

Tracking a system of shared autonomous vehicles (SAVs) across the Austin, Texas network using agent-based simulation

Conference Poster

Author(s):

Liu, Jun; Kockelman, Kara M.; Bösch, Patrick M.; Ciari, Francesco

Publication date:

2016

Permanent link:

https://doi.org/10.3929/ethz-b-000120856

Rights / license:

In Copyright - Non-Commercial Use Permitted

Tracking a System of Shared Autonomous Vehicles (SAVs) across the Austin, Texas Network using Agent-Based Simulation

For travelers with privately owned HVs:

 $P_{SAV} = \frac{1}{exp(V_{SAV}) + exp(V_{HV}) + exp(V_{PT})}$

For travelers without access to privately owned HVs:

UT Austin's Drs. Jun Liu & Kara M. Kockelman (kkockelm@mail.utexas.edu) ETH Zurich's Patrick Bösch & Dr. Francesco Ciari

WHAT STARTS HERE CHANGES THE WORLD

Background & Motivation

Benefits of AVs (vs. HVs [human-driven vehicles]): Safety

- Fewer crashes
- Less severe crashes

Sustainability

- Possibly lower emissions
- Better fuel economy
- Electric SAVs may succeed

Mobility

- Easier travel
- Mobility for non-drivers
- Vehicle-sharing &
- ride-sharing can lower costs
- Possibly lower congestion & greater travel time reliability

Car-Sharing (SAVs)

- •SAVs allow users to obtain AV benefits without all the costs & responsibilities of AV ownership.
- Car-sharing is now common in many US & world cities.
- •SAVs reduce the access hurdles of traditional (human-operated) shared vehicles (shared HVs).

Shared Autonomous Vehicles (SAVs)

Mode Choice & Traffic Simulation for SAVs

Case Study Site & Key Assumptions

Mode Choice

The utility function for using a HV is:

 $V_{HV} = -0.2 \times Distance - 17.67 \times IVTT$

The utility function for using bus services is:

$$V_{PT} = -2 - 8.84 \times IVTT_{Bus} - 35.34 \times (OVTT_{walking} + OVTT_{waiting})$$
The utility function of using SAVs is:
$$P_{SAV} = \frac{exp(V_{SAV})}{exp(V_{SAV}) + exp(V_{Bus})}$$

The utility function of using SAVs is:

 $V_{SAV} = -Fixed\ Cost - Fare \times Distance - 8.84 \times IVTT - 35.34 \times OVTT_{waiting}$

where V = Mode's systematic utility; IVTT = in-vehicle travel time (based on HV trips); OVTT = out-of-vehicle travel time; IVTT_{Bus}= 1.5 IVTT; Distances based on HV trips; SAV trips' cost = \$1 per ride + \$0.20, \$0.50, \$0.75, \$1.0 per mile.

Mode Choice Results

4 SAV fare scenarios = \$0.20, \$0.50, \$0.75 & \$1 per mile plus \$1 per trip

SAV Service Performance Results

SAV Mode Splits:

 $$0.20 \text{ per mile} \rightarrow 36.6\% \text{ of trips}$ \$0.50 per mile \rightarrow 12.1 % of trips \$0.75 per mile \rightarrow 8.0% of trips \$1 per mile \rightarrow 6.4% of trips

Served Requests include:

- on-time service (waiting = 0 ~ 5 minutes)
- late service (waiting = $5 \sim 10$ minutes).

Size of SAV fleet in Percentage of Agents Requesting SAVs

Performance metrics at different fare schedules...

