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Measurement of a vacuum-induced
geometric phase

Simone Gasparinetti,1*† Simon Berger,1† Abdufarrukh A. Abdumalikov,1 Marek Pechal,1

Stefan Filipp,2‡ Andreas J. Wallraff1
D

Berry’s geometric phase naturally appears when a quantum system is driven by an external field whose parameters
are slowly and cyclically changed. A variation in the coupling between the system and the external field can also
give rise to a geometric phase, even when the field is in the vacuum state or any other Fock state. We demonstrate
the appearance of a vacuum-induced Berry phase in an artificial atom, a superconducting transmon, interacting
with a single mode of a microwave cavity. As we vary the phase of the interaction, the artificial atom acquires a
geometric phase determined by the path traced out in the combined Hilbert space of the atom and the quantum
field. Our ability to control this phase opens new possibilities for the geometric manipulation of atom-cavity
systems also in the context of quantum information processing.
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Geometric phases are at the heart of many phenomena in solid-state
physics (1), from the quantum Hall effect (2) to topological phases
(3, 4), and may provide a resource for quantum computation (5, 6).
As a quantum system is steered in its state space by controlled inter-
action with an external field, the trajectory it describes can be as-
sociated with a geometric phase (7). Although the external field is
typically treated as classical, its quantization is expected to produce
novel geometric effects at low excitation numbers (8). Here, we exper-
imentally demonstrate that a geometric phase of Berry’s type (7) can
be induced by a variable coupling between the system and a quantized
field, using a superconducting circuit. This phase is nonvanishing even
when the quantized field is in the vacuum state, a result with no semi-
classical analog. It has been referred to as the vacuum-induced Berry
phase (8), and its existence and observability have been the subject of
theoretical debate (8–11). According to Larson (10), it is an artifact of
the rotating-wave approximation. However, later work by Wang et al.
(11) shows that a vacuum-induced Berry phase is always associated
with the Rabi model, regardless of whether the rotating-wave approxi-
mation is used. No evidence of this phase has been observed thus far,
possibly due to the difficulty in engineering the relevant interaction,
whereas superconducting circuits have already been used to study
geometric phases (12–16), their susceptibility to noise (17), and their
relation to topological effects (18, 19).

In previous measurements of the Berry phase (13, 20), a transition
between two quantum states |g〉 and | f 〉 was driven by a coherent
field of amplitude a, detuning D, and phase φ (Fig. 1A). In a frame
rotating at the drive frequency, the corresponding dynamics is that
of a spin-½ particle interacting with an effective magnetic field B

→
=

(2ga cosφ, 2ga sinφ, D), where g is the dipole strength of the transition.
An adiabatic variation of φ causes B

→
to precess around the ẑ axis;

the corresponding path traced out by the spin particle in its Hilbert
space can be obtained by projecting the vectorB

→
onto the Bloch sphere

(Fig. 1B). The spin particle, initially in its ground state, acquires a
geometric phase g = W/2, where W is the solid angle subtended by
the circular path (7).

As noticed by Fuentes-Guridi et al. (8), the model presented in
Fig. 1A is a semiclassical one: It ignores the quantization of the applied
field and neglects the effect of vacuum fluctuations on the Berry phase.
By contrast, a fully quantized version of the problem is captured by
the Hamiltonian

Ĥ ¼ D
2
ŝz þ g ŝþâe�iφ þ ŝ�â†eiφ

� � ð1Þ

where ŝz is a Pauli matrix acting on the Hilbert space {|g〉, |f 〉} of the
two-level system, D is the detuning of the quantized field, g is the
coupling, and â, â†, ŝ� , and ŝþ are the annihilation and creation
operators of the quantized field and the two-level system, respectively.
This Hamiltonian describes a Jaynes-Cummings–type interaction with
a variable phase φ and gives rise to a finite Berry phase also in the
limit of vanishing photon number (8).

In our experiment, we realize a tunable coupling between a cavity
mode and two levels, |g〉 and |f 〉, of a superconducting artificial atom,
by applying a coherent microwave signal (21–24), as schematically shown
in Fig. 1C and detailed in the following. A slow modulation of the
coupling phase realizes a geometric manipulation, which is the quan-
tum analog of the semiclassical evolution depicted in Fig. 1 (A and B).
To understand its effects, consider the eigenstates of the Hamiltonian
(Eq. 1). The ground state |g, 0〉 is not coupled to any other state; as such,
it acquires no geometric phase. The other eigenstates are coupled in pairs
Y±

n

�� �
having support in the subspaces {|f, n〉, |g, n + 1〉}, with n denoting

the photon number in the cavity. As φ is adiabatically steered, each
subspace undergoes a different evolution, shown in Fig. 1D for the first
few photon numbers. The geometric phase accumulated by the states
Y±

n

�� �
is given by (8)

g±n ¼ p 1∓
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ 4g2ðnþ 1Þ
p

" #
ð2Þ

A comparison to Fig. 1B highlights two key features of the quantized
model: (i) for a given coupling g and detuning D, only a discrete set of
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paths are admissible, corresponding to integer values of n, and (ii) a
finite solid angle is enclosed even when n = 0, corresponding to a
vacuum-induced Berry phase.
RESULTS

