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Abstract

We address shape uncertainty quantification for two-dimensional Helmholtz transmission prob-
lems, where the shape of the scatterer is the only source of uncertainty. As quantities of interest,
we target the solutions to the underlying partial differential equations and linear output function-
als of them. However, the techniques and theory presented in this work can be easily generalized
to any elliptic problem on a stochastic domain. In the framework of the so-called deterministic
approach, we provide a high-dimensional parametrization for the interface. Each domain con-
figuration is mapped to a nominal configuration, obtaining a problem on a fixed domain with
stochastic coefficients. To compute surrogate models and statistics of quantities of interest, that
is to perform interpolation and quadrature with respect to the parameter, we use sparse stochas-
tic collocation. In particular, we apply an adaptive, anisotropic Smolyak algorithm, which allows
to attain high convergence rates that are independent of the number of dimensions activated in
the parameter space, thus breaking the so-called ‘curse of dimensionality’. To ensure validity
of the convergence theorems for sparse interpolation and quadrature, we need to show analytic
dependence of the solution with respect to the high-dimensional parameter. When proving this,
special attention is needed when, as in our case, the high-dimensional parametrization is associ-
ated with the geometry. Once the smooth dependence of the solution on the parameter has been
assessed, we prove convergence estimates for the full sparse tensor discretization, namely when
the discretization in the parameter space is coupled to a space discretization for each parameter
realization. The theory for this is first presented in a general setting that goes beyond the appli-
cation to partial differential equations on random domain configurations. Then, the convergence
estimates obtained are applied to our framework of Helmholtz transmission problems mapped
back to a nominal configuration. To this aim, we develop a regularity theory with respect to the
spatial variable, with norm bounds that are independent of the parametric dimension, and this
enables us to state convergence rates for the finite element discretization which are independent of
the parameter realization and dimension. Several numerical experiments confirm the theoretical
results and the effectivity of the adaptive Smolyak algorithm. Lastly, we present cases, peculiar
to interface problems, where high-order quadrature methods fail to converge. Namely, we show
that, for point evaluations on the physical domain, the smooth dependence of the solution on the
high-dimensional parameter breaks down if the point might be crossed by the interface for some
parameter realizations. In this case, alternative solutions to classical high-order methods need to
be found.
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Prefazione

Questo lavoro è rivolto alla quantificazione dell’incertezza nella forma nel caso di problemi di
trasmissione per l’equazione di Helmholtz in due dimensioni, in cui assumiamo che la sagoma
dell’oggetto attraversato dalle onde sia l’unica fonte di incertezza. Come quantità d’interesse,
consideriamo le soluzioni delle equazioni differenziali alle derivate parziali associate al fenomeno
di trasmissione, o suoi funzionali lineari di output. È importante però osservare che le tecniche e
la teoria presentati in questa tesi possono essere facilmente generalizzati a qualunque problema
ellittico posto su un dominio stocastico. Nell’ambito del cosiddetto approccio deterministico,
formuliamo una parametrizzazione dell’interfaccia in cui il parametro ha valori in uno spazio
alto-dimensionale. Ogni configurazione del dominio viene mappata su una cosiddetta configu-
razione nominale, ottenendo cos̀ı un problema posto su una configurazione fissa con coefficienti
stocastici. Per calcolare modelli surrogati o statistiche della quantità d’interesse, ossia per effet-
tuare interpolazione e quadratura nello spazio dei parametri, ricorriamo al metodo di collocazione
stocastica. In particolare, utilizziamo un algoritmo di Smolyak adattativo e anisotropico, che ci
permette di ottenere ordini di convergenza elevati che sono indipendenti dal numero di dimensioni
attivate. Per assicurare la validità dei teoremi di convergenza per interpolazione e quadratura
sparse, occorre dimostrare l’analiticità della soluzione rispetto al parametro alto-dimensionale.
Nel provare ciò, è necessario prestare particolare attenzione nel caso in cui, come nella nostra
applicazione, la parametrizzazione è associata alla geometria. Una volta stabilita la regolarità
della soluzione rispetto al parametro, dimostriamo stime di convergenza per la discretizzazione
completa, vale a dire quando la discretizzazione nello spazio dei parametri è associata ad una
discretizzazione spaziale per ogni realizzazione del parametro. La teoria viene dapprima presen-
tata in un contesto generale, che va oltre l’applicazione ad equazioni differenziali alle derivate
parziali su domini stocastici. Dopodiché, applichiamo le stime di convergenza ottenute ai prob-
lemi di trasmissione per l’equazione di Helmholtz posti sulla configurazione nominale. A tal scopo,
sviluppiamo una teoria di regolarità rispetto alla variabile spaziale, con maggioranti delle norme
che sono indipendenti dalla dimensione dello spazio dei parametri, di modo di ottenere tassi di
convergenza per la discretizzatione agli elementi finiti che sono indipendenti dalla realizzazione
del parametro. A supporto dei risultati teorici, riportiamo numerosi esperimenti numerici, che
mostrano anche l’efficacia dell’algoritmo di Smolyak adattativo. Infine presentiamo casi, stretta-
mente collegati al fatto di considerare problemi di interfaccia, in cui i metodi di quadratura di
ordine elevato non forniscono la convergenza desiderata. Più precisamente, mostriamo come, se
si considera come quantità di interesse il valore della soluzione in un punto nella configurazione
fisica, la regolarità rispetto al parametro alto-dimensionale viene a mancare se questo punto può
essere attraversato dall’interfaccia per alcune realizzazioni del parametro. In tal caso, è necessario
ricorrere a soluzioni alternative ai classici metodi di ordine elevato.
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Introduction

Consider a light beam illuminating a metallic particle. How the light is reflected and absorbed
by the particle depends, among other factors, on the shape of the particle itself. More generally,
we can say that the answer of a physical system upon excitation depends on the shape of the
domain or, for interface problems, on the shape of the interface.

In nano-optics applications, electromagnetic waves are used to excite nano-sized, usually metallic,
scatterers, whose shape is uncertain due to imperfections in the manufacturing process. Our goal
is to study numerical methods that allow to quantify how such shape variations affect the optical
response of the nano-particle. We refer to the quantity for which we want to study the effects of
shape variations as quantity of interest (Q.o.I.). This will be the solution to a partial differential
equation (PDE), as for the electric or magnetic field, or a linear output functional of it, for
instance the intensity of the energy flux reflected in a particular direction.

By quantifying we mean two things: computing a surrogate model for the Q.o.I. or approximating
statistical moments (mean, variance, etc.) of it. In engineering terms, a surrogate model, also
referred to as metamodel or emulator, is a model that is computationally much cheaper to evaluate
than the Q.o.I. but that still mimics its essential features. In our case, the surrogate model will
be the interpolant of the Q.o.I. over the possible realizations. Statistical moments are instead
defined as integrals over the probability space, which means that approximating them boils down
to performing quadrature in the probability space.

State of the art in shape uncertainty quantification

Shape uncertainty quantification is a field that has seen a considerable development in the last
ten-fifteen years. One of the main difficulties associated with the treatment of stochastic domains
or interfaces is the nonlinear relationship between the uncertain input (the domain) and the
uncertain output (the solution to a PDE or output functionals of it). The approaches proposed
in literature can be divided into four main categories: perturbation methods, level-set methods,
fictitious domain approach and mapping approaches. In the following, we present the main
features of each of them. Since they have many aspects in common, we present the fictitious
domain approach together with the level-set techniques.

Perturbation methods

These methods hold for the case of small shape perturbations.

The largest class of the approaches proposed consists in using shape calculus techniques [DZ11,
Ch. 9 and 10] to approximate the Q.o.I. on the randomly perturbed shape with a Taylor expan-
sion centered at the unperturbed domain, leading to a linearization of the problem. This allows to
establish deterministic relationships between moments of the random domain and moments of the
Q.o.I., reason why these methods are called distribution free. The approach was first proposed in
[HSS08], which addresses the estimation of the mean and of the two-point correlation of the solu-
tion to an elliptic equation from the mean and two-point correlation of the domain perturbation
field. There, the resulting equations are recasted as boundary integral equations, and the tensor
equation for the two-point correlation is solved efficiently with a sparse tensor product Galerkin
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scheme based on wavelets. The work in [HL13] addresses, with the same method, computation of
moments of solutions to stochastic interface problems, and, as alternative to sparse tensor prod-
uct schemes, proposes a low rank approximation based on the pivoted Cholesky decomposition to
solve the tensor equation for the two-point correlation. The above techniques have been extended
in [Har10] for the computation of moments of output functionals. The perturbation approach
based on shape calculus has been inserted in [CS13] in a more abstract framework for uncertainty
quantification of nonlinear operator equations. There, the method used in the previous works
for computing the first two moments has been generalized to the computation of any moment;
also, the paper presents explicit bounds on the range of perturbations for which the approach is
applicable, and shows an application to a nonstationary diffusion problem on a random domain.

A different approach, still based on perturbation techniques, is the one developed in [Hon05] in
the framework of elastostatic or elastodynamic problems on random domains, where the Taylor
series expansion for the random fluctuations of the geometry leads to a Taylor expansion for the
boundary element matrices arising from the underlying system of PDEs.

Level-set methods and fictitious domain approach

These two methods are based on embedding the random domain in a larger, deterministic domain
containing all possible realizations.

The level-set approach has been developed in [NSM07] and [NCSM08]. The key idea is to represent
the random boundary of the domain as the zero level-set of a function. The function used is usually
the signed distance function, so that the random domain is identified by the negative set and the
exterior, nonphysical domain as the positive set. The main advantage of this method is that it
can handle complex geometries and topologies.

The fictitious domain approach is described in [CK07]. The variational formulation for the PDE
considered is posed on the larger, fictitious domain in which the random domain is embedded.
The boundary conditions are enforced via a Lagrange multiplier acting on the random boundary,
turning the solution of the variational formulation to the solution of a saddle point problem. The
advantage of this method is that it avoids complete reassembling, at each domain realization, of
the matrices associated with the spatial discretization of the problem.

Due to the embedding in a larger domain, both methods recast a problem on a random domain as a
random interface problem. The presence of the interface introduces a nonsmoothness with respect
to the parameters which describe the random domain fluctuations. For this reason, in [CK12] the
convergence analysis for high-order methods treating the uncertainty holds only on subdomains
not intersecting the random boundary. In [NCSM08], the loss of regularity is compensated by
constructing, for each domain realization and for each element in the space discretization, an ad
hoc quadrature rule to compute the necessary integrals in the probability space.

Mapping approaches

The original mapping approach has been introduced in [TX06, XT06]. The idea is to use a
realization-dependent coordinate transformation to map each domain realization to a fixed, ref-
erence configuration, also called nominal configuration. The variational formulation of the PDE
on the random domain can then be posed on the reference domain, reducing the problem to a
PDE on a fixed domain with stochastic coefficients and stochastic right-hand side. The random
boundary is mapped back to a reference boundary, and the map is extended to the whole do-
main either using a harmonic extension [XT06], or constructing an analytic map [TX06]. It is
shown in [MNK11] that the mapping approach on the continuous level, subject to a finite ele-
ment discretization, is mathematically equivalent to a discrete mapping where, given a mesh, the
connectivity is fixed and the node coordinates are changed according to the realization.
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We mention the papers [MCMM10, MCM11a, MCM11b] for application of the mapping technique
to electromagnetic problems.

The mapping approach is the most common tool used for the mathematical analysis of PDEs
on random domains. The paper [CCNT16] shows the regularity properties of the solution to the
PDE with respect to the parameters describing the uncertainty in order to prove convergence
for the algorithm performing the quadrature in the probability space. The paper [HPS16] also
shows similar regularity results and proposes to use parametric finite elements for the space
discretization.

The mapping approach is also the method adapted in this thesis to deal with the stochastic
interface. Thus, further details about this technique will be provided in Section 3.1.

Outline

Most of the content of this thesis is based on [HSSS].

In Chapter 1 we introduce the two model problems addressed in this work, which are both interface
problems where the shape of the interface is the only source of uncertainty.

In Chapter 2, we address the modeling of the random interface. For this, we follow the so-called
parametric approach, developed by Ghanem and Spanos [GS03] from the pioneering ideas of
Wiener [Wie38]. As it is commonly done to model the stochastic diffusion coefficient in the scalar
diffusion model (see [CDS10, CDS11, SG11], just to mention some), we introduce a probabilistic
description of the interface Γ = Γ(ω), so that it will then depend on ω ∈ Ω indirectly through a
deterministic, high-dimensional parameter representing the stochasticity.

In Chapter 3 we cast the variational formulation for the interface problems in a form that is
easier to treat from the theoretical and algorithmic point of view. Namely, in Section 3.1 we
apply the mapping approach [TX06, XT06] to obtain a variational formulation on a domain with
fixed, parameter-independent interface, whose well-posedness is addressed in Section 3.2.

Chapter 4 treats the discretization with respect to the parameter space. For the computation of
the interpolant and integrals of the Q.o.I., we use stochastic collocation [BNT10, XH05], preferring
it to the stochastic Galerkin approach (see [SG11] for a comprehensive review) because of its
nonintrusive nature and thus more immediate applicability for nonlinear dependence of the Q.o.I.
on the parameter. To overcome the so-called curse of dimensionality due to the high dimension
of the parameter space, we use the sparse adaptive Smolyak algorithm for stochastic quadrature
and interpolation described in [SS13] and pioneered in the earlier work [GG03]. In the same
chapter (Section 4.3) we also discuss the fulfillment, in our framework, of the key assumption of
all convergence theorems, that is the holomorphy of the Q.o.I. with respect to an extension of the
high-dimensional parameter to the complex plane. Our approach and results are different from
the regularity analysis in [HPS16], because what is discussed there is the regularity with respect to
the real-valued parameter (and not its complex extension). The difference with [CCNT16] relies
instead mostly in the methodology used, which in our case relies more on properties of holomorphic
functions rather than direct computation, making the procedure more easily extendable to other
domain mappings or PDEs.

In Chapter 5 we prove the convergence results for the Q.o.I. when discretization with respect
to both the parameter and the space variable on the nominal configuration is considered. Since
these estimates hold in general when sparse stochastic collocation or quadrature are combined
with space discretization and not only for PDEs on stochastic domains, we present them in an
abstract setting.
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In Chapter 6 we apply the results of the previous chapter to our setting of the interface problem
on the nominal domain. For the space discretization, we use finite elements. We point out that a
boundary element formulation (as used, for instance, in [HSS08]) is not applicable in the context
of the mapping approach, due to variable coefficients in the resulting variational formulation.
To establish the convergence results regarding the space discretization, we present the regularity
analysis with respect to the space variable.

Chapter 7 is dedicated to the numerical results for the two model problems.

Chapter 8 addresses the difficulties that arise when computing moments of the solution in the
physical space, where the interface is different for each realization. We emphasize that this task
is different from performing quadrature on the nominal domain, as addressed instead in the
previous chapters and in [HPS16] and [MCM11a]. The difficulties that we encounter are due
to the discontinuity of the material properties across the interface. Similar problems have been
faced in [MNT13] in the framework of the second-order wave equation with discontinuous random
velocity, and are the same reason why realization-dependent, ad hoc quadrature rules are needed
in level-set approaches.
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Notation

n unit normal vector, oriented outward.

A> transpose of matrix A.

Ck(D) k-times continuously differentiable functions on D.

Ckper([0, 2π)) k-times continuously differentiable, periodic functions on [0, 2π).

DF Jacobian matrix of map F .

DtN Dirichlet-to-Neumann map.

Hk(D) Sobolev space of k-times weakly differentiable functions on D.

IΛ sparse interpolation operator on set Λ.

Lp(D) Lebesgue pth power integrable functions on D.

Lpper([0, 2π)) Lebesgue pth power integrable, periodic functions on [0, 2π).

QΛ sparse quadrature operator on set Λ.

X∗ space of bounded linear functionals on a Banach space X (dual space of X).

x coordinates on the physical configuration.

∆I difference interpolation operator.

∆Q difference quadrature operator.

Im imaginary part (of complex-valued quantity).

Ω set of elementary events.

Re real part (of complex-valued quantity).

N0 natural numbers, including 0.

N natural numbers, excluding 0.

P probability measure.

R+ positive real numbers, excluding 0.

R0,+ positive real numbers, including 0.

R real numbers.

`p(N) space of p-summable sequences.

x̂ coordinates on the nominal configuration .

‖·‖2 Euclidean vector norm in Rn.

‖·‖Ck(D1)∪Ck(D2) broken Ck-norm: ‖·‖Ck(D1) + ‖·‖Ck(D2).

‖·‖Hk(D1)∪Hk(D2) broken Sobolev norm:
√
‖·‖2

Hk(D1)
+ ‖·‖2

Hk(D2)
.
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Notation

‖·‖∞ maximum vector norm in Rn.

‖·‖ Euclidean vector norm in R2.

F set of finitely supported multiindices.

I(g) exact integral of g.

N (Λ) set of neighbors of a set Λ of multiindices.

PJ parameter space with finite dimension.

P parameter space with infinite dimension.

U([a, b]) uniformly distributed random variable on [a, b].

⊗,
⊗

tensor product.

]S cardinality of set S.

CovX covariance operator of random variable X.

covX covariance kernel of random variable X.

i.i.d. independent, identically distributed.
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1. Model problems

We consider time-harmonic solutions to Maxwell’s equations, and study the propagation of waves
in a cylinder of infinite length. Introducing the orthogonal system of coordinates (x1, x2, x3),
with the x3-axis coinciding with the axis of the cylinder, we denote by E = (Ex1 , Ex2 , Ex3) the
electric field and by H = (Hx1 , Hx2 , Hx3) the magnetic field. We assume that E = E(x1, x2) and
H = H(x1, x2). Considering a direction of propagation for the waves that lies in the (x1, x2)-
plane, we are interested in the transverse electric (TE) and transverse magnetic (TM) modes.
In the former, the electric field is assumed to be perpendicular (transversal) to the direction
of propagation, leading to Ex1 = Ex2 = Hx3 = 0 and Ex3 , Hx1 , Hx2 6= 0. In the latter, we
assume the magnetic field to be perpendicular to the direction of propagation, and we have
Hx1 = Hx2 = Ex3 = 0 and Hx3 , Ex1 , Ex2 6= 0. In both cases, TE and TM, the out-of-plane
component solves a two-dimensional Helmholtz equation.

In this work, we consider the Helmholtz transmission problem with an incoming plane wave for
the two geometries depicted in Figure 1.0.1, referred to as particle in free space and particle
on substrate, respectively. In the second case, we suppose that the substrate is non-penetrable
and of infinite extension, and that the bottom part of the particle adheres perfectly to it. We
consider materials which are isotropic and non-magnetic. Moreover, we assume that the shape
of the scatterer is the only source of uncertainty in our system, so that the material parameters
are supposed to be known exactly.

To model the random shape variations, we introduce a probability space (Ω,A,P), where Ω is the
set of elementary events, A is a σ-algebra on the power set P(Ω) and P is a probability measure on
(Ω,A). For every ω ∈ Ω, we formally define Γ(ω) to be the boundary of the scatterer, D1(ω) the
exterior, unbounded domain, and D2(ω) the domain occupied by the scatterer; for the substrate
case, D1(ω) is divided into the free space and the substrate parts, i.e., D1(ω) = D1,fs(ω)∪D1,sub.
We assume that D1(ω) ∪ Γ(ω) ∪ D2(ω) = R2 for every ω ∈ Ω. Let ΓT (ω) denote the union of
all interfaces in the system. For the particle in free space, ΓT (ω) = Γ(ω). For the particle on
substrate, ΓT (ω) = Γ(ω) ∪ Γsub, where Γsub is the interface between the substrate and the free
space.

The transmission problem for the Helmholtz equation reads:



−∇ · (α(Γ(ω),x)∇u)− κ2(Γ(ω),x)u = 0 in R2,
q
u
y

ΓT (ω)
= 0,

r
α(Γ(ω),x)∇u · n

z

ΓT (ω)
= 0,

+ radiation condition at infinity,

for every ω ∈ Ω,

(1.0.1a)

(1.0.1b)

(1.0.1c)

with uniformly positive, real-valued, piecewise-constant coefficients in each subdomain, namely

α(Γ(ω),x) =

{
1 if x ∈ D1(ω),

α2 if x ∈ D2(ω),
κ2(Γ(ω),x) =

{
κ2

1 if x ∈ D1(ω),

α2 κ
2
2 if x ∈ D2(ω),

(1.0.2)
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1. Model problems

0

r(ω, ϕ)

D2(ω)

D1(ω)

Γ(ω)

ui

(a) Particle in free space.

0A B

r(ω, ϕ)

Γ(ω)
D2(ω)

D1,fs(ω)

D1,sub

ui

(b) Particle on substrate.

Figure 1.0.1: Geometries considered in this work.

in the free space case, and

α(Γ(ω),x) =


1 if x ∈ D1,fs(ω),

αsub if x ∈ D1,sub,

α2 if x ∈ D2(ω),

κ2(Γ(ω),x) =


κ2

1 if x ∈ D1,fs(ω),

αsub κ
2
sub if x ∈ D1,sub,

α2 κ
2
2 if x ∈ D2(ω),

(1.0.3)

in the substrate case. The vector n in (1.0.1b) is the exterior unit normal to Γ(ω) and, in the
substrate case, to the substrate.

In the TE mode, the solution u corresponds to the nonzero component Ex3 of the total electric
field (incoming plus scattered field), and the coefficients are given by α2 = µ2

µ1
and αsub = µsub

µ1
,

where µ1, µ2 and µsub are the magnetic permeabilities in free space, in the scatterer and in the
substrate, respectively. Since we consider non-magnetic materials, in the TE case α2 = αsub = 1.
In the TM mode, u is the nonzero component Hx3 of the total magnetic field, and α2 = ε2

ε1
and

αsub = εsub
ε1

, with ε1, ε2 and εsub the electric permittivities of free space, scatterer and substrate,
respectively; in general, α2, αsub 6= 1.

The constants κ1, κ2 and κsub denote the wavenumbers in the corresponding domains.

The transmission conditions (1.0.1b) impose the continuity of the tangential components of E
and H across the interfaces. More precisely, in the TE mode the continuity of the Dirichlet trace
refers to the continuity of the tangential components of E, and the continuity of the Neumann
trace refers to the continuity of the tangential components of H. Conversely, in the TM case the
continuity of the Dirichlet trace expresses the continuity of the tangential components of H and
the continuity of the Neumann traces expresses the continuity of the tangential components of E.
We refer to [Mai07, Sect. 2.1] for details about the physical interpretation of (1.0.1a)-(1.0.1b).

The radiation condition expresses the fact that the scattered wave must be an outgoing wave
decaying to 0 at infinity. In the free space case, it is given by the so-called Sommerfeld radiation
condition

lim
|x|→∞

√
|x|
(

∂

∂ |x|
− iκ1

)
(u(ω)− ui)(x) = 0, (1.0.4)

whilst in the substrate case it is more involved and we refer to [JHN12] for details. Here
ui(x) = eiκ1d·x denotes an incoming plane wave, with d a unit vector indicating the direction of
propagation.
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We work in the large wavelength regime, which excludes the presence of resonant geometric
structures; thus, the results of this work are not restricted to the Helmholtz equation, but also
hold for any elliptic equation.

Although we treat two-dimensional domains, the results and methodology presented in this work
hold for the three-dimensional Helmholtz equation too, when the Fourier harmonics used to
model the shape variations (see Chapter 2) are replaced by spherical harmonics. The physical
interpretation, though, would be different, because in three dimensions the Helmholtz equation
describes the propagation of pressure waves instead of electromagnetic waves.
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2. Interface parametrization

In the first section, we give a probabilistic model for the interface Γ. Using the probabilistic char-
acterization, in the second section we convert the stochastic problem to a deterministic problem on
a high-dimensional parameter domain. This approach is particularly relevant in the perspective
of a discretization, since we will see that it is easier to discretize the space where the deterministic
parameter lives rather than the probability space Ω.

2.1. Probabilistic modeling of the interface

For presenting the key ingredients of our approach, here we focus on the particle in free space.
For the extension to the particle on substrate we refer to subsection 3.1.2. In order to have a
simple representation of the interface, we require:

Assumption 2.1.1. For every ω ∈ Ω, the domain of the scatterer, D2(ω), is star-shaped with
respect to the origin, and the interface Γ(ω) is of class C1.

In this way, D2(ω) can be fully described by a stochastic, angle-dependent radius r = r(ω, ϕ) ∈
Ckper([0, 2π)) representing the interface Γ = Γ(ω), for every ω ∈ Ω and some k ≥ 1. The techniques
we are going to present can be extended to the case of an interface that is only piecewise of class
Ck (k ≥ 1), but for ease of treatment do not consider this case.

As it is commonly done in the framework of partial differential equations with stochastic diffusion
coefficient (see e.g. [CDS10, CDS11, SG11]), we expand the uncertain radius as:

r(ω, ϕ) = r0(ϕ) +

J∑
j=1

cjY2j−1(ω) cos(jϕ) + sjY2j(ω) sin(jϕ), ϕ ∈ [0, 2π), J ∈ N, ω ∈ Ω. (2.1.1)

In this formal expression, r0 = r0(ϕ) ∈ Ckper([0, 2π)), k ≥ 1, is referred to as the nominal shape.
For the following analysis, r0 can be whatever deterministic quantity related to the radius, but
since in the Fourier expansion we do not include the constant term, we consider r0 to be an
approximate parametrization of the mean shape. The truncation of the expansion in (2.1.1) is
commonly referred to in the literature [BNT10] as finite noise assumption. However, since we want
a method which is robust with respect to the number of dimensions, hereinafter, in particular
in Chapter 6, we will ensure that all the estimates obtained hold uniformly in the truncation
parameter J ∈ N.

The random variables {Yl}2Jl=1 are assumed to satisfy the following conditions:

Assumption 2.1.2. {Yl}2Jl=1 are i.i.d., with Yl ∼ U([−1, 1]) for every 1 ≤ l ≤ 2J and every J ∈ N.

In particular {Yl}2Jl=1 have compact image, as |Yl| ≤ 1 for every l. Therefore, the only way to have
a J-independent bound on the radius expansion (2.1.1) and a decay of its Fourier coefficients is
to impose some constraints on the real coefficient sequences.

To ensure, for every ω ∈ Ω, boundedness and positivity at each angle ϕ for the stochastic radius
r, we require that r = r(ω, ϕ) varies inside the range [ r0(ϕ)

2 , 3r0(ϕ)
2 ]:

5



2. Interface parametrization

Assumption 2.1.3. The coefficient sequences C := (cj)j≥1 and S := (sj)j≥1 in (2.1.1) satisfy

∑
j≥1

(|cj |+ |sj |) ≤
r−0
2
,

with r−0 = infϕ∈[0,2π) r0(ϕ) > 0.

We require that the Fourier coefficients have a ‘sufficiently fast’ polynomial decay, in the sense
made precise below. This can be ensured by either of the two following assumptions:

Assumption 2.1.4.A. The sequences C := (cj)j≥1 and S := (sj)j≥1 have a monotonically

decreasing majorant which belongs to `p(N) with 0 < p < 1
2 , and the sequences (j|cj |p)j≥1 and

(j|sj |p)j≥1 have a monotonically decreasing majorant.

Assumption 2.1.4.B. For every ω ∈ Ω, the radius r(ω, ϕ) as given in (2.1.1) belongs to
Ckper([0, 2π)), for an integer k ≥ 3, with an ω-independent norm bound.

Assumption 2.1.4.B might be easier to check in applications, when some a priori information
about the smoothness of the particle boundary is available.

Actually, we have that:

Proposition 2.1.5. If Assumption 2.1.4.B holds, then also Assumption 2.1.4.A does.

Proof. From Lemma C.0.6, we have that, for every p > 1
k , the sequences (|cjY2j−1(ω)|)j≥1 and

(|sjY2j(ω)|)j≥1 have a monotonically decreasing majorant in `p(N), for every ω ∈ Ω. Then, in
particular, the sequences C and S have a monotonically decreasing majorant in `p(N). Since
we have an ω-uniform bound on ‖r(ω, ·)‖Ckper([0,2π)), the proof of Lemma C.0.6 shows that the

majorant too is independent of ω. Finally, the fact that k ≥ 3 allows us to choose 0 < p < 1
2 .

We remark that the fact that p > 1
k also insures the monotonicity of the sequences (j|cj |p)j≥1

and (j|sj |p)j≥1.

Conversely, Assumption 2.1.4.A implies Assumption 2.1.4.B, with a smoothness parameter k =
k(p), but only if p is small enough:

Lemma 2.1.6. If the coefficient sequences C, S satisfy Assumption 2.1.4.A, then, for every
ω ∈ Ω, the radius r = r(ω, ϕ) given by (2.1.1) satisfies

‖r(ω)‖Ckper([0,2π)) ≤ C(C,S), (2.1.2)

under the assumption that the nominal radius r0 belongs to Ckper([0, 2π)) too. The constant C
depends on the regularity parameter k and on the sequences C = (cj)j≥1 and S = (sj)j≥1, but not
on the truncation parameter J ∈ N and on ω ∈ Ω. The regularity parameter k is given by:

k =

{⌊
1
p − 1

⌋
if 1

p − 1 is not an integer,

1
p − 2 otherwise.

(2.1.3)

In particular, if 0 < p < 1
4 , then Assumption 2.1.4.A implies Assumption 2.1.4.B.

Proof. See Lemma C.0.5.
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2.2. Parametric formulation

According to the aforementioned results, we can say that Assumption 2.1.4.A is more general
than Assumption 2.1.4.B.

Remark 2.1.7. Equation (2.1.1) can be rewritten as

r(ω, ϕ) = r0(ϕ) +
L∑
l=1

βlYl(ω)ψl(ϕ), ϕ ∈ [0, 2π), L ∈ N, ω ∈ Ω, (2.1.4)

with ψl = cos( l+1
2 ϕ) and βl = c l+1

2
if l is odd, ψl = sin( l2ϕ) and βl = s l

2
if l is even. The

truncation L is given by L = 2J , with J as in (2.1.1).

In general, any basis (ψl)l≥1 of L2
per([0, 2π)) could be considered, provided that ψl ∈ C1

per([0, 2π))
for each l ≥ 1. Nevertheless, the choice of the Fourier basis is particularly relevant in view of
possible applications.

More precisely, in applications the probabilistic model for r = r(ω, ϕ) will not be imposed the-
oretically as we did in Assumption 2.1.2, but extrapolated from measurement data. A possible
procedure is to estimate the symmetric covariance kernel covr = covr(ϕ,ϕ

′) of the distribution of
r and use the Karhunen-Loève expansion for (2.1.1). In this case, (ψl)l≥1 are the eigenfunctions
of the covariance kernel and (βl)l≥1 the square roots of the corresponding eigenvalues.

Now, it is reasonable to assume the covariance kernel to be rotationally invariant, i.e.

covr(ϕ,ϕ
′) = covr(ϕ− ϕ′), for every ϕ, ϕ′ ∈ [0, 2π). (2.1.5)

In this case, it is easy to see that, if r0 is a circle, then the eigenfunctions of the covariance kernel
are the elements of the Fourier basis of L2

per([0, 2π)).

Remark 2.1.8. In Assumption 2.1.4.A we have imposed some decay on the coefficient sequences
C and S in order to have some decay in the Fourier coefficients in (2.1.1). Together with the
truncation up to the Jth term, this means that, although this hypothesis may be fulfilled by
stochastic radii that do not satisfy Assumption 2.1.4.B, some L2

per([0, 2π)) functions are anyway
excluded from our treatment. However, it is legitimate to think that we discard only very irregular
functions, which would not be realistic realizations of a particle boundary.

2.2. Parametric formulation

In view of a discretization, it is not suitable to have quantities expressed in terms of ω ∈ Ω,
because we do not know how to discretize a probability space. The probabilistic model (2.1.1)
introduced in the previous section allows us to circumvent this issue, moving from the probability
space to the tensor product of the image spaces of Ω under the random variables Yl, 1 ≤ l ≤ 2J .

We recall, via application to our case, the standard parametrization procedure followed in stochas-
tic Galerkin and stochastic collocation frameworks; we refer to [SG11] for an exhaustive survey
of the topic.

From Assumption 2.1.2, we know that for each random variable Yl : Ω → Pl, 1 ≤ l ≤ 2J ,
with Pl = [−1, 1] endowed with the Borel σ-algebra Σl, the distribution of Yl is the uniform
distribution. Then the sequence (Yl)

2J
l=1 defines a map

Y : Ω→ PJ :=
2J⊗
l=1

Pl = [−1, 1]2J , ω 7→ (Yl(ω))2J
l=1 , (2.2.1)
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2. Interface parametrization

measurable with respect to the product σ-algebra Σ :=
⊗2J

l=1 Σl on PJ . The image space PJ is
commonly referred to as the parameter space. The random variables Yl being independent, the
probability measure of Y is the product probability measure

µ :=
2J⊗
l=1

µl, (2.2.2)

where µl is the probability measure of Yl, 1 ≤ l ≤ 2J .

Now, we denote by y = (yl)
2J
l=1 ∈ PJ one realization of the random variable Y , so that we can

rewrite (2.1.1) as

r(y, ϕ) = r0(ϕ) +
J∑
j=1

cjy2j−1 cos(jϕ) + sjy2j sin(jϕ), y = (yj)
2J
j=1 ∈ PJ , ϕ ∈ [0, 2π). (2.2.3)

This means that, exploiting some a priori assumptions on the distribution of the stochastic
quantity (Assumption 2.1.2), we have moved from a description of the radius defined on the
probability space to a description through a deterministic parameter y taking values in PJ ,
measurable with respect to the product image measure induced by Y .

8



3. Problem formulation on a fixed domain

After the interface parametrization, the model problem (1.0.1) is posed over a domain with
parameter-dependent, deterministic interface Γ = Γ(y), different for each realization y ∈ PJ .
This is not easy to handle from both the theoretical and the implementation side. To remedy
this, in the following we consider a bijective, y-dependent diffeomorphism to map each physical,
y-dependent geometry to a fixed geometry, that is, a configuration where the the interface Γ̂ is
the same for all realizations.

In the first section we introduce the so-called mapping approach introduced by Xiu and Tar-
takovski in [TX06] and [XT06], and then we apply it to our model problems. In the second
section, we address the well-posedness of the resulting variational formulation on the nominal
configuration.

3.1. The mapping approach

3.1.1. General description

To overcome the unboundedness of the domain, we consider, in the domain with interface Γ(y),
a circle ∂KR of arbitrary radius R containing, for every J ∈ N and every y ∈ PJ , the scatterer
D2(y) in its interior. We assume ∂KR to be fixed for all realizations y ∈ PJ , J ∈ N, and we
denote by KR the region enclosed inside ∂KR, no matter which realization Γ(y) of the interface
is considered.

Remark 3.1.1. In general, the boundary ∂KR of the domain does not need to be a circle and
the analysis would not change if it is not.

Following the approach also adopted, for instance, in [XT06], [CCS15], [HPS16] and [CCNT16],
we consider a nominal configuration of the domain KR, where the interface Γ̂ is fixed (i.e. in-
dependent of the truncation J and of the realization y), and a bijective, parameter-dependent
mapping

Φ(y) : KR −→ KR (3.1.1)

(x̂1, x̂2) 7→ (x1, x2)

from the nominal configuration to the configuration with interface Γ(y).

