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Abstract
Virtual navigation through urban environments and building interiors have
gained great popularity in the last decade. Initially maps were served in
topological representation, providing vital information while leaving out un-
necessary details. They have since greatly evolved from panoramic images to
full 3D representations of the environment.
In this thesis, we propose a suite of algorithms to create such maps. Starting
with sparse representation of the 3D environment and creating compelling 3D
representation of buildings. Finally we create topological maps and virtual
tours through building interiors.

Estimating the camera motion between two intrinsically calibrated cameras,
requires a minimal of 5-point correspondences. Given additional scene infor-
mation, such as the gravity direction and a dominant scene plane (the ground
plane for instance), reduces the minimal number of required correspondences.
For a known gravity direction, we proposed a minimal 3-point algorithm.
This algorithm relies on a known common direction, which is obtained either
through IMU measurements or vanishing points. If in addition a dominant
plane of the scene is known, such as the ground plane, ceiling or a wall, the
minimal number of correspondences required, can further be reduced to 2.5-
or 2-points.

Many of today’s cameras use a CMOS sensor to capture light and eventually
to form an image. The sensor has a peculiarity of sequentially exposing each
row/column with light, also known as a rolling shutter. For moving cameras
this leads to distortion artefacts. We exploit this time delay in the image for-
mation process to estimate the position and velocity of the camera from a
single image, which results in a 5-point absolute pose algorithm.
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Abstract

Applying dense stereo to such imagery, leads to geometrically wrong recon-
structions. We propose a novel stereo algorithm that models the temporal
delay in the image formation process. The obtained results are geometrically
consistent and provide high fidelity to the ground truth.

Indoor reconstructions are known to be challenging. The lack of light often
leads to low signal to noise ratio in the image, narrow corridors provide poor
visual connectivity between images, which makes the 3D reconstruction pro-
cess brittle. To overcome these challenges, we propose to build virtual tours
from omnidirectional imagery. Such virtual tours provide the user with a great
immersive experience, without the need to build a full 3D model.
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Zusammenfassung
Virtuelle Navigation durch städtische Umgebungen und Innenräumen haben
in über die letzten Jahre an grosser Bedeutung gewonnen. Anfangs wurden
Karten in topologischer Form dargestellt um wichtige Informationen her-
vorzuheben, während unnötige Details ausgelassen wurden. Seitdem haben
sich Karten stark weiter entwickelt und reichen von Panorama-Bilder bis hin
zur 3D Darstellung der Umgebung.

In dieser Arbeit schlagen wir eine Reihe von Algorithmen vor, um solche
Karten zu erstellen. Wir beginnen mit der spärlichen Darstellung der 3D-
Umgebung und schaffen dann detaillierte 3D Repräsentationen von Gebäuden.
Schliesslich schlagen wir Algorithmen vor um topologische Karten und virtuelle
Touren durch Innenräumen zu erstellen.

Die Schätzung der Kamerabewegung zwischen zwei kalibrierten Kameras,
benötigt ein Minimum an 5-Punktkorrespondenzen. Mit jeder zusätzlichen
Szeneinformation, wie beispielsweise der Schwerkraftrichtung oder einer
dominanten Szenen Ebene, kann sich die Anzahl der erforderlichen Punk-
tkorrespondenzen reduzieren. Dazu haben wir einen minimalen 3-Punkt-
Algorithmus vorgeschlagen. Dieser Algorithmus beruht auf einer bekannten
gemeinsamen Richtung, die entweder durch IMU Messungen oder Flucht-
punkte gewonnen werden kann. Wenn zusätzlich eine dominante Ebene der
Szene bekannt ist, wie beispielsweise die Grundebene, Decke oder Wand,
kann die Anzahl von Korrespondenzen auf 2,5- oder 2-Punkten reduziert wer-
den.

Viele Kameras die heute verwendet werden, beruhen auf einem CMOS-Sensor.
Der Sensor hat die Besonderheit, jede Zeile oder Spalte sequenziell zu be-
lichten, was in der Literatur auch als ”Rolling-Shutter” bekannt ist. Bewegt
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Zusammenfassung

sich die Kamera, führt diese zeitversetzte Belichtung der einzelnen Zeilen
oder Spalten zu Verzerrungen im Bild. Wir nutzen diese Zeitverzögerung im
Bilderzeugungsprozess, um die Position und die Geschwindigkeit der Kam-
era zu schätzen. Die Formulierung resultiert in einem 5-Punkt absolute Pose
Algorithmus.

Wendet man auf solchen Rolling-Shutter Bildern Standard Stereo Algorithmen
an, entstehen dabei Rekonstruktionen die geometrisch falsch und inkonsistent
sind. Wir schlagen deshalb einen neuen Stereo-Algorithmus vor, welcher die
zeitlichen Verzögerung im Bilderzeugungsprozess modelliert. Die erzielten
Ergebnisse sind geometrisch konsistent und bieten eine hohe Wiedergabetreue
zur Ground Truth.

Innen Rekonstruktionen sind bekanntlich schwierig zu realisieren. Der Licht-
mangel führt häufig zu geringem Signal-Rausch-Verhältnis im Bild und enge
Gänge bieten schlechte visuelle Verbindung zwischen den einzelnen Bildern.
Diese Einschränkungen erschweren den 3D-Rekonstruktionsprozess. Aus
diesen Gründen schlagen wir vor, virtuelle Touren aus omnidirektionalen
Bilder zu realisieren. Eine solche virtuelle Tour bietet dem Anwender eine
grosse eindringende Erfahrung, womit die Notwendigkeit ein vollständiges
3D-Modell zu erstellen entfällt.

x



1 Introduction

Over the last decade the sales of camera phones have over tripled with the
evolution of mobile phones. Today the majority of phones have a camera
and are also equipped with additional sensors such as Inertial Measurement
Unit (IMU). Those sensors allow to measure the gravity direction and the
acceleration and orientation of the phone. Using these additional sensor data
for camera pose estimation, leads to computationally more efficient algorithms
in terms of accuracy and speed.
In addition the majority of todays phones use a CMOS image sensor, which
typically have an electronic rolling shutter. Meaning that each image row
is exposed sequentially leading to a temporal delay in the image formation
process. For a moving camera this delay can lead to severe undesired artefacts
in 3D modelling, leading to complete failure of the 3D reconstruction or even
worth to geometrically inconsistent models.
We propose a suite of rolling shutter aware algorithms for camera pose esti-
mation and stereo computation.

1.1 Outline of the Thesis

In chapter 2 we introduce the fundamental camera model and algorithms used
in this thesis. We discuss the pinhole camera model and the different camera
shutter types e.g., the global shutter and the rolling shutter. Furthermore we
give an overview of the full 3D reconstruction pipeline from camera pose
estimation to dense stereo.

In chapter 3, we explore the different minimal solutions for egomotion esti-
mation the relative pose between two cameras based on a homography for-
mulation with a known gravity directions. These solutions depend on the

1



1 Introduction

prior knowledge about the reference plane used by the homography. We then
demonstrate that the number of matched points can vary from two to three
and that a direct closed-form solution or a Gröbner basis based solution can
be derived according to this plane. Many experimental results on synthetic
and real sequences in indoor and outdoor environments show the efficiency
and robustness of our approach compared to standard methods.

In chapter 4 we look at distortions that are present in images taken from a mov-
ing rolling shutter camera. These artefacts degrade the accuracy of absolute
camera pose estimation. To alleviate this problem, we introduce an additional
linear velocity in the camera projection matrix to approximate the motion of
the rolling shutter camera. In particular, we derive a minimal solution using
the Gröbner Basis that solves for the absolute pose as well as the motion of
a rolling shutter camera. We show that the minimal problem requires 5-point
correspondences and gives up to 8 real solutions. We also show that our for-
mulation can be extended to use more than 5-point correspondences. We use
RANSAC to robustly obtain all the inliers. In the final step, we relax the linear
velocity assumption and do a non-linear refinement on the full motion, i.e.,
linear and angular velocities, and pose of the rolling shutter camera with all
the inliers. We verify the feasibility and accuracy of our algorithm with both
simulated and real-world datasets.

Chapter 5 analysis the effect distorted rolling shutter images have on stereo
reconstruction. We analyse the case of significant camera motion, e.g. where
a bypassing streetlevel capture vehicle uses a rolling shutter camera in a 3D
reconstruction framework. The error introduced by the rolling shutter is depth
dependent and cannot be compensated based on camera motion/rotation alone,
invalidating also rectification for stereo camera systems. On top, significant
lens distortion as often present in wide angle cameras intertwines with rolling
shutter effects as it changes the time at which a certain 3D point is seen. We
show that naive 3D reconstructions (assuming global shutter) will deliver
biased geometry already for very mild assumptions on vehicle speed and reso-
lution. We then develop rolling shutter dense multiview stereo algorithms that
solve for time of exposure and depth at the same time, even in the presence of
lens distortion and perform an evaluation on ground truth laser scan models

2



1.1 Outline of the Thesis

as well as on real street-level data.

Chapter 6 address the problem of sparse to dense 3D reconstruction from
rolling shutter images. It is well known that the rolling shutter effect in im-
ages captured with a moving rolling shutter camera causes inaccuracies to
3D reconstructions. The problem is further aggravated with weak visual con-
nectivity from wide baseline images captured with a fast moving camera. In
this chapter, we propose and implement a pipeline for sparse to dense 3D
reconstruction with wide baseline images captured from a fast moving rolling
shutter camera. Specifically, we propose a cost function for bundle adjust-
ment that models the rolling shutter effect, incorporates GPS/INS readings,
and enforces pairwise smoothness between neighboring poses. We optimize
over the 3D structures, camera poses and velocities. We also introduce a novel
interpolation scheme for the rolling shutter plane sweep stereo algorithm that
allows us to achieve a 7× speed up in the depth map computations for dense
reconstruction without losing accuracy. We evaluate our proposed pipeline
over a 2.6km image sequence captured with a rolling shutter camera mounted
on a moving car.

In chapter 7 we present a semi-automatic method to generate interactive vir-
tual tours from omnidirectional video. Similar to Google Streetview, but
focused on indoor environments. The system allows a user to virtually walk
through buildings on predefined paths. The user can freely look around and
walk into every direction, provided there exists a pre-recorded location, e.g.
a bifurcations. The method automatically computes the initial tour topology
from the omnidirectional video data using structure from motion. A place
recognition step afterwards detects junctions and loop closures. A final inter-
active refinement step allows to align the initial topology to a floor plan with
a few mouse-clicks. The refinement step incorporates both, automatic con-
straints obtained from the place recognition detection and manual alignment
constraints. The presented system combines a high degree of automation with
a final user interaction, to create an immersive virtual enviroment.

In chapter 8, we describe a visual localization approach for mobile robots.
Robot localization is performed as location recognition. The approach uses

3



1 Introduction

global visual features (e.g. GIST) for image similarity and a geometric veri-
fication step using vanishing points. Location recognition is an image search
to find the most similar image in the database. To deal with partial occlusions,
which lower image similarity and lead to ambiguity, vanishing points are used
to ensure that a matching database image was taken from the same viewpoint
as the query image from the robot. Our approach will assign a query image
to a location learned from a training dataset, to an ”Unknown” location or
in case of too much uncertainty the algorithm would refrain from a decision.
The algorithm was evaluated under the ImageCLEF 2010 RobotVision com-
petition.

Finally chapter 9 recaps the work leading to this dissertation. In addition, we
review the contributions and discuss future prospects of indoor and outdoor
modelling.

The thesis is based on our findings [89–94], which have been published at
various computer vision venues.
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2 Foundation

Contents
2.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . 5
2.2 Camera Shutter Model . . . . . . . . . . . . . . . . . 7
2.3 Camera Motion Model . . . . . . . . . . . . . . . . . 9
2.4 Structure-From-Motion . . . . . . . . . . . . . . . . 10
2.5 Dense Reconstruction . . . . . . . . . . . . . . . . . 11

In this chapter, we discuss the different existing camera models which are
used throughout this thesis. We will also discuss the different shutter types,
namely the global and rolling shutter which is used in the camera to expose
the image sensor to light. We consider two different camera models which
are the Global Shutter Camera Model and the Rolling Shutter Camera Model.
In the former case all pixels are exposed at the same time, while in the later
case scanlines are exposed sequentially, hence rolling shutter. While both
are closely related, the difference becomes apparent when the camera is in
motion.

2.1 Pinhole Camera Model

The pinhole camera is a well established camera model in machine vision
applications. It represents the projection of a 3D point onto an image sensor.
The required transformation can be represented by a 3 × 3 matrix, usually

5



2 Foundation

denoted as K:

K =

fx s cx
0 fy cy
0 0 1

 . (2.1)

The camera’s focal length is denoted by fx and fy. If the aspect ratio of the
sensor’s pixel is squared, then the aspect ratio is 1 and therefore fx = fy. If
fx/fy is not equal to one, this means that the sensor pixel is not squared. The
skew, represented as s, allows for non rectangular pixels. In general pixels are
rectangular and therefore s = 0.

So far we have considered a camera, where the lens distortion artefacts have
been removed from the image. To be able to radially undistorted an image,
the lens distortion parameters need to be estimated.

Different camera lens models exist, the choice of the lens distortion parametriza-
tion depends on the physical lens. In our work we make use of lenses with
little distortion, which satisfy the distortion model proposed by Brown [17].
The model consists of 3 distortion parameters and 2 tangential parameters.
Let X = [X,Y, Z]> be an arbitrary 3D point. The projection of the 3D point
X into the camera yields the normalized image coordinates xn given as:

xn =

[
X/Z
Y/Z

]
(2.2)

Applying the distortion parameters to the normalized image coordinates
gives the distorted image point:

xd = (1 + k1r
2 + k2r

4 + k3r
6)xn + dx, (2.3)

dx =

(
2k4xy + k5(r2 + 2x2)
k4(r2 + 2y2) + 2k5xy

)
. (2.4)

The coefficients [k1, k2, k3] denote the radial distortion coefficient, [k4, k5]

the tangential distortion parameters and r2 =
√
x2 + y2.

Given the distortion parameters, we can computed an inverse lookup table,
to undistort each pixel in the image.

6



2.2 Camera Shutter Model

2.2 Camera Shutter Model
The time a pixel is exposed to light is controlled by the shutter of the cam-
era. The shutter, when open allows light to fall onto the image sensor where
photons get integrated. When closed, the shutter barres photons from falling
onto the sensor and therefore no photons get integrated. Assuming a moving
camera or a moving/changing scene the way the shutter operates can have
sever effects on the image formation. The following two subsections discuss
the global- and rolling-shutter model.

2.2.1 Global Shutter
A global shutter allows to expose all pixels simultaneously to light. Once
the desired exposure time has expired all pixels are simultaneously shielded
from the light. This functionality is provided by the majority of CCD sensors.
The ability of simultaneously controlling all pixels allows to capture a true
snapshot of the scene. An exposure pattern of the CCD sensor is given in
Fig. 2.1.

Figure 2.1: Exposure pattern of a global shutter camera. From left to right:
First the shutter is closed, then opens up fully to expose all pixels
simultaneously. Then the shutter closes again.

2.2.2 Rolling Shutter
Unfortunately the majority of todays sensors are CMOS sensors which are
inherently rolling shutter sensors. Sometimes the sensors are combined with

7



2 Foundation

mechanical shutters, which can be used for much lower time delays, which in
return reduces the shutter scan time and with it the distortion artefacts. The
shutter slit slides over the sensor exposing each scanline sequentially, which
can lead to artefacts. A sample distorted image is given in Fig. 2.2. In this
example the shutter moved from bottom to top while the car was moving from
left to right, which makes the scene appear slanted.

To explain why the scene is distorted it is easier to assume a static scene with
a moving camera. While the shutter scans over the sensor the scanlines (image
rows or columns) are exposed simultaneously at a certain camera position.
Due to the moving camera and the sequential exposure of the sensors, each
scanline is exposed at a different spatial location, leading to the final distorted
image. When the exposure time is far smaller than the scan time of the sensor,
this results in a slit sliding over the sensor and letting light fall onto the sensor,
this exposure pattern is illustrated in Fig. 2.2.

Figure 2.2: Exposure pattern of a rolling shutter camera. First shutter is closed,
then a slit slides over the sensor, exposing each image row sequen-
tially. In this example the mechanical shutter moves from bottom
to top. Image courtesy of Jacques-Henri Lartigue.

The sequential exposure can lead to different, almost artistic, images which
can break standard 3D vision algorithms. Fig. 2.3(a) shows an image of a
rotating propeller captured by a static rolling shutter camera. Fig. 2.3(b),
shows a scene captured from a moving rolling shutter camera, resulting in
slanted vertical structures.

8



2.3 Camera Motion Model

(a) (b)

Figure 2.3: Images captured with a rolling shutter camera. (a) Rotating pro-
peller captured with a static rolling shutter camera (courtesy of
Soren Ragsdale). (b) Moving rolling shutter camera, capturing a
static scene. Due to the camera motion, vertical structures appear
slanted in the image.

2.3 Camera Motion Model

For global shutter cameras the pose of the camera is described by the camera
orientation ω ∈ SO3 and a camera position vector C ∈ R3. A arbitrary
3D point Xw ∈ R3 is then transformed into the camera coordinate frame
Xc ∈ R3 using:

Xc = exp (ω)(Xw −C). (2.5)

For the more general case of a moving rolling shutter camera a different
formulation is required, which models the camera motion during the scan
time of the sensor. As proposed in [37] different time continuous camera
pose parametrization have been proposed, which lead to the more general
formulation:

Xc,τ = exp (ω(τ))(Xw −C(τ)). (2.6)

The time dependent orientation ω(τ) and pose C(τ) can be chosen arbi-

9



2 Foundation

trarily, depending on the capturing scenario. For a car mounted camera a
different motion model would be used than for a hand-held camera. In the
former case the dominate motion is the translation motion, while for the latter
the dominant motion is the rotation, coming from hand jittering. We further
discuss different motion models in chapter 4 and chapter 5.

2.4 Structure-From-Motion
Given a set of images, the task of structure-from-motion is to compute the
camera extrinsic parameters (sometime also the intrinsics are estimated at
the same time) and simultaneously estimate a sparse representation of the
scene. A classical structure-from-motion pipeline is drawn in Fig. 2.4. In the
following we give an overview of the full reconstruction process.

Feature Matching Build Tracks

Pose EstimationBundle AdjustmentStereo

Keypoint Extraction

Figure 2.4: Structure-from-Motion pipeline overview.

In a first stage after images are captured, keypoints are extracted from the
images. Throughout this work we used SIFT [68] as features. In the next
stage matching image pairs are found by matching SIFT feature descriptors
followed by a geometric verification. Keypoints which matched over multiple
images, form 2D tracks. A track is represented by a 3D point which is visible
over multiple images. To bootstrap the reconstruction process, normally two
or three views are used to estimate the initial relative pose between the camera,
using the essential or fundamental matrix [44]. Then additional views are
added to the seed by either expanding the existing reconstruction using relative
pose algorithms or by estimating the absolute pose of the image using [74].

10



2.5 Dense Reconstruction

Either of the two steps is typically followed by a non-linear refinement of the
model, called bundle adjustment. Given a set of camera parameters and a set
of tracks, bundle adjustment optimizes the following non-linear least squares
error: ∑

i

∑
j

||PiXj − xij ||2 (2.7)

where Pi denotes the ith camera projection matrix, Xj the 3D point and xij
the keypoint detected in image i, representing the 3D point j.

Recently many SfM algorithms also use unordered image sets, captured at
different time instances [1,28]. The main challenges of using unordered image
sets is to find the corresponding matching images. Recent development of fast
and high quality feature detectors and descriptors have enabled reconstructions
from a large set of unordered images, consisting of over 100M images [46].

2.5 Dense Reconstruction
Many different information cues exist to compute the 3D geometry from a
set of images. The most widely known are: depth form defocus, shape from
shading, voxel carving and stereo correspondence. In terms of robustness
stereo based approaches have been shown to be the most successful. Different
types of algorithm exist, such as Patch-Match [11, 35], PMVS [33], Plane
Sweep [19]. Those algorithms are typically used in a multi-view configuration,
meaning that more than two views are used to estimate the scene depth. This
makes the depth estimation more robust, especially when dealing with partial
occlusions. All three approaches rely on the same input, which is a set of fully
calibrated images. Meaning the camera’s intrinsics and extrinsic parameters
are known.

In this section we provide an overview of the widely used plane-sweep
stereo algorithm, which will also form the basis to chapter 5. The algorithm
gained large popularity due to it’s simple structure which can be implemented
efficient on the graphics processing unit (GPU) [19, 36, 115].

The algorithm sweeps through a family of parallel planes, by warping an
image from a target view into a reference view, using a plane induced ho-
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2 Foundation

mography. Other more GPU friendly approaches exist [115], which warp
the captured image onto a common plane in 3D. Then a photo-consistency
value is computed for each plane. For each pixel the depth value of the plane
is chosen, which provides the best photo-consistency cost (winner-takes-all).
Most algorithm assume the surface is viewed fronto-parallel by the reference
view and therefore sweep in a fronto-parallel direction. It has been shown in
[36] that when the plane orientation does not align with the scene structure,
the matching windows do not perfectly align and therefore provide a lower
matching score, than when the plane aligns with the scene structure. Gallup
et al. propose in [36] to use multiple sweeping direction, which align with
the scene structure. In practise this provides better photo-consistency when
the 3D point is hypothesized at the right depth. The algorithm provides one
depthmap for each considered direction, the final depthmap is then obtained by
fusing the different depthmaps. An illustration of the plane-sweep algorithm
is given in Fig 2.5.

