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Abstract

Understanding the origins and characteristics of large stock price movements is

key to the management of financial market risk. Traditionally it is assumed that

large drawdowns are caused by unforeseeable external shocks adversely affecting fi-

nancial markets. However, new research suggests that most crashes are the burst of

a speculative bubble that endogenously builds up over a long time. This dissertation

contributes in multiple ways to a better understanding of the intrinsic instability of

financial markets. First, a theoretical model and computational simulations shed

light on the dynamics of speculative bubbles. We observe asset prices that grow

super-exponentially and derive analytical conditions defining the unstable regime.

Second, an econometric analysis of derivative prices allows a quantitative charac-

terization of the boom and bust cycle of the S&P 500 stock market throughout

the decade around the Global Financial Crisis of 2008. In particular, we document

investors’ expectations of super-exponentially growing asset prices. And third, a

recent risk measure is applied as a predictive tool for return downturns. The risk

measure is found to add information beyond standard measures such as value at

risk, expected shortfall and risk-neutral volatility. We conclude with an empirical

study of a large hedge fund that investigates what communication structures can

be associated with successful trading. We address these questions drawing from a

rich and interdisciplinary set of methodologies such as agent-based modeling, risk-

neutral density estimation, change point analysis, Granger-causality analysis, Monte

Carlo methods, variance-ratio tests, network analysis and large scale text mining.
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Zusammenfassung

Das Verständnis der Ursprünge und Charakteristika großer Aktienpreisänderungen

ist von entscheidender Bedeutung für das Management von Finanzmarktrisiken.

Eine traditionelle Annahme ist, dass erhebliche Preissprünge durch unvorherse-

hbare, externe, negativ wirkende Schocks verursacht werden. Im Gegensatz dazu

sieht neuere Forschung einen Crash jedoch als die unvermeidliche Konsequenz einer

spekulativen Blase, die sich über lange Zeit aufbaut und schließlich platzt, und

damit als system-endogenes Phänomen. Diese Dissertation trägt in mehrfacher Hin-

sicht zu einem besseren Verständnis der intrinsischen Instabilität von Finanzmärkten

bei. Zunächst wird die Dynamik spekulativer Blasen mit Hilfe eines theoretischen

Modells und von Computersimulationen untersucht. Wir beobachten superexpo-

nentiell wachsende Vermögenspreise und leiten analytische Bedingungen für das

instabile Regime her. Zweitens erlaubt eine ökonometrische Analyse von Derivat-

preisen die quantitative Charakterisierung des Boom-Bust-Zyklus des S&P 500 Ak-

tienmarktes über die Dekade um die globale Finanzkrise von 2008. Insbesondere

dokumentieren wir die Erwartungen superexponentiell steigender Aktienpreise von

Investoren. Schließlich wenden wir ein neues Risikomaß als Prediktor für Ren-

diterückgänge an. Es wird gezeigt, dass das Risikomaß über einen Informations-

gehalt verfügt, der über die Standardmaße Value at Risk, Expected Shortfall und

risikoneutrale Volatilität hinaus geht. Außerdem untersuchen wir empirisch anhand

eines großen Hedgefonds welche Kommunikationsstrukturen mit erfolgreichem Han-

del verknüpft sind. Wir adressieren diese Fragen mit einer Reihe verschiedener Meth-

oden wie etwa agentenbasierten Modellen, risikoneutraler Dichteschätzung, Wech-

selpunktanalyse, Granger-Kausalitätsanalyse, Monte-Carlo-Simulationen, Varianz-

Quotienten-Tests, sowie Netzwerk- und Textanalyse.
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Chapter 1

Introduction1

Understanding the nature, that is, the origins and characteristics, of large stock

price movements is key to the management of financial market risk. The classical

paradigm underlying the theory of financial market crashes relies on the efficient

market hypothesis (EMH), stating that price movements are governed by unforesee-

able external shocks. Today’s terminology of market efficiency goes back to Eugene

Fama who defined a market to be informationally efficient if prices “fully reflect” all

information available to investors (Fama, 1970, p. 383). A price fully reflecting all

information means the nonexistence of arbitrage – the possibility of gains at zero

risk. Fama distinguished three forms of informational market efficiency. First, in

its “weak form”, the set of available information involves only all historical prices.

Then, in its “semi-strong form”, the efficient market hypothesis states that prices

reflect all publicly available information up to that very moment. Finally, in the

“strong form”, the information set includes all publicly and privately available infor-

mation. Hence, even insider information regarding a company and its competitors

would have been incorporated in the price.

There is a connection between market efficiency and random dynamics of asset

prices. Assume the corresponding information set allowed the investor to guess the

development of the price of an asset with a probability higher than chance. Then

this would open an arbitrage possibility, a free lunch, and the market would cease

to be efficient. Thus, in a truly efficient market prices should fluctuate randomly.

1Parts of this chapter are based on Leiss (2015).
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Chapter 1. Introduction

Bachelier (1900) was the first to give a mathematical formulation to the random

nature of stock market prices by employing a random walk model. His line of work

was picked up by Samuelson (1965), first proving that properly anticipated prices

must fluctuate randomly. Later, he extended his result by showing that stock prices

based on a stochastic, but correctly anticipated dividend process also change in a

random way (Samuelson, 1973). The two necessary assumptions for both proofs

are a price formation mechanism as in the repeated general equilibrium model and

complete rationality of all agents.2

The efficient market hypothesis has been challenged by questioning the assump-

tions of both equilibrium and rationality. Notably, Grossman and Stiglitz (1980)

contended the assumption of a competitive market being always in general equilib-

rium. Since any acquisition of information is costly, but efficient markets exclude

returns due to information gathering by arbitrage, they argued that individuals had

no incentive to trade in an efficient market. But without, trading new information

will not be incorporated into prices and the market ceases to be efficient. Instead

of a general equilibrium they proposed “an equilibrium degree of disequilibrium”

(Grossman and Stiglitz, 1980, p. 393), i.e., a price system that only imperfectly

reflects publicly available information.

The theoretical argument by Grossman and Stiglitz was supported by empirical

work of Bouchaud et al. (2009) who analyzed the characteristics of continuous dou-

ble auction order books of the biggest financial stock exchanges. Regarding market

efficiency they concluded that in orders of magnitude “markets can only be infor-

mationally efficient at first order but must necessarily be inefficient at second order”

(Bouchaud et al., 2009, p. 67).3

Furthermore, a number of psychologists and behavioral economists argued for

the implausibility of the assumption of completely rational individuals. For ex-

ample Amos Tversky and Daniel Kahneman observed a number of heuristics, i.e.,

deviations from complete rationality, that people employ when making judgments

2Samuelson’s proof also neglects the trade-off between risk and return in finance such that a
positive expected price move just reflects the reward necessary to attract investors to hold an asset
with a strongly fluctuating price (Lo and MacKinlay, 2011, p. 5).

3 Bouchaud et al. (2009) argue for the EMH to be a good first approximation of real markets,
but also an inherently insufficient one.

2



under uncertainty (Tversky and Kahneman, 1974). Although the heuristics are

found to be effective in most cases, they also imply systematic errors. In a subse-

quent study, Kahneman and Tversky (1979) showed expected utility theory to be

an unsuitable descriptive model for decisive behavior under risk. In particular, they

described the well-known loss aversion – the tendency of individuals to give poten-

tial losses over-proportional importance compared to potential gains. De Bondt and

Thaler (1985) investigated whether this type of “overreaction” of most people af-

fected stock prices. By analyzing monthly return data they gave empirical evidence

for substantial weak-form market inefficiencies.4

The insights from behavioral economics were incorporated into new models of

markets where rational agents interact with less rational ones. The so-called noise

traders were first introduced by Kyle (1985) and Black (1986), who characterized

them as trading “on noise as if it were information” (Black, 1986, p. 531). Ac-

cording to Black (1986, p. 530), “noise makes financial markets possible, but also

makes them imperfect” by introducing uncertainty to stock prices such that “we

might define an efficient market as one in which price is within a factor of 2 of [the

fundamental] value” (Black, 1986, p. 533). In Kyle’s sequential equilibrium model a

single risk neutral insider benefiting from private information acts in a market with

risk neutral market makers and random noise traders. The noise traders camouflage

the insider’s trading from the market makers, breaking the no-trade argument by

Grossman and Stiglitz with the consequence that all private information is dynam-

ically incorporated into prices.

More recent critiques claim that the efficient market hypothesis is impossible to

test. For example, Farmer and Lo (1999, p. 9992) explained this so-called joint

hypothesis problem:

“[...] the EMH, by itself, is not a well posed and empirically refutable hy-

pothesis. To make it operational, one must specify additional structure:

e.g., investors’ preferences, information structure, etc. But then a test

of the EMH becomes a test of several auxiliary hypotheses as well, and

4Akerlof and Shiller (2010) give an elegant review of how human psychology may play a role in
economic contexts.

3



Chapter 1. Introduction

a rejection of such a joint hypothesis tells us little about which aspect

of the joint hypothesis is inconsistent with the data.”

The picture drawn by the efficient market hypothesis stands in contrast to the

paradigm of speculative bubbles (Sornette, 2003), a concept that resonates with

the understanding of financial markets as a complex systems (Helbing, 2013). Such

a regime is different from the uncertainty in stock prices due to noise trading as

described by Fischer Black, which corresponds to stochastic fluctuations around a

long-term trend of exponential growth in the fundamental value. On the contrary,

during a speculative bubble the price systematically detaches from the fundamentals

over an extended period of time leading the market into an ever more unstable state

(Sornette, 2003). Usually the bubble develops until a critical point is reached and the

unsustainable dynamics can no longer be maintained. As a consequence, the market

undergoes a change of regime, often characterized by a sudden price correction to

the long-term trend (Sornette, 2003).5 At this point it is worth noting that there are

positive and negative bubbles associated with positive and negative deviations from

the fundamental value, respectively. Intuitively one can observe both, as everything

in finance is relative to the numeraire. For example, the trajectory of the Swiss

franc in Euro in summer 2011 was a positive bubble, whereas the inverse, i.e. Euro

in Swiss franc, was a negative bubble (Sornette and Cauwels, 2015). In the former

case one would speak of a crash, and in the latter of a rally or rebound. In any case,

the key insight is that the fundamental reason for the large stock market move was

the endogenous instability and not some external shock.

In general, speculative bubbles are thought to be fueled by positive feedback

mechanisms, which drive the market price away from equilibrium and fundamentals.

Sornette and Cauwels (2015) classify them into two broad groups: technical positive

feedback on the one hand and behavioral on the other hand.

Sircar and Papanicolaou (1998) discuss dynamic option hedging as an example of

the first group, which is a special form of a portfolio insurance strategy often based

on the model of Black and Scholes (1973). This model suggests that risk associated

5Sornette and Cauwels (2015) discuss problems with the notion of a fundamental value and
explain on the basis of the dividend discount model by Gordon and Shapiro (1956) how small
ambiguity in the discount rate may amplify to large uncertainty in the evaluation of a stock.

4



with selling, say, a call option can be eliminated by replicating each small change

of the price of the underlying stock in one’s portfolio. So if the underlying stock

appreciates, the seller of the call option will buy more of the underlying – a clear

case of positive feedback.

Examples of a behavioral positive feedback mechanism are social imitation and

herding. They are not irrational per se, as in times of strong information asym-

metries and uncertainty averaging over the actions of one’s peers may represent a

good estimate of the price determined by the overall average sentiment of the mar-

ket (Sornette and Cauwels, 2015). However, Lorenz et al. (2011) show that social

influence may undermine this “wisdom of crowd” effect. Imitation and herding can

become particularly dangerous when combined with the typical mindset prevailing

during a speculative bubble. Economic history suggests that, throughout time and

across countries, speculative bubbles start with a new technology or business oppor-

tunity as well as experts chiming “This Time Is Different” (title of Reinhart and

Rogoff 2009), claiming that the old rules of valuation no longer apply. Soon, the

initial wave of funding and the extraordinary prospects encourage other investors to

follow. The price increases, which in turn will attract even more investors.

Most of economics and finance is characterized by exponential growth. This

reflects the multiplicative nature of growth processes such as compounding inter-

ests at a constant rate of return. However, both technical and behavioral positive

feedback mechanisms imply a cycle where an increasing price leads to an increase

in demand and vice versa. Consequently, the rate of return is no longer constant,

but itself increases over time. The price then grows faster than exponentially, or

super-exponentially. To see this, let us define the infinitesimal return of an asset

with price p(t) as is commonly done in mathematical finance (see e.g., Black and

Scholes 1973; Fouque et al. 2000):

dp(t)

p(t)
= r dt+ σ dW (t), (1.1)

where r, σ and dW (t) are the rate of return, the volatility and infinitesimal incre-

ments of a Brownian motion, respectively. For simplicity we may consider only the
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deterministic equation, as everything carries over to the stochastic case. Thus

E
[

dp(t)

p(t)

]
= r dt. (1.2)

Usually, the rate of return r is left constant, but let us assume it grows linearly in

time:

r(t) = r0 + γt, (1.3)

with constants r0 and γ. Then the solution of equation (1.2) is given by

E [p(t)] = p0 er0t+γt
2/2 . (1.4)

For γ = 0 we recover the well-known standard exponential growth due to compound-

ing interests, which is commonly found in economic processes and reflects Gibrat’s

law of proportional growth (Gibrat, 1931). However, for positive γ > 0 the rate

of return itself grows in time such that the price increases much faster than an ex-

ponential, which we refer to as super-exponential growth. We can expect an even

faster increase in the price of the asset for rates of return that exhibit stronger than

linear transient growth dynamics. In general, such a growth path is not sustainable

and therefore of a transient nature. Thus, it is usually associated with the build-up

of instabilities, that in finance are often termed bubbles.

In fact, speculative bubbles may be defined as transient phases with super-

exponential growth (Sornette, 2003). Investing in a stock with a super-exponentially

increasing price can be embedded in a rational expectations model (Blanchard, 1979;

Blanchard and Watson, 1982), as long as the expected return is proportional to the

crash risk (Johansen et al., 2000).6 There is, however, a distinct difference in the dy-

namics implied by increasing returns as compared to standard exponential growth:

super-exponential dynamics can lead to a singularity in finite time, at which the

model ceases to describe the underlying process. It would be a mistake, however,

to conclude that the model is flawed. The finite time singularity rather reflects the

fact that the current dynamics are unsustainable and that the system will undergo

a change of regime – such as an end of imitation and herding – resulting in a price

correction, i.e., in a burst of the bubble.

6Scheinkman and Xiong (2003) provide yet another model for speculative bubbles.
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Speculative bubbles are ubiquitous in real financial markets. In general, it is

difficult to decide whether a market was in a bubble or not (Camerer, 1989; Stiglitz,

1990; Bhattacharya and Yu, 2008). However, especially over the past few years,

there has been a lot of progress in methodology (Jarrow et al., 2011; Evanoff et al.,

2012; Lleo and Ziemba, 2012; Anderson et al., 2013; Sornette et al., 2013). Spec-

ulative bubbles have been empirically documented for international equity markets

(Jiang et al., 2010; Phillips et al., 2011; Yan et al., 2012; Phillips et al., 2012), real

estate (Zhou and Sornette, 2003, 2006), commodities and derivatives (Sornette and

Woodard, 2010), as well as bonds, gold and foreign exchange markets (Johansen

and Sornette, 2010). Furthermore, Hüsler et al. (2013) observed super-exponential

growth dynamics in controlled experiments in the laboratory.

In the following, we will outline how this dissertation contributes to a better

understanding of the intrinsic instability of financial markets.

Chapter contributions

All materials contained in this cumulative thesis represent sole or joint first

author contributions. The main body of this dissertation consists of four chapters

that are based on individual papers: two of these papers are published in peer-

reviewed journals, one is a working paper currently under review, and one is based

on work in progress. For the purpose of this thesis, the chapters have been extended

in parts using content from a single-authored book chapter (Leiss, 2015) and results

related to the two master theses which the author co-supervised (Philipp, 2015;

Kohrt, 2015). Below, a brief outline of the individual chapters is given.

Chapter 2 is published in the Journal of Economic Behavior & Organization

(Kaizoji, Leiss, Saichev, and Sornette, 2015). It builds on an agent-based model

to theoretically assess the emergence of super-exponentially growing prices. Agent-

based models (ABM) represent a natural way to study the aggregate outcome due to

interactions among possibly heterogeneous individuals. In a first important contri-

bution, De Long et al. (1990a,b) employed an ABM to quantitatively study a finan-

cial market populated by “fundamental” and “technical / chartist” traders. While
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fundamentalists base their investment decision on fundamental values, chartists ex-

hibit erroneous stochastic beliefs leading to an unpredictable additional risk in the

asset price. As a result, fundamentalist investors fail to exploit the noise traders’

irrational behavior and market prices significantly deviate from fundamentals. A

number of works have extended the set-up of noise traders to account for group

psychological and sociological effects such as herding and trend-following (Kirman,

1993; Lux and Marchesi, 1999; Lux, 2009; Brock and Hommes, 1997, 1998; Chiarella

and He, 2001; Chiarella et al., 2006, 2009).

Although successful in explaining many statistical regularities of financial mar-

kets such as a fat-tail distribution of returns and volatility clustering, to the best of

our knowledge no ABM has studied the link between interactions among investors

and the transiently super-exponential growth of asset prices yet. However, such

an approach is crucial for a qualitative and quantitative micro-understanding of

speculative bubbles. This gap in the literature has been closed by Kaizoji, Leiss,

Saichev, and Sornette (2015), which we present in chapter 2. Starting from well-

known set-ups of agent-based models of financial markets, we derive analytically and

in simulations conditions for the occurrence of explosive price paths. Despite being

the main driver in the bubble regime, technical trading strategies are shown to be

transiently profitable, supporting these strategies as enhancing herding behavior. In

section 2.A we will extend the model by including a third group of investors, who

try to arbitrage the arising super-exponential price patterns based on the LPPLS

methodology by Sornette and Johansen (1998); Sornette et al. (2013); Filimonov

and Sornette (2013). Philipp (2015) quantifies the impact of LPPLS traders on the

market as a whole and on the development of bubbles in particular. The presence of

LPPLS investors is found to increase a bubble’s peak in proportion to their market

power, but not its duration.

Chapter 3 is published in the Journal of Economic Dynamics and Control (Leiss

et al., 2015). It is dedicated to empirical observations of investors’ return expecta-

tions. Following Leiss et al. (2015), we estimate risk-neutral probability distributions

from financial option quotes on the S&P 500 stock index over the period 2003 to

2013. We employ the method by Figlewski (2010), which is essentially a model-free
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technique, allowing for nonstandard density features such as bimodality, fat tails and

general asymmetry. It is therefore particularly suited to study the profound impacts

of the Global Financial Crisis of 2008. Evaluating the resulting risk-neutral distri-

butions in terms of their moments, tail characteristics and implied returns allows

us to endogenously define three different regimes: a pre-crisis, crisis and post-crisis

phase. Interestingly, the pre-crisis period is characterized by linearly rising returns

as in equation (1.3), which translates into super-exponential growth expectations

of the representative investor under risk neutrality. Granger-causality tests show

that expected returns lead 3-month Treasury Bill yields prior to the crisis, while the

inverse is true in the post-crisis period.

Chapter 4 is a working paper currently under review at Quantitative Economics

(Leiss and Nax, 2015). Here, we address the question whether traditional and new

risk measures would have captured the market risk posed by large price drawdowns,

when evaluated on the risk-neutral densities of chapter 3. Foster and Hart (2009)

intriguingly proposed a measure promising sustainable riskiness in the sense that it

seeks to avoid bankruptcy at all times. Translating this idea from abstract gam-

bles to applied finance, we determine the Foster-Hart (FH) bound. This measure

indicates the maximal sustainable exposure to the S&P 500 and we compare it to

value-at-risk (VaR), expected shortfall (ES) and risk-neutral volatility. It turns out,

that the FH bound yields additional information compared to traditional risk mea-

sures and is a significant predictor of ahead-return downturns. We explain this by

showing that the FH bound is able to capture more characteristics of the risk-neutral

probability distributions than other measures.

Finally, chapter 5 is built on work in progress. Here, we study the digital com-

munication network of a large hedge fund and relate it to its trading activity. We

define random trading as those sequences of buys and sells that statistically cannot

be distinguished from a random walk. It turns out that random trading signifi-

cantly underperforms. Furthermore, we are able to associate meaningful decision

making with two characteristics of the communication. Those are clustered and bal-

anced (measured by entropy) internal communication on the one hand, and diverse

communication networks in terms of external information sources on the other.
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Methodology

Methodologically, this dissertation approaches the topic of market risk of specu-

lative bubbles from two angles. First, we provide a theoretical model which we study

with analytical derivations and computational simulations in chapter 2. Second, we

analyze data using various econometric methods in chapters 3 and 4.

In chapter 2, guided by economic principles such as market clearing and expected

utility, we set up a dynamic equilibrium model of a financial market. The model

consists of two types of actors and is fully specified by a set of stochastic equations in

closed form. Reducing the system to its deterministic version, we analytically derive

the model dynamics for various parameter specifications via a fixed point analysis.

Beyond that, however, computational simulations can still yield insights for two

reasons. First, complex adaptive systems characterized by nonlinear interactions

among agents exhibit emergent phenomena such as mutating collective behavior

and self-organization (Miller and Page, 2009). Thus, an agent-based simulation as

in chapter 2 is ideally suited for the study of how interactions at the micro-level,

as for example social imitation between individual investors, may lead to certain

outcomes at the macro-level such as speculative bubbles. Second, computational

simulations allow a quantification of statistical regularities of the model, so-called

stylized facts, that may be compared with those of real markets to provide empirical

credibility. In the case of a financial market model, stylized facts involve the fat-

tailed distribution of returns and volatility clustering (Lux, 2009), which may be

tested with the toolkit provided by Clauset et al. (2009).

By contrast, in chapters 3 and 4, we let the data speak and make as few modeling

assumptions as possible. This ensures that we do not impose certain results nor are

blind to others. It is particularly important for studying nonstationary systems, as

for example stock markets that changed throughout the Global Financial Crisis of

2008 (see chapter 3). Risk-neutral probability densities implied by financial options

data underly this part. We employ the estimation technique by Figlewski (2010),

which combines two very general approaches for the main body and tails of the distri-

butions, respectively. The former is estimated using smoothed numerical derivatives
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(Shimko et al., 1993), and the latter are characterized by the generic family of gen-

eralized extreme value distributions (Embrechts et al., 1997, 2005). Repeating the

estimation multiple times with small noise in the input data informs about the ro-

bustness of results, a process very similar to Monte Carlo methods (Hammersley and

Handscomb, 1964). In chapter 3, the properties of the resulting risk-neutral prob-

ability distributions are evaluated using standard methods of time series analysis.

This involves a change point analysis to detect regime shifts throughout the Global

Financial Crisis (Page, 1954; Scott and Knott, 1974) and a Granger-causality anal-

ysis relating market dynamics with monetary policy (Granger, 1969). In chapter

4, we compute various risk-measures with the estimated densities and analyze their

predictive power via standard regressions on future returns.

The empirical study of a large hedge fund in chapter 5 required a whole set of new

tools for data and network analysis as well as text mining. The network structures

were analyzed for clustering using the clustering coefficient (Watts and Strogatz,

1998) and for balance in terms of Shannon entropy (Shannon, 1948) of conversational

turn-taking. We followed Lijffijt et al. (2011) to model the distribution of topics in

the message full texts based on a glossary of financial terms by Harvey (2015).

Finally, the sequences of buying and selling decisions were classified as random if

the null hypothesis of variance-ratio tests could not be rejected (Charles and Darné,

2009; Lo and MacKinlay, 2011).
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Chapter 2

Super-exponential endogenous

bubbles in an equilibrium model

of fundamentalist and chartist

traders

This chapter is an edited version of Kaizoji et al. (2015), of which I am a joint

first author. Section 2.A is an extension of the original paper based on two projects

related to master theses that I co-supervised (Philipp, 2015; Kohrt, 2015).
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model of fundamentalist and chartist traders

Abstract

We introduce a model of super-exponential financial bubbles with two assets

(risky and risk-free), in which fundamentalist and chartist traders co-exist. Funda-

mentalists form expectations on the return and risk of a risky asset and maximize

their constant relative risk aversion expected utility with respect to their allocation

on the risky asset versus the risk-free asset. Chartists are subjected to social im-

itation and follow momentum trading. Allowing for random time-varying herding

propensity, we are able to reproduce several well-known stylized facts of financial

markets such as a fat-tail distribution of returns and volatility clustering. In partic-

ular, we observe transient faster-than-exponential bubble growth with approximate

log-periodic behavior and give analytical arguments why this follows from our frame-

work. The model accounts well for the behavior of traders and for the price dynamics

that developed during the dotcom bubble in 1995-2000. Momentum strategies are

shown to be transiently profitable, supporting these strategies as enhancing herding

behavior.
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2.1 Introduction

The very existence of financial bubbles has been a controversial and elusive sub-

ject. Some have argued that financial bubbles play a huge role in the global economy,

affecting hundreds of millions of people (Kindleberger and Aliber, 1978; Shiller, 2000;

Sornette, 2003). Others have basically ignored or refuted their possibility (Fama,

1998). Moreover, until recently, the existence of such bubbles, much less their ef-

fects, have been ignored at the policy level. Finally, only after the most recent

historical global financial crisis, officials at the highest level of government and aca-

demic finance have acknowledged the existence and importance of identifying and

understanding bubbles. the President of the Federal Reserve Bank of New York,

William C. Dudley, stated in April 2010 “what I am proposing is that we try—try

to identify bubbles in real time, try to develop tools to address those bubbles, try to

use those tools when appropriate to limit the size of those bubbles and, therefore,

try to limit the damage when those bubbles burst.” Such a statement from the

New York Fed representing, essentially, the monetary policy of the United States

governmental banking system would have been, and, in some circles, still is, unheard

of. This, in short, is a bombshell and a wake-up call to academics and practitioners.

