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Jakub Imrǐska1,a, Emanuel Gull2, and Matthias Troyer1

1 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
2 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

Received 7 March 2016 / Received in final form 19 April 2016
Published online 1 August 2016 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2016

Abstract. We present a numerical study of the Hubbard model on simply stacked honeycomb and square
lattices, motivated by a recent experimental realization of such models with ultracold atoms in optical
lattices. We perform simulations with different interlayer coupling and interaction strengths and obtain Néel
transition temperatures and entropies. We provide data for the equation of state to enable comparisons of
experiments and theory. We find an enhancement of the short-range correlations in the anisotropic lattices
compared to the isotropic cubic lattice, in parameter regimes suitable for the interaction driven adiabatic
cooling.

1 Introduction

The single-orbital Hubbard model, originally introduced
to describe correlation driven metal-insulator transi-
tions [1], has been the subject of intensive study in re-
cent years, as it is widely believed that its realization
on a two-dimensional square lattice captures many of
the salient features of high-temperature superconductiv-
ity [2,3]. Apart from a Fermi liquid phase at weak interac-
tion and large doping strength and a correlation driven in-
sulating phase at half filling and large interaction strength,
superconducting phases of various types [4–7], pseudogap
behavior in the absence of long-range order [8–11], fer-
romagnetic [12–14], and antiferromagnetic [15] phases, as
well as different types of stripe phases [16,17] have been
proposed.

Theoretical and numerical studies of the low temper-
ature properties of the Hubbard model have proven to be
difficult, especially in the strongly correlated regime where
the interaction strength is comparable to the bandwidth
and many low-lying degrees of freedom compete. Experi-
mental realizations using cold atomic gas systems [18,19],
on various lattices in two and three dimensions, offer
an alternative route to increase our understanding the
physics of this model. While the temperatures accessible
by these experiment are still far above the superconduct-
ing phase transitions, a range of phenomena, including
long range antiferromagnetic order in three dimensions,
may soon be accessible [20–24].

� Supplementary material in the form of one zip file available
from the Jounal web page at
http://dx.doi.org/10.1140/epjb/e2016-70146-y

a e-mail: jimriska@phys.ethz.ch

One of the current challenges is the calibration of the
precise parameters of experiments using ultracold atomic
gases, and in particular their temperature or entropy. Nu-
merical simulations of the model for a range of parameters
have proven to be useful in this context, and especially
quantities that show a strong dependence on temperature
and are accessible both in simulation and experiment. An
example are nearest neighbor the spin-correlations [22].
Comparison to numerics was able to identify unexpected
heating effects and could pinpoint the temperature down
to which the experimental realization of the model was
accurate [23].

Motivated by the physics of graphene and by the search
for a spin liquid state at low temperature [25–27], experi-
mental realizations of the model on a honeycomb geome-
try have appeared [28] and provided results in agreement
with numerical calculations of the 2d model [29,30]. Com-
plementary to studies on isotropic lattices, anisotropic lat-
tices of various types, e.g. with couplings in the vertical
axis chosen differently from in-plane couplings, can be re-
alized [22,28]. These models offer the possibility of study-
ing a dimensional crossover between three, two and one
dimensions and with this the possibility of tuning phase
transitions to a more readily accessible regime.

From the experimental perspective, layered systems
are a natural setup to investigate quasi-2d physics. The
reduced dimensionality may give rise to interesting phe-
nomena, but the presence of the third dimension will af-
fect some of the low temperature properties – e.g. allow-
ing for long range order at non-zero temperature which
is absent in systems with continuous symmetries in two
dimensions [31,32].

For the purpose of quantitative comparisons to cold
atoms experiments, numerical simulations need to pro-
vide results at comparatively high temperature. For much
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Fig. 1. Left panel: simply stacked honeycomb lattice with in-
teraction U , in-plane hopping t, and inter-plane hopping t′.
The dashed ellipse denotes the unit cell, containing two sites,
A and B. The intracell vector rB is displayed in green, rA (not
shown) is 0. The lattice basis vectors ai are shown as blue ar-
rows. Right panel: stacked square lattice. Here, the unit cell
consists of a single site.

of the parameter regime accessible to experiment, high
temperature series expansion and numerical linked clus-
ter expansions seem to be sufficient. As the temperature
is lowered outside of the convergence radius of these se-
ries, non-perturbative techniques are required. Cluster dy-
namical mean field methods in particular [33] are able to
reach lower temperature in the thermodynamic limit both
at and away from half filling and have been shown to be
a reliable tool for this task [34].

Here we use these methods to study weakly to moder-
ately coupled stacked honeycomb and square lattices, as
depicted in Figure 1. The Hamiltonian of the Hubbard
model on these lattices is

Ĥ = −t
∑

〈i,j〉,σ
ĉ†iσ ĉjσ − t′

∑

〈i,j〉′,σ
ĉ†iσ ĉjσ

− μ
∑

i,σ

n̂iσ + U
∑

i

n̂i↑n̂i↓, (1)

where ĉ†iσ (ĉiσ) creates (annihilates) a fermion at site i

with spin σ ∈ {↑, ↓}; n̂iσ ≡ ĉ†iσ ĉiσ denotes the occupation
number operator, U ≥ 0 is the repulsive on-site interac-
tion, t the nearest-neighbor in-plane hopping, t′ the inter-
layer hopping, and μ the chemical potential. By 〈i, j〉 we
denote nearest neighbors i, j within a plane and by 〈i, j〉′
nearest neighbor pairs in adjacent planes.