Plane Family

Reference Camera Target Camera

Correlation

Figure 2.5: Plane-sweep stereo, pixel transfer over a hypothesised plane, from
target camera into the reference camera.
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Nowadays, point-based methods to estimate the motion of a camera are
well known. If the camera is uncalibrated, eight or seven points are needed to
estimate the fundamental matrix between two consecutive views [44]. When
the intrinsic parameters of the camera are known, five points are then enough
to estimate the essential matrix [78]. To decrease the sensitivity of these meth-
ods, a robust framework such as Random Sample Consensus (RANSAC) is
necessary. Thus, reducing the number of needed matched points between
views is important in terms of computation efficiency and of robustness im-
provement. For example, as shown in Figure 3.1, for a probability of success
of 0.99 and a rate of outliers equal to 0.5, the number of RANSAC trials is
divided by eight, if five points are used instead of eight. In the case of a robust
estimation based on eight points, 1177 trials are necessary whereas 145 are
sufficient if only five points are required. Thus, finding a minimal solution for
egomotion estimation is important for robust real time applications.
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3 Homography Based Camera Pose Estimation

However, reducing the number of necessary points is only possible if some
hypotheses or supplementary data are available. For example, if we know
a common direction between the two views, three points can then be used
to estimate the full essential matrix [29]. Extreme situations appear when a
planar non-holonomic motion is supposed [95] or when the metric velocity of
a single camera can be estimated knowing its attitude and its acceleration [52].
In these cases, only one point allows to estimate the motion. These initial hy-
potheses or additional knowledges can then deal with the pose of the camera
or with the 3D structure of the scene. For example, if the 3D points belong to
a single plane, the egomotion estimation is reduced to a homography compu-
tation between two views, that can be calculated using only four points [44].
In many scenes and many applications, the scene plane hypothesis seems suit-
able. Indeed, in many scenarios such as indoor or street corridors and more
generally in man made environments, this assumption holds.

Thus, in this chapter we investigate the cases where at least one plane is
present in the scene and where we have some partial knowledge about the
pose of the camera. We suppose that we are able to extract a common direc-
tion between consecutive views and we can have some information about the
normal of the considered plane. Obtaining a common direction can be easily
performed thanks to an IMU (Inertial Measurement Unit) associated with the
camera, which is often the case in mobile devices or UAV (Unmanned Aerial
Vehicle). The coupling with a camera is then very easy and can then be used
for different computer vision tasks [20,24,65,113,114]. Without any external
sensor, this common direction can also be directly extracted from the images
thanks to vanishing points [14] or horizon detection [81].

In this work, assuming the roll and pitch angles of the camera as known, we
propose to find a minimal closed-form solution for homography estimation in
man made environments. We will derive different solutions depending on the
prior knowledge about the 3D scene:

• If the extracted points lie on the ground plane, we will see that only
two points are required to estimate the camera egomotion. In this case,
the solution is unique and contrary to the other algorithms for essential
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Figure 3.1: Comparison of the RANSAC iteration number for 99% of success
probability

matrix estimation, there is no supplementary verification for finding the
good solutions among the different possibilities.

• If the considered points are on a vertical plane, we propose an efficient
2.5pt formulation in order to retrieve the motion of the camera and
the normal of the plane related to the pose of the camera. This solution
allows for an early reject of a pose hypothesis by including a consistency
check on the three point correspondences.

• If the plane orientation is completely unknown, we develop a minimal
solution using only three points instead of four points needed in the
classical homography estimation.

All these methods will be evaluated on synthetic and real data and com-
pared with different methods proposed in the literature.
The rest of the chapter is organized as follows. In the second part, we describe
the different existing methods in the literature which deal with minimal solu-
tion for egomotion estimation. In the next section, we explain how to reduce
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3 Homography Based Camera Pose Estimation

the number of points for estimating the homography between two views and
derive the proposed solutions according to the prior knowledge. In the fourth
section, we show the behaviour of our solutions on synthetic and real data and
compare with other classical methods in a quantitative evaluation. Finally, we
will conclude by providing some extents to this work.

3.1 Related Work

When the camera is not calibrated, at least 8 or 7 points are needed to re-
cover the motion between views [44]. It’s well known, that if the camera is
calibrated, only 5 feature point correspondences are sufficient to estimate the
relative camera pose. Reducing this number of points can be very interesting
in order to reduce the computation time and to increase the robustness when
using a robust estimator such as RANSAC. The reduction of the degree of
freedom (DoF) number and consequently the number of matched points be-
tween images can be achieved by introducing some constraints on the camera
motion (planar for example) or the feature points (on the same plane) or by
using some additional information provided by other sensors such as IMU for
instance.

For example, if all the 3D points lie on a plane, a minimum of 4 points is
required to estimate the motion of the camera between two-views [44]. On
the other hand, if the camera is embedded on a mobile robot which moves on
a planar surface, only 2 points are required to recover the motion [82] and if
in addition the mobile robot has non-holonomic constraints only one point is
necessary [95]. Similarly, if the camera moves in a plane perpendicular to the
gravity, 1 point correspondence is sufficient to recover the motion as shown
by Troiani et al. [108].

The number of points needed to estimate the egomotion can be also reduced
if some information about the relative rotation between two poses are available.
This information can be given by vanishing points extraction in the images
[13] or by taking into account extra information given by an additional sensor.
Thus, Li et al. [60] show that in the case of an IMU associated to the camera,
only 4 points are sufficient to estimate the relative motion even if the extrinsic
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3.1 Related Work

calibration between the IMU and the camera is not known.
Similarly, some different algorithms have been recently proposed in order

to estimate the relative pose between two cameras by knowing a common
direction. It has been demonstrated that knowing roll and pitch angles of the
camera at each frame, only three points are needed to recover the yaw angle
and the translation of the camera motion up to scale [29, 49, 76]. In these
approaches, only the formulation of the problem is different and consequently
the way to solve it. All these works start with a simplified essential matrix
in order to derive a polynomial equation system. For example, in [49], their
parametrization leads to 12 solutions by using the Macaulay matrix method.
The correct solution has then to be found among a set of possible solutions.
The approach presented in [29] permits to obtain a 4th-order polynomial
equation and consequently leads to a more efficient solution. In [76], the
authors propose a closed-form solution to this 4th-order polynomial equation
that allows a faster computation.

For a further reduction of necessary feature points, stronger hypotheses
have to be added. If the complete rotation between the two views are known,
only 2 degrees of freedom corresponding to the translation up-to-scale has
to be estimated and consequently 2 points are sufficient to solve the prob-
lem [12, 109]. In this case, the authors compute the translation vector using
the epipolar geometry given the rotation. Thus, these approaches allow to
reduce the number of points but also imply the knowledge of the complete
rotation between two views making the pose estimation very sensitive to IMU
inaccuracy. More recently, Martinelli [72] proposes a closed-form solution
for structure from motion knowing the gravity axis of the camera in a multiple
view scheme. He shows that at least three feature points lying on a same plane
and three consecutive views are required to estimate the motion. In the same
way, the plane constraint has been used for reducing the complexity of the
bundle adjustment (BA) in a visual simultaneous localization and mapping
(SLAM) embedded on a micro-aerial vehicle (MAV) [55].

Most closely related papers to our approach are the works of [29, 76] in
which they simplify the essential matrix knowing the vertical of the cameras.
In this work, to reduce the number of points, rather than deriving the epipolar
constraint to compute the essential matrix, we propose to use the homogra-
phy constraint between two views. Thus, we suppose that a significant plane
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exists in the scene and that the gravity direction is known. Let us note that
recently, in [107] Troiani et al. have also proposed a method using 2 points on
the ground plane with the knowledge of the vertical of the camera. However,
they do not use the homography formalism and their method requires to know
the distance between the two 3D points. In our method, this hypothesis is
not necessary and we only assume that the points lie on a same plane. The
Manhattan world assumption [21] has also recently successfully been used
for multi-view stereo [31], the reconstruction of building interiors [32] and
also for scene reconstruction from a single image only [54]. Our contribution
differs from them, as we combine gravity measurements with the weak Man-
hattan world assumption. This chapter is an extension of [91, 94] where we
studied camera pose estimation based on homographies with a common verti-
cal direction and a known or at least partially known plane normal. In [91] we
proposed a homography based pose estimation algorithm that does not require
any knowledge on the plane normal. In fact the algorithm provides the plane
normal in addition to the camera pose.

3.2 Relative Pose Algorithms

Knowing the vertical direction in images will simplify the estimation of cam-
era pose and camera motion, which are fundamental methods in 3D computer
vision. It is then possible to align every camera coordinate system with the
measured vertical direction such that the z-axis of the camera is parallel to
the vertical direction and the x-y-plane of the camera is orthogonal to the
vertical direction (illustrated in Fig. 3.2). In addition, this would mean that
the x-y-plane of the camera is now parallel to the world’s ground plane and
the z-axis is parallel to vertical walls.

This alignment can just be done as a coordinate transform for motion es-
timation algorithms, but also be implemented as image warping such that
feature extraction methods benefit from it. Relative motion between two such
aligned cameras reduces to a 3-DOF motion, which consists of 1 remaining
rotation and a 2-DOF translation vector (i.e., a 3D translation vector up to
scale).

The algorithms for estimating the relative pose are derived from a homogra-
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3.2 Relative Pose Algorithms
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g
ra

v
it

y

Figure 3.2: Alignment of the camera with the gravity direction.

phy formulation, where a plane is observed in two images. The homography
is then decomposed into a relative rotation and translation between the two im-
ages. By incorporating the known vertical direction and allowing for strictly
vertical or horizontal planes, the parametrization of the pose estimation prob-
lem is greatly reduced from 5-DOF to 3-DOF. This simplification leads to a
closed-form 2pt and a 2.5pt algorithm to compute the homography. By re-
laxing the assumption of strictly vertical or horizontal structures and making
use of the known gravity direction, the homography formulation results in a
closed form solution requiring 3-points only.

In the following subsections we derive the 2pt algorithm for the known
plane normal cases (ground and vertical plane), then we provide a derivation
of the 2.5pt and 3pt algorithm for a known gravity direction with an unknown
plane orientation.

3.2.1 2pt Relative Pose for Points on the Ground
Plane

The general homographic relation for points belonging to a 3D plane and
projected in two different views is defined as follows:

qj = Hqi, (3.1)
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3 Homography Based Camera Pose Estimation

with qi = [xi, yi, wi]
> and qj = [xj , yj , wj ]

> the projective coordinates of
the points between the views i and j. H is given by:

H = R− 1

d
tn>, (3.2)

where R and t are respectively the rotation and the translation between views
i and j and where d is the distance between the camera i and the 3D plane
described by the normal n.
In our case, we assume that the camera intrinsic parameters are known and that
the points qi and qj are normalized. We also consider that the attitude of the
cameras for the both views are known and that these attitude measurements
have been used to align the camera coordinate system with the ground plane.
In this way, only the yaw angle θ between the two views remains unknown.
Similarly, since we consider that the ground plane constitutes the visible 3D
plane during the movement of the cameras, we can note that n = [0, 0, 1]>.
Consequently, equation(3.2) can be written as:

H =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

− t
d

 0
0
1

> , (3.3)

d being unknown, translation can be known only up to scale. Consequently,
the camera-plane distance d is set to 1 and absorbed by t. We then obtain:

H =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

−
 tx
ty
tz

 0
0
1

> , (3.4)

=

 cos(θ) − sin(θ) −tx
sin(θ) cos(θ) −ty

0 0 1− tz

 . (3.5)

In a general manner, this homography can be parametrized as

H =

 h1 −h2 h3

h2 h1 h4

0 0 h5

 . (3.6)
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3.2 Relative Pose Algorithms

The problem consists of solving for the five entries of the homography H. We
consider the following relation:

qj ×Hqi = 0, (3.7)

where × denotes the cross product. By rewriting the equation, we obtain: xj
yj
wj

×
 h1 −h2 h3

h2 h1 h4

0 0 h5

 xi
yi
wi

 = 0. (3.8)

This gives us three equations, where two of them are linearly independent.
We expand the above equation and consider only the first two linearly inde-
pendent equations, which results in:[

−wjyih1 − wjxih2 − wiwjh4 + wiyjh5

wjxih1 − wjyih2 + wiwjh3 − wixjh5

]
= 0. (3.9)

The equation system can be re-written into:

[
−wjyi −wjxi 0 −wiwj wiyj
wjxi −wjyi wiwj 0 −wixj

]
h1

h2

h3

h4

h5

 = 0. (3.10)

The above equation represents a system of equation of the form Ah = 0. It
is important to note that A has rank 4. Since each point correspondence gives
rise to two independent equations, we require two point correspondences to
solve for h up to one unknown scale factor. The singular vector of A, which
has the smallest singular value spans a one dimensional (up to scale) solution
space. We chose the solution h such that ||h|| = 1. Then, to obtain valid
rotation parameters we enforce the trigonometric constraint h2

1 + h2
2 = 1

on h, by dividing the solution vector by ±
√
h2

1 + h2
2. The camera motion

parameters, can directly be derived from the homography:
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t =
[
−h3, −h4, 1− h5

]>
, (3.11)

R =

 h1 −h2 0
h2 h1 0
0 0 1

 . (3.12)

Due to the sign ambiguity in ±
√
h2

1 + h2
2 we obtain two possible solutions

for R and t.

3.2.2 2pt Relative Pose for a Known Vertical Plane
Normal

The following algorithm is able to compute the relative pose given 2 point
correspondences and the normal of the plane on which the points reside. The
derivation will be carried out for a vertical plane but works similar for planes
parametrized around other axis.

The homography for a vertical plane can be written as:

H = Rz − [tx, ty, tz]
>[nx, ny, 0], (3.13)

where Rz denotes the rotation matrix around the z-axis.
Expanding the expression in (3.13) we obtain:

H =

cos(θ)− nxtx − sin(θ)− nytx 0
sin(θ)− nxty cos(θ)− nyty 0
−nxtz −nytz 1

 , (3.14)

=

h1 h2 0
h3 h4 0
h5

ny

nx
h5 1

 . (3.15)

This leaves 5 entries in H to be estimated. Each point correspondence gives
2 inhomogeneous linearly independent equations of the form Ah = b. Using
equation 3.7 we obtain:
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[
−d− h3a− h4b+ h5xiyj + h5yic
−e+ h1a+ h2b− h5xixj − h5xjc

]
= 0, (3.16)

[
0 0 −a −b xiyj + yic
a b 0 0 −xixj − xjc

]
h1

h2

h3

h4

h5

 =

[
d
e

]
, (3.17)

with:

a = wjxi, b = wjyi, c = yj
ny
nx
, d = −wiyj , e = wixj .

Using 2 point correspondences, this gives 4 equations which is a deficient-
rank system. The solution is h = Vy + wv (see [44]) where svd(A) =
UDV> and v is the last column vector of V. The vector y is computed by
yi = b′i/di where di is the ith diagonal entry of D and b′ = U>b.

This leaves the unknown scalar w which can be computed from an addi-
tional constraint. For this particular problem the use of the trigonometric
constraint (cos(θ)2 + sin(θ)2 − 1 = 0) is preferred over the determinant
constraint (det(H>H− I) = 0).

The trigonometric constraint can be fully expressed in terms of the variables
h1, h2, h3, h4.

cos(θ)2 + sin(θ)2 − 1 = 0 (3.18)
(h1 + nxtx)2 + (−h2 − nytx)2 − 1 = 0 (3.19)

with:

tx = nx(h4 − h1)− ny(h2 + h3) (3.20)

Substituting symbolically the entries of h = Vy +wv into Eq. 3.19 results
in a quadratic equation in the remaining unknown w (the expanded equation
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is not shown due to its excessive length). Solving for the variable w gives two
solutions for the parameters h1, h2, h3, h4, h5.

Once the homography H is estimated it can be decomposed into relative
rotation and relative translation parameters. We back-substitute the entries of
H from (3.15), that is h1, h2, h3, h4 and h5 into (3.14). Knowing nx and
ny, the translation parameters can directly be computed using the following
relations:

tz =
−h5

nx
, (3.21)

tx = nx(h4 − h1)− ny(h2 + h3), (3.22)
ty = ny(h1 − h4)− nx(h2 + h3). (3.23)

And the rotation parameter is then obtained through:

tan θ =
h3 + nxty
h1 + nxtx

. (3.24)

3.2.3 2.5pt Relative Pose with Unknown Vertical Plane
Normal

The 2.5pt algorithm is an extension of the 2pt algorithm described in sec-
tion 3.2.2. The homography is parametrized as in (3.13). However, when the
plane normal n is not known we can’t make use of the same linear constraint,
thus all the 6 parameters of H have to be estimated. To do so, one more
equation is required which can be taken from a third point. Thus we stack the
constraint equations of 2 points and 1 of the equations from a third point into
an equation system of the form Ah = b. For one point correspondence two
equations can be derived as follows. First the homography is defined as:
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H =

cos(θ)− nxtx − sin(θ)− nytx 0
sin(θ)− nxty cos(θ)− nyty 0
−nxtz −nytz 1

 , (3.25)

=

h1 h2 0
h3 h4 0
h5 h6 1

 . (3.26)

The computing qj ×Hqi leads to:[
−c− h3a− h4b+ h5xiyj + h6yiyj
−d+ h1a+ h2b− h5xixj − h6xjyi

]
= 0, (3.27)

[
0 0 −a −b xiyj yiyj
a b 0 0 −xixj −xjyi

]

h1

h2

h3

h4

h5

h6

 =

[
c
d

]
, (3.28)

with:

a = wjxi, b = wjyi, c = −wiyj , d = wixj .

As in section 3.2.2 the solution to this system is of the form h = Vy +wv.
The unknown scalar w can be computed from the additional homography
constraint det(H>H − I) = 0, see [71]. The determinant is a 4th order
polynomial in w which results in 4 solutions for H.

The decomposition of the homography into translation and rotation param-
eters of the relative motion follows the same steps as the one in section 3.2.2.
However, it differs as the normals nx and ny are not given and need to be
computed in the process. We again back-substitute the entries of H from
(3.26) into (3.25). First we compute tz using the relation n2

x + n2
y = 1,

tz = ±
√
h2

5 + h2
6. (3.29)
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This gives two solutions for tz which differ in the sign. Now the unknown
normals can be computed.

nx =
−h5

tz
, (3.30)

ny =
−h6

tz
. (3.31)

After this we can follow again the procedure of section 3.2.2 and compute
the remaining parameters with the following equations, however, using both
solutions for tz , nx and ny ,

tx = nx(h4 − h1)− ny(h2 + h3), (3.32)
ty = ny(h1 − h4)− nx(h2 + h3), (3.33)

tan θ =
h3 + nxty
h1 + nxtx

. (3.34)

The interesting fact in this case is, that we only use one of the two available
equations from the third point. While in the RANSAC loop we still need to
sample 3 points for this method, it is now possible to do a consistency check
on the 3 point correspondences. To be an outlier free homography hypothesis
the one remaining equation has also to be fulfilled. This can easily be tested
and if it is not fulfilled the hypothesis is prematurely rejected. This gives a
computational advantage over the standard 3pt essential matrix method [29],
because inconsistent samples can be detected without testing on all the other
point correspondences.

3.2.4 3pt Relative Pose using the Homography
Constraint

In this section we discuss a 3pt formulation of the camera pose estimation
with a known vertical direction. It differs from the algorithms in the previous
section as it does not need the presence of scene planes. A 3pt algorithm has
already been presented by [29] but using an essential matrix formulation. With
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this 3pt algorithm we propose an alternative to the previous essential matrix
algorithm but based on a homography formulation. We start from (3.13),
instead of assuming the plane to be parallel to the gravity vector we don’t
make any assumption on the plane orientation and therefore use 3 parameters
nx, ny, nz , for the fully unknown plane normal, which leads to:

H = Rz − [tx, ty, tz]
>[nx, ny, nz]. (3.35)

The camera-plane distance is absorbed by t the same way as in the previous
sections.

The homography matrix then consists of the following entries:

H =

cos(θ)− txnx − sin(θ)− txny −txnz
sin(θ)− tynx cos(θ)− tyny −tynz
−tznx −tzny 1− tznz

 . (3.36)

The unknowns we are seeking for are the motion parameters cos(θ), sin(θ),
tx, ty, tz and the normal [nx, ny, nz] of the plane spanned by the 3 point
correspondences. Recall that the standard 3pt essential matrix algorithm only
solves for the camera motion, while the 3pt homography algorithm provides
the camera motion and a plane normal with the same number of correspon-
dences. To solve for the unknowns we setup an equation system of the form:
qj×Hqi = 0 and expand the relations to obtain the following two polynomial
equations:

aty − btz − wjxi sin(θ)− wjyi cos(θ) + yjwi = 0, (3.37)
−atx + ctz + wjxi cos(θ)− wjyi sin(θ)− xjwi = 0, (3.38)

where:

a = wjxinx + wjyiny + wjnzwi,

b = yjwinz + yjnxxi + yjnyyi, (3.39)
c = xjnxxi + xjwinz + xjnyyi.
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The third equation obtained from qj ×Hqi = 0 is omitted since it is a linear
combination of the two other equations. Therefore each point correspondence
gives 2 linearly independent equations and there are two additional quadratic
constraints, the trigonometric constraint and the unit length of the normal
vector that can be utilized:

sin2(θ) + cos2(θ) = 1, (3.40)
n2
x + n2

y + n2
z = 1. (3.41)

The total number of unknowns is 8 and the two quadratic constraints together
with the equations from 3 point correspondences give a total of 8 polynomial
equations in the unknowns. An established way to find an algebraic solution
to such a polynomial equation system is by using the Gröbner basis tech-
nique [22]. By computing the Gröbner basis a univariate polynomial can be
found, which allows to find the value of this variable by root solving. The
remaining variables can then be computed by back-substitution. To solve our
problem we use the automatic Gröbner basis solver by Kukelova et al. [53],
which can be downloaded at the authors webpage. The software automati-
cally generates Matlab-Code that computes a solution to the given polynomial
equation system (in our case the above specified 8 equations). The produced
Matlab-Code consists of 299 lines and thus cannot be given here. The analysis
of the Gröbner basis solutions shows, that the final univariate polynomial has
degree 8, which means that there are up to 8 real solutions to our problem.