A possible choice for Γ̂ is the interface associated with the nominal radius r0, or, in other words,
to the case when y = 0. In the following, we denote by D̂2 the scatterer region when the interface
is Γ̂, and by D̂1 := R2 \ D̂2. In order to preserve the well-posedness of the problem as it will be
discussed in the next section, we formulate some assumptions on Φ:

Assumption 3.1.2. For every J ∈ N, every y ∈ PJ and an integer k ≥ 1, the mapping
Φ(y) : KR → KR fulfills the following properties:

9



3. Problem formulation on a fixed domain

(i) Φ(y) is a Ck-orientation preserving diffeomorphism in each of the two subdomains D̂1∩KR

and D̂2, with uniformly bounded norms, i.e.:

‖Φ(y)‖Ckp̂w(KR) ≤ C1, ‖Φ−1(y)‖Ckpwy
(KR) ≤ C2, for all J ∈ N and all y ∈ PJ ,

where C1 and C2 are independent of the truncation parameter J ∈ N and of y ∈ PJ , and
‖·‖Ckp̂w(KR) := ‖·‖

Ck(D̂1∩KR)∪Ck(D̂2)
= ‖·‖

Ck(D̂1∩KR)
+ ‖·‖

Ck(D̂2)
(similarly in ‖·‖Ckpwy

(KR) the

discontinuities are allowed across Γ(y)).

(ii) Φ(y) is the identity on ∂KR:

Φ(y, x̂) = x̂, for all x̂ ∈ ∂KR and all J ∈ N, y ∈ PJ .

(iii) Let σ1 = σ1(y,x), σ2 = σ2(y,x) be the singular values of DΦ−1(y), the Jacobian matrix of
Φ−1(y). We require that there exist constants σmin, σmax > 0 independent of the truncation
parameter J ∈ N and of y ∈ PJ such that

σmin ≤ ‖σ1(y, ·)‖C0
pwy

(KR), ‖σ2(y, ·)‖C0
pwy

(KR) ≤ σmax, for all J ∈ N, y ∈ PJ

(or, equivalently, analogous bounds hold for the singular values of DΦ(y)).

The part (ii) of this assumption is not necessary but it simplifies both the theoretical analysis
and the implementation. It implies in particular that the exterior boundary ∂KR is fixed for
every J ∈ N and every y ∈ PJ .

3.1.2. Geometries

The cases considered are sketched in Figure 1.0.1. For them, we describe both the domain
parametrization and the mapping from the nominal configuration.

Particle in free space

We choose r0(ϕ) as the boundary of the scatterer in the nominal configuration, and map it to
the boundary of the actual scatterer. The movement of the interface is propagated in the regions
inside and outside the scatterer using a mollifier:

x(y) = Φ(y, x̂) = x̂+ χ (x̂) (r(y, ϕ̂x̂)− r0(ϕ̂x̂))
x̂

‖x̂‖
, (3.1.2)

with ϕ̂x̂ := arg(x̂) = arg(x) = ϕ. The mollifier χ : KR → R0,+ := R+ ∪{0} satisfies the following
conditions:

• χ(x̂) = χ(‖x̂‖, r0), that is, χ acts on the radial component of x̂ ∈ KR, and its dependence
on the angle ϕ̂x̂ is only due to the fact that it depends on r0 = r0(ϕ̂x̂), ϕ̂x̂ ∈ [0, 2π);

• 0 ≤ χ(x̂) ≤ 1, x̂ ∈ KR, with χ(x̂) = 0 for ‖x̂‖ ≤ r−0
4 (r−0 being the quantity defined in

Assumption 2.1.3) and for ‖x̂‖ ≥ R̃ (R̃ ∈ R, supϕ∈[0,2π) r0(ϕ) +
r−0
2 < R̃ ≤ R), and with

χ(x̂) = 1 for ‖x̂‖ = r0(ϕ̂x̂);

• χ is globally continuous, and it is strictly increasing for
r−0
4 ≤ ‖x̂‖ ≤ r0(ϕ̂x̂) and strictly

decreasing for r0(ϕ̂x̂) ≤ ‖x̂‖ ≤ R̃.

The map is illustrated in Figure 3.1.1. We also require:
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Φ(y)

∂KR

Γ̂

D̂2

D̂1

r0(ϕ)

R

∂KR

Γ(y)

D2(y)

D1(y)

r(y, ϕ)

R

Figure 3.1.1: Mapping for the case of particle in free space.

Assumption 3.1.3. The mollifier χ in (3.1.2) has in D̂2 and in D̂1∩KR at least the same smooth-

ness as the nominal radius r0 has in [0, 2π). Furthermore, max
{
‖χ‖C1(D̂2), ‖χ‖C1(D̂1∩KR)

}
≤ Cχ,

where Cχ ∈ R is such that 0 < Cχ <
1

√
2

(
r−0
2

+cχ

) for some cχ > 0.

Lemma 3.1.4. Let Assumptions 2.1.3 and 2.1.4.A be satisfied, and let the nominal radius r0

belong to Ckper([0, 2π)), with k as in (2.1.3). If we choose χ according to Assumption 3.1.3, then
the mapping Φ given by (3.1.2) satisfies Assumption 3.1.2, with k the smoothness parameter of
the radius r.

Proof. The statement is quite clear from (3.1.2), since there we can see that Φ(y) consists just
of scalings by r(y) and r0. However, we postpone the technical proof to the Appendix, Section
E.

For the implementation, it is not easy to find a mollifier for the mapping (3.1.2) that fulfills
Assumption 3.1.3 and such that Φ and its inverse have a close form. What can be done instead
is to relax Assumption 3.1.3. Namely, in (3.1.2) we use the following:

χ(x̂) =


0 if ‖x̂‖ ≤ r−0

4 ,

‖x̂‖−
r−0
4

r0(ϕ̂x̂)−
r−0
4

if
r−0
4 < ‖x̂‖ ≤ r0(ϕ̂x̂),

R−‖x̂‖
R−r0(ϕ̂x̂) if r0(ϕ̂x̂) ≤ ‖x̂‖ ≤ R.

(3.1.3)

It is clear that this mollifier does not fulfill Assumption 3.1.3, because the mapping Φ is not a

Ck-diffeomorphism in D̂2. However, denoting D̂in
2 :=

{
x̂ ∈ D̂2 : ‖x̂‖ < r−0

4

}
, we have that Φ is

a Ck-diffeomorphism piecewise, in D̂in
2 and D̂2 \ D̂in

2 , with k the smoothness parameter of the
radius r. With such a property, we will see in the following chapters that, using some caution,
the theory would still work (see Remark 6.1.10).

The multiplication by a mollifier is not the only way of propagating the movement of the interface.
Among the valid alternatives we mention, for instance, the use of a harmonic extension [XT06,
LTZ01] or of level set methods [OF01, AJT02] (see Conclusions).
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3. Problem formulation on a fixed domain

Particle on substrate

We assume that the endpoints of the boundary can move horizontally, and denote the position
of the left point by xA and of the right one by xB.

To model the variation of the positions of xA and xB, we associate to each of these points a
uniform random variable, i.e.:

xA(ω) = −r0 − r0β1YA(ω) = −rA(ω), ω ∈ Ω,
xB(ω) = r0 + r0β2YB(ω) = rB(ω), ω ∈ Ω,

(3.1.4)

where:

• YA, YB ∼ U([−1, 1]);

• r0 is the nominal radius, assumed to be angle-independent (although an angle-dependent
radius is possible and the procedure would not change);

• −1
2 < β1, β2 <

1
2 .

In the parametric formulation, xA = xA(yA) and xB = xB(yB), with yA, yB ∈ [−1, 1].

Since we assume that the substrate is non-penetrable and that the bottom part of the particle
adheres perfectly to it, there cannot be random boundary perturbations in the normal direction
at the interface between the particle and the substrate. For the interface between the particle
and the free space, instead, we consider an angle-dependent radius r̃ = r̃(yA, yB, ϕ), which can
be regarded as the mean radius once the boundary points xA and xB have been fixed:

r̃(yA, yB, ϕ) = rA(yA) +
rB(yB)− rA(yA)

π
ϕ, ϕ ∈ [0, π], (3.1.5)

where we use the convention that ϕ = 0 at xA and ϕ = π at xB. The radius r̃(y, ϕ) plays the same
role as r0(ϕ) in (2.2.3). We model the shape variations adding random sinusoidal perturbations
to r̃(ϕ) in the radial direction:

r(y, ϕ) = r̃(yA, yB, ϕ) +

J∑
j=1

sj sin(jϕ)yj , ϕ ∈ [0, π], (3.1.6)

where {yj}Jj=1 are, as before, the images of uniformly distributed random variables. Now we have

y = (yA, yB, y1, ..., yJ) ∈ [−1, 1]J+2. In (3.1.6) just sines and no cosines are present because the
boundary points are fixed.

In order to bound the radius (3.1.6) from above and from below, a sufficient condition is that∑J
j=1 |sj | <

1
2 min {rA, rB}, i.e., introducing the adimensional coefficients s̃j :=

|sj |
r0

for j =
1, . . . , J :

J∑
j=1

|s̃j | =
J∑
j=1

|sj |
r0

< min {1− β1, 1− β2} . (3.1.7)

In particular, since the perturbations are in the radial direction, the particle can never penetrate
into the substrate, and ensuring a lower bound for the radius r is sufficient to avoid self-intersection
of the boundary.

Considering (3.1.4), (3.1.5) and (3.1.6) together, we finally have:

r(y, ϕ) = r0 + r0β1yA

(
1− ϕ

π

)
+ r0β2yB

ϕ

π
+

J∑
j=1

r0s̃j sin(jϕ)yj ,

ϕ ∈ [0, π], y = (yA, yB, y1, . . . , yJ) ∈ [−1, 1]J+2, J ∈ N. (3.1.8)
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Φ(y)

∂KR

Γ̂

D̂2

D̂1

r0(ϕ)

R

∂KR

Γ(y)

D2(y)

D1(y)

r(y, ϕ)

R

A B

Figure 3.1.2: Mapping for the case of half-circular particle on substrate.

Remark 3.1.5. Adding the random perturbations in radial direction, the sinusoids in (3.1.8)
are skewed with respect to r̃ = r̃(yA, yB, ϕ), and one may wonder if we still model all possible
shapes. This can be achieved if we allow the random variables {Yj}Jj=1 to be still independent
but not identically distributed (as long as they have compact image).

The map Φ(y) from the nominal configuration is shown in Figure 3.1.2 and it is built in the
following way:

• the two points on the substrate surface with radius −r0 and r0 are mapped to xA and xB,
respectively;

• we consider a spiral section with radius r̃(y, ϕ), ϕ ∈ [0, π), as defined in (3.1.5), and map it
to the scatterer boundary (light blue areas in Figure 3.1.2);

• in order to have a mapping which is continuous across the substrate surface, on the nominal
configuration we consider r̃(y, ϕ) mirrored with respect to the horizontal plane, i.e. r̃(y, ϕ)
for ϕ ∈ [π, 2π) (darker orange area in Figure 3.1.2), and map it to the scatterer boundary
mirrored with respect to the substrate surface;

• as in the previous example, a circle sufficiently far from the scatterer playing the role of
∂KR, and thus fixed for all parameter realizations, is considered.

More precisely, in the end Φ = Φ(y) is the same as in (3.1.2) with r0(ϕ) replaced by r̃(y, ϕ):

x(y) = Φ(y, x̂) = x̂+ χ (x̂) (r(y, ϕ̂x̂)− r̃(y, ϕ̂x̂))
x̂

‖x̂‖
, (3.1.9)

where χ is a mollifier satisfying similar properties as the ones in the free space case and fulfilling
Assumption 3.1.3 with Cχ <

1

3√
2

(
r−0
2

+cχ

) for some cχ > 0.

Therefore, in an analogous manner as we will do in Section 6 for the mapping (3.1.2), it can be
shown that this map satisfies Assumption 3.1.2 too.

Alternatively, one can relax the assumptions on the mollifier and define it in a similar way as in
(3.1.3).

13



3. Problem formulation on a fixed domain

∂KR

Γ(ω)

D2(ω)

D1(ω)

ϕ

R

ui

Figure 3.2.1: Domain considered in (3.2.1).

3.2. Variational formulation on the nominal configuration

The analysis developed in this section refers only to the particle in free space case, although
it could be extended to the particle on substrate case. In the first subsection we derive the
variational formulation for the model problem (1.0.1), while in the second subsection we address
its well-posedness (in Hadamard’s sense).

3.2.1. Variational formulation

We consider again the space KR enclosed inside a circle of radius R > 0, the latter fixed for all
realizations ω ∈ Ω and containing the scatterer in its interior (see Figure 3.2.1). Then, using the
Dirichlet-to-Neumann map (DtN , see [Néd01, Sect. 2.6.3]) for the exterior of KR, we can state
the variational formulation for (1.0.1) on the bounded domain KR. Denoting V := H1(KR), we
have:

Find u(ω) ∈ V :∫
KR

α(ω,x)∇u(ω) · ∇v − κ2(ω,x)u(ω)v dx

−
∫
∂KR

(
DtN(u(ω)− ui) +

∂ui
∂nR

)
v dS = 0, for all v ∈ V and every ω ∈ Ω, (3.2.1)

where nR is the outer normal to ∂KR.

Reordering the terms, this results in:

Find u(ω) ∈ V :

aω(u(ω), v) :=

∫
KR

α(ω,x)∇u(ω) · ∇v − κ2(ω,x)u(ω)v dx−
∫
∂KR

DtN(u(ω))v dS

=

∫
∂KR

(
−DtN(ui) +

∂ui
∂nR

)
v dS, for all v ∈ V and every ω ∈ Ω. (3.2.2)

Using the parametric description of the uncertain interface developed in Chapter 2, we can replace
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3.2. Variational formulation on the nominal configuration

Γ(ω), ω ∈ Ω, by Γ(y), y ∈ PJ , and the variational formulation (3.2.2) reads:

Find u(y) ∈ V :

ay(u(y), v) :=

∫
KR

α(y,x)∇u(y) · ∇v − κ2(y,x)u(y)v dx−
∫
∂KR

DtN(u(y))v dS

=

∫
∂KR

(
−DtN(ui) +

∂ui
∂nR

)
v dS, for all v ∈ V and all y ∈ PJ . (3.2.3)

Finally, we can use the inverse of the diffeomorphism Φ(y), y ∈ PJ , J ∈ N, introduced in Section
3.1, to map the physical configuration with interface Γ(y) to the nominal configuration. In
this way we obtain the following parametric, variational formulation on the fixed, deterministic
configuration with interface Γ̂:

Find û(y) ∈ V̂ :

ây(û(y), v̂) :=

∫
KR

α̂(y, x̂) ∇̂û(y) · ∇̂v̂ dx̂− κ̂2(y, x̂) û(y)v̂ dx̂−
∫
∂KR

DtN(û(y))v̂ dS

=

∫
∂KR

(
−DtN(ui) +

∂ui
∂nR

)
v̂ dS, for all v̂ ∈ V̂ and all y ∈ PJ , (3.2.4)

where V̂ = H1(KR) = V and

α̂(y, x̂) = DΦ(y)−1DΦ(y)−> detDΦ(y)α(y,Φ−1(y)(x)),

κ̂2(y, x̂) = detDΦ(y)κ2(y,Φ−1(y)(x)) (3.2.5)

(with DΦ(y) the Jacobian matrix of Φ(y)). In (3.2.4), ∇̂ denotes the gradient with respect to
x̂ ∈ KR, the coordinates in the nominal configuration.

Remark 3.2.1. Formulas (3.2.5) explain why we have to require k ≥ 1 in Assumption 3.1.2 and
either p < 1

2 in Assumption 2.1.4.A, or k ≥ 3 in Assumption 2.1.4.B (since in general DΦ and its

inverse will depend on
∂r

∂ϕ
).

We are now in a position to give a rigorous definition for the solution to (3.2.3) (or equivalently
for the solution to (3.2.2)):

Definition 3.2.2. The function u(y), y ∈ PJ , J ∈ N, is a solution to (3.2.3) if and only if its
pullback (Φ∗(y)u(y))(x̂) := u(Φ(y, x̂)) ∈ H1(KR) is a solution to (3.2.4).

3.2.2. Well-posedness of the model problem

The boundedness of KR allows us to apply the Fredholm Alternative [McL00, Thm. 2.27] to
prove existence of the solution to (3.2.4), while uniqueness is ensured by the sign properties of
the DtN map.

Theorem 3.2.3. The solution to the variational formulation (3.2.2) exists and is unique, for
every ω ∈ Ω. Equivalently, if Assumption 3.1.2 is fulfilled, then (3.2.4) admits a unique solution,
for every J ∈ N and every y ∈ PJ .

Proof. We denote

apω(u, v) :=

∫
KR

α(ω,x)∇u(ω) · ∇v dx−
∫
∂KR

DtN(u(ω))v dS.
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3. Problem formulation on a fixed domain

If we show that the bilinear form apω(u, v) is coercive, then the associated operator Apω defined as
(Apωu, v) := apω(u, v) is Fredholm with index 0 [McL00, Lemma 2.32].

The operator Bω : H1(KR) → H−1(KR) associated with
∫
KR

κ2(ω,x)u(ω)v dx is given by

Bω = κ2(ω,x)I, with I : H1(KR) → H−1(KR) the identity operator. Since KR is bounded,
I : H1(KR) → H−1(KR) and thus Bω are compact thanks to Rellich’s embedding theorem
[McL00, Thm. 3.27].

Therefore, if apω(u, v) is coercive, then the operator Apω + Bω is Fredholm with index 0 [McL00,
Thm. 2.33], and we can apply the Fredholm Alternative [McL00, Thm. 2.27] to get existence of
the solution and uniqueness if the associated homogeneous problem

aω(u(ω), v) = 0, for all v ∈ V, (3.2.6)

admits only the trivial solution.

For the coercivity of apω(·, ·) it holds that, for every w ∈ H1(KR):

Re apω(w,w) ≥ min {1, α2} |w|2H1(KR) − Re〈DtNw,w〉L2(∂KR)

≥ min {1, α2} |w|2H1(KR) + ‖w‖2L2(∂KR)

≥ min {1, α2}
C(R)

C(R) + 1
‖w‖2H1(KR) . (3.2.7)

The first inequality is obtained exploiting the sign conditions of the DtN map [Néd01, Thm.
2.6.4], the second one is a Poincaré-Friedrichs-type inequality

|w|2H1(KR) + ‖w‖2L2(∂KR) ≥ C(R) ‖w‖2L2(KR) , for every w ∈ H1(KR), (3.2.8)

where the constant C > 0 depends on the radius R of KR. This latter inequality can be proved
in the same way as the classical Poincaré-Friedrichs inequality. Equation 3.2.7 implies that the
Fredholm Alternative holds, and we have existence of the solution.

For uniqueness, let us consider the homogeneous problem (3.2.6). It is sufficient to show that

aω(u, u) = 0⇐⇒ u ≡ 0.

If aω(u, u) = 0, it means in particular that

Im aω(u, u) = Im

∫
∂KR

DtN(u(ω))u dS = 0.

For the sign properties of the DtN map [Néd01, Thm. 2.6.1 and Thm. 2.6.4],

Im〈DtNu, u〉L2(∂KR) = 0⇐⇒ u ≡ 0 on ∂KR,

while the linearity of the DtN map implies that also
∂u

∂nR
= 0 on ∂KR and thus u ≡ 0 for

|x| ≥ R.

Consider now a ball Br with center on ∂KR and radius r < dist(∂KR, D2). In Br, the solution
u satisfies the homogeneous equation −∆u− κ2(ω,x)u = 0 and thus u|Br ∈ H2(Br). Also, from
the previous considerations we know that there exists a ball Br′ ⊂ Br \ KR, with r′ < r, such
that u|Br′ ≡ 0. Then, the unique continuation principle [CK12, Thm. 8.6] implies that u ≡ 0 in
the whole Br. Iterating this argument and using the compactness of KR, we obtain that u ≡ 0
in KR.

After substitution of ω ∈ Ω with y ∈ PJ , we obtain that also the solution to (3.2.4) exists and is
unique thanks to the bijectivity of the maps Φ(y), y ∈ PJ , J ∈ N (and Definition 3.2.2).
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3.2. Variational formulation on the nominal configuration

To have well-posedness of the problem, we still have to prove that the solution to (3.2.4) depends
continuously on the data, which in our case consist of the incoming wave ui. Thus, we would
desire to have a bound on the H1(KR)-norm of û by some norm of ui. This stability property will
be needed later for convergence purposes. More precisely, for reasons that will become clearer in
Chapter 4, we need a bound for the solution on the nominal configuration which is uniform over
all the realizations, i.e. independent of the truncation parameter J ∈ N and of y ∈ PJ .

Unfortunately, a y-uniform stability result cannot be achieved in general for the Helmholtz equa-
tion. The reason being that, without any limitation on the wavenumber and for a generic star-
shaped scatterer, it can happen that a small wavenumber excites resonances at the boundary of
the object, with an uncontrollable increase of the amplitude of the field u in that region.

Therefore, in order to get a J- and y-uniform stability estimate, we formulate the following
hypothesis, which consists in requiring the wavelength to be large compared to the diameter of
the scatterer (this is fulfilled, for example, in nano-optics applications).

Assumption 3.2.4 (Large wavelength assumption). The wavenumbers in (1.0.2) satisfy the
condition:

κ2
1, κ

2
2 ≤ τ C(R), for some 0 < τ < min {1, α2} ,

with C(R) as in (3.2.8):

C(R) = inf
w∈H1(KR)

|w|2H1(KR) + ‖w‖2L2(∂KR)

‖w‖2L2(KR)

. (3.2.9)

To obtain a J- and y- uniform bound on the solution, we prove coercivity of the bilinear form
ây(·, ·), with a coercivity constant uniform in J ∈ N and in y ∈ PJ . This is assessed in the following
lemma, which, together with its corollary, show that, if the domain mapping satisfies Assumption
3.1.2, then Assumption 3.2.4 ensures uniform stability for (3.2.4) under some constraints on the
constant τ :

Lemma 3.2.5. Let Assumption 3.1.2 be satisfied. There exists a constant 0 < T < 1 independent
of J ∈ N and y ∈ PJ such that, if Assumption 3.2.4 holds with τ < T , then the bilinear form
ây(·, ·) in (3.2.4) is coercive, with coercivity constant γ independent of J ∈ N and y ∈ PJ .

Proof. Thanks to Assumption 3.1.2, we have that there exist σmin, σmax > 0 such that, for every
J ∈ N and every y ∈ PJ :

σ2
min‖ξ‖2C2 ≤ ‖DΦ−>(y, x̂)ξ‖2C2 ,

1

σ2
max

≤ det DΦ(y, x̂) ≤ 1

σ2
min

,

(3.2.10)

(3.2.11)

for every ξ ∈ C2, x̂ ∈ KR. Then, for every J ∈ N, y ∈ PJ and every ŵ ∈ H1(KR), we have:

Re ây(ŵ, ŵ) ≥ min {1, α2} |DΦ−>(y)∇̂ŵ(det DΦ(y))
1
2 |2H1(KR)

−max
{
κ2

1, α2κ
2
2

}∥∥∥ŵ(det DΦ(y))
1
2

∥∥∥2

L2(KR)
− Re〈DtN(ŵ), ŵ〉L2(∂KR)

≥ min {1, α2}
σ2

min

σ2
max

|ŵ|2H1(KR) −max
{
κ2

1, α2κ
2
2

} 1

σ2
min

‖ŵ‖2L2(KR) + ‖ŵ‖2L2(∂KR)

≥
(

min {1, α2}
σ2

min

σ2
max

−max {1, α2}
τ

σ2
min

)
|ŵ|2H1(KR)

+

(
1−max {1, α2}

τ

σ2
min

)
‖ŵ‖2L2(∂KR) .
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3. Problem formulation on a fixed domain

In the second inequality we have used equations (3.2.10)-(3.2.11) and the sign conditions of the
DtN map [Néd01, Thm. 2.6.4].

Now, if we choose τ in Assumption 3.2.4 such that

τ < T :=
σ4

min min {1, α2}
σ2

max max {1, α2}
,

we have that

C1 := min {1, α2}
σ2

min

σ2
max

−max {1, α2}
τ

σ2
min

> 0, C2 := 1−max {1, α2}
τ

σ2
min

> 0.

Using a Poincaré-Friedrichs-type inequality on KR as in (3.2.8), we finally obtain

Re ây(ŵ, ŵ) ≥ min {C1, C2}
C(R)

C(R) + 1
‖ŵ‖2H1(KR) ,

for every J ∈ N, every y ∈ PJ and every ŵ ∈ H1(KR). This means that the bilinear form ây(·, ·)
is coercive with coercivity constant

γ := min {C1, C2}
C(R)

C(R) + 1
,

independent of J ∈ N and of y ∈ PJ .

Corollary 3.2.6. Let Assumptions 3.1.2 and 3.2.4 with τ ≤ T from Lemma 3.2.5 be satisfied.
Then there exist positive constants B1, B2 independent of J ∈ N and of y ∈ PJ (but which do
depend on α2, σmin, σmax, κ1, κ2 and R) such that, for every J ∈ N and every y ∈ PJ :

‖û(y)‖H1(KR) ≤ B1 ‖ui‖
H

1
2 (∂KR)

+B2

∥∥∥∥ ∂ui∂nR

∥∥∥∥
H−

1
2 (∂KR)

. (3.2.12)

The bound is uniform over the realizations once we use the analytic expression for
∂ui
∂ni

, i.e.

∂ui
∂nR

= κ1d · nReiκ1d·x for the incoming wave.

Proof. Lemma 3.2.5 ensures that the parameter-dependent bilinear form ây(·, ·) is uniformly co-
ercive, with coercivity constant γ independent of J ∈ N and y ∈ PJ . Moreover, the right-hand
side in (3.2.4) is continuous with respect to the H1-norm:∣∣∣∣∫
∂KR

(
−DtN(ui) +

∂ui
∂nR

)
v dS

∣∣∣∣ ≤
(
‖DtN(ui)‖

H−
1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
H−

1
2 (∂KR)

)
‖v‖

H
1
2 (∂KR)

≤

(
‖DtN(ui)‖

H−
1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
H−

1
2 (∂KR)

)
C(∂KR) ‖v‖H1(KR)

≤

(
C̃(R) ‖ui‖

H
1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
H−

1
2 (∂KR)

)
C(∂KR) ‖v‖H1(KR) ,

where we have used the continuity of the trace operator on ∂KR, with continuity constant
C(∂KR), and the continuity of the DtN operator [Néd01, Thm. 2.6.4], with continuity con-
stant C̃(R). We highlight that the constant C̃ depends only on the radius R. Also the constant
C(∂KR) is independent of J ∈ N and of y ∈ Pj .

Together with the coercivity of the bilinear form, this allows to apply the Lax-Milgram lemma

and obtain (3.2.12) with B1 := C̃(R)C(∂KR)
γ and B2 := C(∂KR)

γ .
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3.2. Variational formulation on the nominal configuration

Remark 3.2.7. In order to have a stability estimate for the solution on the physical configuration
KR for a realization y ∈ PJ , we can consider the nominal radius r0 to be the actual radius of that
realization, and as mapping Φ(y) the identity map. In this case, we would have σmin = σmax = 1.

The coercivity constant would then be γ = (min {1, α2} − max {1, α2} τ) C(R)
C(R)+1 , and we would

need the restriction τ < T = min{1,α2}
max{1,α2} in Assumption 3.1.2.

Remark 3.2.8. In the variational formulation that we have considered, the right-hand side in-
volves only integration over the fixed outer boundary, and thus also after the change of coordinates
it does not depend on y. In general, for a right-hand side involving volume integrals, we stress
that after the coordinate transformation it would depend on the parameter y also in the case
that in the original formulation it was deterministic. In this latter case, in order to have a J- and
y-independent bound as in equation (3.2.12), one needs to provide also a J- and y-independent
bound for the right-hand side, which is guaranteed by Assumption 3.1.2.

The variational form (3.2.4) is now ready to be discretized. Notice that in this case two dis-
cretizations are needed: the discretization with respect to y and the discretization with respect
to x̂. The former will be considered in Chapter 4, while for the latter we will rely on a standard
finite element discretization, for which we will provide more details in Chapter 6.
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4. Stochastic collocation

In this chapter we address the parameter space discretization of (3.2.4) through stochastic collo-
cation. In the first section we recall the main features of this method and in particular of sparse
interpolation and quadrature. In the second section, we describe the sparse adaptive Smolyak
algorithm used in our numerical experiments to select the collocation points. In the third and last
section, we show that the hypotheses for the convergence theorems for the sparse interpolation
and quadrature hold for the Helmholtz transmission problem.

In the first two sections, we present the results in the general case that the parameter space is
P := [−1, 1]d with d large and possibly infinite (in the latter case we write [−1, 1]∞ =

⊗
j≥1[−1, 1]

for the set of infinite sequences where every term is in [−1, 1]). Considering d = ∞, we ensure
that our convergence results are independent of the dimension of the parameter space.

4.1. High-dimensional sparse polynomial interpolation and
quadrature

Let g = g(y) be the Q.o.I., for instance the solution to a parametric differential equation, taking
values, for each fixed value of the parameter y, in a separable Banach space X. For example, if g
is the the solution û to (3.2.4), then X = V = H1(KR). We consider the map P → X such that
y 7→ g(y), and call it the solution map.

The sparse polynomial interpolation and quadrature fit into the framework of high-order polyno-
mial approximation methods, and in particular of stochastic collocation.

High-order polynomial approximation methods in uncertainty quantification are the extension of
high-order polynomial approximation in the one-dimensional case, in order to approximate maps
P → X, where P is high, and possibly infinite, dimensional. To this aim, let us introduce the
set

F =
{
ν ∈ NN0 : ]supp ν <∞

}
, (4.1.1)

with N0 = N ∪ {0} and the support of a multi-index defined as supp ν = {j ∈ N : νj 6= 0}.

The idea is to approximate the Q.o.I. by

gΛ(y) =
∑
ν∈Λ

gνy
ν , gν ∈ X, (4.1.2)

where yν =
∏
j≥1 y

νj
j , j ≥ 1, and Λ ⊂ F a finite subset of F . The approximate quantity gΛ

belongs then to the finite dimensional space

XΛ = span

{∑
ν∈Λ

vνy
ν : vν ∈ X, ν ∈ Λ

}
.

In the stochastic collocation framework, the polynomial approximation relies on the computation
of samples of the solution g(yi) at some points yi, i = 1 . . . , . . . k, k ∈ N, referred to as collo-
cation points. We direct to [BNT10] and [XH05] for an exhaustive survey of this method. In
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4. Stochastic collocation

the following, we focus on sparse polynomial approximation, following the lines of [CCS14] for
interpolation and of [SS13] for quadrature.

In order to consider sparse approximation operators, we require Λ to be a downward closed index
set :

Definition 4.1.1. (Definition 1.1 in [CCS14]) A subset Λ ⊂ F of finite cardinality N is a
downward closed index set1 if

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ, (4.1.3)

where µ ≤ ν means that µj ≤ νj for all j.

Equivalently (Definition 3.1 in [SS13]), Λ ⊂ F is downward closed if 0F = (0, 0, . . .) ∈ Λ and if,
for every ν ∈ Λ, ν 6= 0F , it holds that ν − ej ∈ Λ for all j ∈ supp ν, where ej ∈ {0, 1}N denotes
the index vector with 1 in position j ∈ N and 0 in all other positions i ∈ N \ {j}.

We define the following relations:

• µ 6= ν if there exists a j ∈ N such that µj 6= νj ,

• µ < ν if µ ≤ ν but µ 6= ν,

• µ � ν if there exists a j ∈ N for which µj > νj .

We say that an index ν ∈ Λ is maximal if and only if there is no µ ∈ Λ such that ν < µ. Any
finite index set Λ contains at least one maximal element. For a downward closed set Λ:

ν ∈ Λ is maximal ⇔ Λ \ {ν} is downward closed. (4.1.4)

Therefore, if (Λn)n≥1 is a nested sequence of downward closed sets with ]Λn = n, there exists a

unique sequence of indices (νn)n≥1 ∈ FN, with ν1 = 0F , such that, for all n ≥ 1,

Λn =
{
ν1, . . . , νn

}
, νn maximal in Λn.

Univariate operators and tensorization

Let (ζkj )nkj=0 be a sequence of distinct points in Pl = [−1, 1] (for a generic integer l ≥ 1) and Ik,
k ∈ N0, the univariate polynomial interpolation operator associated with these points, defined
as

Ikgl =

nk∑
i=0

gl(ζ
k
i )lnki , (4.1.5)

where (considering l ∈ N a fixed number) gl is a real- or complex-valued function defined on

Pl, and lnki (y) =
∏nk
j=0
j 6=i

y−ζkj
ζki −ζkj

is the Lagrange polynomial associated with the nodes (ζkj )nkj=0. We

require that n0 = 0.

We introduce the univariate interpolation difference operators

∆I
k = Ik − Ik−1, k ≥ 0, (4.1.6)

where we set I−1 = 0, so that ∆I
0gl = gl(ζ

0
0 ). Therefore, (4.1.5) can be rewritten as

Ikgl =

nk∑
j=0

∆I
jgl. (4.1.7)

1Also referred to in the literature as lower index set or monotone index set.
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4.1. High-dimensional sparse polynomial interpolation and quadrature

We remark that any univariate family of interpolation points can be used for the above construc-
tion, in particular the sequences do not need to be nested.

To extend these concepts to the multi-dimensional case, we proceed as follows. To any multi-index
ν ∈ F , we can associate the set of multivariate points

ζν =
⊗
j≥1

(ζ
νj
i )

nνj
i=0 ∈ P, (4.1.8)

and the tensorized multivariate operators

Iν =
⊗
j≥1

Iνj and ∆I
ν =

⊗
j≥1

∆I
νj . (4.1.9)

The above tensorization can be defined inductively:

• if ν = 0F , then Iνg = ∆I
νg = g(ζ0F );

• if ν 6= 0F , then

Iνg = Iν1(t 7→ Iν̃gt) and ∆I
νg = ∆I

ν1
(t 7→ ∆I

ν̃gt), (4.1.10)

where ν̃ = (ν2, ν3, . . .) and gt(ŷ) = g(t, ŷ), with ŷ = (y2, y3, . . .) ∈
⊗

l≥2 Pl.

The definition of univariate quadrature operators and their tensorization follows the same lines.
Let (Qk)k≥0 denote a sequence of univariate quadrature formulas associated with the quadrature

points (ζkj )nkj=0 in Pl = [−1, 1] and with the weights (wkj )nkj=0. The univariate quadrature operators

associated with the sequence (ζkj )nkj=0 are defined as

Qkgl =

nk∑
i=0

wnki · gl(ζ
k
i ), (4.1.11)

where gl is defined as before.

Let I(·) be the exact integration operator. We state the following assumption on the quadrature
operators:

Assumption 4.1.2. For each k ∈ N0, the univariate quadrature formula Qk associated with the
quadrature points (ζkj )nkj=0 satisfies:

(i) Qk is of order k, i.e. (I −Qk)(pk) = 0 for all pk ∈ Pk, with Pk the set of polynomials up to
the kth degree;

(ii) one of the two following condition holds:

(a) wkj > 0 for each 0 ≤ j ≤ nk;

(b) the Lebesgue constants λk of Ik, k ≥ 0, satisfy λk ≤ C(k + 1)θ, for some θ ≥ 1 and a
constant C ∈ R+ (independent of k).

The univariate quadrature difference operators are defined as

∆Q
k = Qk −Qk−1, k ≥ 0, (4.1.12)
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4. Stochastic collocation

with again the convention that Q−1 = 0; moreover, we require ζ0
0 = 0, w0

0 = 1 and n0 = 0, so
that Q0gl = gl(0). Then, (4.1.11) can be rewritten as

Qkgl =

nk∑
j=0

∆Q
j gl, (4.1.13)

with again no need for the sequences of quadrature points to be nested.