We investigate the case t ≥ t′ ≥ 0. Both lattices are
bipartite and the model is thus particle-hole symmetric
with half filling corresponding to μ = U/2. The simply
stacked square lattice in the regime of weakly coupled
chains, t′ ≥ t ≥ 0, was studied in reference [23]. Note
that this simply stacked honeycomb lattice does not cor-
respond to the lattice of graphite, where adjacent layers
are shifted relative to each other.

The non-interacting bandwidth of the studied lattices
is W = 2Ztt + 4t′, where Zt denotes the in-plane coordi-
nation number Zt = 3 for the stacked honeycomb lattice,
and Zt = 4 for the stacked square lattice.

2 Method

We use the dynamical cluster approximation (DCA)
method [35] to simulate the Hubbard model on both lat-

tices. DCA is a cluster extensions of the dynamical mean-
field theory (DMFT) [33,36], systematically approaching
the exact solution in the thermodynamic limit with grow-
ing cluster size. DCA self-consistently maps the lattice
problem onto a cluster and approximates the lattice self
energy by patch-wise constant self energy equal to the
cluster self energy at the cluster reciprocal points. The
stacked square lattice has a single site per unit cell and
may be simulated by the standard DCA method. The sim-
ply stacked honeycomb lattice is simulated by a general-
ization of DCA formulated for an �-site unit cell, which is
explained in detail in Section 2.2.

For simulations of the paramagnetic phase we use the
two-site unit cell depicted in the left panel of Figure 1.
The basis vectors of the simply stacked honeycomb lattice
are a1 =

(
3
2 ,

√
3

2 , 0
)
, a2 = (0,

√
3, 0), a3 = (0, 0, 1), and

the intracell vectors are rA = 0, rB = (1, 0, 0). The basis
vectors of the stacked square lattice are the unit vectors
in x, y, and z direction, a1 = (1, 0, 0), a2 = (0, 1, 0), a3 =
(0, 0, 1).

We locate the temperature of the Néel phase transi-
tion by measuring the divergence of the antiferromagnetic
susceptibility. We found this method to be superior to al-
lowing for translational symmetry breaking by doubling
the unit cell and measuring the staggered magnetization
directly. The reason is a critical slowing down of the DCA
self-consistency loop close to the phase transition. Details
are presented in Appendix A.

Most of the clusters utilized in the study respect the
three-fold (four-fold) rotational symmetry around the ver-
tical axis of the stacked honeycomb (square) lattice. The
aspect ratio of the clusters is chosen to be similar to the
anisotropy t/t′. Since non-bipartite clusters may cause ar-
tificial frustration at low temperature, we used them only
for equation of state (EOS) calculations above the Néel
temperature. In particular, we used simply stacked single
and triple layered clusters, which are non-bipartite in the
direction of the weak hopping t′. Tables listing the clusters
are given in Appendix B.

The impurity solver employed in the study is the
continuous time auxiliary field quantum Monte Carlo
solver [37] with sub-matrix updates [38].

2.1 Framework for multisite unit cells

In this subsection we present the notation for description
of a general non-Bravais lattice consisting of �-site unit
cells. The general translationally invariant non-interacting
Hamiltonian on such a lattice is of the form

Ĥ0 = −
∑

r,r′,α,α′,σ

t̃(r′−r)αα′ ĉ†rασ ĉr′α′σ. (2)

The site position is described by a pair of cell realspace
position r (r′) and of an sublattice index α (α′). The cell
realspace position is an integer linear combination of the
lattice basis vectors ai, the sublattice index is a number
from {1, 2, . . . , �}, and σ ∈ {↑, ↓}.

http://www.epj.org
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We use a Fourier transformation (FT) to relate cre-
ation operators in reciprocal space and real space,

ĉ†rασ =
1√
L

∑

k

e−ik·(r+rα)ĉ†kασ, (3)

where rα is the intracell position vector of site α, and L
is the number of unit cells.

The Green’s function can be conveniently given in a
matrix form,

[Gσ(k, iωn)]αα′ ≡ −
∫ β

0

dτ eiωnτ
〈
ĉkασ(τ)ĉ†kα′σ

〉
. (4)

The explicit form of the non-interacting lattice Green’s
function in Matsubara representation in reciprocal space
is as follows,

[
G0

σ(k, iωn)
]
αα′ =

[(
iωn�� + T̃k

)−1
]

αα′
, (5)

where T̃k is an �×� matrix composed of the Fourier trans-
formed t̃Δαα′ ,

(
T̃k

)

αα′
= t̃kαα′ = eik·(rα′−rα)

∑

Δ

eik·Δ t̃Δαα′ . (6)

For the self energy, which is defined by the Dyson equa-
tion, we use the same matrix notation as for the Green’s
functions.

2.2 DCA method for multisite unit cells

We employ a generalization of the DCA method appli-
cable for translationally invariant models with unit cells
containing � sites, introduced in studies of the (extended)
Hubbard model on the honeycomb lattice [39,40] and to al-
low study of symmetry broken phases in a two-dimensional
Kondo lattice model [41].

A cluster is a parallelepiped defined by cluster ba-
sis vectors ãi ≡ ∑3

j=1 cijaj with integer cij . The clus-
ter defines a superlattice of which it is the unit cell.
The Brillouin zone of the superlattice is the DCA patch
around the Γ = 0 point. In order to make the patch
compact in terms of dispersion variations, we choose it to
be the Wigner-Seitz cell constructed with distance func-
tion ‖k‖2 = (k2

x + k2
y) + (t′/t)2k2

z , taking into account the
anisotropy. Numerically it was obtained by Qhull [42].