Experimental setup
Our setup consists of a transmon-type superconducting circuit em-
bedded in a three-dimensional (3D) microwave cavity (16, 25). The
distribution of the electric field for the first two modes of the cavity
is shown in Fig. 2B. The position of the coupling ports is such that the
first mode is overcoupled, whereas the second mode is strongly under-
coupled.We use the ground state and the second excited state of the trans-
mon (|g〉 and |f 〉, respectively) as the two atomic states and the second
mode of the cavity as the quantized field. A diagram of all relevant
frequencies for our experiment is shown in Fig. 2C. To read out the
ground state and the first and second excited states of the transmon,
we measured the state-dependent transmission through the funda-
mental mode (26). By applying a control field close to the nominal
frequency wd = wge + wef − w2, we induce a microwave-activated
Gasparinetti et al. Sci. Adv. 2016; 2 : e1501732 13 May 2016
coupling between pairs of states |f, n〉 and |g, n + 1〉, with amplitude
geiφ and detuning D (23, 24) (see the Supplementary Materials for
details).

Resonant vacuum-induced Berry phase
We first report on measurements performed in the resonant case D =
0, and with the cavity initially in the vacuum state n = 0. Our scheme
for measuring the geometric phase (Fig. 3A) relies on the use of |e〉 as
a reference state for Ramsey interferometry. The measured thermal
population of |e〉 is about 1% and is neglected in our analysis. Starting
from the ground state |g, 0〉, we first prepare the superposition state
1ffiffi
2

p j f 0ð i þ je0〉Þ and then apply a resonant coupling pulse to bring the
state |f0〉 into Y�

0

�� � ¼ 1ffiffi
2

p jg1ð i þ j f 0〉Þ. At this point, we again turn
on the coupling, choosing its phase so that the effective magnetic field
is aligned with the prepared eigenstate Y�

0

�� �
(see also the Supplemen-

tary Materials). Then, we slowly vary the phase by an amount dφ = 2p.
A third coupling pulse follows to bring the system back to |f0〉. The
phase carried by |f0〉, which includes a geometric contribution from
the phase manipulation, is finally detected by Ramsey interferometry
against the reference state |e0〉, using a final p/2 pulse on the |e〉↔ |f 〉
transition with variable phase φR. To single out the geometric contri-
bution to the interference phase, we compare patterns obtained with
(dφ = 2p) and without (dφ = 0) the phase variation because the ac-
quired dynamic phase (including Stark shifts) is the same in both cases.
The recorded interference patterns clearly oscillate out of phase
(Fig. 3B), with a measured phase shift g�0 = (3.13 ± 0.06). This result
can be explained by a geometric argument: when D = 0, the Bloch
vector describes a loop on the equator (compare Fig. 1D). The en-
closed solid angle is W = 2p, corresponding to a geometric phase p.
We have repeated this measurement for different durations t of the
middle coupling pulse. As we keep dφ = 2p, this results in the same
geometric loop being traced out at different speeds. For each mea-
surement, we extract the phase g�0 from the shift between the two
Ramsey patterns and plot it versus t (Fig. 3C, circles). The data are
clustered around the value p, confirming thatg�0 is largely independent
of the rate at which we sweep φ, as long as the evolution stays adia-
batic. This is a strong indication of the geometric character of g�0 . For
the fastest pulses considered, we see systematic deviations from the
value p. This behavior must be expected as the speed is increased,
due to the breakdown of the adiabatic assumption. In the present case,
the adiabaticity parameter can be written as A = p/(gt) = 0.52 ms/t.
The crossover between adiabatic and nonadiabatic dynamics is ex-
pected when A ≈ 1 and t ≈ 0.5 ms, in agreement with the data of
Fig. 3C.