The corresponding multivariate operators are defined, for a generic multi-index ν ∈ F , as

Qν =
⊗
j≥1

Qνj and ∆Q
ν =

⊗
j≥1

∆Q
νj , (4.1.14)

with associated sets of multivariate points ζν as in (4.1.8). The tensorization can be defined
inductively as for the interpolation operators.

Sparse interpolation and quadrature operators

For any downward closed set Λ ⊂ F , the sparse interpolation operator is defined as

IΛ =
∑
ν∈Λ

∆I
ν , (4.1.15)

with ∆I
ν the multivariate difference operators defined in (4.1.10). We denote by

GΛ = {ζν : ν ∈ Λ} (4.1.16)

the grid associated with (4.1.15).

Similarly, the sparse quadrature operator is

QΛ =
∑
ν∈Λ

∆Q
ν , (4.1.17)

with ∆Q
ν the multivariate difference operators defined in (4.1.14).

We stress that the downward closedness of the set Λ is essential for the previous definitions.

Let us denote PΛ := span {yν , ν ∈ Λ}. The following results ensure that the sparse interpolation
and quadrature operators are well defined.

Theorem 4.1.3. (Theorem 2.1 in [CCS14]) For any downward closed index set Λ ⊂ F , the grid
GΛ is unisolvent for PΛ and for any function defined on P = [−1, 1]∞. IΛg is the unique element
in PΛ which agrees with g on GΛ, i.e.:

IΛg(ζν) = g(ζν), for all ν ∈ Λ, all g continuous on P.

Theorem 4.1.4. (Theorem 4.2 in [SS13]) For any downward closed index set Λ ⊂ F , the sparse
quadrature operator QΛ is exact for any polynomial g ∈ PΛ, i.e.:

QΛg = I(g), for all g ∈ PΛ,

where I denotes the exact integral.
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4.1. High-dimensional sparse polynomial interpolation and quadrature

For the proofs we refer to [CCS14] and [SS13], respectively.

We have presented definitions and results for sparse interpolation and quadrature in the case that
X = R or X = C, but they can be extended in a straightforward way to the case that X is a
separable Banach space, and we refer to [CCS14] and [SS13] for details.

Best N -term convergence rates for sparse interpolation and quadrature

For s > 1, we define the Bernstein ellipse in the complex plane as Es :=
{
w+w−1

2 : 1 ≤ |w| ≤ s
}

.

Given a sequence ρ = (ρl)l≥1, Eρ :=
⊗

l≥1 Eρl denotes the tensorized polyellipse [CCS15].

For the convergence results for the sparse interpolation and quadrature operators to hold, we
need that the function that we want to interpolate or integrate fulfills some regularity properties
[CCS15, SS13, SS14]:

(b, p, ε)-holomorphy assumption
Let g : P → X denote a bounded, continuous function of countably many variables y1, y2, ...,
defined on P = [−1, 1]∞ and taking values in a separable Banach space X. We require that:
(i) Given a positive sequence b = (bl)l≥1 ∈ `p(N) for some 0 < p < 1, there exists a real number
0 < ε < 1 such that, for every (b, ε)-admissible sequence of poly-radii, i.e. for every sequence
ρ = (ρl)l≥1 such that ρl > 1, for every l ≥ 1, and∑

l≥1

(ρl − 1)bl ≤ ε, (4.1.18)

the solution map y 7→ g(y) admits a holomorphic extension to a set of the form Oρ :=
⊗

l≥1Oρl ,
with Oρl ⊂ C an open set containing Eρl , l ≥ 1.
(ii) g satisfies an a priori estimate (uniform upper bound)

sup
z∈Eρ
‖g(z)‖X ≤ B(ε), (4.1.19)

for a constant B = B(ε) independent of ρ and of the dimension of the parameter space.

Lemma 4.4 in [CCS15] ensures that, for s > 1, the open set Os := {z ∈ C : dist(z, [−1, 1]) < s− 1}
is an open neighborhood of Es. Then, it is sufficient to verify the (b, p, ε)-holomorphy assumption
on sets of the form

Oρ =
⊗
l≥1

Oρl , with Oρl = {z ∈ C : dist(z, [−1, 1]) < ρl − 1} , l ≥ 1. (4.1.20)

Given g : P → X, we can expand it in terms of Legendre polynomials:

g(y) =
∑
ν∈F

gνPν(y), (4.1.21)

where Pν =
∏
l≥1 Pνl , ν ∈ F , are the multivariate Legendre polynomials, normalized according

to ‖Pνl‖L∞([−1,1],R) = 1 for every l ≥ 1, and (gν)ν∈F are the Legendre coefficients of g. It holds

gν =
∏
l≥1

(2νl + 1)

∫
P
g(y)Pν(y) dµ(y). (4.1.22)

If g fulfills the (b, p, ε)-holomorphy assumption, then, using Cauchy’s integral formula, one can
express the values of g inside the integral in (4.1.22) as integrals in Eρ. Owing to the uniform
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4. Stochastic collocation

bound (4.1.19) and properties of the Legendre polynomials, one obtains [CCS15, Proof of Thm.
2.2]

‖gν‖X ≤ B(ε)
∏

l≥1:νl 6=0

(2νl + 1)
πρl

2(ρl − 1)
ρ−νll , (4.1.23)

with the convention that the empty product equals one for ν = 0F , and with B(ε) the constant
in (4.1.19). For each index ν, we can choose the polyradii (ρl)l≥1 such that ρl is inversely
proportional to bl, l ≥ 1, the entries of the sequence b [CCS15, Proof of Thm. 2.2]. The idea
is that the faster the coefficients bl, l ≥ 1, decay, the faster the polyradii ρl, l ≥ 1, increase
when going to higher dimensions, and the faster the coefficients (‖gν‖X)ν∈F decrease. In the
end, we obtain that (‖gν‖X)ν∈F ∈ `p(F) with p the same sparsity parameter as for the sequence
b. Since p < 1, the Legendre series (4.1.21) converges absolutely and thus unconditionally. We
refer to [CCS15, Proof of Thm. 2.2] for the details about the `p-summability of the Legendre
coefficients.

Now, the sparse interpolation and the sparse quadrature operators satisfy the estimates (see
[CCS14, Lemma 4.2] and [SS13, Lemma 4.5], respectively)

‖g − IΛg‖L∞(P,X) ≤ 2
∑
ν /∈Λ

pν‖Pν‖X , ‖I(g)−QΛg‖X ≤ 2
∑
ν /∈Λ

pν‖Pν‖X ,

with pν =
∏
l≥1 (1 + νl)

b, b ≥ 1 for the interpolation case and b = 2 for the quadrature case.

Exploiting the bound (4.1.23) on the Legendre coefficients, one can show that, in both cases,
(pν‖Pν‖)ν∈F ∈ `p(F) (cf. [CCS14, Thm. 4.3] and [SS13, Thm. 4.6]). Then, Stechkin’s Lemma
(see e.g. [CDS11, Sect. 3.3]) ensures the existence of a sequence of sets ΛN , with ]ΛN = N , for
which the convergence results hold, and in [CCS14, Sect. 4.2] it is shown that the sets ΛN can
always be chosen to be downward closed and nested.

This leads to:

Theorem 4.1.5. (Theorem 4.4 in [CCS14]) Let the (b, p, ε)-holomorphy assumption be satisfied.
If the univariate sequence (ζkj )nkj=0 is chosen so that its Lebesgue constant λk satisfies λk ≤ C(k+

1)θ for some θ ≥ 1 and a constant C ∈ R+ (independent of k), then there exists a sequence
(ΛN )N≥1 of downward closed sets ΛN ⊂ F such that ]ΛN = N and

‖g − IΛg‖L∞(P,X) ≤ CN−s, s =
1

p
− 1. (4.1.24)

Theorem 4.1.6. (Lemma 4.10 in [SS13]) Let the (b, p, ε)-holomorphy assumption and Assump-
tion 4.1.2 be satisfied. Then there exists a sequence (ΛN )N≥1 of downward closed sets ΛN ⊂ F
such that ]ΛN ≤ N and

‖I(g)−QΛg‖X ≤ CN−s, s =
1

p
− 1. (4.1.25)

Remark 4.1.7. These two results show convergence rates which depend only on p, referred to
as the ‘sparsity class of the unknown’, while they do not depend on the number of dimensions
activated. This means that it is possible to break the curse of dimensionality by algorithms which
adaptively construct downward closed index sets for the sparse interpolation and quadrature
operators.

The above theorems do not provide indications for the construction of the sets (ΛN )N≥1. In the
next section, we describe an adaptive algorithm which will be seen in practice to achieve this.
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4.2. The sparse adaptive Smolyak algorithm

4.2. The sparse adaptive Smolyak algorithm

We present here the main features of the algorithm for sparse interpolation and quadrature that
has been used in our numerical experiments. Our survey is based on [SS13] and for a complete
treatment we refer to that paper itself.

For sake of exposition, let us focus on the quadrature case. The difference operators are the ones
defined in (4.1.14). The idea is to identify the index set ΛN of the N indices in F giving the
highest contribution to the approximations (4.1.15) or (4.1.17), or, in other words, the N indices
with largest

‖∆Q
ν (g)‖X =

∥∥∥⊗
j≥1

∆Q
νj (g)

∥∥∥
X
, ν ∈ F ,

so that the approximation error is minimized.

However, the index set ΛN built in this way would be nested but not downward closed; even
worse, each time we want to add an index to ΛN , the cardinality of the set of candidate indices
would grow exponentially with the number of dimensions activated, and it would be infinite in
the case of countably many parameters. To overcome this, one considers a local subset, referred
to as the reduced set of neighbors of a given finite set Λ ⊂ F , specifically [GG03]:

N (Λ) = {ν /∈ Λ : ν − ej ∈ Λ, for all j ∈ suppν and νj = 0, all j > j(Λ) + 1} , (4.2.1)

for any downward closed index set Λ, where j(Λ) = max {j : νj > 0 for some ν ∈ Λ}. Using this
set of neighbors, at each iteration at most one dimension can be activated.

The algorithm constructs then an anisotropic downward closed index set Λ comprising those
indices in N (Λ) which are expected to contribute most to the approximation (see [SS13] for
details):

Algorithm 1 Sparse adaptive Smolyak algorithm.

1: function ASG
2: Set Λ1 = {0F} , k = 1 and compute ∆Q

0 (g).
3: Determine the reduced set of neighbors N (Λ1).
4: Compute ∆Q

ν (g), for all ν ∈ N (Λ1).
5: while

∑
ν∈N (Λk) ‖∆

Q
ν (g)‖X > tol do

6: Set Λk+1 = Λk ∪
{
µ ∈ N (Λk) : ‖∆Q

µ (g)‖X ≥ ϑmaxν∈NΛ
‖∆Q

ν (g)‖X
}

.

7: Determine the reduced set of neighbors N (Λk+1).
8: Compute ∆Q

ν (g), for all ν ∈ N (Λk+1).
9: Set k = k + 1.

10: end while
11: end function

In line 6, ϑ ∈ [0, 1] is a parameter chosen at the beginning of the algorithm, and determining
how many indices in the reduced set of neighbors are included in the set Λ at each iteration. For
ϑ = 1, we have Λk+1 = Λk ∪ {ν̄} with ν̄ = argmaxν∈NΛ

‖∆Q
ν (g)‖X .

For the interpolation, the difference operators are the ones defined in (4.1.10). For each ν ∈ F ,
‖∆Q

ν (g)‖X is replaced by ‖∆I
ν(g)‖L∞(P,X), and the condition

∑
ν∈N (Λk) ‖∆

Q
ν (g)‖X > tol at line 5

of Algorithm 1 is substituted by the criterion maxν∈N (Λk) ‖∆I
ν(g)‖X > tol.

We remark that there is no guarantee and it has not been proved that the downward closed index
sets obtained with this algorithm are the ones for which the estimates in Theorems 4.1.5 and
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4.1.6 hold, and there are test cases where no convergence was observed (see [CCS14]). However,
in [SS13] several numerical examples are shown where the convergence rates of Theorems 4.1.5
and 4.1.6 are achieved.

4.3. Analyticity and uniform boundedness of solutions to elliptic
PDEs

We now return to our model problem as stated in (3.2.4). We show that the solution to (3.2.4)
satisfies the (b, p, ε)-holomorphy assumption, so that the convergence results stated in Theorem
4.1.5 and Theorem 4.1.6 hold.

To this aim, we replace the definition of (b, ε)-admissible sequence of polyradii by the following:

Definition 4.3.1. A sequence ρ = (ρl)l≥1 of polyradii, with ρl > 1 for every l ≥ 1, is said to be
(b, ε)∗-admissible if it is (b, ε)-admissible for a sequence b that has a monotonic majorant in `p(F)
for 0 < p < 1

2 and is such that (lbpl )l≥1 has a monotonic majorant, and if (4.1.18) is replaced by∑
l≥1

(ρl − 1)lbl ≤ ε. (4.3.1)

We use the term (b, p, ε)∗-holomorphy assumption to denote the (b, p, ε)-holomorphy assumption
when (b, ε)-admissible sequences are replaced by (b, ε)∗-admissible sequences.

Proposition 4.3.2. Let the (b, p, ε)-assumption be replaced by the (b, p, ε)∗-assumption. Then the
algebraic convergence of the sparse interpolation and quadrature operators, prescribed by Theorems
4.1.5 and 4.1.6 respectively, still holds with rate of convergence s = 1

p − 2.

Proof. Since the sequence b has a monotonic majorant in `p(F) and the sequence (lbpl )l≥1 has
a monotonic majorant, then Lemma C.0.7 in the Appendix ensures that the sequence (lbl)l≥1

belongs to `q(F) with q = p
1−p . Applying Theorems 4.1.5 and 4.1.6 using the (b, p, ε)-assumption

for the sequence b̃ = (lbl)l≥1, we obtain the claim.

Remark 4.3.3. The condition expressed by the inequality in (4.3.1), differently from the condi-
tion b ∈ `p(N), entails an implicit ordering of the dimensions of the parameter space with respect
to decreasing significance. However, thanks to Assumption 2.1.4.A, the bound ε in (4.3.1) does
not depend on the sequence b itself but on its (monotonically decreasing) majorant.

Remark 4.3.4. Condition (4.3.1) implies in particular condition (4.1.18) for the same sequence
b.

Our plan is to show that the (b, p, ε)∗-holomorphy assumption is fulfilled for our model problem.

As it is done in [CCS15, Sect. 5.3], we choose the sequence b as

bl = ‖βlψl‖C0
per([0,2π)) +

∥∥βlψ′l∥∥C0
per([0,2π))

= |βl|+ l|βl|, l ≥ 1, (4.3.2)

with βl and ψl as in Remark 2.1.7, l ≥ 1.

Notice that, thanks to Assumption 2.1.4.A on the sequence (βl)l≥1 (i.e. existence of a monotonic

majorant belonging to `p(N) with p < 1
2), there exist sequences of polyradii that are (b, ε)∗-

admissible.

Let us first look at the uniform bound (4.1.19).
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4.3. Analyticity and uniform boundedness of solutions to elliptic PDEs

We point out that Assumption 3.1.2 is not sufficient by itself to ensure well-posedness of the
problem with a parameter-independent upper bound on the solution for z ∈ Oρ, with ρ a (b, ε)∗-
admissible sequence. Instead, we have to impose a slightly stronger requirement:

Assumption 4.3.5. (i) The domain mapping Φ = Φ(y), its Jacobian DΦ(y) and its Jacobian
inverse DΦ−1(y), y ∈ PJ , J ∈ N, admit a holomorphic extension to the subsets Oρ ⊂ CN as
defined in (4.1.20), for any (b, ε)∗-admissible sequence ρ of polyradii.
(ii) For every z ∈ Oρ, Φ = Φ(z) fulfills Assumption 3.1.2, with bounds possibly depending on ε.
For Assumption 3.1.2(i), the requirement on the diffeomorphism to be orientation-preserving is
replaced by: there exists a real constant σ = σ(ε) > 0, independent of z ∈ Oρ, such that

Re detDΦ(z) > σ(ε), for every z ∈ Oρ. (4.3.3)

Since in general the domain mapping Φ will depend on r = r(z), z ∈ Oρ, in order to have
Assumption 4.3.5 fulfilled we can expect that we need to ensure z-uniform bounds and holomorphy
of the radius and its derivative with respect to ϕ ∈ [0, 2π). We are going to show that z-uniform

bounds hold for Re r(z), |r(z)| and

∣∣∣∣ ∂r∂ϕ(z)

∣∣∣∣, and that such bounds are sufficient for the mapping

(3.1.2) to satisfy Assumption 4.3.5.

Assumption 2.1.3 ensures that there exist 0 < r−, r+ <∞ such that

r− ≤ r(y, ϕ) ≤ r+, for a.e. ϕ ∈ [0, 2π), all J ∈ N, and all y ∈ PJ (4.3.4)

(more precisely, in our case r− =
r−0
2 , r+ = r+

0 +
r−0
2 , with r+

0 = supϕ∈[0,2π) r0(ϕ) and r−0 as
in Assumption 2.1.3). Moreover, Assumption 2.1.4.A guarantees that there exists a J- and y-
independent constant 0 < Cr <∞ such that∥∥∥ ∂r

∂ϕ
(y)
∥∥∥
C0
per([0,2π))

≤
∥∥∥∂r0

∂ϕ

∥∥∥
C0
per([0,2π))

+ Cr, for all J ∈ N and all y ∈ PJ . (4.3.5)

Then, we can prove the following:

Lemma 4.3.6. Let b be as in (4.3.2) and 0 < ε ≤ r−

2 , with r− as in (4.3.4). Then, for every
(b, ε)∗-admissible sequence ρ and every z ∈ Oρ, with Oρ as in (4.1.20), we have the z-independent
bounds

r−

2
≤ Re r(z, ϕ), ϕ ∈ [0, 2π),

r−

2
≤ |r(z, ϕ)| ≤ r+ + ε, ϕ ∈ [0, 2π),∣∣∣ ∂r

∂ϕ
(z, ϕ)

∣∣∣ ≤ ∥∥∥∂r0

∂ϕ

∥∥∥
C0
per([0,2π))

+ Cr + ε, ϕ ∈ [0, 2π),

(4.3.6)

(4.3.7)

(4.3.8)

with r− and r+ as in (4.3.4), and Cr as in (4.3.5).

In particular, the mapping Φ defined in (3.1.2) fulfills Assumption 4.3.5 (ii) if the mollifier fulfills

Assumption 3.1.3 and 0 < ε < min
{
cχ,

r−

2

}
.

Proof. From (2.2.3), we have that:

r(z, ϕ) = r(y, ϕ) +
J∑
j=1

cj(z2j−1 − y2j−1) cos(jϕ) + sj(z2j − y2j) sin(jϕ).
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Since z ∈ Oρ, for every J ∈ N there exists y ∈ PJ such that, for every 1 ≤ l ≤ L = 2J ,
|zl − yl| < ρl − 1; moreover, being ρ (b, ε)∗-admissible, it is in particular (b, ε)-admissible, which,
together with (4.3.4), implies that

|r(z, ϕ)| ≤ r+ + ε, for every ϕ ∈ [0, 2π).

Analogously, taking into account that 0 < ε ≤ r−

2 , we get

|r(z, ϕ)| ≥ Re r(z, ϕ) ≥ r− − ε ≥ r−

2
, for every ϕ ∈ [0, 2π). (4.3.9)

Finally, using (4.3.5) and (4.3.1), for every J ∈ N and y ∈ PJ such that, for every 1 ≤ l ≤ L,
|zl − yl| < ρl − 1:∣∣∣ ∂r

∂ϕ
(z, ϕ)

∣∣∣ =
∣∣∣ ∂r
∂ϕ

(y, ϕ) +

J∑
j=1

cjj(z2j−1 − y2j−1) cos(jϕ) + sjj(z2j − y2j) sin(jϕ)
∣∣∣

≤
∥∥∥ ∂r
∂ϕ

(y)
∥∥∥
C0
per([0,2π))

+ ε

≤
∥∥∥∂r0

∂ϕ

∥∥∥
C0
per([0,2π))

+ Cr + ε, for every ϕ ∈ [0, 2π).

We remark that all the bounds are independent of the truncation parameter J ∈ N.

Proceeding as in the proof to show that Φ = Φ(y) given by (3.1.2), y ∈ PJ , fulfills Assumption
3.1.2 (see Appendix, Section E), it is easy to see that the bounds proved in this lemma guarantee
that this map fulfills Assumption 4.3.5 for z ∈ Oρ.

The same argument used in the proofs of Lemma 3.2.5 and Corollary 3.2.6 leads to:

Proposition 4.3.7. Let the sequence b be as in (4.3.2) and 0 < ε ≤ r−

2 , with r− as in (4.3.4).

If the mapping Φ satisfies Assumption 4.3.5, then part (ii) of the (b, p, ε)∗-holomorphy assumption
is fulfilled, i.e. there exist constants B1 = B1(ε) and B2 = B2(ε) such that

sup
z∈Oρ

‖û(z)‖H1(KR) ≤ B1(ε) ‖ui‖H1(∂KR) +B2(ε)

∥∥∥∥ ∂ui∂nR

∥∥∥∥
L2(∂KR)

, (4.3.10)

for every Oρ as in (4.1.20), with ρ any sequence of (b, ε)∗-admissible polyradii. The constants
B1 and B2 are independent of J ∈ N and ρ.

In particular, the bound (4.3.10) holds for the mapping Φ given in (3.1.2) if the mollifier fulfills

Assumption 3.1.3 and 0 < ε < min
{
cχ,

r−

2

}
.

To prove that part (i) of the (b, p, ε)∗-holomorphy assumption holds, we need to show that,

for 0 < ε ≤ r−

2 and any sequence ρ of (b, ε)∗-admissible poly-radii, the solution û to (3.2.4)
admits a holomorphic extension to the sets Oρ defined in (4.1.20). The proof is rather general
and actually it applies, with minor modifications, to any elliptic PDE as long as the parameter-
dependent configuration can be mapped to a reference configuration through a mapping satisfying
Assumption 4.3.5 and depending smoothly (in a sense to be specified later, see Remark 4.3.10)
on the stochastic quantity r = r(y).

Namely, we first show the existence of a holomorphic extension for the parameter-dependent
radius (2.2.3) and its ϕ-derivative. From this, analyticity of the map Φ(y) and then of the
solution to the PDE on the nominal configuration follow. The arguments used to establish the
forthcoming results are a particular case of the theory elaborated in [CCS15] and follow some of
the techniques presented in [CDS11], where analyticity of the solution to the diffusion equation
with stochastic diffusion coefficient is proved.
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Lemma 4.3.8. For every z ∈ Oρ, with Oρ as in (4.1.20) and ρ any (b, ε)∗-admissible sequence,

the maps z 7→ r(z) ∈ C1
per ([0, 2π)) and z 7→ ∂r

∂ϕ
(z) ∈ C0

per ([0, 2π)), with r = r(z, ·) given by

(2.2.3), are holomorphic.

Proof. We prove the statement just for the map z 7→ r(z), z ∈ Oρ, since the argument for the

map z 7→ ∂r

∂ϕ
(z), z ∈ Oρ, is analogous.

Thanks to Hartogs’ theorem on separate analyticity (see e.g. [Kra82, Sect. 2.4]), it is sufficient to
show that r(z) is holomorphic with respect to each of the variables zl separately, for every l ≥ 1.
In other words, we just have to show that, for any l ≥ 1, the function

zl 7→ rl(zl) := r(z̄1, . . . , z̄l−1, zl, z̄l+1, . . .),

with z1 = z̄1, . . . , zl−1 = z̄l−1, zl+1 = z̄l+1, . . . fixed, is holomorphic.

Let us first consider the case when z ∈ Oρ with z̄1 = . . . = z̄l−1 = z̄l+1 = . . . = 0. For this, we
can write:

r(z, ϕ) = rl(zl, ϕ) := r0(ϕ) + βlzlψl(ϕ), (4.3.11)

with βl and ψl(ϕ) as in Remark 2.1.7. For δ ∈ C \ {0}, we have:

rl(zl + δ, ·)− rl(zl, ·) = δβlψl.

Thus, for any δ with |δ| small, the difference quotient belongs to C1
per ([0, 2π)):∥∥rl(zl + δ, ·)− rl(zl, ·)

∥∥
C1
per([0,2π))

|δ|
= |βl| ‖ψl‖C1

per([0,2π)) <∞.

The existence of the limit as |δ| tends to zero implies that zl 7→ rl(zl) is complex differentiable
with

∂r

∂zl
(z) =

drl

dzl
(zl) = βlψl, zl ∈ Oρl , zj = 0, for j 6= l,

and thus zl 7→ rl(zl) is holomorphic.

In the general case that z̄1, . . . , z̄l−1, z̄l+1, . . . 6= 0, since these values, although nonzero, are
considered to be fixed, we can write

r(z, ϕ) = rl(zl, ϕ) = r0(ϕ) +
∑
j≥1
j 6=l

z̄jβjψj(ϕ) + zlβlψl(ϕ) = r̃0(ϕ) + zlβlψl(ϕ),

with r̃0(ϕ) = r0(ϕ) +
∑

j≥1
j 6=l

z̄jβjψj(ϕ); then we can start from (4.3.11) with r̃0 instead of r0,

proceed as before and thus show that zl 7→ rl(zl) is holomorphic in Oρ.

For ease of treatment, we now state the analyticity of the mapping Φ for the special case described
in (3.1.2), but, as it will be specified in Remark 4.3.10, the following result holds for a wide class
of mappings.

Let Diffk+,pw(KR,KR) be the space of diffeomorphisms which are of order Ck in each of the

two subdomains D̂1 ∩KR and D̂2, and with determinant with positive real part. Since algebraic
sum, multiplication and, when not zero, division by holomorphic functions is still holomorphic,
it follows immediately from Lemma 4.3.8 that:
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4. Stochastic collocation

Lemma 4.3.9. Let us consider the map Φ defined in (3.1.2) with mollifier fulfilling Assumption
3.1.3. Then the mappings z 7→ Φ(z, ·) ∈ Diff1

+,pw(KR,KR), z 7→ DΦ−1(z, ·)∈ C0
pw(KR) and

z 7→ detDΦ(z, ·)∈ C0
pw(KR) are holomorphic in Oρ, with Oρ as defined in (4.1.20) for any

(b, ε)∗-admissible sequence ρ and 0 < ε < min
{
cχ,

r−

2

}
.

Together with Lemma 4.3.6, this implies that the mapping defined in (3.1.2) (with Assumption
3.1.3 on the mollifier) satisfies Assumption 4.3.5.

Proof. Thanks to Assumption 2.1.3 and the restrictions on the mollifier χ, proceeding as in
Section E in the Appendix (as in formula (E.0.3)), we note that detDΦ(z), which appears as
denominator in DΦ−1(z) (see (E.0.2)), is never zero. Using the result of Lemma 4.3.6, the
statement follows.

Remark 4.3.10. It is clear that our framework and in particular Lemma 4.3.9 fit not only
the specific map Φ given in (3.1.2), but any map involving composition of r with holomorphic
maps, as well as linear combinations, multiplications and divisions (when never zero), as long as
Assumption 4.3.5 is satisfied.

For the same reasons as for the previous lemma, we also have:

Lemma 4.3.11. Let Assumption 4.3.5 be fulfilled. Then the coefficients α̂(y), κ̂2(y) as defined
in (3.2.5) are holomorphic when considered as maps from z ∈ Oρ to C0

pw(KR).

We have proved that all the coefficients in (3.2.4) admit a holomorphic extension to Oρ. From
this, we want to prove that the map z 7→ û(z) too has a holomorphic extension to Oρ.

This result follows direcly from [CCS15, Thm. 2.2 and Thm. 4.1], stating that, if the bilinear
form and the linear form in the PDE fulfill the (b, p, ε)-assumption in Oρ, and if the coercivity
constant of the bilinear form and the continuity constants of the bilinear and linear forms are
uniform with respect to z ∈ Oρ, then the map z 7→ û(z) too has a holomorphic extension to
Oρ.

However, here we present how one can show holomorphy of the solution û(z) by direct application
to our model problem. For this, we proceed as in [CDS11].

We first need the following technical result:

Lemma 4.3.12. Let z1, z2 ∈ Oρ, with Oρ ⊂ CN defined as in (4.1.20) and ρ a (b, ε)∗-admissible
sequence.

Let û1 and û2 be two solutions to (3.2.4), with coefficients α̂1(x) := α̂(z1,x), κ̂2
1(x) := κ̂2(z1,x)

and α̂2(x) := α̂(z2,x), κ̂2
2(x) := κ̂2(z2,x) respectively, and with the same incoming wave ui.

Also, let Assumption 4.3.5 be satisfied.

Then, if Assumption 3.2.4 holds with τ < T and T as in Lemma 3.2.5, then the difference between
the two solutions satisfies

‖û1 − û2‖H1(KR) ≤ C
(
‖α̂1 − α̂2‖C0

pw(KR) + ‖κ̂2
1 − κ̂2

2‖C0
pw(KR)

)
, (4.3.12)

for a constant C > 0 independent of z ∈ Oρ.
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4.3. Analyticity and uniform boundedness of solutions to elliptic PDEs

Proof. Taking the difference of the two variational formulations for û1 and û2, we obtain:∫
KR

α̂1∇̂(û1 − û2) · ∇̂v̂ − κ̂2
1(û1 − û2)v̂ dx̂−

∫
∂KR

DtN(û1 − û2)v̂ dS

=

∫
KR

(α̂2 − α̂1) ∇̂û2 · ∇̂v̂ − (κ̂2
2 − κ̂2

1)û2v̂ dx̂, for all v ∈ H1(KR).

Assumption 4.3.5 and Lemma 3.2.5 ensure coercivity of the bilinear form on the left-hand side,
with a coercivity constant γ independent of z ∈ Oρ.

To get (4.3.12), we need a z-independent bound on the norm of the linear form on the right-hand
side:

|L(v̂)| =
∣∣∣∣∫
KR

(α̂2 − α̂1) ∇̂û2 · ∇̂v̂ − (κ̂2
2 − κ̂2

1)û2v̂ dx̂

∣∣∣∣
≤
(
‖α̂1 − α̂2‖C0

pw(KR) + ‖κ̂2
1 − κ̂2

2‖C0
pw(KR)

)
‖û2‖H1(KR)‖v̂‖H1(KR)

≤ C̃(ε)
(
‖α̂1 − α̂2‖C0

pw(KR) + ‖κ̂2
1 − κ̂2

2‖C0
pw(KR)

)
‖v̂‖H1(KR),

with C̃(ε) = B1(ε) ‖ui‖H1(∂KR) +B2(ε)

∥∥∥∥ ∂ui∂nR

∥∥∥∥
L2(∂KR)

the uniform bound on the H1-norm of û2

from Proposition 4.3.7.

The estimate (4.3.12), with C = C̃
γ , follows then from the Lax-Milgram lemma.

To prove the analyticity of the solution to (3.2.4), we follow the lines of Lemma 2.2 in [CDS11].

Lemma 4.3.13. Let Assumptions 3.2.4 and 4.3.5 hold, the former with τ < T and T as in Lemma
3.2.5. Then, if û is a solution to (3.2.4), the solution map z 7→ û(z) ∈ V = H1(KR), admits a
holomorphic extension to any open set Oρ ⊂ CN as defined in (4.1.20), with ρ a (b, ε)∗-admissible
sequence.

For each variable zl, l ≥ 1, the complex derivative (∂zl û) (z) ∈ V is the weak solution to the
variational problem:

Find (∂zl û) (z) ∈ V :∫
KR

(
α̂(z, x̂)∇̂∂zl û(z, x̂) · ∇̂v̂(x̂)− κ̂2(z, x̂)∂zl û(z, x̂)v̂(x̂)

)
dx̂

−
∫
∂KR

DtN(∂zl û(z, x̂))v̂(x̂) dS = L0(z, v̂), for all v̂ ∈ V and all z ∈ Oρ. (4.3.13)

The right-hand side L0 is given by

L0(z, v̂) =

∫
KR

− ∂α̂
∂zl

(z, x̂)∇̂û(z, x̂) · ∇̂v̂(x̂) dx̂+
∂κ̂2

∂zl
(z, x̂)û(z, x̂)v̂(x̂) dx̂.

In particular, this result holds if Assumption 3.2.4 if fulfilled (with τ < T ) and the domain
mapping is the one defined in (3.1.2) with the mollifier fulfilling Assumption 3.1.3.

Proof. We observe that, due to Hartogs’ theorem, it is sufficient to prove separate analyticity.

Let then el denote the Kronecker sequence, i.e. (el)m = δlm. For δ ∈ C \ {0}, we consider the
difference quotient

ŵδ(z) =
û(z + δel)− û(z)

δ
.
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4. Stochastic collocation

Thanks to Assumption 4.3.5, for |δ| sufficiently small, û(z + δel) and thus ŵδ are well defined as
elements of H1(KR). In particular, for the mapping defined in (3.1.2): if |δ| |βl| ‖ψl‖C0

per([0,2π)) =

|δ| |βl| ≤ ε
2 and |δ|l |βl| ‖ψl‖C0

per([0,2π)) = |δ|l |βl| ≤ ε
2 , then

r−

4
≤ Re r(z + δel) ≤ |r(z + δel)| ≤ r+ +

3ε

2∥∥∥ ∂r
∂ϕ

(z + δel)
∥∥∥
C0
per([0,2π))

≤
∥∥∥∂r0

∂ϕ

∥∥∥
C0
per([0,2π))

+ Cr +
3ε

2
,

with Cr as in (4.3.5) (where we have used that 0 < ε ≤ r−

2 ).

For |δ| sufficiently small, subtracting (3.2.4) for û(z + δei) and (3.2.4) for û(z), we obtain:

0 =

∫
KR

(
α̂(z + δei, x̂)∇̂û(z + δei, x̂) · ∇̂v̂(x̂)− κ̂2(z + δei, x̂)û(z + δei, x̂)v̂(x̂)

)
dx̂

−
∫
KR

(
α̂(z, x̂)∇̂û(z, x̂) · ∇̂v̂(x̂)− κ̂2(z, x̂)û(z, x̂)v̂(x̂)

)
dx̂

−
∫
∂KR

DtN(û(z + δei, x̂)− û(z, x̂))v̂(x̂) dS

= δ

∫
KR

(
α̂(z, x̂)∇̂ŵδ(z, x̂) · ∇̂v̂(x̂)− κ̂2(z, x̂)ŵδ(z, x̂)v̂(x̂)

)
dx̂

+

∫
KR

(α̂(z + δei, x̂)− α̂(z, x̂)) ∇̂û(z + δei, x̂) · ∇̂v̂(x̂) dx̂

−
∫
KR

(
κ̂2(z + δei, x̂)− κ̂2(z, x̂)

)
û(z + δei, x̂)v̂(x̂) dx̂− δ

∫
∂KR

DtN(ŵδ(z, x̂))v̂(x̂) dS.

Thus, ŵδ satisfies the following variational formulation:

Find ŵδ(z) ∈ V :∫
KR

(
α̂(z, x̂)∇̂ŵδ(z, x̂) · ∇̂v̂(x̂)− κ̂2(z, x̂)ŵδ(z, x̂)v̂(x̂)

)
dx̂

−
∫
∂KR

DtN(ŵδ(z, x̂))v̂(x̂) dS = Lδ(z, v̂), for all v̂ ∈ V and all z ∈ Oρ; (4.3.14)

the right-hand side is defined as

Lδ(z, v̂) = −
∫
KR

α̂(z + δel, x̂)− α̂(z, x̂)

δ
∇̂û(z + δel, x̂) · ∇̂v̂(x̂) dx̂

+

∫
KR

κ̂2(z + δel, x̂)− κ̂2(z, x̂)

δ
û(z + δel, x̂)v̂(x̂) dx̂.