Vectors K of the cluster reciprocal representation are
shortly referred to as cluster reciprocal vectors. DCA ap-
proximates the lattice self energy by a patch-wise constant
function. Each of the patches is the DCA patch trans-
lated by a K vector. The value of the lattice self energy
in a patch is set equal to the cluster self energy Σ at the
K vector in the patch center. The mapping of the lattice
onto a cluster is in the reciprocal space expressed as patch
averaging,

G(K) =
1
Ω

∫

patch

dk̃
[
G0(K + k̃)−1 − Σ(K)

]−1

︸ ︷︷ ︸
Glat(K+k̃)

, (7)

where Glat(k) is the DCA approximation of the interacting
lattice Green’s function. equation (7) implicitly defines the
interacting cluster Green’s function G(K) and Σ(K). For
shortness we suppressed the Matsubara frequencies iωn

and spin projection σ in all quantities. Ω denotes the patch
volume. Notice that the mapping condition is formally
identical to the DCA mapping for Bravais lattices, with
corresponding quantities being � × � matrices instead of
scalars.

The mapping in equation (7) is solved iteratively start-
ing with a guess of the non-interacting cluster Green’s
function G 0(K) provided as in input to the impurity solver
computing G(K). The cluster self energy is then obtained
via Dyson equation

Σ(K) = G 0(K)−1 − G(K)−1. (8)

Performing the patch averaging

Ḡlat(K) =
1
Ω

∫

patch

dk̃
[
G0(K + k̃)−1 − Σ(K)

]−1

, (9)

and once again using the Dyson equation,

G 0(K) =
[
Ḡlat(K)−1 + Σ(K)

]−1
, (10)

one obtains next guess of G 0(K). The convergence is
reached when G(K) = Ḡlat(K), which exactly is the map-
ping condition in equation (7).

Note that the averaging step of equation (9) makes the
DCA with multisite cells sensitive to the specific choice
of FT. Omitting the phase factors e−ik·rα in equation (3)
in the FT, as done in reference [41], leads, in general, to
different results for any finite size cluster1. For a Bravais
lattice it can be shown that the DCA with enabled (spon-
taneous) translational symmetry breaking [33] is equiva-
lent to our version with enlarged unit cell if the FT has
the form given in equation (3). Moreover, the choice of
FT produces a slower varying G0(k) within a patch, thus
effectively reducing the mean-field effects associated with
the averaging2. The difference originates from the slower
varying off-diagonal elements of T̃k. Another advantage
of the FT form shows up if the problem possesses point
group symmetries, as these then directly propagate to the
Green’s functions.

3 Results

We compute the EOS and further properties – the en-
ergy, entropy, density, nearest-neighbor spin correlation,
and the double occupancy – of the model of equation (1)
by using DCA and extrapolating to the thermodynamic

1 The difference, if present, vanishes for L → ∞, as the inte-
gral in equation (9) becomes trivial and the method is exact.

2 The asymptotic behavior with number of unit cells L of the
cluster is not affected by the choice of the FT. However, the
minimal cluster size needed for a reliable extrapolation may
differ.

http://www.epj.org
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limit according to L−2/3 (see Refs. [34,43] for details). We
restrict the calculations to fillings n ≤ 1 per site, as the
results for 1 < n ≤ 2 are related to those for n ≤ 1 via
particle-hole symmetry.

3.1 Free energy and entropy

The entropy per site s is estimated by numeric integra-
tion at fixed U and μ, starting from a high temperature
Tu/t = 50,

s(T ) = s(Tu) +
f(T )

T
− f(Tu)

Tu
+

∫ Tu

T

f(T ′) dT ′

T ′2 . (11)

Here, f(T ) = e(T )−μn(T ), with e the energy per site and
n the density per site. The value of s(Tu) is obtained from
a high-temperature series expansion,

s(Tu) = ln 4 − 1
2T 2

u

[
U2

16
+

(μ − U/2)2

2
+

Ztt
2 + 2t′2

2

]

+
U (μ − U/2)2

8T 3
u

+ O(T−4
u ). (12)

The expression for e(T ) is explicitly given in equa-
tion (C.1). We provide the EOS at half filling for interac-
tions U/t = 1, 2, 3, 4, 6, 8 and anisotropies t/t′ = 1, 2, 4, 8
for both stacked honeycomb and stacked square lattice.
For the stacked honeycomb lattice we choose two param-
eter sets (U/t, t/t′) = (6, 6) and (4, 4), at which we ob-
tain the EOS at a wide range of fillings. For the stacked
square lattice we do the same at (U/t, t′/t) = (6, 6). The
EOS, being one of the main outcomes of the study, is
presented in the Supplemental Material3. Since the ex-
periments are performed at approximatively constant to-
tal entropy, the knowledge of the entropy dependence on
the density, temperature, and model parameters is essen-
tial for any experiment-theory comparison. By fitting of
the density in a trapped system it is possible to infer its
temperature [44].