Using the same technique, we measure the phase acquired by the
other eigenstate Yþ

0

�� �
. By adding a phase shift of p to the coupling

pulse, we turn Y�
0

�� �
into Yþ

0

�� �
because the pseudospin is now aligned

opposite to the effective magnetic field. The resulting geometric phase
gþ0 (Fig. 3C, squares) follows a similar trend as g�0 , approaching p in
the adiabatic limit and deviating at shorter pulse durations. In addi-
tion, we consider the state |f0〉, for which the field mode is initially in
the vacuum state. To prepare and measure |f0〉, we omit the first and
third coupling pulses. Because |f0〉 is not an eigenstate of Eq. 1, we
select only those pulse durations t = pk/g, with an integer k, that give
rise to a cyclic evolution. The resulting series (Fig. 3C, diamonds), in
agreement with the other two, provides direct evidence of the vacuum-
induced Berry phase. Finally, we prepare an n-photon Fock state in
the cavity and measure the phases acquired by the states Y±

n

�� �
and
A B

DC n = 0
n = 1

n = 2
n = 3

|f

|g

α

ϕ

|f

|g

|e

|g

|f,n

|g,n + 1

0
α

2gα

n + 1

2g

f
Ω

Fig. 1. Berry phase induced by a quantized field. (A) An atomic tran-
sition between two states, |g〉 and |f〉, is driven by a coherent tone of am-
plitude a, phase φ, and detuning D. The phase φ is slowly varied between 0
and 2p. (B) In a frame rotating at the drive frequency, the drive acts as an
effective magnetic field (red thick arrow) precessing around the ẑ axis. In
the adiabatic limit, the Bloch vector stays aligned with the field and de-
scribes a circular path on the Bloch sphere spanned by the atomic basis
states |g〉 and |f〉. The acquired geometric phase equals half the solid angle
W subtended by the path. (C) By placing the atom in a cavity, the atom
interacts with a quantized field. The interaction between the atom and the
field is controlled by a microwave-activated coupling, which is mediated
by an intermediate state |e〉 and is tunable in amplitude g and phase φ.
(D) Admissible paths on the Bloch sphere for different numbers of photons
n in the cavity. For each n, the Bloch sphere is spanned by the basis
states |g, n + 1〉 and |f, n〉 of the combined atom-cavity system.
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|f, n〉 (Fig. 3D). The mean geometric phase, averaged over different
states and different photon numbers n = 0,…,4, is 〈g〉 = (3.1 ± 0.2) ≈
p. We thus conclude that, at resonance, the Berry phase is essentially
independent of the photon number in the cavity.

Berry phase at finite detuning
In contrast to the resonant case, a photon number–dependent geo-
metric phase is to be expected at finite detuning D between the atom
and the field because in that case, the enclosed solid angle depends on
the ratioD=ðg ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p Þ (Fig. 1D). Furthermore, according to Eq. 2, the

two eigenstates Y�
n

�� �
and Yþ

n

�� �
acquire different phases: g�n ≠ gþn for

D ≠ 0. To measure the relative geometric phase between Y�
n

�� �
and

Yþ
n

�� �
at arbitrary detuning, we use the pulse sequence described in

Fig. 4A. First of all, we notice that for a generic D, the state |f, n〉 =
a(D)Y�

n

�� �
+ b(D)Yþ

n

�� �
is a superposition of Y±

n

�� �
; as such, |f, n〉 can be

directly used for Ramsey interferometry. The coefficients a(D) and
b(D) determine the visibility of the interference pattern. Because a mea-
surement based on |f, n〉 only involves the two states Y±

n

�� �
, it allows us

to use a spin-echo technique to cancel out the dynamic phase. Al-
though a spin echo is typically implemented by applying an inverting
p pulse, here we prefer to engineer the effective Hamiltonian (Eq. 1) so
that the states Y±

n

�� �
are effectively swapped during the second half of

the evolution. This is accomplished by repeating the phase sweep with
an opposite detuning, an opposite phase variation, and a phase shift of
p (see Fig. 4A and the Supplementary Materials). Finally, instead of
varying the phase φ by a full cycle, we vary it by a fraction of the full
cycle. We repeat the measurement for incremental values of the phase
variation dφ and record the corresponding f-state population Pf at the
end of the sequence. This protocol, based on a noncyclic geometric
Gasparinetti et al. Sci. Adv. 2016; 2 : e1501732 13 May 2016
phase (27), admits a similar geometric interpretation as in Fig. 1D,
provided that the open ends of the paths described by Y±

n

�� �
are con-

nected to the initial state |f, n〉 by geodesic lines (27). With this prescrip-
tion, one finds that the acquired geometric phase is a linear function of
dφ (see the Supplementary Materials for further details).