3.2.5 Degenerate Configurations

In this section we discuss the degenerate conditions for the proposed algo-
rithms. In previous works [29], [76], [49] the degenerate conditions for the
standard 3pt method for essential matrix estimation have been investigated
in detail. In these papers multiple degenerate conditions are identified. It
is also pointed out that a collinear configuration of 3D points is in general
not a degenerate condition for the 3pt method, while it is one for the 5pt
method. Degenerate conditions for the standard 3pt algorithm however are
collinear points that are parallel to the translation direction and points that
are coplanar to the translation vector. We investigated if these scenarios also
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3pt-essential 3pt-hom 2pt 2.5pt
collinear points no yes no no
collinear points paral-
lel to translation di-
rection

yes yes no no

points coplanar to
translation vector

yes yes no no

Table 3.1: Comparison of the degenerate conditions (yes means degenerate)
for the standard 3pt method, the proposed 3pt homography method,
the 2pt methods and the 2.5pt method.

pose degenerate conditions for our proposed algorithms, the 2pt, 2.5pt and 3pt
homography method by conducting experiments with synthetic data. Degen-
erate cases could be identified by a rank loss of the equation system matrix or
for the Gröbner basis case as a rank loss of the action matrix. For the 3pt ho-
mography case this revealed that the proposed method shares the degenerate
conditions of the standard 3pt method but in addition also has a degenerate
condition for the case of collinear points. This is understandable as the 3pt
homography method also solves for the plane normal which then has an un-
defined degree of freedom around the axis of the collinear points. For the
2pt (both 2pt methods share the same properties) and 2.5pt algorithm these
special cases however, do not pose degenerate conditions. More information
in case of knowledge or partial knowledge of plane parameters allows to avoid
degeneracy in the cases critical for the more general 3pt methods. The results
of the comparison are summarized in Table 3.1.

3.3 Synthetic Evaluation

To evaluate the algorithms on synthetic data we chose the following setup.
The average distance of the scene to the first camera center is set to 1. The
scene consists of two planes, one ground plane and one vertical plane which
is parallel to the image plane of the first camera. Both planes consist of 200
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3 Homography Based Camera Pose Estimation

randomly sampled points. The base-line between two cameras is set to be 0.2,
i.e., 20% of the average scene distance, and the focal length is set to 1000
pixels, with a field of view of 45 degrees.
Each algorithm is evaluated under varying image noise and increasing IMU
noise. Each of the two setups is evaluated under a forward (along the z-axis)
and a sideways (along the x-axis) translation of the second camera. In addition
the second camera is rotated around each axis.

To evaluate the robustness of the algorithms we compare the relative transla-
tion and rotation separately. The error measure compares the angle difference
between the true rotation and the estimated rotation. Since the translation is
only known up to scale, we compare the angle between the true- and estimated
translation. The errors are computed as follows:

• Angle difference in R:
ξR = arccos((Tr(RṘ>)− 1)/2)

• Direction difference in t:
ξt = arccos((t>ṫ)/(‖t‖‖ṫ‖))

Where R, t denote the ground-truth transformation and Ṙ, ṫ are the corre-
sponding estimated transformations.

Each data point in the plots represents the 5-quantile1 (Quintiles) of 1000
measurements.

3.3.1 Relative Pose
Fig. 3.3, Fig. 3.4, and Fig. 3.5 compare the 2-point algorithm to the general
5pt-essential matrix [78], 4pt-homography [44] and 3pt-essential matrix [29]
algorithms. Notice, in these experiments the camera poses were computed
from points randomly drawn from the ground plane. Since camera poses esti-
mated from coplanar points do not provide a unique solution for the 5pt, 4pt
and 3pt-essential matrix algorithm we evaluate each hypothesis with all points
coming from both planes. The solution providing the most inliers is chosen
to be the correct one. This evaluation is used in all our synthetic experiments.

1The k-quantile represents the boundary value of the kth interval when dividing ordered data
into k regular intervals. For k = 2, the 2-quantile represents the median value.
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3.3 Synthetic Evaluation

Similarly Fig. 3.6, Fig. 3.7, and Fig. 3.8 show a comparison of the 2.5pt al-
gorithm with the general 5pt, the 4pt and the 3pt-essential matrix algorithms.
Here the camera poses are computed from points randomly sampled from the
vertical plane only.
The evaluation shows that knowing the vertical direction and exploiting the
planarity of the scene improves motion estimation. The 2pt and 2.5pt algo-
rithms outperform the 5pt and 4pt algorithm, in terms of accuracy. Under
perfect IMU measurements the algorithms are robust to image noise and per-
form significantly better than the 5pt and 4pt algorithm. With increasing IMU
noise their performance are still comparable to the 5pt algorithm and superior
to the 4pt algorithm.

3.3.2 3pt Homography

Fig. 3.9, Fig. 3.10 and Fig. 3.11 compare the 3pt-homography based algorithm
to the general 5pt [78] and the 3pt-essential matrix algorithms [29]. The
evaluation shows that the proposed method outperforms the 5pt algorithm, in
terms of accuracy. Under perfect IMU measurements the algorithm is robust
to image noise and performs significantly better than the 5pt algorithm and
equally good as the 3pt-essential matrix algorithm. With increasing IMU noise
the performance of the 3pt-essential matrix and 3pt-homography algorithms
are still comparable to the 5pt algorithm.

3.3.3 Timings

We evaluate the run-time of all algorithms on an Intel i7-2600K 3.4GHz using
Matlab. To provide a fair comparison all algorithms were implemented in
Matlab. No mex files were used, except for the reduced row echelon function
rref, which is required by the 3pt-essential and 3pt-homography algorithms.
All timings were averaged over 1000 runs. Table 3.2 summarizes the run-
times for each of the six algorithms. The high run time of the 3pt-homography
algorithm is due to the complexity of the Grobner basis solution, which has to
perform Gauss-Jordan elimination on the 443x451 elimination matrix.

For one RANSAC iteration the timings can vary drastically between algo-
rithms. This is due to the different solution spaces the algorithms provide.
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Figure 3.3: Evaluation of the 2 point algorithm under sideways and forward
motion with varying image noise.
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Figure 3.4: Evaluation of the 2pt algorithm under sideways motion using dif-
ferent IMU noise and constant image noise of 0.5 pixel standard
deviation. First row rotation error, second row translation error.
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Figure 3.5: Evaluation of the 2pt algorithm under forward motion using dif-
ferent IMU noise and constant image noise of 0.5 pixel standard
deviation. First row rotation error, second row translation error.
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Figure 3.6: Evaluation of the 2.5pt algorithm under forward and sideways
motion with varying image noise.
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Figure 3.7: Evaluation of the 2.5pt algorithm under sideways motion, with
different IMU noise and constant image noise of 0.5 pixel standard
deviation. First row rotation error, second row translation error.
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Figure 3.8: Evaluation of the 2.5pt algorithm under forward motion, with dif-
ferent IMU noise and constant image noise of 0.5 pixel standard
deviation. First row rotation error, second row translation error.

37



3 Homography Based Camera Pose Estimation
Si

de
w

ay
s

M
ot

io
n

Noise in Pixel
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ot

at
io

n 
E

rr
or

 in
 D

eg
re

e

0

0.05

0.1

0.15

0.2

0.25

0.3
5-Quantile

5pt-essential
3pt-essential
3pt-homography

Noise in Pixel
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ra

ns
la

tio
n 

E
rr

or
 in

 D
eg

re
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
5-Quantile

5pt-essential
3pt-essential
3pt-homography

Fo
rw

ar
d

M
ot

io
n

Noise in Pixel
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ot

at
io

n 
E

rr
or

 in
 D

eg
re

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
5-Quantile

5pt-essential
3pt-essential
3pt-homography

Noise in Pixel
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ra

ns
la

tio
n 

E
rr

or
 in

 D
eg

re
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
5-Quantile

5pt-essential
3pt-essential
3pt-homography

Figure 3.9: Evaluation of the 3pt-homography algorithm under sideways and
forward motion with varying image noise.
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To have the same error measure for all algorithms, we choose to use the re-
projection error to select the correct camera poses among a set of possible
poses. For instance the 2pt algorithm provides one unique camera pose, while
the 5pt algorithm can provide up to 10 different essential matrices. In addi-
tion for each essential matrix 4 possible camera poses exist and need to be
verified to find the correct pose, which can result in a total of 40 possible
camera poses. While the homography formulations directly provide sets of
camera poses. Even though the hypothesis estimation of the 3pt-homography
algorithm has a larger constant time complexity, compared to its essential
matrix counter part, one RANSAC iteration is cheaper, since fewer potential
poses need to be evaluated. The table clearly shows that the computation
time is dominated by the hypothesis selection (re-projection error computa-
tion) and not by the solver. In all experiments we used a set of 200 point
correspondences.

Methods
Hypothesis

Estimation(ms)
RANSAC

1 Iteration(ms)
Avg.

# Solutions
2pt 0.09 8.31 2
2.5pt 0.22 33.45 8
3pt-homography 27.28 55.17 6.85
3pt-essential 0.49 25.02 6.18
4pt-homography 0.18 8.65 2
5pt-essential 0.42 64.33 16.02

Table 3.2: Run-time comparison of different pose estimation algorithms. The
second column provides timings for estimating the hypothesis. The
third column provides timings for one RANSAC iterations, which
includes the selection of the right solution from a set of hypothesis.
The last column shows the average number of real solutions (cam-
era poses) provided by the respective algorithm. See text for more
details.
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3.4 Real Data Experiments

In the following section we evaluate the proposed algorithms on both an indoor
and outdoor environment.

3.4.1 Error Measure

In order to compare the estimated camera poses to the ground-truth, we used
the relative pose error (RPE) measure as proposed by Sturm [101]. The RPE
compares the local accuracy of the trajectory over a fixed time interval ∆,
that corresponds to the drift of the trajectory. The RPE at time step i can be
defined as:

Ei = (Q−1
i Qi+∆)−1(P−1

i Pi+∆), (3.42)

where Qi,Pi ∈ SE(3) represent the ground truth and estimated poses
respectively. Ei then represents the relative error. For a sequence of n camera
poses, m = n −∆ individual relative pose errors are then estimated. From
these errors, we propose to compute the root mean squared error (RMSE) over
all time indices of the translational component as

RMSE(E1:n,∆) =

√√√√( 1

m

m∑
i=1

‖trans(Ei)‖2
)
, (3.43)

where trans(Ei) refers to the translational components of the relative pose
error Ei.

3.4.2 Vicon Dataset

In order to have a practical evaluation of the 2pt, 2.5pt and 3pt algorithms, sev-
eral real datasets have been collected with reliable ground-truth, see Fig. 3.12.
The ground-truth data has been obtained by conducting the experiments in
a room equipped with a Vicon motion capture system made of 22 cameras.
We used the Vicon data as inertial measures and scale factor in the different
experiments. The sequences have been acquired with a perspective camera
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mounted either on teleoperated Segway mobile robot (Fig. 3.12) or with a
handheld system in order to have planar and 3D trajectories. In both cases
the cameras are synchronized with the Vicon system. The image resolution
used is 1624× 1234 pixels. The length of these trajectories is between 20 and
50 meters and the number of images is between 150 and 350 per sequence.
Robot motion speed is about 1m/s. Two different sets have been acquired, one
set showing the ground plane dominantly and another set showing the walls
dominantly.

We perform a comparison of the 2pt, 2.5pt and 3pt-homography with the
5pt algorithm in order to show the efficiency of the proposed methods. First,
we use [111] to extract and match SIFT [68] features. The same matched
feature point sets are used for the different algorithms and form the input to
RANSAC [26] in order to select the inliers. For RANSAC we use a fixed
number of 100 iterations, in all our experiments.

Figure 3.13 - Fig. 3.15 shows the evaluation of the 2pt ground plane algo-
rithm. The trajectories obtained with 2pt (red curve) and 5pt (black curve) are
compared with the ground-truth (blue curve) from Vicon. In all these exper-
iments, even if both approaches propose trajectories globally with a similar
shape than the ground-truth, we can note that the 2pt algorithm provides better
results than the 5pt method. In the case of planar trajectories, it is worth noting
that the 2pt algorithm has a very low drift in the vertical axis while the 5pt
accumulates significant error. Over the six sequences, the mean angular error
in translation is equal to 0.1883 radians for the 2pt and 0.3380 for the 5pt.

The root mean squared error as defined in equation 3.43 is given for all
6 sequences in table 3.3. The 2pt clearly outperforms the 5pt algorithm,
providing a 1.69×−6.54× lower error compared to the 5pt algorithm.

Figure 3.16 compares the different trajectories obtained from the 2.5pt (red
curve), the 3pt-homography algorithm (green curve), the 3pt-essential matrix
algorithm (magenta curve) and the 5pt (black curve), to the Vicon ground-truth
(blue curve).

The 2.5pt algorithm shows similar performance compared to the standard
5pt algorithm and both 3pt algorithms, however having the advantage of a
much simpler derivation. This experiments also demonstrated that the as-
sumptions taken for the 2pt algorithm (flat ground plane) and for the 2.5pt
algorithm (vertical walls) are met in practical situations and can be used in
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2pt (mm) 5pt (mm)
Ground Sequence I 8.94 48.55
Ground Sequence II 9.28 56.66
Ground Sequence III 18.46 65.39
Ground Sequence IV 14.25 93.30
Ground Sequence V 25.61 34.46
Ground Sequence VI 39.75 67.45

Table 3.3: Root Mean Squared Error overview.

real applications.
The computation time was estimated for each pair of images during a com-

plete sequence. Only the part dedicated to the robust estimation of the visual
odometry based on 2pt and 5pt algorithms was evaluated. For both algorithms,
the same set of matched points was proposed as entry to the estimation. The
mean computation times over the complete sequence were respectively equal
to 14.75 seconds for the 5pt algorithm and 0.03 for the 2pt algorithm.

3.4.3 2pt Algorithm in a SFM Pipeline

In this final experiment we demonstrate the usage of the 2pt algorithm within
an incremental SFM pipeline. The 2pt algorithm is used to replace the 5pt
algorithm within the SFM pipeline. For this experiment the MAVMAP [99]
SFM pipeline has been adapted to compare the 2pt algorithm to the 5pt algo-
rithm. Two-view pose estimation is used when processing each new frame.
To compute the relative pose between two consecutive frames we estimate the
essential matrix in case of the 5pt algorithm and the homgography for the the
2pt algorithm. Afterwards full bundle adjustment is performed to compute
precise camera poses and 3D points. The main goal of this experiment is to
show that the 2pt can in practice replace standard algorithms (like the 5pt) for
gaining a speed up but by maintaining the accuracy of the system.

For this experiment a UAV data set of a parking lot (denotated ParkingLot
data set) is used. The image resolution for this data set is 24MP. The UAV
was equipped with GPS and the GPS trajectory is utilized as ground truth for

42



3.4 Real Data Experiments

comparison. Figure 3.17 shows the results for this experiment. Figure 3.17(a)
shows the output of the SFM system, resulting 3D point cloud (densified with
SURE [69]), camera positions (red) and GPS positions (green). Figure 3.17(b)
shows RPE plots for an experiment using the 5pt (black) algorithm and the
2pt (red) algorithm. Both algorithms lead to almost identical results. The
value of the remaining RPE error is mainly due to the uncertainty of the GPS
measurements and expected in this form. The resulting re-projection error
after bundle adjustment is 0.249px for the 2pt case and 0.246px for the 5pt
case, almost identical. To be clear, the reason for the identical re-projection
error comes from bundle adjustment. This experiment demonstrates that the
proposed 2pt algorithm can successfully replace the standard 5pt in a SFM
system seamlessly but with the advantage of a gained speed-up.
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Figure 3.10: Evaluation of the 3pt-homography algorithm under sideways
motion, with different IMU noise and constant image noise of
0.5 pixel standard deviation.First row rotation error, second row
translation error.
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Figure 3.11: Evaluation of the 3pt-homography algorithm under forward mo-
tion, with different IMU noise and constant image noise of 0.5
pixel standard deviation. First row rotation error, second row
translation error.
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Figure 3.12: Left, Vicon arena used to record the ground-truth dataset. Center,
teleoperated Segway mobile robot capturing data. Right, sample
image captured by the robot.
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Figure 3.13: Evaluation of the 2pt ground plane algorithm: Top row visual
odometry estimated using the 2pt (red) and the 5pt (black) al-
gorithm. The Vicon ground-truth is given in blue. Middle row,
the Relative Pose Error (RPE) in mm for each individual frame.
Bottom row, shows the RPE error for the vertical axis (z-axis).
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Ground Sequence III Ground Sequence IV
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Figure 3.14: Evaluation of the 2pt ground plane algorithm: Top row visual
odometry estimated using the 2pt (red) and the 5pt (black) al-
gorithm. The Vicon ground-truth is given in blue. Middle row,
the Relative Pose Error (RPE) in mm for each individual frame.
Bottom row, shows the RPE error for the vertical axis (z-axis).
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Ground Sequence VI Ground Sequence VII
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Figure 3.15: Evaluation of the 2pt ground plane algorithm: Top row visual
odometry estimated using the 2pt (red) and the 5pt (black) al-
gorithm. The Vicon ground-truth is given in blue. Middle row,
the Relative Pose Error (RPE) in mm for each individual frame.
Bottom row, shows the RPE error for the vertical axis (z-axis).
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Figure 3.16: Evaluation of the 2.5pt vertical wall algorithm: Trajectories esti-
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compared with the Vicon ground-truth (blue curve).
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Figure 3.17: Results of an incremental SFM pipeline using the 2pt algorithm.
(a) Resulting 3D point cloud, camera positions (red) and GPS
positions (green). (b) RPE error plot when using 5pt or 2pt within
the SFM pipeline. The initial solution of the 5pt and 2pt are
similar enough for bundle adjustment to converge to almost the
same final solution.
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Absolute pose estimation in Computer Vision refers to the problem of
finding the camera pose in the world frame given a set of 3D scene points
expressed in the world frame and corresponding set of 2D image points ex-
pressed in the camera coordinate frame. A minimum of three 2D-3D corre-
spondences are needed to solve for the absolute pose in the case of a global
shutter camera. This is commonly referred to as the Perspective-3-Point or
P3P problem [42]. A generalization of the P3P problem to n-point corre-
spondences is known as the PnP problem. The solution to the absolute pose
estimation problem has great importance in performing robotics visual Simul-
taneous Localization and Mapping (visual SLAM), localization with respect
to a given map, and Structure-from-Motion (SfM).

Over the years, a huge literature of solutions to the absolute pose estimation
problem [42, 56, 57, 87] have been developed by many researchers for the
global shutter camera. The solutions to the absolute pose estimation problem
for global shutter cameras, however, do not work equally well for a moving
rolling shutter camera. This is because the existing solutions are modeled for
global shutter cameras that take snapshots of a scene by exposing the entire
photo-sensor in a single instance of time. These solutions do not account for
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Figure 4.1: Artifacts on an image taken with a rolling shutter camera moving
towards the left of the image. The poles and and door frame
(marked in red), which are supposed to be upright, appear slanted
to the left due to the camera motion and the sequential exposure
of each scanline from top to bottom of the image. Objects further
away from the camera are less affected by the rolling shutter.

the image artifacts caused by a moving rolling shutter camera that simultane-
ously exposes scanlines of its photo-sensor either horizontally or vertically
over a rapid instance of time (∼ 72ms in our real data experiments). Figure
4.1 shows an example of an image taken by a moving rolling shutter camera.
The camera moves towards the left of the image and the scanlines progress
from top to bottom of the image. As a result, scene objects such as the fence
and building facade edge (marked in red) appear to be slanted to the left of
the image.

While there is an inherent difficulty in doing absolute pose estimation with
rolling shutter cameras, there is already a widespread usage of the rolling shut-
ter cameras due to the low cost in manufacturing and robustness of the CMOS
photo sensors, and the massive incorporation of the cameras into mobile de-
vices such as mobile phones and tablets. It is therefore useful to provide an
algorithm that corrects for the moving rolling shutter camera artifacts while
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doing absolute pose estimation.
In this chapter, we propose a minimal solution to the rolling shutter camera

pose estimation problem. In particular, we introduce an additional linear
velocity in the camera projection matrix to model the motion of the rolling
shutter camera. We noted that this assumption holds in practice because the
scanline speed is always much faster than the velocity of the rolling shutter
camera mounted on a hand-held mobile phone, tablet or a moving car. We
show that a minimum of 5-point 2D-3D correspondences are needed to solve
for the pose and linear velocity using the Gröbner basis [22] and gives up to
eight real solutions. We also show that our formulation can be extended to
use more than 5-point correspondences. We use RANSAC [26] for robust
estimation to get all the inlier point correspondences. We also identify the
correct solution from the eight possible solutions within RANSAC. Finally,
we relax the linear velocity assumption and do a non-linear refinement on the
full motion, i.e. linear and angular velocities, and pose of the rolling shutter
camera with all the inliers. We verify the feasibility and accuracy of our
algorithm with both simulated and real-world datasets.

4.1 Related Work

Most of the existing works on rolling shutter cameras largely revolve around
calibration, correction for rolling shutter distortion on the images, using
rolling shutter cameras for stereo setups, and iterative methods for pose es-
timation. In contrast, we propose a minimal solution to estimate the rolling
shutter camera pose and velocity in this work. Our minimal solution requires
only 5-point correspondences and this makes it very suitable to be used within
RANSAC for robust estimation to find all the inlier correspondences.