3.2 Spin correlations

We calculated the nearest-neighbor spin correlations [22],
which capture the onset of magnetic ordering and have
proven to be a suitable observable for estimate of the tem-
perature of the system [23,34]. We specifically calculate
the equal-time in-plane nearest-neighbor spin correlations

Cnn = − 2
ZtL�

∑

〈i,j〉

〈
Ŝz

i Ŝz
j

〉
, (13)

where the sum runs over in-plane nearest-neighbor pairs
(coupled by the strong hopping t), Ŝz

i = 1
2 (n̂i↑− n̂i↓), L is

the number of cells, and the average
〈
Ŝz

i Ŝz
j

〉
is measured

3 The EOS accompanied by a python script for LDA is pro-
vided as Supplemental Material�.

Fig. 2. The nearest neighbor in-plane spin correlation Cnn

for the stacked honeycomb lattice (top) and stacked square
lattice (bottom) as a function of the interaction strength U/t
for various anisotropies t′/t at half filling (n = 1, μ = U/2)
and at an entropy s = 0.7. Cnn shows an enhancement in the
anisotropic case t/t′ > 1. The curves for t/t′ = 4 and 8 are on
top of each other.

directly on the cluster. We show the spin correlations for
the stacked honeycomb and stacked square lattice in Fig-
ure 2. The data shown was calculated for a homogeneous
system at half filling and at a fixed entropy per particle.
Cnn shows similar behavior with interaction strength and
anisotropy for both lattices, with an approximative ampli-
fication by a factor 4/3 in the stacked honeycomb lattice.
The factor 4/3 is the ratio of strong hopping coordination
numbers Zt on the stacked square lattice to that of the
stacked honeycomb lattice. The maxima are at similar in-
teraction strengths if interactions are measured in units of
the bandwidth W . Qualitatively, the observed behavior is
captured by the second order high-temperature expansion,
which is (at half filling) given by

C(2)
nn (s) =

2(ln 4 − s)t2

8(Ztt2 + 2t′2) + U2
. (14)

Quantitatively, the second order high-temperature esti-
mate of Cnn(T ) is reliable only for T/t � 3, corresponding
to an entropy per site s well above 1. Note that Figure 2
is calculated for s = 0.7, which is close the lowest exper-
imentally realizable value at half filling [23]. Noticeably,
the sum of C

(2)
nn (s) over all bonds 〈i, j〉 is independent of

the lattice properties if U is scaled according to the root

http://www.epj.org
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Fig. 3. Average spin correlation Cnn per particle plotted as a
function of the entropy per particle S/N in a quadratic trap
with chemical potential adjusted to obtain half filling (n = 1)
in the trap center. The data for the coupled 1D chains and
isotropic cubic lattice is taken from references [23,34].

of the second moment of the non-interacting density of
states D2 = Ztt

2 + 2t′2.
Cnn, as an experimentally measurable quantity [22],

may serve as a sensitive thermometer in the temperature
range T/t ∼ 1 if compared with the EOS we provide.
The enhancement due to anisotropy raises the signal and
renders the measurement more precise.

3.3 Trap effects

In experiments, ultracold atoms are confined by a trap-
ping potential, which may be modeled by a local density
approximation (LDA) at currently experimentally accessi-
ble temperatures [45,46]. As confining potential we take a
quadratic function V (x) with minimum in the trap center.
The chemical potential μ we choose such that the system is
half-filled in the trap center. Assuming a large lattice, we
use a continuous approximation instead of discrete sum-
mation over lattice sites and obtain a trap-averaged quan-
tity Q as:

Q =
∫

d3x q (μ − V (x); T ) , (15)

where q is the density of the quantity of interest in a ho-
mogeneous system. With this definition, the quantity Q
per particle, Q/N , is independent on the specific parame-
ters of the quadratic potential. For the LDA calculations
we need the EOS at low filling, which we approximate
by the EOS of the corresponding non-interacting system.
Figure 3 shows the trap-averaged Cnn. Even in the trap,
with contribution from sites at all fillings, the Cnn is at
fixed entropy per site roughly proportional to Z−1

t . This
observation may be confronted with the experimental re-
sults presented in Figure 2a in [24], where Greif et al.

Fig. 4. Density n, entropy s, and Cnn profile in a quadratic
trap with the particle number fixed to N = 105 and half filling
in its center. The radius r is given in units of lattice sites. The
entropy per particle S/N is set to 1.4, which is an experimen-
tally achievable value [23]. The data for the coupled 1D chains
and isotropic cubic lattice is taken from references [23,34].

present the trap-averaged nearest-neighbor spin correla-
tions obtained in weakly coupled square stacks with vary-
ing ratio of in-plane hoppings. In particular, they find for
Zt = 2 almost doubled spin correlations when compared to
Zt = 4, which is consistent with our outcome. Their mea-
surement is conducted after a nearly adiabatic ramp of
the optical lattice, in a system with total entropy not sig-
nificantly dependent on the chosen ratio of in-plane hop-
pings. In Figure 4 we display profiles of density, entropy
per site, and Cnn for the stacked honeycomb and square
lattice and the 1D coupled chains. For Figure 4 we as-
sume isotropic V (x). The distance from the trap center
we denote by r. In the studied temperature regime, cou-
pled 1D chains [23] show the largest spin correlation4. The
density and entropy distributions differ only marginally.
Therefore, a dynamic change of topology of the lattice, as
done in reference [24], is not accompanied by a substan-
tial particle redistribution, which may lead to unwanted

4 For the 1D chain the Cnn is the nearest-neighbor spin cor-
relation in direction of the strong hopping, see definition in
reference [23].

http://www.epj.org
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heating [47]. In the lower panel of Figure 4 we observe
that Cnn at half filling (r = 0) is roughly proportional
to the inverse strong hopping coordination number Z−1

t .
This effect might be qualitatively explained by the differ-
ent energy scales of the hoppings – the simulations are
performed at a high temperature relative to the weak
hopping t′, but the temperature is comparable with the
strong hopping t. Thus the antiferromagnetic short-range
correlations tend to build up in the strong hopping direc-
tions (in-plane) and the singlet formation is facilitated by
lower Zt.