Dudley exhorts to try to develop tools to address bubbles.

But before acting against bubbles, before even making progress in ex-ante di-

agnosing bubbles, one needs to define what is a bubble. The problem is that the

“econometric detection of asset price bubbles cannot be achieved with a satisfactory

degree of certainty. For each paper that finds evidence of bubbles, there is an-

other one that fits the data equally well without allowing for a bubble. We are still

unable to distinguish bubbles from time-varying or regime-switching fundamentals,

while many small sample econometrics problems of bubble tests remain unresolved.”

summarizes Gürkaynak (2008) in his review paper.

Let us start with the rather generally accepted stylized fact that, in a period

where a bubble is present, the stock return exhibits transient excess return above

the long-term historical average, giving rise to what could be termed a “bubble risk

premium puzzle”. For instance, as we report in the empirical section, the valuation
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of the Internet stock index went from a reference value 100 in January 1998 to a peak

of 1400.06 in March 9, 2000, corresponding to an annualized return of more than

350% ! A year and a half later, the Internet stock valuation was back at its pre-1998

level. Such explosive super-exponential growth has been documented extensively for

bubbles in real markets (see for example Sornette et al. 2009; Jiang et al. 2010; Yan

et al. 2012) and recently observed in lab experiments (Hüsler et al., 2013). Another

stylized fact well represented during the dotcom bubble is the highly intermittent or

punctuated growth of the stock prices, with super-exponential accelerations followed

by transient corrections, themselves followed by further vigorous rebounds (Johansen

and Sornette, 2010; Sornette and Woodard, 2010)

Bubbles are usually followed by crashes, in an often tautological logic resulting

from the fact that the existence of a crash is usually taken as the ex-post signature

of a bubble, as summarized by Greenspan (2002): “We, at the Federal Reserve...

recognized that, despite our suspicions, it was very difficult to definitively identify

a bubble until after the fact, that is, when its bursting confirmed its existence...”

More optimistically but still controversial, recent systematic econometric studies

have shown that it is possible to relate objectively an anomalous transient excess

return and the subsequent crash (Sornette, 2003; Johansen and Sornette, 2010; Sor-

nette et al., 2013). Furthermore, there is another relatively new stream of literature

devoted to the early detection of bubbles, which also focuses on the often observed

extreme growth of the price mentioned above. Phillips et al. (2011) have employed

mildly explosive autoregressive processes of the log-price with an AR coefficient

slightly larger than one decreasing towards one over time. This model results in

super-exponential growth of the price and has led to bubble tests based on Markov-

switching state-space models (Al-Anaswah and Wilfling, 2011; Lammerding et al.,

2013), as well as sequential Chow-type and augmented Dickey-Fuller testing proce-

dures for a structural breaks. Such a break could be either the start of a bubble, i.e.

a transition from a random walk to a mildly explosive regime (Phillips et al., 2011;

Homm and Breitung, 2012; Phillips et al., 2012) or vice versa its end (Breitung and

Kruse, 2013). Both methods rely on the type of indirect stationarity tests initiated

by Diba and Grossman (1988) and Hamilton and Whiteman (1985).
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Going from econometrics to financial economics, there are several branches ded-

icated to modeling deviations from fundamental value. One important class of the-

ories is related to noise traders (also referred to as positive-feedback investors), a

term first introduced by Kyle (1985) and Black (1986) to describe irrational in-

vestors. Thereafter, many scholars exploited this concept to extend the standard

models by introducing the simplest possible heterogeneity in terms of two interacting

populations of rational and noise traders. One can say that the one-representative-

agent theory is being progressively replaced by a two-representative-agents theory,

analogously to the progress from the one-body to the two-body problems in physics.

It has been often explained that markets bubble and crash in the absence of signif-

icant shifts in economic fundamentals when herders such as chartists deliberately

act against their private information and follow the crowd.

De Long et al. (1990a,b) proposed the first model of market bubbles and crashes

which exploits this idea of the possible role of noise traders following positive feed-

back or momentum investment strategies in the development of bubbles. They

showed a possible mechanism for why asset prices may deviate from the funda-

mentals over long time periods. The key point is that trading between rational

arbitrageurs and chartists gives rise to bubble-like price patterns. In their model,

rational speculators destabilize prices because their trading triggers positive feed-

back trading by noise traders. This in turn leads to a positive auto-correlation of

returns at short horizons. Eventually, arbitrage by rational speculators will pull the

prices back to fundamentals. Their arbitrage trading leads to a negative autocorre-

lation of returns at longer horizons.

Their work was followed by a number of empirical studies on positive feedback

trading. Influential empirical evidence on positive feedback trading came from the

works of De Bondt and Thaler (1985), and Jegadeesh and Titman (1993, 2001),

which established that stock returns exhibit momentum behavior at intermediate

horizons, and reversals at long horizons. That is, strategies which buy stocks that

have performed well in the past and sell stocks that have performed poorly in the past

generate significant positive returns over 3- to 12- month holding periods. However,

stocks that perform poorly in the past perform better over the next 3 to 5 years than
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stocks that perform well in the past. Behavioral models that explain the coexistence

of intermediate horizon momentum and long horizon reversals in stock returns are

proposed by Barberis et al. (1998), Daniel et al. (1998), and Hong and Stein (1997).

The behavior of investors who are driven by group psychology and the aggre-

gate behavioral outcomes, have also been studied using frameworks suggested by

Weidlich and Haag (1983); Blume (1993, 1995); Brock (1993); Arthur et al. (1997);

Durlauf (1999); Kirman (1993); Brock and N Durlauf (2000); Aoki and Yoshikawa

(2007); Chiarella et al. (2009); Hommes and Wagener (2009). Phani et al. (2004)

summarize the formalism starting with different implementation of the agents’ de-

cision processes whose aggregation is inspired from statistical mechanics to account

for social influence in individual decisions. Lux (1995); Lux and Marchesi (1999);

Brock and Hommes (1998); Kaizoji (2000, 2010); Kirman and Teyssiere (2002) have

developed related models in which agents’ successful forecasts reinforce the fore-

casts. Such models have been found to generate swings in opinions, regime changes

and long memory. An essential feature of these models is that agents are wrong for

a fraction of the time but, whenever they are in the majority, they are essentially

right by a kind of self-fulfilling prophecy. Thus, they are not systematically irra-

tional (Kirman, 1997). Sornette and Zhou (2006) showed how irrational Bayesian

learning added to the Ising model framework reproduces the stylized facts of finan-

cial markets. Harras and Sornette (2011) showed how over-learning from lucky runs

of random news in the presence of social imitation may lead to endogenous bubbles

and crashes.

Here, we follow this modeling path and develop a model of the pricing mechanism

and resulting dynamics of two co-existing classes of assets, a risky asset representing

for instance the Internet sector during the dotcom bubble and a risk-free asset, in

the presence of two types of investors having different opinions concerning the risky

asset (Harrison and Kreps, 1978; Scheinkman and Xiong, 2003). The first type of

traders is a group of fundamentalists who maximize their expected utility. The

second type of traders is a group of “chartists” who trade only the risky asset by

using heuristics such as past momentum and social imitation. The chartist traders

do not consider the fundamentals, while the fundamentalist investors allocate their
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wealth based on their expectation of the future returns and risks of the risky asset.

Our framework combines elements from various groundbreaking works. The

setup of chartists follows closely Lux and Marchesi (1999), where an opinion index

determined by past momentum and social imitation describes the prevailing invest-

ment behavior among this group. The description of fundamentalists is related to

Brock and Hommes (1998) and to Chiarella et al. (2009). In particular, we employ

a utility function with constant relative risk aversion, as this is a realistic choice in

a growing economy.

One important ingredient that we introduce here is that we do not allow our

agents to switch their investment behavior from rational to noise trading or vice

versa. This reflects the empirical fact that many large institutional investors such

as pension funds have to follow strict guidelines on how to split their portfolio

on assets of different risk classes. In previous models, the occurrence of a bubble

was related to a convergence of a large fraction of traders on noise trading, see for

example Lux and Marchesi (1999). Instead of strategy switching, we account for

the volatility of the imitation propensity of chartists by assuming that it fluctuates

randomly around some anchoring value as in (Stauffer and Sornette, 1999; Harras

et al., 2012). By keeping track of the agents’ wealth levels, we are able to explain

bubbles only with the transient increasing influence of chartists on the market price

during an appreciation of the risky asset. While its price is rising, noise traders

believing in momentum tend to invest more in the risky asset and thus become

richer, thereby gaining more importance. The chartists’ belief is further reinforced

by social imitation, which becomes self-fulfilling. This, in turn, has destabilizing

effects leading to an increase in the volatility and usually finishes in a crash when

the prevailing opinion switches to pessimistic.

Within our simple setup without strategy switching we show theoretically and by

simulations that bubbles start with a phase of transient super-exponential growth.

As mentioned before, faster-than-exponential growth behavior has recently been

picked up by the econometric literature, but to our knowledge it has been rarely

discussed in the context of agent-based models. A first instantiation is found in

(Corcos et al., 2002), in a much simplified model of imitative and contrarian agents.
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The present model is one of the first in which we can provide a transparent analytical

explanation for the existence of a transient faster-than-exponential growth. More-

over, we observe approximate log-periodic behavior during the rise of a bubble, that

can result from the nature of the fluctuations of the opinion index. Furthermore,

our model reproduces several stylized facts of financial markets. The distribution

of returns is fat-tailed. Also, signed returns are characterized by a fast-decaying

autocorrelation, while the autocorrelation function for absolute returns has a long

memory (volatility clustering). While many of the ingredients and conditions used in

our agent-based model may be found in various forms in some previous agent-based

models, none have documented explicitly the important transient super-exponential

behavior associated with bubbles, nor explained qualitatively or quantitatively the

underlying mechanisms and the coexisting salient stylized facts.

The paper is organized as follows: the basic model is presented in Section 2

and Section 3 and analyzed theoretically in Section 4. Numerical simulations of

the model are performed and the results are discussed in Section 5, together with a

discussion of the price dynamics, its returns and momentum strategies during the

dotcom bubble from 1998 to 2000. We conclude in Section 6.

2.2 Set-up of the model of an economy made of

fundamentalists and chartists

We consider fixed numbers Nf of fundamentalist and Nc of chartist investors who

trade the same risky asset, represented here for simplicity by a single representative

risky asset fund. The former diversify between the risky asset and a risk-free asset

on the basis of maximizing their constant relative risk aversion expected utility of

returns and variance of the risky asset over the next period. The latter use technical

and social indicators, such as price momentum and social imitation to allocate their

wealth. A dynamically evolving fraction of them buys the risky asset while others

stay out of the risky asset and have their wealth invested in the risk-free asset.

In the next subsection 2.2.1, we solve the standard allocation problem for the

fundamentalists that determines their demand for the risky asset. Then, in sub-
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section 2.2.2, the general ingredients controlling the dynamics of the demand of

chartists are developed.

2.2.1 Allocation equation for the fundamentalists

The objective of the Nf fundamentalists is assumed to be the maximization

at each time t of the expected utility of their expected wealth W f
t+1 at the next

period, thus following Chiarella et al. (2009) and Hommes and Wagener (2009). To

perform this optimization, they select at each time t a portfolio mix of the risky

asset and of the risk-free asset that they hold over the period from t to t+ 1. Such

one-period ahead optimization strategy can be reconciled with underlying expected

utility maximizing stories as given for example in Brock and Hommes (1997, 1998);

Chiarella et al. (2009); Boswijk et al. (2007); Hommes and Wagener (2009).

The fundamentalists are assumed to be identical, so that we can consider the

behavior of one representative fundamental trader hereafter. We shall assume that

fundamentalists are myopic mean-variance maximizers, which means that only the

expected portfolio value and its variance impact their allocation. We denote Pt the

price of the risky asset and xft the number of risky assets that the representative

fundamentalist holds at instant t. We also assume that the risky asset pays a

dividend dt at each period t. Similarly, Pft and Xft correspond to the price and

number of a risk-free asset held by the fundamentalist. The risk-free asset is in

perfectly elastic supply and pays a constant return Rf . Thus, at time t, the wealth

of the fundamentalist is given by

W f
t = Ptx

f
t + PftXft . (2.1)

The wealth of the fundamentalist changes from time t to t+ 1 according to

W f
t+1 −W

f
t = (Pt+1 − Pt)xft + (Pft+1 − Pft)Xft + dt+1x

f
t . (2.2)

This expression takes into account that the wealth at time t+1 is determined by the

allocation choice at time t and the new values of the risky and the risk-free asset at

time t+1, which includes the payment of the dividend (W f
t+1 = Pt+1x

f
t +Pft+1Xft+
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dt+1x
f
t ). Let us introduce the variables

xft :=
Ptx

f
t

W f
t

, Rt+1 :=
Pt+1

Pt
− 1 , Rf :=

Pft+1

Pft
− 1 . (2.3)

They are respectively the fraction xft of the fundamentalist’s wealth invested in the

risky asset at time t, the discrete time return Rt+1 per stock of the risky asset from

time t to t+ 1 and the risk-free rate of return Rf assumed constant. This allows us

to rewrite (2.2) as giving the total relative wealth variation from t to t+ 1:

W f
t+1 −W

f
t = W f

t

[
Rf + xft

(
Rt+1 −Rf +

dt+1

Pt

)]
≡ W f

t

[
Rf + xftRexcess,t+1

]
,

(2.4)

where we define

Rexcess,t+1 = Rt+1 −Rf + dt+1/Pt (2.5)

as the excess return of capital and dividend gains over the risk-free rate.

The problem of the fundamentalist at time t is to maximize the expected utility

of his wealth for the next period by choosing the right proportion of wealth xft to

invest in the risky asset,

maxxft
Et

[
U(W f

t+1)
]
, (2.6)

where Et[.] means the expectation of the variable in the bracket performed at time t,

i.e., under the knowledge of available information up to and including time t. If we

assume the fundamentalist to have constant relative risk aversion, this proportion

is constant in time and wealth. This can be shown by employing the explicit utility

function U(W ) exhibiting constant relative risk aversion γ:

U(W ) =

log(W ), for γ = 1 ,

W 1−γ

1−γ , for γ 6= 1 .

(2.7)

Given this utility function and wealth evolution (2.4), it is easy to see that the

maximization condition (2.6) is independent of W f
t .

We may obtain an approximate solution for xft in the special case where the

wealth does not change much, i.e. in the case of small returns, so that the following

expansion becomes approximately valid: Rf , Rexcess,t+1 � 1.

Et[U(W f
t+1)] = U(W f

t ) + U ′(W f
t )W f

t (Rf + xft Et[Rexcess,t+1])

+
1

2
U ′′(W f

t )W 2
t (xft )

2Vart[Rexcess,t+1] +O(R3
f , R

3
excess,t+1) .

(2.8)
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Maximizing this expression with respect to xft gives

xft =
1

γ

Et[Rexcess,t+1]

Vart[Rexcess,t+1]
, (2.9)

where

γ ≡ −W
f
t U
′′(W f

t )

U ′(W f
t )

. (2.10)

In expression (2.9), Et[Rexcess,t+1] ≡ Et[Rt+1] − Rf + Et[dt+1]/Pt represents the

total excess expected rate of return of the risky asset from time t to t + 1 above

the risk-free rate. In the following, we assume myopic fundamentalists who do not

learn but invest according to fundamental valuation. They expect a steady relative

growth rate embodied by a constant total excess rate of return Rexcess, which is

based on the behavior of stock markets in the long run:

Rexcess := Et[Rt+1]−Rf +
Et[dt+1]

Pt
= constant . (2.11)

We will assume that Rexcess > 0, so that the risky asset is desirable. The variance

Vart[Rexcess,t+1] will be denoted by σ̃2 and is given by

σ̃2 := Vart[Rexcess,t+1] = σ2 +
Var[dt+1]

P 2
t

, σ2 := Var[Rt+1] . (2.12)

The expression for Vart[Rexcess,t+1] relies on the absence of correlation between Rt+1

and dt+1, because the dividend policy is assumed independent of the market price

and vice-versa. Modigliani and Miller (1958, 1963) show that this holds true in

the case of symmetric information and bounded rationality. Our fundamentalists

believe to act in this world and take the quantities Rt+1 and dt+1 as exogenous to

the price dynamics developed below, because they reflect the information coming

from a fundamental analysis.

In the sequel, we assume that σ̃2 is independent of the price Pt and that Pt �√
Var[dt+1]/σ2. Thus, σ̃2 ' σ2 and σ̃2 is approximately constant, as long as the

fundamentalist investors form a non-varying expectation of the volatility of future

prices of the risky asset. The assumption that σ̃2 is constant is also made by Chiarella

et al. (2009) and in the framework of Boswijk et al. (2007), if investors are assumed

to be myopic, i.e. only look at the next period.
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Expression (2.9) then becomes

xt = x :=
Rexcess

γσ̃2
, (2.13)

which is a constant. Note that this is not an ad hoc assumption, but a consequence of

constant relative risk aversion and of the stationary nature of the dividend process.

In particular, because of the constant relative risk aversion of the fundamentalists,

as already mentioned, x is independent of the current wealth W f
t of the agents. This

allows us to treat all fundamentalists as one group with total wealth W f
t irrespective

of the distribution of the agents’ individual wealth levels within the group. From

here on, we will call W f
t the wealth of the fundamentalists.

The assumption, that the variance σ̃2 given by (2.12) is constant, implies

Var[dt] = (σ̃2 − σ2)P 2
t−1. (2.14)

Therefore, the flow of dividend dt follows the stochastic process

dt = Pt−1 [r + σrut] , (2.15)

where r := Rexcess−Et−1[Rt] +Rf , σr =
√
σ̃2 − σ2 and ut forms a series of standard

i.i.d. random variables with distribution N(0, 1).

Thus, under the above assumptions, the fundamentalist investors rebalance their

portfolio so as to have a constant relative weight exposure to the risky asset. This is

equivalent to the traditional portfolio allocation benchmark of 70% bonds and 30%

stocks used by many mutual and pension funds. Rewriting expression (2.2) with the

condition of a fixed fraction x invested in the risky asset, the wealth W f
t at time t

of the fundamentalists becomes at t+ 1

W f
t+1 = (Pt+1 + dt+1)x

W f
t

Pt
+ (1− x)W f

t (1 +Rf ) . (2.16)

The excess demand of the risky asset from t− 1 to t of the group of fundamen-

talists is defined by

∆Df
t := Ptx

f
t − Ptx

f
t−1 = Ptx

f
t −

Pt
Pt−1

Pt−1x
f
t−1 = xW f

t

(
1− Pt

Pt−1

W f
t−1

W f
t

)
. (2.17)

Expression (2.2) with definitions (2.3) gives

Pt
Pt−1

W f
t−1

W f
t

=
Pt

(Pt + dt)x+ Pt−1(1− x)(1 +Rf )
. (2.18)
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This allows us to rewrite the excess demand ∆Df
t as

∆Df
t = xW f

t−1

[
(1− x)

Pt−1(1 +Rf )− Pt
Pt−1

+
xdt
Pt−1

]
, (2.19)

where x is given by expression (2.13). This last expression can be written, using

(2.15), as

∆Df
t = xW f

t−1

[
(1− x)

Pt−1(1 +Rf )− Pt
Pt−1

+ x(r + σrut)

]
. (2.20)

This corresponds to a kind of mean-reversing excess demand, where fundamentalists

tend to buy the risky asset when its price is low and vice-versa. But this mean-

reversing excess demand is adjusted by taking into account two factors that quantify

an abnormal price increase (resp. decrease), which would justify unloading (resp.

adding) the risky asset to the fundamentalists’ portfolio. First, a price change is

compared with the change that would occur if the corresponding wealth was instead

invested in the risk-free asset. Second, even if its price decreases, the risky asset

may still be attractive if it pays a sufficient dividend to compensate.

In absence of chartists, the market clearing condition ∆Df
t = 0 leads to

Pt = (1 +Rf )Pt−1 +
x

1− x
dt . (2.21)

In the simplified case where the dividends dt are growing at a constant rate g > 0

such that dt = d0(1 + g)t, equation (2.21) solves into

Pt = (1 +Rf )
tP0 +

x

1− x
(1 +Rf )

t d

Rf − g
, (2.22)

for g < Rf , neglecting a term [(1 + g)/(1 +Rf )]
t compared to 1. One recognizes

the Gordon-Shapiro fundamental valuation, price = dividend/(Rf − g), multiplied

by a scaling factor taking into account the partitioning of the wealth of the fun-

damentalists with the condition that a constant fraction is invested in the risky

asset.

2.2.2 Excess demand of the chartists

General framework

We assume that (a) the chartists are characterized by polarized decisions (in

or out of the risky asset), (b) they tend to herd and (c) they are trend-followers.
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A large body of literature indeed documents a lack-of-diversification puzzle (Kelly,

1995; Baxter and Jermann, 1995; Statman, 2004) as well as over-reactions De Bondt

and Thaler (1985, 1987, 1990). There is strong evidence for imitation and herding,

even among sophisticated mutual fund managers (Wermers, 1999), and technical

analysis and chart trading is ubiquitous.

We account for the observations of lack-of-diversification by assuming that a

chartist trader is fully invested either in the risky asset or in the risk-free asset. In

contrast to the fundamentalist agents, our chartists have different opinions, which

fluctuate stochastically according to laws given below. Due to the probabilistic setup

the assumption of an “all or nothing” behavior at the individual level translates into

a continuous investment weight of chartists at the group level and is given by the

fraction of chartists invested in the risky asset varying smoothly between 0 and 1.

The number of chartist investors invested in the risky asset (respectively invested in

the risk-free asset) is N+
t (respectively N−t ), and we have

N+
t +N−t ≡ Nc . (2.23)

We do not aim at describing the heterogeneity between chartists, which has been

shown to lead to fat-tailed distribution of their wealth as a result of heterogenous

investment decisions (Bouchaud and Mézard, 2000; Klass et al., 2007; Harras and

Sornette, 2011). This is not a restriction in so far as we consider their aggregate

impact.

Therefore, as for the fundamentalists, we treat the chartists as one group with

total wealth W c
t . The ratio of wealth of the group of chartists invested in the risky

asset corresponds to the ratio of bullish investors among the population of chartists.

Let us denote this quantity at time t by

xct :=
N+
t

Nc

. (2.24)

Then, the wealth W c
t of chartists at time t becomes at t+ 1

W c
t+1 = (Pt+1 + dt+1)x

c
t

W c
t

Pt
+ (1− xct)W c

t (1 +Rf ) . (2.25)

The excess demand of the chartists over the time interval (t− 1, t) is equal to

∆Dc
t = xctW

c
t −

Pt
Pt−1

xct−1W
c
t−1 = (2.26)

26
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W c
t−1

[
xct(1− xct−1)(1 +Rf )− xct−1(1− xct)

Pt
Pt−1

+ xctx
c
t−1

dt
Pt−1

]
. (2.27)

Let us introduce the opinion index (Lux and Marchesi, 1999)

st :=
N+
t −N−t
Nc

∈ [−1, 1] , (2.28)

which can be interpreted as the aggregate bullish (st > 0) versus bearish (st < 0)

stance of the chartists with respect to the risky asset. With this definition (2.28)

and with (2.23), we have

N+
t

Nc

=
1

2
(1 + st) = xct ,

N−t
Nc

=
1

2
(1− st) = 1− xct . (2.29)

Expression (2.27) with (2.29) yields

∆Dc
t =

W c
t−1

4Pt−1
[(1 + st)(1− st−1)(1 +Rf )Pt−1−

(1− st)(1 + st−1)Pt + (1 + st)(1 + st−1)dt] .

(2.30)

Master equation for the bullish/bearish chartist trader unbalance st

Let us now specify the dynamics of the opinion index st. We assume that, at

each time step, each chartist trader may change her mind and either sell her risky

portfolio if she was previously invested or buy the risky portfolio if she had only the

risk-free asset. Again, we assume an all-or-nothing strategy for each chartist trader

at each time step. Let p+t−1 be the probability that any of the N+
t−1 chartists who is

currently fully invested in the risky portfolio decides to remove her exposure during

the time interval (t− 1, t). Analogously, let p−t−1 be the probability that any of the

N−t−1 traders who are currently (at time t−1) out of the risky market decides to buy

it. For a chartist k who owns the risky asset, her specific decision is represented by

the random variable ζk(p
+), which takes the value 1 (sell) with probability p+ and

the value 0 (keep the position) with probability 1 − p+. Similarly, for a chartist j

who does not own the risky asset, her specific decision is represented by the random

variable ξj(p
−), which takes the value 1 (buy) with probability p− and the value 0

(remain invested in the risk-free asset) with probability 1 − p−. For given p+ and

p−, the variables {ξj(p+)} and {ζk(p−)} are i.i.d..

