Optimal design of temperature swing adsorption processes for the capture of CO₂ from flue gases

Author(s):
Joss, Lisa

Publication Date:
2016

Permanent Link:
https://doi.org/10.3929/ethz-a-010722158

Rights / License:
In Copyright - Non-Commercial Use Permitted
OPTIMAL DESIGN OF TEMPERATURE SWING ADSORPTION PROCESSES FOR THE CAPTURE OF CO$_2$ FROM FLUE GASES

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES OF ETH ZURICH
(Dr. sc. ETH Zurich)

presented by
LISA JOSS
MSc ETH PE, ETH Zurich

born on March 6th, 1988
citizen of Bern, Switzerland

accepted on the recommendation of
Prof. Dr. Marco Mazzotti (ETH Zurich), examiner
Prof. Dr. Giuseppe Storti (ETH Zurich), co-examiner

2016
ABSTRACT

The capture of CO₂ from flue gases is a relevant separation task in the set of carbon capture and storage technologies (CCS), which aim at reducing anthropogenic greenhouse gas emissions in order to mitigate climate change. Because of the very large flow rates of flue gas, and the rather high energy requirement of commercial liquid scrubbing technologies, a growing number of alternative technologies are being investigated. While liquid scrubbing processes are hampered by the volatility of the solvents used, adsorption processes rely on solid sorbents, which are non-volatile, exhibit a greater stability and lower desorption heat. Moreover, temperature swing adsorption (TSA) processes only require thermal energy, providing an additional benefit over pressure- or vacuum swing adsorption processes. TSA involves a multi-column and dynamic operation; the design of such processes is a challenging task due to the many degrees of freedom involved. The aim of this thesis is to advance the understanding of the design of TSA processes by developing and applying mathematical methods with different levels of complexity and accuracy.

In a first part of this work, a detailed model describing the operation of TSA processes is calibrated for a pertinent adsorbent-adsorbate system, namely zeolite 13X-CO₂/N₂. In particular, single column dynamic experiments are carried out for the estimation of transport parameters in a lab-scale setup. The performed experiments indicate that the adsorption dynamics of the investigated system are more sensitive to heat transfer than to mass transfer. After calibration, the model is able to predict the outcome of cyclic TSA experiments with sufficient accuracy.

An equilibrium-based shortcut model is developed with the aim of gaining a better understanding of the global behavior of TSA processes. A semi-analytical solution of the cyclic steady state is presented for a four step cycle. Important trends are revealed by performing a parametric analysis of the operating conditions on the relevant quan-
tities, that is, purity, recovery, specific thermal energy consumption and productivity. Optimal operating conditions are identified and a trade-off between productivity and specific energy consumption is presented and discussed.

Based on the insight gained from the shortcut model, more elaborate cycle configurations are designed and assessed for their use with zeolite 13X and for two applications: CO$_2$ capture and utilization and CO$_2$ capture and storage. The detailed model is used to investigate the different cycles by optimization of the operating conditions. The effect of plant-wide factors are accounted for in the optimization, namely the energy penalty assigned to flue gas drying, heat integration possibilities, and scheduling of the cycle steps for the continuous operation using multiple columns. The cycle configuration is observed to have a large impact on the process performance: among the investigated cycles, a novel six step cycle achieves for the first time stringent specifications required for CCS. Namely, 96% CO$_2$ purity and 90% recovery are achieved with a commercial adsorbent, a conventional shell and tube column and for heating temperatures below 150 °C. The performance of this optimized TSA process is similar to that of commercial amine scrubbing while keeping the inherent benefits of TSA.

Finally, a class of recently discovered materials is investigated for their use in TSA processes. Specifically, diamine-appended metal organic frameworks exhibit temperature dependent step-shaped CO$_2$ adsorption isotherms with negligible hysteresis. The shortcut and detailed models mentioned above are used to investigate the performance of five recently reported materials of this class for post-combustion CO$_2$ capture by TSA. Even though the isotherm shape of these materials seems promising, only two of the considered materials allow achieving CCS specifications. Recognizing that optimal performance can only result from a synergism between process design and material characteristics, step-shaped isotherms and process conditions were optimized simultaneously for highest productivity and lowest specific energy consumption. The resulting isotherms can be interpreted as a target for material design.