3.4 Double occupancy and adiabatic cooling

Of further experimental interest are ways to cool the par-
ticles, to provide access to interesting low temperature
phenomena. As discovered in reference [48], an analogue
of the Pomeranchuk effect can be used to cool fermions
in an optical lattice. These lower their temperature T in
an adiabatic process of (slow) increase of the interaction
strength if the double occupancy D = 1

L�〈ni↑ni↓〉 shows
an increase upon cooling at fixed density n. The adiabatic
cooling effect ( ∂T

∂U )s,n is proportional to the temperature,
to the inverse of the specific heat, and to (∂D

∂T )U,n [48].
The interaction driven adiabatic cooling was experimen-
tally utilized for a SU(6) Hubbard model [49]. For the
Hubbard model in the context of optical lattice experi-
ments, the presence of the effect was numerically observed
both for square and honeycomb lattices [29,50].

We here investigate this effect for the stacked lattices
in a homogeneous system. Figure 5 shows the adiabatic
cooling effect at half filling and at entropy per site s = 0.7
at a range of anisotropies, with cooling persisting up to
U/t ≈ 6. Alternatively it is possible to start from large in-
teractions and decrease U ; however, in that case T/U may
increase. The cooling is present only at sufficiently low
entropies, s � 0.8, and it is accompanied by an approx-
imate maximization of Cnn according to Figure 2 (top).
The stacked square lattice shows the largest effect in its
isotropic limit, which is the cubic lattice.

Figure 6 shows
(

∂D
∂T

)
U,n

away from half filling. Cooling
here appears at even higher temperature than in the half
filled case. This might be utilized to transfer entropy from
the region with half filling to less densely occupied regions
in the trap. While realistic cooling design was discussed
in references [51,52], we only note that the low density re-
gions show large entropy per particle and thus they may
store a large portion of the total entropy. Figure 6 shows
that there are no qualitative but only subtle quantitative
differences in between the examined lattices with respect
to the presence and strength of the cooling phenomenon.
As the magnitude of (∂D

∂T )U,n does not show great differ-
ences among the investigated lattices, the cooling effect
is of comparable strength with some enhancement in the
case of stacked honeycomb lattice at density near to the
half filling.

Fig. 5. Temperature T/t plotted as a function of U/t for the
stacked honeycomb (top) and stacked square lattice (bottom)
at half filling and at entropy per site s = 0.7 for various
anisotropies t/t′. An adiabatic increase of U/t from 0 up to
a parameter-specific U induces cooling in all cases.

3.5 Néel transition

The entropy per particle at the Néel temperature TN is
expected to decrease for large anisotropies, in accordance
with the Mermin-Wagner-Hohenberg theorem [31,32]. We
investigate the Néel transition for half filling only. In order
to identify the lattice with the largest entropy per site at
the Néel transition, sN , we therefore focused on smaller
anisotropies in this part. Since any mean-field theory over-
estimates ordering, the TN and sN for a specific cluster
provides an upper bound of the corresponding quantities
in the thermodynamic limit. For an unbiased estimate we
localize the transition temperature for several clusters and
extrapolate the transition temperature TN as suggested in
reference [53], using the critical exponent ν = 0.71 for the
3D Heisenberg model [54]. For the stacked square lattice
of anisotropy t/t′ = 4 we managed to obtain the TN esti-
mate for a cluster with 384 sites. We checked that disre-
garding data for this largest cluster in the extrapolation,
keeping data for clusters only up to 100 sites, changes TN

by about the error estimate. Example of the TN extrap-
olation is provided in Figure A.1. The entropy sN is ob-
tained as s(TN ). To its error estimate contribute both un-
certainty of TN and error of the numerical integration of s.
TN and sN calculated for the different systems studied in
this paper are summarized in Table 1.

http://www.epj.org
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Fig. 6. Negative values of
(

∂D
∂T

)
U,n

indicate presence of the

effect of adiabatic cooling upon interaction increase. The cor-
responding quantity is plotted as a function of T and n for the
stacked honeycomb (top) and stacked square lattice (middle)
at U/t = 6 and t/t′ = 6. For comparison we show the same
quantity for isotropic cubic lattice at U/t = 6 in the bottom
panel, using data from reference [34]. The regions of positive
and negative ∂D

∂T
are separated by dotted line. For a fair com-

parison we add upper axis with entropy per site of half filled
system, s(n = 1), at temperature given by the temperature
axis common to all plots.

4 Conclusion

For both lattice structures we calculated the EOS at half
filling for anisotropies 1 ≤ t/t′ ≤ 8 and interactions
1 ≤ U/t ≤ 8, and for a few parameter sets we obtained the
EOS for a wide range of fillings. The EOS data is provided
in the Supplemental Material3. It allows for LDA based
trap-specific calculations, suitable for calibration and op-
timization of ultracold atoms experiments. In particular it
may be used for estimating the amount of heating during
the lattice loading and for estimating the temperature and
entropy, if the experiment provides a temperature sensi-
tive measurement and the value of the initial entropy [23].