27



Chapter 2. Super-exponential endogenous bubbles in an equilibrium
model of fundamentalist and chartist traders

Aggregating these decisions over all chartists invested in the risky asset at time

t, we have

N+
t =

N+
t−1∑
k=1

[1− ζk(p+t−1)] +

N−
t−1∑
j=1

ξj(p
−
t−1) . (2.31)

The first term in the r.h.s. of (2.31) corresponds to all the traders who held the

risky asset at t − 1 and continue to hold it at t. The second term in the r.h.s. of

(2.31) represents the chartists who were holding the risk-free asset at t− 1 and sold

it to buy the risky asset at time t. Similarly,

N−t =

N+
t−1∑
k=1

ζk(p
+
t−1) +

N−
t−1∑
j=1

[1− ξj(p−t−1)] . (2.32)

The opinion index st (2.28) is thus given by

st =
1

Nc

N+
t−1∑
k=1

[1− 2ζk(p
+
t−1)] +

N−
t−1∑
j=1

[2ξj(p
−
t−1)− 1]

 . (2.33)

Using the i.i.d. property of the {ξj(p)} and {ζk(p)} variables allows us to obtain the

following exact expression for the mean of st:

E [st] = st−1 + p−t−1(1− st−1)− p+t−1(1 + st−1) . (2.34)

Influence of herding and momentum on the behavior of chartists

As can be seen from (2.30) together with (2.33), the probabilities p± embody

completely the behavior of the chartists. We assume that p± at time t− 1 are both

a function of st−1 (social imitation effect) defined by (2.28) and of a measure Ht of

the price momentum given by

Ht = θHt−1 + (1− θ)
(

Pt
Pt−1

− 1

)
, (2.35)

which is nothing but the expression for an exponential moving average of the history

of past returns. The parameter 0 ≤ θ < 1 controls the length of the memory that

chartists keep of past returns, the closer to 1, the longer the memory ∼ 1/(1− θ).

Considering that the probabilities p± are functions of st−1 and Ht−1,

p±t−1 = p±(st−1, Ht−1) , (2.36)
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means that the chartists make their decisions to buy or sell the risky Internet stock

based on (i) the majority view held by their group and (ii) the recent capital gains

that the risky asset has provided over a time frame ∼ 1/(1 − θ). We assume the

chartists buy and sell symmetrically with no bias: a strong herding in favor of the

risky asset or a strong positive momentum has the same relative effect on the drive

to buy (or to sell) than a strong negative sentiment or strong negative momentum

on the push to sell (or to buy). This is expressed by the following symmetry relation

p−(s,H) = p+(−s,−H) . (2.37)

The simplest functions satisfying (2.37) are the linear expressions1

p−(s,H) =
1

2
[p+ κ · (s+H)] , p+(s,H) =

1

2
[p− κ · (s+H)] . (2.38)

This defines two parameters p and κ, chosen sufficiently small such that p−(s,H)

and p+(s,H) remain between 0 and 1. The positive parameter p controls the average

holding time of the positions in the absence of any other influence. In other words,

a position will last typically ∼ 2/p time steps in the absence of social imitation and

momentum influence. The parameter κ quantifies the strength of social imitation

and of momentum trading. Instead of κ, one could use two parameters for the

opinion index and momentum, respectively. For the sake of parsimony we will only

work with one parameter treating s and H symmetrically. For instance, for κ > 0,

if there is already a majority of agents holding the risky asset and/or if its price

has been increasing recently, then the probability for chartists holding the risk-free

asset to shift to the risky asset is increased and the probability for the chartists

who are already invested to sell their risky asset is decreased. The reverse holds for

κ < 0, which describes “contrarian” traders. In the sequel, we will only consider the

case κ > 0, which describes imitative and trend-following agents. Generalizations

to allow for additional heterogeneous beliefs, involving mixtures as well as adaptive

1Another possibility for the transition probabilities which we have explored but do not elaborate
on in this paper is the hyperbolic tangent: p±(s,H) = 1

2 [1∓ κ/p tanh(s+H)]. This corresponds
to the Glauber transition rates of an ensemble of spins on a fully connected graph with equal
interaction strengths, see for example Harras et al. (2012). However, already the linear probabilities
(2.38) translate into a very nonlinear S-like behavior at the aggregate level, which is quantitatively
similar to the nonlinear case.
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imitative and contrarian agents, is left for other communications. In this spirit, let

us mention that Corcos et al. (2002) have introduced a simple model of imitative

agents who turn contrarian when the proportion of herding agents is too large, which

generates chaotic price dynamics.

Putting expressions (2.38) in (2.34) yields

E [st] = (1 + κ− p)st−1 + κHt−1 . (2.39)

2.3 Dynamical market equations

2.3.1 Market clearing condition and price dynamics

The equation for the risky asset price dynamics is obtained from the condition

that, in the absence of external supply, the total excess demand summed over the

fundamentalist and chartist traders vanishes:

∆Df
t + ∆Dc

t = 0 . (2.40)

In other words, the net buy orders of chartists are satisfied by the net sell orders

of the fundamentalists, and vice-versa. Substituting in (2.40) expression (2.20) for

the excess demands ∆Df
t of the fundamentalists and equation (2.30) for the excess

demand ∆Dc
t of the chartists, we obtain the price equation

Pt
Pt−1

=
[
(1 + st) ((1 +Rf )(1− st−1) + (r + σrut)(1 + st−1))W

c
t−1

+ 4x ((1 +Rf )(1− x) + (r + σrut)x)W f
t−1

]
/ (2.41)[

(1 + st−1)(1− st)W c
t−1 + 4W f

t−1x(1− x)
]
.

Expression (2.41) shows that the price of the risk asset changes as a result of two

stochastic driving forces: (i) the dividend-price ratio (r + σrut) and (ii) the time

increments of the bullish/bearish chartist unbalance {st}. The impact of {st} is

controlled by the wealth of the group of chartists W c
t−1. As we shall demonstrate

below, this becomes particularly important during a bubble where trend-following

chartists tend to gain much more than fundamentalists. With the increasing influ-

ence of chartists, the market becomes much more prone to self-fulfilling prophecies.
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Fundamentalist traders are less able to attenuate the irrational exuberance – they

simply do not have enough wealth invested in the game.

2.3.2 Complete set of dynamical equations

Let us put all ingredients of our model together to state concisely all the equations

controlling the price dynamics coupled with the opinion forming process of the

chartists. As discussed above, the wealth levels of the fundamentalist and chartist

traders are also time-dependent and influence the market dynamics. We thus arrive

at the following equations.

Dynamics of the chartists opinion index:

st =
1

Nc

Nc(1+st−1)/2∑
k=1

[
1− 2ζk(p

+
t−1)
]

+

Nc(1−st−1)/2∑
j=1

[
2ξj(p

−
t−1)− 1

] , (2.42)

where ζk(p
+
t−1) takes the value 1 with probability p+t−1 and the value 0 with proba-

bility 1− p+t−1, ξj(p−t−1) takes the value 1 with probability p−t−1 and the value 0 with

probability 1− p−t−1, and p+t−1 and p−t−1 are given by expressions (2.38):

p−t−1(st−1, Ht−1) =
1

2
[p+ κ · (st−1 +Ht−1)] ,

p+t−1(st−1, Ht−1) =
1

2
[p− κ · (st−1 +Ht−1)] .

(2.43)

Thus, E [st] given by expression (2.39).

Dynamics of the risky asset price:

Pt/Pt−1 =
[
(1 + st) ((1 +Rf )(1− st−1) + (r + σrut)(1 + st−1))W

c
t−1+

+ 4x ((1 +Rf )(1− x) + (r + σrut)x)W f
t−1

]
/ (2.44)[

(1 + st−1)(1− st)W c
t−1 + 4x(1− x)W f

t−1

]
.

Wealth dynamics of fundamentalists:

W f
t /W

f
t−1 = x

(
Pt
Pt−1

+ (r + σrut)

)
+ (1− x)(1 +Rf ) . (2.45)

Wealth dynamics of chartists:

W c
t /W

c
t−1 =

1 + st−1
2

(
Pt
Pt−1

+ (r + σrut)

)
+

1− st−1
2

(1 +Rf ) . (2.46)
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Momentum of the risky asset price:

Ht = θHt−1 + (1− θ)
(

Pt
Pt−1

− 1

)
. (2.47)

And ut forms a series of standard i.i.d. random variables with distribution N(0, 1).

The set of equations (2.42) to (2.47) together with the realization of the stochastic

dividend process ut completely specify the model and its dynamics. Equation (2.42)

describes how chartists form their opinion st based on the previous prevalent opinion

st−1 and the recent price trend Ht. Fundamentalist traders stick to their choice of

investing x in the risky asset. Equation (2.44) gives the new market price Pt when

excess demands of both groups are matched. Equations (2.45) and (2.46) describe

the evolution of the wealth levelsW f
t andW c

t for fundamentalist and chartist traders,

respectively. There are capital gains and dividend gains from the risky asset, and

interest payments by the risk-free asset. The new market price also feeds into the

momentum of the risky asset described by equation (2.47).

We have the following flow of causal influences:

1. The recent price trend Ht−1 and the prevailing opinion st−1 among chartists

determine the investment decision of chartists governed by st, while funda-

mentalists invest a constant fraction x of their wealth.

2. Market clearing determines the price Pt based on investment decisions x and

st, and previous wealth levels W f
t−1 and W c

t−1 for fundamentalist and chartist

traders, respectively.

3. The new wealth levels W f
t and W c

t are based on the market price Pt and

investment decisions x and st.

2.3.3 Control parameters and their time-scale dependence

The set of equations (2.42) to (2.47) depends on the following parameters:

1. x quantifies the constant fraction of wealth that fundamentalists invest in the

risky asset.
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2. θ fixes the time scale over which chartists estimate price momentum. By

construction, 0 ≤ θ < 1.

3. Nc is the number of chartists that controls the fluctuations of the majority

opinion of chartists.

4. p controls the average holding time of the positions of chartists in the absence

of any other influence.

5. κ quantifies the strength of social imitation and of momentum trading by

chartists.

6. Rf is the rate of return of the risk-free asset.

7. r and σr are the mean and standard deviation of the dividend-price ratio.

In order to have an intuitive understanding of the role and size of these param-

eters, it is useful to discuss how they depend on the time scale over which traders

reassess their positions. Until now, we have expressed the time t in units of a unit

step 1, which could be taken for instance to be associated with the circadian rhythm,

i.e., one day. But there is no fundamental reason for this choice and our theory has

the same formulation under a change of the time step. Let us call τ the time interval

between successive reassessments of the fundamentalists, with τ being measured in

a calendar time scale, for instance, in seconds, hours or days.

First, the parameters Nc and Nf are a priori independent of τ , while they may

be a function of time t. We neglect this dependence as we are interested in the

dynamics over time scales of a few years that are characteristic of bubble regimes.

The parameter γ is also independent of τ .

In contrast, the parameters Rf , r and σ2
r are functions of τ , as the return of the

risk-free asset, the average expected dividend return and its variance depend on the

time scale. The simplest and standard dependence of Wiener processes or discrete

random walks is Rf ∼ r ∼ σ2
r ∼ τ . Because of its definition, x = Rexcess/γσ̃

2, the

fraction of wealth x fundamentalists hold is independent of time.

By construction, the parameter θ characterizing the memory of the price mo-

mentum influencing the decisions of chartists depends on τ . This can be seen by
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replacing t − 1 by t − τ to make explicit the unit time scale in expression (2.35),

giving
Ht −Ht−τ

τ
=

1− θ
τ

(
Pt
Pt−τ

− 1−Ht−τ

)
. (2.48)

Requesting a bona-fide limit for small τ ’s leads to

1− θ
τ

= % = const , (2.49)

where the time scale TH := 1/% is the true momentum memory. Thus, we have

1− θ = % · τ, TH :=
1

%
=

τ

1− θ
. (2.50)

2.4 Theoretical analysis and super-exponential bub-

bles

2.4.1 Reduction to deterministic equations

It is possible to get an analytical understanding of the solutions of the set of

equations (2.42) to (2.47) if we reduce them into their deterministic components.

The full set including their stochastic contributions will be studied with the help of

numerical simulations in the next section.

Taking ut ≡ 0 and replacing st by its expectation E[st] given by (2.39), we obtain

the following deterministic equations

Dynamics of the chartists opinion index:

st = (1 + κ− p)st−1 + κHt−1 , (2.51)

Dynamics of the risky asset price:

Pt/Pt−1 =
[
(1 + st) ((1 +Rf )(1− st−1) + r(1 + st−1))W

c
t−1+

+ 4x ((1 +Rf )(1− x) + rx)W f
t−1

]
/ (2.52)[

(1 + st−1)(1− st)W c
t−1 + 4x(1− x)W f

t−1

]
.

Wealth dynamics of fundamentalists:

W f
t /W

f
t−1 = x

(
Pt
Pt−1

+ r

)
+ (1− x)(1 +Rf ) , (2.53)
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Wealth dynamics of chartists:

W c
t /W

c
t−1 =

1 + st−1
2

(
Pt
Pt−1

+ r

)
+

1− st−1
2

(1 +Rf ) , (2.54)

Momentum of the risky asset price:

Ht = θHt−1 + (1− θ)
(

Pt
Pt−1

− 1

)
. (2.55)

This system of five coupled deterministic equations is non-linear and completely

coupled, there is no autonomous subsystem. In particular, the multiplicative price

equation is highly non-linear. The wealth equations describe the multiplicative

process of capital accumulation depending on the choice of how to split the portfolio

on the risky and risk-free asset yielding capital gains, given the dividend gains and

the risk-free rate.

2.4.2 Fixed points and stability analysis

To gain insights into the system of coupled equations, we will consider the sta-

tionary case where the wealth levels of fundamentalist and chartist traders only

change slowly and remain of roughly the same order of magnitude.2 This happens

when both groups keep their portfolio allocation approximately fixed and their en-

dowments mainly grow due to dividends and risk-free returns. According to (2.51),

we are in the regime κ < p and may treat the ratio of wealth levels ν as approxi-

mately constant,

ν :=
W c
t

W f
t

' const ∼ O(1) . (2.56)

This allows us to decouple the equations for Ht, st and Pt from the wealth equations.

The fixed points {(H∗, s∗)} are determined by the system:

H∗ = Rf + r
ν(1 + s∗)2 + 4x2

ν(1 + s∗)(1− s∗) + 4x(1− x)
, (2.57)

s∗ =
κ

p− κ
H∗ , (2.58)

2This last condition is necessary for nontrivial dynamics, as both populations remain relevant
to the economy.
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Since this system is essentially one third-order equation, it can be solved analytically

yielding three fixed points. As we will see later, for typical parameter values, there

is one solution s∗, H∗ � 1, while the other two lie outside the restricted domain

of [−1, 1] for s. An expansion in the small parameters r, Rf � 1 permits the

approximation:

H∗ = Rf +
ν + 4x2

ν + 4x− 4x2
r +O(r2, R2

f ) , (2.59)

s∗ =
κ

p− κ

[
Rf +

ν + 4x

ν + 4x− 4x2
r +O(r2, R2

f )

]
. (2.60)

This fixed point is stable for κ < p over a range of the other parameter values and

unstable for κ > p. A deviation from the fixed point due to stochastic fluctuations

in the opinion index leads to a price change in the same direction. According

to (2.51), for κ > p, the opinion index grows transiently exponentially (until its

saturation). Since the stability is mainly governed by the relative value of the two

parameters κ and p characterizing chartist behavior, we conclude that there is an

inherent instability caused by herding and trend following, which is independent of

the stochastic dividend process.

2.4.3 Super-exponential bubbles

It is well-known that many bubbles in financial markets start with a phase of

super-exponential growth, see for example Sornette et al. (2009) for oil prices, Jiang

et al. (2010) for the Chinese stock market and Yan et al. (2012) for major equity

markets. Furthermore, Sornette et al. (2013) discuss various theoretical and empiri-

cal questions related to faster-than-exponential growth of asset prices, while Hüsler

et al. (2013) document super-exponential bubbles in a controlled experiment in the

laboratory.

One of the main findings of this paper is that phases with faster-than-exponential

growth of the price are inherent also in the present model. If a bubble is essentially

driven by herding and trend following, we may neglect the dividend process and

expand the pricing formula (2.52) in terms of r and Rf :

Pt
Pt−1

=
(1 + st)(1− st−1) + 4x(1− x)W f

t−1/W
c
t−1

(1− st)(1 + st−1) + 4x(1− x)W f
t−1/W

c
t−1

+O(r, Rf ) . (2.61)
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Again, we focus on the scenario that the ratio of the wealth levels W f
t−1 and W c

t−1

of the fundamentalist and chartist traders remains approximately constant,

W c
t−1/W

f
t−1 = W c

t0
/W f

t0 = ν ' const . (2.62)

This is the case if the endowments of both groups grow at the same constant

exponential growth rate or, more accurate here, if both grow in the same super-

exponential way. Starting with an opinion index s0 at time t = t0, we can further

simplify the price equation to:

Pt
Pt−1

= 1 + b(st − st−1) +O(r, Rf , (s− s0)2) , (2.63)

where the constant quantity b is of order 1 provided the initial levels of wealth were

of the same order of magnitude:

b =
2

1 + 4x(1− x)ν − s20
∼ O(1) . (2.64)

Therefore, up to terms of order O(r, Rf , (s− s0)2), the price evolves as

Pt
P0

=
t∏

j=1

[1 + b(sj − sj−1)] '
t∏

j=1

eb(sj−sj−1) = eb(st−s0) . (2.65)

Since st grows exponentially with time according to expression (2.51) for κ > p,

the price Pt grows as an exponential of an exponential of time. In other words, for

the regimes when the opinion index grows exponentially (κ > p), we expect super-

exponential bubbles in the price time series. Since our equations are symmetric

in the sign of the opinion index st, the same mechanism leads also to “negative

bubbles” for a negative herding associated with a transition from bullish to bearish

behavior for which the price drops also super-exponentially in some cases.

2.4.4 Time-dependent social impact and bubble dynamics

The strength of herding is arguably regime dependent. In some phases, chartists

are prone to herding, while at other times, they are more incoherently disorganized

“noise” traders. This captures in our dynamical framework the phenomenon of

regime switching (Hamilton, 1989; Lux, 1995; Hamilton and Raj, 2002; Yukalov
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et al., 2009; Binder and Gross, 2013; Fischer and Seidl, 2013; Kadilli, 2013), where

successive phases are characterized by changing values of the herding propensity. In

this respect, we follow the model approach of Harras et al. (2012) developed in a

similar context and assume that the strength κ of social imitation and momentum

influence slowly varies in time. In this way, we incorporate the effects of a changing

world on financial markets such as a varying economic and geopolitical climate

into the model. More generally, we allow for varying uncertainties influencing the

behavior of chartists. As we shall show, this roots the existence of the bubbles

documented below in the mechanism of “sweeping of an instability” (Sornette, 1994;

Stauffer and Sornette, 1999).

More specifically, we propose that κ undergoes a discretized Ornstein-Uhlenbeck

process:3

κt − κt−1 = η(µκ − κt−1) + σκvt . (2.66)

Here η > 0 is the mean reversion rate, µκ is the mean reversion level and σκ > 0 is

the step size of the Wiener process realized by the series vt of standard i.i.d. random

variables with distribution N(0, 1).

Our approach is related to how Lux (1995) describes switching between bear

and bull markets. While we propose a stochastic process for the strength of social

imitation κ, Lux adds a new deterministic term proportional to d logPt/dt to the

transition probabilities, which corresponds to a direct positive feedback.

The interesting case is µκ . p, where κ is on average below the critical value p

but, due to stochastic fluctuations, may occasionally enter the regime with faster-

than-exponential growth κ > p described in the previous subsection. Since an

Ornstein-Uhlenbeck process with deterministic initial value is a Gaussian process,

its distribution is fully determined by the first and second moments. Starting from

an initial value κ0, the non-stationary mean and covariance are given by:

E[κt] = κ0e
−ηt + µκ

(
1− e−ηt

)
, (2.67)

Cov[κs, κt] =
σ2
κ

2η

(
e−η(t−s) + e−η(t+s)

)
, s < t . (2.68)

3Choosing a confined random walk yields similar results, but the mean reversion is then effec-
tively nonlinear (or threshold based), which is less standard.
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Both moments converge such that in the long run κt admits the following stationary

distribution:

κt ∼ N

(
µ,

σκ√
2η

)
. (2.69)

If, at some time t, the social imitation strength is above the critical value κt ≡

κ0 > p, the time ∆T needed for κt to revert to the subcritical regime κt < p can be

estimated from equation (2.67):

∆T =
1

η
log

(
κ0 − µκ
p− µκ

)
. (2.70)

Expressions (2.69) and (2.70) will allow us to estimate how often the group of

chartists will interact in the supercritical regime of the opinion index related to

transient faster-than-exponential growth in the price and how long a typical bubble

will last.

2.5 Numerical simulations and qualitative com-

parison with the dotcom bubble

2.5.1 Estimation of parameter values

Let us take τ = 1 day and assume a typical memory used by chartists for the esti-

mation of price momentum equal to about one month. This amounts approximately

to 20 trading days, hence TH ' τ
1−θ = 20, leading to θ = 0.95.

We calibrate the average dividend-price ratio r and its standard deviation σr to

the values given by Engsted and Pedersen (2010), which are quite similar for various

countries. We set the mean daily dividend-price ratio to r = 1.6 · 10−4 and the daily

standard deviation to σr = 9.5 · 10−4. Furthermore, we assume a constant return of

the risk-free asset of annualized 2%, i.e. a daily value of Rf = 8 · 10−5.

Fundamentalists keep 30% of their wealth in the risky asset, that is, x = 0.3. The

wealth levels W f
t and W c

t of fundamentalist and chartist traders evolve dynamically

and determine the relative influence of the two groups. We analyze the importance

of the initial endowments W f
0 and W c

0 on the stability of the market. We capture
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this by the parameter ν = W c
0/W

f
0 and set ν to 1, 2 or 0.5 in three different sets of

simulations.4

For the parameter p entering in expressions (2.38), recall that it is equal to

twice the probability that during a given day some chartist will buy (or sell) the

risky asset. We posit p = 0.2, which means that the natural trading frequency

of traders in absence of social influence is about two weeks. For the parameter κ

in (2.38) describing the strength of social imitation and of momentum trading, we

assume that it is close to the parameter p. Specifically, for the Ornstein-Uhlenbeck

process given in expression (2.66), we choose µκ = 0.98p = 0.196. We set the mean

reversion speed η and the step size σκ such that (i) the Ornstein-Uhlenbeck process

has a standard deviation of 0.1p and (ii) a deviation of κt two standard deviations

above µκ in the supercritical regime will revert within ∆T = TH = 20:

η =
1

∆T
log

(
µκ + 2 · 0.1p− µκ

p− µκ

)
= log(10)/20 ' 0.11 , (2.71)

σκ = 0.1p
√

2η ' 0.001 . (2.72)

Summarizing, the numerical simulations presented in the figures correspond to

θ = 0.95, r = 1.6 · 10−4, σr = 9.5 · 10−4, Rf = 8 · 10−5, x = 0.3 , (2.73)

p = 0.2, µκ = 0.196, σκ = 0.001, η = 0.11 , (2.74)

and ν will be varied as ν = 0.5, 1, 2. Furthermore, we run the simulations over 20

trading years, i.e. T = 5000.

We can now test our claims from the fixed points analysis in section 2.4.2 numer-

ically. Assuming that κt will not deviate further than five standard deviations from

its mean µκ, we find that one fixed point for the opinion index is indeed close to

zero, s∗ ∼ O(10−3), while the other two lie well outside of the domain of definition

[−1, 1].

4Note that this is equivalent to setting the ratio of group sizes ν = Nc/Nf with the assumption
that both groups consist of representative agents with equal initial wealth. In our formulation, Nc

has no further importance than controlling the smoothness of the opinion index. Thus it disappears
from the deterministic equations (2.51) to (2.55). The simulations are run with Nc = 1000.
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2.5.2 Results and interpretation

Figures 2.1, 2.4 and 2.5 show the time dependence of the variables Pt, st, κt, Ht,

W f
t , W c

t and the time series of returns that are generated by numerical solutions

of the set (2.42) to (2.47) for three different parameter values for ν = 1, 2 and 0.5

respectively, of the relative important of chartists compared with fundamentalists

in their price impact.

Figure 2.1 corresponds to the situation where both groups have equal initial

endowments (ν = 1). One can observe a general positive log-price trend biasing

upward a fluctuating random walk-like trajectory. The upward drift reflects a com-

bination of the dividend gains, of the rate of return paid by the risk-free asset as

well as a component resulting from the herding behavior of chartists who tend in-

termittently to push prices in a kind of self-fulfilling prophecy or convention à la

Boyer and Orléan (1993); Orléan (2004); Eymard-Duvernay et al. (2005).

But the most striking aspect of the price dynamics is the occurrence of four

clearly identifiable bubbles occurring within the chosen time interval, defined by

the transient explosive growth of the price Pt followed by sharp crashes bringing

the prices back approximately to pre-bubble levels. As seen from the second panel

of Figure 2.1 showing the opinion index dynamics of the chartists, the bubbles are

essentially driven by the chartist traders. As described in section 2.4.3, the start

of the growth of herding among chartists feeds the price dynamics, resulting in a

larger price momentum (fourth panel), which amplifies herding, enhancing further

the bubble growth and so on. One can observe in each bubble that the growth

of the opinion index (or equivalently the fraction of wealth invested in the risky

asset) precedes and then accompanies the explosive price growth, as predicted by

expression (2.65). The transient bubbles and their subsequent crashes are associated

with clustered volatility and the existence of outliers in the price momentum. During

the bubbles, the wealth levels of chartists and of fundamentalists diverge. In the

long run, chartists outperform fundamentalists because they tend to invest more in

the risky asset, which exhibits higher average returns.

Figure 2.2 presents a more detailed analysis of a typical bubble from the time

series shown in Figure 2.1, demonstrating the characteristic transient faster-than-
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exponential growth behavior predicted theoretically in section 2.4.3. For periods

when κt > p, we may approximate the opinion index as exponentially growing:

st = s1(α
t
1 − 1) , (2.75)

where t runs over the growth period [t1, t1 + ∆T ], with initial value s1 ≡ st1 and

where α1 > 1 is an empirical effective multiplicative factor, logα1 being the effective

growth rate of st. One can verify that the length ∆T of such a period is compat-

ible with our theoretical prediction (2.70), which for our chosen parameters gives

∆T = 20. Bubbles with longer lifetimes are easily engineered in our framework by

allowing κ to remain close and higher than p for longer times. Our model supports

therefore the view that long-lived bubbles may be associated with excess positive

sentiments catalyzing a herding propensity that is sustained and self-reinforcing (via

the momentum mechanism) over long periods.

