
ETH Library

For Some Histories of Greek
Mathematics

Journal Article

Author(s):
Wagner, Roy 

Publication date:
2009-12

Permanent link:
https://doi.org/10.3929/ethz-b-000121577

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Science in Context 22(4), https://doi.org/10.1017/S0269889709990159

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-7775-0542
https://doi.org/10.3929/ethz-b-000121577
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1017/S0269889709990159
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


FOR SOME HISTORIES OF GREEK MATHEMATICS

ROY WAGNER

Abstract. This paper reviews Reviel Netz’ interpretation of classical Greek

geometry, and offers a Deleuzian, post structural alternative. We import

Deleuze’s notion of haptic vision from its art-history context to propose an

analysis of Greek geometric practices, which serves as counterpoint to their

linear-modular cognitive narration by Netz. Our interpretation highlights the

relation between embodied practices, noisy material constraints and opera-

tional codes, and sheds some new light on the distinctness and clarity of Greek

mathematical conceptual divisions.

0. Statement of purpose

Much historical research is about unlearning contemporary anachronistic knowl-

edge. Its purpose is to articulate, based on textual and material evidence, what

actually took place in the past. But the things we take for granted keep changing,

and so do the anachronisms we must unlearn. That’s why historical research can

never rest. And yet, if we unlearn everything suspect as anachronistic, we must

also unlearn our contemporary language, and risk remaining mute; we might end

up with nothing but reproductions of material and textual evidence. So the trans-

parent reconstruction of a purely objective past must yield to a critical economy of

anachronisms.

This economy must be critical, because not all forms of unlearning are of equal

value. We might, like Zeuthen (1965), unlearn geometrical Greek practices to re-

trace geometrical algebra, the algebraic thinking that the Greeks allegedly only

This paper is part of the author’s Ph.D. dissertation written in Tel Aviv University under

the supervision of Prof. Anat Biletzki and Prof. Adi Ohpir. I would like my advisors and Prof.

Sabetai Unguru for their helpful comments.
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2 ROY WAGNER

presented as geometrical. We might, like Unguru (1975) unlearn geometrical al-

gebra to retrace strictly geometric conceptions. Both approaches help us interact

with Greek texts, and produce more or less durable truths. But while Zeuthen

reaffirmed the algebra that his contemporaries already knew, Unguru challenged us

with new mathematical horizons. I believe that the latter is of considerably more

value to contemporary thought.

We will therefore experiment here with unlearning. We will attempt to unlearn

historian Reviel Netz’ linear and modular narrative of Greek mathematics’ histori-

cal cognitive method. This is a narrative of mathematical production as a sequence

of clearly delimited and highly coded practices of drawing, lettering, speaking and

writing. Instead we will try to learn into Greek mathematical production Deleuze’s

interpretation of the practices of painter Francis Bacon.1 We will apply this in-

terpretation to Euclidean and subsequent classical Greek mathematical practices

of drawing diagrams and constructing rigorous proofs. Concisely put, our inter-

pretation will situate these highly evolved mathematical activities at various levels

between materially constrained embodied gestures and rigorous optico-linguistic

codes, and as inseparable from accidental and irrational ‘noise’. What binds these

levels together is what Deleuze calls haptic vision and the logic of sensation. We

then apply this approach to reinterpret the Greek division between different kinds

of magnitudes.

The interpretation offered here has much to do with seeing various different or-

ders in diagrams. In this respect it has to do with the analysis of multiplexity

in Dynkin diagrams by Lefebvre (2002) and with the useful ambiguity2 that

1Deleuze regularly mentions mathematics in his writing, drawing mainly on Lautman and

Cavaillès. The main references are Deleuze (1994), where he considers Leibniz’ differentials,

Deleuze (1990), where he builds on notions of differential geometry, and Deleuze & Guattari

(1987), where the authors appeal to Riemann’s work. More on Deleuze and mathematics is avail-

able in Duffy (2004). As for painting, Turner (1997) provides a discussion of some of Deleuze’s

ideas relevant for this paper. For a more general discussion of Deleuze and painting see Bogue