Average waiting time (minute) 3.6 3.2 3.3 31 Average service time (minute) 18.0 9.5 8.3 7.9 % on-time service (wait < 5 min.) 82% 80% 81% 80%	Metric	\$0.20	\$0.50	\$0.75	\$1
HV replacement rate 5 10 7.7 7.7 Average number of services per SAV 8.6 16.1 14.7 16.5 Extra VMT 3.5% 11.0% 11.8% 13.7% Average waiting time (minute) 3.6 3.2 3.3 31 Average service time (minute) 18.0 9.5 8.3 7.9 % on-time service (wait < 5 min.)	SAV demand in % of total trips	36.6%	12.1%	8.0%	6.4%
Average number of services per SAV 8.6 16.1 14.7 16.5 Extra VMT 3.5% 11.0% 11.8% 13.7% Average waiting time (minute) 3.6 3.2 3.3 31 Average service time (minute) 18.0 9.5 8.3 7.9 % on-time service (wait < 5 min.)	SAV fleet size in % of travelers	20%	10%	13%	13%
Extra VMT 3.5% 11.0% 11.8% 13.7% Average waiting time (minute) 3.6 3.2 3.3 31 Average service time (minute) 18.0 9.5 8.3 7.9 % on-time service (wait < 5 min.) 82% 80% 81% 80%	HV replacement rate	5	10	7.7	7.7
Average waiting time (minute) 3.6 3.2 3.3 31 Average service time (minute) 18.0 9.5 8.3 7.9 % on-time service (wait < 5 min.) 82% 80% 81% 80%	Average number of services per SAV	8.6	16.1	14.7	16.5
Average service time (minute) 18.0 9.5 8.3 7.9 % on-time service (wait < 5 min.) 82% 80% 81% 80%	Extra VMT	3.5%	11.0%	11.8%	13.7%
% on-time service (wait < 5 min.) 82% 80% 81% 80%	Average waiting time (minute)	3.6	3.2	3.3	31
	Average service time (minute)	18.0	9.5	8.3	7.9
% late service (wait 5 - 10 min.) 14% 15% 14% 14%	% on-time service (wait < 5 min.)	82%	80%	81%	80%
	% late service (wait 5 - 10 min.)	14%	15%	14%	14%

\$0.50/mi fare \rightarrow Greatest vehicle replacement rate, because... SAVs serve more short trips in \$0.50/mi scenario, vs. \$0.20/mi scenario, & trip request density/ demand is higher, vs. \$0.75+ scenarios.

Essentially, SAV systems are more efficient for denser, shorterdistance trip request settings.

Final Thoughts & Emissions Estimates

Who is selecting SAVs?

- Low per-mile rates → longerdistance trips
- ◆ High rates → shorter-distance trips
- Transit use falls in this setting.

How do SAVs serve requests?

- Long-distance travelers → low HV replacement rate Short-distance requests → high HV replacement rate
- Dense request → high HV replacement rate

	Sustainability Elements		Fuel con.	GHG	PM	СО	NOx	SO ₂
		Macroscopic estimates	-12.0%	-5.6%	-6.5%	-34.0%	-12 N%	_10 ∩0
	Average	(life-cycle based)	-12.0/0	-3.070	-0.570	-34.070	-10.070	-19.07
	Light-duty	Microscopic estimates	-8.6%	-8.7%	-21.2%	-15.3%	-17.2%	-8.7%
	HVs vs.	(driving-cycle based)						
	SAVs	Total savings	-19 6%	-13 8%	-26.3%	-44.1%	-32 1%	-26 Nº
		(distance-based)	13.070	13.070	20.570	77.1/0	JZ.170	20.07
	Fare = \$0.20	Extra VMT=3.5%	-16.8%	-10.8%	-23.7%	-42.1%	-29.7%	-23.5%
	Fare = \$0.50	Extra VMT=11%	-10.7%	-4.3%	-18.2%	-37.9%	-24.6%	-17.9%
	Fare = \$0.75	Extra VMT=11.8%	-10.1%	-3.6%	-17.6%	-37.5%	-24.1%	-17.3%
	Fare = \$1	Extra VMT=13.7%	-8.5%	-2.0%	-16.2%	-36.4%	-22.8%	-15.9%
	Greater e	nergy & emissions	savings	wher	SAV f	ares ar	e <mark>low</mark> e	er. Ex

tra VMT by empty SAVs does not overcome other emissions benefits (of smaller vehicles & warm starts, eco-driving, etc.).