Furthermore, the exponential growth in the opinion index results in a faster-

than-exponential growth of the price, as can be seen in the log-linear plot of Pt.

From expression (2.65), we deduce

log(Pt) = b1s1(α
t
1 − 1) + log(P0) , (2.76)

where b1 = bt1 , which fits well the transient super-exponential price dynamics. These

observations presented in Figure 2.2 are in agreement with the theoretical derivation

of section 2.4.3. It is interesting to note also that the dynamics of κt, with its

tendency to present a transient oscillatory behavior due to the interplay between rare

large excursions with the mean reversal of the constrained random walk associated

with the discrete Ornstein-Uhlenbeck process, leads to an approximate log-periodic

behavior5 of the price during its ascendency, which is similar to many observations

reported empirically (Sornette, 2003; Johansen and Sornette, 2010; Jiang et al., 2010;

Yan et al., 2012; Sornette et al., 2013).

Figure 2.3 presents three statistical properties of our generated price time series.

Various well-known stylized facts are matched by our model. First, we show the

distribution of absolute values of the returns, which has a fat-tail p(x) ∼ x−1−α with

5Log-periodicity here refers to transient oscillations with increasing local frequency. Formal
mathematical definitions and illustrations can be found in Sornette and Johansen (1998).
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exponent α = 3.0, which is in the range of accepted values in the empirical literature

(Vries, 1994; Pagan, 1996; Guillaume et al., 1997; Gopikrishnan et al., 1998; Jondeau

and Rockinger, 1999). Furthermore, signed returns Rt are characterized by a fast-

decaying autocorrelation function, which is consistent with an almost absence of

arbitrage opportunities in the presence of transaction costs. In contrast, the absolute

values |Rt| of returns have an autocorrelation function with longer memory (Ding

et al., 1993; Cont, 2007).

Figures 2.4 and 2.5 present the same panels as in Figure 2.1 but with ν = 2

and ν = 0.5, respectively. Due to their larger relative weight compared to the case

shown in Figure 2.1, one can observe in Figure 2.4 bubbles with stronger “explosive”

trajectories. The wealth of chartists fluctuates widely, but amplifies to values that

are many times larger than that of fundamentalists. This is due to the self-fulfilling

nature of the chartist strategies that impact the price dynamics. In contrast, Figure

2.5 with ν = 0.5 shows that the wealth of the fundamentalists remains high for a long

transient, even if in the long term the chartists end up dominating the price dynam-

ics. The chartists also transiently over-perform dramatically the fundamentalists

during the bubbles. It is informative to observe that, even a minority of chartists

(ν = 0.5 shown in Figure 2.5) ends up creating bubbles and crashes. Their influence

progressively increases and their transient herding behavior becomes intermittently

destabilizing.

2.5.3 Comparison with the dotcom bubble

This section compares the insights obtained from the above theoretical and nu-

merical analyses to empirical evidence on momenta and reversals in the period when

the dotcom bubble developed.6 We study the characteristics of the share prices of

Internet-related companies over the period from January 1, 1998 to December 31,

2002, which covers the period of the development of the dotcom bubble and its col-

lapse. We use the list of 400 companies belonging to the Internet-related sector that

has been published by Morgan Stanley and has already been investigated by Ofek

6The dotcom bubble (followed by its subsequent crash) is widely believed to be a speculative
bubble, as documented by Ofek and Richardson (2003); Brunnermeier and Nagel (2004); Battalio
and Schultz (2006).
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and Richardson (2003). The criteria for a company to be included in that list is that

it must be considered a “pure” internet company, i.e., whose commercial goals are

associated exclusively to the Internet. This implies that technology companies such

as Cisco, Microsoft, and telecommunication firms, notwithstanding their extensive

Internet-related businesses, are excluded.

2.6 graphs the index of an equally weighted portfolio of the Internet stocks over

the sample period of January 1998 to December 2002. The time evolution of the

equally weighted portfolio of the Internet stocks is strikingly different from that

shown in 2.7 for the index of an equally weighted portfolio of non-Internet stocks

over this same period. The two indexes are scaled to be 100 on January 2, 1998. The

two figures illustrate clearly the widely held view that a divergence developed over

this period between the relative pricing of Internet stocks and the broad market

as a whole. In the two year period from early 1998 through February 2000, the

internet related sector earned over 1300 percent returns on its public equity while

the price index of the non-internet sectors rose by only 40 percent. However, these

astronomical returns of the Internet stocks had completely evaporated by March

2001. Note how 2.6 is strikingly similar to the dynamics generated by the theoretical

model in the bubble regime shown at the end of the top panel of Figure 2.5 (ν = 0.5).

Table 2.1: Annual Returns for Internet and non-Internet stock indices.

Year 1998 1999 2000 2001 2002
Internet stock index 116.8% 815.6% −875.9% −62% −48.8%

(per month) (9.7%) (68%) (−73%) (−5.2%) (−4.1%)
Non-internet stock index 6.5% 17% −9% 3.6% −9%

(per month) (0.5%) (1.4%) (−0.8%) (0.3%) (−0.7%)

We now focus our attention on the profitability of the momentum strategies

studied by Jegadeesh and Titman (1993, 2001) and others. Table 2.1 provides some

descriptive statistics about annual returns of the Internet-stock index versus of the

non-Internet stock index from the beginning of 1998 to the end of 2002. In the

12 months of 1998, the annual cumulative return of the Internet stock index was

117 percent, while that of the non-Internet stock index was 6.5 percent. In the 12
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months of 1999, the annual cumulative return of the Internet stock index surged

to 816 percent, and that of the non-Internet stock index increased to 16.6 percent.

The Internet stock index clearly outperformed the non-Internet stock index by 800

percent in 1999. This implies a strong profitability of momentum strategies applied

to the Internet stocks over the period of the dotcom bubble. However, after its burst

in March 2000, the return of the Internet stocks sharply declined, from 2000 to 2002.

In the 12 months of 2000, the annual return of the internet-stock index fell to - 876

percent, followed by - 62 percent and - 49 percent in 2001 and in 2002, respectively.

On the other hand, the annual returns of the non-Internet stock index in the period

from 2000 to 2002 remain modest in amplitude at - 9 percent, 3.6 percent and -

9 percent, respectively. After the bust of the dotcom bubble, the Internet stocks

continued to underperform the non-Internet stocks.

Table 2.2 shows the cumulative returns for the Internet stock index and for the

non-Internet stock index in the five years from the beginning of 1998 to the end

of 2002. The cumulative return of the Internet stock index in the first 24 months

of the holding period is 932.5 percent, but the cumulative returns ends at the net

loss of - 54.2 percent over the five year holding period. In contrast, the cumulative

returns of the non-Internet stock index over the same five year holding period is 8.6

percent.

These figures can be reproduced by our simulations, and are visualized by the

extremely good performance of our chartists during the bubble phases, as shown in

the fifth panels (from the top) of Figures 2.1, 2.4 and 2.5.

Table 2.2: Cumulative Returns for Internet and non-Internet stock indices.

Year 1998 1999 2000 2001 2002
Internet stock index 116.8% 932.5% 56.6% −5.4% −54.2%

(per month) (9.7%) (38.9%) (1.6%) (−0.1%) (−0.9%)
Non-internet stock index 6.5% 23.1% −14% 17.6% 8.6%

(per month) (0.5%) (1.0%) (0.4%) (0.4%) (0.1%)

In summary, these empirical facts constitute strong evidence for the Internet
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stock for momentum profit at intermediate time scales of about two years and re-

versals at longer time scales of about 5 years. These empirical facts confirm for

this specific bubble and crash period the general evidence documented by many

researchers (e.g. Jegadeesh and Titman 1993, 2001). They are consistent with the

stylized facts described by the model that predict that the momentum profits will

eventually reverse in cycle bubbles and crashes as illustrated above. The qualitative

comparison between the empirical data and our simulations suggest that chartists

do not need to be a majority, as their superior performance during the bubble make

them dominate eventually utterly the investment ecology.

2.6 Conclusions

We have introduced a model of financial bubbles with two assets (risky and risk-

free), in which fundamentalists and chartists co-exist. Fundamentalists form expec-

tations on the return and risk of a risky asset and maximize their constant relative

risk aversion expected utility with respect to their portfolio allocation. Chartists

are subjected to social imitation and follow momentum trading.

In contrast to various previous models, agents do not switch between investment

strategies. By keeping track of their wealth levels, we still observe the formation

of endogenous bubbles and match several stylized facts of financial markets such as

a fat-tail distribution of returns and volatility clustering. In particular, we observe

transient faster-than-exponential bubble growth with approximate log-periodic be-

havior. Although faster-than-exponential growth at the beginning of a bubble has

been found in many econometric studies of bubbles in real markets and recent lab

experiments, it has been hardly discussed in the context of agent-based models. Our

model is one of the first offering a transparent analytical explanation for this stylized

fact.

To the important question of whether and when fundamentalist investors are

able to stabilize financial markets by arbitraging chartists, our analysis suggests

that chartists may eventually always lead to the creation of bubbles, given sufficient

time, if a mechanism exists or some sentiment develops that increase their propensity
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for herding. Momentum strategies have been shown to be transiently profitable,

supporting the hypothesis that these strategies enhance herding behavior.
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f
t , W c

t

(both in log-scale) and the time series of returns that are generated by numerical
solutions of the set (2.42) to (2.47) for the value ν = 1 of the relative important of
chartists compared with fundamentalists in their price impact at the origin of time.
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Figure 2.5: Same as Figure 2.1 for ν = 0.5, i.e. more fundamentalists than chartists.
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Figure 2.6: The equally weighted Internet stock index for the period 1/2/1998-
12/31/2002. The index is scaled to be 100 on 1/2/1998.

Figure 2.7: The equally weighted non-Internet stock index for the period 1/2/1998-
12/31/2002. The index is scaled to be 100 on 1/2/1998.
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Appendix

2.A The effect of LPPLS traders on the market

Since the bubbles generated by the model defined in this chapter exhibit super-

exponential growth behavior modulated by approximate log-periodic oscillations,

it is intriguing to enrich the model with a third group of investors who try to

detect and exploit them based on the LPPLS methodology (Sornette and Johansen,

1998; Sornette et al., 2013). How will they impact the market price in general and

especially during bubbles? The efficient market hypothesis claims that investors

with superior information of temporary deviations from fundamentals will use it for

arbitrage and push prices back to fundamentals, leading to full efficiency. Already

Friedman (1953) argued that this mechanism would be even more effective in the

long run, as agents with persistently superior knowledge would survive, while the

others would lose their capital and eventually be driven out of the market.

Reflexivity, however, can lead to market outcomes that differ strongly from what

the efficient market hypothesis predicts. In his conventionalist approach Orléan

(2004) argued that prices were essentially the result of interactions driven by the

various beliefs of market participants. Then it could be possible that prices stabilize

due to self-referential interactions at levels different from the fundamental values as

predicted by the EMH – this is what Orléan calls a “convention”. However, as a

consequence the dominance of investors with superior information of fundamentals

will no longer be guaranteed because “markets can remain irrational a lot longer

than you and I can remain solvent.” (attributed to John Maynard Keynes, see

Shilling 1993).

Following the conventionalist idea, Wyart and Bouchaud (2007) developed a
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quantitative model where agents define trading strategies using correlations between

certain past information and prices. The impact of these strategies on the market

price creates a feedback loop, which can lead to the emergence of conventions in the

sense of Orléan – substantial and long-lived deviations from market efficiency. One

could also interpret their result as a transformation of correlation into causation.

There is also empirical support for the existence of conventions. Lorenz et al. (2011)

show that social influence can undermine the wisdom of the crowd effect in simple

estimation tasks. In particular, information about estimates of others led to a

convergence of the group’s average estimate that often is further away from the true

value than when no information is given.

Philipp (2015) presents a first study of a financial market as in Kaizoji, Leiss,

Saichev, and Sornette (2015) with additional LPPLS traders. Those traders use the

methodological framework by Sornette and Johansen (1998); Sornette et al. (2013);

Filimonov and Sornette (2013) to detect bubble signals on various time scales. As

long as they do not find evidence of a bubble building up, they invest similarly to

fundamentalist traders. However, once they find a significant LPPLS signature in

the price time series, they try to ride the bubble by fully investing until shortly

before the anticipated crash. Figure 2.A.1 presents the average and median effect

of LPPLS traders on the price during a bubble. Philipp (2015) finds the presence

of LPPLS investors to increase a bubble’s peak proportional to their market power,

but not its duration.

Kohrt (2015) extends the analysis in two dimensions (among others). First,

fundamentalists adjust their exposure to the risky asset based on the time-varying

dividend price ratio. Second, short selling is allowed and is actively included into

the investment strategy of LPPLS traders. Figure 2.A.2 shows the price impact and

cumulative performance of LPPLS traders during a bubble relative to their initial

market share. As in Philipp (2015), LPPLS traders magnify a bubble’s peak relative

to their market share. However, since LPPLS traders successfully start short-selling

at the peak of the bubble, they also exacerbate the subsequent crash. On average

they succeed in recognizing the peak such they make money.
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3.5. Comparison of bubbles
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Figure 18: The same plot as in figure 17 for initial wealth ratio Wd
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0 = 0.05. Note that
the peak price di�erence is in the same order of magnitude as the chosen fraction of wealth
that the dragon hunters hold initially.

The impact of the dragon hunters on the price was found to be clearly
correlated to the wealth they were provided with in the beginning. The
larger the initial wealth, the larger the observed affirming effect on the
price. We could not observe any kind of shift of the crash or a “smooth-
ing out” effect on the bubbles due to the dragon hunters.
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Figure 2.A.1: The mean and median effect of LPPLS traders with 3% wealth share
on the risky asset price during a bubble as compared to a market without LPPLS
traders. Reprinted with permission from Philipp (2015).
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Figure 2.A.2: The mean effect over 3,500 simulations of LPPLS traders with 5%
(blue), 10% (green) and 20% (red) market share on the risky asset price during a
bubble as compared to a market without LPPLS traders (upper panel) and their cu-
mulated performance (lower panel). Reprinted with permission from Kohrt (2015).
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Chapter 3

Super-Exponential Growth

Expectations and the Global

Financial Crisis

This chapter is an edited version of Leiss et al. (2015). It has been extended by

section 3.C containing robustness tests based on Monte Carlo simulations.
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Abstract

We construct risk-neutral return probability distributions from S&P 500 options

data over the decade 2003 to 2013, separable into pre-crisis, crisis and post-crisis

regimes. The pre-crisis period is characterized by increasing realized and, especially,

option-implied returns. This translates into transient unsustainable price growth

that may be identified as a bubble. Granger tests detect causality running from

option-implied returns to Treasury Bill yields in the pre-crisis regime with a lag

of a few days, and the other way round during the post-crisis regime with much

longer lags (50 to 200 days). This suggests a transition from an abnormal regime

preceding the crisis to a “new normal” post-crisis. The difference between realized

and option-implied returns remains roughly constant prior to the crisis but diverges

in the post-crisis phase, which may be interpreted as an increase of the representative

investor’s risk aversion.
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3.1 Introduction

The Global Financial Crisis of 2008 brought a sudden end to a widespread market

exuberance in investors’ expectations. A number of scholars and pundits had warned

ex ante of the non-sustainability of certain pre-crisis economic developments, as

documented by Bezemer (2011). Those who warned of the crisis identified as the

common elements in their thinking the destabilizing role of uncontrolled expansion

of financial assets and debt, the flow of funds, and the impact of behaviors resulting

from uncertainty and bounded rationality. However, these analyses were strongly at

variance with the widespread belief in the “Great Moderation” (Stock and Watson,

2003) and in the beneficial and stabilizing properties of financial derivatives markets

by their supposed virtue of dispersing risk globally (Summers et al., 1999; Greenspan,

2005). In hindsight, it became clear to everyone that it was a grave mistake to ignore

issues related to systemic coupling and resulting cascade risks (Bartram et al., 2009;

Hellwig, 2009). But could we do better in the future and identify unsustainable

market exuberance ex ante, to diagnose stress in the system in real time before a

crisis starts?

The present article offers a new perspective on identifying growing risk by fo-

cussing on growth expectations embodied in financial option markets. We analyze

data from the decade around the Global Financial Crisis of 2008 over the period

from 2003 to 2013.1 We retrieve the full risk-neutral probability measure of implied

returns and analyze its characteristics over the course of the last decade. Applying

a change point detection method (Killick et al., 2012), we endogenously identify the

beginning and end of the Global Financial Crisis as indicated by the options data.

We consistently identify the beginning and end of the Crisis to be June 2007 and

May 2009, which is in agreement with the timeline given by the Federal Reserve

Bank of St. Louis (2009).2

The resulting pre-crisis, crisis and post-crisis regimes differ from each other in

several important aspects. First, during the pre-crisis period, but not in the cri-

1Related existing work has considered data from pre-crisis (Figlewski, 2010) and crisis (Birru
and Figlewski, 2012).

2See section 3.3.2 for more details on market and policy events marking the Global Financial
Crisis of 2008.
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sis and post-crisis periods, we identify a continuing increase of S&P 500 expected

returns. This corresponds to super-exponential growth expectations of the price.

By contrast, regular expectation regimes prevail in the crisis and post-crisis peri-

ods. Second, the difference between realized and option-implied returns remains

roughly constant prior to the crisis but diverges in the post-crisis phase. This phe-

nomenon may be interpreted as an increase of the representative investor’s risk

aversion. Third, Granger-causality tests show that changes of option-implied re-

turns Granger-cause changes of Treasury Bill yields with a lag of few days in the

pre-crisis period, while the reverse is true at lags of 50 to 200 days in the post-crisis

period. This role reversal suggests that Fed policy was responding to, rather than

leading, the financial market development during the pre-crisis period, but that the

economy returned to a “new normal” regime post-crisis.

The majority of related option market studies have used option data for the eval-

uation of risk. An early contribution to this strand of work is Aı̈t-Sahalia and Lo

(2000) who proposed a nonparametric risk management approach based on a value

at risk computation with option-implied state-price densities. Another popular mea-

sure of option-implied volatility is the Volatility Index (VIX), which is constructed

out of options on the S&P 500 stock index and is meant to represent the market’s

expectation of stock market volatility over the next 30 days (Chicago Board Options

Exchange, 2009). Bollerslev and Todorov (2011) extended the VIX framework to an

“investor fears index” by estimating jump tail risk for the left and right tail sepa-

rately. Bali et al. (2011) define a general option-implied measure of riskiness taking

into account an investor’s utility and wealth leading to asset allocation implications.

What sets our work apart is the focus on identifying the long and often slow build-up

of risk during an irrationally exuberant market that typically precedes a crisis.

Inverting the same logic, scholars have used option price data to estimate the risk

attitude of the representative investor as well as its changes. These studies, however,

typically impose stationarity in one way or another. Jackwerth (2000), for example,

empirically derives risk aversion functions from option prices and realized returns

on the S&P 500 index around the crash of 1987 by assuming a constant return

probability distribution. In a similar way, Rosenberg and Engle (2002) analyze the

62



3.1. Introduction

S&P 500 over four years in the early 1990s by fitting a stochastic volatility model

with constant parameters. Bliss and Panigirtzoglou (2004), working with data for

the FTSE 100 and S&P 500, propose another approach that assumes stationarity in

the risk aversion functions. Whereas imposing stationarity is already questionable

in “normal” times, it is certainly hard to justify for a time period covering markedly

different regimes as around the Global Financial Crisis of 2008. We therefore proceed

differently and merely relate return expectations implicit in option prices to market

developments, in particular to the S&P 500 stock index and yields on Treasury Bills.

We use the resulting data trends explicitly to identify the pre-crisis exuberance in the

trends of market expectations and to make comparative statements about changing

risk attitudes in the market.

The importance of market expectation trends has not escaped the attention of

many researchers who focus on ‘bubbles’ (Galbraith, 2009; Sornette, 2003; Shiller,

2000; Soros, 2009; Kindleberger and Aliber, 1978). One of us summarizes their role

as follows: “In a given financial bubble, it is the expectation of future earnings

rather than present economic reality that motivates the average investor. History

provides many examples of bubbles driven by unrealistic expectations of future earn-

ings followed by crashes” (Sornette, 2014). While there is an enormous econometric

literature on attempts to test whether a market is in a bubble or not, to our knowl-

edge our approach is the first trying to do so by measuring and evaluating the

market’s expectations directly.3

This paper is structured as follows. Section 2 details the estimation of the risk-

neutral return probability distributions, the identification of regime change points,

and the causality tests regarding market returns and expectations. Section 3 sum-

marizes our findings, in particular the evidence concerning pre-crisis growth of ex-

pected returns resulting in super-exponential price growth. Section 4 concludes with

a discussion of our findings.

3For the econometric literature regarding assessments as to whether a market is in a bubble or
not see Stiglitz (1990) (and the corresponding special issue of the Journal of Economic Perspec-
tives), Bhattacharya and Yu (2008) (and the corresponding special issue of the Review of Financial
Studies), as well as Camerer (1989); Scheinkman and Xiong (2003); Jarrow et al. (2011); Evanoff
et al. (2012); Lleo and Ziemba (2012); Anderson et al. (2013); Phillips et al. (2012); Hüsler et al.
(2013).
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3.2 Materials and Methods

3.2.1 Estimating risk-neutral densities

Inferring information from option exchanges is guided by the fundamental the-

orem of asset pricing stating that, in a complete market, an asset price is the dis-

counted expected value of future payoffs under the unique risk-neutral measure (see

e.g. Delbaen and Schachermayer, 1994). Denoting that measure by Q and the risk-

neutral density by f , respectively, the current price C0 of a standard European call

option on a stock with price at maturity ST and strike K can therefore be expressed

as

C0(K) = e−rfT EQ
0 [max(ST −K, 0)] = e−rfT

∫ ∞
K

(ST −K)f(ST )dST , (3.1)

where rf is the risk-free rate and T the time to maturity. From this equation, we

would like to extract the density f(ST ), as it reflects the representative investor’s

expectation of the future price under risk-neutrality. Since all quantities but the

density are observable, inverting equation (3.1) for f(ST ) becomes a numerical task.

Several methods for inverting have been proposed, of which Jackwerth (2004)

provides an excellent review. In this study, we employ a method by Figlewski

(2010) that is essentially model-free and combines standard smoothing techniques

in implied-volatility space and a new method of completing the density with ap-

propriate tails. Tails are added using the theory of Generalized Extreme Value

distributions, which are capable of characterizing very different behaviors of ex-

treme events.4 This method cleverly combines mid-prices of call and put options

by only taking into account data from at-the-money and out-of-the-money regions,

thus recovering non-standard features of risk-neutral densities such as bimodality,

fat tails, and general asymmetry.

Our analysis covers fundamentally different market regimes around the Global

Financial Crisis. A largely nonparametric approach, rather than a parametric one,

seems therefore appropriate, because an important question that we shall ask is

4As Birru and Figlewski (2012) note, the theoretically correct extreme value distribution class
is the Generalized Pareto Distribution (GPD) because estimating beyond the range of observable
strikes corresponds to the peak-over-threshold method. For our purposes, both approaches are
known to lead to equivalent results.
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whether and how distributions actually changed from one regime to the next. We

follow Figlewski’s method in most steps, and additionally weight points by open

interest when interpolating in implied-volatility space – a proxy of the information

content of individual sampling points permitted by our data. We give a more detailed

review of the method in appendix 3.A.

3.2.2 Data

We use end-of-day data for standard European call and put options on the S&P

500 stock index provided by Stricknet5 for a period from January 1st, 2003 to Oc-

tober 23rd, 2013. The raw data includes bid and ask quotes as well as open interest

across various maturities. For this study, we focus on option contracts with quar-

terly expiration dates, which usually fall on the Saturday following the third Friday

in March, June, September and December, respectively. Closing prices of the index,

dividend yields and interest rates of the 3-month Treasury Bill as a proxy of the

risk-free rate are extracted from Thomson Reuters Datastream.

We apply the following filter criteria as in Figlewski (2010). We ignore quotes

with bids below $0.50 and those that are larger than $20.00 in the money, as such

bids exhibit very large spreads. Data points for which the midprice violates no-

arbitrage conditions are also excluded. Options with time to maturity of less than

14 calendar days are discarded, as the relevant strike ranges shrink to smaller and

smaller lengths resulting in a strong peaking of the density.6 We are thus left with

data for 2,311 observations over the whole time period and estimate risk-neutral

densities and implied quantities for each of these days.

3.2.3 Subperiod classification

As the Global Financial Crisis had a profound and lasting impact on option-

implied quantities, it is informative for the sake of comparison to perform analyses

to subperiods associated with regimes classifiable as pre-crisis, crisis and post-crisis.

5The data is accessible via stricknet.com, where it can be purchased retrospectively.
6Figlewski (2010) points out that rollovers of hedge positions into later maturities around con-

tract expirations may lead to badly behaved risk-neutral density estimates.
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Rather than defining the relevant subperiods with historical dates, we follow an en-

dogenous segmentation approach for identifying changes in the statistical properties

of the risk-neutral densities. Let us assume we have an ordered sequence of data

x1:n = (x1, x2, ..., xn) of length n, e.g. daily values of a moment or tail shape param-

eter of the risk-neutral densities over n days. A change point occurs if there exists

a time 1 ≤ k < n such that the mean of set {x1, ..., xk} is statistically different from

the mean of set {xk+1, ..., xn} (Killick et al., 2012). As a sequence of data may also

have multiple change points, various frameworks to search for them have been de-

veloped. The binary segmentation algorithm by Scott and Knott (1974) is arguably

the most established detection method of this kind. It starts by identifying a single

change point in a data sequence, proceeds iteratively on the two segments before

and after the detected change and stops if no further change point is found.