For every δ with |δ| sufficiently small, existence and uniqueness of the solution ŵδ(z) to (4.3.14)
follow from either applying the Fredholm Alternative and the sign properties of the DtN map as
we did for Theorem 3.2.3, or exploiting the coercivity of the bilinear form (ensured by Assumption
3.2.4, with the restrictions on τ , and Assumption 4.3.5) to apply the Lax-Milgram lemma.

As |δ| tends to zero, for each v̂ ∈ V and every z ∈ Oρ fixed, the right-hand side Lδ(z, v̂) tends to

L0(z, v̂) :=

∫
KR

− ∂α̂
∂zl

(z, x̂)∇̂û(z, x̂) · ∇̂v̂(x̂) dx̂+
∂κ̂2

∂zl
(z, x̂)û(z, x̂)v̂(x̂) dx̂.
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4.3. Analyticity and uniform boundedness of solutions to elliptic PDEs

Indeed, subtracting Lδ and L0 and denoting α̂δ(z) := α̂(z+δel)−α̂(z)
δ we have, for the first sum-

mand: ∣∣∣ ∫
KR

α̂δ(z)∇̂û(z + δel, x̂) · ∇̂v̂(x̂)− ∂α̂

∂zl
(z)∇̂û(z, x̂) · ∇̂v̂(x̂) dx̂

∣∣∣
≤
∣∣∣ ∫

KR

(
α̂δ −

∂α̂

∂zl

)
∇̂û(z + δel, x̂) · ∇̂v̂(x̂) dx

∣∣∣
+
∣∣∣ ∫

KR

∂α̂

∂zl

(
∇̂û(z + δel, x̂)− ∇̂û(z, x̂)

)
· ∇̂v̂(x̂) dx̂

∣∣∣
≤
∥∥∥∥α̂δ(z)− ∂α̂

∂zl
(z)

∥∥∥∥
C0

pw(KR)

|û(z + δei)|H1(KR) |v̂|H1(KR)

+

∥∥∥∥ ∂α̂∂zl (z)

∥∥∥∥
C0

pw(KR)

|û(z + δei)− û(z)|H1(KR) |v̂|H1(KR) .

Since z 7→ α̂(z) is holomorphic and C0
pw-valued, there exist constants Cz1 , C

z
2 < ∞, possibly

depending on z ∈ Oρ but not on δ, such that∥∥∥∥α̂δ(z)− ∂α̂

∂zl
(z)

∥∥∥∥
C0

pw(KR)

≤ Cz1 |δ|,∥∥∥∥ ∂α̂∂zl (z)

∥∥∥∥
C0

pw(KR)

= Cz2 .

The uniform bound given by Proposition 4.3.7 ensures that there exists C3 <∞, independent of
z ∈ Oρ and of δ, such that |û(z + δei)|H1(KR) ≤ C3 for every δ ∈ C with |δ| sufficiently small.

Lemma 4.3.12 together with the analyticity of z 7→ α̂(z) and z 7→ κ̂2(z), ensure the existence of
a constant Cz4 <∞, independent of δ (but that might depend on z ∈ Oρ), such that

|û(z + δei)− û(z)|H1(KR) ≤ C
z
4 |δ|

(∥∥∥ ∂α̂
∂zl

(z)
∥∥∥
C0

pw(KR)
+
∥∥∥∂κ̂2

∂zl
(z)
∥∥∥
C0

pw(KR)

)
,

for |δ| → 0. Together, these bounds imply that there exists a constant Cz5 < ∞, possibly
depending on z ∈ Oρ but independent of δ, such that∣∣∣ ∫

KR

α̂δ(z)∇̂û(z + δel, x̂) · ∇̂v̂(x̂)− ∂α̂

∂zl
(z)∇̂û(z, x̂) · ∇̂v̂(x̂) dx̂

∣∣∣ ≤ Cz5 |δ|,
for |δ| → 0. Applying the same technique to the second summand of Lδ −L0, we finally get that,
as |δ| → 0, Lδ → L0 in the dual space V ∗.

Thus, the complex derivative (∂zl û) (z), if it exists, is the unique solution to

Find (∂zl û) (z) ∈ V :∫
KR

(
α̂(z, x̂)∇̂∂zl û(z, x̂) · ∇̂v̂(x̂)− κ̂2(z, x̂)∂zl û(z, x̂)v̂(x̂)

)
dx̂

−
∫
∂KR

DtN(∂zl û(z, x̂))v̂(x̂) dS = L0(z, v̂), for all v̂ ∈ V and all z ∈ Oρ. (4.3.15)

For every z ∈ Oρ, Assumption 4.3.5 guarantees coercivity and continuity of the bilinear form in
(4.3.15); together with the continuity of L0(z) on V , this implies that the variational problem
above is well-posed for every z ∈ Oρ . Thus, for every z ∈ Oρ, the complex derivative (∂zl û) (z)
exists and is given by the solution to (4.3.15).

Summarizing the results obtained in this section:
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4. Stochastic collocation

Theorem 4.3.14. Let Assumptions 2.1.2, 2.1.3, 2.1.4.A or 2.1.4.B, and 3.2.4 be satisfied. Then
the (b, p, ε)∗-holomorphy assumption is fulfilled for the domain mapping (3.1.2), with the same
restrictions on the mollifier as in Lemma 4.3.9, and the results of Theorems 4.1.5 and 4.1.6 hold
with convergence rate s = 1

p − 2.

For a generic domain mapping, the (b, p, ε)∗-holomorphy assumption is satisfied and the algebraic
convergence prescribed by Theorems 4.1.5 and 4.1.6 is achieved with s = 1

p − 2 if the map fulfills
Assumption 4.3.5.

Remark 4.3.15. It is clear from our treatment that the above result can be easily extended
when for the mapping (3.1.2) we use the mollifier (3.1.3).
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5. Sparse tensor discretization: abstract setting

The convergence results of Theorems 4.1.5 and 4.1.6 assume that the Q.o.I. g can be computed
exactly at the interpolation/quadrature points. Often in applications, though, for each realization
y just a discrete approximation to g can be calculated.

This chapter is devoted to the convergence analysis for the full sparse tensor discretization, i.e.
for the interpolant or the mean of the Q.o.I. obtained with a sparse interpolation/quadrature
algorithm in the case that each realization is subject to a space discretization error.

We develop the analysis in a general setting, that goes beyond the application presented in
this work. In the next chapter, we will see how the results obtained apply for the Helmholtz
transmission problem.

We state the convergence results in two cases: first, assuming that the space discretization used
is the same for every interpolation/quadrature point, second, in the case of nested sequences
of interpolation/quadrature points, allowing the space discretization to be different for every
realization.

5.1. Abstract problem setting

Let X, Y be reflexive, separable Banach spaces over C. Let (u, v) 7→ B(y, u, v) and v 7→ L(y, v)
denote the parameter-dependent sesquilinear and antilinear forms onX×Y and on Y , respectively.
We consider the parametric PDE in the general variational form:

Find u ∈ X : B(y, u, v) = L(y, v), for every v ∈ Y,y ∈ PJ , J ∈ N. (5.1.1)

We assume that the sesquilinear and antilinear forms fulfill the (b, p, ε)-holomorphy assumption
[CCS15]. Then Theorem 4.1 in [CCS15] guarantees that the map y 7→ u(y) from the parameter
space to X, with u(y) the solution to (5.1.1), fulfills the (b, p, ε)-holomorphy assumption with
the same p, ε and sequence b as the sesquilinear and antilinear forms.

Introducing the families of finite dimensional subspaces Xl,h ⊂ X and Yl,h ⊂ Y , l ∈ N and h ∈ R+,
the discrete variational formulation of (5.1.1) for every l ∈ N reads:

Find ul,h ∈ Xl,h : B(y, ul,h, vl,h) = L(y, vl,h), for every vl,h ∈ Yl,h,y ∈ PJ , J ∈ N. (5.1.2)

We assume the existence of a convergence estimate of the form:

inf
vl,h∈Xl,h

‖w − vl,h‖X ≤ Clhtl‖w‖W as h→ 0, (5.1.3)

for any w ∈W and some tl ∈ R+, and for every l ∈ N. For every l ∈ N, Cl is a positive constant,
independent of h and of the truncation parameter J (but possibly dependent of l).

For instance, we can think about l as the polynomial degree in a finite element discretization,
and h as the meshwidth.
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5. Sparse tensor discretization: abstract setting

5.2. Holomorphy of the discrete solution

Since we apply sparse interpolation and quadrature to the discrete solution, we have to show its
holomorphy.

Lemma 5.2.1. Let (Xl,h)l≥1,h>0 be a family of finite dimensional subspaces of X, and, for every

l ∈ N and h ∈ R+, let ul,h ∈ Xl,h be the discrete solution to (5.1.1). Then, for every l ∈ N and
every h ∈ R+, the mapping y → ul,h(y) ∈ X fulfills the (b, p, ε)-holomorphy assumption with the
same sequence b, the same p and the same ε with which the sesquilinear form and the antilinear
form fulfill the (b, p, ε)-holomorphy assumption.

Proof. The proof is the same as in the continuous case [CCS15, Thm. 4.1], replacing the varia-
tional formulation (5.1.1) with the corresponding discrete variational formulation.

Remark 5.2.2. The assumption that Xl,h ⊂ X and Yl,h ⊂ Y can be dropped if we require that
the sesquilinear and antilinear form fulfill the (b, p, ε)-assumption on the discrete spaces, with
domain of holomorphy and inf-sup and continuity constants independent of h.

5.3. Convergence estimate for fixed finite element discretization

In this case, we fix l ∈ N, consider the family (Xl,h)h>0 with l fixed, and denote by t := tl the
convergence rate in (5.1.3). We indicate by IΛuh and QΛuh the quantities obtained applying,
respectively, sparse interpolation and quadrature to the discrete solution uh ⊂ Xl,h to (5.1.2).

The estimate follows by a simple application of the triangle inequality:

Theorem 5.3.1. Assume that the sesquilinear and antilinear forms in (5.1.1) fulfill the (b, p, ε)-
holomorphy assumption. Assume that (5.1.3) holds and that, for every J ∈ N and every y ∈ PJ ,
‖u(y)‖W is uniformly bounded.

For the interpolation, we assume that the Lebesgue constant λm associated with the univariate
sequence of interpolation points (ζmi )nmi=0 satisfies λm ≤ C(m+ 1)θ for some θ ≥ 1 and a constant
C ∈ R+ (independent of m). For quadrature, assume that the univariate quadrature operators
fulfill Assumption 4.1.2.

Consider that the same space discretization is used at all parameter realizations yν , ν ∈ Λ.

Then there exists a downward closed set Λ of cardinality at most N such that

‖u− IΛuh‖L∞(PJ ,X) ≤ Cht + C1N
−s, s =

1

p
− 1,

‖I(u)−QΛuh‖X ≤ Cht + C2N
−s, s =

1

p
− 1.

(5.3.1)

(5.3.2)

with s, C,C1, C2 > 0 independent of N , h, of the truncation parameter J ∈ N and of y ∈ PJ .

Proof. For each y ∈ PJ , we can write

‖u(y)− IΛuh(y)‖X ≤ ‖u(y)− uh(y)‖X + ‖uh(y)− IΛuh(y)‖X . (5.3.3)

We highlight that when doing this splitting we exploit the fact that the same finite element space
is used for all interpolation/quadrature points, so that we can define uh(y) for all y ∈ PJ .

The first term is bounded by (5.1.3). The bound for the second term in (5.3.3) follows directly
from Lemma 5.2.1 and Theorem 4.1.5.
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For the quadrature case, we have that

‖I(u(y))−QΛuh(y)‖X ≤ ‖I(u(y)− uh(y))‖X + ‖I(uh(y))−QΛuh(y)‖X ;

once we observe, for the first term, that ‖I‖L(L∞(PJ ,X)) = 1 for every J ∈ N, the result follows
as in the interpolation case using Theorem 4.1.6 to bound the second term.

5.4. Convergence estimate for parameter-adaptive discretization

The idea is to distinguish the contribution of the space discretization for each difference operator
∆I
ν or ∆Q

ν as defined in (4.1.5)-(4.1.10) for the interpolation case and in (4.1.11)-(4.1.14) for the
quadrature case. In particular, we associate a family (Xl,h)h>0 to each interpolation/quadrature
point. The approach is similar to the one followed in [SG11] for the Legendre coefficients.

In the following, we denote by Hm(y) the multivariate hierarchical polynomial associated with
the node ym in the case of nested sequences of interpolation points (see [CCS14] for details).
Also,

{
ym ∈ ∆I

ν

}
indicates the set of new interpolation points (or quadrature points using

∆Q
ν ) introduced by the difference operator ∆I

ν (resp. ∆Q
ν ), ωm denotes the quadrature weight

associated with ym and LRν is the Lebesgue constant of the interpolation operator IRν on
Rν := {µ ∈ F : µ < ν}.

The quantities IΛuh,Λ and QΛuh,Λ denote the solutions obtained respectively from sparse inter-
polation and quadrature of the discrete solution uh,Λ to (5.1.2).

Theorem 5.4.1. Assume that the sesquilinear and antilinear forms in (5.1.1) fulfill the (b, p, ε)-
holomorphy assumption. Assume that (5.1.3) holds and that, for every J ∈ N and every y ∈ PJ ,
‖u(y)‖W is uniformly bounded.

For the interpolation, we ask that the Lebesgue constant λm associated with the univariate sequence
of interpolation points (ζmi )nmi=0 satisfies λm ≤ C(m + 1)θ for some θ ≥ 1 and a constant C ∈
R+ (independent of m). For quadrature, assume that the univariate quadrature operators fulfill
Assumption 4.1.2. Let Xhm,lm be the finite dimensional discretization space associated with ym.

There exists a downward closed set Λ of cardinality at most N such that

‖u− IΛuh,Λ‖L∞(PJ ,X) ≤
∑
ν∈Λ

‖∆I
ν(u− uh,Λ)‖L∞(PJ ,X) + C1N

−s, s =
1

p
− 1,

‖I(u)−QΛuh,Λ‖X ≤
∑
ν∈Λ

‖∆Q
ν (u− uh,Λ)‖X + C2N

−s, s =
1

p
− 1,

(5.4.1)

(5.4.2)

with s, C1, C2 > 0 independent of N , of hm for every m, of J ∈ N and of y ∈ PJ .

If the sequences (ζi)i≥0 of interpolation/quadrature points are nested, then the addends in the sum
on the right-hand side satisfy, for the interpolation and quadrature case respectively:

‖∆I
ν(u− uh,Λ)‖L∞(PJ ,X) ≤(1 + LRν )

∑
ym∈∆I

ν

Clm‖Hm(·)‖L∞(PJ ,R)h
tlm
m ‖u(ym)‖W ,

‖∆Q
ν (u− uh,Λ)‖X ≤

∑
ym∈∆Q

ν

Clm |ωm|h
tlm
m ‖u(ym)‖W ,

(5.4.3)

(5.4.4)

with, for every m ∈ N, Clm independent of N , of hm for every m, of J ∈ N and of y ∈ PJ . The
Lebesgue constant LRν is bounded by

LRν ≤ (]Rν)θ+1. (5.4.5)
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5. Sparse tensor discretization: abstract setting

We have ‖Hm(·)‖L∞(PJ ,R) ≥ 1 for every sequence of interpolation points and ‖Hm(·)‖L∞(PJ ,R) =
1 for every m ∈ N in the case of Leja points on the real interval [−1, 1] (see e.g. [Chk13] for their
definition).

Proof. We first consider the interpolation case. Simply applying the triangle inequality we obtain:

‖u− IΛuh,Λ‖L∞(PJ ,X) ≤ ‖u− IΛu‖L∞(PJ ,X) + ‖IΛu− IΛuh,Λ‖L∞(PJ ,X)

≤ ‖u− IΛu‖L∞(PJ ,X) +
∑
ν∈Λ

‖∆I
νu−∆I

νuh,Λ‖L∞(PJ ,X).

Thanks to Lemma 5.2.1, Theorem 4.1.5 holds and thus we get (5.4.1).

If the sequence of interpolation points is nested, then, according to [CCS14, Formula (2.25)], one
can write, for a generic element g ∈ L∞(PJ , X),

∆I
νg(y) =

∑
ym∈∆I

ν

(g(ym)− IRνg(ym))Hm(y),

with IRν the interpolation operator on Rν . Thus, for each ν ∈ Λ:

‖∆I
νu−∆I

νuh,Λ‖L∞(PJ ,X)

≤
∑

ym∈∆I
ν

‖u(ym)− uh,Λ(ym)− IRν (u(ym)− uh,Λ(ym))‖X‖Hm(·)‖L∞(PJ ,R)

≤
∑

ym∈∆I
ν

(1 + LRν )‖u(ym)− uh,Λ(ym)‖X‖Hm(·)‖L∞(PJ ,R)

≤ (1 + LRν )
∑

ym∈∆I
ν

Clmh
tlm
m ‖u(ym)‖W ‖Hm(·)‖L∞(PJ ,R).

Under the hypothesis on the Lebesgue constants for the univariate operators, we have LRν ≤
(]Rν)θ+1, and thus LRν grows with ]Rν . We have obtained (6.2.5), with ‖Hm(·)‖L∞(PJ ) ≥ 1 in
general and ‖Hm(·)‖L∞(PJ ) = 1 for every l in the case of Leja points [CCS14].

The result for the quadrature operators follows the same lines. The difference is, of course, in
the definition of the difference operators for nested sequences. In this case, for a continuous
g ∈ L2(PJ , X):

∆Q
ν g =

∑
ym∈∆Q

ν

ωmg(ym),

and thus

‖∆Q
ν u−∆Q

ν uh,Λ‖X ≤
∑

ym∈∆Q
ν

Clm |ωm|h
tlm
m ‖u(ym)‖W .

The above theorem can be considered as a starting point for an adaptive strategy, where one tries
to minimize the total number of degrees of freedom used overall in the space discretizations in
such a way that the total error induced by them is of the same order as the Smolyak algorithm
error (∼ N−s). Differently from [CDS11], when using the adaptive Smolyak algorithm described
in Section 4.2, we do not know the index set apriori; thus, the adaptive strategy cannot be based
on the solution of an optimization problem as in [CDS11], but rather on an online choice of the
finite element space each time the algorithm selects an interpolation/quadrature point.
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5.5. Convergence of linear output functionals

Remark 5.4.2. We have deduced the convergence results for the full solution without proving
that the solution u(y) to (5.1.1) admits a holomorphic extension to the complex plane as map
from P to W , as it is done instead in [CDS11]. In [CDS11] such a holomorphic extension was
needed because the space discretization was applied to the Taylor coefficients of the solution. In
our case, when we apply the convergence results of Theorems 4.1.5 and 4.1.6, we always consider
u as map from P to X, and the convergence results for the space discretization are applied
on realizations of u for values of the real parameter y. Thus, what we need only is a J- and
y-independent bound on ‖u(y)‖W for every realization of the real-valued parameter y.

We also highlight that, if we needed to show holomorphy of u as a W -valued map, then it might
happen that the radii of the polyellipses where u can be extended would decay much slower
than the polyradii for which u can be extended as a X-valued map, and this would significantly
deteriorate the convergence rate for sparse interpolation and quadrature. For instance, in the
application considered in this work, the expansion of the radius in terms of sinusouids would
imply an increase of the p in the (b, p, ε)-holomorphy assumption each time we differentiate to
consider higher space regularity for the solution û.

5.5. Convergence of linear output functionals

Let F = F (y), y ∈ PJ , J ∈ N, be a linear output functional on X. If F (u) depended only
on the solution u to (5.1.1), then, thanks to the linearity, the holomorphy of F would follow
immediately from the holomorphy of u. However, since in general F is parameter-dependent by
itself, we require that:

Assumption 5.5.1. The linear output functional F = F (y, u) admits an analytic extension to
the complex plane, with the same domain of analyticity as the solution u to (5.1.1).

We also assume that F fulfills a convergence estimate of the form

|F (y, w)− F (y, wl,h)| ≤ CFl ht
F
l inf
vl,h∈Xl,h

‖w − vl,h‖X as h→ 0, (5.5.1)

for some tFl ∈ R0,+ for every l ∈ N. For every l ∈ N, CFl is a positive constant independent of h,
of J ∈ N and of y ∈ PJ (but possibly dependent of l).

Let us denote Fh := F (uh) and Fl,h := F (ul,h), where uh and ul,h correspond to the solution to
(5.1.2) in the case of fixed and parameter-dependent space discretization, respectively. Then we
have the two following results:

Theorem 5.5.2. Let F fulfill Assumption 5.5.1 and let u be the solution to (5.1.1). Let the
assumptions of Theorem 5.3.1 be satisfied. Consider that the same space discretization is used at
all parameter realizations yν , ν ∈ Λ.

Then there exists a downward closed set Λ of cardinality at most N such that the following
estimates hold:

‖F − IΛFh‖L∞(PJ ,X) ≤ Cht
F+t + C1N

−s, s =
1

p
− 1,

‖I(F )−QΛFh‖X ≤ Cht
F+t + C2N

−s, s =
1

p
− 1,

(5.5.2)

(5.5.3)

with s, C,C1, C2 > 0 independent of N , h, of J ∈ N and of y ∈ PJ .
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5. Sparse tensor discretization: abstract setting

Theorem 5.5.3. Let F fulfill Assumption 5.5.1 and let u be the solution to (5.1.1). Let the
assumptions of Theorem 5.4.1 be satisfied.

Then there exists a downward closed set Λ of cardinality at most N such that

‖F − IΛFh,Λ‖L∞(PJ ,X) ≤
∑
ν∈Λ

‖∆I
ν(F − Fh,Λ)‖L∞(PJ ,X) + C1N

−s, s =
1

p
− 1,

‖I(F )−QΛFh,Λ‖X ≤
∑
ν∈Λ

‖∆Q
ν (F − Fh,Λ)‖X + C2N

−s, s =
1

p
− 1,

(5.5.4)

(5.5.5)

with s, C1, C2 > 0 independent of N , of hm for every m, of J ∈ N and of y ∈ PJ .

If the sequences (ζi)i≥0 of interpolation/quadrature points are nested, then the addends in the sum
on the right-hand side satisfy, for the interpolation and quadrature case respectively:

‖∆I
ν(F − Fh,Λ)‖L∞(PJ ,X) ≤ (1 + LRν )

∑
ym∈∆I

ν

Clm‖Hm(·)‖L∞(PJR)h
tFlm+tlm
m ‖u(ym)‖W ,

‖∆Q
ν (F − Fh,Λ)‖X ≤

∑
ym∈∆Q

ν

Clm |ωm|h
tFlm+tlm
m ‖u(ym)‖W ,

(5.5.6)

(5.5.7)

with, for every m ∈ N, Clm > 0 independent of N , of hm for every m, of J ∈ N and of y ∈ PJ ,
and the Lebesgue constant LRν bounded as in (5.4.5), i.e. LRν ≤ (]Rν)θ+1.

The proofs of these theorems are analogous to the proofs of Theorems 5.3.1 and 5.4.1.
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6. Spatial regularity and sparse tensor
discretization for the Helmholtz problem

In the first section, we establish the relationship between the order of summability p of the
coefficient sequences C = (cj)j≥1, S = (sj)j≥1 in (2.2.3) and the regularity of the solution to (3.2.4)
for a single parameter realization. This information is then used in the second and third sections
to obtain the convergence results for the fully discrete solution and linear output functionals as
particular cases of the results of Chapter 5.

The whole analysis is carried out for the particle in free space case only.

6.1. Spatial regularity of the parametric solution

In Lemma 2.1.6 we have shown how the summability of the coefficient sequences C = (cj)j≥1 and
S = (sj)j≥1 relates to the smoothness of the radius r = r(y, ϕ) given by (2.2.3), for every J ∈ N
and every y ∈ PJ .

Furthermore, in Lemma 3.1.4, we have seen that the smoothness of the radius turns into smooth-
ness of the mapping (3.1.2) for the particle in free space case.

Starting from these results, in this section we state how the summability of the coefficient se-
quences C = (cj)j≥1 and S = (sj)j≥1 turns in the end into smoothness of the solution to (3.2.4)
for every parameter realization.

One may wonder why, since we have the finite dimensional noise assumption, we do not consider
bounds in C∞ spaces. The point is that such bounds would blow up to infinity as J → ∞. In
view of the convergence estimates, instead, we need norm bounds which are independent of the
truncation parameter J ∈ N in the radius expansion.

The theorem implying smoothness of the solution to a PDE from the smoothness of the coefficients
requires the latter to have essentially bounded derivatives. It turns out that the proper spaces
in which to state regularity are the Sobolev spaces W k,∞ of functions with essentially bounded
weak derivatives up to the kth-order. However, not to distinguish between weak and strong
measurability of the coefficient maps ω 7→ α̂(ω), ω 7→ κ̂(ω), and, thus, of the solution map
ω 7→ û(ω), we prefer to work in separable Banach spaces. For this reason, we state the regularity
results in the spaces of piecewise-Ck functions with k finite.

From Lemma 2.1.6 and Lemma 3.1.4 it follows immediately:

Lemma 6.1.1. Let Assumption 2.1.4.A hold and let the map Φ : PJ ×KR → PJ ×KR satisfy
Assumption 3.1.2.

Then, for every r(y) given by (2.2.3) and every y ∈ PJ , J ∈ N, the coefficients α̂ and κ̂2 in
(3.2.4) satisfy

‖α̂(y)‖Ck−1
pw (KR) ≤ C1(C,S), ‖κ̂2(y)‖Ck−1

pw (KR) ≤ C2(C,S),

with ‖·‖Ck−1
pw (KR) = ‖·‖

Ck−1(D̂1∩KR)∪Ck−1(D̂2)
, under the additional hypothesis (not needed if As-

sumption 2.1.4.B holds) that the nominal radius r0 belongs to Ckper([0, 2π)). The constants C1 and
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6. Spatial regularity and sparse tensor discretization for the Helmholtz problem

C2 depend on the regularity parameter k and on the coefficient sequences C = (cj)j≥1, S = (sj)j≥1,
but they are independent of the truncation parameter J ∈ N and of y ∈ PJ . The regularity pa-
rameter k is the same as in Lemma 2.1.6:

k =

{⌊
1
p − 1

⌋
if 1

p − 1 is not an integer,

1
p − 2 otherwise.

Corollary 6.1.2. Under Assumption 2.1.4.A, the result of Lemma 6.1.1 holds for the mapping
3.1.2 if the mollifier fulfills Assumption 3.1.3.

We are now ready to state the result on the smoothness of the solution to (3.2.4). For this, we
proceed in three steps: local interior regularity, local regularity at the interface Γ̂ and at the
boundary ∂KR, and global regularity. We prove these regularity estimates in a more general
framework, of which problem (3.2.4) is a particular case.

Consider the problem: 
L(y)û(y) = f̂(y) in D̂1 ∪ D̂2,

Jû(y)KΓ̂ = ĥ1(y), JBn̂û(y)KΓ̂ = ĥ2(y),

for every y ∈ PJ and every J ∈ N,

(6.1.1a)

(6.1.1b)

to be considered in the weak sense, with û ∈ H1(KR∩D̂1)∪H1(D̂2). The latter space is equipped

with the norm ‖·‖Hk(KR∩D̂1)∪Hk(D̂2) :=
√
‖·‖2

Hk(KR∩D̂1)
+ ‖·‖2

Hk(D̂2)
for k = 1. The differential

operator is given by

L(y)û(y) = ∇̂ · (â(y, x̂)∇̂û(y) + b̂(y, x̂)û(y)) + ĉ(y, x̂) · ∇̂û(y) + d̂(y, x̂)û(y), (6.1.2)

with complex-valued, measurable coefficients â = (âij), b̂ = (b̂i), ĉ = (ĉi) and d̂ (i, j = 1, 2), and

Bn̂ = â(y)
∂

∂n̂
(n̂ outer normal to Γ̂).

We assume L to be strongly elliptic (as defined in [McL00, p. 122]), i.e.:

Re
2∑
i=1

2∑
j=1

âij(y, x̂)ξjξi ≥ a−(y) |ξ|2 , for all x̂ ∈ KR, J ∈ N, y ∈ PJ and ξ ∈ C2, (6.1.3)

and we call a−(y) the ellipticity constant of L.

If in (6.1.1) and (6.1.2) we set â(y, x̂) = α̂(y, x̂), d̂(y, x̂) = κ̂2(y, x̂) and b̂ = ĉ ≡ 0, f̂ ≡ 0,
ĥ1 = ĥ2 ≡ 0, and add the radiation condition at infinity, we retrieve (1.0.1).

We highlight that the following proofs are developed for a two-dimensional domain, but, as it will
become clear, they can be generalized to any dimension.

Throughout this subsection we adopt the notation ∂̂j :=
∂̂

∂̂x̂j
, j = 1, 2.

The local interior regularity is a consequence of Theorem 8.10 in [GT01].

Theorem 6.1.3. Let û(y) ∈ H1(KR) be a weak solution to (6.1.1) in KR, and k ∈ N, k ≥ 2.
We assume that:

• L(y) is strictly elliptic in KR, with a lower bound a− on the ellipticity constant independent
of the truncation parameter J ∈ N and of y ∈ PJ ;
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6.1. Spatial regularity of the parametric solution

• the coefficients in (6.1.2) satisfy

sup
y∈PJ ,J∈N

‖â(y)‖Ck−1
pw (KR) ≤ Ca, sup

y∈PJ ,J∈N
‖b̂(y)‖Ck−1

pw (KR) ≤ Cb,

sup
y∈PJ ,J∈N

‖ĉ(y)‖Ck−2
pw (KR) ≤ Cc, sup

y∈PJ ,J∈N
‖d̂(y)‖Ck−2

pw (KR) ≤ Cd, (6.1.4)

with Ck−1
pw (KR) = Ck−1

(
KR ∩ D̂1

)
∪ Ck−1

(
D̂2

)
and Ck−2

pw (KR) defined analogously;

• the right-hand side satisfies

sup
y∈PJ ,J∈N

‖f̂(y)‖Hk−2(KR∩D̂1)∪Hk−2(D̂2) ≤ Cf . (6.1.5)

The constants Ca, Cb, Cc, Cd and Cf might depend on the regularity parameter k.

Then, for every subdomain D̂′ ⊂ KR ∩ D̂1 or D̂′ ⊂ D̂2, we have û(y) ∈ Hk(D̂′) for every J ∈ N
and every y ∈ PJ , and

‖û(y)‖Hk(D̂′) ≤ C
(
‖û(y)‖H1(KR) + Cf

)
, (6.1.6)

for C = C(a−,K, d′, k, |D̂1 ∩ KR|, |D̂2|), where K = max {Ca, Cb, Cc, Cd}, |D̂1 ∩ KR| and |D̂2|
denote the sizes of the two subdomains, and d′ = min

{
dist(D̂′, ∂KR), dist(D̂′, Γ̂)

}
.

Proof. Along the lines of the proofs of Theorems 8.8 and 8.10 in [GT01].

We consider the interior regularity inside D̂2. The argument for the regularity inside D̂1 ∩KR is
the same.

We start proving the result for the case k = 2.

From (6.1.1a) we have that, for every J ∈ N and every y ∈ PJ ,∫
D̂2

â(y)∇̂û(y) · ∇̂v̂ dx̂ =

∫
D̂2

ĝ(y)v̂ dx̂, for all v̂ ∈ C1
0 (D̂2), (6.1.7)

with ĝ(y) ∈ L2(D̂2) given by

ĝ(y) := (b̂(y) + ĉ(y)) · ∇̂û(y) + (∇̂ · b̂(y) + d̂(y))û(y)− f̂(y). (6.1.8)

We now replace v̂ by its difference quotient

∇−hj v̂ :=
v̂(x− hej)− v̂(x)

−h
,

for j = 1, 2 (with (ej)i = δij), and choosing h ∈ R such that |2h| < dist(supp v̂, Γ̂). Then,
adding and subtracting 1

h

∫
D̂2
â(y, x̂+ hej)∇̂û(y, x̂+hej) · ∇̂v̂(x̂) dx̂, we obtain:∫

D̂2

∇hj (â(y)∇̂û(y)) · ∇̂v̂ dx̂ = −
∫
D̂2

â(y)∇̂û(y) · ∇̂(∇−hj v̂) dx̂ = −
∫
D̂2

ĝ(y)∇−hj v̂ dx̂.

Using the chain rule on ∇hj (â(y)∇̂û(y)), we get∫
D̂2

â(x̂+ hej ,y)∇̂(∇hj û(y)) · ∇̂v̂ dx̂ = −
∫
D̂2

(
g(y) · ∇̂v̂ + ĝ(y)∇−hj v̂

)
dx̂,

with g(y) := ∇hj â(y)∇̂û(y). Now, Lemma 7.23 in [GT01] ensures that, for every D̂′ ⊂⊂ D̂2

satisfying h < dist(D̂′, Γ̂) (where ⊂⊂ denotes compact inclusion), ‖∇hj v̂‖L2(D̂′) ≤ ‖∂̂j v̂‖L2(D̂2).
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Applying the Cauchy-Schwarz inequality and this latter bound on the difference quotient, we
obtain∣∣∣ ∫

D̂2

â(x̂+ hej ,y)∇̂(∇hj û(y)) · ∇̂v̂ dx̂
∣∣∣ ≤ (‖g(y)‖L2(D̂2) + ‖ĝ(y)‖L2(D̂2)

)
|v̂|H1(D̂2). (6.1.9)

Thanks to the hypothesis of J- and y-uniform bounds on the coefficients (and with again the
help of Lemma 7.23 in [GT01] adapted to the L∞-norm for the term involving the coefficient â),
we can get the following bounds on g(y) and ĝ(y):

‖g(y)‖L2(D̂2) ≤ |D̂2|Ca‖û(y)‖H1(D̂2),

‖ĝ(y)‖L2(D̂2) ≤ |D̂2|(Cb + Cc + Cd)‖û(y)‖H1(D̂2) + Cf ,

(6.1.10)

(6.1.11)

with the J- and y-independent constants Ca, Cb, Cc, Cd and Cf defined in (6.1.4) and (6.1.5), for
k = 2. Thus, (6.1.9) becomes:∣∣∣ ∫

D̂2

â(x̂+ hej ,y)∇̂(∇hj û(y)) · ∇̂v̂ dx̂
∣∣∣ ≤ (|D̂2|K‖û(y)‖H1(D̂2) + Cf

)
|v̂|H1(D̂2),

with K as defined in the theorem statement.

In order to get the local estimate, we consider a cut-off function η ∈ C1
0 (D̂2), 0 ≤ η ≤ 1, and take

as test function v̂(y) = η2∇hj û(y). Then, using the J- and y-uniform ellipticity assumption and
the Cauchy-Schwarz inequality, we obtain:

a−

∫
D̂2

|η∇̂(∇hj û(y))|2 dx̂

≤
∫
D̂2

η2â(x̂+ hej ,y)∇̂(∇hj û(y)) · ∇̂(∇hj û(y)) dx̂

=

∫
D̂2

â(x̂+ hej ,y)∇̂(∇hj û(y)) ·
(
∇̂v̂(y)− 2η∇hj û(y)∇̂η

)
dx̂

≤
(
|D̂2|K‖û(y)‖H1(D̂2) + Cf

)(
‖η∇̂(∇hj û(y))‖L2(D̂2) + 2‖∇hj û(y)∇̂η‖L2(D̂2)

)
+ 2|D̂2|K‖η∇̂(∇hj û(y))‖L2(D̂2)‖∇

h
j û(y)∇̂η‖L2(D̂2). (6.1.12)

We apply Young’s inequality [GT01, Eqn. (7.6)] to both addends on the right-hand side, choosing
the same ε > 0 for both of them. In this way, we get(
a− −

3

2
ε

)
‖η∇̂(∇hj û(y))‖2

L2(D̂2)
≤
(

1√
2ε

(
|D̂2|K‖û(y)‖H1(D̂2) + Cf + |D̂2|K‖∇hj û(y)∇̂η‖L2(D̂2)

)
+ 2
√
ε‖∇hj û(y)∇̂η‖L2(D̂2)

)2

.