(2003).
2I apply the convention of rendering quotations in boldface. All quotations are in boldface,

and everything in boldface is a quotation.
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Grosholz (2007) finds in the diagrams of Leibniz. The purpose of this paper,

however, is to situate this multiple view in an embodied practice of geometers

as they draw diagrams and prove theorems. As such it has more to do with eth-

nomethodological and phenomenological studies of mathematical practice, such as

the classroom observations of Radford (2006) and researcher observations of Sha

(2004). But this paper proposes a philosophical language to describe the practice of

working on a geometric problem, rather than an ethnomethodological description

of mathematical work or a phenomenological research into how geometric practice

emerges from more elementary intentional attitudes.3

It has been argued that my approach does not live up to the objective and

rational reduction ideals of scientific epistemology. To the extent that this is indeed

the case, it is because I find that contemporary forms of objectivity and rationality

are too restrictive. They tend to neglect embodied standpoints and the force of

parasitic noise in knowledge formation.1 But philosophy, at least the kind inspired

by Deleuze, need not make metaphysical, metapsychological or scientific claims. It

is no more abstract than its object. It is a practice of concepts, and it

must be judged in the light of the other practices with which it interferes

(Deleuze, 1989, II,280).

I don’t claim that the economy that I offer here — unlearning a modular cog-

nitive approach and learning one that may part with some forms of objectivity

and rationality — is any less anachronistic or any more scientific than Netz’. The

value of the interpretation presented here is its challenge to contemporary knowl-

edge. The application of contemporary ideologies to past texts is not meant to

reconstruct a past message in its ‘original’ form, but to render the limitations of

3The problematic of this paper is not that stemming from Husserl’s phenomenology and his

Origin of Geometry, either in its original form, or as interpreted by Derrida (1989). There one is

concerned with how a concrete worldly practice of spatial orientation and measuring opens into

the infinity of possibilities implicit in a system of formal axioms, and the subsequent potential

infinity of other systems of axioms. Here I am concerned with the already axiomatised geometric

practice, which nevertheless overflows attempts to reduce it to a modular and linear narrative of

a cognitive method, and depends on what supposedly lies outside formal reason.
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contemporary ideologies more manifest. Whether or not this is history, this is, I

think, a worthy task.

1. First movement: Articulation of the code

Greek geometric proofs include diagrams and texts. The point of departure

for historian Reviel Netz is the observation that Greek mathematical texts cannot

function without their lettered diagrams (geometric diagrams with some of their

elements indexed by letters). Indeed, many geometric relations are left ambiguous

or unspecified by the text, and depend on a diagrammatic determination. In the

opposite direction, such relations as parallelism and size are often wrongly depicted

by diagrams. My argument, writes Netz, that text and diagram are inter-

dependent, means that many assertions derive from the combination of

text and diagrams (Netz, 1999, 27).

Netz notes further that even arithmetical propositions, where diagrams are re-

dundant, for they no longer represent the situations discussed (Netz,

1999, 41), persistently include diagrams. Following Mueller’s suggestion that the

diagram plays no real role in some arithmetic proofs except possibly as

a mnemonic device for fixing the meaning of the letters (Mueller, 1981,

67), Netz asserts that arithmetic diagrams reflect a cultural assumption, that

mathematics ought to be accompanied by diagrams (Netz, 1999, 42). The

presence of the diagram is therefore not strictly representational or illustrative. Its

accompaniment is forced upon the text.

Text and diagrams then form distinct strata of knowledge, which intertwine to

from a new surface of knowledge, the surface of Greek mathematics. Rather than

one of them governing the other, the text and diagram present, let us

say, a cohabitation (Netz, 2004a, 171). A diagram or text alone are undercoded.

It is only together that they allow each other to be decoded.

But how does this cohabitation operate? According to Netz, the diagram

is relied upon as a finite system of relations ... It is limited in space;

and it is discrete. Each geometrical proposition refers to an infinite

continuous set of points. Yet ... the lettering of the diagram ... turns it
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into a system of intersections, into a finite manageable system (Netz, 1999,

34–35). This finite system, accompanied by a highly formulaic and restricted

Greek mathematical language produced from a few simple building blocks,

allowed the simplification of the universe, and contributed towards making the

inspection of the entire universe possible (Netz, 1999, 158, 266).4

According to Netz those finite and systematic simplifications were schematic,

unpainterly diagrams. Non circular curved lines, for example, were probably

drawn as if they consist of circular arcs (Netz, 1999, 17–18); sizes and perspec-

tives were not always respected. This may recall Deleuze’s quoting Paul Sérusier’s

description of abstract painting as reducing all forms to the smallest num-

ber of forms of which we are capable of thinking — straight lines, some

angles, arcs of the circle. We obtain what Deleuze calls “digital”, not in di-

rect reference to the hand, but in reference to the basic units of a code

(Deleuze, 2003, 92).