As in the case of estimating risk-neutral densities, we refrain from making as-

sumptions regarding the underlying process that generates the densities and choose

a nonparametric approach. We employ the numerical implementation of the binary

segmentation algorithm by Killick et al. (2012) with the cumulative sum test statis-

tic (CUSUM) proposed by Page (1954) to search for at most two change points.

The idea is that the cumulative sum, S(t) :=
∑t

i=1 xi, 1 ≤ t < n, will have different

slopes before and after the change point. As opposed to moving averages, using

cumulative sums allows rapid detection of both small and large changes. We state

the mathematical formulation of the test statistic in appendix 3.B.7

3.2.4 Determining lag-lead structures

Option-implied quantities may be seen as expectations of the (representative)

investor under Q. A popular question in the context of self-referential financial

markets is whether expectations drive prices or vice versa. To get a feeling of the

causality, we analyze the lag-lead structure between the time series based on the

classical method due to Granger (1969). Informally, ‘Granger causality’ means that

the knowledge of one quantity is useful in forecasting another. Formally, given two

7Interested readers may consult Brodsky and Darkhovsky (1993) as well as Csörgö and Horváth
(1997) for a deeper discussion of theory, applications, and potential pitfalls of these methods.
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time series Xt and Yt, we test whether Yt Granger-causes Xt at lag m as follows.

We first estimate the univariate autoregression

Xt =
m∑
j=1

ajXt−j + εt, (3.2)

where εt is an uncorrelated white-noise series. We then estimate the augmented

model with lagged variables

Xt =
m∑
j=1

bjXt−j +
m∑
j=1

cjYt−j + νt, (3.3)

where νt is another uncorrelated white-noise series. An F -test shows if the lagged

variables collectively add explanatory power. The null hypothesis “Yt does not

Granger cause Xt” is that the unrestricted model (3.3) does not provide a signif-

icantly better fit than the restricted model (3.2). It is rejected if the coefficients

{cj, j = 1...m} are statistically different from zero as a group. Since the model

is only defined for stationary time series, we will test for Granger causality with

standardized incremental time series in identified subperiods as described in section

3.2.3.

3.3 Results

3.3.1 First-to-fourth return moment analyses

We start by analyzing the moments and tail shape parameters of the option-

implied risk-neutral densities over the whole period (see Figure 3.1). For compa-

rability, we rescale the price densities by the S&P 500 index level St, i.e. assess

f(ST/St) instead of f(ST ).8 In general, we recover similar values to the ones found

by Figlewski (2010) over the period 1996 to 2008. The annualized option-implied

log-returns of the S&P 500 stock index excluding dividends are defined as

rt =
1

T − t

∫ ∞
0

log

(
ST
St

)
f(ST )dST . (3.4)

8We do not go into the analysis of the first moment, which, in line with efficient markets, is
equal to 1 by construction of f(ST /St) (up to discounting).

67



Chapter 3. Super-Exponential Growth Expectations and the Global
Financial Crisis

They are on average negative with a mean value of −3%, and exhibit strong fluctu-

ations with a standard deviation of 4%. This surprising finding may be explained

by the impact of the Global Financial Crisis and by risk aversion of investors as

explained below. The annualized second moment, also called risk-neutral volatility,

is on average 20% (standard deviation of 8%). During the crisis from June 22nd,

2007 to May 4th, 2009, we observe an increase in risk-neutral volatility to 29±12%.

A skewness of −1.5 ± 0.9 and excess kurtosis of 10 ± 12 indicate strong devi-

ations from log-normality, albeit subject to large fluctuations.9 During the crisis,

we measure a third (−0.9 ± 0.3) and fourth moment (4.4 ± 1.6) of the risk-neutral

densities closer to those of a log-normal distribution than before or after the crisis.

Birru and Figlewski (2012) find a similar dynamic using intraday prices for S&P 500

Index options. For the period from September 2006 until October 2007, they report

an average skewness of −1.9 and excess kurtosis of 11.9, whereas from September

to November 2008 these quantities change to −0.7 and 3.5, respectively.

As the fourth moment is difficult to interpret for a strongly skewed density,

one must be careful with the implication of these findings. One interpretation is

that, during crisis, investors put less emphasis on rare extreme events or potential

losses, that is, on fat tails or leptokurtosis, while immediate exposure through a

high standard deviation (realized risk) gains importance.10 Another interpretation

of the low kurtosis and large volatility observed during the crisis regime would be

in terms of the mechanical consequences of conditional estimations. The following

simple example illustrates this. Suppose that the distribution of daily returns is the

sum of two Normal laws with standard deviations 3% and 20% and weights 99% and

1% respectively. This means that 99% of the returns are normally distributed with

a standard deviation of 3%, and that 1% of the returns are drawn from a Gaussian

distribution with a standard deviation of 20%. By construction, the unconditional

excess kurtosis is non zero (27 for the above numerical example). Suppose that one

9For the sake of comparison, note that a log-normal distribution with standard deviation 20%
has skewness of 0.6 and excess kurtosis of 0.7. In particular, skewness is always positive.

10In other words, this interpretation indicates that investors, during crisis, focus on the unfolding
risk, while, during non-crisis regimes, investors worry more about possible/unlikely worst case sce-
narios. Related to this interpretation are hypothesis regarding human behavioral traits according
to which risk-aversion versus risk-taking behaviors are modulated by levels of available attention
(Gifford, 2010).
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observes a rare spell of large negative returns in the range of -20%. Conditional on

these realizations, the estimated volatility is large, roughly 20%, while the excess

kurtosis close to 0 a consequence of sampling the second Gaussian law (and Gaussian

distributions have by construction zero excess kurtosis).

It is interesting to note that Jackwerth and Rubinstein (1996) reported opposite

behaviors in an early derivation of the risk-neutral probability distributions of Eu-

ropean options on the S&P 500 for the period before and after the crash of October

1987. They observed that the risk-neutral probability of a one-standard deviation

loss is larger after the crash than before, while the reverse is true for higher-level

standard deviation losses. The explanation is that, after the 1987 crash, option

traders realized that large tail risks were incorrectly priced, and that the volatility

smile was born as a result thereafter (Mackenzie, 2008).

The left tail shape parameter ξ with values of 0.03 ± 0.23 is surprisingly small:

a value around zero implies that losses are distributed according to a thin tail.11

Moreover, with −0.19± 0.07, the shape parameter ξ for the right tail is consistently

negative indicating a distribution with compact support, that is, a finite tail for

expected gains.

3.3.2 Regime change points

A striking feature of the time series of the moments and shape parameters is a

change of regime related to the Global Financial Crisis, which is the basis of our

subperiod classification. A change point analysis of the left tail shape parameter

identifies the crisis period as starting from June 22nd, 2007 and ending in May

4th, 2009. As we obtain similar dates up to a few months for the change points

in risk-neutral volatility, skewness and kurtosis, this identification is robust and

reliable (see Table 3.1 for details). Indeed, the determination of the beginning of

the crisis as June 2007 is in agreement with the timeline of the build-up of the

financial crisis12 (Federal Reserve Bank of St. Louis, 2009), opening the gates of

11When positive, the tail shape parameter ξ is related to the exponent α of the asymptotic power
law tail by α = 1/ξ.

12(i) S&P’s and Moody’s Investor Services downgraded over 100 bonds backed by second-lien
subprime mortgages on June 1, 2007, (ii) Bear Stearns suspended redemption of its credit strategy
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loss and bankruptcy announcements. Interestingly, when applying the analysis to

option-implied returns instead, we detect the onset of the crisis only on September

5th, 2008, more than a year later. This reflects a time lag of the market to fully

endogenize the consequences and implication of the crisis. This is in line with the

fact that most authorities (Federal Reserve, US Treasury, etc.) were downplaying

the nature and severity of the crisis, whose full blown amplitude became apparent

to all only with the Lehmann Brother bankruptcy.

The identification of the end of the crisis in May 2009 is confirmed by the timing

of the surge of actions from the Federal Reserve and the US Treasury Department

to salvage the banks and boost the economy via “quantitative easing”, first imple-

mented in the first quarter of 2009.13 Another sign of a change of regime, which

can be interpreted as the end of the crisis per se, is the strong rebound of the US

stock market that started in March 2009, thus ending a strongly bearish regime

characterized by a cumulative loss of more than 60% since its peak in October 2007.

Finally, note that the higher moments and tail shape parameters of the risk-

neutral return densities in the post-crisis period from May 4th, 2009 to October 23,

2013 progressively recovered their pre-crisis levels.

3.3.3 Super-exponential return: bubble behavior before the

crash

Apart from the market free fall, which was at its worst in September 2008, the

second most remarkable feature of the time series of option-implied stock returns

shown in Figures 3.1a and 3.2a is its regular rise in the years prior to the crisis.

For the pre-crisis period from January 2003 to June 2007, a linear model estimates

an average increase in the option-implied return of about 0.01% per trading day

(p-value < 0.001, R2 = 0.82, more details can be found in Table 3.2). As a matter

funds on June 7, 2007, (iii) S&P put 612 securities backed by subprime residential mortgages on
credit watch, (iv) Countrywide Financial warned of “difficult conditions” on July 24, 2007, (v)
American Home Mortgage Investment Corporation filed for Chapter 11 bankruptcy protection on
July 31, 2007 and (vi) BNP Paribas, France’s largest bank, halted redemptions on three investment
funds on Aug. 9, 2007 and so on.

13On March 18, 2009 the Federal Reserve announced to purchase $750 billion of mortgage-backed
securities and up to $300 billion of longer-term Treasury securities within the subsequent year, with
other central banks such as the Bank of England taking similar measures.
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of fact, this increase is also present in the realized returns, from January 2003 until

October 2007, i.e. over a slightly longer period, as shown in Figure 3.2a. Note,

however, that realized returns have a less regular behavior than the ones implied

by options since the former are realized whereas the latter are expected under Q.

An appropriate smoothing such as the exponentially weighted moving average is

required to reveal the trend, see Figure 3.2a for more details.

In the post-crisis period, in contrast, the option-implied returns exhibit less

regularity, with smaller upward trends punctuated by abrupt drops. We find that

option-implied returns rise on average 0.003% per trading day from May 2009 to

October 2013 (p-value< 0.001). However, a coefficient of determination of R2 = 0.20

suggests that this period is in fact not well-described by a linear model.

To the best of our knowledge, super-exponential price growth expectations have

not previously been identified as implied by options data. This finding has several

important implications that we shall now detail.

The upward trends of both option-implied and realized returns pre-crisis signal

a transient “super-exponential” behavior of the market price, here of the S&P500

index. To see this, if the average return r(t) := ln[p(t)/p(t− 1)] grows, say, linearly

according to r(t) ≈ r0+γt as can be approximately observed in Figure 3.2a from 2003

to 2007, this implies p(t) = p(t − 1)er0+γt, whose solution is p(t) = p(0)er0t+γt
2/2.

In absence of the rise of return (γ = 0), this recovers the standard exponential

growth associated with the usual compounding of interests. However, as soon as

γ > 0, the price is growing much faster, in this case as ∼ et
2
. Any price growth

of the form ∼ et
β

with β > 1 is faster than exponential and is thus referred to

as “super-exponential.” Consequently, if the rise of returns is faster than linear,

the super-exponential acceleration of the price is even more pronounced. For in-

stance, Hüsler et al. (2013) reported empirical evidence of the super-exponential

behaviour p(t) ∼ ee
t

in controlled lab experiments (which corresponds formally to

the limit β → ∞). Corsi and Sornette (2014) presented a simple model of positive

feedback between the growth of the financial sector and that of the real economy,

which predicts even faster super-exponential behaviour, termed transient finite-time

singularity (FTS). This dynamics can be captured approximately by the novel FTS-
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GARCH, which is found to achieve good fit for bubble regimes (Corsi and Sornette,

2014). The phenomenon of super-exponential price growth during a bubble can be

accommodated within the framework of a rational expectation bubble (Blanchard,

1979; Blanchard and Watson, 1982), using for instance the approach of Johansen

et al. (1999, 2000) (JLS model).14 In a nutshell, these models represent crashes by

jumps, whose expectations yield the crash hazard rate. Consequently, the condition

of no-arbitrage translates into a proportionality between the crash hazard rate and

the instantaneous conditional return: as the return increases, the crash hazard rate

grows and a crash eventually breaks the price unsustainable ascension. See Sornette

et al. (2013) for a recent review of many of these models.

Because super-exponential price growth constitutes a deviation from a long-term

trend15 that can only be transient, it provides a clear signature of a non-sustainable

regime whose growing return at the same time embodies and feeds over-optimism

and herding through various positive feedback loops. This feature is precisely what

allows the association of these transient super-exponential regimes with what is

usually called a “bubble” (Kaizoji and Sornette, 2009), an approach that has allowed

bubble diagnostics ex-post and ex-ante (see e.g. Johansen et al., 1999; Sornette,

2003; Lin and Sornette, 2013; Sornette and Cauwels, 2014, 2015).

3.3.4 Dynamics of realized and option-implied returns

Realized S&P 500 and option-implied S&P 500 returns exhibit different behaviors

over time (Figure 3.2a). Note that this difference persists even after filtering out

short-term fluctuations in the realized returns.16 During the pre-crisis period (from

January 2003 to June 2007), the two grow at roughly the same rate, but the realized

14Alternative rational expectations frameworks include Sornette and Andersen (2002); Lin and
Sornette (2013); Lin et al. (2014). Also related is the literature on mildly explosive bubbles (Phillips
et al., 2011, 2012).

15Long-term exponential growth is the norm in economics, finance and demographics. This
simply reflects the Gibrat law of proportional growth (Gibrat, 1931), which has an extremely
broad domain of application (Yule, 1925; Simon, 1955; Saichev et al., 2009).

16Realized S&P 500 returns show more rapid fluctuations than option-implied ones, which is not
surprising given that the former are realized whereas the latter are expected (under Q). In this
section we only focus on dynamics on a longer timescale, thus Figure 3.2a presents realized returns
smoothed by an exponential weighted moving average (EWMA) of daily returns over 750 trading
days. Different values or smoothing methods lead to similar outcomes.
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returns are approximately 8% larger than the option-implied returns. This difference

can be ascribed to the “risk premium” that investors require to invest in the stock

market, given their aggregate risk aversion.17 This interpretation of the difference

between the two return quantities as a risk premium, which one may literally term

“realized-minus-implied risk premium”, is based on the fact that the option-implied

return is determined under the risk-neutral probability measure while the realized

return is, by construction, unfolding under the real-world probability measure.18

In other words, the risk-neutral world is characterized by the assumption that all

investors agree on asset prices just on the basis of fair valuation. In contrast, real-

world investors are in general risk-adverse and require an additional premium to

accept the risks associated with their investments. During the crisis, realized returns

plunged faster and deeper into negative territory than the option-implied returns,

then recovered faster into positive and growing regimes post-crisis. Indeed, during

the crisis, the realized-minus-implied risk premium surprisingly became negative.

While the option-implied returns exhibit a stable behavior punctuated by two

sharp drops in 2010 and 2011 (associated with two episodes of the European sovereign

debt crisis), one can observe that the realized returns have been increasing since

2009, with sharp drop interruptions, suggesting bubbly regimes diagnosed by tran-

sient super-exponential dynamics (Sornette and Cauwels, 2015). Furthermore, the

realized-minus-implied risk premium has steadily grown since 2009, reaching ap-

proximately 16% at the end of the analyzed period (October 2013), i.e. twice its

pre-crisis value. This is qualitatively in agreement with other analyses (Graham

and Harvey, 2013) and can be rationalized by the need for investors to be remuner-

ated against growing uncertainties of novel kinds, such as created by unconventional

policies and sluggish economic recovery.19

17To understand variations in the risk premium in relation to the identification of different price
regimes, we cannot rely on many of the important more sophisticated quantitative methods for
derivation of the the risk premium, but refer to the literature discussed in the introduction. There
are many avenues for promising future research to develop hybrid approaches between these more
sophisticated approaches and ours which a priori allows the premium to vary freely over time.

18The standard definition, which usually takes the expected 10-year S&P 500 return relative to
a 10-year U.S. Treasury bond yield (Fernandez, 2009; Duarte and Rosa, 2013) captures different
information.

19An incomplete list of growing uncertainties at that time is: instabilities in the middle-East,
concerns about sustainability of China’s growth and issues of its on-going transitions, and many
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3.3.5 Granger causality between option-implied returns and

the 3-month Treasury Bill

We now examine possible Granger-causality relationships between option-implied

returns and 3-month Treasury Bill yields. First note that option-implied returns and

the 3-month Treasury Bill yields reveal a much weaker correlation than between re-

alized returns and option-implied returns. A casual glance at Figure 3.2b suggests

that their pre-crisis behaviors are similar, up to a vertical translation of approxi-

mately 3%. To see if the Fed rate policy might have been one of the drivers of the

pre-crisis stock market dynamics, we perform a Granger causality test in both di-

rections. Since a Granger test is only defined for stationary time series, we consider

first differences in option-implied S&P 500 returns and 3-month Treasury Bill yields,

respectively. Precisely, we define

SPt = rt − rt−1, TBt = yt − yt−1. (3.5)

where rt is the option-implied return (3.4) and yt is the Bill yield at trading day t.

Before testing, we standardize both SPt and TBt, i.e. we subtract the mean and

divide by the standard deviation, respectively.

There is no evidence that Federal Reserve policy has influenced risk-neutral

option-implied returns over this period, as a Granger causality test fails to reject

the relevant null at any lag (see Table 3.3 and Figure 3.3a). The other direction

of Granger causality is more interesting, revealing Granger-causal influence of the

option-implied returns on the 3-month Treasury Bill. A Granger causality test for

SPt on TBt rejects the null for a lag of m = 5 trading days. This suggests that the

Fed policy has been responding to, rather than leading, the development of the mar-

ket expectations during the pre-crisis period. Previous works using a time-adaptive

lead-lag technique had only documented that stock markets led Treasury Bills yields

as well as longer term bonds yields during bubble periods (Zhou and Sornette, 2004;

Guo et al., 2011). It is particularly interesting to find a Granger causality of the

other uncertainties involving other major economic players, such as Japan, India and Brazil, quan-
titative easing operations in the US, political will from European leaders and actions of the ECB
to hold the eurozone together.
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forward-looking expected returns, as extracted from option data, onto a backward-

looking Treasury Bill yield in the pre-crisis period and the reverse thereafter. Thus,

expectations were dominant in the pre-crisis period as is usually the case in efficient

markets, while realized monetary policy was (and still is in significant parts) shap-

ing expectations post-crisis (as shown in Table 3.3 and Figure 3.3b). The null of no

influence is rejected for Treasury Bill yields Granger causing option-implied returns

lagged by 50 to 200 days. This is coherent with the view that the Fed monetary

policy, developed to catalyze economic recovery via monetary interventionism, has

been the key variable influencing investors and thus options/stock markets.

Analyses of Granger causality with respect to realized returns yield no com-

parable results. Indeed, mutual influences with respect to Bivariate Granger tests

involving the first difference time series of realized returns (with both option-implied

returns and Treasury Bill yields) confirm the results that would have been expected.

Both prior to and after the crisis, Treasury Bill yields Granger-cause realized returns

over long time periods (p < 0.1 for lags of 150 and 200 trading days, respectively),

whereas option-implied returns Granger-cause realized ones over short time periods

(p < 0.01 for a lag of 5 trading days).

3.4 Conclusion

We have extracted risk-neutral return probability distributions from S&P 500

stock index options from 2003 to 2013. Change point analysis identifies the crisis

as taking place from mid-2007 to mid-2009. The evolution of risk-neutral return

probability distributions characterizing the pre-crisis, crisis and post-crisis regimes

reveal a number of remarkable properties. Indeed paradoxically at first sight, the

distributions of expected returns became very close to a normal distribution during

the crisis period, while exhibiting strongly negative skewness and especially large

kurtosis in the two other periods. This reflects that investors may care more about

the risks being realized (volatility) during the crisis, while they focus on potential

losses (fat left tails, negative skewness and large kurtosis) in quieter periods.

Our most noteworthy finding is the continuing increase of the option-implied
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average returns during the pre-crisis (from January 2003 to mid-2007), which more

than parallels a corresponding increase in realized returns. While a constant average

return implies standard exponential price growth, an increase of average returns

translates into super-exponential price growth, which is unsustainable and therefore

transient. This finding corroborates previous reports on increasing realized returns

and accelerated super-exponential price trajectories, which previously have been

found to be hallmarks of exuberance and bubbles preceding crashes.

Moreover, the comparison between realized and option-implied expected returns

sheds new light on the development of the pre-crisis, crisis and post-crisis peri-

ods. A general feature is that realized returns adapt much faster to changes of

regimes, indeed often overshooting. Interpreted as a risk premium, literally the

“realized-minus-implied risk premium”, these overshoots can be interpreted as tran-

sient changes in the risk perceptions of investors. We find that the realized-minus-

implied risk premium was approximately 8% in the pre-crisis, and has doubled to

16% in the post-crisis period (from mid-2009 to October 2013). This increase is

likely to be associated with growing uncertainties and concern with uncertainties,

fostered possibly by unconventional financial and monetary policy and unexpectedly

sluggish economic recovery.

Finally, our Granger causality tests demonstrate that, in the pre-crisis period,

changes of option-implied returns lead changes of Treasury Bill yields with a short

lag, while the reverse is true with longer lags post-crisis. In a way, the post-crisis

period can thus be seen as a return to a “normal” regime in the sense of standard

economic theory, according to which interest rate policy determines the price of

money/borrowing, which then spills over to the real economy and the stock market.

What makes it a “new normal” (El-Erian, 2011) is that zero-interest rate policies in

combination with other unconventional policy actions actually dominate and bias

investment opportunities. The pre-crisis reveals the opposite phenomenon in the

sense that expected (and realized returns) lead the interest rate, thus in a sense

“slaving” the Fed policy to the markets. It is therefore less surprising that such

an abnormal period, previously referred to as the “Great Moderation” and hailed

as the successful taming of recessions, was bound to end in disappointments as a
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bubble was built up (Sornette and Woodard, 2010; Sornette and Cauwels, 2014).

These results make clear the existence of important time-varying dynamics in

both equity and variance risk premia, as exemplified by the difference between the

pre- and post-crisis periods in terms of the Granger causalities. The option-implied

returns show that expectations have been changed by the 2008 crisis, and this con-

firms another massive change of expectations following the crash of October 1987,

embodied in the appearance of the volatility smile (Mackenzie, 2008). We believe

that extending our analysis to more crises will confirm the importance of account-

ing for changes of expectations and time-varying premia, and we will address these

issues in future research.
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Returns and distributional moments implied by S&P 500 options
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Figure 3.1: This figure presents returns and distributional moments implied by S&P 500
options. Structural changes around the financial crisis are identified consistently with
a change point analysis of the means of the higher moments and tail shape parameters
(vertical lines).
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Option-implied returns vs realized returns and Treasury Bill yields
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(a) Annualized realized returns and option-implied S&P 500 re-
turns. Realized returns are calculated by exponential weighted
moving average (EWMA) smoothing of daily returns over 750
trading days.
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(b) 3-month Treasury Bill yields and annualized option-implied
S&P 500 returns (5-day moving averages).

Figure 3.2: This figure presents time series of option-implied S&P 500 returns,
realized returns and Treasury Bill yields over the time period 2003–2013.
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Subperiod Granger causality tests
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(a) Pre-crisis: January 1st, 2003 to June 22nd, 2007. No evidence
for Treasury Bill yields Granger causing option-implied S&P 500
returns at any lag, but rather that option-implied S&P 500 returns
Granger cause Treasury Bill yields at lags of a few trading days.
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(b) Post-crisis: May 4th, 2009 to October 23rd, 2013. Treasury Bill
yields Granger cause option-implied S&P 500 returns over a large
range of lags.

Figure 3.3: Subperiod Granger causality tests on incremental changes in annualized
option-implied S&P 500 returns and 3-month Treasury Bill yields. The p = 0.05
line is plotted as dashed black.
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Risk-neutral density implied by options
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Figure 3.4: Risk-neutral density implied by S&P 500 options from 2010-10-06 for the
index level on 2010-12-18. The empirical part is directly inferred from option quotes,
whereas tails must be estimated to account for the range beyond observable strike
prices. Together, they give the full risk-neutral density. The method is reviewed in
section 3.2.1 and appendix 3.A.
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Table 3.1: Start and end dates of the Global Financial Crisis as identified by a change
point analysis of statistical properties of option-implied risk-neutral densities. The
dates found in the left tail shape parameter and higher moments identify consistently
the crisis period as ca. June 2007 to ca. October 2009. Interestingly, the return
time series signals the beginning only more than a year later, as September 2008.
See section 3.2.3 for a review of the method, and 3.3.2 for a more detailed discussion
of the results.

Variable Crisis start date Crisis end date

Left tail shape parameter 2007-06-22∗∗∗ 2009-05-04∗∗∗

Right tail shape parameter 2005-08-08∗∗∗ 2009-01-22∗∗∗

Risk-neutral volatility 2007-07-30∗∗∗ 2009-11-12∗∗∗

Skewness 2007-06-22∗∗∗ 2009-10-19∗∗∗

Kurtosis 2007-06-19∗∗∗ NAa

Option-implied returns 2008-09-05∗∗∗ 2009-07-17∗∗∗

Note: ∗p<0.1; ∗∗p<0.01; ∗∗∗p<0.001
a No change point indicating a crisis end date found.
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Table 3.2: Results of a linear regression of option-implied returns of the S&P 500
index on time (trading days) by sub-period. In particular, a linear model fits well
the pre-crisis, indicating the regular rise of expected returns, but not the post-crisis.
This translates into super-exponential price growth expectations in the pre-crisis
period. Standard deviations are in parentheses.