One of the early publications on rolling shutter camera is from Liang
et al. [62]. They gave detailed discussions on the rolling shutter effect and
low level CMOS sensor that usually has an electronic rolling shutter. In this
work, the authors proposed to compensate for the rolling shutter effect using
optical flow. In [37], Geyer et al. proposed a method to calibrate the rolling
shutter timings using additional hardware and studied the different rolling
shutter effects under special fronto-parallel motion. More recently, Oth et al.
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proposed in [83] to calibrate the shutter timings using a video sequence of a
known calibration pattern. A continuous-time trajectory model is combined
with a rolling shutter model to estimate the shutter timings.

In [10, 16], the authors proposed 2D approaches for rolling shutter image
stabilization and rolling shutter distortion correction using optical flow. Simi-
larly, [39] used optical flow and a mixture of homographies to correct for the
rolling shutter effect. In [8, 41], Hanning et al. and Karpenk et al. proposed
rolling shutter distortion correction base on gyroscope measurements. Their
assumption is that on hand-held devices the main motion during exposure is
due to a rotation and can be compensated with a homography.

While the above approaches are 2D in nature, Forssen and Ringaby [27,88]
proposed a Structure-from-motion approach to compensate for the rolling
shutter distortion that is mainly induced by rotational motions. In [45], Hed-
borg et al. proposed a full rolling shutter bundle adjustment on a continuous
video stream by enforcing a continuous pose parametrization between consec-
utive frames. Klein et .al proposed in [50] to first estimate a constant velocity
between consecutive frames and uses this motion model to undo the RS dis-
tortion on the extracted keypoints. The corrected keypoints are then used in a
standard bundle adjustment [106] for global shutter camera.

In [6,92], the authors have proposed stereo algorithms that take into account
the rolling shutter model and produces geometrically consistent 3D reconstruc-
tions. In [73], Meilland et al. proposed a dense 3D model registration which
accounts for rolling shutter distortion and motion blur on RGBD data.

Probably closest to our work is the work by Ait-Aider et al. [4], where they
estimate the pose and velocity of a moving object from a single rolling shutter
image. They use a spiral motion parametrization of the camera pose and
solve for the pose and velocities as a non-linear least squares problem. Their
formulation requires a good initialization which is obtained from a global
shutter pose algorithm. The 3D-2D correspondences are provided manually.
In [5], the authors extended the initialization process with a homography based
formulation, which takes into account the temporal pose parametrization. It is
however limited to only planar objects. To overcome the initialization burden,
Magerand et. al [70] solved the pose and velocities using constrained global
optimization by parameterizing the camera motion with degree 2 polynomials.
The final objective function they need to solve for consists of a 6 degree
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polynomial with twelve unknowns.

4.2 Rolling Shutter Absolute Pose

4.2.1 Camera Motion Model

Since a rolling shutter camera typically has a rapid scanning time (∼ 72ms
per image), it is reasonable to make the assumption that the camera undergoes
constant linear and angular velocities during an image acquisition. We further
assume that each scanline takes exactly the same time, and the relative camera
translation tn and rotation Rn at the nth scanline with respect to the first
scanline can be linearly interpolated as

tn = vnτ (4.1a)

Rn = exp(Ωnτ), (4.1b)

where v = [vx, vy, vz]
> and Ω = [ωx, ωy, ωz]

> denotes the constant linear
and angular camera velocities, and τ is the time taken to complete each scan-
line. The function exp(.) : so(3)→ SO(3) denotes the exponential map that
transforms the angle-axis rotation representation to a corresponding rotation
matrix.

As mentioned in Section 4 that in practice the scanline speed is always much
faster than the velocity of the camera, the camera motion can be approximated
with only the linear velocity. As such, we consider only the linear velocity in
our derivation of the minimal solution, i.e. Rn = exp(0) = I3×3. We justify
the validity of this assumption with the results from a real data experiment.
We look at an image sequence where a car with a rolling shutter camera
mounted on it takes a 90◦ turn, while driving at 10km/h. During the scan time
of the CMOS sensor (72ms in our case), the car moved 0.2m and the absolute
camera orientation changed by 0.02rad. Figure 4.2 compares the ground truth
GPS/INS poses to the interpolated poses assuming zero angular velocity. The
maximum absolute angular error obtained is only 0.01rad. We will further
discuss the valid range of this assumption in Section 4.3.1.
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(a) (b)

Figure 4.2: The plots show the position and rotation error while the car moves
through a 90◦ turn. During image scan time of 72ms the car moved
0.20m. (a) The maximum position error is 1.8718 × 10−4m. (b)
Maximum rotation error assuming zero angular velocity is 0.0114
rad.

4.2.2 Minimal 5-Point Algorithm

Making the assumption of a constant linear velocity, we can express a pixel
on the nth scanline as

xn = K
[
R t− tn

]
X, (4.2)

where K is the camera intrinsic. R and t are the camera pose in the world
frame, which is also the camera pose for the first scanline. tn is the camera
pose for the nth scanline as given in Equation 4.1. xn ↔ X is the 2D-3D point
correspondence. Formally, Equation 4.2 is the camera projection equation that
accounts for the rolling shutter effect. The unknowns are R, t and the linear
velocity v in tn, where there are altogether 9 degree-of-freedom (3 degree-
of-freedom each for R, t and v). Since each point correspondence gives two
independent equations, a minimum of 5-point correspondences are needed to
solve for all the unknowns in Equation 4.2. Taking the cross product of xn
with Equation 4.2, we get
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xn × (K
[
R t− tn

]
X) = 0. (4.3)

With 5-point correspondences, Equation 4.3 can be rearranged into the form

Ay = 0, (4.4)

where A is a matrix made up of the known values from the camera intrinsic
K, point correspondences xn ↔ X, scanline number n and time τ . Here we
choose randomly 9 out of the 10 equations in the minimal 5-point correspon-
dence case (since any 9 out of the 10 equations are always independent) to
form the 9× 15 matrix A.

y =
[
r1 r2 r3 tx ty tz vx vy vz

]>
(4.5)

is a 15 × 1 vector, where ri is the ith row of the rotation matrix R, [tx ty tz]
are the components from the translation vector t and [vx vy vz] are from the
linear velocity v of the camera. Solving for the right nullspace of Ay = 0 using
the Singular Value Decomposition (SVD) gives 6 basis vectors denoted by
b1...b6, where the linear combination forms the solution

y = β1b1 + β2b2 + β3b3 + β4b4 + β5b5 + β6b6. (4.6)

β1...β6 are any scalar values. Assigning random values to β1...β6 however
do not guarantee the orthogonality of R. We fix β6 = 1 and the remaining
five scalar values can be found by enforcing the orthogonal constraint on
the elements from the rotation matrix R. Following [112], enforcing the
orthogonality on R gives us 10 constraints:

||r1||2 − ||r2||2 = 0, (4.7a)

||r1||2 − ||r3||2 = 0, (4.7b)

||c1||2 − ||c2||2 = 0, (4.7c)

||c1||2 − ||c3||2 = 0, (4.7d)

r1
>r2 = 0, r1

>r3 = 0, r2
>r3 = 0, (4.7e)

c1
>c2 = 0, c1

>c3 = 0, c2
>c3 = 0, (4.7f)
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which we can use to solve for the scalar values β1...β5 that formed the solution.
ri denotes the ith row and ci the ith column of R. Putting the elements from
R in Equation 4.6 into the 10 constraints, we get a system of 10 polynomial
equations with β1...β5 as the unknowns. We use the automatic generator
of Gröbner solvers provided by Kukelova et al. [53] to generate a solver
for the system of polynomial equations that gives up to eight real solutions
for y. We divide each of the solution by its respective ||r1|| to make R an
orthonormal matrix. Note that the orthonormal constraint is not enforced
earlier in Equation 4.7 to keep the system of polynomials less complicated. In
addition, we ensure that the solution follows a right-hand coordinate system
by negating the solution if det(R) = −1.

It should be noted that our formulation also works for m-point correspon-
dences where m ≥ 5, i.e. ≥ 10 independent equations are used to form
Equation 4.4. In this case, we get an over-determinate system. The 6 ba-
sis vector in Equation 4.6 can be obtained from the 6 singular vectors that
correspond to the 6 smallest singular values of A.

4.2.3 Robust Estimation

We use the minimal 5-point algorithm within RANSAC [26] to robustly select
all the inlier 2D-3D correspondences. We also determine the correct solution
from the 8 solutions within each RANSAC loop as the one that gives the most
inlier count.

4.2.4 Non-linear Refinement

The 5-point minimal solver with RANSAC provides an initial solution and
finds all the inlier 2D-3D correspondences, which is then used for further
refinement using a non-linear solver [2]. Here, we relaxed the linear velocity
assumption and do a refinement on the full camera motion, i.e. linear v and
angular Ω velocities, and pose (R, t). Formally, we seek to minimize the total
reprojection errors over v, Ω, R and t. The objective function is given by
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argmin
v,Ω,R,t

∑
i

||xn,i − π(Pn,i,Xi)||2, (4.8)

where xn,i is the ith 2D image point on the nth scanline, Xi is the correspond-
ing 3D point, π(.) = Pn,iXi is the reprojection function. Pn,i is the rolling
shutter camera projection matrix for the nth scanline given by

Pn,i = KRn

[
R t− tn

]
, (4.9)

where (tn, Rn) is the pose of the rolling shutter camera when the nth scanline
was taken as defined in Equation 4.1.

4.3 Algorithm Evaluation

4.3.1 Synthetic Data

We first evaluate our proposed algorithm on several synthetic configurations.
Specifically, we do comparisons for the following three methods:

1. GS + refinement: Global shutter P3P [56] with non-linear rolling shut-
ter aware refinement of pose and velocities as described in Section 4.2.4.
Note that in a perspective configuration the generalized P3P algorithm
[56] simplifies to [43], its perspective counter part.

2. RS: Our proposed minimal 5-point rolling shutter pose and translational
velocity solver as described in Section 4.2.2.

3. RS + refinement: Our proposed minimal 5-point rolling shutter pose
and translational velocity solver with refined pose and velocities as
described in Section 4.2.4.

The evaluations are done under varying image noise, increasing translational
and angular velocities, and different shutter directions relative to the cam-
era motions. There are a total of four different combinations for the shutter
directions relative to the camera motions:
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1. Horizontal shutter and sideway camera motion.

2. Horizontal shutter and forward camera motion.

3. Vertical shutter and sideway camera motion.

4. Vertical shutter and forward camera motion.

For each setting and method, we report the median error over 1000 random
trials. Each trial consists of a random camera pose generated within the range
of [0,1]m and [-0.01,0.01]rad for the respective axes, and the scene consists
of 1000 randomly generated points with an average depth of 20m. We used an
image resolution of 1000 pixels with a fixed focal length of 1000 pixels, which
results in a field-of-view of about 53◦. We assume a fixed rolling shutter scan
time of 72ms for all experiments. The following error measure which averages
the rotation and translation errors over all scanlines are used to evaluate the
synthetic experiments:

• Angle difference in R, averaged over all scanlines:

δθ =
1

N

N∑
n

cos−1

(
Tr(RnR̃>n )− 1

2

)
, (4.10)

• Translation difference, averaged over all scanlines:

δt =
1

N

N∑
n

||tn − t̃n||, (4.11)

where Rn, tn denote the ground-truth transformation for a given scanline n
and R̃n, t̃n are the corresponding estimated measurements and N represents
the total number of scanlines.
Figure 4.3 and 4.4 show the average error plots from the three algorithms under
increasing translational velocity, zero angular velocity and an image noise of
0.5 pixel standard deviation. It can be seen that our proposed method shows
a constant error with increasing translational velocity, while the translational
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and rotational errors for GS + refinement increased linearly. In Figure 4.5
and 4.6, we evaluate the robustness of the algorithm under varying pixel noise
with a constant translational velocity of 6.9m/s and zero angular velocity. The
results show that our proposed method is less sensitive to the image noise
than the GS + refinement approach for all the four combinations of shutter
directions and camera motions.

Figure 4.8 shows the error plots when the zero angular velocity assumption
is violated. Here, we vary the angular velocity while maintaining a constant
translational velocity of 6.9m/s and an image noise of standard deviation 0.5
pixel. Our proposed method with refinement RS + refinement is observed to
be more robust in the angular velocity interval of [0−2.2]rad/s. It is important
to note that in practice the angular velocity of a camera mounted on hand-held
devices or a moving car is normally ≤ 2.2rad/s. This can be seen from our
real-world data taken from a camera mounted on a moving car in Section
4.3.2. The car reached a maximum angular velocity of only 0.31rad/s when
making a 90◦ turn. Motion blur might also occur for any angular velocity that
is greater than 2.2rad/s, thus making it useless for pose estimation.

In general it might be counter intuitive that the algebraic minimization of
the RS solution outperforms the GS + Refinement approach. The reason is
the initial solution of the GS approach only finds a reduced set of inliers that
satisfies the GS perspective model. This poorly distributed set of inliers does
not constraint the camera motion well enough for the geometric refinement to
converge to the correct solution. In our synthetic experiments the number of
inliers obtained in the GS case drops by over 70% with a motion of 12m/s.

4.3.2 Streetview Data

We evaluate the proposed algorithm on 5 different datasets - Dataset (a)-(e).
These datasets were captured by a Google Streetview car. The images have a
native resolution of 1944× 2592 pixels and are recorded at 4Hz. The shutter
time for the rolling shutter camera is 72ms. This corresponds to a motion
of 0.5m during image formation for a car driving at 25km/h. The camera
poses are obtained from a GPS/INS system and interpolated to provide a
position and orientation for each scanline. We will refer to these poses as the
ground truth poses. It should be noted that the baseline between consecutive
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Dataset
# of

Cameras
# of

3D Points
Length

(m)
Median δθ

(rad)
Median δt

(m)
(a) 118 215936 276.82 0.0014 0.0539
(b) 178 338806 377.44 0.0109 0.1698
(c) 190 326254 451.40 0.0050 0.2975
(d) 156 336712 353.61 0.0016 0.0423
(e) 162 310893 376.39 0.0030 0.0951

Table 4.1: Dataset overview

images taken from the rolling shutter camera is approximately 1m, and we
are not using any temporal constraints to estimate the velocity and pose of
the camera. An overview of the 5 sequences is given in Table 4.1. In the first
step, we create a 3D map by using all the even numbered images from each
of the sequences. We extract and match SIFT [68] features using [111]. The
point correspondences are then radially undistorted and triangulated using the
provided GPS/INS pose. 3D points with large reprojection error (> 1 pixel)
are discarded from the model. Figure 4.9 second row, shows the completed
3D models.

For each odd numbered image in the sequences, we extract SIFT features,
radially undistort the keypoints and match them to the 3D model. This gives
us the potential 2D-3D correspondences. The matches are used in RANSAC
together with our 5-point minimal solver to find a consensus set. The pose and
velocity hypothesis is refined by minimizing the objective function in Equa-
tion 6.5 with the Google Ceres [2] solver using all inliers. We compare the
final pose to the ground truth using the same error measure as in the synthetic
evaluation. The third and fourth rows of Figure 4.9 show the translational and
angular error distributions for each of the datasets. We can see that both the
translational and angular errors are very small (translational error ∼ 0.05m
and rotational error ∼ 0.125rad) as compared to the ground truth. This shows
the accuracy of our algorithm on real-world datasets.

It is also interesting to show that we could potentially use a rolling shutter
camera mounted on a car as cheap velocity sensor to estimate the speed of the
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car from a single rolling shutter image. In Figure 4.10, we show two examples
of the application on Dataset (d) and (e). The top row shows the ground truth
velocities. The bottom row shows we have achieved a median error of only
2.01km/h and 3.4km/h for the speed estimate on the datasets.
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Increasing Translational Velocity (Sideways Motion)
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Figure 4.3: Evaluation on sideways motion, with increasing translational ve-
locity with image noise of 0.5 pixel standard deviation and zero
angular velocity. The first two columns show error plots for a side-
ways motions of the camera and the two last columns show errors
for a forward (into the scene) moving camera.
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Increasing Translational Velocity (Forward Motion)
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Figure 4.4: Evaluation on forward motion, with increasing translational ve-
locity with image noise of 0.5 pixel standard deviation and zero
angular velocity. The first two columns show error plots for a side-
ways motions of the camera and the two last columns show errors
for a forward (into the scene) moving camera.
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Increasing Pixel Noise (Sideways Motion)
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Figure 4.5: Evaluation on sideways motion, with increasing pixel noise with
a fixed translational velocity of 6.9m/s and zero angular velocity.
The first two columns show error plots for a sideways motions of
the camera and the two last columns show errors for a forward
(into the scene) moving camera.
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Increasing Pixel Noise (Forward Motion)
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Figure 4.6: Evaluation on forward motion, with increasing pixel noise with
a fixed translational velocity of 6.9m/s and zero angular velocity.
The first two columns show error plots for a sideways motions of
the camera and the two last columns show errors for a forward
(into the scene) moving camera.
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Increasing Angular Velocity (Sideways Motion)
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Figure 4.7: Evaluation on sideways motion, with increasing angular velocity
with fixed image noise of 0.5 pixel standard deviation and transla-
tional velocity of 6.9m/s. The first two columns show error plots
for a sideways motions of the camera and the two last columns
show errors for a forward (into the scene) moving camera.

70



4.3 Algorithm Evaluation

Increasing Angular Velocity (Forward Motion)
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Figure 4.8: Evaluation on forward motion, with increasing angular velocity
with fixed image noise of 0.5 pixel standard deviation and transla-
tional velocity of 6.9m/s. The first two columns show error plots
for a sideways motions of the camera and the two last columns
show errors for a forward (into the scene) moving camera.
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Figure 4.10: Top row ground truth velocity of the car. Bottom row error dis-
tribution of estimated car speed. In case of the Dataset (d) we
achieve a median error of 2.01km/h and 3.4km/h for Dataset (e).
Note that the last bin of the histogram is expanded to infinity.
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Visual 3D reconstruction of objects, scenes or whole cities nowadays seems
to be a well understood problem, building on techniques like structure from
motion and dense depth estimation (see e.g. [77, 85]). However, results pub-
lished so far usually assume classical CCD cameras that capture images in a
way that all pixels of the same image are being exposed at the same time. This
is however not true for most CMOS sensors, such as those built into nowadays’
smart phones or many industrial cameras [37]. Consequently, the analysis of
rolling shutter cameras came into focus, where exposure of columns (scan-
lines) happens in sequential order leading to undesired distortion effects when
the camera is not fixed during exposure. It has been shown recently that for
hand-held smartphone cameras in static scenes, most of the rolling shutter
effects can be compensated in the image (without 3D scene information), that
is by compensating rotation [8, 27, 41, 88]. However, in case a high resolu-
tion camera is mounted on a moderately fast driving capture vehicle, strong
rolling shutter effects will be introduced by the motion of the camera, even if
the camera orientation is stable (similarly at a smaller scale, for video-based
reconstruction of objects using a cell phone). Unfortunately, these effects
depend on the distance to the objects, such that closer 3D points will be much
more distorted than those very far away, making a simple 2D image warp
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into a global shutter image impossible. Also “standard stereo” rectification of
image pairs (e.g. [34]) is in general not possible: Epipolar curve pairs, where
each point on a curve in the left image maps to some point on a “corresponding”
curve in the right image and vice versa, exist only in special configurations.

In this chapter we analyze the rolling shutter stereo problem and develop
fast multi-view stereo algorithms that produce accurate 3D models from
rolling shutter cameras. As real cameras often have lens distortion, and in
particular those wide angle cameras often used for capturing streetlevel data,
we also consider lens distortion, which we show makes the problem much
more complex. To the best of our knowledge, no previous work exists on
dense depth estimation with rolling shutter cameras and the common setting
of lens distortion in a rolling shutter setting has not been analyzed. We there-
fore make the following novel contributions:

1. Practical discussion of fast-motion induced rolling shutter effects: Tradi-
tional stereo produces biased 3D results for standard streetlevel capture
geometries

2. Analysis of interplay between rolling shutter and lens distortion: Cor-
rect undistortion requires 3D scene information.

3. Planar rolling shutter warp as a generalization of the plane induced
homography

4. Multi-view stereo algorithm for rolling shutter cameras (with or without
lens distortion)

In section 5.1 we will review previous work on rolling shutter cameras.
We will then recapitulate the rolling shutter model and analyze fast motion
and lens distortion effects in section 5.2. In section 5.3 we develop a warp
for mapping a point of one rolling shutter image into another rolling shutter
image, assuming a planar 3D scene. Based on this we then present both fast
and accurate multi-view stereo algorithms in section 5.3.1. These are then
evaluated quantitatively on textured laser scan models and qualitatively on
real street-level data in section 5.4.
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5.1 Related work

The chip-level architecture of a CMOS sensor and the reasons for the rolling
shutter effect are described by Liang et al. [62] who also propose an optic-
flow-like method to compensate rolling shutter effects for in-plane motion.
Earlier, in [37] Geyer et al. had analyzed the effect of a rolling shutter camera,
in particular for special camera motions and geometries (e.g. fronto-parallel,
no forward components) and had suggested a scheme how to calibrate the
shutter timings. They showed that in a very special setting a rolling shut-
ter sensor behaves as a x-slits camera [117]. For those, Feldman et al. had
discussed epipolar geometry [25]. Rolling shutter cameras are also related
to pushbroom camera models [40] often used for satellite images (actually a
special case [117] of the x-slits cameras), however for those, under straight
motion, backprojected planes are parallel, while for rolling shutter cameras
this does not hold.