For stacked lattices we found enhanced short-range in-
plane correlations for experimentally accessible temper-
atures of the order t. We investigated the possibility of
interaction-driven adiabatic cooling, which is present in
the studied systems and may contribute to the progress

Table 1. Néel temperatures and entropies for both examined
stacked lattices. For stacked square lattice we studied wide
range of anisotropies as those may be of interest with respect
to undoped high-Tc superconductor parent materials. Missing
sN entries indicate that we did not integrate the entropy down
to TN . The isotropic cubic lattice data for U/t = 4, 8 is from
reference [23].

Stacked square Stacked honeycomb

t/t′ U/t TN/t sN TN/t sN

1

4 0.1955(25) 0.223(18) 0.206(1)

6 0.324(2) 0.430(8) 0.292(4) 0.405(35)

8 0.3595(83) 0.487(23) 0.299(2) 0.33(10)

2

4 0.206(2) 0.313(49) 0.173(4)

6 0.293(4) 0.438(39) 0.239(11) 0.28(8)

8 0.294(8) 0.41(6) 0.205(21)

4

4 0.200(2) 0.30(7)

6 0.245(7) 0.28(11)

8 0.219(8)

8
4 0.185(2)

6 0.208(7)

in cooling ultracold atoms. We computed the Néel temper-
ature for both investigated stacked lattices. Among them,
the lattice with highest critical entropy per particle at half
filling is the conventional isotropic cubic lattice with inter-
action U/t ≈ 8. For stacked square lattice we investigated
the Néel temperature also for larger anisotropies, up to
t/t′ = 8, as the stacked square lattice at half filling is an
effective model for the undoped high-Tc superconductors.
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Appendix A: Susceptibility measurement

This section provides details on the susceptibility mea-
surement in the DCA with �-site cell. It is a generaliza-
tion of the susceptibility measurement described in refer-
ence [33]. We stick to the naming and denotations used
therein.
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Our interest is in the static (zero bosonic fre-
quency ν) susceptibility corresponding to the staggered
magnetization operator,

m̂ =
1
L�

∑

r,α,σ

eiQ·r fα σ n̂rασ, (A.1)

with σ = ±1. For the stacked square lattice we use a de-
scription with a single site per unit cell and Q is then the
antiferromagnetic reciprocal vector (π, π, π), and fA = 1.
For the stacked honeycomb lattice we performed simu-
lations in the paramagnetic regime with 2-site unit cell
depicted in Figure 1 (left) and we measured the suscep-
tibility at Q = (0, 0, π); with sublattice factors fA = 1,
fB = −1.

In the following we assume Q �= 0 to simplify the for-
mulas, as both cases satisfies that condition. We assume
the Q vector to be contained in the set of cluster reciprocal
vectors.

We follow these steps:

1. The two-particle cluster Green’s function χc(Q, iν) is
measured using the CTAUX impurity solver [37] and
Wick’s theorem.

2. The irreducible cluster vertex Γc(Q, iν) is then ob-
tained via Bethe–Salpeter equation,

Γc(Q, iν) = χ0
c(Q, iν)−1 − χc(Q, iν)−1. (A.2)

3. We approximate the irreducible lattice vertex Γ (Q, iν)
by the cluster vertex Γc(Q, iν). Γ (Q, iν) will thus be
patch-wise constant in reciprocal space.

4. The lattice two-particle cluster Green’s function
χ(Q, iν) is obtained via Bethe–Salpeter equation.

χ(Q, iν)−1 = χ0(Q, iν)−1 − Γ (Q, iν). (A.3)

Since the vertex Γ is patch-wise constant, we may per-
form patch averaging to obtain

χ̄(Q, iν)−1 = χ̄0(Q, iν)−1 − Γ (Q, iν). (A.4)

5. The lattice susceptibility is computed from χ̄(Q, iν).

The precise definitions of all quantities are given below.
For the matrices χ(c)(Q, iν), Γ(c)(Q, iν), and

χ0
(c)(Q, iν) we use multiindex notation K ≡ (Kαγnσ),

where K is a cluster reciprocal vector, α and γ are
intracell site labels, n is the index of the Matsubara
frequency ωn, and σ is the spin projection. The KK ′
element of the two-particle cluster Green’s function
χc(Q, 0) is defined by:

1
β

∫ β

0

∫ β

0

∫ β

0

∫ β

0

dτ1 dτ2 dτ3 dτ4

× e−i(ωnτ1−ωnτ2+ωn′τ3−ωn′τ4)

×
〈
Tτc†K+Qασ(τ1)cKγσ(τ2)c

†
K′α′σ′(τ3)cK′+Qγ′σ′(τ4)

〉
.

(A.5)

The noninteracting cluster susceptibility χ0
c and its patch-

averaged lattice counterpart χ̄0 are defined by:
[
χ0

c(Q, 0)
]
KK′ = −βδσσ′δnn′δKK′ [G(K, iωn)]αγ′

× [G(K + Q, iωn)]α′γ , (A.6)
[
χ̄0(Q, 0)

]
KK′ = −βδσσ′δnn′δKK′

Ω

×
∫

patch

dk̃
[
Glat(K + k̃, iωn)

]

αγ′

×
[
Glat(K + Q + k̃, iωn)

]

α′γ
, (A.7)

with cluster (lattice) Green’s function G (Glat), and
Kronecker delta δij .