Thus we can choose ε < 2
3a−, independent of J and of y ∈ PJ because a− is, obtaining

‖η∇̂(∇hj û(y))‖L2(D̂2) ≤ C(a−,K, |D̂2|)
(
‖û(y)‖H1(D̂2) + Cf + ‖∇hj û(y)∇̂η‖L2(D̂2)

)
≤ C(a−,K, |D̂2|)(1 + ‖∇̂η‖L∞(D̂2))

(
‖û(y)‖H1(D̂2) + Cf

)
, (6.1.13)

where for the last inequality we have used again Lemma 7.23 in [GT01]. We now choose the
cut-off function such that η = 1 on D̂′ ⊂ D̂2 and ‖∇̂η‖L∞(D̂2) ≤

2
d′ , where d′ = dist(Γ̂, D̂′) > 0.

Applying Lemma 7.24 in [GT01], we conclude that ∇̂û(y) ∈ H1(D̂′), and thus û(y) ∈ H2(D̂′)
for every J ∈ N and every y ∈ PJ , with

‖û(y)‖H2(D̂′) ≤ C̄(a−,K, |D̂2|)
(
‖û(y)‖H1(D̂2) + Cf

)
.
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Repeating the same argument for D̂′ ⊂ D̂1 ∩KR, we obtain the desired result for k = 2.

If the bounds (6.1.4) hold for k = 3, then, replacing v̂ by ∂̂j v̂, j = 1, 2, in (6.1.7), integrating by
parts and applying the product rule, we obtain∫

D̂2

â(y)∇̂∂̂j û(y) · ∇̂v̂ dx̂ =

∫
D̂2

∂̂j g̃(y)v̂ dx̂, for all v ∈ C1
0 (D̂2),

with

g̃(y) := ĝ(y) + ∇̂ · (â(y)∇̂û(y)). (6.1.14)

Since û(y) ∈ H2(D̂2), we have ∂̂j g̃ ∈ L2(D̂2). Proceeding as we did in (6.1.10)-(6.1.11), using

the bound we already have for the H2-norm of û we can bound ‖∂̂j g̃(y)‖L2(D̂2) in terms of the

constants Ca, Cb, Cc, Cd, Cf (with k = 3) and ‖û(y)‖H1(D̂2). Doing the same on D̂1 ∩KR, we

obtain (6.1.6) for k = 3.

By induction we get then (6.1.6) for a general k ≥ 2.

From this theorem, using the regularity results obtained so far in this section together with
Lemma 3.2.5 and the bound (4.3.10), which followed from Corollary 3.2.6, we infer the interior
regularity result for our problem:

Corollary 6.1.4. Let Assumptions 2.1.3, 2.1.4.A and 3.1.2 hold and let the nominal radius r0

belong to Ckper([0, 2π)), with k as in Lemma 2.1.6. If k ≥ 2, then, for any subdomain D̂′ ⊂ KR∩D̂1

or D̂′ ⊂ D̂2, the solution û(y) to (3.2.4) belongs to Hk(D̂′) and satisfies (6.1.6).

Here Ca = supy∈PJ ,J∈N‖α̂(y)‖
Ck−1

pw (K̂R)
, Cb = Cc = 0, Cd = supy∈PJ ,J∈N‖κ̂

2(y)‖
Ck−2

pw (K̂R)
and

Cf = 0; the uniform ellipticity constant is given by a− = min {1, α2}
σ2
min
σ2
max

(with σmin and σmax as

in Assumption 3.1.2).

Furthermore, if Assumption 3.2.4 holds, then we have a J- and y-independent bound:

‖û(y)‖Hk(D̂′) ≤ C̃

(
‖ui‖

H
1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
H−

1
2 (∂KR)

)
,

with C̃ = C̃(R, a−, γ,K, d′, k, |D̂1 ∩KR|, |D̂2|), and γ denotes the uniform coercivity constant as
in Lemma 3.2.5, depending on the lower and upper singular value bounds σmin, σmax for DΦ−1(y)
as from Assumption 3.1.2.

The local regularity at the interface Γ̂ follows from Theorem 4.20 in [McL00].

Theorem 6.1.5. Let û(y) ∈ H1(D̂1) ∪H1(KR ∩ D̂2), let the jumps across Γ̂ satisfy

sup
y∈PJ ,J∈N

‖ĥ1(y)‖Hk−1/2(Γ̂) ≤ Ch1 , sup
y∈PJ ,J∈N

‖ĥ2(y)‖Hk−3/2(Γ̂) ≤ Ch2 ,

for k ≥ 2, and let assumptions of Theorem 6.1.3 be fulfilled. Furthermore, suppose that Γ̂ is
Ck−1,1.

Then, for every subdomain D̂′ ⊂ KR intersecting Γ̂, û(y) ∈ Hk(D̂′ ∩ D̂1) ∪Hk(D̂′ ∩ D̂2), and

‖û(y)‖Hk(D̂′∩D̂1)∪Hk(D̂′∩D̂2) ≤ C(‖û(y)‖H1(KR∩D̂1)∪H1(D̂2) + Cf + Ch1 + Ch2), (6.1.15)

for C = C(a−,K, d′, k, |KR|), with d′ = dist(D̂′, ∂KR) and the other constants defined as in
Theorem 6.1.3.
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6. Spatial regularity and sparse tensor discretization for the Helmholtz problem

Proof. We follow the proof of Theorem 4.20 in [McL00].

Again, we first prove the result for k = 2.

Since Γ̂ is of class Ck−1,1, we can assume KR∩ D̂1 to be the half-space x̂2 > 0 after a local Ck−1,1

change of coordinates.

We start considering the case when ĥ1(y) ≡ 0 (for all y ∈ PJ and all J ∈ N), so that û(y) ∈
H1(KR). Then, the variational formulation on KR reads∫

KR

â(y)∇̂û(y) · ∇̂v̂ dx̂ =

∫
KR

ĝ(y)v̂ dx̂+

∫
Γ̂
ĥ2(y)τΓ̂v̂ dS, for all v̂ ∈ C1

0 (KR), (6.1.16)

with τΓ̂ : L2(D̂2)→ H−1/2(Γ̂) the trace operator and ĝ(y) ∈ L2(KR) given by

ĝ(y) := (b̂(y) + ĉ(y)) · ∇̂û(y) + (∇̂ · b̂(y) + d̂(y))û(y)− f̂(y).

Thus, we are in the same framework as in the interior regularity case, with an additional boundary
term.

Replacing again v̂ by the difference quotient ∇−hj v̂, j = 1, 2, and proceeding as for (6.1.12), we
obtain:

a−

∫
KR

|η∇̂(∇hj û(y))|2 dx̂

≤
(
|KR|K‖û(y)‖H1(KR) + Cf

) (
‖η∇̂(∇hj û(y))‖L2(KR) + 2‖∇hj û(y)∇̂η‖L2(KR)

)
+ 2|KR|K‖η∇̂(∇hj û(y))‖L2(KR)‖∇hj û(y)∇̂η‖L2(KR) + |〈ĥ2(y), τΓ̂∇

−h
j (η2∇hj û(y))〉|,

where 〈·, ·〉 in the last term denotes the duality pairing between H−
1
2 and H

1
2 .

For the tangential difference quotients, i.e. for j = 1, ∇hj û(y) ∈ H1(KR) because û(y) does;
hence, we can estimate the boundary term:

|〈ĥ2(y), τΓ̂∇
−h
j (η2∇hj û(y))〉| ≤ ‖ĥ2(y)‖H1/2(Γ̂)‖τΓ̂∇

−h
j (η2∇hj û(y))‖H−1/2(Γ̂)

≤ CτCh2‖∇
−h
j (η2∇hj û(y))‖L2(KR)

≤ CτCh2‖∇̂(η2∇hj û(y))‖L2(KR)

≤ CτCh2

(
‖η∇̂(∇hj û(y))‖L2(KR) + 2‖∇hj û(y)∇̂η‖L2(KR)

)
,

where in the second step we have used the continuity of the trace operator with constant Cτ
(independent of J ∈ N and y ∈ PJ) and the bound on ĥ2(y), and in the third step we have used
Lemma 7.23 in [GT01] (with p = 2). Then, (6.1.16) becomes:

a−

∫
KR

|η∇̂(∇hj û(y))|2 dx̂

≤
(
|KR|K‖û(y)‖H1(KR) + Cf + CτCh2

) (
‖η∇̂(∇hj û(y))‖L2(KR) + 2‖∇hj û(y)∇̂η‖L2(KR)

)
+ 2|KR|K‖η∇̂(∇hj û(y))‖L2(KR)‖∇hj û(y)∇̂η‖L2(KR).

Applying Young’s inequality, with the same steps leading to (6.1.13), we obtain:

‖η∇̂(∇hj û(y))‖L2(KR) ≤ C(a−,K, |KR|)(1 + ‖∇̂η‖L∞(KR))
(
‖û(y)‖H1(KR) + Cf + Ch2

)
.

Choosing the cut-off function η such that η = 1 on D̂′ and ‖∇̂η‖L∞(KR) ≤ 2
d′ , where d′ =

dist(D̂′, ∂KR), and applying Lemma 7.24 in [GT01], we obtain∥∥∥ ∂̂

∂̂x̂j
û(y)

∥∥∥
H1(D̂′)

≤ C̃(a−,K, |KR|)
(
‖û(y)‖H1(KR) + Cf + Ch2

)
.
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6.1. Spatial regularity of the parametric solution

For the normal derivative to Γ̂, i.e. for j = 2, in general
∂̂

∂̂x̂2

û(y) /∈ H1(KR), because it is

discontinuous across Γ̂; thus, we cannot apply Lemma 7.23 in [GT01]. However, it holds:

−â22(y)
∂̂2

∂̂x̂2
2

û(y) = f̃(y) in D̂′, (6.1.17)

with |â22(y)| ≥ a− and

‖f̃(y)‖L2(D̂′∩D̂1)∪L2(D̂′∩D̂2) ≤ Cf + Ca‖û(y)‖H1(D̂′) + Ca

∥∥∥ ∂̂

∂̂x̂1

û(y)
∥∥∥
H1(D̂′)

+ Cc‖û(y)‖H1(D̂′) + Cd‖û(y)‖L2(D̂′)

≤ Cf +K‖û(y)‖H1(D̂′) + Ca

∥∥∥ ∂̂

∂̂x̂1

û(y)
∥∥∥
H1(D̂′)

.

Hence, û(y) ∈ H2(D̂′ ∩ D̂1) ∪H2(D̂′ ∩ D̂2) with J- and y-independent norm bound and (6.1.15)
holds for ĥ1 ≡ 0 and k = 2.

In the case of nonzero Dirichlet jump, i.e. when ĥ1(y) 6= 0, we consider an extension operator η0

(see Lemma 3.36 in [McL00]) to construct ŵ(y) = η0(ĥ1(y)) ∈ H2(KR) satisfying

τΓ̂ŵ(y) = ĥ1(y) and ‖Bn̂ŵ(y)‖H1/2(Γ̂) + ‖ŵ(y)‖H2(KR) ≤ C(η0)‖ĥ1(y)‖H3/2(Γ̂),

where the constant C(η0) is independent of J and of y ∈ PJ . Consider now the function

û1(y) =

{
û(y) on KR ∩ D̂1,

û(y) + ŵ(y) on D̂2.

It holds

L(y)û1(y) =

{
f̂(y) on KR ∩ D̂1,

f̂(y) + L(y)ŵ(y) on D̂2,

with Jû1(y)KΓ̂ = 0 and JBn̂û1(y)KΓ̂ = ĥ2(y) − Bn̂ŵ(y) ∈ H1/2(Γ̂). Then, the previous argument

for zero Dirichlet jump applies, showing that û1(y) ∈ H2(D̂′ ∩ D̂1) ∪H2(D̂′ ∩ D̂2), with J- and
y-independent norm bound. Since ŵ(y) ∈ H2(KR), this implies that û(y) ∈ H2(D̂′ ∩ D̂1) ∪
H2(D̂′ ∩ D̂2) and

‖û(y)‖H2(D̂′∩D̂1)∪H2(D̂′∩D̂2) ≤ ‖û1(y)‖H2(D̂′∩D̂1)∪H2(D̂′∩D̂2) + ‖ŵ(y)‖H2(D̂′∩D̂2)

≤ C
(
‖û1(y)‖H1(KR) + ‖ĥ2(y)− Bn̂ŵ(y)‖H1/2(Γ̂)

+ ‖f̂(y)‖L2(D̂′∩D̂1) + ‖f̂(y) + L(y)ŵ(y)‖L2(D̂′∩D̂2)

)
+ ‖ŵ(y)‖H2(D̂′∩D̂2),

with C = C(a−,K, |KR|) independent of J and of y ∈ PJ . Furthermore, we have that

‖û1(y)‖H1(KR) ≤ ‖û(y)‖H1(KR∩D̂1)∪H1(KR∩D̂2) + ‖ŵ(y)‖H1(KR)

≤ ‖û(y)‖H1(KR∩D̂1)∪H1(KR∩D̂2) + C(η0)Ch1 ,

‖ĥ2(y)− Bn̂ŵ(y)‖H1/2(Γ̂) ≤ Ch2 + C(η0)Ch1 ,

and
‖f̂(y)‖L2(D̂′∩D̂1) + ‖f̂(y) + L(y)ŵ(y)‖L2(D̂′∩D̂2) + ‖ŵ(y)‖H2(D̂′∩D̂2)

≤ Cf + ‖L(y)ŵ(y)‖L2(D̂′∩D̂2) + ‖ŵ(y)‖H2(D̂′∩D̂2)

≤ Cf + (K + 1)‖ŵ(y)‖H2(D̂′∩D̂2)

≤ Cf + (K + 1)C(η0)Ch1 .
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6. Spatial regularity and sparse tensor discretization for the Helmholtz problem

Hence, the desired J- and y-independent estimate for k = 2 holds also for the case of nonzero
Dirichlet jump across Γ̂.

For k = 3 and zero Dirichlet jump, we distinguish again between tangential and normal deriva-
tives.

For the derivatives in direction tangential to Γ̂ (j = 1), we can proceed as for the interior
regularity, replacing v̂ by ∂̂j v̂, and obtaining, after integration by parts:∫

KR

â(y)∇̂∂̂j û(y) · ∇̂v̂ dx̂ =

∫
KR

∂̂j g̃(y)v̂ dx̂+

∫
Γ̂
∂̂j ĥ2(y)τΓ̂v̂ dS, for all v̂ ∈ C1

0 (KR),

with g̃ as in (6.1.14). Then we are in the same framework as in (6.1.16) and we can repeat the
argument.

For the normal derivative, differentiating (6.1.17) with respect to x̂2, we get:

−â22(y)
∂̂3

∂̂x̂3
2

û(y) = f̃2(y) in D̂′,

with f̃2(y) :=
∂̂

∂̂x̂2

f̃(y) +
∂̂â22

∂̂x̂2

(y)
∂̂2

∂̂x̂2
2

û(y); then, we can repeat the same reasoning as for k = 2.

For nonzero Dirichlet jump across the interface, the result follows as for k = 2.

Iterating, (6.1.15) is proved for every k ≥ 2.

Applying the latter theorem to our case, we obtain:

Corollary 6.1.6. Let Assumptions 2.1.3, 2.1.4.A and 3.1.2 hold and let the nominal radius r0

belong to Ckper([0, 2π)), with k as in Lemma 2.1.6. Moreover, let the interfaces Γ̂ and ∂KR be

Ck−1,1. If k as in Lemma 2.1.6 is such that k ≥ 2 (which automatically holds if Assumption
2.1.4.B is satisfied), then:

• for any subdomain D̂′ ( KR intersecting Γ̂ (but not ∂KR) we have that the solution û(y) to
(3.2.4) satisfies (6.1.15) with Cf = Ch1 = Ch2 = 0 and Ca, Cb, Cc, Cd as in Corollary 6.1.4.

• for any open set D̂′ intersecting ∂KR (but not Γ̂) we have that the solution û(y) to (3.2.4)
satisfies

‖û(y)‖Hk(D̂′∩KR)∪Hk(D̂′\KR) ≤ C
(
‖û(y)‖H1(D̂′∩KR) + ‖û(y)− ui‖H1(D̂′\KR)

)
+ C

(
‖ui‖

Hk− 1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
Hk− 3

2 (∂KR)

)
, (6.1.18)

with C = C(a−,K, d′, k, |KR′ |) with d′ = dist(D̂′, ∂KR′), with KR′ a circle of radius R′ > R
containing D̂′ in its interior, and the other constants defined as in Theorem 6.1.3 (where
Ca, Cb, Cc, Cd are as in Corollary 6.1.4).

Furthermore, if Assumption 3.2.4 holds in KR and in KR′, then in both cases we have bounds on
the norms which are independent of the truncation parameter J ∈ N and of y ∈ PJ :

‖û(y)‖Hk(D̂′∩D̂1) + ‖û(y)‖Hk(D̂′∩D̂2) ≤ C̃1

(
‖ui‖

H
1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
H−

1
2 (∂KR)

)
,

‖û(y)‖Hk(D̂′∩KR) + ‖û(y)− ui‖Hk(D̂′\KR) ≤ C̃2

(
‖ui‖

Hk− 1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
Hk− 3

2 (∂KR)

)
,
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6.1. Spatial regularity of the parametric solution

where the constants C̃1 and C̃2 depend on the same parameters as C in (6.1.18) and of B1, B2

in Corollary 3.2.6.

Here, ∂KR has been treated as an interface because Assumption 3.1.2 allows the mapping Φ
and its inverse to be nonsmooth across ∂KR (and thus also the coefficients α̂ and κ̂2 may be
nonsmooth). Also, consistently with (3.2.4), we have considered the total field û inside KR and
the scattered field û− ui outside, so that across ∂KR we have applied (6.1.15) with ĥ1 = ui and

ĥ2 =
∂ui
∂nR

.

Considering Corollaries 6.1.4 and 6.1.6 together we get the following global result:

Theorem 6.1.7. Let Assumptions 2.1.3 and 2.1.4.A hold and let the nominal radius r0 belong
to Ckper([0, 2π)), with k as in Lemma 2.1.6. Let the map Φ be given by (3.1.2), where the mollifier

fulfills Assumption 3.1.3. Moreover, let the interface Γ̂ be Ck−1,1. If k as in Lemma 2.1.6 is
such that k ≥ 2 (which automatically holds if Assumption 2.1.4.B is satisfied), then û belongs to
Hk(KR ∩ D̂1) ∪Hk(D̂2) and

‖û(y)‖Hk(KR∩D̂1) + ‖û(y)‖Hk(D̂2) ≤ C
(
‖û(y)‖H1(KR) + ‖û(y)− ui‖H1(KR′\KR)

)
+ C

(
‖ui‖

Hk− 1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
Hk− 3

2 (∂KR)

)
,

with KR′ a circle of radius R′ > R and C = C(a−,K, k, |KR|) independent of J ∈ N and of
y ∈ PJ . In particular, if Assumption 3.2.4 holds, then we have a J- and y-independent bound

‖û(y)‖Hk(KR∩D̂1) + ‖û(y)‖Hk(D̂2) ≤ C̃

(
‖ui‖

Hk− 1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
Hk− 3

2 (∂KR)

)
, (6.1.19)

with C̃ = C̃(a−, γ,K, k, |KR|). Here, a−, γ and K are defined as in Corollary 6.1.4.

Remark 6.1.8. As it is evident from (2.1.3), we have that k →∞ as p→ 0.

Remark 6.1.9. Theorem 6.1.7 holds not only for the map (3.1.2), but for any map satisfying
Assumption 3.1.2.

Remark 6.1.10. In the case of the mapping (3.1.2) with the mollifier given by (3.1.3), we treat
∂D̂in

2 as an additional interface with homogeneous transmission conditions, across which the
coefficients are discontinuous because of the jump of the Jacobian matrix. Proceeding as before,
we obtain

‖û(y)‖Hk(KR∩D̂1)+‖û(y)‖Hk(D̂2\D̂in2 )+‖û(y)‖Hk(D̂in2 ) ≤ C̃

(
‖ui‖

Hk− 1
2 (∂KR)

+

∥∥∥∥ ∂ui∂nR

∥∥∥∥
Hk− 3

2 (∂KR)

)
,

(6.1.20)

with constants defined as in (6.1.19).

Remark 6.1.11. In the particle on substrate case, the smoothness analysis for the solution is
more involved since the presence of corners (points A and B in Figure 1.0.1b) imposes limits on
the smoothness of the solution.
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6.2. Convergence of the sparse tensor discretization

We consider finite element discretizations with piecewise-polynomial, globally continuous ansatz
functions on simplicial, quasi-uniform meshes on KR. We assume that, at ∂KR, the exact DtN
map is available. In the framework of Chapter 5, we denote by h ∈ R+ the meshwidth, and by
l ∈ N the maximum polynomial degree in the finite element space.

Throughout this section, we assume that, for every h ∈ R+ and every l ∈ N, the finite element
space Xh,l provides a lth-order approximation for the interface Γ̂ and the boundary ∂KR. Then,
standard finite element results (see e.g. [LMWZ10] and [BS08, Thm. (4.4.20)]) imply the estimate
(5.1.3), with W = Hk(KR ∩ D̂1) ∪ Hk(D̂2) and tl = min(k − 1, l), k ≥ 1. Thanks to Theorem
6.1.7, the W -norm of the solution is bounded uniformly on J ∈ N and y ∈ PJ .

Then convergence results for the fully discrete solution are just a particular case of Theorems
5.3.1 and 5.4.1, when replacing the (b, p, ε)-holomorphy assumption with the (b, p, ε)∗-holomorphy
assumption.

The notation used is the same as in Chapter 5.

Corollary 6.2.1. Let û ∈ Hk(KR ∩ D̂1) ∪ Hk(D̂2) be the solution to (3.2.4), for some k ≥ 1,
with J- and y-independent norm bound. Let Assumptions 3.2.4 and 4.3.5 be fulfilled. Assume
that the sparse interpolation and quadrature operators fulfill the assumptions of Theorem 5.3.1.

Consider that the same space discretization is used at all parameter realizations yν , ν ∈ Λ.

Then there exists a downward closed set Λ of cardinality at most N such that

‖û− IΛûh‖L∞(PJ ,V ) ≤ Chmin(k−1,l) + C1N
−s, s =

1

p
− 2,

‖I(û)−QΛûh‖V ≤ Chmin(k−1,l) + C2N
−s, s =

1

p
− 2,

(6.2.1)

(6.2.2)

with k ≥ 1 and s, C,C1, C2 > 0 independent of N , h, of the truncation parameter J ∈ N and of
y ∈ PJ .

Corollary 6.2.2. Let û ∈ Hk(KR ∩ D̂1) ∪ Hk(D̂2) be the solution to (3.2.4), for some k ≥ 1,
with J- and y-independent norm bound. Let Assumptions 3.2.4 and 4.3.5 be fulfilled. Assume
that the sparse interpolation and quadrature operators fulfill the assumptions of Theorem 5.3.1.

Then there exists a downward closed set Λ of cardinality at most N such that

‖û− IΛûh,Λ‖L∞(PJ ,V ) ≤
∑
ν∈Λ

‖∆I
ν(û− ûh,Λ)‖L∞(PJ ,V ) + C1N

−s, s =
1

p
− 2,

‖I(û)−QΛûh,Λ‖V ≤
∑
ν∈Λ

‖∆Q
ν (û− ûh,Λ)‖V + C2N

−s, s =
1

p
− 2,

(6.2.3)

(6.2.4)

with s, C1, C2 > 0 independent of N , of hm for every m, of J ∈ N and of y ∈ PJ .

If the sequences (ζi)i≥0 of interpolation/quadrature points are nested, then the addends in the sum
on the right-hand side satisfy, for the interpolation and quadrature case respectively:

‖∆I
ν(û− ûh,Λ)‖L∞(PJ ,V ) ≤ (1 + LRν )

∑
ym∈∆I

ν

Clm‖Hm(·)‖L∞(PJ ,R)h
min(k−1,lm)
m ‖û(ym)‖W ,

‖∆Q
ν (û− ûh,Λ)‖V ≤

∑
ym∈∆Q

ν

Clm |ωm|hmin(k−1,lm)
m ‖û(ym)‖W ,

(6.2.5)

(6.2.6)

with W = Hk(KR ∩ D̂1) ∪Hk(D̂2) and with, for every m ∈ N, Clm independent of N , of hm for
every m, of J ∈ N and of y ∈ PJ . The Lebesgue constant LRν is bounded by LRν ≤ (]Rν)θ+1.
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6.3. Convergence of linear output functionals

Remark 6.2.3. In the particle in free space case, if we use the mollifier (3.1.3) and, for every
interpolation/quadrature point ym, we use a lmth-order boundary approximation for ∂D̂in

2 , then
we still have the estimates (6.2.1), (6.2.2) and(6.2.5),(6.2.6) .

We have seen in the previous section that the smoothness s = 1
p − 2 in the parameter space and

the spatial smoothness k of the exact solution are not independent, thanks to Theorem 6.1.7.
This is formalized in the following important corollary, obtained by combining Theorem 6.1.7
with Corollary 6.2.1 or Corollary 6.2.2:

Corollary 6.2.4. Let Assumptions 2.1.3 and 3.2.4 be fulfilled. Let Φ be given by (3.1.2) with a
mollifier satisfying Assumption 3.1.3 or the mollifier (3.1.3). Also, let the sparse interpolation
and quadrature operators fulfill the assumptions of Theorems 5.3.1 and 5.4.1.

If the coefficient sequences C = (cj)j≥1, S = (sj)j≥1 satisfy Assumption 2.1.4.A and the nominal

radius r0 belongs to Ckper([0, 2π)), with k as below, then the estimates (6.2.1)-(6.2.2) and (6.2.5)-
(6.2.6) hold with

k =

{⌊
1
p − 1

⌋
if 1

p − 1 is not an integer,

1
p − 2 otherwise.

(6.2.7)

6.3. Convergence of linear output functionals

The finite elements spaces considered are the same as in the previous section. Let us denote by
F̂ a linear output functional defined on the nominal configuration. We have seen in Section 5.5
that F̂ must satisfy Assumption 5.5.1 (holomorphic extension to polyellipses). In our framework,
this requirement is fulfilled in particular when

F̂ (y, û) =

∫
Â
L1(y, û(y)) dx̂, (6.3.1)

where Â ⊆ KR is a set of nonzero measure and L1 is a first-order linear differential operator of
the form L1(y, v) = â1(y, x̂) · ∇̂v̂+ b̂1(y, x̂)v̂, with coefficients which are bounded and measurable
with respect to x̂ and admit a holomorphic extension in the same domain of analyticity as û.

We also require that F̂ is stable in the following sense:

Assumption 6.3.1. The linear output functional F̂ belongs to (Hn(KR))∗ for an integer n ≤ 1,
i.e. there exists C > 0 such that∣∣∣F̂ (y, v̂)

∣∣∣ ≤ C‖v̂‖Hn(KR), for all v̂ ∈ Hn(KR),

with C independent of the truncation parameter J ∈ N and of y ∈ PJ (but possibly dependent
on the radius R of KR).

This assumption is fulfilled, at least for n = 1, by functionals of the form (6.3.1). If Assumption
6.3.1 is fulfilled for n = 1, then we have the estimate (5.5.1) with tl = 0 for every l. If Assumption
6.3.1 is fulfilled for n ≤ 0, then, using duality techniques, we can prove [BS08, Sect. 5.7] that
(5.5.1) holds with tl = 1 for every l ∈ N.

Then applying Theorems 5.5.2 and 5.5.3 replacing the (b, p, ε)-holomorphy assumption with the
(b, p, ε)∗-holomorphy assumption, and using the same notation as in Chapter 5, we obtain the
convergence estimates:
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6. Spatial regularity and sparse tensor discretization for the Helmholtz problem

Corollary 6.3.2. Let F̂ be a linear output functional defined on the nominal configuration and
satisfying Assumption 5.5.1. Let the assumptions of Corollary 6.2.1 be satisfied.

Then there exists a downward closed set Λ of cardinality at most N such that the following
estimates hold:

‖F̂ − IΛF̂h‖L∞(PJ ,V ) ≤ Cht
F

+ C1N
−s, s =

1

p
− 2,

‖I(F̂ )−QΛF̂h‖V ≤ Cht
F

+ C2N
−s, s =

1

p
− 2,

(6.3.2)

(6.3.3)

with k ≥ 1 and s, C,C1, C2 > 0 independent of N , h, of J ∈ N and of y ∈ PJ .

If F̂ fulfills Assumption 6.3.1, then tF = min(k− 1, l) + 1 for n ≤ 0, tF = min(k− 1, l) for n = 1.

Corollary 6.3.3. Let F̂ be a linear output functional defined on the nominal configuration and
satisfying Assumption 5.5.1. Let the assumptions of Corollary 6.2.2 be satisfied.

Then there exists a downward closed set Λ of cardinality at most N such that

‖F̂ − IΛF̂h,Λ‖L∞(PJ ,V ) ≤
∑
ν∈Λ

‖∆I
ν(F̂ − F̂h,Λ)‖L∞(PJ ,V ) + C1N

−s, s =
1

p
− 2,

‖I(F̂ )−QΛF̂h,Λ‖V ≤
∑
ν∈Λ

‖∆Q
ν (F̂ − F̂h,Λ)‖V + C2N

−s, s =
1

p
− 2,

(6.3.4)

(6.3.5)

with s, C1, C2 > 0 independent of N , of hm for every m, of J ∈ N and of y ∈ PJ .

If the sequences (ζi)i≥0 of interpolation/quadrature points are nested, then the addends in the sum
on the right-hand side satisfy, for the interpolation and quadrature case respectively:

‖∆I
ν(F − F̂h,Λ)‖L∞(PJ ,V ) ≤ (1 + LRν )

∑
ym∈∆I

ν

Clm‖Hm(·)‖L∞(PJ ,R)h
tFlm
m ‖û(ym)‖W ,

‖∆Q
ν (F − F̂h,Λ)‖V ≤

∑
ym∈∆Q

ν

Clm |ωm|h
tFlm
m ‖û(ym)‖W ,

(6.3.6)

(6.3.7)

with W = Hk(KR ∩ D̂1) ∪Hk(D̂2) and with, for every m ∈ N, Clm > 0 independent of N , of hm
for every m, of J ∈ N and of y ∈ PJ , and the Lebesgue constant LRν bounded as in (5.4.5), i.e.
LRν ≤ (]Rν)θ+1.

If F̂ fulfills Assumption 6.3.1, then tFlm = min(k − 1, lm) + 1 for n ≤ 0, tFlm = min(k − 1, lm) for
n = 1, k ≥ 1.

As we have done in Corollary 6.2.4, also for linear output functionals it is possible to determine
the regularity parameter k for the above theorems from the decay of the Fourier coefficients in
the radius expansion.
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7. Numerical experiments

The geometries are shown in Figure 1.0.1. In both cases, the scatterer has a nominal, angle-
independent radius of size r0 = 10nm. The wavenumber in free space is κ0 = 2πf

c0
, with c0 =

3 · 108m/s the light speed.

For each of the two model problems, we consider the interpolation and quadrature of the real part
of the solution to (3.2.4) and of the modulus of the far field pattern. Given a radiating solution
us = u−ui to the Helmholtz equation (where u denotes the total field and ui the incoming wave),
the far field pattern is a function defined on the unit circle S1, describing the asymptotic behavior
of us(x) for |x| → ∞. The far field mapping F : H1

loc(R2) → C∞(S1) associates to a scattered
wave us its far field pattern. We will provide the expression of the far field pattern for each of
the model problems of Chapter 1 separately. Since, for every ξ ∈ S1, F (ξ) is complex-valued, by
modulus of the far field pattern we mean its absolute value |F (ξ)|, ξ ∈ S1.

In all experiments, we compute the solution for the TE mode, that is the solution u to (1.0.1) is
the out-of-plane component of the electric field.

The interpolants and the means of the Q.o.I.s are computed using the sparse grid algorithm
described in Section 4.2 (Algorithm 1) with ϑ = 1. In the case of the particle in free space, when
increasing the dimension of the parameter space in the adaptive strategy, we add two dimensions
per step, because of the equal weights in front of the sinusoids and cosinusoids for each frequency
in the Fourier expansion.

The V -norm considered at lines 5-6 of Algorithm 1 of Section 4.2 is the maximum norm ‖·‖∞ of
the Q.o.I. considered as a vector in Rn, n ≥ 1. More precisely, when the Q.o.I. is the real part
of the solution, or rather its finite element approximation, we consider the maximum norm of
the coefficient vector of the finite element function. When the Q.o.I. is the modulus of the far
field functional, we consider the maximum norm of the Fourier coefficients in the free space case,
and the maximum norm of a set of point evaluations on the unit circle in the substrate case.
Thus, if we denote by g the vector associated to the Q.o.I., when reporting the error estimated
by the algorithm we refer to the quantity maxν∈N (Λ)‖∆I

ν(g)‖∞ in the interpolation case, and to

the quantity
∑

ν∈N (Λ)‖∆
Q
ν (g)‖∞ in the quadrature case. The reason why, in the error estimator,

we have not considered the H1-norm for the solution and the norm ‖·‖2 (Euclidean norm) for far
field evaluations is that we have preferred to use the implementation of Algorithm 1 as a black
box, avoiding, for instance, the close interaction with the finite element solver that would have
been needed to compute the H1-norm. When comparing the error with respect to a reference
solution, instead, we report the H1-error norm and ‖·‖2-error norm for the solution and the far
field Fourier coefficients (or evaluations), respectively.

For each experiment, we compare two choices for the univariate sequence (ζki )nki=0 of interpola-
tion/quadrature points:

• Clenshaw-Curtis (CC):

ζk0 = 0 if nk = 1,

ζki = − cos

(
πi

nk − 1

)
, i = 0, . . . , nk − 1, if nk > 1,

55



7. Numerical experiments

with n0 = 1 and nk = 2k + 1, for k ≥ 1;

• R-Leja sequence (RL): projection on [−1, 1] of a Leja sequence for the complex unit disk
initiated at 1:

ζk0 = 0, ζk1 = 1, ζk2 = −1, if i = 0, 1, 2,

ζki = R(ẑ), with ẑ = argmax|ζ|=1

i−1∏
l=1

|ζ − ζkl |, i = 3, . . . , nk, if i odd,

ζki = −ζki−1, i = 3, . . . , nk, if i even,

with nk = 2k + 1, for k ≥ 0, see [CM12].

The Clenshaw-Curtis points satisfy Assumption 4.1.2 with part (a) in condition (ii), while the
R-Leja points satisfy Assumption 4.1.2 with part (b) in (ii).

The finite element solutions are computed using the C++ NGSolve library1, providing high-order
elements for any shape; NGSolve has been linked to the MKL version of the PARDISO library2

to compute the solution of the resulting algebraic system.