The results achieved in this thesis show that the separation of CO$_2$ from flue gases can indeed be carried out by TSA, and they present a methodology for the systematic design such processes.
La separazione della CO\textsubscript{2} dai fumi di combustione è un operazione che si situa nell’ambito della cattura e stoccaggio della CO\textsubscript{2} (CCS), il cui scopo è la riduzione di emissioni a effetto serra per attenuare i cambiamenti climatici. Al fine di sviluppare processi di cattura con ridotto impatto energetico, sono state proposte tecnologie alternative ai processi commerciali basati sull’assorbimento in fase liquida, con lo svantaggio inerente legato all’uso di solventi volatili. I processi di adsorbimento sono una delle alternative proposte. Questi processi necessitano di sorbenti solidi che, rispetto a quelli liquidi, presentano il vantaggio di non essere volatili, di essere maggiormente stabili, e di essere caratterizzati da un ridotto calore di desorbimento. Inoltre, i processi TSA (temperature swing adsorption), il cui funzionamento è basato sulla capacità differente di adsorbimento a diversa temperatura, necessitano principalmente di energia termica, fattore che costituisce un vantaggio ulteriore rispetto a una rigenerazione del sorbente basata su un cambiamento di pressione (processi PSA/VSA). I processi TSA coinvolgono più colonne a letto fisso operate in modo dinamico; la progettazione di questi processi è intrinsecamente laboriosa, dato l’elevato numero di gradi di libertà che comporta. Lo scopo di questa tesi è una comprensione approfondita della progettazione di processi TSA per la cattura di CO\textsubscript{2} dai fumi di combustione tramite modelli matematici di complessità e accuratezza variabile.

La prima parte del lavoro prevede l’uso di un modello dettagliato per la stima dei parametri di trasporto per il sistema binario CO\textsubscript{2}/N\textsubscript{2} tramite esperimenti a singola colonna. I risultati indicano che il comportamento dinamico di questo sistema risulta significativamente influenzato dalla velocità di trasferimento di calore piuttosto che di materia. Il modello così calibrato è utilizzato per predire con adeguata accuratezza l’esito di esperimenti TSA ciclici a due colonne.

Una comprensione più approfondita del processo è ottenuta median-te l’uso di un modello semplificato, basato sull’assunzione di equilibrio locale tra fasi. Si presenta quindi una soluzione semi-analitica dell’o-
operazione di un ciclo a quattro stadi al suo stato stazionario ciclico. Le analisi parametriche effettuate permettono di mostrare come i parametri del processo influenzino le prestazioni in termini di purezza, recupero, consumo specifico termico e produttività. Sulla base delle condizioni operative ottimali e fattibili così identificate, è possibile individuare un compromesso tra produttività e consumo termico.

Sulla base dei risultati accolti e analizzati, sono concepite configurazioni di cicli più avanzate. Le prestazioni di questi cicli operati con un adsorbente zeolitico di tipo 13X sono valutate in condizioni operative ottimali nel caso di applicazioni di cattura e stoccaggio della CO₂, e di cattura e utilizzo in impianti chimici. L’ottimizzazione delle condizioni operative coinvolge anche aspetti dell’impianto esterni al TSA, ad esempio il consumo energetico legato all’essicamento dei fumi, il ricupero di calore via integrazione e la pianificazione degli stadi del ciclo per ottenere un processo continuo. In tale ambito, si osserva che la configurazione del ciclo ha un impatto significativo sulle prestazioni. Fra i cicli studiati, un nuovo ciclo a sei stadi permette per la prima volta di raggiungere le elevate specifiche richieste nell’ambito della CCS, ossia una purezza maggiore del 96% e un recupero maggiore del 90%, con un adsorbente commerciale e con una colonna a fascio tubiero. Questo particolare processo TSA raggiunge delle prestazioni paragonabili a quelle di unità commerciali basate sull’impiego di ammine, conservando tuttavia i vantaggi dei sorbenti solidi.

Infine, sono analizzate le potenzialità di una classe di materiali scoperta di recente per il suo utilizzo nei processi TSA. Si tratta di materiali metallorganici microporosi (MOFs) funzionalizzati con gruppi diamminici; le isoterme di adsorbimento della CO₂ di tali materiali presentano un peculiare andamento a “gradino”. La valutazione delle prestazioni di cinque materiali diversi in un ciclo TSA a quattro stadi rivela come queste particolari isoterme consentano miglioramenti notevoli rispetto ad adsorbenti commerciali. L’analisi effettuata permette inoltre l’identificazione di criteri di progetto per il raggiungimento di prestazioni ottimali e robuste sfuttando tali materiali.

I risultati ottenuti nell’ambito di questo lavoro sottolineano come i processi TSA siano una valida soluzione per la cattura della CO₂. Inoltre, le conclusioni a cui si è giunti rappresentano le basi per una progettazione sistematica dei processi analizzati.