The static staggered spin susceptibility of the lattice
may be obtained by:

χAF =
1

L�β2

∑

σ,σ′
σσ′ ∑

α,α′
fαfα′

∑

K,K′
eiQ′·rαeiQ′′·rα′

×
∑

n,n′
χ̄KααnσK′α′α′n′σ′(Q, iν = 0), (A.8)

with patch-averaged two-particle lattice Green’s func-
tion χ̄ at the reciprocal vector Q and at zero frequency ν;
and with intracell phase factors,

eiQ′·rα ≡ e−iKrepr(K+Q)·rαeiKrepr(K)·rα ,

eiQ′′·rα′ ≡ e−iKrepr(K
′)·rα′ eiKrepr(K

′+Q)·rα′ , (A.9)

where Krepr(K) is the representative of the cluster recip-
rocal vector K used in the simulation, which may differ
from K by a reciprocal lattice vector5.

The frequencies ωn, ωn′ need for any practical use be
cut-off at some ωc. The frequency cut-off is cured by fitting
the 1

ω2
n

tail and adding its contribution to the result [57].
The cut-off was validated by comparison of the extrapo-
lated impurity susceptibility, obtained by equation (A.8)
with χ̄ replaced by χc, with the directly measured cluster
susceptibility,

χAF,c = L�

∫ β

0

dτ 〈m̂(τ)m̂〉, (A.10)

with m̂ given in equation (A.1). Typically we used
ωc ≈ 5U .

The DCA, as a mean field based method, displays close
to the second order phase transition the mean field critical
exponents. We utilize that for a precise location of the
transition for each cluster by searching for the intersection
of χ−γmf

AF with zero, with the mean field critical exponent
γmf = 1.

A comparison of the susceptibility based results mea-
sured in the paramagnetic (PM) regime with the results

5 The Green’s function shifted by a reciprocal vector G is
given by G(k+G) = U+

GG(k)UG with diagonal unitary matrix
(UG)αα′ = δαα′eiG·rα .
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Fig. A.1. Extrapolation of the TN for the stacked honeycomb
for t/t′ = 1, U/t = 6. The critical exponent ν = 0.71 was cho-
sen as that of the the 3D Heisenberg model. The error bars
for the AFM data show lower and upper bounds of the tran-
sition based on measurement of the staggered magnetization.
The PM data points are susceptibility based measurement with
error bars smaller than the symbol size.

Table B.1. Clusters used for the EOS calculations on the
stacked square lattice. For T/t > 4 we used only the two small-
est clusters.

t/t′ L Cluster basis

1

36 (1, 0, 3), (3, 2,−1), (2,−2,−2)
56 (1, 2, 3), (−2, 3,−1), (−4,−1, 1)
64 (1, 2, 3), (−2, 4, 2), (−1,−2, 5)
74 (1, 3, 4), (3, 4,−1), (−2, 2,−2)

2
8 (0, 0, 1), (2, 2, 0), (−2, 2, 0)
36 (0, 0, 2), (3, 3, 0), (−3, 3, 0)
102 (1, 0, 3), (5, 3, 0), (−3, 5, 0)

4
8 (0, 0, 1), (2, 2, 0), (−2, 2, 0)
18 (0, 0, 1), (3, 3, 0), (0,−3, 3, 0)
116 (0, 0, 2), (7, 3, 0), (−3, 7, 0)

6

8 (0, 0, 1), (2, 2, 0), (−2, 2, 0)
18 (0, 0, 1), (3, 3, 0), (−3, 3, 0)
34 (0, 0, 1), (5, 3, 0), (−3, 5, 0)
74 (0, 0, 1), (7, 5, 0), (−5, 7, 0)

8
8 (0, 0, 1), (2, 2, 0), (−2, 2, 0)
18 (0, 0, 1), (3, 3, 0), (−3, 3, 0)
58 (0, 0, 1), (7, 3, 0), (−3, 7, 0)

obtained by direct observation of spontaneous magnetiza-
tion in a formulation with doubled unit cell (with 4 sites
per cell) allowing for antiferromagnetic (AF) ordering are
displayed in Figure A.1. The extrapolation is done both
with equally weighted TN (L), as well as with weights in-
versely proportional to the square of the error estimate of
TN (L).

Appendix B: Clusters used in the simulations

A complete list of clusters used for the EOS calculations is
provided in Tables B.1–B.5, given in terms of the integer
components cij as (ci1, ci2, ci3) for i = 1, 2, 3. In order to
lower potential bias by the choice of the cluster geometry,

Table B.2. Clusters used for the stacked honeycomb lattice
to obtain the EOS at half filling.

t/t′ L Temperature Cluster basis

1

6 T/t > 0.6 (2,−1, 0), (−1, 2, 0), (0, 0, 2)
18 (2, 2, 0), (0, 3, 0), (0, 0, 3)
27 (3, 0, 0), (0, 3, 0), (0, 0, 3)
36 T/t < 4 (3, 0, 0), (0, 3, 0), (0, 0, 4)
48 T/t < 4 (4,−2, 0), (−2, 4, 0), (0, 0, 4)

2
3 (2,−1, 0), (−1, 2, 0), (0, 0, 1)
18 (3, 0, 0), (0, 3, 0), (0, 0, 2)
54 T/t < 4 (4, 1, 0), (−2, 4, 0), (0, 0, 3)

4
3 T/t > 4 (2,−1, 0), (−1, 2, 0), (0, 0, 1)
9 (3, 0, 0), (0, 3, 0), (0, 0, 1)
66 (8,−1, 0), (1, 4, 0), (0, 0, 2)

8
9 (3, 0, 0), (0, 3, 0), (0, 0, 1)
21 (5,−4, 0), (−1, 5, 0), (0, 0, 1)
39 T/t < 4 (7,−5, 0), (−2, 7, 0), (0, 0, 1)

Table B.3. Clusters used to obtain the EOS at (U/t, t/t′) =
(6, 6) and (4, 4) for the stacked honeycomb lattice. ∗The 39-cell
cluster was not used in case of (U/t, t/t′) = (4, 4) for μ/t < −2,
in which case three clusters only were used.