2. Second movement: Manual flow

But Deleuze explains that even the units of abstract painting are aesthetic

and not mathematic, inasmuch as they have completely internalised the

manual movement that produces them (Deleuze, 2003, 92). The purpose of

this section is to show that it would be wrong to reduce Greek diagrams and texts

to a framework of codified, “digital” articulations, and explain how mathematical

diagrams too depend on internalising the manual movement that produces

them. To do that we will survey (and rule out) several kinds of movements.

To find movement in Greek geometry we do not have to resort to such elaborate

kinematic constructions as Archytas’ doubling of the cube. Even the very first

4In his review, Latour (2008) highlights this breakthrough aspect of the work of Netz: the

reconstruction of how a world was processed to the point of being subjectable to a rigorous

analytic method. My main reservation from Latour’s opening statement that Netz’ The shaping

of deduction is the most important book of science studies to appear since Shapin

and Schaffers Leviathan and the Air-Pump is that I consider Netz’ The transformation of

mathematics an even better candidate for the title.
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congruence theorem, Proposition I.4 of the Elements, requires that one triangle be

applied or superposed on another (Heath’s and Joyce’s translations respectively),

and that points be placed on one another. Since this proposition underlies so many

of the propositions of the Elements, this kind of movement latently applies to most

of Greek geometry (the displacing of triangles into a special relative position for

proving the Elements’ Proposition VI.15 poses a similar challenge).

Explicitly moving geometric elements are very rare in the Euclidean corpus. But

while Mueller, following Heath (1956, Vol.I, 225), finds that there is very little

evidence that Euclid found such movement problematic (Mueller, 1981,

23), Taisbak clarifies that this motion is not some manual movement within the

geometric plane, but a conceptual motion from a virtual outside into the actual

plane (Taisbak, 2003, 94).

Since this first form of motion is not a manual movement, let’s turn to a

second kind of motion built into Greek diagrams. This is the motion of variable

positioning of some letters on diagrams. I refer to cases where we are asked to Let

some point be taken on the circle, A (Netz, 1999, 22), or Let a chance point

be taken on AB (Netz, 2004b, 77). Those points may be moved through various

locations in the diagram, and the range of possibilities spreads a complex array of

motions. This kind of motion is best reflected, I believe, by the Java applets in

Joyce (1988) (an online edition of the Elements), which allow the interactive reader

to manipulate diagrams while maintaining the geometric relations relevant to the

proposition and the proof. The diagram is no longer static; it becomes a moment

in a flow.

But this second motion as presented in Joyce’s edition depends on an extremely

modern rendering of the Elements. There is no evidence that manipulating dia-

grams in this way (even only mentally) belonged to the practice of Greek mathe-

maticians. Even worse, these motions, especially when coded into Java applets, only

serve the claim that mathematical motion is codable. Joyce turns Greek diagrams

from discrete to continuous, but they remain perfectly codified.



FOR SOME HISTORIES OF GREEK MATHEMATICS 7

Let’s try, then, a third candidate for uncoded manual movement. The man-

ual aspect of Greek diagrams becomes explicit, when we recall that much of Greek

mathematics is about constructions, rather than theorems. Constructions have

to do with the actual manipulation of drawing devices. Greek mathematical texts

rarely suggest optical motions of drawn elements, but is explicit about going through

the motions of manual drawing.

Nevertheless, this motion, performed by what Taisbak (2003) calls the helping

hand, is still codified by postulates and propositions. To venture beyond such cod-

ified and highly regulated motion we must observe an interesting tension between

how diagrams are drawn in principle and in practice. Netz argues that in the

second proposition of the first book of the Elements, when an equilateral tri-

angle is constructed in the course of the proposition, one is faced with a

dilemma. Either one assumes that the two auxiliary circles required for the

construction have been constructed as well — but how many steps further

can this be carried, as one goes on to ever more complex constructions?

Or, alternatively, one must conclude that the so-called equilateral trian-

gle of the diagram is fake. Thus the equilateral triangle of Proposition

I.2 is a token gesture, a make-believe. It acknowledges the shadow of a

possible construction without actually performing it (Netz, 1999, 54).

The Greek diagram therefore includes a double drawing gesture: the in principle

gesture of coded rigorous ruler and compass rendering, and the practical imprecise

drawing. The movement is “digital”ly codified in principle (and, where complex

diagrams are concerned, only in principle), but manual in practice. This double

gesture must not be ignored. To that we add Netz’ footnote to the quotation above,

which recalls that the text simply says ‘let an equilateral triangle have been

set up on [the line]’, no hint being made of the problem I raise. The

distinction between what Deleuze calls “digital” and manual movements are not

reflected by the Greek mathematical text. They exceed the facade, but are inherent

to the practice.
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Figure 1. The Elements, Proposition I.2: To place at a given point

(as an extremity) a straight line equal to a given straight line (All

figures from the Elements are taken from the 1838 edition of Robert Simson’s

translation by Desilver, Thomas & co. from Philadelphia and the 1860 edition

of John Playfair’s translation by J.B. Lippincott & co. from Philadelphia.