In Fig. 4B, we plot representative traces of Pf versus dφ, for n = 0
and different values of the detuning D. The experimental data (dots)
are fitted to sinusoidal oscillations (solid lines). The acquired geomet-
ric phase g after a full cycle (dφ = 2p) is related to the frequency f of
the oscillations (with respect to dφ) by g = pf. No oscillations are ob-
served for D = 0. This is in agreement with the results presented in Fig.
3: at resonance, both states Y±

n

�� �
acquire the same phase. As we move

away from resonance, we observe oscillations of increasing frequency,
indicating the accumulation of a geometric phase. The visibility of the
oscillations decreases at higher detunings, due to our choice of |f0〉 as
the reference state. In Fig. 4C, we plot the geometric phase difference
ðgþn � g�n Þ versus the detuning D. Different symbols correspond to
different photon numbers n = 0, 1, 2, and 3. We simultaneously fit our
model expression (Eq. 2) to all data sets (solid lines), with the coupling
constant g as the only fit parameter. The data are in good quantitative
agreement with the model, with deviations on the order of a few per-
centages at large detunings and higher photon numbers. From the
global fit, we extract the value g/2p = (4.49 ± 0.03) MHz. For compar-
ison, an independent estimation based on Rabi oscillations gives g/2p =
(4.12 ± 0.06) MHz (see the Supplementary Materials). We attribute the
8% discrepancy between these two values to a frequency-dependent
attenuation in our input line (which includes a mixer and a room-
temperature amplifier) and to higher-order transitions in our atom-
cavity system, which are not accounted for in our model.
A
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Fig. 2. Transmon in a 3D cavity with mode-selective coupling ports. (A) Edited photograph of the 3D cavity used in the experiment. Two sapphire
chips are placed inside the cavity. A transmon is patterned on the left chip (blue circle). (B) Cross section of the electric field magnitude |E

→
| for the two

lowest-frequency modes of the cavity in (A), as obtained from a finite-element simulation. The chip used in the experiment is highlighted in blue, and the
cavity ports are indicated as circles (not drawn to scale). (C) Diagram of the relevant frequencies for the experiment: first three cavity modes, w1, w2, and w3

(red), first two transitions of the transmon, wge and wef (blue), and higher-order transition between states |f0〉 and |g1〉, wd (yellow).
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DISCUSSION

The Berry phase induced by a quantized field can be thought of as a
nontrivial combination of the geometric phase acquired by a quantum
two-level system (13) and that acquired by a harmonic oscillator (15).
Our experiments provide clear evidence of this phase, thus putting the
theory predictions by Fuentes-Guridi et al. (8) on a solid empirical
basis and shedding light on a fundamental property of cavity quantum
electrodynamics.

The techniques demonstrated here may open new avenues for the
geometric manipulation of atom-cavity systems, including geometric
Gasparinetti et al. Sci. Adv. 2016; 2 : e1501732 13 May 2016
control of cavity states (28–30) and cavity-assisted holonomic gates
(16). For instance, our pulse scheme can be directly exploited to im-
part a geometric phase onto specific Fock states in the cavity, similarly
to the results presented in a previous study (30). In our case, two con-
secutive, phase-shifted p pulses on the |f, n〉 ↔ |g, n + 1〉 transition
realize a Fock state–selective phase gate in a time p=ð ffiffiffi

n
p

gÞ, where
g is the tunable coupling. Different Fock states can be simultaneously
addressed by exploiting the cavity-induced Stark shift on the |f, n〉↔
|g, n + 1〉 transition, which is about 15 MHz in our system (see the
Supplementary Materials). As a further application, the tunable coupling
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Fig. 3. Vacuum-induced Berry phase: Resonant case. (A) Pulse se-
quence to detect the geometric phase acquired by the state Y�

n

�� �
for res-

onant coupling (D = 0). The cavity is prepared in an n-photon Fock state by
repeating the initial sequence n times. The system is prepared in a super-
position of |e, n〉 and Y�

n

�� �
. Then, the resonant coupling is turned on, and

its phase is increased by 2p during a time t. Finally, the relative phase be-
tween Y�

n

�� �
and |e, n〉 is determined by Ramsey interferometry. (B) Oscilla-

tions observed in the e-state population Pe when varying the phase φR of
the second Ramsey pulse, with t = 420 ns and n = 0. The measurement
described in (A) (dφ = 2p; dark magenta squares) is compared against a
reference measurement in which the phase of the coupling is held fixed
(dφ = 0; blue circles). The phase shift observed in the Ramsey pattern corre-
sponds to an accumulated geometric phaseg�0 = (3.13 ± 0.06). (C) Geometric
phase g, determined as in (B), versus pulse duration t. Three different states
are prepared: the two eigenstates, Y�

0

�� �
(blue circles) and Yþ

0

�� �
(dark ma-

genta squares), and the state |f0〉 (yellow diamonds), for which the cavity is
initially in the vacuum state. (D) Geometric phase accumulated by the states
Y±

n

�� �
and |f, n〉, with fixed pulse duration t and varying photon number n.
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Fig. 4. Vacuum-induced Berry phase: Finite detuning. (A) Pulse
sequence to detect the geometric phase difference accumulated between
states Y�
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�� �
and Yþ

n

�� �
at finite detuning D. We first prepare the state |f, n〉,

which is a superposition of Y�
n

�� �
and Yþ

n

�� �
. Then, we turn on the coupling

and vary its phase by an amount dφ. We repeat this operation twice, the
second time with an opposite detuning −D, an opposite phase variation
−dφ, and a p phase shift. This sequence results in dynamic phase cancel-
lation, whereas the different geometric phases accumulated by Y±

n

�� �
can

be detected as a population transfer away from the state |f, n〉. (B) Oscilla-
tions in the f-state population Pf as a function of the phase displacement
dφ, for selected values of the detuning D (circles, data; solid lines, sine fit)
and n = 0 photons in the cavity. The phase of the oscillations when dφ = 2p
corresponds to the accumulated geometric phase in a single closed loop
(whose extent is indicated by an orange line). (C) Geometric phase differ-
ence, ðgþn � g�n Þ, versus detuning D for different photon numbers n (sym-
bols). The solid lines are a simultaneous fit of the model expression (Eq. 2)
to all data sets, with the coupling constant g as the only fit parameter.
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MATERIALS AND METHODS

The microwave cavity used in this experiment was made of 6061 alu-
minum and had inner dimensions of 5 × 20 × 50 mm. The two lowest
modes of the cavity had resonant frequencies w1/2p = 7.828 GHz and
w2/2p = 9.041 GHz and quality factors Q1 = 18,000 and Q2 ≈ 3 × 105.
The next mode had a frequency w3/2p = 11.432 GHz.

The transmon was patterned onto a 4 × 7–mm sapphire chip with
standard e-beam lithography, e-beam evaporation at different angles,
and liftoff. It consists of two 200 × 300–mm Al pads separated by
160 mm and connected by a Josephson junction of Josephson energy
EJ/h ≈ 35 GHz (16). The first two transition frequencies of the trans-
mon are wge/2p = 10.651 GHz and wef/2p = 10.217 GHz. The decay
time of both excited states is T1 = (4.9 ± 0.1) ms, and their dephasing
time is T2* = (2.0 ± 0.1) ms.

All measurements were performed in a dilution refrigerator with a
base temperature below 40 mK. The cavity was directly connected to a
copper cold finger at the base plate. Additional copper braid was used
to improve thermalization. The input line was attenuated by 60 dB
between the 4-K stage and the input port of the cavity. In the out-
put line, a high electron mobility transistor amplifier with 4-K
nominal noise temperature was used as the first amplifier. The cav-
ity output was isolated from the amplifier input with three isolators
with at least 20-dB isolation each, thermalized below 150 mK. An 8- to
12-GHz bandpass filter was placed between the cavity output and the
first isolator.

The pulses used to drive the transmon were generated by modulat-
ing coherent microwave tones with arbitrary waveforms using calibrated
inphase-quadrature mixers. The signal from the output line was fur-
ther amplified, down-converted into a 25-MHz signal, recorded with a
fast digitizer, and averaged. The typical number of averages for the
data presented in this paper is 60,000.

The qubit transition frequencies and the pulse amplitudes were
determined by standard Rabi and Ramsey spectroscopy. When driving
the transitions, we compensated for Stark shifts caused by the photonic
occupation of the cavity mode (31) and the coupling field (24) (see the
Supplementary Materials for a detailed discussion).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/5/e1501732/DC1
Characterization of the tunable coupling
Characterization at higher photon numbers
Geometric phases acquired by the eigenstates Y±

n

�� �
Geometric phase estimation based on open loops
Dynamic phase cancellation
Insensitivity to small deviations from the resonant frequency
Phase calibration of spin-echo coupling pulses
fig. S1. Rabi spectroscopy of the tunable coupling.
fig. S2. Calibration of the strength and resonant frequency of the tunable coupling.
fig. S3. Calibration at higher photon numbers.
fig. S4. Geometric interpretation of the open-loop protocol.
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