Recently, several approaches for image stabilization for rolling shutter cam-
eras have been proposed. Here, Bradley et al. [16] use stroboscope lighting
and subframe warping to synchronize multiple rolling shutter cameras and to
compensate the sequential exposure effects. Baker et al. [10] pose the rectifi-
cation as a superresolution problem that can be solved using optical flow. Also
Grundmann et al. [39] exploit local flow vectors to compensate rolling shutter
for uncalibrated cameras, but using a mixture of homographies. In contrast,
Hanning et al. [41] and Karpenko et al. [8] use gyroscopes of cell phones to
compensate for rotational shake.

While the above approaches are rather 2D in nature, Forssen, Ringaby,
Hedborg et al. applied structure from motion algorithms to tackle the problem
for static scenes: First, Forssen and Ringaby [27, 88] had tracked features
through cell phone video sequences and compensated cell phone rotation,
which they identified as the dominant source of distortion for hand-held videos.
In a later work, Hedborg et al. [45] have shown a full bundle adjustment
including motion effects as well. Most recently Klingner et al. [51] proposed
a structure from motion pipeline, for cameras mounted on a car, which uses
relative pose prior along the vehicle path.

Our approach can be seen as the next step of a 3D reconstruction pipeline
from rolling shutter cameras. Given camera motion and orientation (from
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Figure 5.1: An ideal (green) and a distorted (red) camera observing a 3D point
while moving straight. The projection of the point describes a
straight line or a more complicated curve (depending on degree of
distortion parameters). The distorted camera cannot be undistorted
without depth information for the 3D point, as the time of exposure
τ depends on the depth.

bundle adjustment and/or sensors), our goal is to densely estimate the 3D
scene geometry from rolling shutter cameras. In particular, and in contrast to
the work on hand-held cell phones, we consider the case where the camera
undergoes fast motion (e.g. on a capture vehicle, or in a cell phone close to
an object) introducing a depth-dependent rolling shutter effect. On top we
consider lens distortion, which cannot be pre-rectified as that would change
the image coordinate and thus the time when the particular 3D points was seen
by the camera. However, using a plane-sweep stereo approach (see e.g. [116]
or [48] for non pinhole cameras), we show how to solve depth estimation, lens
undistortion and rolling shutter compensation at the same time. The approach
is intended for motion stereo, i.e. with a single camera, which is however valid
as well for moving camera rigs.
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5.2 Rolling Shutter Camera Model
Lets look at the case where a 3D point X is observed by a global shutter
pinhole camera P, i.e. it is projected to image position x given a known
camera calibration matrix K (without loss of generality we assume K to be
the identity matrix in the remainder of the chapter). In case of linear camera
motion and constant orientation, the point moves on a straight line in the
image, its position depending on the time τ :

xτ ' PτX = (R0 | t0 + τt) X (5.1)

Now, we will move to the rolling shutter camera model, assuming that image
column (scanline) r is exposed at time τ = mr + b. For simplification of
notation we assume m = 1 and b = 0, however, for a real system these
coefficients need to be calibrated [37] and considered. In order to find out
when X will be seen by the camera, we have to check, at which moment it is
projected to an active scanline. For this we have to compute the x-coordinate
(the scanline) of the projection into the image and take xτ of Eq. 5.1 from
projective space P2 to xτ into euclidean space R2

xτ =

(
(c1τ + c2)/(c5τ + c6)
(c3τ + c4)/(c5τ + c6)

)
(5.2)

for some coefficients ci depending on calibration, pose and 3D point. Then
we look at the scanline (horizontal coordinate) that must match the time of
exposure τ :

scanlineX,P(τ) = (c1τ + c2)/(c5τ + c6)
!
= τ (5.3)

Essentially, we are looking for the fixpoint of scanline(.) which leads to a
quadratic equation in τ . The derivation was based on a straight simple motion
model. In Tab. 5.1 we list a number of alternative parametric motion/camera
models and the resulting degree of the τ polynomial (considering extra ro-
tational or translational offsets is possible and will add more freedom to the
motion patterns but will not change the degree of the polynomial). For each
of those, to project a 3D point a polynomial in τ has to be solved to figure out
whether the point is seen on the scanline that is currently exposed.

79



5 Rolling Shutter Stereo

Many lenses, in particular wide angle lenses, show a significant amount
of distortion and in the following we will briefly re-derive a standard ra-
dial/tangential distortion model that dates back to Brown [17]:

x′τ = (1 + r2r
2 + r4r

4 + r6r
6)xτ + dx (5.4)

with xτ = (x, y)T being the (undistorted) offset vector from the distortion
center1, r = ‖xτ‖, x′τ being the offset in the distorted image and

dx =

(
2taxy + tb(r

2 + 2x2)
ta(r2 + 2y2) + 2tbxy

)
. (5.5)

Herein, r2, r4, r6, ta, tb are the distortion coefficients. In case radial or tangen-
tial distortion is present in the image, the curve x′τ described by a point in the
image even under straight camera motion becomes more complicated and the
degree of Eq. 5.3 will increase (see Tab. 5.1 and Fig. 5.1). Note that when the
lens distortion of such a rolling shutter image is compensated (classical global
shutter like inversion of Eq. 5.4), it means that straight lines in space will also
become straight in the image, but that the shape of an original CMOS sensor
scanline (those pixels that were exposed jointly at the same time) will become
a more complicated curve rather than an image column. Consequently, the
complexity is just shifted from the left hand side of Eq. 5.3 to the right hand
side.

For short term motions (during exposure time of one image, which is usu-
ally a fraction of a second) of rolling shutter cameras the linear motion with
no rotation (car driving straight) and the orbital motion (cell phone filming a
handheld object) are the most important cases. The linear/linear case is some-
what more special and applies to panning cameras on a linear stage as those
track-level “slow-motion” cameras used for the 100m sprints at the Olympic
games. Also note that for the important cases the first (most significant) radial
distortion coefficient can be considered for a closed form solution (polynomial
degree up to 4).

1For simplicity of notation, we assume the distortion center at (0, 0)T
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5.2 Rolling Shutter Camera Model

Motion Orient. Dist. Pose Pτ deg.
linear const no (I | τt) 2
orbital linear no

(
I + τ [r]× | t

)
2

spiral linear no
(
I + τ [r]× | τt

)
2

linear linear no
(
I + τ [r]× | (I + τ [r]×)τt

)
3

linear const r2 (I | τt) 4
orbital linear r2

(
I + τ [r]× | t

)
4

spiral linear r2

(
I + τ [r]× | τt

)
4

linear linear r2

(
I + τ [r]× | (I + τ [r]×)τt

)
5

not r2, r4

const. any r6 ≥ 8
ta, tb

Table 5.1: Some common short term motions and the resulting polynomial
degree when (not) considering distortion for obtaining the τ in a
rolling shutter camera (see also [37]). Note that for very short term
(intraframe) motion on fast driving cars we can assume constant
orientation but that the more general models would not lead to a
significantly more difficult problem.
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5.2 Rolling Shutter Camera Model

5.2.1 Rolling Shutter Observability

Rolling shutter needs to be considered only when its effects are significant, i.e.
for stereo in the range of one pixel or more. In the following we concretize
the assessment of [37] with practical numbers and considerations to allow
for a decision of whether a rolling shutter model makes sense for a particular
capture configuration. We assume that a capture vehicles drives at a certain
speed v (e.g. 25 km/h) and uses a camera with a certain field of view φ (e.g.
90 degrees) and image width w (e.g. 2000 pixels). We assume that all lines of
an image have been exposed after t (e.g. 72 ms), i.e. there is a time difference
of t/2 between the center scanline and a boundary scanline of an image. The
camera position error compared to the center pose is ∆x = t/2 · v . The
focal length can be computed as f = w

2 /tan(φ2 ). Looking at some point
on the optical axis of the camera (i.e. (0 0 z)T in camera coordinates), it
will be projected to the principal point (in a global shutter camera model). If
that camera now moves by some amount ∆x depending on the speed defined
above, then if we want at most 1 pixel displacement, the 3D point must be at
least z > f∆x away, i.e.

z >
w
2

tan(φ2 )
· t

2
· v (5.6)

which, inserting the above values and approximating tan(x) ≈ x · tan(45◦),
leads to the rule of thumb

zmin ≈ 6.25m
w[pixel]

φ[degree]
· t[sec] · v[km/h] = 250m (5.7)

That is, for ten times less resolution or ten times less speed there is still at
least one pixel error up to 25m distance but neither such speeds nor such res-
olution is any useful. Because locally these errors are not as visible (between
neighboring scanlines the error is 1000 times smaller, as there are thousand
scanlines between the center and the border) they might seem to be of minor
importance, however as can be seen above for accurate reconstruction from a
driving car they are significant.
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5 Rolling Shutter Stereo

Vertical or Horizontal Rolling Shutter? For vehicle mounted cameras
there are several considerations for how to mount the camera, such as differ-
ent field of view in x and y direction, mounting space with respect to other
cameras, full dome coverage and so on. Besides those, the direction of the
rolling shutter plays an important role. For camera planes parallel with the fa-
cades and rolling shutter orthogonal to the motion direction, a shearing effect
will be visible in each image (maybe less visually pleasant when displayed
as raw image) and such images do not align well with Manhattan structures
in the scene. On the other hand, when the rolling shutter is parallel with the
motion, the image will be shrunk or stretched in that direction and for certain
driving speeds undersampling issues may appear. The resulting images and
qualitative effects when observing a plane with different shutter directions can
be seen in Fig. 5.2.

Independently of the direction of the rolling shutter, we will develop a depth
dependent rolling shutter image warp in the next section, that can warp one
rolling shutter image into another one taken from somewhere else, assuming
some scene plane Π, similar in spirit to a plane-induced homography (with
the goal of enabling plane sweep stereo).

5.3 Rolling Shutter Warp Across a Plane
To warp a point from one rolling shutter camera to another, we first backproject
it to a plane Π and then project it into the other image.

RS Backprojection of pixel onto space plane Π: Given some pixel
position p ∈ P2 in a rolling shutter image, from its scanline we know immedi-
ately the time of exposure τp and consequently the corresponding projection
matrix Pτp . Consequently, we can choose a 3D point Xi ∈ P3 on the ray
through the camera center Cτp ∈ P3 that projects to p. All points Li on that
ray can be represented as

Li = Cτp + λXi, λ ∈ R (5.8)

All points X that lie on the plane Π ∈ P3 fulfill

ΠTX = 0, where Π = (nΠ − d)T, (5.9)
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5.3 Rolling Shutter Warp Across a Plane

and substituting Eq. 5.8 into Eq. 5.9 we arrive at a linear equation in λ

ΠT(Ci + λXi) = 0, (5.10)

that allows to find the 3D intersection XΠ of the plane Π and the backprojected
ray.

RS Projection of plane point into other view: The time of exposure
of a certain 3D point can be computed according to Eq. 5.3, that is quadratic in
τ or, in case of distortion, using x′τ from Eq. 5.4 substituted for xτ in Eq. 5.3:

α7τ
7
q + α6τ

6
q + · · ·+ α0

β7τ7
q + β6τ6

q + · · ·+ β0
= τ (5.11)

that can be rewritten as

γ8τ
8
q + γ7τ

7
q + · · ·+ γ0 = 0, (5.12)

for some αj , βk, γl ∈ R. The degree of the polynomial depends on the lens
distortion and the motion model as can be seen in Tab. 5.1. Up to fourth order,
i.e. using only the first radial distortion coefficient and one of the important
motion models, this can be solved in closed form for the time of exposure τq
in the other image. Only τqs are valid that lie in the exposure time interval, in
our case [0; width− 1]. In the rare case that more than one solution fulfills
this, the same 3D point is seen multiple times in the same image (remember
the rolling shutter creates a multi-perspective image when the camera moves).
If we just want to find the color of the point (as is the case for our warp),
all solutions are valid and we simply choose the earliest time of exposure
τq. Given τq, we know the camera pose and we can project the 3D point on
the plane to finally obtain the image coordinates q in the other image, which
completes the warp.

For the full radial/tangential distortion model according to Eq. 5.4, we
obtain a polynomial that cannot be solved in closed form. Consequently, we
perform gradient descent on Eq. 5.12, initialized with τ0 = width/2.

Although the previously described warp can be fully parallelized and runs
on the GPU it is computationally expensive since it requires to solve for the
time τ for each pixel individually. We suggest - and later evaluate - two
approximate strategies, that promise a speedup at the cost of some accuracy:
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5 Rolling Shutter Stereo

Fast approximation 1 (FA1): global shutter lens undistortion An
efficient approximation is to perform the expensive lens undistortion globally,
and then solve for the quadratic Eq. 5.3 in closed form. This is in particular
useful when the lens distortion is minor, because then the time of exposure
does not change much with or without distortion. In this case the undistortion
can be precomputed offline using a lookup table (as standard for global shutter
undistortion) and has to be done only once per image (if warps across multiple
planes are run as in plane sweeping there is no need to run it per plane).

Fast approximation 2 (FA2): coarse grid computation of warp’s
texture coordinates Alternatively, rather than computing τ and then the
resulting texture coordinate for each pixel, we propose to evaluate the texture
coordinates in dependence of τ on a coarser grid (e.g. only every 10 pixels)
which is then used to compute the actual texture lookup coordinates using
texture interpolation. This approach (FA 2) can exploit highly optimized GPU
texture handling.

The speedup of the approaches above is given in Tab. 5.2. The timings are
evaluated on a GeForce GTX 680 graphics processing unit.

5.3.1 Integration to Plane Sweep Stereo

For global shutter cameras, it has been shown that the ability of the graphics
processing unit to handle smooth warps [116] can be exploited for real-time
stereo approaches. Having understood under what speeds, resolutions and dis-
tances a rolling shutter camera model must be used we can exploit the warps
of the previous section in a plane sweep approach where we hypothesize a
scene plane, warp our image across that scene plane into another reference
view and determine the agreement of those images for each pixel. This is
repeated for a number of planes to obtain a whole cost volume, i.e. we obtain
costs (dissimilarity) for each plane hypothesis at each pixel position of the
reference view. In order to robustify the approach with respect to partial occlu-
sions, we generate the cost volume in the reference view from n neighboring
views and for each plane at each pixel consider only the mean of the k best
correlation costs out of the n neighbouring views.
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5.4 Evaluation

On that cost volume, smoothness terms can be used and any suitable op-
timization technique to solve them. We follow smoothness terms and opti-
mization strategy as proposed by Hirschmüller [47]. The result is a depth map
for the reference view encoding a depth value for each pixel. Using also the
image and the camera poses this can be used to generate a 3D model.

5.4 Evaluation

We evaluated the proposed rolling shutter stereo algorithm on both synthetic
and real datasets that mimic a single rolling shutter camera mounted on a
moving car (allowing motion stereo to be computed from consecutive images).
All synthetic data are available on the project website 2.

Implementation Details: For the evaluations in this chapter we stick to
a simple plane sweep model with a single plane normal (e.g. obtained from
dominant scene planes [36] in a prior sparse reconstruction step like [45]
or [51]) and a single sweeping direction. The sweep is performed by creating
additional planes within the distance range [Dmin, Dmax]. The planes are
sampled approximately linearly in image space, such that a warp over two
neighbouring planes results in a pixel displacement of maximum one pixel
distance. A warp over a plane is computed by first undistorting a pixel and
intersecting the ray passing through the pixel with the plane being considered.
The intersection point is then projected into the reference view according
to the formulation presented in section 5.3. The dissimilarity measure used
is 1-NCC (normalized cross correlation) on a 5×5 window. However, the
similarity is summed up over multiple pyramid levels [116], giving always 1/4
weight to the smaller pyramid level. For choosing the k best views we choose
k = 3 out of n = 7, however for the synthetic experiments just two views have
been used. Finally, for each pixel a geometric verification step is performed
once the depth map for the next reference view has been computed: Each
pixel of depth map one is backprojected into space, projected into the other

2http://cvg.ethz.ch/research/rolling-shutter-stereo
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image and compared to the depth estimated for that position. Discrepancies
of more than 0.1m result in the depth value being declared invalid.

5.4.1 Ground Truth Evaluation

Rolling Shutter Direction: First, we qualitatively analyze the effects,
when ignoring rolling shutter in stereo algorithms for different shutter direc-
tions: In Fig. 5.2 we texture a square plane in 3D space and synthetically
generate two rolling shutter images. Already the shape of the images looks
very different (squeezed, stretched, slanted). Consequently, when ignoring
this effect and performing standard stereo, the reconstructions are also bi-
ased. For this setting we chose quite strong motion to visualize the effects,
but it should be clear that the same type of systematic errors will appear also
at smaller speeds. Note that the obtained (biased!) depths maps for global
shutter are dense; This means that obtaining visually plausible results when
applying a global shutter model to rolling shutter data does not mean the data
is actually correct.

Quantitative Evaluation using Ground Truth: The datasets castle and
old town were originally captured using a 3D laser scanner. The resulting point
clouds have been smoothed, meshed and textured with high resolution photos.
We then define a plausible streetlevel camera path and render 976 images
(image resolution 976 × 732) along the path. From each of those we pick
one column and compose a novel image out of these scanlines to simulate
the rolling shutter effect (afterwards, the GPU’s z-buffer is handled in the
same way to obtain a rolling shutter depth map). This allows for evaluation
of absolute 3D errors of the 3D reconstruction algorithms in meters using
extremely realistic geometry and texture. For this setup the camera is assumed
to have a linear motion with a constant orientation (first motion model). We
evaluated rolling shutter stereo against global shutter stereo while the camera
undergoes a motion of 0m, 0.318m, 0.636m and 1.27m respectively (castle)
and 0m, 0.122m, 0.243m, 0.487m (old town) during exposure time, simulating
different speeds. The baseline lengths between the two images were 3.9m and
0.75m respectively. This corresponds to maximum driving speeds of 65km/h
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speed / warp [ms] median [m] MAD [m] fill rate
FA 1 10.0 40.88 / 49.51 3.242 / 3.17 40.8% / 32.9%
FA 2 2.2 1.02 / 0.26 1.02 / 0.22 52.8% / 58.6%
RS 27.7 0.041 / 0.085 0.032 / 0.077 76.3% / 62%

Table 5.2: Evaluation of the different warps, speed vs. accuracy on the castle
and old town dataset. We use a grid resolution of 1/10 of the image
resolution (976× 732) for FA2.

(castle) and 24km/h (old town) for exposure time of approximately 1/14s (as
in our real system).

In Fig. 5.4 and Fig. 5.3 it can be seen that the global shutter algorithm
performs worse with increasing rolling shutter effect while the rolling shutter
algorithm is approximately constant. We visualize the 3D error, that is the
distance between the estimated 3D point and the GT 3D point. Note that the
GS algorithm shows errors of more than a meter which were not detected by
the final 0.1m depth consistency check, confirming again that the errors when
using the global shutter model are significant but hard to detect.

Approximation 1 and 2 perform in between in terms of quality, however
they have a completely different error pattern. While FA1 shows a global,
systematic error because of the incorrect lens undistortion, FA2 performs
correct at the grid, however shows a high frequency error that increases inside
the grid cells.

General motion: In another experiment (see Fig. 5.5) we construct the
rolling shutter images in a way that the motions during exposure of image 1
is in a different local direction than the one of image 2. This happens when
using different rolling shutter cameras on a car which are looking into different
directions. In this case there is no longer just a systematic bias in the data, but
global shutter stereo just cannot find the correct correspondence any more.
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∆x = 127 cm

∆x = 49cm GT depth RS = GS GS error

FA1 error FA2 error RS error

Figure 5.3: 3D error visualization for rolling shutter image pairs of two ground
truth scenes (top and bottom): For no motion during exposure
(∆x = 0, that is global shutter) all algorithms produce the same
results. For the maximum motion according to Fig. 5.4. For the
global shutter, the error is generally higher and produces a system-
atic offset depending on depth and also distance to the distortion
center.
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Figure 5.4: Top: castle sequence, bottom historic town center. Left: Median
3D error (boxes indicate median absolute deviation) when using
a global or a rolling shutter algorithm. Right: corresponding fill
rates of depth maps.
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1st input image 2nd input image

GS depth FA1 depth

FA2 depth RS depth

Figure 5.5: Top row, input images captured with independent linear motions
(sideways- and forward-motion). Global shutter (GS) stereo fails
as the correct correspondence is not in the search range. Fast
approximation 1 (FA1) gives consistent depth which degrades to-
wards the image boundaries. Fast approximation 2 (FA2) provides
consistent depth at the grid vertices which then degrades inside
the grid cell. Rolling shutter (RS) stereo provides throughout con-
sistent depth.
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Camera 1 Camera 2 GS RS

Figure 5.6: Left, sample input image of two cameras mounted on a car. We
apply GS and RS stereo on both camera streams independently and
fuse the resulting models into a single coordinate frame. Right,
bird’s eye view of GS and RS reconstruction. Note how the pole
aligns in the RS reconstruction, while in the GS reconstruction it
appears as two different poles.

5.4.2 Evaluation on Real Data
Real data has been recorded using a capture vehicle driving at different speeds.
The exposure time of the camera was 72ms (approximately 1/14 s). For the
Oak street there is approximately 0.5m displacement during exposure and a
baseline of 2m between frames, driving speed was 25km/h. For the Fillmore
street displacement was 0.74m, baseline 2.6m and driving speed 37km/h, with
an image resolution of 1944×2599, results are given in Fig. 5.7. We compare
GS and RS stereo on the Oake street sequence and observe that the facade
is reconstructed further away from the camera in the GS case, compared to
the RS case. Objects reconstructed from different cameras independently and
fused into a single coordinate system don’t overlap in the GS case while they
do in the RS case, see Fig. 5.6.
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Figure 5.7: Real world reconstruction of the Oak street (top) and Fillmore
street (bottom) data sets show systematic differences in bird’s eye
view (right column).
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The majority of image sensors on the market today (found in mobile phones,
and compact cameras etc) are CMOS sensors. In contrast to standard CCD
sensors which have global sensor readout, classical CMOS sensors have se-
quential readout. This leads to sequential exposures of each image row or
column - commonly known as rolling shutter. For example, typical readout
times in todays mobile phones are around 10-40ms [83, 104]. Given such a
delay, significant deformations appear in the image when the camera is in mo-
tion. Assuming a camera with a readout time of 35ms and moving at 5km/h,
objects which are closer than 25m will show deformations due to the rolling
shutter [92] effects.