Option-implied returns (in percent):

Pre-crisis Crisis Post-crisis

linear coefficient 0.009∗∗∗ −0.043∗∗∗ 0.003∗∗∗

per trading day (0.0001) (0.002) (0.0002)

Constant −4.747∗∗∗ 2.836∗∗∗ −5.775∗∗∗

(0.072) (0.485) (0.097)

Observations 942 411 958
R2 0.820 0.520 0.196

Note: ∗p<0.1; ∗∗p<0.01; ∗∗∗p<0.001
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Table 3.3: This table reports the results of a Granger-causality test of option-implied
S&P 500 returns and Treasure Bill yields by sub-period. While we do not find
evidence that Treasury Bill yields may have Granger-caused implied returns pre-
crisis, there is Granger-influence in the other direction at a lag of 5 trading days
both pre- and especially post-crisis. Notably, our test strongly suggests that post-
crisis Treasury Bill yields have Granger-causal influence on option-implied returns
at lags of 50 to 200 trading days.

Pre-crisis

S&P Granger-causes T-Bill T-Bill Granger-causes S&P

Lag F-ratioa Degrees of freedom F-ratioa Degrees of freedom

5 2.72* 5, 926 0.23 5, 926
50 0.84 50, 791 0.82 50, 791
100 0.82 100, 641 0.92 100, 641
150 0.92 150, 491 0.77 150, 491
200 0.86 200, 341 0.87 200, 341
250 0.95 250, 191 0.83 250, 191

Post-crisis

S&P Granger-causes T-Bill T-Bill Granger-causes S&P

Lag F-ratioa Degrees of freedom F-ratioa Degrees of freedom

5 1.95* 5, 942 0.56 5, 942
50 0.69 50, 807 1.37* 50, 807
100 0.79 100, 657 1.55** 100, 657
150 1.07 150, 507 1.32* 150, 507
200 1.16 200, 357 1.23* 200, 357
250 1.06 250, 207 1.18 250, 207

Note: ∗p<0.1; ∗∗p<0.01; ∗∗∗p<0.001
a Refers to the F -test for joint significance of the lagged variables.
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Appendix

3.A Estimating the risk-neutral density from op-

tion quotes

In this study, we estimate the option-implied risk-neutral density with a method

developed by Figlewski (2010), which is based on equation (3.1). For completeness,

we shall briefly review the method as employed in this paper, but refer the interested

reader to the original document for more detail. The raw data are end-of-day bid

and ask quotes of European call and put options on the S&P 500 stock market index

with a chosen maturity. Very deep out of the money options exhibit spreads that

are large relative to the bid, i.e. carry large noise. Due to the redundancy of calls

and puts, we may discard quotes with bid prices smaller than $0.50. In this paper,

we perform the calculation with mid-prices, which by inverting the Black-Scholes

model translate into implied volatilities.

In a window of ±$20.00 around the at-the-money level, the implied volatilities

of put and call options are combined as weighted averages. The weights are chosen

in order to ensure a smooth transition from puts to calls by gradually blending calls

into puts when going to higher strikes. Below and above that window, we only use

call and put data, respectively. We then fit a fourth order polynomial in implied

volatility space. Here, we deviate slightly from Figlewski (2010) because we use

open interest as fitting weights. By doing so, we give more weight to data points

carrying more market information. The Black-Scholes model transforms the fit in

implied volatility space back to price space. The resulting density bulk is called

“empirical density”.
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To obtain a density estimate beyond the range of observable strike prices, we

must append tails to the empirical part. Figlewski (2010) proposes to add tails

of the family of generalized extreme value (GEV20) distributions with connection

conditions: a) matching value at the 2%, 5%, 92% and 95% quantile points, and b)

matching probability mass in the estimated tail and empirical density. An example

can be seen in Figure 3.4. The empirical density together with the tails give the

complete risk-neutral density.

3.B Change point detection

The following framework is used for significance testing in section 3.3.2 and Table

3.1. For more details, see Csörgö and Horváth (1997). Let x1, x2, ..., xn be indepen-

dent, real-valued observations. We test the “no change point” null hypothesis,

H0 : E(x1) = E(x2) = ... = E(xn), (3.6)

against the “one change in mean” hypothesis,

H1 : there is a k, 1 ≤ k < n, such that E(x1) = ... = E(xk) 6= E(xk+1) = ... = E(xn),

(3.7)

using the auxiliary functions

A(x) :=
√

2 log log x , D(x) := 2 log log x+
1

2
log log log x− 1

2
log π . (3.8)

Then, following corollary 2.1.2 and in light of remark 2.1.2. (Csörgö and Horváth,

1997, pp. 67-68), under mild regularity conditions, H0 and for large sample sizes,

one has

P

(
A(n) max

k

1

σ̂n

(
n

k(n− k)

)1/2 ∣∣∣∣S(k)− k

n
S(n)

∣∣∣∣−D(n) ≤ t

)
= exp

(
−2e−t

)
,

(3.9)

where σ̂n is the sample standard deviation and S(t) :=
∑t

i=1 xi the cumulative sum

of observations.

20See Embrechts et al. (1997) for a detailed theoretical discussion of GEV distributions and
modeling extreme events.
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3.C. Robustness tests based on Monte Carlo simulations

3.C Robustness tests based on Monte Carlo sim-

ulations

The density estimation method by Figlewski (2010) outlined in section 3.A pro-

poses to fit a function to the implied volatilities of mid prices, i.e. the averaged bid

and ask prices. In this section, we analyze the robustness of our results by using

interpolation points that are chosen uniformly at random from the bid-ask spread

instead. This allows us to study the implications of both the somewhat arbitrary

choice of fitting mid-price volatilities and the inevitable microstructure noise for the

estimated risk-neutral densities. Or, put differently, we quantify to what extent un-

certainty in the input data leads to uncertainty in the outputs. Thus, we estimate

every risk-neutral density 500 times with prices drawn i.i.d. uniformly at random

from the bid-ask spread for each strike and estimation. This procedure based on

repeated random sampling is also known as Monte Carlo method (Hammersley and

Handscomb, 1964). Ye (1998) proposes a similar idea to estimate model sensitivity

by applying perturbations to observed data.

Figures 3.C.1 and 3.C.2 show the returns and moments of mid-price data with

one-standard-deviation bands computed from the Monte Carlo simulations implied

by monthly and quarterly S&P 500 options, respectively. Figure 3.C.3 presents the

information of those graphs plotted together. In general, the uncertainty in quarterly

options (as used in the analysis of this chapter) is smaller than in monthly options.

This is probably due to the higher liquidity of quarterly options that reduces both

bid-ask spreads and microstructure noise. As the traded volume of options increased

over our data period, we also observe shrinking standard-deviation bands over time.

Overall, the main findings of the chapter hold despite the intrinsic and inevitable

uncertainty in the input data. Those are a rate of return that rises in the pre-crisis

period and remains flat after the crisis, as well as markedly different higher moments

and tail shape parameters during the crisis as to compared to the non-crisis periods.
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Returns and moments implied by monthly S&P 500 options
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Figure 3.C.1: This figure presents returns and distributional moments implied by S&P
500 options with time to maturity of one month. Structural changes around the financial
crisis are identified consistently with a change point analysis of the means of the higher
moments and tail shape parameters (vertical lines). The grey area marks the one-standard-
deviation band based on 500 Monte Carlo simulations of density estimation. The time
series have been smoothed by a 1-month rolling median.
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Returns and moments implied by quarterly S&P 500 options

2004 2006 2008 2010 2012 2014

−
0.

20
−

0.
10

0.
00

(a) Ann. expected returns.

2004 2006 2008 2010 2012 2014

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(b) Ann. risk-neutral volatility.

2004 2006 2008 2010 2012 2014

−
4

−
3

−
2

−
1

0

(c) Skewness.

2004 2006 2008 2010 2012 2014

0
10

20
30

40

(d) Excess kurtosis.

2004 2006 2008 2010 2012 2014

−
0.

2
0.

0
0.

2
0.

4

(e) Left tail shape parameter.

2004 2006 2008 2010 2012 2014

−
0.

35
−

0.
25

−
0.

15
−

0.
05

(f) Right tail shape parameter.

Figure 3.C.2: This figure presents returns and distributional moments implied by S&P
500 options with time to maturity of up to three months. Structural changes around the
financial crisis are identified consistently with a change point analysis of the means of
the higher moments and tail shape parameters (vertical lines). The grey area marks the
one-standard-deviation band based on 500 Monte Carlo simulations of density estimation.
The time series have been smoothed by a 3-months rolling median.
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Returns and moments implied by monthly and quarterly S&P 500 options
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Figure 3.C.3: This figure compares returns and distributional moments implied by S&P
500 options with time to maturity of up to one month (blue) and three months (green),
respectively. Structural changes around the financial crisis are identified consistently with
a change point analysis of the means of the higher moments and tail shape parameters
(vertical lines). The shaded areas marks the one-standard-deviation band based on 500
Monte Carlo simulations of density estimation. The time series have been smoothed by a
3-months rolling median.
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Chapter 4

Option-Implied Objective

Measures of Market Risk

This chapter is an edited version of Leiss and Nax (2015).
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Chapter 4. Option-Implied Objective Measures of Market Risk

Abstract

Foster and Hart (2009) introduce an objective measure of the riskiness of an asset

that implies a bound on how much of one’s wealth is ‘safe’ to invest in the asset

while (a.s.) guaranteeing no-bankruptcy. In this study, we translate the Foster-Hart

measure from static and abstract gambles to dynamic and applied finance using non-

parametric estimation of risk-neutral densities from S&P 500 call and put option

prices covering 2003 to 2013. The dynamics of the resulting ‘option-implied Foster-

Hart bound’ are assessed in light of other well-known option-implied risk measures

including value at risk, expected shortfall and risk-neutral volatility, as well as high

moments of the densities and several industry measures. Rigorous variable selec-

tion reveals that the new measure is a significant predictor of (large) ahead-return

downturns. Furthermore, it grasps more characteristics of the risk-neutral probabil-

ity distributions in terms of moments than other measures and exhibits predictive

consistency. The robustness of the risk-neutral density estimation is analyzed via

Monte Carlo methods.
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4.1. Introduction

The price which a man whose available fund is n pounds may prudently pay for

a share in a speculation... (Whitworth 1870, p.217)

4.1 Introduction

Foster and Hart (2009) introduce a concept that relates the riskiness of a given

gamble to the share of one’s wealth up to which it is ‘safe’ to enter that gamble.

A higher investment is ‘not safe’ in the sense that it results in risk exposures that

exhibit a positive probability of bankruptcy in finite time. Conversely, safe invest-

ments (a.s.) guarantee no-bankruptcy. Importantly, the Foster-Hart risk measure is

law-invariant; i.e. it depends only on the underlying distribution and not on the risk

attitude of the investor. In this sense Foster and Hart (2009) refer to it as ‘objective’

and ‘operational’.

Thus far, despite its interesting theoretical properties, the Foster-Hart criterion

for no-bankruptcy has not been applied much in finance.1 In this paper, we propose

a novel application of the measure using an option-implied (hence forward-looking)

perspective on the stock market, in order to evaluate the resulting option-implied

risk measure with respect to its predictive significance and consistency. Thus, we

translate the Foster-Hart criterion from abstract gambles to applied market dynam-

ics, using nonparametric estimation of risk-neutral densities from S&P 500 call and

put option prices covering 2003 to 2013. In our context, the underlying decisions are

purchases of stocks, which represent scalable gambles. Therefore, the appropriate

interpretation of the Foster-Hart criterion is in terms of a ‘bound’ (between zero

and one) that defines the share of one’s wealth that is safe to invest. (Henceforth,

we shall write ‘FH’ as shorthand for the Foster-Hart measure of riskiness in this

bounds/shares interpretation.) There are additional technical aspects to consider in

this setup compared with the original formulation of Foster and Hart (2009) as the

relevant gamble is both continuous and dynamic.2

We shall address the empirical question of how much of one’s wealth can one,

1Exceptions include Bali et al. (2011, 2012); Kadan and Liu (2014); Anand et al. (2016).
2The original operationalization by Foster and Hart (2009) was recently generalized to our

setting by Riedel and Hellmann (2015) and Hellmann and Riedel (2015).
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in the sense of Foster and Hart (2009), safely invest in the S&P 500 stock index.

Obviously, the answer to how much is safe to invest is not straightforward, because

the pig in the poke regarding such real-world investment decisions is the underlying

probability distribution of the stock market, which is unknown – not only to the

decision-maker but also to us as scientists. Fundamental to our analysis is therefore

a formulation of probability distributions for the underlying gamble, which in our

case concerns developments of the S&P 500 stock index over some finite horizon.

One way to approach the estimation of the density function is to employ historical

return distributions in combination with a dynamic model, as done in Kadan and

Liu (2014) and Anand et al. (2016). Both papers confirm objective measures as

important indicators of market risk. Kadan and Liu (2014), in particular, identify

the crucial importance of higher moments, which will be an important aspect of our

analysis too.

Another approach is via estimation of probability distributions based on options

prices. The economic rationale for choosing the option-implied approach over his-

torical return distributions is that options are inherently forward-looking. Only a

few papers have gone down this route so far. Bali et al. (2011) propose a generalized

measure of riskiness nesting those of Aumann and Serrano (2008) and Foster and

Hart (2009). Their measure is shown to significantly predict risk-adjusted market

returns, and in some cases even outperforms standard risk measures – importantly,

however, the standard risk measures are evaluated only historically, not option-

implied, which makes conclusive comparison of risk measures difficult. Bali et al.

(2012) and Bali et al. (2015) build on Bali et al. (2011), finding a positive relation

between time-varying riskiness and expected market returns.

In this study, we evaluate the performance of option-implied objective risk mea-

sures as compared with other well-known option-implied risk measures including

value at risk, expected shortfall and risk-neutral volatility, as well as with high mo-

ments of the densities and several industry measures. In order to do this, we need

to extract full risk-neutral densities (RNDs) from the information contained in the

options data (here, on the S&P 500 stock index). To get most information out of the

options data (in particular regarding the high moments and tails of the distribution),
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our estimation is done nonparametrically using a variant of the method by Figlewski

(2010) as introduced in (Leiss et al., 2015). Based on day-by-day RNDs, we assess

option-implied objective market risk (FH), value at risk (VaR), expected shortfall

(ES) and risk-neutral volatility (RNV), and compare these with other widely used

risk measures including the volatility index (VIX) and the spread (TED) between

the London Interbank Offered Rate (LIBOR) and Treasury bills (T-Bill) as a mea-

sure of credit risk. Option-implied objective market risk indicators turn out to be

predictively fruitful, especially in predicting large market downturns.

Relative to the existing work on option-implied objective measures of riskiness,

we make three novel contributions. First, we compare option-implied FH with other

option-implied objective risk measures such as value at risk and expected shortfall,

rather than only with historical ones. We believe this establishes a level playing field,

as predictive differences depend on the measures only and not on the information

that is used to evaluate them. Moreover, our estimation of the full RNDs (instead of

only moments as in Bali et al. (2011, 2012, 2015)) allows an assessment of virtually

any option-implied risk measure or density characteristic including –importantly–

characteristics of the tails. Thus, we are able to evaluate the usefulness of a risk

measure conditional on the underlying information set.

Second, while one may control for a large number of possible variables in the

empirical analysis, existing studies only involve few covariates at a time (Bali et al.,

2011, 2012, 2015). This is because many variables exhibit large correlations that are

difficult to handle in standard statistical analysis. By contrast, our analysis offers a

rigorous variable selection based on the least absolute shrinkage and selection opera-

tor (lasso, Tibshirani, 1996). The lasso performs shrinkage of regression coefficients

via regularization, thus allowing systematic model selection also in the case of highly

correlated covariates (Hastie et al., 2009).

Finally, we address the dynamic feature of option-implied information as the time

to maturity diminishes. By contrast, Bali et al. (2011, 2012, 2015) use the smoothed

volatility surface by OptionMetrics, which interpolates the raw options data so that

the windows of forward-looking remain of constant lengths. While this smoothed

surface is preferable for most scientific enquiries (hence the popularity of that data
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in the literature), we are particularly interested in the dynamic component of FH,

to which the theoretical work by Hellmann and Riedel (2015) recently opened the

door. We therefore use the non-smoothed dynamic ‘raw’ options data (provided by

Stricknet).

Our main findings summarize as follows. First, our analyses suggest that FH

provides an investor with additional information beyond standard risk measures.

Second, FH is shown to be a significant predictor of large return downturns. Third,

by contrast to standard risk measures, FH captures a large number of characteristics

(including higher moments) of the risk-neutral probability distributions. Fourth and

finally, we evaluate a form of time-consistency of the risk measures and find FH to

be predictively consistent.

The remainder of this document is structured as follows. Next, we formally

introduce and discuss FH in section two, and turn to the estimation of RNDs in

section three. Section four contains the analysis. Finally, section five concludes.

4.2 Foster-Hart riskiness

4.2.1 No-bankruptcy

When applying Foster and Hart (2009) finance, it will prove useful to work within

the setup where the decision maker is allowed to take any proportion of the offered

gamble. In our case the gamble g consists of buying some multiple of the risky

asset at price S0, holding it over a period T > 0 and finally selling it at price ST .

Including dividends, we may define g as the absolute return g := ST +Y −S0, where

Y is the monetary amount of dividends being paid over the period. This allows us

to define the Foster-Hart bound FH ∈ (0, 1) for a gamble with positive expectation

as the zero of the equation

E [log (1 + r FH)] = 0, (4.1)

with r := g/S0 = (ST+Y−S0)/S0 being the relative return. Since in reality any risky

asset might default, FH is bounded from above by 1. Riedel and Hellmann (2015)

show that there exist gambles for which equation (4.1) has no solution FH ∈ (0, 1),
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even if the expected return is positive. In this case we may consistently set FH to

one, FH = 1.

FH connects to the original definition of the Foster-Hart objective measure of

riskiness as a wealth level R simply as FH = S0/R (Foster and Hart, 2009, p. 791).

Varying between 0 and 1, one may interpret it as the fraction of wealth at which

there is risk of bankrupcty. Formally, this may be expressed via a no-bankruptcy

criterion. Following Foster and Hart (2009), we define no-bankruptcy as a vanishing

probability for ending up with zero wealth when confronted with a sequence of

gambles

P
[

lim
t→∞

Wt = 0
]

= 0. (4.2)

Foster and Hart (2009) (Theorem 2) show that no-bankruptcy is guaranteed if, and

only if, the fraction of wealth invested in the risky asset is always smaller than FH.

In this case, wealth actually diverges; limt→∞Wt →∞ (a.s.).

4.2.2 Growth rates

FH can be interpreted as the limit between the positive and negative geometric

means of the gamble outcomes. A simple example may provide some intuition. As-

sume that a risky asset at price S0 = $300 will, with equal probability of one half,

increase to ST = $420 or decrease to ST = $200. Solving equation (4.1) reads as(
1 + 2

5
FH
) (

1− 1
3
FH
)

= 1. The solution FH = 0.5 is exactly that quantity balanc-

ing the potential gain and loss to an expected geometric mean of 1. By contrast,

investing a higher (lower) fraction of wealth will result in a negative (positive) ex-

pected geometric mean. Thus FH separates the regimes of expected negative and

positive growth rates of wealth. For an infinite sequence of gambles only investments

in the latter avoid bankruptcy.

A natural question is why FH (equation 4.1) sets the expected growth rate to

zero instead of maximizing it. Indeed, there is an extensive literature on the cor-

responding maximal growth rate, which is often referred to as the ‘Kelly criterion’

(Kelly, 1956; Samuelson, 1979). It turns out that both Kelly and Foster-Hart criteria

are deeply rooted in the very origins of mathematical risk analyses, and were both
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first expressed in Whitworth’s seminal book Choice and Chance in the year 1870.3

(Foster and Hart, 2009, p. 802) succinctly comment on this relation as follows:

While the log function appears there too, our approach is different. We

do not ask who will win and get more than everyone else [...], but rather

who will not go bankrupt and will get good returns. It is like the difference

between ‘optimizing’ and ‘satisficing’.

In our eyes, and more importantly for our purposes, the main difference between

Kelly and FH lies in their respective applications. While the first is an investment

strategy explicitly stating how to allocate one’s portfolio in order to maximize wealth

growth, the latter is a risk measure indicating the set of mathematically problematic

portfolio allocations in the sense of incurring bankruptcy risks. For us, the goal is to

identify risky investment decisions, which is why we prefer the latter interpretation.

Finally, we would like to refer the interested reader to another closely related

‘economic index of riskiness’ (Aumann and Serrano, 2008). From a theoretical point

of view Hart (2011) shows that both FH and the Aumann-Serrano index give equiv-

alent stochastic orders under both wealth-uniform and utility-uniform dominance.

From an empirical point of view, Bali et al. (2012) find both measures to be prac-

tically identical when applied in the context of financial returns. Thus, we restrict

our analysis to the case of FH.

4.2.3 A more conservative bound

While FH (equation 4.1) was originally defined under the physical probability

measure P (Foster and Hart, 2009), we will evaluate it under the option-implied risk-

neutral measure Q. Although Cox et al. (1985) argue from a theoretical standpoint

that the RND will converge to the physical probability density as the aggregate

wealth of an economy rises, more recent econometric work questions this hypothesis

(e.g. Brown and Jackwerth 2001). Since studies such as Bliss and Panigirtzoglou

(2004) find remarkable consistencies in the deviations of the two measures across

3See pp. 216-219 for the no-bankruptcy proofs.

98



4.2. Foster-Hart riskiness

markets, utility functions and time horizons, we shall address in this section what

our move from P to Q means for the validity of option-implied FH in our analysis.

Intuitively, given a risk-averse representative investor, FH will be lower under Q

than under P. Hence, our FH thus evaluated under Q, even though defined under

P is justified as a ‘bound on the bound’. To make this statement more formal, we

follow Bliss and Panigirtzoglou (2004) to reconstruct the subjective density function

p from the RND q assuming, as an example, a power utility function;

p(ST ) =
q(ST )/U ′(ST )∫
q(x)/U ′(x)dx

=
q(ST )SγT∫
q(x)xγdx

, (4.3)

where ST is the price of the underlying at maturity and U(ST ) = (S1−γ
T − 1)/(1 −

γ). For a positive relative risk aversion coefficient γ > 0, it is clear that this

transformation shifts probability mass from lower towards higher prices.4 Be S1 >

S0 > 0, then

p(S1)/p(S0)

q(S1)/q(S0)
=

(
S1

S0

)γ
> 1. (4.4)

Technically, the above argument shows that p first-order stochastically dominates

q, hence FH increases – as the gamble becomes more ‘attractive’ (Foster and Hart,

2009). This means that FH under will be a more conservative risk measure under Q

than under P, such that the bankruptcy property persists. Throughout the literature

one finds positive coefficients of relative risk aversion for the representative agent,

albeit of various magnitude (e.g. Arrow 1971; Friend and Blume 1975; Hansen and

Singleton 1982, 1984; Epstein and Zin 1991; Normandin and St-Amour 1998). In

the spirit of Foster and Hart (2009), and in the light of recent findings (Leiss et al.,

2015) that indicate changing risk attitudes over time as a result of events such as the

Global Financial Crisis, for example, we restrain from making somewhat arbitrary

assumptions on the utility of a representative agent and pursue directly with option-

implied quantities instead.

4Note that the same argument applies to exponential utilities with U(ST ) = −(e−γSt)/γ, i.e.
to the other type of utility function discussed by Bliss and Panigirtzoglou (2004).
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4.3 Risk-neutral densities

4.3.1 Theory

Several methods for estimating RNDs from options data as underlying various

risk assessment studies exist (e.g., Aı̈t-Sahalia and Lo 2000; Aı̈t-Sahalia et al. 2001;

Panigirtzoglou and Skiadopoulos 2004; Figlewski 2010, to name just some of the

most popular). Jackwerth (2004) provides an excellent review. All these methods

share the fundamental ‘inversion’ logic, which we shall now proceed to sketch out.5

The fundamental theorem of asset pricing, stating that, in a complete market,

the current price of a derivative may be determined as the discounted expected

value of the future payoff under the unique risk-neutral measure (e.g., Delbaen and

Schachermayer, 1994), guides the way of inferring information from financial options.

The price Ct of a standard European call option at time t with exercise price K and

exercise time T on a stock with price S is thus given as

Ct(K) = e−rf (T−t) EQ
t [max(ST −K, 0)] = e−rf (T−t)

∫ ∞
K

(ST −K)ft(ST )dST , (4.5)

where Q and ft are the risk-neutral measure and the corresponding RND, respec-

tively. Since option prices as well as the risk-free rate, rf , and time to maturity,

T − t, are observable, we may hope to invert equation (4.5) for the RND.6

Several inversion methods have been proposed (Jackwerth, 2004). Besides para-

metric approaches, where one assumes a specific form for the RND with parame-

ters that minimize the pricing error, a ‘trick’ by Breeden and Litzenberger (1978)

opens another route: if strikes were distributed continuously on the positive real

line, we could simply differentiate equation (4.5) with respect to K to obtain the

RN-distribution Ft and RND ft as

Ft(ST ) = erf (T−t)
∂

∂K
Ct(K) + 1, ft(ST ) = erf (T−t)

∂2

∂K2
Ct(K). (4.6)

Again various methods exist to overcome the numerical problems associated with the

5Skipping the risk-neutral density estimation, the spanning formula by Bakshi and Madan
(2000) poses a way of directly estimating the option-implied FH bound, as well as risk-neutral
volatility, skewness and kurtosis (Bakshi et al., 2003).

6One may at least proxy the true risk-free rate with, say, yields on 13-week T-Bills or LIBOR.
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fact that options are only traded at discrete and unevenly spaced strikes (Rubinstein,

1994; Aı̈t-Sahalia and Lo, 2000; Shimko et al., 1993).