To truncate the domain and approximate the DtN map, we consider, in both cases, a circular
Perfectly Matched Layer (PML, see [Ber94, CM98]) around the boundary ∂KR; for every y ∈ PJ ,
the mapping Φ(y) is prolongated as the identity in the PML. In [LS98] it is shown that, if the
fictitious absorption coefficient is properly chosen, then the PML can be used in the finite element
framework to truncate the domain for Helmholtz equation in a almost reflectionless manner for
all frequencies.

The remainder of this chapter is organized as follows: in Sections 7.1 and 7.2 we present the
numerical experiments for the particle in free space and the particle on substrate, respectively,
and in Section 7.3 we discuss these results.

7.1. Particle in free space

The incident wave ui is coming from the left with an incidence angle 0 with respect to the
horizontal axis (d = (1, 0)), and frequency f = 104THz. The scatterer is a dielectric with relative
permittivity ε2 = 2 and the surrounding medium is air (ε1 = 1), so that the wavenumbers are
κ1 = κ0 and κ2 = κ0

√
ε2, respectively.

7.1.1. Interpolation of the real part of the solution on the nominal configuration

We consider the performance of the algorithm for small and large shape variations. By small
variations we mean variations of the order of around 2% with respect to the nominal radius r0,
while by large variations we mean variations of around 20% with respect to r0.

1http://sourceforge.net/apps/mediawiki/ngsolve
2https://software.intel.com/en-us/intel-mkl. See also http://www.pardiso-project.org/ for other versions of the

PARDISO solver.
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7.1. Particle in free space

Small variations

For this case we use the domain mapping

x(y) = Φ(y, x̂) =


0 if x̂ = 0,
x̂

r0(ϕ)r(y, ϕ) if 0 < ‖x̂‖ < r0(ϕ),
R−r(y,ϕ)
R−r0(ϕ)

(
1 + R(r(y,ϕ)−r0(ϕ))

R−r(y,ϕ)
1
‖x̂‖

)
x̂ if r0(ϕ) ≤ ‖x̂‖ < R,

x̂ if ‖x̂‖ = R.

(7.1.1)

This mapping does not fulfill Assumption 3.1.2 because of the singularity in the origin, but
it is easy to check that it fulfills the (b, p, ε)∗-holomorphy assumption. We highlight that the
assumption that Φ is at least of class C2 in each subdomain is relevant for the space regularity and
convergence analysis developed in Chapter 6. For well-posedness of the variational formulation
(3.2.4), we only need that the Jacobian of Φ and its inverse are almost everywhere bounded, for
every parameter realization. Since the Jacobian of the mapping (7.1.1) is not continuous at the
origin, we cannot expect a full convergence rate for the finite element discretization. However,
the focus in our experiments is on the performance of the the sparse interpolation/quadrature
algorithm, and what really matters is that the finite element discretization produces an error just
low enough not to interfere with the performance of the algorithm, rather than the convergence
order of the space discretization.

We consider the expansion of the stochastic radius (2.1.1) for three variations of the sparsity
parameter: sj = cj = 0.01r0

j
1
p
, j ≥ 1, for 1

p = 2, 3, 4. For each value of p, we compare the cases

2J = 16, 2J = 32 and 2J = 64, with 2J = d the dimension of the parameter space. The maximal
shape variations with respect to r0 are of the order of 2.3% for 1

p = 2, 1.7% for 1
p = 3 and 1.5%

for 1
p = 4 (for all the three truncations of the radius expansion).

To compute the finite element solution given a parameter realization, we have used globally
continuous, piecewise 4th-order polynomial ansatz functions on an unstructured, quasi-uniform
triangulation, leading to a total of 60705 degrees of freedom (including the PML). A 4th-order
boundary approximation has been considered, so that the error introduced by the discretization
of the boundaries is of the same order as the error due to the finite element discretization.
The Smolyak interpolation has been applied to the part of the solution that is not inside the
PML, corresponding to an array carrying 37563 degrees of freedom. The PML starts at radius
R = 100nm and ends at radius R′ = 150nm, with absorption coefficient (or damping parameter)
α = 0.5 [CM98].

We first consider the behavior of the interpolation error maxν∈N (Λ)‖∆I
ν(µ̂h)‖∞ estimated by

Algorithm 1. In the error indicator, µ̂h denotes the vector of coefficients of the solution with
respect to the finite element basis functions, associated with Ndof = 37563 degrees of freedom.
The increments ‖∆I

ν(µ̂h)‖∞, ν ∈ Λ, are the relative increments with respect to ‖∆I
0(µ̂h)‖∞ =

‖µ̂h(y = 0)‖∞.

Figure 7.1.1 shows the comparison of the estimated errors according to the different decays in the
coefficient sequences, for each of the dimensions 16, 32 and 64 of the parameter space. Figure 7.1.2
shows instead, for each of the variations 1

p = 2, 3, 4 of the sparsity parameter, the comparison of
the performance of the algorithm for different dimensions of the parameter space.

Since the behavior of the error estimator is fairly oscillatory, in Figures 7.1.3 and 7.1.4 we present
the analogous of Figures 7.1.1 and 7.1.2, respectively, when considering an error with respect
to a reference solution instead of the error estimated by the algorithm. Namely, as measure of
the error we have considered supy∈PJ‖Re ûh(y) − IΛ(Re ûh)(y)‖H1(KR), where each realization
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Figure 7.1.1: Comparison of the estimated errors for the interpolated solution with respect to the cardinal-
ity of the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis
and R-Leja points, for 16 (left), 32 (middle) and 64 (right) dimensions. The three dashed
lines on the top of each plot correspond to the convergence rates of 1 (red), 2 (blue) and 3
(green). Maximal shape variations with respect to r0 of about 2.3% for 1

p = 2, 1.7% for 1
p = 3

and 1.5% for 1
p = 4. Domain mapping (7.1.1).
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7.1. Particle in free space
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Figure 7.1.2: Comparison of the estimated errors for the interpolated solution with respect to the cardinal-
ity of the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis
and R-Leja points, for variations of the sparsity parameter 1

p = 2 (left), 3 (middle) and 4

(right). Maximal shape variations with respect to r0 of about 2.3% for 1
p = 2, 1.7% for 1

p = 3

and 1.5% for 1
p = 4. Domain mapping (7.1.1).
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7. Numerical experiments

Re ûh(y) and the interpolated quantity IΛ(Re ûh)(y), y ∈ PJ , have been computed using the same
finite element space as described above. To estimate the supremum norm, we have considered
the maximum H1-norm error among 216 realizations of y ∈ PJ corresponding to the quadrature
points generated by the high-order quasi Monte-Carlo method described in [Gan16] and [GS16],
using C = 0.1 for the Walsh coefficient bound. The error has been computed every 10 iterations
of the Smolyak algorithm, starting from the last one and going backward until the last iteration
with number bigger or equal to 10.

Large variations

In this case, we consider the coefficient sequences sj = cj = 0.1r0

j
1
p

, j ≥ 1, for 1
p = 2, 3, 4 and 2J =

16, 32, 64. We use the domain mapping (3.1.2) with the mollifier (3.1.3). Resolving accurately

the interface given by the inner circle of radius
r−0
4 , this map guarantees that we achieve full

convergence rate for the finite element discretization. The PML starts at R = 80nm and ends
at R′ = 110nm, with absorption coefficient α = 0.5. We have used a 2nd-order finite element
space with 2nd-order boundary approximation for the interfaces. The total number of degrees
of freedom for the space discretization is 37309, of which 28415 are outside the PML. Again, as
Q.o.I. we consider the real part of the solution that is not inside the PML.

In Figures 7.1.5 and 7.1.6 we show the behavior of the error comparing the different decays of the
coefficient sequences and comparing the different parameter space dimensions, respectively. The
error measured here is supy∈PJ‖Re ûh(y)−IΛ(Re ûh)(y)‖H1(KR), where each realization Re ûh(y)
and the interpolated quantity IΛ(Re ûh)(y), y ∈ PJ , have been computed on the same finite
element space as described above. Again, to estimate the supremum norm, we have considered
the maximum H1-norm error among 216 realizations of y ∈ PJ corresponding to the quadrature
points generated by the high-order quasi Monte-Carlo method described in [Gan16] and [GS16],
using C = 0.1 for the Walsh coefficient bound. The error has been computed every 10 iterations
of the Smolyak algorithm, starting from the last one and going backward until the last iteration
with number bigger or equal to 10.

7.1.2. Interpolation of the modulus of the far field pattern

The far field pattern is given by [MS98, Formulae (3) and (5)]

F (us)(ξ̂) = CF

∫
Σ

{
us(x)

∂G(ξ̂,x)

∂n(x)
− ∂us
∂n

(x)G(ξ̂,x)

}
dS(x), ξ̂ ∈ S1, (7.1.2)

where Σ is a simple closed path around the scatterer and n its unit normal vector field pointing
to the outer region. The function G = G(ξ̂,x) describes the behavior of the Green’s function
when the modulus of the second argument tends to infinity (we refer to [CK12, Sect. 2.2] for

details). For a particle in free space, we have G(ξ̂,x) = 1
4πe
−iκ1ξ̂·x (with κ1 the wavenumber in

free space). In (7.1.2), CF is a normalizing constant, that has been set to CF =
√

2π
κ1
ei
π
4 .

A simple application of Green’s formula shows that the far field pattern is independent of the
path Σ chosen to enclose the scatterer. Thus, we can consider two circles Σ1 and Σ2 around the
particle, with Σ1 contained in Σ2, and the annulus A enclosed between them, and choose a cut-off
function ψ ∈ C2(A) such that

ψ|Σ2 = 1, ψ|Σ1 = 0, ∇ψ|Σ1 = ∇ψ|Σ2 = 0. (7.1.3)
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7.1. Particle in free space
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CC, 1
p

=2

RL, 1
p

=2

CC, 1
p

=3

RL, 1
p

=3

CC, 1
p

=4

RL, 1
p

=4

100 101 102 103
10−7

10−6

10−5

10−4

10−3

10−2

−1

−2

−3

] PDE solves

su
p
y
∈
P

J
‖R

e
û
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Figure 7.1.3: Comparison of the errors for the interpolated solution with respect to the cardinality of the
index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and
R-Leja points, for 16 (left), 32 (middle) and 64 (right) dimensions. Maximal shape variations
with respect to r0 of about 2.3% for 1

p = 2, 1.7% for 1
p = 3 and 1.5% for 1

p = 4. Domain

mapping (7.1.1).
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Figure 7.1.4: Comparison of the errors for the interpolated solution with respect to the cardinality of the
index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and
R-Leja points, for variations of the sparsity parameter 1

p = 2 (left), 3 (middle) and 4 (right).

Maximal shape variations with respect to r0 of about 2.3% for 1
p = 2, 1.7% for 1

p = 3 and

1.5% for 1
p = 4. Domain mapping (7.1.1).
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Figure 7.1.5: Comparison of the errors for the interpolated solution with respect to the cardinality of the
index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and
R-Leja points, for 16 (left), 32 (middle) and 64 (right) dimensions. Maximal shape variations
with respect to r0 of about 22% for 1

p = 2, 17% for 1
p = 3 and 15% for 1

p = 4. Domain

mapping (3.1.2) with mollifier 3.1.3.
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CC,d=16

RL,d=16

CC,d=32

RL,d=32

CC,d=64

RL,d=64

100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

−1

] PDE solves

su
p
y
∈
P

J
‖R

e
û
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Figure 7.1.6: Comparison of the errors for the interpolated solution with respect to the cardinality of the
index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and
R-Leja points, for variations of the sparsity parameter 1

p = 2 (left), 3 (middle) and 4 (right).

Maximal shape variations with respect to r0 of about 22% for 1
p = 2, 17% for 1

p = 3 and 15%

for 1
p = 4. Domain mapping (3.1.2) with mollifier (3.1.3).
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Figure 7.1.7: Comparison of the estimated errors for the interpolated far field Fourier coefficients with
respect to the cardinality of the index set Λ (left) and the number of PDE solves (right),
using Clenshaw-Curtis and R-Leja points, for 16 dimensions. The three dashed lines on
the top of each plot correspond to the convergence rates of 1 (red), 2 (blue) and 3 (green).
Maximal shape variations with respect to r0 of 22% for 1

p = 2, 17% for 1
p = 3 and 15% for

1
p = 4. Domain mapping (7.1.1).

Applying Green’s formula, it is easy to see [HS] that (7.1.2) is equivalent to the modified far field
mapping

F ∗(us)(ξ̂) = CF

∫
A
∇ψ(x) ·

(
us(x)∇G(ξ̂,x)−∇us(x)G(ξ̂,x)

)
dx, ξ̂ ∈ S1. (7.1.4)

The advantage of formula (7.1.4) with respect to (7.1.2) is that, for fixed ξ̂ ∈ S1, us 7→ F ∗(us)(ξ̂)
is a linear functional that is continuous on the energy space H1(A).

If we now apply the far field computation to the case when the scatterer has a stochastic boundary,
we can fix an annular integration region Â and a cut-off function ψ̂ on the nominal domain
D̂1 ∩KR, and (7.1.4) reads:

F̂ ∗(ûs(y))(ξ̂) = CF

∫
Â
DΦ(y)−>∇̂ψ̂(x̂) · ûs(x̂)DΦ(y)−>∇̂Ĝ(ξ̂, x̂)detDΦ(y) dx̂+

−
∫
Â
DΦ−>(y)∇̂ψ̂ ·DΦ(y)−>∇̂ûs(x̂)Ĝ(ξ̂, x̂)detDΦ(y) dx̂, ξ̂ ∈ S1, (7.1.5)

where Φ(y) is the mapping from the nominal configuration, ûs(y, x̂) = û(y, x̂) − ui(Φ(y, x̂))
and Ĝ(ξ̂, x̂) = G(ξ̂,Φ(y, x̂)). For each ξ̂ ∈ S1, the functional F̂ ∗(ξ̂) satisfies Assumption 5.5.1

because Φ and ûs are analytic, and thus Corollaries 6.3.2 and 6.3.3 hold. Moreover, if ψ̂ ∈ C2(Â)
and if Φ fulfills Assumption 3.1.2 with k ≥ 2, integration by parts shows that, for fixed ξ̂ ∈ S1,
the functional F̂ ∗(ξ̂) fulfills Assumption 6.3.1 with n = 0. In this case, for each realization y, we
can expect the gain in one order for the finite element convergence as explained in the second
part of Corollaries 6.3.2 and 6.3.3.
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(û
h
)(
y

)
−

I Λ
(f̂
h
(û
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Figure 7.1.8: Comparison of the errors for the interpolated far field Fourier coefficients with respect to the
cardinality of the index set Λ (left) and the number of PDE solves (right), using Clenshaw-
Curtis and R-Leja points, for 16 dimensions. Maximal shape variations with respect to r0 of
22% for 1

p = 2, 17% for 1
p = 3 and 15% for 1

p = 4. Domain mapping (7.1.1).

100 101 102
10−7

10−6

10−5

10−4

10−3

−1

−2

−3

]Λ

su
p
y
∈
P

J
‖f̂
h
(û
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Figure 7.1.9: Comparison of the errors for the interpolated far field Fourier coefficients with respect to the
cardinality of the index set Λ (left) and the number of PDE solves (right), using Clenshaw-
Curtis and R-Leja points, for 16 dimensions. Maximal shape variations with respect to r0 of
22% for 1

p = 2, 17% for 1
p = 3 and 15% for 1

p = 4. Domain mapping (3.1.2) with mollifier

(3.1.3).
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7.1. Particle in free space

In the simulations, for the interpolation of
∣∣∣F̂ ∗(ûs(y))

∣∣∣ =
∣∣∣F̂ ∗(ûs(y))(ξ̂)

∣∣∣, ξ̂ ∈ S1, we consider the

first 11 coefficients in its real Fourier expansion with respect to the angle arg(ξ̂) ∈ [0, 2π).

Again, we compare three variations of the sparsity parameter: sj = cj = 0.1r0

j
1
p

, j ≥ 1, for

1
p = 2, 3, 4; they correpond to maximal shape variations of 22%, 17% and 15% with respect to r0,
respectively.

We have run the simulations using the domain mapping (7.1.1) and using the mapping (3.1.2)
with the mollifier (3.1.3).

When using (7.1.1), the annulus Â has been chosen with inner radius 20nm and outer radius
100nm, and the PML from R = 100nm to R′ = 150nm, with absorption coefficient α = 0.5. For
each realization, we have considered a 3rd-order finite element space (with 3rd-order boundary
approximation), carrying in total 403481 degrees of freedom, of which 37414 are inside the an-
nulus Â. The results in the 16-dimensional case are shown in Figures 7.1.7 and 7.1.8. In 7.1.7,
we report the error estimated by the algorithm, maxν∈N (Λ)‖∆I

ν(f̂h(ûh))‖∞, where f̂h(ûh) denotes
the vector of the approximated 11 Fourier coefficients, and the increments are this time the abso-
lute error increments. Figure 7.1.8 shows instead the error supy∈PJ‖f̂h(ûh)(y)− IΛ(f̂h(ûh))(y)‖2
approximated by the maximum of the ‖·‖2-norm error among 216 realizations coinciding with
the quadrature points of the algorithm presented in [Gan16] and [GS16], with again C = 0.1 as
Walsh coefficient bound. The error has been computed every 10 iterations, with the same rule
as in the interpolation of the solution, with f̂h(ûh)(y) and IΛ(f̂h(ûh))(y) computed on the same
finite element space.

When using the mapping (3.1.2) with the mollifier (3.1.3), the annulus Â has inner circle with
radius 40nm and outer circle with radius 70nm, and the PML starts at R = 80nm and ends at
R′ = 110nm, with absorption coefficient α = 0.5. The spatial discretization consists of a 2nd-
order finite element space with 2nd-order boundary approximation, with 33277 total degrees of
freedom, 13719 of which in the annulus region. The error supy∈PJ‖f̂h(ûh)(y)− IΛ(f̂h(ûh))(y)‖2,
computed with the same criterion as in Figure 7.1.8, is reported in Figure 7.1.9.

The computational cost required for the far field interpolation is very high, because, for each
interpolation point, additionally to the whole solution, one has also to compute the integral
(7.1.5) for many values of the variable ξ̂ (the same number as the Fourier coefficients when using
the real-valued Fast Fourier Transform). Hence, this application highlights the importance of
developing a parameter-adaptive strategy to use different finite element resolutions for different
interpolation points.

7.1.3. Quadrature of the real part of the solution on the nominal configuration

In these experiments we consider the quadrature on the nominal space. As we did for the inter-
polation, we consider small and large shape variations.

Small variations

The setting is the same as in the interpolation case for small variations, that is same scaling of
the coefficients (sj = cj = 0.01r0

j
1
p

, j ≥ 1, for 1
p = 2, 3, 4), same finite element space and domain

mapping (7.1.1).

Figure 7.1.10 shows, for dimension 2J = 16, 32, 64 of the parameter space, the comparison of the
quadrature error

∑
ν∈N (Λ)‖∆

Q
ν (µ̂h)‖∞ estimated by the Algorithm 1 for the different decays of

the coefficient sequences (with µ̂h the vector of coefficients of the solution with respect to the
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finite element basis functions and Ndof=37563); the increments considered are the absolute error
increments. Figure 7.1.11 shows, for each variation of the sparsity parameter, the comparison of
the estimated errors for dimension 16, 32 and 64 of the parameter space.

Figures 7.1.12 and 7.1.13 show instead the behavior of the error ‖I(Re ûh)−QΛ(Re ûh)‖H1(KR),
computed for every iteration. The reference solution used to estimate I(Re ûh) has been computed
with the high-order quasi-Monte Carlo algorithm described in [Gan16] and [GS16], using 218

quadrature points and C = 0.1 as bound on the Walsh coefficient. Each realization in the
computation of the reference solution belongs to the same finite element space as the one used
for the realizations of the Smolyak algorithm.

As an example, the estimated mean of the real part of the total field for 1
p = 3, dimension 16 of

the parameter space and Clenshaw-Curtis points is represented in the left plot in Figure 7.1.19;
in this picture, the grey annulus coincides with the PML.

Large variations

The setting is the same as for the interpolation of the solution for large variations: same coefficient
sequences, same finite element space and mapping (3.1.2) with mollifier (3.1.3).

Figures 7.1.14 and 7.1.15 present the behavior of the error ‖I(Re ûh)−QΛ(Re ûh)‖H1(KR), com-
paring the different coefficient decays and the different parameter space dimensions, respectively.
The reference solution has been computed using the same finite element space and the high-order
quasi-Monte Carlo algorithm described in [Gan16] and [GS16], with 216 quadrature points and
Walsh coefficient bound C = 0.1.

7.1.4. Quadrature of the modulus of the far field pattern

As we did for the interpolation, we consider the results using the two mappings (7.1.1) and (3.1.2)
with (3.1.3). In both cases, the settings are the same as in the interpolation case, and we consider
again the first 11 Fourier coefficients.

For the less smooth mapping (7.1.1), Figures 7.1.16 and 7.1.17 show, repectively, the error es-
timated by the algorithm and the error with respect to the reference solution. The error es-
timated by the algorithm is

∑
ν∈Λ‖∆

Q
ν (f̂h(ûh))‖∞, where absolute increments are considered.

The error with respect to the reference solution instead, ‖I(f̂h(ûh))−QΛ(f̂h(ûh))‖2, has been ob-
tained comparing the Smolyak solution with respect to the high-order quasi-Monte Carlo solution
[Gan16, GS16], with 216 quadrature points and bound C = 0.1 for the Walsh coefficient, with
realizations computed on the same finite element space as the one used in the Smolyak algorithm;
the error has been computed for each iteration of the adaptive algorithm.

For the mapping (3.1.2) with mollifier (3.1.3), we report in Figure 7.1.18 the error ‖I(f̂h(ûh))−
QΛ(f̂h(ûh))‖2 computed with respect to the reference solution obtained using the same finite
element space in the high-order quasi-Monte Carlo quadrature rule [Gan16, GS16] with 216 points
and C = 0.1 as Walsh coefficient bound.

The right plot in Figure 7.1.19 represents the modulus of the far field pattern computed from the
estimated mean of the Fourier coefficients, for 1

p = 2, 3, 4, using Clenshaw-Curtis points and the
mapping (7.1.1). In the plot, we have denoted by ‘nominal’ the far field pattern that is obtained
when the scatterer has the nominal radius r0. We can see that the mean values for different
values of 1

p and for the nominal case are nearly coinciding, as one may expect from the fact that
the far field functional is not sensitive to small variations in the shape of the scatterer.
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Figure 7.1.10: Comparison of the estimated errors for the quadrature of the solution with respect to the
cardinality of the index set Λ (top) and to the number of PDE solves (bottom), using
Clenshaw-Curtis and R-Leja points, for 16 (left), 32 (middle) and 64 (right) dimensions.
The three dashed lines on the top of each plot correspond to the convergence rates of 1
(red), 2 (blue) and 3 (green). Maximal shape variations with respect to r0 of about 2.3%
for 1

p = 2, 1.7% for 1
p = 3 and 1.5% for 1

p = 4. Domain mapping (7.1.1).
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Figure 7.1.11: Comparison of the estimated errors for the quadrature of the solution with respect to the
cardinality of the index set Λ (top) and to the number of PDE solves (bottom), using
Clenshaw-Curtis and R-Leja points, for variations of the sparsity parameter 1

p = 2 (left),

3 (middle) and 4 (right). Maximal shape variations with respect to r0 of about 2.3% for
1
p = 2, 1.7% for 1

p = 3 and 1.5% for 1
p = 4. Domain mapping (7.1.1).
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û
h
)‖
H

1
(K

R
)

Mean of Re ûh, d = 64
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CC, 1
p

=2

RL, 1
p

=2

CC, 1
p

=3

RL, 1
p

=3

CC, 1
p

=4

RL, 1
p

=4

Figure 7.1.12: Comparison of the errors for the quadrature of the real part of the solution with respect to
the cardinality of the index set Λ (top) and to the number of PDE solves (bottom), using
Clenshaw-Curtis and R-Leja points, for 16 (left), 32 (middle) and 64 (right) dimensions.
Maximal shape variations with respect to r0 of about 2.3% for 1

p = 2, 1.7% for 1
p = 3 and

1.5% for 1
p = 4. Domain mapping (7.1.1).
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Figure 7.1.13: Comparison of the errors for the quadrature of the real part of the solution with respect to
the cardinality of the index set Λ (top) and to the number of PDE solves (bottom), using
Clenshaw-Curtis and R-Leja points, for variations of the sparsity parameter 1

p = 2 (left),

3 (middle) and 4 (right). Maximal shape variations with respect to r0 of about 2.3% for
1
p = 2, 1.7% for 1

p = 3 and 1.5% for 1
p = 4. Domain mapping (7.1.1).
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Figure 7.1.14: Comparison of the errors for the quadrature of the real part of the solution with respect to
the cardinality of the index set Λ (top) and to the number of PDE solves (bottom), using
Clenshaw-Curtis and R-Leja points, for 16 (left), 32 (middle) and 64 (right) dimensions.
Maximal shape variations with respect to r0 of about 22% for 1

p = 2, 17% for 1
p = 3 and

15% for 1
p = 4. Domain mapping (3.1.2) with mollifier (3.1.3).
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7. Numerical experiments
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û
h
)
−

Q
Λ

(R
e
û
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û
h
)‖
H

1
(K

R
)

Mean of Re ûh, 1/p = 4
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Figure 7.1.15: Comparison of the errors for the quadrature of the real part of the solution with respect to
the cardinality of the index set Λ (top) and to the number of PDE solves (bottom), using
Clenshaw-Curtis and R-Leja points, for variations of the sparsity parameter 1

p = 2 (left), 3

(middle) and 4 (right). Maximal shape variations with respect to r0 of about 22% for 1
p = 2,

17% for 1
p = 3 and 15% for 1

p = 4. Domain mapping (3.1.2) with mollifier (3.1.3).
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7.1. Particle in free space
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Figure 7.1.16: Comparison of the estimated errors for the quadrature of the far field Fourier coefficients
with respect to the cardinality of the index set Λ (left) and the number of PDE solves (right),
using Clenshaw-Curtis and R-Leja points, for 16 dimensions. The three dashed lines on the
top of each plot correspond to the convergence rates of 1 (red), 2 (blue) and 3 (green).
Maximal shape variations with respect to r0 of 22% for 1

p = 2, 17% for 1
p = 3 and 15% for

1
p = 4. Domain mapping (7.1.1).
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(û
h
))
‖ 2

Mean of f̂h(ûh), d = 16
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Figure 7.1.17: Comparison of the errors for the quadrature of the far field Fourier coefficients with respect
to the cardinality of the index set Λ (left) and the number of PDE solves (right), using
Clenshaw-Curtis and R-Leja points, for 16 dimensions. Maximal shape variations with
respect to r0 of 22% for 1

p = 2, 17% for 1
p = 3 and 15% for 1

p = 4. Domain mapping (7.1.1).
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7. Numerical experiments
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Figure 7.1.18: Comparison of the errors for the quadrature of the far field Fourier coefficients with respect
to the cardinality of the index set Λ (left) and the number of PDE solves (right), using
Clenshaw-Curtis and R-Leja points, for 16 dimensions. Maximal shape variations with
respect to r0 of 22% for 1

p = 2, 17% for 1
p = 3 and 15% for 1

p = 4. Domain mapping (3.1.2)

with mollifier (3.1.3).

Figure 7.1.19: Particle in free space, 16 dimensions, Clenshaw-Curtis points: estimated mean of the real
part of the solution when 1

p = 3 (left) and of the far field modulus for 1
p = 2, 3, 4 (right).

Maximal shape variations with respect to r0: 1.7% for the solution (left), 15− 22% for the
far field (right). Domain mapping (7.1.1).
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7.2. Particle on substrate

7.2. Particle on substrate

The incident wave ui has frequency f = 104THz and is coming from the left with an incidence

angle of π
4 with respect to the substrate surface (d = (

√
2

2 ,
√

2
2 )). The scatterer is a dielectric

with relative permittivity ε2 = 2. The substrate, considered to be of infinite extension, is a
dielectric with relative permittivity εsub = 3, and the medium above it is air (ε1 = 1). Thus, to
be precise, the coefficient κ2 in (1.0.2) is equal to κ2

0 in air, κ2
0ε2 inside the scatterer and κ2

0εsub in
the substrate. In all experiments, the PML starts at R = 100nm and ends at R′ = 150nm, with
absorption coefficient α = 0.5 [CM98]. In all cases, the domain mapping (7.1.1) is used, with
r0(ϕ) replaced by r̃(y, ϕ) as defined in (3.1.5).

All the convergence plots reported in this section show the error estimated by the algorithm, due
to the unavailability, for each case considered, of a reference solution.

Interpolation of the real part of the solution on the nominal configuration

For the expansion of the stochastic radius (3.1.6), we consider again the three different values
1
p = 2, 3, 4 for the sparsity parameter, and dimension 16, 32 and 64 of the parameter space. In

particular, the coefficients are given by sj = 0.1r0

j
1
p

, j ≥ 1, and α1 = α2 = 1
4 for the displacement

of the two endpoints A and B (see (3.1.4)). These parameters lead to a maximal shape variation
of 41%, 37% and 36% with respect to r0 for 1

p = 2, 3, 4, respectively (for all the three dimensions
of the parameter space considered).

For each PDE solve, a finite element space of globally continuous, piecewise 2nd-order ansatz
functions on an unstructured triangular mesh has been used, together with a 2nd-order boundary
approximation. The total number of degrees of freedom is 41877, of which 35694 excluding the
PML region. Again, as Q.o.I. we consider only the part of the solution that is not contained in
the PML.

Figure 7.2.1 shows the estimated interpolation error maxν∈N (Λ)‖∆I
ν(µ̂h)‖ for each of the di-

mensions of the parameter space. Figure 7.2.2 shows, for each value of the sparsity parameter,
the comparison of the estimated error curves for different dimensions of the parameter space.
The increments ‖∆I

ν(µ̂h)‖, ν ∈ Λ, are the relative increments with respect to ‖∆I
0(µ̂h)‖∞ =

‖µ̂h(y = 0)‖∞.

Interpolation of the modulus of the far field pattern

In the presence of a substrate of infinite extension, it is shown in [HS] that, to compute the far
field pattern, we can proceed in the same way as we did in the free space case, using formula
(7.1.4) for ξ̂ ∈ [0, π] (with ξ̂ the angle with respect to the substrate surface, starting from the
right). The Green’s function for the far field is given, in this case, by

G(ξ̂,x) =


e−i(κ1,x1x1+κ1,x2x2) + R e−i(κ1,x1x1−κ1,x2x2) if x = (x1, x2) is in the

upper half plane (air),

Te−i(κsub,x1
x1+κsub,x2

x2) if x = (x1, x2) is in the

lower half plane (substrate),

(7.2.1)

with κ1,x1 , κ1,x2 the two components of the wavevector κ1 = κ1d (and similarly for κsub),

R =
κ1,x2−κsub,x2
κ1,x2+κsub,x2

the reflection coefficient and T = 1 − R the transmission coefficient; being
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7. Numerical experiments
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Figure 7.2.1: Comparison of the estimated errors for the interpolated solution with respect to the cardinal-
ity of the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis
and R-Leja points, for 16 (left), 32 (middle) and 64 (right) dimensions. The three dashed
lines on the top of each plot correspond to the convergence rates of 1 (red), 2 (blue) and 3
(green). Maximal shape variations with respect to r0 of 41% for 1

p = 2, 37% for 1
p = 3 and

36% for 1
p = 4. Domain mapping (7.1.1) with r0 replaced by r̃.
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7.2. Particle on substrate
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Figure 7.2.2: Comparison of the estimated errors for the interpolated solution with respect to the cardinal-
ity of the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis
and R-Leja points, for variations of the sparsity parameter 1

p = 2 (left), 3 (middle) and 4

(right). Maximal shape variations with respect to r0 of 41% for 1
p = 2, 37% for 1

p = 3 and

36% for 1
p = 4. Domain mapping (7.1.1) with r0 replaced by r̃.
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7. Numerical experiments

in the TE case, we have κsub,x1 = κ1,x1 . We use the same normalizing constant CF as in the free
space case, and the volume-based formula (7.1.5) on the nominal configuration.

As quantity to interpolate, we consider 12 equispaced points between [0, π], i.e. ξ̂j = j π11 for
j = 0, . . . , 11.

The scaling of the coefficients in the stochastic radius expansion is the same that we have used
for the interpolation of the solution (sj = 0.1r0

j
1
p

, j ≥ 1, α1 = α2 = 1
4). When using the same finite

element space as the one used for the interpolation of the solution, though, we could observe very
poor convergence. Thus, we have used a finer mesh and again 2nd-order finite elements with
2nd-order boundary approximation. The total number of degrees of freedom is 199325, of which
112391 in the integration region Â, which has inner radius 20nm and outer radius 80nm.

The results for the error estimated by the algorithm are shown in Figure 7.2.3 (with f̂h(ûh) the
vector of the approximated values of the far field modulus computed at the 12 sampling angles).
The increments ‖∆I

ν(f̂h(ûh))‖∞, ν ∈ Λ, are relative to the initial increment ‖∆I
0(f̂h(ûh))‖∞ =

‖f̂h(ûh)(y = 0)‖∞. Due to the highly oscillatory behavior of the estimated error, we present two
separate plots for the Clenshaw-Curtis and the R-Leja points.

Quadrature of the real part of the solution on the nominal configuration

We consider the quadrature of the solution in nominal coordinates, as in the free space case. The
setting (scaling of the coefficients and finite element space) is the same as for the interpolation
case, except that here the increments for the error estimation are the absolute error increments.
Figure 7.2.4 shows the behavior of the estimated error comparing the different coefficient decays
for each dimension of the parameter space. Figure 7.2.5 compares, for each variation of the
sparsity parameter, the performance of the algorithm for dimension 16, 32 and 64 of the parameter
space.

As an example, the left plot in Figure 7.2.7 shows the estimated mean for the real part of the
total field for 1

p = 3, dimension 16 of the parameter space and Clenshaw-Curtis points.

Quadrature of the modulus of the far field pattern

We have seen that for the interpolation of the far field pattern we had to consider a finer finite
element space than the one used for the interpolation (and quadrature) of the solution. For the
quadrature of the far field pattern, instead, the finite element space used for the interpolation
of the solution was sufficient. The integration region Â has inner radius 20nm and outer radius
80nm, and it carries 20401 degrees of freedom.

The Q.o.I. is the same as in the interpolation case, that is 12 point evaluations on the unit circle,
and we consider again 1

p = 2, 3, 4 and 16 dimensions in the parameter space.

The results with the estimated error are shown in Figure 7.2.6. The increments ‖∆Q
ν (f̂h(ûh))‖∞

are the absolute error increments.
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Interp. of f̂h(ûh), d = 16, CC

CC, 1
p

=2

CC, 1
p

=3

CC, 1
p

=4

100 101 102 103
10−3

10−2

10−1

100

101

−1

−2
−3

] PDE solves

m
a
x
ν
∈

Λ
‖∆

I ν
(f̂
h
(û
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Figure 7.2.3: Comparison of the estimated errors for the interpolation of the values of the far field modulus
with respect to the cardinality of the index set Λ (top) and the number of PDE solves
(bottom), using Clenshaw-Curtis (left) and R-Leja points (right), for 16 dimensions. The
three dashed lines on the top of each plot correspond to the convergence rates of 1 (red), 2
(blue) and 3 (green). Maximal shape variations with respect to r0 of 41% for 1

p = 2, 37% for
1
p = 3 and 36% for 1

p = 4. Domain mapping (7.1.1) with r0 replaced by r̃.

