASC Many Complex Slow
β-noise ASC Many Medium Medium
Bayesian ASC Many Medium Medium

Table 6.1.: Practical aspects of the criteria.

be implemented on 5 times as much lines of source code as maximum evidence, yet its
runtime being 50 times longer. The parameters of approximation set coding are diverse.
Not only do they include numbers such as the partition count J, but also strategies like
choosing the objects X̃. Certainly, this can be overwhelming. At the same time, this
flexibility offers a substantial potential for improvement still to be explored.

Our instantiation of approximation set coding comes with fundamental limitations
that are hard to overcome so far. As seen earlier, the number M of objects cannot be that
large, mainly for numerical reasons. One could try to add a diagonal matrix ϵI (for an
insignificant ϵ) to numerically singular covariance matrices in order to make them in-
vertible, at the danger of distorting the approximation capacity. Second, the expression
h (τ) in approximation set coding is difficult to choose, and instantiating h (τ) differently
could make a critical difference in terms of model selection. Lastly, the mutual infor-
mation of approximation set coding is an error bound, which is potentially loose. In a
similar vein with PAC-bounds [30], the optimum argument for the bound might be far
from the optimum of the actual error.
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7. Conclusion

We conclude with an outlook for future work. A possible cause for a restricted perfor-
mance of approximation set coding could be the reduced number M of objects, since
too many covariance matrices are numerically singular otherwise. To solve this prob-
lem, one could attempt to apply dependent Gaussian processes, which bypass the issue
of singular covariance matrices by modeling multiple outputs for the same input [6].
A next step would be to apply approximation set coding to a more realistic scenario of
model selection, in which mean functions and combinations of covariance functions are
used to represent several characteristics of a data set.

As we have seen in Experiment 8 on page 49, the classics of maximum evidence
and leave-one-out cross-validation can disagree on which covariance function to select
for real-world data. Other criteria such as approximation set coding or K-fold cross-
validation add yet more opinions about which model to select. It is thus natural to ask
the question how one deals with this variety of criteria. Do we need a metacriterion to
select a model selection criterion? Rather than picking a single criterion, one could try
to combine them to make a decision that is stronger than each individual opinion. A
simple way to combine them is to choose one criterion for hyperparameter optimiza-
tion and a possibly different one for functional form selection – that is, to distinguish
between R2 and R3 of Section 2.4.1 on page 18. Following the example of ensembles in
decision making [28], it would be enlightening to see more work on combining model
selection criteria.
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A. Useful Derivatives

Proposition 13. If A is invertible, then

1.
∂

∂γ
A−1 = −A−1∂A

∂γ
A−1

[25, Equation (9)] and

2.
∂

∂γ
log |A| = tr

(
A−1∂A

∂γ

)
[19, Equation (0.8.10.1)].

Proposition 14.

∂ logN (µ | 0,Σ)

∂γ
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1

2
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(
2
∂µ

∂γ
−
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∂γ
Σ−1µ
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∂γ

))
.

Proof. Using Proposition 1 on page 15, we have
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Proposition 15.

∂ log (|Λ| N (µ | 0,Λ))
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Λ−1µ− 2

∂µ

∂γ

)
+ tr

(
Λ−1∂Λ

∂γ

))
.

Proof. Using Proposition 14, we have

∂ logN (µ | 0,Λ)
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= −
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To that, we add
∂ log |Λ|

∂γ
= tr

(
Λ−1∂Λ

∂γ

)
to arrive at the statement.
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Proposition 16. If µ = βr+ s and Λ = βP+Q where Λ is symmetric positive-definite, then

∂ log (|Λ| N (µ | 0,Λ))

∂ logβ
=

β

2

(
µ⊺Λ−1

(
PΛ−1µ− 2r

)
+ tr

(
Λ−1P

))
.

Proof. By the chain rule in calculus, we have

∂ log (|Λ| N (µ | 0,Λ))

∂ logβ
=

(
∂ logβ

∂β

)−1
∂ log (|Λ| N (µ | 0,Λ))

∂β
,

where we can then simply apply Proposition 15 on page 61.
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