In the last decade, Structure from Motion (SfM) techniques have been used
to build 3D models from both ordered and unordered image sequences [1, 28,
61, 106]. These SfM techniques rely on a global shutter camera model and
become brittle when used on rolling shutter images [64, 67]. Hedbors [45]
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introduced a bundle adjustment method which provides accurate structure
and motion from a rolling shutter video stream by using a continuous time
parametrization of the camera pose. It is however limited to continuous image
streams with small baselines and does not work on sparse images with wide
baselines. Moreover, none of the existing works showed a full pipeline that
does full sparse to dense 3D reconstruction from rolling shutter images with
wide baselines.

In this chapter, we propose and implement a pipeline for sparse to dense 3D
construction with wide baseline images captured from a fast moving rolling
shutter camera. Wide baseline images are captured at a low frame rate of
4Hz with our rolling shutter camera mounted on a moving car moving at
17km/h. Specifically, we propose a cost function for bundle adjustment that
models the rolling shutter effect, incorporates GPS/INS readings, and enforces
pairwise smoothness between neighboring poses. We optimize over the 3D
structures, camera poses and velocities. In contrast to [59] that minimizes the
absolute difference of the GPS/INS and camera poses, our smoothness term
minimizes the difference between neighboring camera relative poses and their
corresponding neighboring GPS/INS relative poses. As a result, our bundle
adjustment is able to compensate for the drifts that are accumulated in large
scenes from the weak visual connectivity of wide baseline images without the
risk of causing discontinuities in the poses.

The optimized camera poses are used to compute dense motion stereo. We
adopt the plane sweep algorithm for rolling shutter camera proposed by Saurer
et al. [92]. We show that we can achieve a 7× speed up in the depth map
computation without losing accuracy with our novel interpolation scheme for
the rolling shutter plane sweep stereo algorithm. We evaluate and show the
feasibility of our approach on a 2.6km sequence, and compare our sparse and
dense 3D reconstructions to those obtained from global shutter reconstruc-
tions.

Our contributions in this chapter can be summarized as follow:

• Propose and show a working pipeline for full sparse to dense 3D recon-
struction from large scale wide baseline rolling shutter images.

• New cost function for bundle adjustment that models the rolling shutter
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effect, incorporates GPS/INS readings, and enforces pairwise smooth-
ness between neighboring poses.

• Achieved 7× speed up in depth map computation without losing ac-
curacy with our novel interpolation scheme on the 3D planes for the
rolling shutter plane sweep stereo algorithm.

6.1 Related Work

In the recent years, an increasing number of standard 3D vision algorithms
originally designed for global shutter cameras are reformulated to include the
rolling shutter camera model. These algorithms cover many aspects of 3D
vision from camera calibration, pose estimation, bundle adjustment to dense
motion stereo etc. However, none of these existing works showed a full sparse
to dense 3D reconstruction from wide baseline rolling shutter images.

The authors of [37, 83] suggested algorithms for the calibration of rolling
shutter timing. Others [8, 27, 41, 62, 88] have looked into rolling shutter wob-
ble corrections using additional sensors such as gyroscopes or assuming that a
rolling shutter wobble is induced by only a pure rotational motion. [7, 93] ad-
dressed the rolling shutter pose estimation problem with the minimal solutions
from different variants of rolling shutter camera model. Meilland et al. [73]
proposed a RGB-D SfM algorithm which simultaneously solves for motion
blur and rolling shutter deformations. In [70], the authors proposed an itera-
tive algorithm to solve for the camera pose and velocity.

A rolling shutter camera bundle adjustment for a continuous stream of small
baseline images was shown in [45]. They reformulate the bundle adjustment
problem such that it requires 6 additional parameters compared to the global
shutter version. These 6 additional parameters are due to the exploitation of
the fact that the pose of the last scanline corresponds to the pose of the first
scanline in the next frame. In [51], the authors modelled a rolling shutter
camera rig as a generalized camera, where relative poses between cameras are
obtained from a GPS/INS system. In the bundle adjustment, they optimized
for one global camera rig pose, while using a rolling shutter aware reprojection
error.
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Ait-Aider et al. [6] proposed a stereo algorithm for a rolling shutter stereo
rig. Given a set of point correspondences, they recover the object pose and
velocity by optimizing a non-linear system of equations. A challenge of
finding pixel correspondences between image pairs arises in the monocular
setup. While this is done by searching along the epipolar line for global shutter
stereo, the search becomes difficult for the rolling shutter stereo where the
pixel correspondence lies on an epipolar curve. The curvature of the epipolar
curve depends on the motion and lens distortion of both cameras. In [92],
the authors addressed this problem with a monocular rolling shutter plane
sweep stereo algorithm. The main drawback of the algorithm is that it is
computationally expensive to solve a high order polynomial for each pixel at
various depths. We built upon their findings and proposed a novel algorithm
which is 7× faster in speed and provides similar accuracy in depth estimation.

6.2 Reconstruction Pipeline

Data Acquisition

GPS/INS Poses

Rolling Shutter
Budle Adjustment

Rolling Shutter 
Stereo

Depthmap FusionTracking

...

Loop Closure

Figure 6.1: Overview of the reconstruction pipeline.

Fig. 6.1 illustrates our proposed pipeline for sparse to dense 3D reconstruc-
tion from rolling shutter images. Our proposed reconstruction pipeline follows
the standard SfM approach [84] with modifications made for wide baseline
rolling shutter images. In detail:

Data Acquisition: Images are captured with a rolling shutter camera rig
mounted on a car. The rig consists of 15 cameras arranged such that they
cover over 80% of a sphere. In this work, we only consider 8 cameras which
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point sideways to the driving direction. Images from consecutive frames have
wide baseline because our cameras are recording at a low frame rate of 4Hz.
Each image is also synchronized with a GPS/INS position.

Tracking: We start by extracting SIFT [68] features using [111] on the
radially distorted images. Features are then matched between neighbouring
images using a GPU brute-force matcher creating tracks between consecutive
frames. Frames which show little parallax (< 50 pixel) are removed from the
tracks.

Loop closure: Loop closures are detected by comparing the GPS/INS
poses. Images that are within a radius of 15m are considered as potential loop
closures. Potential loop closures are verified geometrically using a rolling
shutter pose estimation algorithm similar to [93]. We consider a loop closure
to valid if it is within the vicinity of their original GPS/INS pose (within 15m)
and there is enough inliers (> 100) from the geometric verification. Each
detected loop closure is added to bundle adjustment in the form of a pose
graph as an additional constraint (see 6.3 for more details).

Rolling Shutter Bundle Adjustment: Tracks are first radially undis-
torted with the standard radial/tangential distortion model proposed by Brown [17].
Next, the undistorted keypoints are triangulated with the camera poses pro-
vided by the GPS/INS system. It is important to note that the camera poses
provided by the GPS/INS system are not perfect due to systematic errors in
calibration and multi-path problems in the urban environment. We use the
GPS/INS system for a rough pose estimate of each scanline in the image. We
then use our proposed rolling shutter aware bundle adjustment to optimize
over the 3D points, and camera extrinsics i.e. poses and velocities, while en-
forcing smoothness constraints between neighbouring poses in the pose graph.
The bundle adjustment refinement process is further discussed in Section 6.3.

Rolling Shutter Stereo: The refined poses are then used to compute a
dense 3D model using a multiview and multi-resolution rolling shutter plane
sweeping stereo algorithm similar to [92]. Here, we show that our novel
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6 Sparse to Dense 3D Reconstruction

interpolation scheme on the 3D planes for the rolling shutter plane sweep
stereo algorithm allows us to achieve a 7× speed up in the depth map com-
putations for dense reconstruction without losing accuracy. The depthmaps
are regularized using Semi-Global matching [47]. More details are given in
Section 6.4.

Depthmap Fusion: Finally, all 3D models are merged into a single coor-
dinate frame. Only depth values which obtained support from at least 3 or
more views are kept and used to render a dense point cloud.

6.3 Rolling Shutter Bundle Adjustment

Traditional bundle adjustment [106] minimizes the re-projection error formu-
lated as:

argmin
R,t

∑
m

∑
n

||xm,n −K ·D(π(Pm,Xn))||2, (6.1)

where K is the camera intrinsics parameter, D is the radial distortion function,
P = [R,−Rt] is the camera extrinsics, i.e. rotation and translation, xm,n is
the feature point corresponding to the 3D point Xn observed by the camera
m, and π(.) : P3 → P2 denotes the projection function. This formulation
assumes a global shutter camera model. For a moving rolling shutter camera,
each scanline gets exposed at a different place in space along the motion
trajectory. As a result, Eq. 6.1 no longer holds.

Similar to [7, 37] we propose to use a constant translational and rotational
velocity parametrization for the camera pose:

t(τ) = t0 + vτ, (6.2a)
R(τ) = exp(Ωτ)R0, (6.2b)

where v denotes the translational velocity, Ω denotes the angular velocity
and τ the time of exposure (time delay between first an current scanline).
R0 and t0 are the camera pose at the first scanline. The function exp(.) :
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so(3)→ SO(3) denotes the exponential map that transforms the angle angle-
axis rotation representation to a corresponding rotation matrix. The pose of
a given scanline exposed at time τ can be linearly interpolated from Eq. 6.2,
which yields the following parametrized transformation matrix:

P(τ) =
[
R(τ) −R(τ)t(τ)

]
. (6.3)

Given the continuous time pose parametrization in Eq. 6.3, we can rewrite the
global shutter reprojection error in Eq. 6.1 as:

argmin
v,Ω,R0,t0,X

∑
m

∑
n

||xm,n −K ·D(π(Pm(τ) ·Xn))||2, (6.4)

where we optimize over the camera pose at the first scanline of each image
(R0, t0), velocities (v, Ω) and 3D structures X. Unfortunately, the optimiza-
tion based on Eq. 6.4 often breaks for our wide baseline images with weak
visual connectivity. This problem is made worst at the end of façades in the
scene where feature tracks drop tremendously. To overcome this problem, we
introduce an additional smoothness term that enforces pairwise smoothness
between neighboring poses:∑

(i,j)∈G

||P−1
i (0) ·Pj(0)−Mi,j ||2. (6.5)

Pi(0) is the ith camera extrinsics parameters at the first scanline we optimize
over, and represented as a 6 dimensional vector [log(R0)>, t>0 ] where log(.) :
SO(3) → so(3). (i, j) ∈ G denotes all pairs of neighboring poses in the
pose graph G. Here, j = i + 1 denotes consecutive neighboring poses, and
j 6= i + 1 denotes loop closure neighboring poses mentioned in Section 6.2.
For consecutive neighboring poses, i.e. j = i+ 1, Mi,j is the corresponding
relative pose obtained from the GPS/INS reading:

Mi,j = P̃−1
i (0)P̃j(0), (6.6)

where P̃i(0) and P̃j(0) are the absolute poses from the GPS/INS at the first
image scanline. It becomes obvious now that Eq. 6.6 penalizes deviation from
the GPS/INS poses and preserves smoothness between neighboring poses. For
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6 Sparse to Dense 3D Reconstruction

non-consecutive neighboring poses, i.e. j 6= i + 1, Mi,j is the relative pose
computed from the pose estimation during the geometric verification in the
loop closure mentioned in Section 6.2. Consequently, our bundle adjustment
formulation is also capable of closing large loop closure errors.

Our final objective function then writes as follows:

argmin
v,Ω,R0,t0,X

{∑
m

∑
n

||xm,n −K ·D(π(Pm(τ) ·Xn))||2

+λ
∑

(i,j)∈G

||P−1
i (0) ·Pj(0)−Mi,j ||2

}
,

(6.7)

where λ is a weighting factor we estimated empirically and set to 1e6 in all our
experiments. We proposed an alternating optimization approach to minimize
the cost function in Eq. 6.7. First, we optimize over the parameters R0, t0,X
while keeping the parameters v,Ω fixed. Next, we optimize over v,Ω while
keeping R0, t0,X fixed. We alternate between the two configurations until
we reach convergence. In all our experiments, the solution converged after
a maximum of two iterations, and in most cases one iteration is enough for
convergence.

Fig. 6.2 shows a comparison of the sparse 3D reconstructions (a) without
optimization, (b) with global shutter model and (c) with our proposed bun-
dle adjustment cost. It can be seen that the 3D structures reconstructed from
GPS/INS readings without bundle adjustment is noisy. Crooked and mis-
aligned facades can also be observed from the model procduced with global
shutter camera model. Our proposed cost function for rolling shutter camera
produced a clean and sharp 3D sparse model.

6.4 Time Continuous Rolling Shutter Stereo

We adopt and improve upon the plane sweep stereo algorithm proposed in [92]
for rolling shutter cameras. The main difference between the plane sweep algo-
rithm for global and rolling shutter cameras is the way that a pixel gets warped
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from a target image into a reference image for the evaluation of the photo-
consistency cost. This can be done easily with homography for the global
shutter cameras. Unfortunately, simple homography is not applicable for the
rolling shutter cameras since each scanline has a different pose and therefore
the plane parameters vary according to the scanlines. [92] incorporates the
rolling shutter camera model into the plane sweep algorithm to achieve the
warping of a pixel from a target to reference image. This results in the need
to solve for the time of exposure τ that corresponds to the time (scanline) a
given 3D point is imaged by the sensor. More precisely, the time of exposure
τ is obtained by solving the following fix-point function:

s ·K ·D(π(P(τ) ·X)) = τ, (6.8)

where K denotes the camera intrinsics matrix, D is the lens distortion func-
tion, P(τ) is the camera extrinsic at time τ and X is the 3D point and
π(.) : P3 → P2 denotes the projection function. s is the scanline selection op-
erator that selects either the top or bottom row of the left hand side of Eq. 6.8,
i.e. we set s = [1, 0] for a shutter that moves horizontally, and s = [0, 1] for
a shutter that moves vertically. Note that solving for τ in Eq. 6.8 requires
solving for the roots of a high order polynomial, where the order depends
on the lens distortion model and motion parameterization. Using the motion
parametrization presented in Section 6.3, we get a 9th order polynomial in τ ,
where τ is solved using the Gauss-Newton minimization. The need to solve
a 9th order polynomial for every pixel in the image quickly becomes com-
putationally expensive. Authors of [92] reported a processing time of 27ms
per image with the Graphics Processing Unit (GPU). An alternative approach
proposed in [92] is to solve τ for a subset of pixels on the target image, and
interpolate the full results with the subset of pixels warped onto the reference
images. However, this technique comes with the cost of interpolation artefacts.
Here, we propose an alternative interpolation scheme where we process every
pixel on the target image, but solve τ for a subset of the plane intersections
(each plane corresponds to the depth that is searched for pixel correspondence
in the plane sweep stereo algorithm) with each back-projected ray from ev-
ery pixel on the target image. We solve for all the τ values by interpolating
between the τ values solved from the subset of plane intersections projected
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6 Sparse to Dense 3D Reconstruction

onto the reference image. Fig. 6.3 shows how τ(d) changes with increasing
depth d of the plane in the plane sweep stereo algorithm for a range of 4m to
9m. It should be noted that the closer the intersection point of the ray from
the image pixel with the plane from plane sweep gets to the camera, the more
rapidly (can be increasing or decreasing depending on the pixel location and
camera motion) the time of exposure τ (scanline) changes with increasing
velocity of the camera.

Finding a suitable parametrization for the interpolation of τ can be chal-
lenging since the curve τ(d) varies a lot with different pixel location, camera
motion and radial distortion. The depth in which we search for pixel corre-
spondences in the plane sweep stereo is bounded by the two planes closest
and furthest away from the camera. Exploiting this fact, we can evaluate the
τ values for a subset of depths for each pixel and interpolate the missing in-
termediate τ values. We experimented with different interpolation schemes,
such as linear, quadratic, cubic, spline interpolation and piecewise quadratic.
The most efficient scheme is found to be the piecewise quadratic interpolation
since it has a low memory overhead and is a good approximation of high order
polynomials. Other methods are found to be limited to their corresponding
polynomial order. Fig. 6.4 shows the error we make when using different
interpolation schemes such as linear and quadratic, cubic spline interpolation
with 5 knots. Since we only need to evaluate τ coursely in the sweep-space,
this gives an additional speed up of 4.3× with a peak pixel error below 1e-2
pixel. While all other interpolation schemes provide an error above 1 pixel,
meaning the estimated scanline is off by at least one scanline. As ground truth
we use the τ values obtained by solving 6.8 with Gauss-Newton for each
pixel.

Since the rolling shutter effect is dependent on the scene depth, the curva-
ture of τ becomes much higher when the plane is closer to the camera, and
becomes almost linear when the plane becomes further away from the camera.
This motivates to use an adaptive interpolation range in which a quadratic
function is fitted in dependence of the relative scene depth. Let c (

√
3 in our

experiments) an exponential factor and b be the initial interpolation range. The
adaptive depth range di used for the piecewise depth interpolation is obtained
using di = cib. Given the total number of planes to sweep w, the number of
times τ needs to be fully evaluated for each pixel then is: i = log(w/b). In
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addition we can sparsely evaluate τ in image space and bi-linearly interpolate
the values in between. Combining those two interpolation schemes gives us
an overall speedup of 6.56× ( 7×).

6.5 Evaluation

We evaluated our proposed pipeline on both synthetic and on a real dataset.
For the synthetic experiments we used the dataset provided by [92].

The real dataset was captured with a car mounted rolling shutter camera
rig, consisting of 16 cameras, covering 80% of a sphere. The considered
trajectory has a total length of 2.6km and consists of 17k images. Images have
a native resolution of 1944 × 2592 pixels and are sparsely recorded at 4Hz.
The shutter scan time for each camera is 72ms. In average the car drives at
17km/h, which results in an average camera motion of 0.34m during image
formation, meaning the distance between the first and last scanline is 0.34m
apart.

6.5.1 Stereo

For our experiments we use our proposed plane sweep algorithm with a sin-
gle reference plane normal. The reference plane is obtained by finding the
dominant plane using RANSAC [26] in the sparse point cloud, obtained
from SfM. A sweep through 3d space is performed within in the distance
of [dfront, dback] around the reference plane. In our experiment we use
dfront = 5m and dback = 3m. Planes in between are sampled linearly
in image space. A pixel transfer between two images is computed by first
undistorting a pixel and intersecting the resulting ray with the corresponding
plane. The intersection point is then back-projected into the other view for
texture lookup. The correlation between two images is computed using NCC,
with a window size of 5 × 5 pixels. To be more robust towards textureless
surfaces we make use of a multi-resolution approach. Where we aggregate
the correlation cost over multiple pyramid levels (3 levels in our case). Fur-
thermore to handle occlusions we use a multi-view approach. At each depth
(plane) we consider the k = 3 best views, out of n = 6, that provide the
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6 Sparse to Dense 3D Reconstruction

highest correlation. Once the cost volume is obtained we regularize it using
Semi-Global-Matching [47] using 16 different path directions. To obtain the
final depth we fit a quadratic through the depth that provides the lowest cost.
As a last step all estimated 3D points undergo a geometric verification. Points
which provide a consistent depth within 3 or more views are considered to be
valid points. We use a threshold of 0.1m for our consistency check.

Synthetic Data: In Tab. 6.1 we evaluate our algorithm on synthetic data.
We show that the proposed method performs comparable to the one of [92],
median depth error on both datasets is below 5cm. And the fill rate is slightly
lower 0.7% for the castle dataset and 4.8% for the old town dataset. Inter-
polating the τ value in sweep space using the proposed piecewise quadratic
interpolation a speedup of 3.7 is achieved. When also considering the inter-
polation in image space, similar to FA2 of [92], a speedup of 6.6 ( 7) is
achieved.

Castle Old Town
Method speed [ms] MED [m] MAD [m] fill rate MED [m] MAD [m] fill rate

FA2 [92] 2.2 1.02 1.02 52.8% 0.26 0.22 58.6%
Bilinear + PQ 4.2 0.05 0.049 75.6% 0.099 0.096 57.1%

PQ 7.4 0.049 0.041 75.6% 0.098 0.096 57.2%
RS [92] 27.7 0.041 0.032 76.3% 0.085 0.077 62.0%

Table 6.1: We compare our method to the synthetic dataset provided by [92].
Piecewise quadratic interpolation (PQ) and Bilinear interpolation
with PQ.

LiDAR: Besides the synthetic evaluation we also compare our reconstruc-
tion to sparse LiDAR data, which was captured alongside with the image data.
We re-project the LiDAR data into the estimated depthmap and evaluated
the error of the estimated depthmaps, computed once with the rolling shutter
pipeline (rolling shutter bundle adjustment and stereo) and once with a global
shutter pipeline (global shutter bundle adjustment and stereo), see Fig. 6.5 and
Tab. 6.2.

106



6.5 Evaluation

Global Shutter MED (m) Rolling Shutter MED (m)

Fig.6.5(a) 0.42 0.23
Fig.6.5(b) 0.37 0.25

Table 6.2: Depthmap comparison to sparse LiDAR data. Note that there is
a constant offset of 0.2m between the LiDAR the rolling shutter
depthmap, which is due to miscalibration of the LiDAR to the
camera.