Both editions are scanned by Google Book Search. All references from the

Elements are quoted from Heath (1956)).

3. Third movement: Retracing the narrative

But while Netz is not very interested in the manual movement suggested

above, he is concerned to add another kind of motion to the Greek mathematical

text. I do not mean simply such motions as sliding rulers, transformations of

ratios and falling points (Netz, 2004b, Ch. I, §3). I am referring here specifically

to the cognitive motion of narrative.

When Netz brings, for example, a translation of an Archimedean argument, he

interweaves Archimedes’ static language into a sort of mystery-action narrative of

discovery. We have clues; a thought suggests itself ; we are led by questions

(such as But how to get the rectangle?); we seek and find instruments, and

we reach triumphant exclamatives such as But wait — we can arrange that!

(Netz, 2004b, Ch. I, §3).

Here things get dodgy. The purpose of Netz’ reconstruction is to refute Heath’s

algebraic reconstruction of Archimedes’ geometry. But the dodgy thing is that in

trying to refute Heath’s anachronistic interpretation, Netz imposes on Archimedes’

process of discovery a structure remarkably similar to a modern narrative. This is

no innocent reconstruction. A narrative is not a neutral stylistic choice. It imposes

(in its simplest, most common forms) a linear order of events, precise starting and
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endpoints, specific sets of relations, and concrete modes of encoding and deriving

information.5

Indeed, imagine that someone tries to reconstruct Archimedes’ process of dis-

covery in Homeric epic hexameter, or via scholastic questions, or as a Hollywood

script. Such reconstructions may obviously result in anachronisms. Narrative form

imposes significant loss (just as formal logic robs mathematical language of many

nuances and non-constative expressions, and generative syntax robs language of the

plethora of ‘non-grammatical’ expressions), and links past mathematical texts to

a structure that isn’t demonstrably there. Structuring is a practice that extracts

from a text what may have never taken place outside the fact of reconstruction.6

I will give just one concrete suggestion as to how narrative form might reform

history. Typical contemporary narrative form, with its determination of closure,

leads Netz to assume that Archimedes solved the problem that he had set out to

solve. This precludes the possibility that, perhaps, Archimedes derived the solution

indirectly from a different context. This conjecture might explain why Archimedes

transformed the original spherical problem into a problem that depends on an en-

tirely different diagram. No evidence suggests that Archimedes’ process of discovery

is better described by contemporary narrative than, say, by something resembling

Joyce’s Ulysses (if my professional testimony is worth anything, mathematicians —

at least contemporary ones — rarely make discoveries by following narratives).

Deleuze explains that the diagram need not have a story to narrate. The

figurative, representational or illustrational reduction of diagrams would imply

the relationship of an image to an object that it is supposed to illustrate;

but it also implies the relationship of an image to other images in a

composite whole that assigns a specific object to each of them. Narration

5Cf. Steinbeck’s following comment in his Travels with Charlie concerning a break he took

from his travels in Chicago: Chicago broke my continuity. This is permissible in life but

not in writing. So I leave Chicago out, because it is off the line, out of drawing. In

my travels, it was pleasant and good; in writing it would contribute only a disunity

(Steinbeck, 1962, 95).

6An important reference in this context is Starobinski (1979).
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Figure 2. Archimedes’ diagram presenting the problem (left) and the dia-

gram used to solve it (right) (Netz, 2004b)

is therefore the correlate of illustration. But if A story always slips into our

reconstructions, it is not because it was actually there, but in order to animate

and validate our conception of a geometric text as an illustrated whole (Deleuze,

2003, 6). Doubtless one could say that the diagram is the possibility of

various narrations at the same time. But this is because the diagram

itself, as we will attempt to learn, is beyond all narration (Deleuze, 2003, 59).