4.3.2 A nonparametric approach

For our purposes, the relatively new approach by Figlewski (2010), as adapted

in the recent study (Leiss et al., 2015), turns out to be most suited in order to get as

much information out of the data as regard extreme events. It combines a 4th-order

polynomial interpolation of data points in implied volatility space with appended

generalized extreme value (GEV) tails beyond the range of observed strikes. We

shall briefly present this method here.

We start from bid and ask quotes for puts and calls with a given maturity and

transform the mid-prices to implied-volatility space via the Black-Scholes equation

(Black and Scholes, 1973). Note that we do not assume the Black-Scholes model

to price options correctly, but only use the equation as a mathematical tool. The

implied volatilities of puts and calls are blended together such that only the more

liquid, and thus informative, out-of-the-money and at-the-money data points are

considered while ensuring a smooth transition from puts to calls. The resulting

famous ‘volatility smirk’ is interpolated with a 4th-order polynomial weighted by

open interest, thus, giving higher importance to data points which contain more

market information.7 After a retransformation of the fit values to price space, we

numerically evaluate the empirical part of the RND according to equation (4.6).

As the range of strikes is finite, we have to choose a functional form of the tails.

Instead of the often-used log-normal function, Figlewski (2010) employs the family

of generalized extreme value (GEV) distributions (Embrechts et al., 2005, p. 265).

The Fisher-Tippett theorem supports this choice, stating that, under weak regularity

conditions and after rescaling, the maximum of any i.i.d. random variable sample

converges in distribution to a GEV distribution (Embrechts et al., 2005, p. 266). The

GEV family contains many relevant distributions, in particular also those with heavy

7Since our data set admits open interest weighting, we deviate as in Leiss et al. (2015) here from
the original approach by Figlewski (2010), who weighs such that fits outside the bid-ask spread
are penalized instead.
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tails.8 A distribution of GEV-type is characterized by three parameters: location,

scale and shape. We determine them by imposing the following three connection

conditions for the left and right tails separately: the GEV density should match the

empirical one at two specified quantile points and conserve the probability mass in

the tail.

Joining the empirical part with the tails eventually gives the full option-implied

RND. While there exist many approaches to estimate RNDs, we argue that Figlewski’s

method, as a combination of a model-free empirical part and flexible extreme value

tails, belongs to the most unbiased ones. Allowing for non-standard features such

as bimodality and fat tails will be of advantage for analyzing the highly different

regimes around the Global Financial Crisis of 2008. We refer the interested reader to

Leiss et al. (2015), who discuss in detail the properties of RNDs during and around

the Financial Crisis (see also Figlewski 2010; Birru and Figlewski 2012).

In order to assess the robustness of our analysis regarding fitting assumptions, we

also estimated risk-neutral densities by mix of two log-normal distributions to equa-

tion (4.5) as, for example, in Bahra (1996); Melick and Thomas (1997); Söderlind

and Svensson (1997); Jondeau et al. (2007). We found qualitatively and quantita-

tively similar results, but the log-normal approach to be less stable. Furthermore,

we repeated the nonparametric technique while slightly perturbing the input data

as follows. For every iteration, instead of using mid-prices, we choose points in the

bid-ask spread of every option uniformly at random and proceed as described above,

thus obtaining a different risk-neutral density. Iterating 500 times per business day

gives us statistical significance of option-implied quantities in a way that is known

as Monte Carlo method (Hammersley and Handscomb, 1964).

8The conceptually correct choice of extreme value family is the generalized Pareto distribution
(GPD), since the risk-neutral tails correspond rather to the peaks-over-threshold method than the
block-maxima method (Embrechts et al., 2005, pp. 264-291). Mathematically this translates into
applying the Pickands-Balkema-de Haan theorem instead of Fisher-Tippett. However, because of
their asymptotic equivalence and quantitative similarity we may use either and refer to Embrechts
et al. (1997, 2005); Birru and Figlewski (2012) for a more detailed discussion.
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4.3.3 Data

In this study, we employ end-of-day data for standard European call and put

options on the Standard & Poor’s 500 stock market index (SPX) covering the period

from January 1st, 2003, to October 23rd, 2013. During this decade the market for

SPX options grew substantially from about 150K to 890K contracts in average

daily volume and from 3,840K to 11,883K in open interest at the end of period,

respectively.9 Our data provided by Stricknet consists of bid and ask quotes as well

as open interest across various maturities, but we focus on the very liquid monthly

options expiring on the third Friday every month. Daily values for index level, its

dividend yield and the yield of the 3-Month Treasury bill as a proxy of the risk-free

rate are taken from the Thomson Reuters Datastream.

We follow Figlewski (2010) in filtering the raw data, ignoring quotes with bids

below $0.50 and those that are more than $20.00 in the money, as such bids come

with high ambiguity due to large spreads. Moreover, we also discard data points with

midprices violating static no-arbitrage conditions. Finally, to ensure well-behaved

densities, we restrict our analysis to dates with time to expiration of at least one

week, which leaves us with 1989 daily observations.10

In the following section, we will derive the option-implied risk measures that

we shall consider in our analysis. These are the Foster-Hart bound (FH), value

at risk (VaR), expected shortfall (ES) and risk-neutral volatility (RNV). Moreover,

we control for other risk measures popular in the industry such as the Chicago

Board Options Exchange Market Volatility Index (VIX), also known as the “fear

index” (Chicago Board Options Exchange, 2009), which we obtain from the Thom-

son Reuters Datastream.11 Furthermore, as a measure of perceived credit risk, we

include the TED spread, which is the difference between the 3-Month London In-

terbank Offered Rate (LIBOR) and the interest rate on 3-Month Treasury bills

9See http://www.cboe.com/SPX for a detailed description of the options contracts and recent
market data.

10(i) As the range of relevant strikes shrinks on the way towards maturity, RNDs show a strong
peaking. (ii) Figlewski (2010) also notes that another reason may be price effects from rollovers of
hedge positions into later maturities around contract expirations.

11It is calculated as the 30-day expected variance of the S&P 500 Index and represents volatility
risk.
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(T-Bill).12 And finally, to

4.4 Empirical results

4.4.1 Option-implied risk indicators

Aı̈t-Sahalia and Lo (2000) is the pioneering work on option-implied measures

of risk. Their study suggests that VaR under the risk-neutral measure Q may

capture aspects of market risk that VaR under the physical measure P does not.

Aı̈t-Sahalia and Lo (2000) argue that “risk management is a complex process that

is unlikely to be driven by any single risk measure”, and conclude that the option-

implied measure should rather be seen as a compliment than substitute. In a similar

fashion, Bali et al. (2011) set out to assess the added value of their option-implied

‘generalized risk measure’ against traditional ones such as historical VaR, historical

ES and an option-implied measure of skewness (QSKEW; Xing et al. 2010). A Fama

and MacBeth (1973)-type of regression shows that their option-implied measure

successfully explains the cross section of 1-, 3-, 6- and 12-month-ahead risk-adjusted

stock returns.13 Furthermore, Bali et al. (2012) find strong predictive power of the

riskiness measures of both Aumann and Serrano (2008) and Foster and Hart (2009)

evaluated under option-implied the risk-neutral measure for economic downturns as

measured by the Chicago Fed National Activity Index.14

In this work, we combine the previous approaches by Bali et al. (2011) and Bali

et al. (2012) and analyze if option-implied FH may help predict large downturns in

stock returns when controlling for other quantities evaluated under the risk-neutral

measure.15 For that, we calculate VaR and ES for option-implied log-returns at the

12LIBOR data is available at https://research.stlouisfed.org/fred2/series/USD3MTD156N.
13Note, however, that the asset allocation implications of Bali et al. (2011)’s result are limited:

across all investment horizons the time-varying investment choice of an investor with a relative
risk aversion of three over the whole sample period of 1996–2008 ranges only over a few percentage
points.

14The Chicago Fed National Activity Index is an aggregate measure for overall economic activity
and inflationary pressure. https://www.chicagofed.org/research/data/cfnai/historical-data

15Indeed, Bali et al. (2011) compare the option-implied Bali measure to historical VaR and ES.
Evaluating all risk measures under the same information set represents a somewhat level playing
field.
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α = 5% level at time t,

VaRQ
t = − inf{x ∈ R : F r

t (x) ≤ α}, ESQ
t = −EQ

t [x ∈ R : x ≤ −VaRt] , (4.7)

where F r
t is the risk-neutral distribution of log-returns estimated at time t.16 In

this definition VaR and ES are expressed in losses such that higher values indicate

higher risk. Furthermore, following Bali et al. (2011) we estimate the historical

value at risk (VaRP
t ) and expected shortfall (ESP

t ) by replacing the option-implied

distribution Fr in definition (4.7) by the empirical distribution of daily returns over

the past one year.

Finally, the risk-neutral volatility (RNVQ) is defined as the standardized second

moment of the risk-neutral density f(ST ),

(
RNV2

t

)Q
=

1

(T − t)S2
t

∫ ∞
0

(ST − µt)2 ft(ST )dST , (4.8)

where T−t is the time to maturity, St the price of the underlying and µt the mean of

the density ft extracted at time t, respectively. Figure 4.1 displays and compares the

resulting quantities. All measures exhibit signatures of the Global Financial Crisis of

2008 as well as the Greek and European sovereign debt crises in 2010 and late 2011,

respectively. Yet, it appears from Figure 4.1 that the behavior of FH is distinctly

different from VaR, ES and RNV. The corresponding one-standard-deviation bands

are comparatively small, suggesting that this observation is robust with respect to

noise in the options price data and not an artefact of our estimation technique. In

particular, the respective changes in the risk measures due to the crisis are by far

larger than the estimated variance.

16One can easily go from annualized log-returns to prices as r = log(ST /S0)/T . The RND
expressed in log-returns is fr(r) = TST f

S(S).
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Figure 4.1: Option-implied measures of riskiness.
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(b) Expected shortfall (ES).
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(c) Risk-neutral volatility (RNV).
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(d) Value at risk (VaR).

Various risk measures evaluated under the option-implied risk-neutral measure over
time (21-day moving average). The dashed red line marks the bankruptcy filing of
Lehman Brothers on September 15, 2008. FH (a) clearly shows a different behavior
from ES (b), RNV (c) and VaR (d), although all measures are determined on the
same information set. The grey area marks the one-standard-deviation band based
on 500 Monte Carlo iterations of density estimation.
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A correlation table provides some first quantification of the relation between the

various risk measures (see Table 4.1). While the option-implied tail measures VaRQ

and ESQ, as well as RNVQ, are highly correlated amongst each other (with 98%

and 81%), they correlate with FHQ to only 20% - 46%. Indeed, it seems that FHQ

captures different information than VaRQ, ESQ or RNVQ. Furthermore, VIX and

RNVQ exhibit a linear correlation of 94%. This was to be expected as both are

meant to capture option-implied ahead-volatility. Finally, historical value at risk

VaRP and expected shortfall ESP are almost perfectly correlated (0.99). To avoid

multicollinearity problems, we will use in the subsequent analyses only ESQ instead

of VaRQ, the VIX instead of RNVQ and ESP instead of VaRP. Furthermore, we

perform a systematic model selection in section 4.4.3 after defining the dependent

variable in the next section.

Table 4.1: Correlations between risk measures.

-FHQ VaRQ ESQ RNVQ VaRP ESP VIX
-FHQ

VaRQ 0.20
ESQ 0.26 0.98

RNVQ 0.46 0.81 0.82
VaRP 0.50 0.38 0.39 0.61

ESP 0.53 0.41 0.42 0.65 0.99
VIX 0.48 0.64 0.64 0.94 0.70 0.74

TED -0.02 0.43 0.41 0.60 0.23 0.25 0.56

Correlations between various measures of risk. The option-implied risk measures are
Foster-Hart bound (FHQ), value at risk (VaRQ), expected shortfall (ESQ) and risk-
neutral volatility (RNVQ). Furthermore, we include historical value at risk (VaRP),
historical expected shortfall (ESP), the volatility index (VIX) and the spread between
the interbank loan rate Libor and T-Bills (TED).
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4.4.2 Return downturns

A glance at the FH definition (4.1) suggests that, due to the strongly concave

logarithm, FH may be particularly sensitive to left-tail risks, i.e. extreme losses.

We test this hypothesis using a dummy variable ∆rρt for return downturns that

is one whenever the S&P 500 ahead-return until maturity of the option, rt→T :=

log(ST/St), is lower than a threshold value ρ and zero otherwise:

∆rρt =

1, if rt→T = log (ST/St) < ρ,

0, if rt→T ≥ ρ,

(4.9)

where ST is the realized price at maturity. Figure 4.2 represents when return down-

turns occur over our data period.

Whereas we compute daily values for return downturns (4.9), the option matu-

rities occur monthly. Because of the overlapping nature of this construction, the

variable may exhibit persistence. Thus, in our analysis we follow Newey and West

(1987, 1994) and compute heteroskedasticity and autocorrelation consistent stan-

dard errors. In particular, we work with the implementation by Zeileis (2004) with

non-parametric bandwidth selection procedure of (Newey and West, 1994).

4.4.3 Variable selection

Up to this point our analysis involves a multitude of covariates with differing

interdependence. To select relevant variables in a systematic way we use the least

absolute shrinkage and selection operator (lasso) introduced by Tibshirani (1996)

and adapted to generalized linear models by Friedman et al. (2010). The lasso fits

regression coefficients subject to an L1 penalty, thus forcing some of them to zero

and effectively choosing a simpler model.

The full model involves the following variables: the option-implied FHQ and ESQ,

historical ESP, VIX, TED and the T-Bill rate17. Furthermore, we include skewness

17We include the T-Bill rate in the variable selection as a proxy for the risk-free rate for the
following reason: the FH bound sets EQ [log (1 + rFH)] to zero, whereas one expects EQ [1 + r] =
1 + rf by construction. This suggests a strong relation between the FH bound and the T-Bill rate,
and indeed, we find a pairwise linear correlation of 0.56.
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Figure 4.2: Distribution of S&P 500 downturns over time.

F
ra

ct
io

n 
of

 d
ay

s 
in

 a
 m

on
th

 w
ith

 la
rg

e 
re

tu
rn

 d
ra

w
do

w
ns

0.0

0.2

0.4

0.6

0.8

1.0

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

3% drawdowns 5% drawdowns 10% drawdowns

Moments when the S&P 500 return decreases by more than a certain value (3, 5 or
10%). Most of the larger drawdowns occur during the Global Financial Crisis (late
2007 to early 2009) as well as the Greek and European sovereign debt crisis in 2010
and 2011, respectively.

and excess kurtosis of the risk-neutral densities,

Skewt = EQ
t

[(
S − µt
σt

)3
]
, Kurtt = EQ

t

[(
S − µt
σt

)4
]
− 3, (4.10)

where µt and σt are the first two moments of the RND estimated at time t. Finally,

we also control for the left tail shape parameter, which we denote by Left Tailt.

Following Friedman et al. (2010), variable selection of the best model is based on

10-fold cross-validation with binomial deviance as loss function, which for logistic

regression is smoother than the misclassification error. The resulting model contains

only four covariates: FHQ, ESQ, VIX, TED. In particular, the historical risk measure

ESP drops out, which highlights the importance of using forward-looking, option-

implied information.

4.4.4 Results

As inference in penalized models is difficult (Lockhart et al., 2014), we obtain

reliable estimates by running the unconstrained individual logistic regressions,

∆rρt = a0,t + aR,t Rt, (4.11)
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where R ∈ R ≡
{

FHQ, ESQ, TED, VIX
}

and the unconstrained full model

∆rρt = a0,t +
∑
R∈R

aR,tRt. (4.12)

Results for ρ = −10% and ρ = −15%, with 52 and 26 downturns respectively,

are reported in Table 4.2. As expected from theory, lower FH and higher ES,

VIX and TED spread, individually, all indicate a higher probability for a return

drawdown. However, in the full regression (4.12), the VIX loses significance and ES

surprisingly changes sign. Hence, only FH and TED spread preserve their predictive

characteristics in the joint regression. The regression results are robust with respect

to choice of threshold, ρ, over a wide range of numerical values corresponding to

extreme losses.

4.4.5 The impact of RNDs on risk measures

How do characteristics of the RND shape the various risk measures? To answer

that question we regress the risk measures R on the (standardized) second, third

and fourth moment as well as the left tail shape parameter of the RNDs:

Rt = a0,t + a1,tRNVQ
t + a2,tSkewt + a3,tKurtt + a4,tLeft Tailt. (4.13)

Results are presented in Table 4.3. FH bound captures all variations in the properties

of the RND. In particular, a higher RNVQ and fatter left tail, as well as more negative

skewness lead to lower FH.18 By contrast, the other risk measures do not grasp all

the RND characteristics. For instance, ES and VIX seem to react mainly to the

second moment of the density (RNVQ), whereas a thinner left tail actually makes

them take on higher values. This is particularly surprising in the case of ES, which is

formulated specifically to capture tail risks, but a phenomenon that is not an artefact

of our estimation technique. Moreover, TED spread is significantly explained by the

risk-neutral volatility, but not by the tail shape parameter.

18Note, that throughout our data period the RNDs consistently exhibit a negative skewness of
−1.5± 0.9, such that a positive slope coefficient means a reversal to (log-)normality.
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4.4.6 Time-consistency

Hellmann and Riedel (2015) point out that FH lacks time-consistency, similarly

to VaR and ES. Somewhat loosely speaking, they define a risk measure to be time-

consistent, if the knowledge of gamble X1
t being riskier than X2

t in any state of the

world tomorrow should imply X1
t to be considered riskier than X2

t already today.

Hellmann and Riedel (2015) construct an example showing that, in general, FH is

not time-consistent.

Due to the fixed expiration dates of options, our option-implied risk measures

also exhibit a naturally dynamic structure, thus raising the issue of time-consistency

in the above sense for the special case of risk-neutral densities approaching maturity.

Tests thereof, in the sense of Hellmann and Riedel (2015), however, are not possible

as the structure of the dynamic gamble is a priori not known to the representative

investor. Instead, we may, however, get at the issue of predictive time-consistency

by comparing how the informativeness of predicting return downturns behaves for

the various measures of riskiness depending on the time to maturity. Table 4.4 sum-

marizes the predictive power of FH, ES, TED and VIX spread when evaluated 2, 3,

4 or 5 weeks before the exercise date of the option. While the slope coefficient of FH

is consistently positive, it is not significant in the case of 3 weeks before maturity.

By contrast, the TED spread has explanatory throughout all time windows. Sur-

prisingly, both the option-implied ES and the VIX significantly changes sign when

derived at different times relative to the exercise date. Hence, only FH and TED

spread are predictively time-consistent.19

4.5 Conclusion

The main contribution of this paper has been the translation of the objective

risk measure by Foster and Hart (2009) (using Riedel and Hellmann 2015’s and

Hellmann and Riedel 2015’s generalizations) to a typical decision context in finance.

This was done by extracting the full underlying risk-neutral densities from option

19Recall that it was also FH and TED who preserved their predictive characteristics in the joint
estimation of regression (4.12).
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prices and deriving the corresponding option-implied risk measure. Rather than

optimal estimates, we chose an approach which could be described as deriving a

‘conservative bound’ on these. After a rigorous variable selection process, our re-

sulting measure was shown to have additional information compared to standard risk

measures. In fact, the option-implied objective risk measure outperformed standard

measures including value at risk, expected shortfall, risk-neutral volatility and the

volatility index.20 The option-implied objective measure of riskiness revealed not

only interesting macroscopic patterns, in that it indicated rather extreme regime

shifts in the dawn of the financial crisis, but also proved useful microscopically as

a robust and significant predictor of (especially large) return downturns. In future

work, we would like to study option-implied objective risk measures in richer in-

vestment settings, for example, when investment into more than one asset and/or

leverage is allowed.

20Solely the TED spread (between Libor and T-bills), as a measure of credit risk, turned out
similarly predictive and consistent, despite the known reliability issues associated with Libor.
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Regression of −10% downturns on risk measures

(Intercept) −2.67∗∗∗ −3.82∗∗∗ −4.87∗∗∗ −5.74∗∗∗ −3.41∗∗

(0.42) (0.47) (0.77) (0.86) (1.09)
−FHQ 2.83∗∗ 3.31∗∗∗

(0.86) (0.94)
ESQ 0.05∗∗ −0.52∗

(0.02) (0.23)
TED 1.42∗∗ 2.03∗∗∗

(0.44) (0.48)
VIX 0.08∗∗∗ 0.04

(0.02) (0.02)
AIC 439.14 480.69 391.65 412.81 325.87
BIC 450.33 491.88 402.84 424.00 353.85
Num. obs. 1989 1989 1989 1989 1989

Regression of −15% downturns on risk measures

(Intercept) −3.21∗∗∗ −4.52∗∗∗ −6.03∗∗∗ −6.62∗∗∗ −3.36∗

(0.59) (0.64) (1.37) (1.18) (1.59)
−FHQ 4.18∗∗∗ 6.58∗∗∗

(0.70) (0.68)
ESQ 0.05∗∗ −1.17∗∗

(0.02) (0.36)
TED 1.63∗ 3.27∗∗∗

(0.78) (0.61)
VIX 0.08∗∗∗ 0.06∗

(0.02) (0.03)
AIC 245.76 278.63 198.93 235.34 130.54
BIC 256.95 289.82 210.12 246.53 158.51
Num. obs. 1989 1989 1989 1989 1989
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.2: This table reports the intercept and slope coefficients of the regression of
downturns of ahead-returns until maturity of the underlying option of more than 10%
(upper part) or 15% (lower part) on the option-implied Foster-Hart bound (FHQ),
option-implied expected shortfall (ESQ), the spread between interbank loans and T-
Bills (TED) and the volatility index (VIX). Newey and West (1987, 1994) standard
errors are given in parentheses, significance according to p-values is indicated by
stars.
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Table 4.3: Regression of risk measures on RND characteristics.

-FHQ ESQ TED VIX
(Intercept) −1.08∗∗∗ −2.49∗∗∗ 5.54∗∗∗ 0.05

(0.03) (0.17) (0.24) (0.03)
RNV 1.82∗∗∗ 26.82∗∗∗ 79.43∗∗∗ 2.72∗∗∗

(0.07) (0.42) (0.60) (0.09)
Skewness −0.18∗∗∗ −0.04 0.33 0.10∗∗∗

(0.02) (0.13) (0.18) (0.03)
Exc.Kurtosis −0.01∗∗∗ 0.02∗∗ −0.02∗∗ 0.00∗∗

(0.00) (0.01) (0.01) (0.00)
Left.Tailshape 0.28∗∗∗ −1.35∗∗∗ −0.67 −0.02

(0.04) (0.28) (0.39) (0.06)
R2 0.34 0.68 0.91 0.37
Adj. R2 0.34 0.68 0.91 0.37
Num. obs. 1989 1989 1989 1989
RMSE 0.34 2.16 3.07 0.44
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

This table reports the intercept and slope coefficients of the regression of various risk
measures on characteristics of the density. The risk measures are the option-implied
FH bound, the option-implied expected shortfall, the volatility index and the TED
spread. Standard errors are given in parentheses.
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Table 4.4: Predictive consistency of risk measures.

All 2 weeks 3 weeks 4 weeks 5 weeks
(Intercept) −3.41∗∗ −7.78∗∗∗ −5.91∗∗∗ −2.56∗∗ −1.31

(1.09) (1.26) (1.47) (0.83) (1.07)
−FHQ 3.31∗∗∗ 25.14∗∗ 0.96 2.96∗∗ 5.34∗∗∗

(0.94) (7.81) (0.77) (1.00) (1.25)
ESQ −0.52∗ −0.76∗∗ 0.28 1.45∗∗∗ 0.64

(0.23) (0.24) (0.34) (0.36) (0.49)
TED 2.03∗∗∗ 0.82∗ 2.04∗ 2.78∗∗ 2.25∗

(0.48) (0.37) (0.85) (0.94) (1.09)
VIX 0.04 0.24∗∗∗ −0.02 −0.25∗∗∗ −0.13

(0.02) (0.05) (0.05) (0.05) (0.07)
AIC 325.87 33.01 83.96 115.34 79.39
BIC 353.85 54.07 105.75 137.17 96.22
Num. obs. 1989 498 578 582 214
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

This table reports the intercept and slope coefficients of the regression of downturns
of ahead-returns until maturity of the underlying option of more than 10% on the
option-implied Foster-Hart bound FHQ, option-implied expected shortfall ESQ, the
spread between interbank loans and T-Bills TED, the VIX and realized volatility by
time to maturity of the underlying option. Newey and West (1987, 1994) standard
errors are given in parentheses, significance according to p-values is indicated by
stars.

115



Chapter 4. Option-Implied Objective Measures of Market Risk

116



Chapter 5
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decision-making

This chapter is based on work in progress in collaboration with Christian Schulza,

Emőke-Ágnes Horvátb, Dirk Helbinga and Brian Uzzibc. Intermediate results were

presented at the 2015 International School and Conference in Network Scienced, the

2015 Network Frontier Workshope, the 2016 Social Interaction and Society confer-

encef, the 2016 Collective Intelligence Conferenceg and the 2016 Annual Interna-

tional Conference on Computational Social Scienceh. The manuscript will be sent

for publication to the Proceedings of the National Academy of Sciences of the United

States of America.
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Chapter 5. Social networks and stochastic decision-making

Abstract

Knowledge about how groups of individuals self-organize to achieve a common

goal in complex environments is needed to advance our understanding of collective

behavior and network performance. Here, we studied how structure of the commu-

nication network of a large hedge fund influenced stochasticity in its trading of US

equities. Our findings indicate that a large number (33%) of the sequences of buys

and sells was statistically indistinguishable from a random walk. We found random

trades to significantly underperform. Setting up 88,000 natural experiments allowed

us to associate stochasticity with certain characteristics of the communication net-

work inferred from emails and instant messages. Specifically, a more clustered and

a more balanced internal communication (as measured by entropy), as well as a

more diverse external network of information sources are closely associated with

nonrandom and thus more profitable trading. Furthermore, by measuring the com-

munication complexity we found evidence for information overload to be also present

in groups. Our results indicate how decision-makers can structure their interactions

in complex environments to achieve individual and collective goals.
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5.1 Introduction

In tightly coupled complex systems, numerous seemingly inconsequential errors

may combine to disastrous outcomes, so-called normal or organizational accidents

(Perrow, 1984; Pidgeon and O’Leary, 2000). Thus, most major failures do not ‘just

happen’, but come with a social context and history (Turner and Pidgeon, 1997).