It needs to be noted that the LiDAR sensor is not perfectly calibrated to the
camera sensors, which leads to some inaccuracy of this experiment. Neverthe-
less we observe that in general the global shutter reconstruction has a much
higher error than its rolling shutter counter part. In general the global shutter
approach wrongly estimates the scene depth further away.

6.5.2 Full Pipeline
We evaluate the proposed pipeline on a large scale dataset of 2.6km length.
First we use a global window bundle adjustment with smoothness prior to
refine the camera poses and 3d structure, as described in 6.3. A robust Huber
loss function is used to better handle outliers. Only tracks of size 3 or greater
are consider in the bundle adjustment process. After bundle adjustment, we
remove points which have a reprojection error greater than 1 pixel. We com-
pare the final bundle adjusted model to the initial one in Fig. 6.2.
In the second stage we run the rolling shutter aware motion stereo algorithm,
as mentioned in section 6.4. In all our experiments we adaptively evaluate τ
in sweep space at a rate of di = cib. Where di denotes the depth interval and
c = 1.5 and b = 6. In addition τ is evaluated sparsely in the image, at every
5th pixel and bi-linearly interpolated in between. We show full dense recon-
structions of the San Francisco City Hall and its surrounding in in Fig. 6.6 -
6.14.
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Figure 6.3: Representation of τ(d) different pixel location over a depth range
of 9m, d ∈ [4m, 13m].
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Figure 6.4: Evaluation of τ interpolation error for four different pixels. The
first row shows the different approximations of τ in dependence
of the depth d, i.e., τ(d). The second row shows the error to the
ground truth. In all examples the four approximations: Quadratic,
Cubic, Quartic and Cubic Spline interpolation have at least 1.0
pixel error. While the piecewise quadratic interpolation provides
an error below 1e-3 pixel.
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LiDAR

Global Shutter
Rolling Shutter

LiDAR

Global Shutter
Rolling Shutter

(a) (b)

Figure 6.5: Comparison of rolling shutter and global shutter stereo to LiDAR
data. We found that in general global shutter stereo reconstructs
objects further away than what they really are. In the above ex-
ample the depth difference between the two stereo algorithms is
0.2m.
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Bird's eye view

Figure 6.6: Sample reconstructions of the San Francisco city hall and its sur-
roundings.
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Trees

Bird's eye view

Figure 6.7: Sample reconstructions of the San Francisco city hall and its sur-
roundings.
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Side view

Bird's eye view

Figure 6.8: Sample reconstructions of the San Francisco city hall and its sur-
roundings.
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Bird's eye view

Figure 6.9: Sample reconstructions of the San Francisco city hall and its sur-
roundings.
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Trees

Bird's eye view

Figure 6.10: Sample reconstructions of the San Francisco city hall and its
surroundings.
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Bird's eye view

Figure 6.11: Sample reconstructions of the San Francisco city hall and its
surroundings.
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Bird's eye view

Figure 6.12: Sample reconstructions of the San Francisco city hall and its
surroundings.
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Bird's eye view

Figure 6.13: Sample reconstructions of the San Francisco city hall and its
surroundings.
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Bird's eye view

Figure 6.14: Sample reconstructions of the San Francisco city hall and its
surroundings.
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The development of Google Streetview [38] really marked a milestone for
online map services. From then on it was possible to virtually and interactively
walk through cities along roads and experience views as if you were there.
The system was deployed on a large scale and with high quality photos. Key
features of the system are, that the photos are aligned to road map data and
that it is possible to turn when roads intersect. For this, the photos are geo-
referenced and aligned with satellite map data using GPS. This allows a user
to click on a point in the map and the corresponding view shows up. The
map alignment and the detection of intersections are the main challenges
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of such a system and in Google Streetview these are resolved using GPS
annotated photos. In this chapter we propose a system and workflow for
Streetview-like virtual tours of indoor environments, e.g. malls, museums,
public buildings. Within buildings, geo-referencing with GPS is not possible
and thus map alignment and junction detection cannot be done as for the
Streetview application. We overcome this limitation by using structure from
motion (SfM) and visual place recognition instead of GPS annotated photos.
We present a semi-automatic work flow that computes as much as possible
automatically and allows manual intervention for a final polishing.

The system works with omni-directional images from a wearable image ac-
quisition setup. As a first step SfM is used to compute an initial camera path.
Next a visual place recognition system is used to detect loops and junctions.
This information is used to improve the initial camera path by adding them as
constraints into an optimization step. Next step is the alignment of the camera
path with the floor plan of the building, for which an interactive authoring
tool was designed. A user can specify ground control points which align the
camera path to the floor plan. This process is interactive, every change is im-
mediately incorporated and the user can see the change instantaneously. After
alignment the virtual tour can be experienced with our viewer application.

7.1 Related Work

One of the first virtual tours built, was within the Movie Map project, devel-
oped by Andrew Lippman [63] in the 1980s. The city of Aspen in Colorado
was recorded using four 16mm cameras mounted on a car. Where each camera
pointed in a different direction such that they captured a 360 degree panorama.
The analog video was then digitized to provide an interactive virtual tour
through the city.

Now, 30 years later, the process of scanning entire cities or buildings has be-
come much more practical. Image based rendering techniques have increased
the interactivity when exploring virtual scenes. In the 1990s Boult et al. in [15]
developed a campus tour, allowing a user to freely look around while navigat-
ing through the campus. The images were taken from a catadioptric camera,
where a curved mirror provides a 360 degree panoramic view. While the pre-
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vious projects focused on outdoor scenes, Taylor’s VideoPlus [103] provided
an indoor walk through using a sparse image set.

Recently, Uyttendaele et al. in [110] proposed a system to create virtual
tours using six cameras tightly packed together, to increase image quality.
The six camera views are then combined to a single high resolution omnidi-
rectional view using image based rendering techniques. They provide virtual
tours through indoor and outdoor scenes. At junctions the viewer can change
from one path to an other. Unfortunately, their system does not automatically
recognize junctions, instead an author is asked to manually select an intersec-
tion range in both paths, then the system performs an exhaustive search to find
the optimal transition between both paths, i.e., the transition with minimal
visual distance.

Furukawa et al. [32] proposed a fully automated reconstruction and visual-
ization system for architectural scenes, based on a sparse set of still images.
Their approach is based on extracting very simple 3D geometry by exploit-
ing known properties of the architectural scene. The model is then used as a
geometric proxy for view-dependent texture mapping.

Levin et al. in [58] proposed a system to automatically align a camera
trajectory, obtained from a SfM algorithm, with a rough hand-drawn map
describing the recorded path. Similar panoramic views are recognized using
a hierarchical correspondence algorithm. In a first step color histograms are
matched, then the rotation invariance is verified by computing the 3D rotation
between frames. The final frame correspondence is accepted if the epipolar
geometry provides enough consistent feature matches. The ego motion is then
matched with a hand drawn map and optimized using loopy belief propagation.
Their approach is limited to the accuracy of the hand-drawn map, and does
not allow user interaction to refine the alignment. Similar to the previous work
Lothe et al. [66] proposed a transformation model to roughly align 3D point
clouds with a course 3D model.

We propose a system which gives a good first estimate of the camera tra-
jectory. We then provide an authoring tool to manually align the camera
trajectory with a floor plan. The manual alignment is aided by an optimization
algorithm which incorporates both manual and place recognition constraint to
solve for an optimal camera trajectory aligned with a floor plan.
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7.2 System Overview
An overview of the proposed processing pipeline is given in Fig.7.1. The input
to our algorithm is an omnidirectional video stream together with a floor plan.
We first convert each frame to six radial undistorted images. After extracting
SIFT features we select key-frames based on the motion of the features. Then,
we search for already visited places using visual words and filter false frame
matches with a hierarchical filtering scheme. The ego motion of the camera is
estimated using a SfM algorithm. Finally, the camera trajectory is optimized,
as described in section 7.6, which incorporates both place recognition and
user supplied constraints.

7.3 Acquisition and Preprocessing
Camera model: The input to our algorithm is an omnidirectional video
stream, captured by a Ladybug21 camera. The camera consists of six 1024×
768 color CCDs. Five of which are positioned horizontally and one is pointing
upward. Similar to Tardif et al. in [102], we model the Ladybug unit head
as a single central projective pinhole camera holding six image planes with
different orientations in 3D space. Furthermore, we assume that the principle
axis of all six cameras are aligned and intersect in the origin of the Ladybug
unit head coordinate system. The projection equation for each of the six
cameras is then given by Eq.7.1:

xi = KiRi[I| −Ci]X, i ∈ {1, . . . , 6}, (7.1)

where Ki represents the intrinsic calibration matrix, Ri and Ci the rotation
and translation of camera i relative to the Ladybug unit head coordinate system.
Given the above assumption that ‖Ci‖ is negligible, the projection equation
rewrites as

xi = KiRi[I|0]X, i ∈ {1, . . . , 6}. (7.2)

This assumption results in the change of the focal length for each of the six
cameras, making the original light ray flatter. Triangulating 3D points using

1http://www.ptgrey.com/products/ladybug2/
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Figure 7.1: Overview of the proposed processing pipeline, for semi-automatic
alignment of camera trajectories with a floor plan.

this camera model will result in a wrong depth estimation. However for points
far enough this is negligible.

Data acquisition: To acquire our omnidirectional images, we mounted
the Ladybug camera onto a backpack. The backpack can be attached to a
wheelchair to scan long planar paths, such as corridors and hallways. Stair-
ways and locations not accessible with a wheelchair are recorded by wearing
the backpack. The wheelchair setup is in favor, since it gives a smoother cam-
era motion and a more natural height when virtually exploring the building.
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Feature extraction: Once a video sequence is captured, each camera
stream is converted into a sequence of images. The high lens distortion is
corrected using the lens undistortion algorithm provided by the Ladybug SDK.
To extract key points we use the SIFT implementation provided by Vedaldi
and Fulkerson2. We only keep features located inside a bounding box of size
280× 315 pixels, centered at the principle point.

Key-frame selection: Key-frames represent a subset of the image se-
quence, where two neighboring key-frames are separated such that a well
conditioned essential matrix can be estimated. A frame is selected as key-
frame if more than 10% of its features have moved over a threshold of 20
pixels.

The key frames together with their SIFT features form the input to the SfM
and junction detection algorithm outlined in section 7.4 and 7.5.

7.4 SfM using the Ladybug Camera

The input to our SfM algorithm are the key-frames of the omnidirectional
video stream which holds a set of discontinuous path sequences.

First, we transform the features of all six CCDs into the Ladybug coordinate
system and merge them to a single feature set. Then, we transform the 2D rays
into 3D vectors which are normalized to unit length to increase robustness of
the algorithm. For each pair of key-frames we compute the camera trajectory
by extracting rotation and translation from the essential matrix.

To compute the essential matrix between two frames the 1-point method
proposed in [96] is used. It exploits the non-holonomic constraints of our
wheelchair setup and the planar motion and thus requires only 1 point cor-
respondence to compute the essential matrix. This makes motion estimation
very fast and robust to high numbers of outliers. We omit relative scale es-
timation as this is usually subject to drift. Instead we rely on the internal
loop and junction constraints and the manual input to compute the relative

2http://www.vlfeat.org/ vedaldi/code/siftpp.html
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scales of the path. The full path is then obtained by concatenating consecutive
transformations.

7.5 Loop and Junction Detection

We recognize already visited places, solely based on vision. Our technique
requires to be rotation invariant, since the camera might traverse an already
visited place pointing into a different direction. Furthermore, finding spatially
adjacent frames which are temporally separated, requires a framework which
quickly discards a large portion of the input images, to reduce frame correspon-
dence search. We make use of the bag-of-word [79] schemes providing a first
guess of a loop-closure, which is verified using a geometric constraint. The
visual dictionary used for quantization, was trained beforehand on a dataset
containing random images taken from the Internet. The quantized frames are
inserted into a database. Then, for each frame the database is queried for sim-
ilar frames. The potential frame matches obtained from the query are further
pruned down using a hierarchical filtering scheme, consisting of a visual word
match, SIFT feature match and a final geometric verification. Each stage of
the hierarchical filtering scheme can either accept or reject a frame pair. If a
frame pair is accepted by one stage it is passed on to the next stage. A frame
pair is finally accepted as true match, if they satisfy the epipolar constraint
x>b Exa = 0, meaning the two frames share a common view of the same 3D
scene. Each true frame match provides one entry in the similarity matrix,
encoding the number of feature matches.

The similarity matrix is then post-processed to remove perceptual aliasing
matches, characterized by sparse clutter, see Fig. 7.4. We identify sparse
clutter by labeling the connected components of the binarized similarity ma-
trix and remove regions which size is below a certain threshold (30 in our
experiments).

For each frame we then search for the best match in the similarity matrix.
The best match is defined as the image pair with the highest ratio of inliers vs.
feature matches. These frame correspondences are then used as constraints in
the optimization process.

127
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7.6 Interactive Alignment to Floor Plan

7.6.1 Notation

In the following, camera positions and motions are written as coordinate frame
transforms. Camera positions are denoted by the coordinate frame transform
from the world origin into the camera coordinate system and written as Ei for
the i-th camera. The motion between camera Ei and camera Ei+1 is denoted
as Mi. All coordinate frame transforms consist of a 3× 3 rotation matrix R
and a 3 × 1 translation vector t and is represented by a 4 × 4 homogeneous
transfromation matrix:

[
R t
01×3 1

]
. (7.3)

In the following derivation, the variables E, M, V and N describe a ho-
mogenous transformation as formulated in Equation 7.3. In this chapter the
transformations and their uncertainties are written in terms of the Lie algebra
of SE(3) using the exponential map. This parameterization is extensively
discussed in [100] and not repeated here.

7.6.2 Fusing SfM with Ground Control Points

From the SfM algorithm we get the camera path as a sequence of transfor-
mations between subsequent cameras. The transformations have 6DOF and
are denoted as M0, ...,Mn. In the interactive alignment this path needs to
be fused with ground control points V0, ...,Vm that are specified by the user.
The path needs to be changed so that it goes through the ground control points.
The individual camera positions of the path are denoted by E0, ...,En which
are the results of the fusion. Fig. 7.3(a) shows an illustration of a camera
path and the corresponding transformations. Every transformation has an un-
certainty specified by a covariance matrix. We are seeking the maximum a
posteriori estimate of the transformations E0, ...,En which is done by mini-
mizing the following Mahalanobis distance:
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w = min
E

(∑
i

(Mi − (Ei+1 −Ei))
>C−1

Mi
(Mi − (Ei+1 −Ei))

+
∑
i

(Vi −Ei)
>C−1

Vi
(Vi −Ei)

)
(7.4)

= min
E

(
(M−HE)>Ĉ−1

M (M−HE)

+(V −KE)>Ĉ−1
V (V −KE)

)
(7.5)

In the first term of Eq. 7.4 Ei and Ei+1 should be computed so that the
transformation between the two camera poses matches the transformation
Mi computed from SfM. At the same time the distance between the ground
control point transformation Vi to Ei needs to be minimized. Eq. 7.4 can
be written in matrix form without summation with H and K being incidence
matrices that specify for each constraint which E, M and V transformations
are compared to each other. In general, this problem can be solved by non-
linear optimization as shown in [3]. A different solution to this problem was
proposed by Smith et al. in [100]. They proposed a linear time algorithm for
the case of a sequential camera path with sparse ground control points. The
algorithm works in 3 steps. First, initial estimates for the Ei are computed
by concatenating the Mi transformations starting from the beginning of the
sequence. The covariances are propagated accordingly. Ground control points
Vi are fused into this by combining these 2 measurements if available. In the
second step this is done again but starting with the end of the sequence. This
results in two measurements for each Ei which are then combined optimally
in a third step. The combination is done by solving Eq. 7.5 for two individual
measurements only.

w = min
Eopt

(
(Ej −Eopt)

>C−1
Ej

(Ej −Eopt)

+ (Ei −Eopt)
>C−1

Ei
(Ei −Eopt)

)
(7.6)
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This scheme is also used to combine a transformation Ei with a ground
control point Vi.

w = min
Eopt

(
(Ei −Eopt)

>C−1
Ei

(Ei −Eopt)

+ (Vi −Eopt)
>C−1

Vi
(Vi −Eopt)

)
(7.7)

For our system we extended the scheme by adding internal loop constraints
Nij . These Nij are transformations between frames i and j that are computed
by place recognition. The illustration in Fig. 7.3 depicts a loop constraint Nij .
In our fusion these constraints need to be fulfilled too. For this Eq. 7.5 is
extended by an additional term.

w = min
E

(∑
i

(Mi − (Ei+1 −Ei))
>C−1

Mi
(Mi − (Ei+1 −Ei))

+
∑
i

(Vi −Ei)
>C−1

Vi
(Vi −Ei)

+
∑
i,j

(Nij − (Ej −Ei))
>C−1

Nij
(Nij − (Ej −Ei))

 (7.8)

= min
E

(
(M−HE)>Ĉ−1

M (M−HE)

+(V −KE)>Ĉ−1
V (V −KE)

+(N− LE)>Ĉ−1
N (N− LE)

)
(7.9)

To solve Eq. 7.9 we extend the original algorithm proposed in [100] as fol-
lows. Our data consists of multiple discontinuous path sequences, which are
interconnected by place recognition constraints. The sequences are optimized
independently and sequentially. Fig. 7.3(b) illustrates the case of optimizing
two connected sequences. The illustration contains two paths p1 and p2. In a
first step p1 is optimized. When computing the value for Ej the position of
Ei from the path p2 is fused with path p1. Next, path p2 is optimized and
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here the transformation Ej is used to be fused into Ei. This process has to be
iterated so that updates in poses and covariances are propagated sufficiently.
Place recognition constraints from self intersecting paths are treated in the
same way. This extension allows us to use the initial sequential algorithm
of [100] for paths with intersections and loops. It does not find the global min-
imum of Eq. 7.9 but experiments showed that it is an efficient and practicably
approach.

7.7 Experiments

To demonstrate our algorithm we recorded a full floor of a building, excluding
offices and rooms not accessible to the public. The stream holds over 14k
omnidirectional frames resulting in a total of over 84k mega-pixel images.
After preprocessing a set of 4k key-frames remain. They form the input to the
junction detection and the structure from motion algorithm. Fig. 7.7 shows
one omnidirectional frame of our input, after correcting for the lens distortion.

The similarity matrix obtained from the junction detection, represents frame
correspondences between frames which lay temporally apart, see Fig. 7.4.
Clusters parallel to the diagonal represent paths that were re-traversed in the
same direction while clusters orthogonal to the diagonal were traversed in
opposite direction. The sparse clutter, around frame (2040, 2330) represents
false frame matches which are due to perceptual aliasing. We only show off-
diagonal frame matches, since frames temporally close to each other always
look similar.

The SfM algorithm is run on the whole stream, which holds multiple discon-
tinuous paths. The beginning of each sub path can then be found by looking
at the number feature matches and their corresponding inlier ratio. Neighbor-
ing frames, which are spatially apart and therefore represent the ending or
beginning of a new path, will have a few feature matches but almost no inliers
satisfying the epipolar constraint. Fig. 7.5 shows the total number of feature
matches between two consecutive frames and their number of inliers. The sub
graph represents the ratio of feature matches and inliers. Single peaks in the
ratio graph indicate the beginning of a new path.

We then automatically extract frame correspondences from the similarity
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matrix to append non continuous paths and introduce loop closure constraints
into our optimization. In our experiments 695 constraints were introduced
automatically. Fig. 7.6 shows the SfM after optimization together with the
final alignment on top of the floor plan.

When combining the SfM trajectory with control points provided by the
user, the error uncertainty of the SfM can be guided through the covariance
matrix C, Eq. 7.10, where a strong motion in one direction will provide more
uncertainty than a small motion, likewise for the rotation, where a big rotation
holds more uncertainty than a small one. We therefore linearly adapt the
variance in x and y direction depending on the motion. Similarly for the
rotation around the z-axis the variance is increased with increasing rotation
angle α.

C =



10−6 0 0 0 0 0

0 10−6 0 0 0 0

0 0 α · 10−3 0 0 0

0 0 0 x · 10−2 0 0

0 0 0 0 y · 10−2 0

0 0 0 0 0 10−6

 (7.10)

7.8 Applications

Given the proposed virtual tour building system, the data can be used for dif-
ferent applications. The most prominent application is the virtual exploration
of indoor spaces, similar to google streetview. The second application we
consider is an indoor navigation system. We discuss both applications in more
details in the following two sub sections.

7.8.1 Authoring

The authoring tool, Fig. 7.6 provides a simple and efficient way to align the
camera trajectory to a floor plan. The user can adjust both camera positions
and rotation. A preview of the selected camera is provided to help the user
localize the corresponding position on the floor plan. The core algorithm to
support the alignment process is outlined in section 7.6.
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We show in our experiments that a user can align a full floor plan within
a couple of minutes using a small number of control points. In addition
camera poses can be augmented with a label, describing the locations, such
as: lecture room name, cafeteria or elevator. The annotation is used to help a
user navigate through the building.

7.8.2 Building Explorer

In the work of [98] we developed a viewer tool consists of two windows, a
main window showing the environment which is currently explored by the
user and a mini-map showing the user’s current position and viewing direction
on the floor plan. To display the environment, we first render a flat panoramic
image from all six camera views which is used to texture a sphere. The
mini-map is provided as a navigation help. It displays the current position
and viewing direction of the user on top of a floor plan. The mini-map also
provides an easy way to quickly change from one place to an other, by clicking
the new location of interest.