L Temperature Cluster basis

3 T/t > 4 (2,−1, 0), (−1, 2, 0), (0, 0, 1)
9 (3, 0, 0), (0, 3, 0), (0, 0, 1)
12 T/t ≤ 4 (4,−2, 0), (−2, 4, 0), (0, 0, 1)
21 T/t ≤ 4 (5,−4, 0), (−1, 5, 0), (0, 0, 1)
39 T/t ≤ 1.5 ∗ (7,−5, 0), (−2, 7, 0), (0, 0, 1)

Table B.4. Bipartite clusters of stacked square lattice used for
the TN estimate. For t/t′ = 2, 4 we used two different double
layered clusters of same size to minimize potential bias due to
cluster choice, as the cluster with basis vector (0, 0, 2) has every
site doubly coupled to its neighbor in the vertical direction due
to the periodic boundary conditions.

t/t′ L Cluster basis

1
36, 56, 64, 74 same as in Table B.1 for t = t′

128 (−2, 4, 4), (2,−4, 4), (1, 6, 1)

2

8 (1, 0, 1), (2, 2, 0), (−2, 2, 0)
36 (0, 0, 2), (3, 3, 0), (−3, 3, 0)
36 (1, 1, 2), (3, 3, 0), (−3, 3, 0)
102 (1, 0, 3), (5, 3, 0), (−3, 5, 0)

4
18 (1, 0, 1), (3, 3, 0), (−3, 3, 0)
100 (0, 0, 2), (5, 5, 0), (−5, 5, 0)
100 (1, 1, 2), (5, 5, 0), (−5, 5, 0)
384 (1, 0, 3), (8, 8, 0), (−8, 8, 0)

8
20 (1, 0, 1), (4, 2, 0), (−2, 4, 0)
50 (1, 0, 1), (5, 5, 0), (−5, 5, 0)
196 (0, 0, 2), (7, 7, 0), (−7, 7, 0)

in some cases we employed clusters of same size or with
equal in-plane layers, but with different overall shape.

For a reliable extrapolation, the clusters need to be
sufficiently large to follow the asymptotic behavior of
DCA with L, assumed in the extrapolation. Non-collinear
points in the extrapolation indicate insufficient cluster
sizes. In general, larger clusters are needed for reliable

http://www.epj.org
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Table B.5. Bipartite clusters of stacked honeycomb lattice
used for the TN estimate. Similarly as for stacked square lattice
we used two different 18-cell clusters to minimize potential bias
by particular cluster geometry. The clusters marked with ∗

were used only for U = 6t.

t/t′ L Cluster basis

1

12 (0, 0, 4), (2,−1, 0), (−1, 2, 0)

54 (0, 0, 6), (3, 0, 0), (0, 3, 0)

96 (0, 0, 8), (4,−2, 0), (−2, 4, 0)

2

18 (0, 0, 2), (3, 0, 0), (0, 3, 0)

18 (1, 0, 2), (3, 0, 0), (0, 3, 0)

24∗ (0, 0, 2), (4,−2, 0), (−2, 4, 0)

24∗ (1, 0, 2), (4,−2, 0), (−2, 4, 0)

36∗ (1, 0, 2), (4,−2, 0), (1, 4, 0)

108 (0, 0, 4), (−3, 6, 0), (6,−3, 0)

extrapolations at lower temperature. The numerical cost
of the simulations limits the manageable sizes of the
clusters, and thus the lowest accessible temperature. We
checked the extrapolations for consistence within error
bars with extrapolations disregarding data from smaller
clusters.

Appendix C: Energy estimation and spectral
moments

The energy per site e was obtained by:

e =
U

L�

∑

r,α

〈n̂rα↑n̂rα↓〉 − 1
L�Ω

∑

K,σ

∫

patch

dk̃

×
[
Tr

(
TK+k̃

)
+

1
β

∑

n

Tr
(
TK+k̃Glat

σ (K + k̃, iωn)
)]

,

(C.1)

with Tk = T̃k − μ�, 〈n̂rα↑n̂rα↓〉 measured directly on the
cluster. The lattice Green’s function Glat

σ (K + k̃, iωn) is
defined in equation (9). The high-frequency tail is added
based on spectral moments given below.

The spectral moments of the full Green’s function,

Gσ(k, iωn) =
��

iωn
+

Ckσ
2

(iωn)2
+

Ckσ
3

(iωn)3
+O

(
(iωn)−4

)
, (C.2)

are used for precise FT from Matsubara representation
(iωn) to imaginary time representation (τ). In the frame-
work of multisite DCA in Section 2.2 they are given by
expressions

(
Ckσ

2

)
αα′ = −t̃kαα′ + Uδαα′ 〈nασ̄〉 , (C.3)

(
Ckσ

3

)
αα′ =

∑

γ

t̃kαγ t̃kγα′ − t̃kαα′U 〈nασ + nα′σ̄〉

+ U2δαα′ 〈nασ̄〉 . (C.4)
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