81



7. Numerical experiments

100 101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

−1

−2

−3

]Λ

∑ ν
∈
N

(Λ
)
‖∆

Q ν
(µ̂

h
)‖
∞

Mean of Re ûh, d = 16
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CC, 1
p

=2

RL, 1
p

=2

CC, 1
p

=3

RL, 1
p

=3

CC, 1
p

=4

RL, 1
p

=4

100 101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

−1

−2

−3

]Λ
∑ ν
∈
N

(Λ
)
‖∆

Q ν
(µ̂

h
)‖
∞

Mean of Re ûh, d = 64
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Figure 7.2.4: Comparison of the estimated errors for the quadrature of the solution with respect to the car-
dinality of the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-
Curtis and R-Leja points, for 16 (left), 32 (middle) and 64 (right) dimensions. The three
dashed lines on the top of each plot correspond to the convergence rates of 1 (red), 2 (blue)
and 3 (green). Maximal shape variations with respect to r0 of 41% for 1

p = 2, 37% for 1
p = 3

and 36% for 1
p = 4. Domain mapping (7.1.1) with r0 replaced by r̃.
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Figure 7.2.5: Comparison of the estimated errors for the quadrature of the solution with respect to the car-
dinality of the index set Λ (top) and to the number of PDE solves (bottom), using Clenshaw-
Curtis and R-Leja points, for variations of the sparsity parameter 1

p = 2 (left), 3 (middle)

and 4 (right). Maximal shape variations with respect to r0 of 41% for 1
p = 2, 37% for 1

p = 3

and 36% for 1
p = 4. Domain mapping (7.1.1) with r0 replaced by r̃.
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Figure 7.2.6: Comparison of the estimated errors for the quadrature of the values of the far field modulus
with respect to the cardinality of the index set Λ (left) and the number of PDE solves (right),
using Clenshaw-Curtis and R-Leja points, for 16 dimensions. The three dashed lines on
the top of each plot correspond to the convergence rates of 1 (red), 2 (blue) and 3 (green).
Maximal shape variations with respect to r0 of 41% for 1

p = 2, 37% for 1
p = 3 and 36% for

1
p = 4. Domain mapping (7.1.1) with r0 replaced by r̃.
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Figure 7.2.7: Particle on substrate, 16 dimensions, Clenshaw-Curtis points: estimated mean of the real
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p = 3 (left) and of the far field modulus for 1
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far field (right). Domain mapping (7.1.1) with r0 replaced by r̃.
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7.3. Comments on the results

From the results presented in the two previous sections we can deduce the following considera-
tions:

• The convergence rates 1
p − 2 expected from the theory (cf. Theorem 4.3.14) are achieved

and surpassed. Actually, what we observe in all experiments is a higher convergence rate,
close to 1

p − 1. Similar observations were already made in [SS13]. This might mean that
the theory is not sharp for at least a class of problems including those we have considered
in this work. Since the observations in [SS13] were in the framework of Bayesian inversion
for elliptic boundary value problems with unknown diffusion coefficient, it seems that what
could be improved in the theory is not related to the fact of considering uncertain domains,
but rather with some characteristics of the Karhunen-Loève-type expansion used to describe
the uncertain quantity.

• All the experiments show dimension robustness of the algorithm with respect to the dimen-
sion of the parameter space. Of course when considering higher parameter dimensions the
errors are larger, but Theorems 4.1.5 and 4.1.6 show that there is a dimension-independent
upper bound on the constants multiplying the convergence rates.

• There is no case where we can observe a substantial difference of behavior between Clenshaw-
Curtis and R-Leja points, also when considering the convergence with respect to the number
of PDE solves. This might be due to the fact that, when the index set contains indices
associated with low-order interpolation/quadrature operators, the number of PDE solves
required by the two families of quadrature points do not differ significantly, although in
the univariate case the number of Clenshaw-Curtis points increases exponentially with the
order of the quadrature rule while the number of R-Leja points increases polynomially.

• The behavior of the error estimator for the interpolation case is highly oscillatory, especially
if we look at the interpolation of the solution and of the farfield functional for the particle
on substrate. If we consider the case of the interpolation of the solution in free space,
the comparison between the error estimator maxν∈N (Λ)‖∆I

ν(µ̂h)‖∞ and the actual error
supy∈PJ‖Re ûh(y)− IΛ(Re ûh)(y)‖H1(KR) shows that the error estimator is effective but it
overestimates the error. This is not surprising if we think that L∞-estimates are sensitive
to the choice of the set of points considered.

• The estimator for the quadrature error is instead not only effective but also fairly accu-
rate. When considering the far field for the substrate case, the quadrature error estimator
converges for a mesh where the interpolation error estimator fails to converge.

• In the free space case, where we have considered two different domain mappings (although
for two different coefficient decay settings), we can see that, as expected from the theory,
the convergence order of finite elements is not relevant. What is relevant is that the finite
element error is not too large, making the algorithm fail. Of course, the order of convergence
matters when we are interested in reducing the computational effort.

• In our experiments we have considered only the error associated with sparse interpola-
tion/quadrature. In Lemma 5.2.1 we have stated that, for a fixed finite elements discretiza-
tion, the discrete solution fulfills the (b, p, ε)∗-assumption in the same domain of holomorphy
as the continous solution. Thus, it is not clear why the Smolyak algorithm fails for finite
element discretizations that are not accurate enough. A possible explanation could be that
the theory guarantees that there exists a downward closed index set that gives the expected
convergence rate for the sparse interpolant or the integral, but for finite element discretiza-
tions that are too coarse the error pollution in the difference operators does not allow the
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7. Numerical experiments

error indicators of the algorithm to identify the most important indices; then the error
indicator for interpolation, which is less accurate, would suffer more from this effect.

86



8. Nonsmooth dependence on parameters

In the previous chapters, we have considered interpolation and quadrature in the parameter space
applied to the solution û on the nominal configuration. However, in applications, one is mostly
interested in having information on the solution u on the physical space.

For interpolation, since the interpolated discrete solution IΛûh = IΛûh(y, x̂) (or IΛûh,Λ =
IΛûh,Λ(y, x̂) for the parameter-adaptive case) still depends on y ∈ PJ , once we consider a par-
ticular realization y ∈ PJ we also know the domain mapping Φ(y) and thus the solution on the
physical configuration. However, one should be careful, because the sparse interpolation operator
and the map Φ, in general, do not commute. Thus, the mapped interpolant Φ−∗(IΛûh) (where
Φ−∗ denotes the pullback with respect to Φ−1) is still an approximation to the solution on the
mapped domain but it is not its interpolant IΛuh.

For quadrature, the result QΛûh does not depend on y anymore and thus the domain mapping
is not available anyways. The first idea that would come to mind would be to consider a mesh
in physical space, fixed for all realizations y ∈ PJ , and, for each realization y requested by the
Smolyak algorithm, map the solution from the nominal coordinates to this grid using the mapping
Φ(y); then, one could apply the Smolyak quadrature on the mapped solution. However, from
Theorem (6.1.7), we can see that, for each y ∈ PJ , the solution û(y) is smooth in each subdomain
but not across the interface Γ̂. This destroys the analytic dependence of u(y,x) = û(y,Φ(y)x̂)
on y, and we cannot expect convergence of the Smolyak algorithm.

To better understand this loss of analyticity, we consider the one-dimensional problem:
−
(
α(y, x)u′(y, x)

)′
= 0 x ∈ (0, 1),

u(0) = 1, u(1) = 0,

for every y ∈
[

1

4
,
3

4

]
,

(8.0.1)

where ′ denotes the derivative with respect to x, and, introducing αl, αr ∈ R+, αl 6= αr:

α(y, x) =

{
αl if x ∈ (0, y),

αr if x ∈ (y, 1).

The location y ∈
[

1
4 ,

3
4

]
of the interface is the image of a uniformly distributed random variable

Y ∼ U
(
[1
4 ,

3
4 ]
)
. The solution is given by

u(y, x) =

{
− αr
αl(1−y)+αry

x+ 1 if x ∈ [0, y),
αl

αl(1−y)+αry
(1− x) if x ∈ [y, 1],

and presents a kink at the interface y. Consequently, the evaluation of the solution at a fixed point
x in physical space cannot be analytic as function of y if this point is crossed by the interface.
This is evident from Figure 8.0.1, which shows, for three different points in the domain, the value
of the solution to (8.0.1) as a function of y. In the left and center plots, since the points x = 0.5
and x = 0.3, respectively, are crossed by the interface, we can see that u(y, x) is not analytic as a
function of y and has a kink when y = x. The right plot correponds to the value of the solution
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Figure 8.0.1: Point values of the solution to (8.0.1) for αl = 3 and αr = 1.

at the point x = 0.2, never crossed by the interface (y ∈
[

1
4 ,

3
4

]
), and thus u(y, x) is analytic in

y.

Still, if we consider a mapping from a nominal configuration where the preimage of the interface
y corresponds to the point 1

2 , that is the domain mapping

x(y) = Φ(y, x̂) =

{
2yx̂ if x̂ ∈

[
0, 1

2

)
,

2(1− y)x̂+ (2y − 1) if x̂ ∈
[

1
2 , 1
]
,

then, since in the nominal configuration the location of the interface is fixed, we can directly
see (as we expect from the discussion of subsection 4.3) that the pulledback solution û(y, x̂) :=
u(y,Φ(y)(x̂)) is holomorphic in a complex discs of center 1

2 and radius 1
4 + ε, ε > 0:

û(y, x̂) =

{
− 2αry
αl(1−y)+αry

x̂+ 1 if x ∈
[
0, 1

2

)
,

2αl(1−y)
αl(1−y)+αry

(1− x̂) if x ∈
[

1
2 , 1
]
.

(8.0.2)

We can conclude that the (b, p, ε)-holomorphy assumption (subsection 4.1) is in general not
fulfilled by the solution in physical space in the case of stochastic interface problems with discon-
tinuous coefficients. Thus, the convergence of the sparse quadrature (and interpolation) operator
is not ensured by Theorem 4.1.6 (resp. Theorem 4.1.5). This statement has also been confirmed
by the numerical results that we present hereunder.

Consider, in the radius expansion, sj = cj = 0.2r0
j3

, j = 1, . . . , 8, corresponding to a 16-dimensional

parameter space, and to a shape variation of 34% with respect to r0. The domain mapping is
(7.1.1), and all the other physical and discretization parameters are the same as in subsection
7.1.3. We have run the sparse quadrature algorithm with Clenshaw-Curtis abscissas for the
evaluation of the real part of the solution in one point in physical space, corresponding, for each
realization, to a different point in nominal space. Since we do not have a reference solution, we
consider the error estimated by the algorithm at each iteration.

The left plot in Figure 8.0.2 shows the convergence plots considering the point evaluation at
different points along the horizontal axis. We report the value of the numerical error estimator∑

ν∈N (Λ) |∆I
ν(Reuh(x))|, computed by the algorithm at each iteration. The first point is the

center of the scatterer x = (0, 0), which is mapped back to itself by the domain mapping (7.1.1).
Since this point is never crossed by the interface, this point evaluation is analytic and we observe
convergence of the algorithm. For the same reason, the algorithm converges for the points x =
(0.004, 0) and x = (0.04, 0), which are always inside the scatterer and in the far field region,
respectively. The points x = (0.008, 0) and x = (0.012, 0) might be crossed by the interface,
but we still observe convergence. This can be explained by the fact that these two points are
crossed by the interface only for some realizations, but for most of the quadrature points selected
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Figure 8.0.2: Convergence plots for the estimated quadrature error for the value of the real part of the
solution when evaluated in a point in physical space, d = 16. Left: point evaluations at
different points along the horizontal axis in physical space; right: convergence results consid-
ering respectively only 1, 5, 10 or 20 point evaluations at points that in physical space are
on the circumference of radius r0. Maximal shape variation of 34% with respect to r0.

by the algorithm they remain either inside the scatterer (for x = (0.008, 0)), either outside it
(for x = (0.012, 0)); thus, the algorithm still manages to converge in these cases. If we consider
instead the point x = (0.01, 0), which is on the circumference of radius r0 and thus it is crossed
by the interface many times, we can see that the convergence curve saturates. However, the curve
saturates after an error of 10−5, which may still be acceptable. When we want to consider the
entire solution in physical space, though, we might need more point evaluations simultaneously.
For this reason, we have run a second experiment.

The right plot in Figure 8.0.2 shows the convergence curves for the sparse quadrature when
considering as quantity of interest 1, 5, 10 or 20 point evaluations of Reuh for equispaced points
in physical space that are on the circumference of radius r0. Again, we plot the value of the
numerical error estimator

∑
ν∈N (Λ)

∥∥∆I
ν(uh)

∥∥
∞ calculated by the algorithm at each iteration.

Here, the quantity uh represents an array with, respectively, 1, 5, 10 or 20 real-valued entries, and
‖·‖∞ the maximum norm. As we can observe, the higher is the number of point evaluations that
we consider simultaneously, the sooner the error curve saturates; this is expected, because, the
more point evaluations we address at the same time, the more are the surfaces of nonsmoothness
in the parameter space, and the harder it gets for the algorithm to build a set of indices giving a
good approximation to the mean for all the point evaluations.
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9. Conclusions, remarks and outlook

In the framework of uncertainty quantification for solutions to PDEs on random domains, we
have focused on the Helmholtz transmission problem with a stochastic interface, and presented
a methodology to construct a surrogate model (interpolation) or estimate statistics (quadrature)
for the solution or linear output functionals based on it. We have treated the low-frequency case,
when the bilinear form associated with the Helmholtz equation is coercive, and the results and
techniques presented in this work can be applied to any other equation posed on a stochastic
domain, provided the associated bilinear form fulfills a uniform inf-sup condition and the bilinear
and linear forms are continuous. As it is evident from our analysis, indeed, stability of the quantity
of interest with respect to the forcing terms (as ensured, for instance, by the Lax-Milgram lemma)
is a crucial property for the validity of the theory.

To model the random shape perturbations, we have introduced a high-dimensional parametriza-
tion for the stochastic interface, which can come from, but it is not necessarily, a Karhunen-Loève-
type expansion. A mapping technique to a nominal configuration as introduced in [XT06, TX06]
has enabled us to exploit the theoretical results for elliptic PDEs on fixed domains with random
coefficients, and, from a computational point of view, to achieve an efficient implementation,
being the nominal configuration the only domain to be meshed.

We have shown that the solution to the variational formulation posed on the nominal space and a
class of linear output functionals satisfy the sufficient smoothness conditions with respect to the
parameter to guarantee high-order convergence rates that are robust with respect to dimension of
the parameter space [CCS14, SS13]. In the numerical experiments, we have employed the sparse
adaptive Smolyak algorithm presented in [SS13], and observed dimension independence of the
convergence rates. The rates measured in the experiments, though, are at least one order higher
than the ones prescribed by the theory, confirming the behavior already observed in [SS13].

In a very general framework that goes beyond the application considered in this work, we have
proved the convergence results for the full sparse tensor solution, that is for the case that sparse
interpolation or quadrature are applied to a quantity of interest subject to some space discretiza-
tion error. In the case of nested sequences of interpolation/quadrature points, we have obtained
results that can be used as starting point to develop an adaptive strategy and reduce the com-
putational cost.

When applying the aforementioned convergence results in the free space case, we have shown how
the smoothness of the interface, expressed in terms of decay of the coefficients in its parametric
representation, translates into smoothness of the solution to the PDE posed on the nominal
configuration, with estimates which are uniform in the number of stochastic parameters.

With the analysis of a one-dimensional interface problem and some numerical experiments, we
have highlighted that the holomorphy assumption breaks down and the algorithm may fail to
converge for point evaluations on the physical space when the point might be crossed by the
interface for some realizations.
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9.1. Extensions

A few general considerations can be carried out from this work.

Relaxing the assumptions on the random variables

In Assumption 2.1.2 we have postulated the random variables {Yl}2Jl=1 to be independent, iden-
tically distributed as U([−1, 1]), for every J ∈ N. It is clear that we can substitute the uniform
distribution with any other distribution that has compact image. The hypothesis that the random
variables are identically distributed can be easily relaxed, too. Indeed, if {Yl}2Jl=1, J ∈ N, are still
independent but not identically distributed as uniform random variables, the joint probability
distribution µ can still be factorized as in (2.2.2). Then, denoting by g = g(y), y ∈ PJ , the
quantity of interest, if each univariate probability distribution has still compact image, one can
apply the analysis and algorithms that we have presented to g(y)µ(y) in place of g(y), y ∈ PJ .

The independence assumption is harder to drop, but it can be done, too. Namely, if the random
variables are not independent, then the joint probability distribution µ cannot be expressed as
product of the univariate distributions anymore. Its image space, though, is still PJ , the tensor
product of the univariate image spaces. For interpolation, denoting again the quantity of interest
by g(y), y ∈ PJ , one has to show that the quantity g(y)µ(y) admits a holomorphic extension
to polyellipses in the complex plain. If this holds, then the theoretical analysis is still valid and
the algorithms presented can still be applied to g(y)µ(y). For quadrature, we can proceed as
described in [BNT10, Sect. 2]. Namely, we can introduce an auxiliary probability density function
µ̂(y) : PJ → R+ corresponding to the probability density function of 2J = dim PJ independent
random variables, for instance the one used in this work, associated to 2J independent, uniformly
distributed random variables. Then, after showing smoothness of the quantity g(y)µ(y)

µ̂(y) in the

complex polyellipses, we can apply the theory and algorithms to the quantity Eµ̂
[
g(y)µ(y)

µ̂(y)

]
=∫

PJ g(y)µ(y)
µ̂(y) µ̂(y) dy, with weights computed as in [BNT10, Formula (2.3)].

Probabilistic interpretation of the coefficient decay

In Lemma 2.1.6 we have interpreted the decay of the coefficient sequences C and S in terms
of space regularity, and then used this result in Chapter 6 to prove the associated smoothness
of the solution. However, one can also give a probabilistic interpretation of the decay of these
sequences. Namely, considering the random variables Ỹl(ω) = βlYl(ω), for l = 1, . . . , 2J and
ω ∈ Ω, with βl = c l+1

2
for l odd and βl = s l

2
for l even, these variables describe the probabilistic

law of the Fourier coefficients. Denoting ∆r(ω, ϕ) := r(ω, ϕ) − r0(ϕ) =
∑

l≥1 Ỹlψl(ϕ), where

ψl(ϕ) = cos
(
l+1
2 ϕ
)

for l odd and ψl(ϕ) = sin
(
l
2ϕ
)

for l even, the Parseval identity gives

‖∆r(ω, ·)‖2L2
per([0,2π)) =

∑
l≥1

|Ỹl(ω)|2, for every ω ∈ Ω.

This equation tells us that the random variable
∑

l≥1 |Ỹl(ω)|2 describes the probabilistic law

with which the quantity |∆r(ω, ·)|2 oscillates around the value 0, in mean square sense over
ϕ ∈ [0, 2π).

To investigate the effect of the decay of the coefficients, we consider the two plots in Figure 9.1.1.
On the left, we can see the approximate probability density function (pdf) for ‖∆r(ω, ·)‖2L2

per([0,2π)),

in the case that the coefficient sequences C and S are in `p(N) for p = 1
2 ,

1
3 ,

1
4 . On the right, we
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Figure 9.1.1: Probabilistic interpretation of coefficient decay: approximate pdfs for different coefficient
decays.

can observe the approximate pdf for ∆r(ω, 0) =
∑

l∈N,l odd Ỹl. In both cases, the plots have
been produced drawing independent samples of the random variable and collecting them in a
histogram.

We can deduce that the faster the decay, the more localized is the displacement of the points and
the sharper is the pdf. It is clear from the right plot that, the faster the coefficients decay, the
closer is the distribution of ∆r(ω, 0) to the uniform distribution, that is, to the distribution of
β1Ỹ1(ω). Concerning the distribution of ‖∆r(ω, ·)‖2L2

per([0,2π)), we observe that around the value 0

there is a very thin layer where the probability density sharply decreases coming from the right.
This is due to the fact that the events

∑
l≥1 Ỹ

2
l ≤ ε have very low probability for ε > 0 small.

Different interface parametrizations

In Chapter 2, we have mentioned that other functions could be used in place of the Fourier
harmonics to parametrize the stochastic radius. We will return on this topic in the first paragraph
of Section 9.2. For a general treatment of domain transformations, we refer to [CSZ].

High-order quasi-Monte Carlo integration

The smoothness properties of the solution on the nominal domain and of linear output functionals
of the form (6.3.1) with respect to the high-dimensional parameter guarantee that also high-
order quasi-Monte Carlo methods based on interlaced polynomial lattice rules as described in
[DKLG+14] would allow to achieve high-order convergence rates without suffering from the curse
of dimensionality. This is the reason why, in the numerical experiments, in order to compute an
independent reference solution, we have used a high-order quasi-Monte Carlo integration code
[Gan16, GS16].

9.2. Outlook

Many aspects of what we have presented need further investigation. In the following, we list those
that turned out to be relevant throughout the development of our work.
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Modeling shape variations and constructing mappings

The modeling of the variations in the shape and the construction of the domain mapping are
closely related. In Chapter 2, we have presented a parametrization that is available only for
star-shaped scatterers. For nominal geometries that are polygons, one might use an expansion in
terms of only sinusoids (not cosinusoids) along the normal direction of each edge, and add a two-
dimensional random variable (or three-dimensional for 3d geometries) for the movement of each
corner. However, such approach to modeling the interface is not easy to extend to complicated
geometries. Also, when the nominal geometry has corners, it is very important that the interface
model is able to reproduce properly the corner rounding.

During discussions with Dr. Peng Chen (currently at U.T. Austin), it turned out that an effective
way to model shape variations for a wide class of nominal geometries would be to use isogeometric
elements, directly perturbing the control points for the NURBS with some random variables.

A similar, still general approach, would be to use discrete diffeomorphisms given as vector fields,
as the one described in [HP15], based on B-splines.

Alternatively, one could model the interface through a level-set method [OF01, AJT02]. Denoting
by Ψ a level-set function on a domain Q which includes all possible shapes, and assuming normal
perturbations, Ψ fulfills the following transport equation:

∂Ψ

∂t
+ v|∇Ψ| = 0 in Q× [0, T ].

The interface is given by the zero level-set of Ψ at a fixed final time T , and the term v is the
speed of the transport along the normal direction to the interface. In order to express random
shape variations we can model v as

v(ω,x) =
∑
l≥0

βlYl(ω)ψl(x), x ∈ Γ(ω), ω ∈ Ω, (9.2.1)

with some real coefficients {βl}l≥0, some real-valued random variables {Yl(ω)}l≥0, and some lin-
early independent functions {ψl}l≥0. The initial condition Φ(0,x) can be taken to be the nominal
configuration. The level-set method casted in this way has the advantage that, by knowing Ψ,
we know the displacement in the whole domain. However, the random field v is not directly
associated with a physical quantity that can be measured, and this would represent a prominent
disadvantage when trying to estimate the terms in (9.2.1) from laboratory measurements. We
refer to [NSM07, NCSM08], already mentioned in the introduction, as an alternative version of
the level-set method.

Finally, given instead the case that the interface model is already given and we need to propagate
the interface displacements to the whole domain, more general methods than the analytic map-
pings described in subsection 3.1.2 need to be examined. As already mentioned in that section, a
possibility is to use an harmonic extension [LTZ01]. In any case, it is important that the domain
displacement is localized around the interface, in order to contain the propagation of possible
interface singularities like corners; if this is the case, one could adopt an hp-finite element method
to handle singularities, using h refinement only in small regions around them.

Constructing an interface model from measurements

An important aspect when dealing with perturbed geometries, which has not been treated in
this work, is the inverse problem of extracting a model for the shape perturbations given a set of
measurements. In this light, it is convenient that the quantity describing the shape variations has
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a physical meaning so that it can be measured, directly or indirectly. This shows the advantage
of modeling directly the interface boundary as we did in our work.

The construction of a model from experimental data has been addressed in the last ten-fifteen
years, mostly from an engineering point of view. Consider that we want to reconstruct the radius
expansion used in Chapter 2, written in the general form

r(ω, ϕ) = r0(ϕ) +
L∑
l=1

βlYl(ω)ψl(ϕ), ϕ ∈ [0, 2π), L ∈ N, ω ∈ Ω. (2.1.4)

This means estimating r0, the truncation L ∈ N, {βl}Ll=1, {ψl}Ll=1, and {Yl}Ll=1. The probability

distribution of the random variables {Yl}Ll=1 cannot be fixed a priori and needs to be estimated

from the measurements; the reason is clarified in Section B of the Appendix. We consider {ψl}Ll=1

to be elements of an orthonormal basis of the Hilbert space H where r takes values. In our case,
H = L2

per([0, 2π).

To estimate the model parameters we have at our disposal, for instance, noisy realizations of r

rij := r(ωi, ϕj) + εij , ωi ∈ Ω, i = 1, . . . , Ni, j = 1, . . . , Nj , ϕj ∈ [0, 2π), (9.2.2)

where we assume the measurement noises {εij}1≤i≤Ni,
1≤j≤Nj

to be independent, identically distributed.

For sake of simplicity, let us assume that r0 ≡ 0. In the general case, one can estimate r0 by
averaging over the samples and then apply the procedure described below to the quantity r−r0.

The first step is to identify the coefficients {βl}Ll=1 and the functions {ψl}Ll=1. As suggested in
[DGS06], if the covariance function can be estimated directly from measurements, or indirectly
with an inverse problem, then we can estimate its eigenvalues λl and associated eigenfunctions
wl, l = 1, . . . , L, and set βl =

√
λl, ψl = wl, l = 1 . . . , L. If instead the covariance operator is not

available, then one can use an eigenvalue problem associated with the physical problem at hand
to construct an Hilbertian basis {ψl}Ll=1 [DGS06]. In both cases, the truncation parameter L can
be selected using some cross validation strategy [RS05, Sect. 5.4.2].

Once {βl}Ll=1 and {ψl}Ll=1 are available, we have to estimate the distribution of the multivariate

random variable Y = {Yl}Ll=1. Realizations of {Yl}Ll=1 can be obtained through the formula
Yl = 1

βl
< r, ψl >H , where < ·, · >H denotes the scalar product in H.

The introduction in [PSDF12] presents a good survey about the possible methods. The approach
that has received more attention in the last years is the polynomial chaos expansion (PCE)
method. This is one of the so-called indirect methods, where the key idea is to assume the
existence of a transformation t such that

Y = t(ξ),

where ξ = (ξ1, . . . , ξNg), Ng ∈ N, is a vector of known random variables, and the objective is to
construct t. In the polynomial chaos expansion method, t is the projection of Y on the space
spanned by the polynomial chaos basis {φα}α∈NNg whose elements are orthogonal with respect
to the probability measure of ξ. For instance, if the distribution of ξ is Gaussian, then Y is
projected on the Hermite chaos basis. Projecting Y means that we can express it as

Y (ω) =
∑
α∈NNg

γ(α)φα(ξ(ω)), ω ∈ Ω. (9.2.3)

Constructing the transformation t means identifying the projection vectors
{
γ(α)

}
α∈NNg . For

this, different approaches can be used. In [DGS06] and [GD06], these coefficients are estimated

95



9. Conclusions, remarks and outlook

using the maximum likelihood principle, while in [GD06] they are approximated using Bayesian
inference. The work presented in [GD06] contains also an analysis of the influence of the choice
of the truncation parameters Ng (the dimension of ξ), of p (the maximum polynomial degree of
chaos basis elements), and in general of the parameters that have to chosen when applying the
algorithm, on the bias of the resulting estimator.

The methodology presented in [Soi10, Soi11] combines the techniques used in the polynomial
chaos expansion method with the approach used in prior algebraic stochastic modeling (PASM)
methods. The idea is to introduce a family of prior models for the quantity to be estimated,
avoiding the estimation of the covariance operator, and use the maximum entropy principle in
[Soi10] and Bayesian estimation in [Soi11] to build a posterior model. The techniques of the PCE
method are used in the sense that both the prior and posterior models are constructed assuming
a Karhunen-Loève-type expansion and estimating the projection vectors

{
γ(α)

}
α∈NNg .

We refer to [SNC09] for the identification of polynomial chaos expansions for the level-set method
[NSM07, NCSM08]. There, both the cases of uncorrelated random variables and mutually inde-
pendent random variables in the expansion are addressed.

The techniques presented in the aforementioned papers have proven to be effective and very
powerful, but what seems to be still missing is a rigorous mathematical analysis of them.

Improving the computational efficiency

We have mentioned in Chapter 5 that the result of Theorem 5.4.1 can be used as starting point
for a parameter-adaptive choice of the finite element resolution. This could be combined with a
multilevel Stochastic Collocation (MLSC) technique [TJWG15] to further speed up the compu-
tations.

Alternatively, it would be interesting to improve the computational efficiency combining the
collocation algorithm with a reduced basis approach [RHP08], as it has been done in [CS15] in
the framework of Bayesian inversion.

Handling the nonsmooth case

Chapter 8 clearly shows that the smoothness assumption with respect to the high-dimensional
parameter does not hold for point values of the solution on the physical domain u = u(y,x),
y ∈ PJ , x ∈ KR, in the case that the point x is crossed by the interface for some parameter
realizations. Finding a solution to this issue is ongoing work.

A possible remedy could be to trace the hyperplane

Px,Γ := {y ∈ PJ : x ∈ Γ(y)} , (9.2.4)

which has codimension 1, and apply sparse quadrature separately on the two sides of the hyper-
plane. However, this approach has two major disadvantages that make it unpractical: first, it is
not easy to find the hyperplane, second, if we consider more than one point evaluation, one would
have to trace an hyperplane for each of the evaluation points that are crossed by the interface.

Instead, a Monte Carlo approach would work, because it only requires square integrability of the
quantity of interest. The price to pay is a much lower convergence rate. In order to make the
computational load feasible, the idea is to use multilevel Monte Carlo (MLMC).

The MLMC method is based on saving computational effort through a balance of the space
discretization error and the Monte Carlo sampling error [BSZ11, Gil15]. In order to fully exploit

96



9.2. Outlook

this load saving strategy, it is important to determine correctly the convergence rate of the space
discretization for each y ∈ PJ . Let us focus on the convergence rate for a linear finite element
discretization.

If we consider point evaluation as the Dirac delta output functional δx(u(y)) := u(y,x), then
δx ∈ H−1−ε(KR) for every ε > 0, and we could deduce a convergence rate of h1−ε, ε > 0, where
h denotes the meshwidth. However, this convergence rate is not optimal.

The first observation is that what needs to be established in MLMC is the convergence rate not
exactly for all y ∈ PJ , but for all y ∈ PJ \ NΓ, where NΓ is a zero measure subset of PJ , see
proof to Lemma 4.4 in [BSZ11]. This means that we do not need to determine the convergence
rate of u(y,x) in the case that x ∈ ΓΓ(ω), because the hyperplane Px,Γ as defined in (9.2.4) has
measure zero for every x ∈ KR.

The second observation is that L∞-error estimates [Nit76, Sch98] for linear finite elements guar-
antee that, for a solution w of an elliptic boundary value problem on a domain D,

‖w − wh‖L∞(D) ≤ Ch2| log h|‖w‖W 2,∞(D), (9.2.5)

where wh denotes the linear finite element solution, C > 0 is a constant independent of h and w,
and D ∈ R2.

For the Helmholtz transmission problem (1.0.1) in free space, we can conjecture that if u(y) ∈
W 2,∞(D2)∪W 2,∞(KR∩D1) for every y ∈ PJ \Px,Γ, then u(y,x) will converge with rate h2| log h|,
for every y ∈ PJ \ Px,Γ.

As we have done in Chapter 6, our intention is to prove the regularity of the point evaluation
on the nominal configuration. The correct functional setting to prove classical smoothness of
solutions to elliptic boundary value problems are the Hölder spaces C2,α for α ∈ (0, 1). Indeed,
we cannot consider C2-regularity because there are cases when the right-hand side is continuous
but the solution is not in C2 (see Problem 4.9 in [GT01]). Then, we need to prove the following:

Proposition 9.2.1. If the coefficients in (3.2.4) are such that α̂ ∈ C1,α(KR∩D̂1)∪C1,α(D̂2) and

κ̂2 ∈ C0,α(KR ∩ D̂1) ∪ C0,α(D̂2) for every J ∈ N and every y ∈ PJ , with J- and y-independent
norm bounds, then û ∈ C2,α(KR ∩ D̂1) ∪ C2,α(D̂2) for every J ∈ N and every y ∈ PJ , with a J-
and y-independent norm bound.

This result can be proved using either Green’s representation formula for the solution û (see
Chapter 6 in [GT01]), or local integral estimates and equivalence between Campanato and Hölder
norms (see Chapter 6 in [WYW06]).

A criticism that could be raised is that Hölder spaces are not separable, and one should distinguish
between weak and strong measurability. However, one could either use the fact that ‖w‖Ck(D) ≤
‖w‖Ck,α(D) for every w ∈ Ck,α(D) and ‖w‖Ck,α(D) ≤ ‖w‖Ck+1(D) for every w ∈ Ck+1(D), or

assume that, for every J ∈ N and every y ∈ PJ , û belongs to a separable subset of C2,α(KR ∩
D̂1) ∪ C2,α(D̂2).

If we further show that the constant C in (9.2.5) can be bounded independently of J ∈ N and
y ∈ PJ , then we obtain that the point evaluation functional u(y,x) converges with rate h2| log h|
for every J ∈ N and every y ∈ PJ \ Px,Γ, and we can use this rate to determine the distribution
of samples among the MLMC levels.

As remarked in Chapter 8, the solution of an interface problem is in general only continuous across
the interface, which translates in C0-smoothness with respect to the high-dimensional parameter.
However, when introducing the model problems in Chapter 1, we have mentioned that, in the TE
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mode, the highest-order coefficient α is continuous in the whole domain. Using Proposition 9.2.1
and the transmission conditions at the interface, a simple application of the triangle inequality
shows that in this case the solution û would have global regularity C1,α, α ∈ (0, 1). In this
situation, it would be interesting to analyze the performance of a quasi-Monte Carlo method
[KSS12, DKS13] and compare it to the Monte Carlo approach.
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A.1. Lebesgue-Bochner spaces

Let (Ω,A, µ) be a measure space, where A denotes a σ-algebra on Ω and µ : A → R+ is a
measure.

Definition A.1.1. A measure µ on a measurable space (Ω,A) is finite if µ(Ω) < ∞, and it is
σ-finite if Ω is the union of a sequence A1, A2, . . . of sets that belong to A and satisfy µ(Ai) <∞
for every i.

Definition A.1.2. A measure µ is called complete if the conditions A ∈ A, A′ ⊂ A and µ(A) = 0
imply that A′ ∈ A.

In this section we assume the measure µ to be complete.

Consider a Banach space (B, ‖·‖B) and a function s : Ω→ B such that

s =

n∑
k=1

ak1Ak , (A.1.1)

for some n ∈ N, where ak ∈ B, 1A denotes the indicator function of A and Ak ∈ A, Aj ∩Ak = ∅
for 1 ≤ k, j ≤ n, with k 6= j. Then s is called a simple function.

Contrarily to real-valued functions, for Banach-space valued functions there are different defini-
tions of measurability. We present them as in [Rya02, Sect. 2.3].

Definition A.1.3. A function f : Ω → B is µ-measurable if there exists a sequence of simple
functions (sn)n≥1 such that sn(ω)→ f(ω) as n→∞ for µ-a.e. ω ∈ Ω.

In the following definition, we denote by B∗ the dual space of B.

Definition A.1.4. A function f : Ω → B is weakly µ-measurable if, for every b∗ ∈ B∗, the
scalar-valued function b∗(f) is µ-measurable.