This has been extensively documented for many catastrophes such as the disinte-

grations of the space shuttles Challenger (Vaughan, 1997) and Columbia (Columbia

Accident Investigation Board, 2003), the nuclear accidents at Three Mile Island

(Perrow, 1981), Chernobyl (Pidgeon and O’Leary, 2000) and Fukushima (Perrow,

2011), but also in social systems for financial crashes (Mezias, 1994; Sornette, 2003).

All these disasters have in common that they were not triggered by one main cause,

but resulted from a sequence of errors. As today’s systems become increasingly

complex and interconnected, the associated risks of normal accidents arising from a

series of random failures are likely to increase as well (Helbing, 2013). This is par-

ticularly likely in the context of human decision-making under uncertainty, which is

prone to cognitive biases that lead to inaccurate judgement and systematic errors

(Tversky and Kahneman, 1974).

In this paper, we studied the relation between sequences of stochastic decisions

under risk and the organizational social networks within a financial investment firm.

The concept of stochasticity was introduced to finance as early as in the 16th cen-

tury with the hypothesis that stock market prices follow a random walk (Bachelier,

1900; Lo and MacKinlay, 2011), which has important consequences for informa-

tional market efficiency (Fama, 1970; Samuelson, 1965; Lo and MacKinlay, 2011;

Malkiel, 2012). However, not only price dynamics but also various forms of invest-

ment behavior have been described as random (Black, 1986). So-called noise traders,

irrational agents with erroneous stochastic beliefs, were included into stock market

models to explain the incorporation of private information into prices (Kyle, 1985).

Furthermore, models with random trading are successful at reproducing basic quan-

titative properties of financial markets such as the diffusion rate of prices as well

as spread and price impact functions (Daniels et al., 2003). Also the scaling prop-

119



Chapter 5. Social networks and stochastic decision-making

erty of returns and temporal dependence in volatility were identified to arise from

mutual interactions of noise traders and other agents (Lux and Marchesi, 1999).

Importantly, the unpredictability of randomly trading agents was found to lead to

prices diverging from fundamental values, volatility, overreaction of prices to news

and market bubbles (De Long et al., 1990a,b).

At the financial investment firm under study employees were making decisions

collectively. In particular when it comes to risky decisions in complex systems,

successful self-organization of a team crucially depends on the communication flows

between its members. (Eckmann et al., 2004) observe in a dynamic network of e-mail

traffic the development of self-organized structures that turn out to be functional

and goal-oriented. Day traders use their instant messaging network to synchronize

behavior, thereby boosting individual and collective performance (Saavedra et al.,

2011). In terms of the structure of the communication network, neither dispersed nor

concentrated networks respond most effectively to informational uncertainty (Wu

et al., 2004; Easley and Kleinberg, 2010). Generally, the optimal network structure

depends on the problem space being explored (Mason et al., 2008). Networks that

incorporate spatially based cliques are advantageous when problems benefit from

broad exploration. On the other hand, networks with greater long-range connectivity

have an advantage when problems require less exploration. Suitable system design

and management can help to stop undesirable cascade effects and to enable favorable

kinds of self-organization in the system (Helbing et al., 2014). In the best case,

group cognition emerges, enabling organization-dependent cognitive capacities that

go beyond simple aggregation of the cognitive capacities of individuals (Goldstone

and Gureckis, 2009; Theiner et al., 2010). Yet this work is still in its infancy.

It was recently argued that, concerning collective goals, we are only “beginning

to comprehend more fully how individuals in groups can gain access to higher-

order collective computational capabilities such as the simultaneous acquisition and

processing of information from widely distributed sources” (Couzin, 2007).

This paper provides (1) a validation of a method for identifying random decision

sequences, which can be used diagnostically to adjust behavior, and (2) evidence

that certain social network conditions are linked to non-random decision making.
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Figure 5.1: Graphical representation of the empirical setting and data. Portfolio
managers (PM), analysts (A) and traders (T) employed at the hedge fund internally
communicate via emails and instant messages (blue lines). They are in exchange
with investment bankers via email (green lines) and are exposed to business news
published online (red lines). Portfolio managers take decisions to buy or sell a stock,
which are then executed by traders (grey lines).

5.2 Empirical setting and data

We set up 88,000 natural experiments to study how the communication net-

works of a medium-sized hedge fund relate to stochasticity in its trading. For this,

we observed the fund’s communication and trading activity from January 2008 to

December 2012. To exclude the impact of the Global Financial Crisis of 2008, we

restrict our analysis to the non-crisis regime identified as after May 5th, 2009 (Leiss

et al., 2015). During this time period, the firm employed 55 portfolio managers, 95

traders and 60 analysts. We discarded data from other employees such as IT and

administrative staff.

The financial employees often work in teams, where an analyst delivers intelli-

gence to a portfolio manager with respect to specific stocks and the overall market.

The latter carries the operative responsibility and takes buying and selling deci-

sions, which are then executed by a trader. However, some portfolio managers also

do the trading themselves. Our study includes the 100 stocks with the highest

trading volume and stock symbols that do not occur in an English dictionary. In
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total, our analysis involves 264,000 transactions in US equities with a volume of

194 billion USD. How people self-organize in groups to achieve optimal collective

decision-making remains an open research question. This is especially important be-

cause collective performance depends on the diversity and social sensitivity of group

members (Page, 2008; Woolley et al., 2010). Furthermore, implications may be

counterintuitive; for example, a team comprised of individual best-performers may

be outperformed by a randomly formed team (Hong and Page, 2004). In this firm,

a large part of the internal coordination takes place via two channels. Emails were

used for the exchange of detailed information, whereas instant messaging served to

share information quickly and to align immediate actions. For this study, we an-

alyzed the full texts of 455,000 emails and 5.8 million instant messages. As with

emails, instant messages possibly had multiple recipients.

Financial professionals regularly consult business news to keep themselves in-

formed about recent developments and profit opportunities (Fang and Peress, 2009).

In particular, media content was found to significantly influence the irrational and

pseudo-heuristic strategies of noise traders (Tetlock, 2007). To consider those ef-

fects, we used the Ravenpack Analytics dataset1, which continuously collects and

consolidates information from sources such as the Dow Jones Newswires and the

Wall Street Journal. We identified 23 million news articles that could be linked to

the stocks traded by the fund during our time period. Finally, the hedge fund was in

brisk contact with investment banks, which often take the opposing side in market

making and promote securities. Thus, we also evaluated the full texts of 1.7 million

anonymized emails sent to the fund from 170 investment banks. Fig. 5.1 shows a

schematic representation of the empirical setting and section 5.B gives two activity

examples.

1The dataset is available at http://www.ravenpack.com and is widely used for systematic
analysis of unstructured data for finance.

122

http://www.ravenpack.com


5.3. Results

5.3 Results

5.3.1 Stochasticity

Managers at the firm under study explained that the buying and selling of a

stock over time without a full closeout measured a portfolio manager’s conviction

or prediction for that stock. Therefore, we focused on the 88,000 sequences of

buys and sells in between subsequent full closeouts over the time period of our

study. On average, a sequence lasted 25 days and involved 13 trades with short

selling accounting for slightly less than half of the cases. The standard method

for detecting randomness in finance are variance-ratio tests (see section 5.A). Our

analysis reveals that a surprisingly large fraction (33%) of the trading sequences is

statistically indistinguishable from a random walk.

A priori there was no incentive for the hedge fund to care about stochasticity.

This changes, however, when evaluating profitability. Random trades significantly

underperformed nonrandom ones (p < 0.001, Fig. 5.2). In particular, nonrandom

trading sequences exhibited a significantly positive return (p < 0.001), whereas the

yield of random trades was statistically indistinguishable from zero (p < 0.001). This

finding reflects the fact that as information acquisition is costly, financial markets

do not reward stochastic investments with above-average returns (Grossman and

Stiglitz, 1980).

5.3.2 Social networks

We related the trading and communication activity for each stock separately.

For each business day we isolated the subset of emails and instant messages that

were specific to a certain stock. Nodes corresponded to people and edges to ex-

changed messages. To construct a stock-day-communication subgraph we started

with messages that contained the company’s ticker symbol (e.g. “AAPL”) or words

that frequently co-occured with it (e.g. “iPhone”) and included those messages

that were exchanged between the same communication partners within a 5-minute
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interval before or after.2 This gave us the networks of email and instant message

communication corresponding to a certain stock on a certain business day, respec-

tively (Fig. 5.3). Subsequently, we analyzed stochasticity in trading of a stock in

relation to characteristics of the corresponding stock-day-communication network

in the form of a logistic regression (see section 5.A). In addition to the variables

described below, we controlled for unobserved heterogeneity in stocks via fixed ef-

fects and the realized volatility in each stock. In particular, we included the price

volatilities over both a 30-day backward and forward looking window to exclude the

possibility that the observed stochasticity was just externally induced by a capricious

market.

Regarding the internal structure, we computed the clustering coefficient (Watts

and Strogatz, 1998) and the balance of communication participants internal to the

hedge fund. Similarly to the Shannon entropy (Shannon, 1948) we defined commu-

nication balance as B = −
∑

i Pi log2 (Pi) where Pi is the fraction of communication

of an employee i in of the day-stock subgraph. Random trading can be associated

with internal communication networks that were less balanced and less clustered

(p < 0.001, Fig. 5.4). This is in accordance with previous findings from laboratory

experiments, where equality in distribution of conversational turn-taking increased

collective intelligence and group performance (Woolley et al., 2010). In addition to

that, balanced networks bring to mind the “causal entropic principle” (Mann and

Garnett, 2015), whereby agents follow behavioral rules that maximize their entropy,

which leads to collectively intelligent outcomes.

The full texts of messages allowed us to go beyond structure and analyze the

content of communication. This, however, was difficult, as financial professionals

often used a large amount of nonstandard language. We thus employed the fol-

lowing working hypothesis: the complexity of trading stocks increased with the

number of distinct keywords in the internal communication. Here, we employed

the entries in Campbell Harvey’s finance glossary (Harvey, 2015), a standard glos-

sary of about 8,000 financial terms such as “illiquid” and “sell out”. Thus, the

2We found that our results are robust when choosing a different interval length such as 1, 2 or
3 minutes.
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sector-day-complexity was given by the number of discussed topics with respect to

internal communication regarding a certain sector on a certain day (see section 5.A).

We found random trading to be associated with higher communication complexity

(p < 0.001, Fig. 5.4)

As for the information exchange with outside the hedge fund, we measured the

diversity of communication with investment banks by the number of distinct banks

to which hedge fund employees send emails to or receive emails from, respectively.

Furthermore, we also controlled for the volume of inflowing business news. We

found that a more diverse incoming communication with investment banks and a

higher volume of stock-related business news significantly reduced the likelihood of

random trading (p < 0.001, Fig. 5.4). The same was not true, however, for outgoing

communication from the fund to investment banks. This result emphasizes the

importance of diversity for collective performance as found previously in laboratory

experiments and simulations (Woolley et al., 2010; Hong and Page, 2004; Page,

2008). It also resonates with the positive effects of the social embeddedness of firms

on financing conditions and survival (Uzzi, 1996, 1997, 1999).

5.4 Discussion

We have studied the structure and content of the digital communication network

of a large hedge fund and related it to its trading activity. Based on variance-

ratio tests, we defined nonrandom behavior as sequences of buys and sells that

cannot be explained by a random walk. Random trades were found to significantly

underperform nonrandom ones. This allowed us to identify two characteristics of

communication networks associated with successful collective decision-making. On

the one hand, internal networks should be clustered and balanced. On the other

hand, external networks should be diverse in terms of information sources. Our

research may help create conditions that enable successful collective performance.
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Figure 5.1: Illustrative examples for trading sequences classified as nonrandom (A)
and random (B).
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Figure 5.2: Profitability of trade sequences vs stochasticity. While the returns of
nonrandom trading are significantly positive, random trading does not make money
on average.
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Figure 5.3: Examples of communication networks relevant for the trading of Apple
stock on selected business days. While the instant messaging subgraph on April 27,
2012 (panel A) exhibits low clustering and balance, the opposite is true a couple
of days later (panel B). The email subgraph on May 1st, 2012 (panel C) shows
the communication between hedge fund employees (green) and external contacts at
investment banks (purple).
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Figure 5.4: Contextual variables associated with random trading by humans relative
to non-trading (control). (A) Especially after the Global Financial Crisis random
trading is associated with less clustered and less balanced email and instant messag-
ing (IM) internal communication networks. (B) A stock is more likely to be traded
randomly when there is less business news reported, when the incoming information
is less diverse and when there is more sector-specific complexity in the market. By
contrast, a more diverse outgoing communication pattern does not lead to a reduced
likelihood of random trading.

128



Appendix

5.A Materials and Methods

5.A.1 Variance-ratio tests

Let {Xt}Tt=1 be a time series that is formulated recursively as

Xt = µ+Xt−1 + εt, (5.1)

with an arbitrary drift parameter µ and innovations εt. A simple form of the ran-

dom walk hypothesis assumes identically and independently drawn normal random

numbers,

RWH : εt i.i.d. N(0, σ2), (5.2)

but this may be generalized to heteroscedastic innovations with vanishing mean and

serial correlation (Lo and MacKinlay, 2011). The most popular tests of the RWH

(5.2) are based on the variance-ratio methodology (Charles and Darné, 2009). The

main idea is to use the fact that the variance of random walk increments is linear in

the observation interval (Lo and MacKinlay, 2011). It can be shown that under the

RWH the ratio of variances of increments is asymptotically Normally distributed for

all sampling intervals k = 2, 3, ...

√
T

(
σ̂2(k)

σ̂2(1)
− 1

)
∼ N(0, 1), (5.3)

where σ̂2(k) is the unbiased estimator of the normalized k-period variance of incre-

ments (Charles and Darné, 2009; Lo and MacKinlay, 2011). While the idea behind

variance-ratio tests is intuitive, many sophisticated test statistics have been devel-

oped to deal with overlapping data, small sample sizes and joint tests for various
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sampling intervals. Given that our trading sequences involve only a comparatively

small number of trades, we will use the joint Wright sign test by Belaire-Franch and

Contreras (2004), who extended the individual variance-ratio test by Wright (2000)

to a joint one for multiple k-periods. A recent application can be found in Kim

and Shamsuddin (2008), who investigate time-varying return predictability of the

Dow Jones Industrial Average index from 1900 to 2009. This type of test has special

advantages when the sample size is small, notably because the sampling distribution

is exact (Charles and Darné, 2009).

5.A.2 Logistic regression

We quantified the relation between stochasticity in trading and characteristics

of the communication networks with the multivariate fixed-effects logistic regression

model

logit (rs,t) = αs +
∑
v∈V

βvvs,t + εs,t. (5.4)

Here rs,t is a binary variable indicating randomness in trading of stock s on business

day t. The set of covariates V includes the clustering coefficient and balance for

the email and IM day-stock subgraphs, respectively, in- and out-going diversity,

communication complexity, business news volume and backward and forward looking

volatility. Following Garman and Klass (1980), we computed the realized price

volatility of a stock as

σ2 =
1

T

T∑
t=1

(
0.5 log(Ht/Lt)

2 − (2 log 2− 1) log(Ct/Ot)
2
)
, (5.5)

where Ht, Lt, Ct, Ot are the respective high, low, close and open prices of the

sub-periods. Additionally, we used fixed effects in the regression to control for

unobservable heterogeneity in stocks.

A 10-fold cross-validation of the full model (5.4) yields an F1 score of 78%, where

the F1 score defined as the harmonic mean of recall and precision is a standard ac-

curacy measure in binary classification (Van Rijsbergen, 1979).
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5.A.3 Communication complexity

We quantify complexity for every business day and sector. Following Lijffijt et al.

(2011), we identify a topic q as being discussed in sector s, if it appears more often

in the sector-specific communication Rs
t on day t than expected by chance from the

overall communication full texts Tt = {Rs
1, R

s
2, ..., R

s
T} \ {Rs

t} regarding that sector

on other days, i.e. if the one-tailed empirical p-value is lower than 0.01

p̂ (q, Rs
t , Tt) =

1 +
∑

k 6=t I (freq(q, Rs
t ) ≤ freq(q, Rs

k))

T
, (5.6)

where I is the indicator function. Thus, the sector-day-complexity is given by the

number of topics discussed with respect to internal communication regarding a cer-

tain sector on a certain day.

5.B Activity examples

We present two activity examples to illustrate the use of instant messaging within

the hedge fund. First, in April 2010, a portfolio manager (P) and a trader (T) and

second, in August 2010, two traders (T1 and T2) communicate, respectively. Both

communications end with a trade of a mentioned stock. Those are buying GOOG

stock for 2.8 million USD and selling AAPL stock for 0.6 million USD, respectively.

2010 April

IM 11:24:30 P->T: buy 5k goog no hurry

IM 11:24:36 T->P: b 5 goog

IM 11:24:40 T->P: no rush

IM 11:26:46 T->P: ACN just guided to fiscal 11 revs up 7-10%.

IM 11:28:05 T->P: EPS also better

IM 11:30:03 T->P: NOK - hearing chattter only ... -

talking down numbers as they might be seeing a

squeeze on both ends. Getting hit on the Low end

by Samsung and LG?on the High end buy AAPL,

GOOG and RIMM

TRADE 11:30:42 GOOG USD 2.828 M
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2010 August

IM 15:27:48 T1->T2: sorry, we are working the goog (1k to short)

into the bell?

IM 15:29:09 T1->T2: ty -

IM 15:29:52 T1->T2: cover another 5k ca

IM 15:30:48 T1->T2: thx

IM 15:31:16 T1->T2: i think they always say "buyer out of europe"

to make us believe its "dumb money"

IM 15:32:21 T1->T2: lol

IM 15:32:47 T1->T2: sell another 2.5k aapl

IM 15:33:44 T1->T2: cover 5k more wdc

TRADE 15:33:44 AAPL USD -0.649 M

IM 15:34:00 T1->T2: make it 10k more wdc - gets me to 40k short

5.C Robustness tests of content complexity

Based on a method by Lijffijt et al. (2011), we defined communication complexity

in equation (5.6) by the number of topics with a one-tailed empirical p-value smaller

than 0.005. To verify the robustness of our definition, we vary this threshold param-

eter over the range p̂ < 0.001, ..., 0.02. Table 5.C.1 presents the correlation between

the resulting complexity scores averaged over all sectors. Since the correlations

across thresholds are quite high, we conclude that our definition of communication

complexity is fairly robust.

p̂ < 0.001 p̂ < 0.002 p̂ < 0.005 p̂ < 0.010 p̂ < 0.020
p̂ < 0.001
p̂ < 0.002 0.83
p̂ < 0.005 0.72 0.89
p̂ < 0.010 0.62 0.79 0.91
p̂ < 0.020 0.52 0.68 0.82 0.93
p̂ < 0.050 0.33 0.47 0.62 0.75 0.88

Table 5.C.1: Dependence of communication complexity averaged over all sectors on
the threshold parameter for the one-tailed empirical p-value.
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Conclusion

In this dissertation, we studied the origins and characteristics of large stock

price movements. Our approach was contrary to the standard paradigm of efficient

markets that explains price movements by the arrival of new information. Instead,

we have worked with the notion of speculative bubbles. There, the price of an

asset systematically detaches from the fundamental value over an extended period

of time. It is generally thought that speculative bubbles are fueled by positive

feedback mechanisms, which can be of a both technical and behavioral nature. In

any case, they imprint statistical patterns on the price trajectory, in particular a

price that grows faster than an exponential, or super-exponentially.

In chapter 2, we defined a theoretical model of a financial market with a risky

asset that is traded by agents of two types. First, fundamentalists myopically op-

timize their expected mean-variance utility based on the asset’s dividend process.

Second, chartists employ a mixture of technical trading and social imitation of peers.

We showed transient super-exponential price growth to be an inherent phenomenon

of such a model driven by the herding of chartist traders. The model successfully

explained empirically observed statistical regularities such as a fat-tailed return dis-

tribution and volatility clustering. Furthermore, we extended the original model by

introducing a third type of traders, who use statistical techniques for the detection

of speculative bubbles. Instead of eliminating the latter, they actually increased

their magnitude.

In chapters 3 and 4, we estimated risk-neutral densities for the dynamics of the
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S&P 500 index price based on financial options. Our observation period ranged

from 2003 to 2013, thus spanning the Global Financial Crisis of 2008. Chapter 3

was dedicated to studying the structural changes induced by the crisis. We applied a

change point analysis to density characteristics in order to endogenously identify the

pre-crisis, crisis and post-crisis sub-periods. Interestingly, while the higher moments

and tail parameters indicated an early beginning of the crisis around mid-2007, the

option-implied returns only changed significantly in September 2008. Moreover,

we observed super-exponential growth expectations prior to the crisis. During the

post-crisis period, however, we found evidence for monetary policy to Granger-cause

option-implied returns at time lags of 50 to 200 days.

In chapter 4, we used the estimated risk-neutral densities to analyze the pre-

dictive power of various risk-measures regarding large stock price movements. We

included standard measures such as risk-neutral volatility as well as the tail mea-

sures value at risk and expected shortfall. In addition, we studied the Foster-Hart

bound, a measure that promises no-bankruptcy in the long run. The Foster-Hart

bound was shown to be a significant predictor of large future return drawdowns, as it

was able to capture more characteristics of the risk-neutral probability distributions

than other measures.

Finally, in chapter 5, we empirically studied at the example of a large hedge fund

how communication networks may help achieve collective goals. Variance-ratio tests

determined whether sequences of buys and sells were statistically different from a

random walk. While nonrandom trading was found to significantly outperform, we

were able to relate it to two characteristics of the accompanying communication.

Those were more clustered and balanced internal communication networks on the

one hand, and more diversity in terms of information sources, on the other hand.

What follows from this research? On the one hand, the implications for indi-

vidual investors, risk managers and financial players seem clear. Given a certain

risk budget, one may allocate a portfolio to maximize returns conditional on the

amount of risk one is willing to bear. This analysis should include insights on large

stock market moves, which were key to this dissertation, and limit the corresponding

exposure.
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On the other hand, also policy making could benefit from a better understanding

of the nature of large stock price movements. It is an open question to what extent

regulators should try smoothening out the boom and bust cycles characterizing

capitalist economies. While intuitively it appears plausible that in the short term

society would be better off without a stock market crash, the combined long term

consequences of the bust together with the bullish period preceding it might as well

raise total welfare. For example, would we observe a Silicon Valley as innovative and

profitable as it is today without the overly optimistic funding of Internet companies

throughout the dot-com bubble during the late 1990s? Would Google and Amazon

have been able to grow to be the global players they are now? Would there be

a Facebook at all? Indeed, there is research suggesting that most boom and bust

cycles may have a positive net contribution to total welfare (Gisler and Sornette,

2009; Gisler et al., 2011). Therefore, the policy implications of regulating bubbles

and crashes may involve a tradeoff between short term stability and long term

growth, which is a question that each society may have to answer for itself.
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Concentration des Entreprises, Aux Populations des Villes, Aux Statistiques des

Familles, etc., d’une Loi Nouvelle: La Loi de l’Effect Proportionnel. Sirey, Paris,

France.

Gifford, S. (2010). Risk and uncertainty. In Handbook of Entrepreneurship Research,

pp. 303–318. Springer.

145



Bibliography

Gisler, M. and D. Sornette (2009). Exuberant innovations: the Apollo program.

Society 46 (1), 55–68.

Gisler, M., D. Sornette, and R. Woodard (2011). Innovation as a social bubble: The

example of the Human Genome Project. Research Policy 40 (10), 1412–1425.

Goldstone, R. L. and T. M. Gureckis (2009). Collective behavior. Topics in Cognitive

Science 1 (3), 412–438.

Gopikrishnan, P., M. Meyer, L. N. Amaral, and H. E. Stanley (1998). Inverse cubic

law for the distribution of stock price variations. The European Physical Journal

B 3 (2), 139–140.

Gordon, M. J. and E. Shapiro (1956). Capital equipment analysis: the required rate

of profit. Management Science 3 (1), 102–110.

Graham, J. R. and C. R. Harvey (2013). The equity risk premium in 2013. Social

Science Research Network Working Paper Series, 2206538 .

Granger, C. W. J. (1969). Investigating causal relations by econometric models and

cross-spectral methods. Econometrica 37 (3), pp. 424–438.

Greenspan, A. (2002). Remarks by chairman Alan Greenspan, economic volatil-

ity, at the symposium sponsored by the Federal Reserve Bank of Kansas City.

Jackson Hole, Wyoming. August 30, 2002. http://www.federalreserve.gov/

boarddocs/speeches/2002/20020830/.

Greenspan, A. (2005). Consumer Finance. Federal Reserve System’s Fourth Annual

Community Affairs Research Conference. Federal Reserve Board.

Grossman, S. J. and J. E. Stiglitz (1980). On the impossibility of informationally

efficient markets. The American Economic Review 70 (3), 393–408.

Guillaume, D. M., M. M. Dacorogna, R. R. Davé, U. A. Müller, R. B. Olsen, and
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Eidgenössische Technische Universität Zürich, Switzerland.
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