When exploring the virtual tour, the user can move forward, backward
and change direction at places where two paths intersect. Therefore we can
not rely on the sequential storage of the video stream, to display the next
frame, since neighboring frames, especially at junctions have been recorded
at different time instances. Instead we use the camera position to select the
next frame. Depending on the user’s current viewing direction and position
we search the neighborhood for the closest frame located in the user’s viewing
frustum. The new frame’s rotation is adapted such that it matches the current
frame’s viewing direction.

Synthetic views are generated between neighboring cameras to provide a
smooth transition between frames and improve the user experience. The syn-
thetic view is rendered by interpolating the reference images using optical
flow. To further enhance the exploration of a virtual tour, the viewer appli-
cation provides a functionality to guide the user to a certain point of interest.
Given a location and a destination the viewer computes the shortest path to
the destination and provides navigation directions, such as turns or reach of
destination. For this purpose the virtual tour was manually augmented by asso-
ciating camera poses with locations of interest such as lecture room, cafeteria
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and student registration office.

7.8.3 Building Navigation
Given the fully aligned and annotated map we can use this information to
provide an indoor navigation system. In the work of [18] we implemented
such a system. Given an initial location and the destination a shortest path is
computed and a turn-by-turn navigation provided to the user.

While the user walks through the building the position is continuously
tracked based on a pedestrian dead reckoning. While dead reckoning based
on step detection quickly introduces drift in the position estimation. It can be
corrected to some extend by exploiting the topology of the building. When
a turn is taken the user can be re-located to the closest possible turn. In
addition we use the phone’s IMU to classify different motions types such as
walking, running, standing, walking upstairs and walking downstairs, which
were previously learned from a labeled dataset. Depending on the motion
(walking, running), different tracking priors can be used or if the walking
upstairs, walking downstairs are recognized the user can be located to the
closest possible staircase. Sample images of the system are given in Fig. 7.9.
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Figure 7.2: Backpack acquisition setup, consisting of a Ladybug2 camera, a
small computer to store the captured data and a battery set to power
the system.
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a) b)

Figure 7.3: Vi denotes the control points set by the user, Ei denotes the cam-
era translation and rotation, Mi the motion between neighboring
frames and Ni loop closure or inter path constraints. a) illustrates
a self intersecting camera trajectory and b) two interconnected
paths.
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a) b)

c) d)

Figure 7.4: The similarity matrix of the processed data. a) similarity matrix
after visual word matching, and b) after geometric verification.
Note that the sparse clutter around frame (2040, 2330) in image b)
represents false frame correspondences due to perceptual aliasing.
c) The final similarity matrix after post-processing, i.e., removing
sparse clutter. d) the floor plan showing the full aligned camera
trajectory with the according frame correspondences.
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Figure 7.5: The stream holds multiple non continuous path sequences. To find
the beginning of a new path, we compute the ratio between the
number of feature matches (blue) and the number of inliers (red).
The ratio is shown in the subplot in (green). Peak values represent
the beginning of a new path sequence, 5 in the processed dataset.
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a) b)

Figure 7.6: In both images only every 10th camera pose is visualized with
yellow dots. a) represents the output of the SfM algorithm af-
ter applying recognition constraints, obtained from the similarity
matrix, without any user interaction. b) represents the final re-
sult after aligning the camera trajectory with the floor plan. The
point correspondences used to align the camera trajectory with the
underlaying floor plan are shown in red.

a) b) c) d) e) f)

Figure 7.7: One omnidirectional frame. a) - e) represent the five vertical
aligned camera views. f) represents the upward pointing camera
view. Note that each image has been corrected for lens distortion.
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Figure 7.8: Visualization application to interactively explore the virtual tour.
A mini-map shows the user’s current position and viewing direc-
tion on the floor plan. The blue lines show a possible exploration
direction. Right, yellow arrows indicate the shortest path to a
location of interest. Red arrows indicate turns at bifurcations.
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Figure 7.9: Navigation system. Left, shortest path augmentation, from source
to destination. Right, alignment correction using the building
topology. Red, pedestrian dead reckoning. Blue pedestrian dead
reckoning with incorporated building topology. Green, travelled
path.
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Recent approaches to visual robot localization using local image features
and visual words proved to work very well [9, 23, 30, 97]. An underlying
assumption for these methods however is, that one already collected images
for all possible locations in a database. A scenario, where a database was
created using images of one floor of a building and having the robot localize
itself on a different floor of the building would be beyond the capabilities of
these methods. This is exactly the scenario that was created for the Image-
CLEF 2010 RobotVision competition [86]. The goal was to train the robot
with locations (e.g. office, kitchen, printer room) from one floor, so that it
can identify the corresponding locations on the other floor, where the loca-
tions differ in details like different chairs, different desks, different posters,
different curtains, etc. In this chapter we describe an approach that is targeted
towards resolving this scenario. The approach works by using a global image
descriptor that captures the large scale features of the location, but not the
fine details. This would allow to match up two locations that share the similar
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overall structure but differ on the fine details. Fig. 8.1 illustrates this concept.
The two images show two meeting rooms from the different floors. The table,
chairs and pictures on the wall are different but the overall structure is similar.
There is a table in the center of the room, which creates a strong horizontal
edge feature. The outline of the room walls itself creates also strong edge
features converging in a similar manner. These are the features that we would
like to capture. To achieve this our approach uses GIST [80] as a global visual
descriptor. In addition to visual similarity we propose a subsequent geomet-
ric verification check. For geometric verification we compare the vanishing
points of matching images, which are computed from line features in the im-
ages. This geometric check ensures, that images are matched up only, if they
are taken in the same geometric setting (e.g. a similar sized room) and from
the same viewpoint.

In the experiments using the dataset of the ImageCLEF 2010 RobotVision
competition [86] we demonstrate that using GIST it is possible to capture these
larger scale similarities and that it is possible to match up the locations like the
one depicted in Fig. 8.1. We also show that the vanishing points are useful for
geometric verification and improve the localization results. Finally we report
the scores achieved in the ImageCLEF 2010 RobotVision competition.

8.1 Related Work

The GIST descriptor used in our approach was first introduced by Oliva et
al. in [80]. It was used in [105] for place and object recognition. They showed
that it is possible to distinguish between different places or rather scenes using
the GIST descriptor. In particular they presented classification results on the
following scenes: building, street, tree, sky, car, streetlight, person. In our
current work we show that it is possible to use GIST for place recognition in
typical indoor environments. In addition we added a geometric verification
step targeted to indoor environments. GIST was also used in [75] for place
recognition using panoramic images. There the GIST descriptor was adapted
to the properties of panoramic images.
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Figure 8.1: Two images from the location class ’Meetingroom’ on different
floors. To identify these two images as matching an image descrip-
tor needs to identify the large scale similarities (room configura-
tion, table position) despite the obvious differences on the small
scale.

8.2 GIST Descriptor and Vanishing Points

Before presenting our pipeline for semantic labeling of space, we first discuss
the GIST descriptor which was introduced by Oliva et al. in [80]. The GIST
descriptor represents scenes from the encoding of the global configuration,
ignoring most of the details and object information present in the scene. We
then further discuss the concept of vanishing points, which are projections
of points laying at infinity. They provide information on the relative camera
orientation with respect to the scene and are used as a geometric verification
after image retrieval using the GIST descriptor.

8.2.1 GIST Descriptor

The GIST descriptor was proposed by Oliva et al. in [80] for scene catego-
rization without the need for segmentation and processing of objects. The
structure of the scene is estimated using a few perceptual dimensions such as
naturalness, openness, roughness, expansion, ruggedness which describe the
spatial properties of the scene. The dimensions are reliably estimated using
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spectral and coarsely localized information, where membership in semantic
categories such as streets, highways, etc. are projected close together in a
multidimensional space. The low dimensional representation of a scene is
represented by a 960 dimensional descriptor, which allows quick retrieval of
similar images from a large database. In the following, image search consists
in finding the set of images with the smallest L2 distance.

8.2.2 Vanishing Points

The premise to find vanishing points are man-made environments containing
parallel straight lines. When looking at the perspective projection of three
dimensional parallel lines, they intersect in one common point in the image
plane, the so called vanishing point (VP) [44]. Vanishing points therefor
represent the projections of 3D points laying at infinity, since parallel lines
intersect at infinity.

To estimate the vanishing points, we first detect edges using canny edge
detection and extract long straight lines from the edge segments. The straight
lines are used as input for our RANSAC (random sample consensus) algo-
rithm, which estimates multiple vanishing points in a single image. The algo-
rithm first randomly selects two lines and computes their intersection point P .
If at least 20 of the lines passes through the intersection point P , the point is
re-estimated using a non-linear optimization, where all supporting lines are
included in the optimization process. The supporting lines are then removed
from the input set and the procedure is repeated until either no further lines
are available or no further vanishing point is found.

Fig. 8.2 shows line sets supporting different VPs. Each color represents the
support of a different VP.

8.3 Place Recognition

The proposed pipeline for semantic labeling of space is illustrated in Fig. 8.3.
The method classifies an image into one of the following three categories,
which is either a label learned from a training dataset, the ”Unknown” label
or in some cases the algorithm would make no decision.
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Figure 8.2: Left, lines are classified to the according VPs. On the right the
VPs are shown, except the one located far from the image center
(infinity).

In a first step a database of GIST descriptors is build from the training
dataset. Our database consists of 4780 images and is represented by a kd-tree
for fast k-nearest neighbors search, we chose k to be 10 in our experiments.
In a first step we query the database with the query image q, for its 10 nearest
neighbors stored in the result set r. Images in the result set r with a L2 distance
to the query image q, greater than a given threshold (0.6 in our experiments)
are removed from r. If r is empty, the image q is labeled as ”Unknown”.
Otherwise the set r is further matched to a set of ambiguous images, which
were previously learned from the training dataset, see Fig. 8.4. If the set of
ambiguous images in the set r is greater than the set of non-ambiguous images,
the algorithm refrains a decision on the image q, due to lack of confidence.
Otherwise, a geometric verification is applied to the remaining set of non-
ambiguous images. The geometric verification compares the angular distance
of vanishing points between the query image and the non-ambiguous images.
Images with a large angular distance (0.34 in our experiments) are removed
from the set r. Finally, the query image is assigned the label of the image with
the smallest angular distance or is assigned the label ”Unknown” if the set r
is empty.

To find vanishing point matches between two images, we first normalize the
VP vector to unit length, such that the VP lays on the surface of a Gaussian
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Figure 8.3: Overview of the proposed pipeline.

Figure 8.4: Ambiguous places are represented by similar GIST descriptors
with different image labels. We have trained two classes of am-
biguous images, door frames (left image) and walls, whiteboards
(right image).

sphere. Then, for each VP in one image we do an exhaustive search for the
closest VP in the other image i.e., the VP with smallest angular distance.
We assume that two similar scenes match, if their appearance is similar i.e.,
similar GIST descriptor and similar vanishing points, meaning the camera has
a similar point of view of the 3D scene being observed.

8.4 Evaluation

Our algorithm was evaluated at the 3rd edition of the Robot Vision challenge,
held in conjunction with IROS 2010. The challenge addresses the problem
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Corridor Kitchen Meeting Room Small Office

Large Office Printer Area Toilet Recycle Area

Figure 8.5: Sample images from the training dataset.

of classifying rooms and functional areas based on a pair of stereo images.
Three image sets were provided, one training set for learning, one validation
set for the participants to validate their algorithm and one testing set used for
the competition. All three sets were captured in the same building, but on
different floors. All three floors have a set of common rooms, such as Offices,
Toilet, Printer Area, Corridor, etc. and rooms which are only present in one of
the dataset such as Kitchen, Lab, Elevator, etc.. Sample images of the training
sets are provided in Fig. 8.5.

Task 1 of the competition asked to build a system which can answer the
question ”Where am I?”, given one pair of stereo images. The answer can
either be a previously learned label, the ”Unknown” label if the system is pre-
sented with a new location not contained in the training set or it can refrain a
decision by leaving the image unclassified. The performance of the algorithm
was evaluated using the following scoring scheme:

• +1.0 point for each correctly classified image.

• -1.0 point for each misclassified image.

• 0.0 point for each image that was not classified.
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8 Visual Localization

• +2.0 points for a correct detection of unknown category.

• -2.0 points for an incorrect detection unknown category.

Our system ranked first, with 677 points in the 3rd edition of the Robot
Vision challenge. The winning run used the following configuration: a search
window size of 10 images, a minimum GIST distance threshold of 0.6, and a
minimum mean angular distance threshold of 0.34. Door frames, walls and
whiteboards were learned and added to the ambiguous location set as well as
the following four rooms Kitchen, Small Office and Large Office.

Bellow we further discuss the benefit of the geometric verification. The
evaluation is based on the validation set, which contains 2069 images, where
14.4% of the image labels are unknown to the training set. Without geometric
verification an image match is obtained by searching the training set for the
image with the smallest L2 GIST distance. Using the geometric verification
an image match is obtained by choosing the image with the smallest mean
angular distance between the query image and the images obtained from the
k-nearest neighbors, with k = 30. Table 8.1 lists the recognition rate of
each category known to the training set. Overall, the geometric verification
performed slightly superior (recognition rate of 43.15%) to the pure GIST
based method (recognition rate of 42.03%). The Meeting Room category
achieved an improvement of over 8%.

For the label Corridor and Large Office the pure GIST method performs
better. The reason our method provides a lower performance on the Corridor
category is that many images are misclassified at transitional places, where the
robot moves from the corridor into a room. Fig. 8.6 illustrates such a misclas-
sification. In the Large Office category the misclassified images are mainly
classified as Kitchen or as Small Office. Fig. 8.7 illustrated a misclassification
based on the GIST method, which is corrected by the geometric verification.

Our unoptimized Matlab implementation takes 51.21 seconds on a 2.66GHz
Core2 Quad CPU, to classify 2069 images using precomputed GIST descrip-
tors and precomputed vanishing points. Extracting GIST descriptors takes
in average 1.91 seconds on a 487 × 487 pixel image. We make use of the
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8.4 Evaluation

Corridor Corridor Meeting Room
(a) (b) (c)

Figure 8.6: False image match due to ambiguous labeling of the training set.
(a) shows the original query image. (b) shows the image with
the smallest GIST distance 0.41 and a mean angular distance of
0.28. (c) shows the image with the smallest angular distance,
GIST distance 0.46 and a mean angular distance of 0.01.

freely available Matlab code provided by Antonio Torralba1. We use our own
Matlab implementation to extract vanishing points. In average it takes 0.65
seconds to extract the vanishing points of one image.

1http://people.csail.mit.edu/torralba/code/spatialenvelope/
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8 Visual Localization

Corridor Small Office Corridor
(a) (b) (c)

Figure 8.7: Correct image match after geometric verification. (a) shows the
original query image. (b) shows the image with the smallest GIST
distance, 0.39 and a mean angular distance of 0.37. (c) shows the
image with the smallest angular distance, GIST distance 0.47 and
a mean angular distance of 0.01.

Without Geometric Verification With Geometric Verification
Corridor 74.31% 72.85%
Kitchen 0.00% 0.00%

Large Office 23.41% 19.93%
Meeting Room 44.44% 52.77%

Printer Area 40.21% 40.21%
Recycle Area 47.94% 52.05%
Small Office 14.50% 20.54%

Toilet 84.61% 91.20%

Table 8.1: Recognition rate obtained from the validation dataset. Note that the
validation set does not hold the label Kitchen, therefor the recogni-
tion rate for that label is 0.00%. See text for more details.
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9 Conclusion
In this thesis we have proposed several algorithms to estimate camera poses
from a sequence of images and a known gravity direction, compute sparse and
dense 3D models from rolling shutter imagery and ways to create virtual tours
of indoor environments.

The vast majority of today’s smart phones are equipped with diverse number
of sensors, such as GPS, barometer, illumination sensors, image (CMOS)
sensors, IMU (gyroscopes and accelerometers) to name a few. The IMU
sensor comes in specially handy in the camera pose estimation process since
it provides two orientation angles of the phone relative to the gravity direction.
This information can be used when estimating the relative or absolute pose of
the camera, reducing the algorithmic complexity. While traditional algorithms
use 5 point correspondences to estimate the relative pose, our methods use
only 3 point correspondences in the general case and 2 point correspondences
if a dominant scene plane is known. Reducing the minimal number of required
point correspondences, reduces the total number of RANSAC iterations which
leads to a great speedup of the pose estimation algorithm.
The achieved results (chapter 3) on real world experiments demonstrate that
the assumptions about known plane normals (ground plane and vertical walls)
holds in typical usage scenarios. Our algorithms have successfully been used
for indoor robot navigation as well as for 3D reconstruction from aerial im-
ages captured by an UAV.

The majority of image sensors used today, especially in mobile phones, make
use of the CMOS technology. While this technology has many advantages,
such as being cheap to produce, being more light sensitive than it’s CCD
competitor and in general suffers less from blooming artefacts, it has the
peculiarity of exposing each scanline sequentially, so called ”rolling shutter”.
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9 Conclusion

This sequential exposure introduces a temporal delay in the image formation
process, which becomes specially apparent when either the camera is moving
relative to the scene or when recording an agile dynamic scene. In both cases
undesired distortion artefacts are present in the captured images.

Using standard pose estimation algorithms on such imagery leads to wrong
and inconsistent camera poses, since only one pose is estimated for the entire
image. Since each scanline is exposed at a different time, the camera pose
differs with each scanline. We show that the time-delay present in the image
formation process, can be exploited to estimate the absolute camera pose
together with the camera velocity.

The proposed algorithm requires a minimal set of 5 2D-3D point corre-
spondences. The solution is derived based on Gröbner Basis and can give
up to 8 real solutions. Finally, we relax the linear velocity assumption and
do a non-linear refinement on the full 12 degree of freedom (translation and
angular velocity, and the camera pose) of the rolling shutter camera.

In chapter 5 we analysed the setting of camera motion induced rolling shutter
effects and have shown that already for very moderate speeds and resolutions,
rolling shutter distortions are significant and can break standard stereo algo-
rithms. In particular, although global shutter algorithms seem to work out well
(resulting in a dense, smooth depth map) the results are actually not correct.
We then generalized the homography transfer across a plane known for global
shutter cameras to the setting of rolling shutter, considering also lens distor-
tion that intertwines with the rolling shutter. Based on this building block,
a plane sweep approach has been implemented that was shown to produce
correct results on real and synthetic data. We have furthermore analysed two
approximations that provide a significant speedup at the cost of reduced ac-
curacy and analysed the structure of the residual error. This allows to decide
for speed or precision in case the rule of thumb presented indicates a rolling
shutter model should be used for the setting at hand.

Images that were captured with car mounted cameras usually also come with
GPS/INS poses, which were captured alongside. While those pose give al-
ready a very good estimate of the camera trajectory they are not precise enough
for accurate 3D reconstruction.
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Chapter 6 proposes a rolling shutter bundle adjustment, which uses as input
GPS/INS poses and optimizes over the full 3D structure, camera poses and
velocities. Due to the sparse visual connectivity and sometimes even missing
visual information (for instance when the camera images only sky at the end
of a block) reconstruction can become crooked or can even break apart. To
over come this burden we proposed to include an additional smoothness term
in the optimization process, to obtain a complete and consistent model. We
evaluate our propose pipeline on a camera trajectory of 2.6km length and show
quantitative results of the sparse and dense reconstruction.

While the previous work focuses mainly on outdoor scenes, we also explore
the reconstruction of indoor environments. Chapter 7 proposes a full system
to record and create topological maps from an omnidirectional video stream.
While the reconstructed camera trajectory suffers from drift and lacks the over-
all scale, it cannot directly be overlaid with the floor-plan of the building. To
align reconstructed camera trajectory with the floor-plan, we proposed a user
guided optimization scheme. In general the system is not limited to indoor
scenes but could also be used in outdoor environments, where control points
could be provided from GPS. We have shown that the constructed tours can be
used for indoor navigation, providing the user with a turn-to-turn navigation
system.

Indoor scenes often consist of texture less regions, such as uniformly col-
ored walls, floors or ceilings and reflecting surfaces (windows), which make
keypoint based matching techniques brittle. In addition indoor scenes often
consist of movable furniture, which breaks any localization algorithm which
relies on the scene geometry. In chapter 8 we address this problem using
global visual features such as GIST. To verify the geometry, we use vanishing
points, to ensure a consistent orientation between the query image and the
database image. We show that this type of geometric verification can indeed
improve the recognition rate when used in conjunction with global visual
features.
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9 Conclusion

9.1 Future Prospects
Reconstructions based on street level data provide great geometrical details
of building facades but unfortunately lack completeness of the building. For
instance, such reconstructions are missing roofs of buildings, courtyards or
other parts of the building which are not visible from the street. On the other-
hand aerial reconstructions provide great completeness of buildings, but lack
geometric details (Fig. 9.1). In the future we did like to fuse the different
reconstruction, to obtain complete and detailed model of urban environments.
Such fusion comes with a great challenge of registering street-level images
to aerial imagery. The registration process is particularly difficult due to the
large viewpoint change between the two data sources, which makes patch
based matching techniques brittle.

While those reconstruction stop at the entrance of a building, augmenting
them with indoor reconstructions would provide the ultimate immersive envi-
ronment. Here the challenge of aligning indoor with outdoor reconstructions
is even bigger, since often very limited visual correspondences exist between
the two models.

The proposed reconstruction algorithms make the strong assumption of
capturing a static scene. This assumption often doesn’t hold, especially when
working with street level imagery, containing moving cars and pedestrians.
Being able to detect and reconstruct moving objects would be the ultimate
goal towards 3D reconstruction and scene understanding.
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9.1 Future Prospects

Figure 9.1: Left aerial reconstruction of the San Francisco cityhall (courtesy
of google maps). Facades lack geometric details and are approxi-
mated as piecewise planar. Right, reconstruction of facade using
street level imagery. The model is incomplete (missing roof) but
provides detailed geometry.
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