Definition A.1.5. A function f : Ω → B is Borel µ-measurable if, for every open subset O of
B, f−1(O) is a measurable set.

These three definitions are connected by the concept of separability. From [Rya02, Sect. 2.3], we
have the following definition:

Definition A.1.6. A function f : Ω → B is µ-essentially separably valued if there exists a
measurable subset A of Ω, whose complement has µ-measure zero, such that f(A) is contained
in a separable subspace of B.

Then it holds:

Theorem A.1.7 (Pettis measurability theorem). Let (Ω,A, µ) be a σ-finite measure space and
f : Ω→ B a function. The following statements are equivalent:
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(i) f is µ-measurable;

(ii) f is weakly µ-measurable and µ-essentially separably valued;

(iii) f is Borel µ-measurable and µ-essentially separably valued.

Proof. See [Rya02, Prop. 2.15].

In particular, the above theorem tells us that the notions of µ-measurability, weak µ-measurability
and Borel µ-measurability do coincide if the Banach space B is separable.

The Bochner integral of a µ-measurable function f : Ω → B is defined in an analogous way to
the Lebesgue integral for real-valued functions. For any simple function s as in (A.1.1), we define
its integral over Ω with respect to µ as∫

Ω
sdµ :=

n∑
k=1

akµ(Ak).

We say that s is integrable if µ(Ak) is finite whenever ak 6= 0, 1 ≤ k ≤ n.

Definition A.1.8. A µ-measurable function f : Ω → B is Bochner integrable if there exists
a sequence (sn)n≥1 of µ-measurable simple functions converging µ-almost everywhere to f and
satisfying

lim
n→∞

∫
Ω
‖f − sn‖B dµ = 0.

The Bochner integral of f over Ω with respect to µ is defined as∫
Ω
f dµ := lim

n→∞

∫
Ω
sn dµ.

Theorem A.1.9 (Bochner’s theorem). If f : Ω → B is a µ-measurable function, then f is
Bochner integrable if and only if the scalar function ‖f‖B is integrable, and∥∥∥∫

Ω
f dµ

∥∥∥
B
≤
∫

Ω
‖f‖B dµ.

Proof. See [Rya02, Prop. 2.16 and Cor. 2.17].

Definition A.1.10. For 0 < p ≤ ∞, define

Lp(Ω, B) :=
{
f : Ω→ B, f strongly measurable and ‖f‖Lp(Ω,B) <∞

}
,

where

‖f‖Lp(Ω,B) :=

{(∫
Ω‖f‖

p
B dµ

) 1
p if 0 < p <∞,

esssupΩ‖f‖B if p =∞.

Define also N p := {f ∈ Lp, f = 0 µ-a.e.}. Then Lp(Ω, B) := Lp(Ω, B)/N p is called Lebesgue-
Bochner space. It is equipped with the norm ‖[f ]‖Lp(Ω,B) := ‖f‖Lp(Ω,B), where [f ] denotes the
equivalence class of f .

For ease of notation, we simply write ‖f‖Lp(Ω,B), omitting the symbol [·].

For p ≥ 1, (Lp(Ω, B), ‖·‖Lp(Ω,B)) is a complete normed space, that is, a Banach space.
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A.2. Tensor product of measures

We first address the tensor product of two measures. Then, we extend the definitions to the
tensor product of any finite number of measures and finally to the tensor product of a countable
number of measures.

Definition A.2.1. Let (Ω1,A1), (Ω2,A2) be two measurable spaces. The smallest σ-algebra
over Ω1 ⊗ Ω2 generated by sets of the form A1 × A2, where A1 ∈ A1 and A2 ∈ A2, is called the
product σ-algebra of A1 and A2, and is denoted by A1 ⊗A2.

The following theorem ensures that, if two measure spaces are σ-finite, then we can uniquely
define the so-called product measure on (Ω1 ⊗ Ω2,A1 ⊗A2).

Theorem A.2.2. Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be σ-finite measure spaces. For A in A1⊗A2,
denote Aω1 := {ω2 ∈ Ω2 : (ω1, ω2) ∈ A} and Aω2 := {ω1 ∈ Ω1 : (ω1, ω2) ∈ A}.

The set function µ1 ⊗ µ2, defined for every set A ∈ A1 ⊗A2 by

(µ1 ⊗ µ2) (A) :=

∫
Ω1

µ2(Aω1) dµ1(ω1) =

∫
Ω2

µ1(Aω2) dµ2(ω2),

is a σ-finite measure with the property that, for every set of the form A1 ×A2 with A1 ∈ A2 and
A2 ∈ A2,

(µ1 ⊗ µ2) (A1 ×A2) = µ1(A1)µ2(A2). (A.2.1)

The measure µ1 ⊗ µ2 is called product measure of µ1 and µ2.

Proof. See [Hal13, Thm. A and B in § 35].

If two measures are σ-finite, then Fubini’s theorem holds, cf. [Hal13, § 36].

Proceeding by mathematical induction, it is trivial to extend the previous concepts to the tensor
product of any finite number n of σ-finite measure spaces (Ωi,Ai, µi), i = 1, . . . , n [Hal13, § 37].
Namely, there exists a unique measure µ1 ⊗ . . .⊗ µn on A1 ⊗ . . .⊗An, n ∈ N, such that

(µ1 ⊗ . . .⊗ µn) (A1 × . . .×An) =
n∏
i=1

µi(Ai), for every A1 ∈ A1, . . . , An ∈ An. (A.2.2)

To define the product measure on a sequence (Ωi,Ai, µi)i≥1 of measure spaces, we need to
strengthen the constraints on the measures µi, i ≥ 1. Namely, we need to ask that all of them
(or at least all but a finite number of them) are finite measures. In the following let us denote
Ω(n) :=

⊗
i≥n+1 Ωi for some n ∈ N. We have:

Theorem A.2.3. Given a sequence (Ωi,Ai, µi)i≥1 of measure spaces with µi(Ωi) = 1 for every
i ≥ 1, there exists a unique measure µ on the product σ-algebra A :=

⊗
i≥1Ai such that, for

every measurable set of the form A× Ω(n),

µ(A× Ω(n)) = (µ1 ⊗ . . .⊗ µn) (A). (A.2.3)

Proof. See [Hal13, § 38].

Since every finite measure can be rescaled so that the measure of the entire space is 1, the previous
theorem can be applied to any countable product of finite measures.
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B. Hilbert space-valued random variables: the
covariance operator

For a survey on random variables and their main properties, we refer to [Hal13]. Herein, we focus
on the definition and properties of the covariance operator for random variables taking values
on a separable Hilbert space H with scalar product 〈·, ·〉H . We denote by (Ω,A,P) a probability
space, and by E(X) :=

∫
ΩX(ω) dP(ω) the mean of a random variable X ∈ L1(Ω, H).

We use the symbol H ⊗H for the tensor product space consisting of elements ϕ ⊗ ψ such that
ϕ,ψ ∈ H. We endow the space H⊗H with the inner product 〈u, v〉H⊗H :=

∑
i,j〈ϕi, ϕ′j〉H〈ψi, ψ′j〉H

for every u =
∑n

i=1 ϕi ⊗ ψi, v =
∑m

j=1 ϕ
′
j ⊗ ψ′j , where ϕi, ψi, ϕ

′
j , ψ
′
j ∈ H for i = 1 . . . , n and

j = 1, . . . ,m [CL85, p. 20]. The norm induced by this inner product is ‖u‖H⊗H :=
√
〈u, u〉H⊗H .

The completion of H ⊗H with respect to this norm is a Hilbert space [CL85, p. 22].

Definition B.0.1. For X ∈ L2(Ω, H), the covariance Cov(X) of X is the element of H ⊗ H
defined as

Cov(X) := E ((X − E(X))⊗ (X − E(X))) . (B.0.1)

The variance of X is defined as

Var(X) := E (‖Cov(X)‖H⊗H) = E
(
‖X − E(X)‖2H

)
= ‖X − E(X)‖2L2(Ω,H).

The covariance can also be seen as a nonnegative, symmetric operator Q : H → H of trace class,
called covariance operator, with

〈Cov(X), ϕ⊗ ψ〉H⊗H = 〈Qϕ,ψ〉H , for every ϕ,ψ ∈ H

[DPZ14, p. 26].

If H = L2(D) for D ⊆ Rn, n ≥ 0, then the covariance operator has a representation as integral
operator:

Theorem B.0.2 (Mercer’s theorem). For ϕ ∈ H = L2(D), the covariance operator Q : H → H
of a random variable X ∈ L2(Ω, H) is given by

Qϕ(x) =

∫
D

covX(x, z)ϕ(z) dz, for all x ∈ D. (B.0.2)

The function covX : D ×D → R is called covariance kernel of X. Given the eigenvalues (λi)i≥1

and an eigenbasis (ei)i≥1 of Q, the covariance kernel can be represented as

covX(x, z) =

∞∑
i=1

λiei(x)ei(z). (B.0.3)

Proof. We refer to [Lax02, Thm. 11 in Ch. 30]. Here we just mention that the fact that Q has a
spectral decomposition comes from the fact that it is of trace class, and thus compact. Moreover,
since Q is nonnegative, all its eigenvalues (λi)i≥1 are nonnegative.
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Any random variable with finite second moments has the remarkable property of having a Fourier-
like expansion, which allows to express Hilbert space-valued random variables in terms of real-
valued random variables:

Theorem B.0.3 (Karhunen-Loève expansion). Let X ∈ L2(Ω, H) be a random variable with
mean m ∈ H and covariance operator Q (nonnegative, symmetric and of trace class). Let (λi)i≥1

be the sequence of eigenvalues of Q, numbered in decreasing order, and (ei)i≥1 the sequence of the
corresponding normalized eigenvectors. Then

X = m+
∞∑
i=1

√
λiβiei, (B.0.4)

where (βi)i≥1 is a sequence of real-valued random variables such that (denoting by δj,k the Kro-
necker delta)

E[βj ] = 0, E[βjβk] = δjk,

for all j, k ∈ N such that λj , λk > 0.

The convergence of the series (B.0.4) is understood in the L2(Ω, H) sense.

Proof. See [Loè63, Thm. B in 34.5].

If X has normal distribution, then the random variables (βi)i≥1 associated with nonzero eigen-
values are mutually independent and normally distributed as N (0, 1). In the other case that X
is not normally distributed, the distribution of the random variables (βi)i≥1 is not known a priori
and they are uncorrelated but not necessarily mutually independent.

For Gaussian random variables, then, it is sufficient to estimate the eigenvalues and eigenvectors
of the covariance operator to obtain the expansion (B.0.4). For non-Gaussian fields, however, if
we assume that X admits an expansion as (B.0.4) and fix a priori the distribution of the random
variables (βi)i≥1, then we can still use the properties of the covariance operator to estimate the
terms in (B.0.4). We remark that, having fixed a priori the distribution of the random variables,
the resulting expansion will not be exactly the Karhunen-Loève expansion of X.

Proposition B.0.4. Let X ∈ L2(Ω, H) be a random variable with mean m ∈ H and covariance
operator Q (nonnegative, symmetric and of trace class). Consider the random variable Y ∈
L2(Ω, H) given by

Y = m+
∞∑
i=1

ψi(x)βi, (B.0.5)

where (βi)i≥1 is a sequence of independent, identically distributed real-valued random variables
with zero mean and variance σ2 ∈ R+, and (ψi)i≥1 is a sequence of elements of H.

If we choose ψi =
√
λi
σ ei, i ∈ N, where (λi)i≥1 and (ei)i≥1 are the sequences of eigenvalues

and associated normalized eigenvectors of Q, respectively, then Y has the same mean and same
covariance as X.

Proof. That E[Y ] = E[X] is trivial. For the covariance, using the assumptions on (βi)i≥1 and

ψi =
√
λi
σ ei, i ∈ N:

Cov(Y ) =

∞∑
j,k=1

ψj ⊗ ψkE[βjβk] =

∞∑
k=1

σ2ψk ⊗ ψk =

∞∑
k=1

σ2λk
σ2
ek ⊗ ek =

∞∑
k=1

λkek ⊗ ek = Cov(X).
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Given a set of measurements of X, we might want to estimate the covariance of X from them,
and then obtain a Karhunen-Loève-type expression for X. Actually, as we know from probability
theory, if X is not normally distributed, then Proposition B.0.4 does not guarantee that X and
Y have the same distribution. Fixing a priori the distribution of the random variables (βi)i≥1 is

a very strong modeling assumption: if we think of H as a function space, e.g. H = L2(D), then
this means fixing a priori with which probability law the value of X at a point x oscillates around
its mean value m(x).

Thus, if, given some measurements of X, we want to estimate a Karhunen-Loève-type expansion
for X, we also need to estimate the distribution law of the random variables (βi)i≥1, as discussed
in Section 9.2.
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C. Fourier series

The content of this section is mostly based on [Gra04].

We consider the real interval [0, 2π] where the points ϕ = 0 and ϕ = 2π are identified. We denote
the Lebesgue integrable functions on the resulting torus as L1

per([0, 2π)). Analogous notation is
used for other spaces defined on the torus, e.g. Lpper([0, 2π)), p ∈ N, C0

per([0, 2π)).

Definition C.0.1. For a real-valued function f ∈ L1
per([0, 2π)) and j ∈ N0, we define

f̂j =
1

2π

∫ 2π

0
f(ϕ)ψj(ϕ) dϕ,

where

ψ0 = 1, ψj(ϕ) = cos(jϕ) if j is even, ψj(ϕ) = sin(jϕ) if j is odd. (C.0.1)

We call f̂j the (real) jth Fourier coefficient of f .

The (real) Fourier series of f at ϕ ∈ [0, 2π) is

f̂0 +
∑
j≥1

f̂2j−1 cos(jϕ) + f̂2j sin(jϕ). (C.0.2)

We have to define in which sense the series (C.0.2) converges. The most general result is the
following:

Proposition C.0.2 (Fourier inversion). Assume that f ∈ L1
per([0, 2π)) and that∑

l≥0

|f̂l| <∞.

Then
f(ϕ) = f̂0 +

∑
j≥1

f̂2j−1 cos(jϕ) + f̂2j sin(jϕ) a.e. in [0, 2π),

and thus f is almost everywhere equal to a continuous function.

Proof. See [Gra04, Prop. 3.1.14].

Moreover, we may ask which functions we can approximate using trigonometric polynomials and
‘how good’ the approximation can be. For this, we have the following results:

Proposition C.0.3. It holds:

(a) The set of trigonometric polynomials {ψl}l≥0 defined in (C.0.1) is dense in Lpper([0, 2π)) for
1 ≤ p <∞.

(b) (Bessel theorem) In particular, {ψl}l≥0 in (C.0.1) is a complete orthonormal system for the

Hilbert space L2
per([0, 2π)).

(c) (Weierstrass approximation theorem for trigonometric polynomials) Every function in C0
per([0, 2π))

is a uniform limit of trigonometric polynomials.
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C. Fourier series

Proof. See [Gra04], Prop. 3.1.10, Cor. 3.1.11 and Prop. 3.1.15 - Prop. 3.1.16.

There is a strict connection between the decay properties of Fourier coefficients and smoothness
of a function. This is presented in the remainder of this section.

First, we need the following technical lemma, whose proof is postponed to the end of this section.

Lemma C.0.4. Let q = (qj)j≥1 be a real, monotonically decreasing sequence belonging to `p(N),
0 < p <∞.

Then there exists a real constant Cq > 0 (depending on the sequence q) and J ∈ N such that

|qj | ≤ Cq
1

j
1
p

, for every j > J. (C.0.3)

Thanks to the latter result, we can prove the following:

Lemma C.0.5. If the sequences of Fourier coefficients (f̂2j−1)j≥1 and (f̂2j)j≥1 of a function
f ∈ C0

per([0, 2π)) have each a monotonic majorant in `p(N) for 0 < p < 1, then

‖f‖Ckper([0,2π)) ≤ C,

with

k =

{⌊
1
p − 1

⌋
if 1

p − 1 is not an integer,

1
p − 2 otherwise.

(C.0.4)

The constant C may depend on the sequence (f̂l)l≥1.

Proof. From (C.0.2), computing the kth derivative and considering that supϕ∈[0,2π) | sin(lϕ)| =

supϕ∈[0,2π) | cos(lϕ)| = 1, l ∈ N, we obtain an upper bound for the Ckper([0, 2π))-seminorm of f :

|f |Ckper([0,2π)) = sup
ϕ∈[0,2π)

∣∣∣dkf(ϕ)

dϕk

∣∣∣ ≤∑
j≥1

jk(|f̂2j−1|+ |f̂2j |). (C.0.5)

If (f̂2j−1)j≥1 has a monotonic majorant in `p(N), then, according to Lemma C.0.4, there exists
J ∈ N such that

|f̂2j−1| .
1

j
1
p

and thus jk|f̂2j−1| .
1

j
1
p
−k
, for all j > J

(where . denotes inequality up to a constant that may depend on the sequence). The analogous
holds for the sequence (f̂2j)j≥1.

Then, the sum in (C.0.5) converges for every k such that

1

p
− k > 1,

that is if we choose k as in (C.0.4).

Conversely:
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Lemma C.0.6. If f ∈ Ckper([0, 2π)) for an integer k ≥ 0, then

|f̂2j−1|, |f̂2j | ≤ C(k, f)
1

(1 + j)k
, j ≥ 1, (C.0.6)

for a positive constant C(k, f) dependent on k and f but independent of j ∈ N.

In particular, the sequences (f̂2j−1)j≥1 and (f̂2j)j≥1 have a monotonically decreasing majorant
belonging to `p(N) for every p > 1

k .

Proof. If f = f(ϕ) ∈ Ckper([0, 2π)), then Corollary 3.2.10 in [Gra04] implies that

|f̂2j−1|, |f̂2j | ≤ λ(k)

max

(
‖f‖L1

per([0,2π)),
∥∥∥dkf
dϕk

∥∥∥
C0
per([0,2π))

)
(1 + j)k

, j ∈ N,

with λ = λ(k) a constant depending only on k but not on j and f . We obtain (C.0.6) simply

taking C(k, f) = λ(k) max

(
‖f‖L1

per([0,2π)),
∥∥∥dkf
dϕk

∥∥∥
C0
per([0,2π))

)
.

Since the constant C(k, f) is independent of j ∈ N, the coefficients sequences (f̂2j−1)j≥1 and

(f̂2j)j≥1 have a monotonically decreasing majorant in `p(N) for every p such that kp > 1, i.e.
p > 1

k .

From the previous lemmas, we may expect that, for 0 < p < 1
2 , the decay of the Fourier coefficients

(f̂l)l≥1 of a function f determines the decay of the Fourier coefficients of its derivative
df(ϕ)

dϕ
.

From (C.0.2), the decay properties of the latter are the same as the ones of the sequence (lf̂l)l≥1.

If we use Lemma C.0.4, we obtain that, if (f̂l)l≥1 ∈ `p(N) for 0 < p < 1
2 , then (lf̂l)l≥1 ∈ `r(N)

with r = p
1−p + ε, for every ε > 0. Using instead Lemma C.0.5 applied to f and then C.0.6

applied to the derivative of f , we would obtain, for the sequence (lf̂l)l≥1, a summability exponent
r = p

1−2p + ε, for every ε > 0. The following lemma shows instead that, with a slightly stronger

assumption on the decay of the sequence (f̂l)l≥1 ∈ `p(N), we can conclude that (lf̂l)l≥1 ∈ `r(N)
with r = p

1−p .

Lemma C.0.7. Let q = (qj)j≥1 be a sequence belonging to `p(N), 0 < p < 1
2 , and let the sequence

(j|qj |p)j≥1 be monotonically decreasing.

Then the sequence (jqj)j≥1 belongs to `r(N) with r = p
1−p , 0 < r < 1.

Proof. We prove the result by contradiction: we show that, if the sequence (jqj)j≥1 does not
belong to `r(N) with r = p

1−p , then the sequence q does not belong to `p(N).

If (jqj)j≥1 /∈ `r(N), then there exists J ∈ N such that

|jqj |
p

1−p ≥ C

jdj
, for all j ≥ J, (C.0.7)

where C > 0 is a constant independent of j, and (dj)j≥1 is a sequence such that dj > 0 for every
j ≥ 1 and

∑
j≥1

1
jdj

= +∞.

For every j ≥ J , we have:

|jqj |
p

1−p ≥ C

jdj
⇔ |qj |

p
1−p ≥ C

j
1

1−pdj
⇔ |qj |p ≥

C ′

jd1−p
j

, (C.0.8)
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with C ′ := C1−p. Thanks to the assumption that the sequence (j|qj |p)j≥1 is monotonically
decreasing, we can choose the sequence (dj)j≥1 to be monotonically increasing.

We now distinguish two cases.

If dj < 1 for every j ∈ N, then C′

jd1−p
j

> C′

j for every j ≥ J , and, according to (C.0.8), the sequence

(|qj |p)j≥1 diverges.

Otherwise, if there exists J ′ ∈ N such that dJ ′ ≥ 1, then, for every j ≥ J ′, dj ≥ 1, and

thus d1−p
j ≤ dj . The latter estimate combined with (C.0.8) implies that |qj |p ≥ C′

jdj
for every

j ≥ max {J, J ′}, meaning that the sequence (|qj |p)j≥1 diverges.

Proof of Lemma C.0.4

We can reformulate the statement in the following way:

Lemma C.0.8. Let q = (qj)j≥1 be a real, monotonically decreasing sequence belonging to `1(N).

Then, there exists a real constant Cq > 0 (depending on the sequence q) and an integer J ∈ N
such that

|qj | ≤ Cq
1

j
, for every j > J. (C.0.9)

Proof. We prove this result by contradiction. If the statement were not true, then, for all C > 0
and all Jn ∈ N, n ∈ N, we could find an index jn > Jn such that jn|qjn | > C. Let us choose
C = 1.

We construct, by induction, a subsequence of q. For n = 1, let J1 := 1; then there exists j1 > J1

such that j1|qj1 | > 1. For n = 2, we can select J2 := 2j1, and by assumption we can find j2 > J2

such that j2|qj2 | > 1. In general, for any n ∈ N, given jn−1 such that jn−1|qjn−1 | > 1, we define
Jn := 2jn−1, and we can find jn > Jn for which jn|qjn | > 1. In this way, we have constructed a
subsequence (qjn)n≥1 of (qj)j≥1.

Being the sequence (qj)j≥1 monotonically decreasing, it holds that

∞∑
j=1

|qj | ≥
∞∑
n=1

(jn − jn−1)
1

jn
,

with the convention that j0 = 0. Since we have jn > Jn = 2jn−1 for every n ∈ N, then

∞∑
j=1

|qj | ≥
∞∑
n=1

(
1− jn−1

jn

)
>
∞∑
n=1

(
1− 1

2

)
=
∞∑
n=1

1

2
= +∞,

which contradicts the hypothesis that the sequence belongs to `1(N).

Lemma C.0.4 is an immediate consequence of the above result.

110



D. Analyticity of Banach space-valued functions
of several complex variables

Here we briefly present how the concept of holomorphy of a function f : C→ C extends to maps
f : CN → B, where N ∈ N and B is a Banach space over C.

We denote by Bρ(z0) the polydisc of polyradius ρ ∈ RN+ centered in z0 ∈ CN , i.e. Bρ(z0) :={
z ∈ CN : |zj − z0

j | < ρj for every j = 1, . . . , N
}

, and by {ej}Nj=1 the canonical basis in CN .

Definition D.0.1. [Her06, III.1.2] Consider a map f : O ⊆ CN → B, where O is an open set.

• f is analytic in O if, for every z0 ∈ O, there exists a polydisc Bρ(z0) ⊆ O such that, for
every z ∈ Bρ(z0), f(z) can be written as a convergent power series

f(z) =
∑
k∈NN0

ck(z1 − z0
1)k1 . . . (zN − z0

N )kN , (D.0.1)

with coefficients ck in B.

• f is holomorphic in O if it is holomorphic in each variable separately, that is, if at each

point z ∈ O, the first-order partial derivatives ∂zjf := lim|t|→0
f(z+tej)−f(z)

t , t ∈ C \ {0},
j = 1, . . . , N , exist;

• f is scalarly analytic or holomorphic if, for every element in the dual of B, that is for every
b∗ ∈ B∗, the function b∗ ◦ f : O → C is analytic or holomorphic.

Theorem D.0.2. [Her06, Thm 1 in III.1.2] For maps f : CN → B where B is a Banach space,
analyticity, holomorphy and scalar analyticity are equivalent properties.

Proof. See [Her06, III.1.2], in particular proofs to Prop. 2c and Thm. 1.

The previous theorem tells us that, for functions of several complex variables, separate holomor-
phy and holomorphy are equivalent. This result, known as Hartog’s theorem (see e.g. Thm. 1.2.5
in [Kra82] for B = C) is peculiar to CN and it does not hold in RN . In RN , indeed, there are
functions that are C∞ in each variable separately but are not C∞ when considered as maps on
RN . A typical example is f : R2 → R defined as f(x) = x1x2

x2
1+x2

2
for x 6= (0, 0) and f(0, 0) = 0.

As for functions of one complex variable, we have the two following results:

Theorem D.0.3. If f : Bρ(z0) ⊆ CN → B is holomorphic, then it has partial derivatives of all

orders ∂
|k|
z f , k = (k1, k2, . . . , kN ) ∈ NN , which are holomorphic in Bρ(z0).

The coefficients ck in (D.0.1) are given by

ck =
1

k1! . . . kN !
∂
|k|
z f(z0),

for every k ∈ NN0 .
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Proof. See Corollaries 2 and 3a in [Her06, III.1.2].

Theorem D.0.4 (Cauchy’s integral formula). If f : O ⊆ CN → B is holomorphic, then the
formula

∂
|k|
z f(z) =

k1! . . . kN !

(2πi)N

∫
|ζN−z0

N |=ρN
. . .

∫
|ζ1−z0

1 |=ρ1

f(ζ)

(ζ1 − z1)k1+1 . . . (ζN − zN )kN+1
dζ1 . . . dζN ,

(D.0.2)

holds for every z ∈ Bρ(z0) ⊆ O and every k ∈ NN0 (with the convention that 0! = 1).

Proof. See Corollary 3b in [Her06, III.1.2].
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E. Proof of Lemma 3.1.4 (regularity of the
domain mapping for the particle in free
space)

Fulfillment of Assumption 3.1.2(i)

We have to prove that Φ(y) is a Ck-orientation preserving diffeomorphism in each subdomain,
with k the smoothness of the stochastic radius r and a J- and y-independent norm bound.

In the regions where χ = 0, the mapping Φ given by (3.1.2) corresponds to the identity, and thus
it is bijective. Where not zero, χ is strictly monotonic in each subdomain, and thus Φ is bijective
everywhere in KR.

We present here the computations for the smoothness of Φ in D̂2, the argument for the smoothness
in KR ∩ D̂1 being analogous. More precisely, we consider the mapping in the region D̂2,χ :={
x̂ ∈ D̂2 :

r−0
4 ≤ ‖x̂‖ ≤ r0(ϕ̂x̂)

}
. Indeed, Assumption 3.1.2(i) is trivially satisfied for ‖x̂‖ ≤ r−0

4 ,

and the smoothness assumption on χ guarantees that the mapping is smooth across the circle

of radius
r−0
4 . For the continuity of the inverse and its derivatives across the circle of radius

r−0
4 ,

let us consider an annulus together with its boundary, enclosing the circle of radius
r−0
4 in its

interior. Since the map Φ and, as we will show, its derivatives, are continous in the annulus with
boundary, which is a compact subset of R2, then also Φ−1 and its derivatives are.

For the continuity of Φ and its inverse, using Assumption 2.1.3, we have the J- and y-independent
bounds:

‖Φ(y)‖C0(D̂2,χ) ≤ max
x̂∈D̂2,χ

‖x̂‖+ max
x̂∈D̂2,χ

‖χ(x̂)‖ max
x̂∈D̂2,χ

|r(y, ϕ̂x̂)− r0(ϕ̂x̂)| = r+
0 +

r−0
2
,

‖Φ−1(y)‖C0(D2,χ(y)) = max
x∈D2,χ(y)

‖Φ−1(y,x)‖ = max
x̂∈D̂2,χ

‖Φ−1 (y,Φ(y, x̂))‖ = max
x̂∈D̂2,χ

‖x̂‖ = r+
0 ,

where we have denoted D2,χ(y) := Φ(y)(D̂2,χ) and r+
0 := supϕ∈[0,2π) r0(ϕ).

For ease of computations of the derivatives, since the mapping from cartesian to polar coordinates
is a C∞-diffeomorphism away from the origin, we work with the mapping Φ in polar coordinates.
Namely, we consider:

Φ̃(y)(ρ̂, ϕ̂) =

(
ρ
ϕ

)
=

(
ρ̂+ χ̃(ρ̂, ϕ̂)(r(y, ϕ̂)− r0(ϕ̂))

ϕ̂

)
, for

r−0
4
≤ ρ̂ ≤ r0(ϕ̂) and ϕ̂ ∈ [0, 2π),

(E.0.1)

where, denoting by Φp the mapping from cartesian to polar coordinates, (ρ̂, ϕ̂) = Φp(x̂), (ρ, ϕ) =
Φp(x) and χ̃ := χ ◦ Φ−1

p .
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The Jacobian matrices of Φ̃ and Φ̃−1 are given by:

DΦ̃(y) =

1 +
∂χ̃

∂ρ̂
(r(y, ϕ̂)− r0(ϕ̂))

∂χ̃

∂ϕ̂
(r(y, ϕ̂)− r0(ϕ̂)) + χ̃

∂

∂ϕ̂
(r(y, ϕ̂)− r0(ϕ̂))

0 1

 ,

DΦ̃−1(y) = (DΦ̃)−1 ◦ Φ̃−1(y)

=
1

detDΦ̃(y)

1 −∂χ̃
∂ϕ̂

(r(y, ϕ̂)− r0(ϕ̂))− χ̃ ∂

∂ϕ̂
(r(y, ϕ̂)− r0(ϕ̂))

0 1 +
∂χ̃

∂ρ̂
(r(y, ϕ̂)− r0(ϕ̂)).

 . (E.0.2)

Exploiting Assumption 3.1.3 on χ and Assumption 2.1.3 on the coefficients on the radius expan-
sion, we can bound each entry of DΦ̃(y):∣∣∣∣1 +

∂χ̃

∂ρ̂
(r(y, ϕ̂)− r0(ϕ̂))

∣∣∣∣ ≤ 1 +

∣∣∣∣∂χ̃∂ρ̂
∣∣∣∣ r−02 ≤ 1 +

√
2‖χ‖C1(D̂2,χ)

r−0
2
≤ 2,∣∣∣∣∂χ̃∂ϕ̂(r(y, ϕ̂)− r0(ϕ̂)) + χ̃

∂

∂ϕ̂
(r(y, ϕ̂)− r0(ϕ̂))

∣∣∣∣ ≤ ∣∣∣∣∂χ̃∂ϕ̂
∣∣∣∣ |r(y, ϕ̂)− r0(ϕ̂)|+ |χ|

∞∑
j=1

j (|cj |+ |sj |)

≤ ‖χ‖C1(D̂2,χ)

(√
2r+

0

r−0
2

+ Cr

)
,

with Cr :=
∑∞

j=1 j (|cj |+ |sj |) <∞.

The above estimates show that we have a J- and y-independent bound on the C1-norm of Φ.

It is clear from the expression of DΦ̃−1 that, if we provide also a J- and y-independent (positive)
lower bound on detDΦ̃(y), then we also have a J- and y-independent upper bound on the C1-
norm of Φ−1. It holds:

detDΦ̃(y) ≥ 1− |r(y, ϕ̂)− r0(ϕ̂)|
∣∣∣∣∂χ̃∂ρ̂

∣∣∣∣ ≥ 1− r−0
2

√
2‖χ‖C1(D̂2,χ) ≥ 1− r−0

2

√
2Cχ > 0, (E.0.3)

where we have used the bound on ‖χ‖C1(D̂2,χ) provided by Assumption 3.1.3.

For the higher-order derivatives of Φ, it is clear from (3.1.2) that this map is as many times
differentiable as χ(·), r(y, ·) and r0(·) are. The mollifier χ and the nominal radius r0 are assumed
to be smooth and they do not depend on J ∈ N and on y ∈ PJ . Thus, the J- and y-uniform
bound on the C0(D̂2,χ)-norm of the derivatives is ensured by the J- and y-uniform bound on
‖r(y, ·)‖Ckper([0,2π)), with k the highest differentiability order of the radius.

Concerning the higher-order derivatives of Φ−1, they are obtained from chain rule on the entries
of DΦ−1 = (DΦ)−1◦Φ−1. More precisely, a derivative of order m is given by the sum and product
of powers of entries of (DΦ(y))−1 with the product of derivatives of Φ(y) up to the mth order.
Since we have already stated the J- and y- uniform upper bounds on the norms of the derivatives
of Φ(y) and of the entries of (DΦ(y))−1, then we can conclude that Φ is a Ck-diffeomorphism,
with k the smoothness of the radius r(y, ·) and J- and y-independent norm bounds.

Fulfillment of Assumption 3.1.2(ii)

It is clear from (3.1.2) that this assumption is satisfied.

Fulfillment of Assumption 3.1.2(iii)

Also in this case, we restrict our computations to the domain D̂2,χ, being the case trivial for

‖x̂‖ ≤ r−0
4 and analogous for ‖x̂‖ ≥ r0(ϕ̂x̂).
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Again, it is convenient to work in polar coordinates. We use the notation σ̃1 and σ̃2 for minimum
and maximum singular values of DΦ̃, respectively.

It holds that σ̃2(y) = ‖DΦ̃(y)‖2 ≤ ‖DΦ̃(y)‖F , where ‖·‖F denotes the Frobenius norm. Since
from the previous computations we have a J- and y-uniform upper bound on the C0(D̂2,χ)-norm
of each entry of DΦ̃, then there exists a J- and y-uniform upper bound on the C0(D̂2,χ)-norm of
σ̃2, too.

Furthermore,

σ̃1(y) =
det(DΦ̃>(y)DΦ̃(y))

σ̃2(y)
=

(
detDΦ̃(y)

)2

σ̃2(y)
.

Coupling the J- and y-uniform upper bound on σ̃2 with the J- and y-uniform lower bound (E.0.3)
on detDΦ̃(y), we obtain a J- and y-uniform positive lower bound on the C0(D̂2,χ)-norm of σ̃1.

Finally, since the mapping from cartesian to polar coordinates is a C∞-diffeomorphism away from
the origin, we can state that there exist J- and y-uniform, upper and lower, positive bounds on
the C0(D̂2,χ)-norm of the singular values of DΦ and DΦ−1.
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Maxwell solutions in 3-D open waveguides. Commun. Comput. Phys, 11(2):629–
646, 2012.

[Kra82] Steven George Krantz. Function theory of several complex variables. Wiley New
York, 1982.

[KSS12] Frances Y Kuo, Christoph Schwab, and Ian H Sloan. Quasi-Monte Carlo finite
element methods for a class of elliptic partial differential equations with random
coefficients. SIAM Journal on Numerical Analysis, 50(6):3351–3374, 2012.

[Lax02] Peter D Lax. Functional Analysis (Pure and Applied Mathematics: A Wiley-
Interscience Series of Texts, Monographs and Tracts). New York: Wiley-
Interscience, 2002.

[LMWZ10] Jingzhi Li, Jens Markus Melenk, Barbara Wohlmuth, and Jun Zou. Optimal a priori
estimates for higher order finite elements for elliptic interface problems. Applied
numerical mathematics, 60(1):19–37, 2010.
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