Now I do not reproach Netz for his anachronistic narration. Netz’ narrative

proved extremely helpful in my dealing with Archimedes’ argument. But to an ex-

tent, so did Heath’s algebraic anachronism. Gadamer taught: the text, whether

law or gospel, if it is to be understood properly, i.e. according to the

claim it makes, must be understood at every moment, in every particu-

lar situation, in a new and different way. Understanding here is always

application. Indeed, only the person who allows himself to be addressed

— whether he believes or whether he doubts — understands (Gadamer,

1975, 275, 297). If a historian fails to impose on texts the anachronistic language

that would allow her or him to become an addressee, these texts will remain in-

tractable. But since history is an economy of learning and unlearning, I will suggest

another arrangement of this economy, which may allow a different set of addressees

to understand and apply Greek mathematical thought.7

The previous sections have attempted to unlearn the reduction of diagrams to

“digital” coding. In this section we have attempted to unlearn the practice of

7This is the project of Pierre Menard, who has enriched, by means of a new technique,

the hesitant and rudimentary art of reading: the technique is one of deliberate

anachronism and erroneous attributions (Borges, 1962, 54).
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narrating diagrams. Greek diagrams are able to break with representation, to

disrupt narration, to escape illustration, to liberate the Figure. We are

after another type of relationships. We will go on to call these new relation-

ships matters of fact, as opposed to intelligible relations (of objects or

ideas) (Deleuze, 2003, 6–7). But we are not there yet. More must be learnt before

we can learn into Greek diagrams that which Deleuze above baptised Figure and

matters of fact .

4. Fourth movement: Erasing, redrawing

Netz offers an ingenious and fascinating analysis of the lettering of Greek dia-

grams, but here I can only cite his succinct summary of the Greek mathematical

sequence of production. Greek propositions originated in many ways, but

the most common was to draw a diagram, to letter it, accompanied by an

oral dress rehearsal — an internal monologue, perhaps — corresponding

to the main outline of the argument; and then to proceed to write down

the proposition as we have it (Netz, 1999, 86). Deleuze describes a sequence

of production involving another kind of diagrams, that of painter Francis Bacon,

as follows: one starts with a figurative form, a diagram intervenes and

scrambles it, and a form of completely different nature emerges from

the diagram, which is called the Figure (Deleuze, 2003, 125). I will attempt

to explain Deleuze’s terms and justify learning them into Netz’ narrative.

The common use of the term diagram by Deleuze and by Netz is mostly acci-

dental. For Deleuze the diagram is not a neat and coded geometric illustration.

For Deleuze the diagram is a bunch of marks, traits which are irrational, in-

voluntary, accidental, free, random. They are nonrepresentative, nonil-

lustrative, nonnarative. They are no longer either significant or signi-

fiers: they are a-signifying traits (Deleuze, 2003, 82). These marks disrupt the

representational-narrative painting, and open it up to something different.

But how does this latter diagram relate to Greek mathematics? Netz comments

on the difficulties and preparations involved in drawing geometric diagrams with

the means available to the Greeks. His own experiments with sand and ashes,
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wetted or not, were unmitigated disasters (Netz, 1999, 15). Working with

whitewashed plates of wood, Netz explains, required significant advance prepara-

tion. Netz concludes that ad-hoc redrawing of geometric diagrams must have been

a difficult task, and therefore diagrams must have been drawn just once during

the process of proving, before they were lettered, accompanied by an internal

monologue, and the subsequent writing down of the proof.

But this conclusion strongly depends on placing the analysis in the scene of

communication. My own experiences of drawing with a stick on dry ground or wet

sand, or even scratching a relatively smooth limestone surface with a pebble, were

not so unhappy, as long as my purpose was to think with a diagram. Wax tablets

might have served as an even more viable medium. But Archimedes seems to have

been content with much less. Plutarch, quoted by Unguru & Rowe (1981–1982,

II,5), reports that Archimedes even used to draw the figures on his belly

with the scraper when his servants rubbed him down with oil.8

True, complicated diagrams would be messed up very quickly given such means.

But I personally can’t retrace some of the more elaborate drawings from Netz’ books

even with pen and paper. This fact does not mean, however, that I can’t use hand-

drawn, messy approximations of those diagrams for reflecting on problems. What

this does mean is that at some point the diagram begins to smudge, and attempts

at correction end up making an even bigger mess. This is precisely where the

diagram in the sense of Deleuze/Bacon irrupts. Lines accidentally superimpose;

erasure marks seem like lines; an accidental stroke of the stick or the pen suggests

a shape inside the diagram; the motion of the belly undoes features of the diagram

that Archimedes draws on it with a scraper; a soldier suddenly intervenes to disturb

one’s circles... Eventually, the diagram must be discarded and redrawn. And

redrawn, and redrawn, and redrawn

But Netz does not include such redrawing or retracing in his narrative. For

him the letters were set in Greek diagrams once and for all after a rough idea

8This may sound highly fanciful, but as a mathematician I’ve witnessed and experienced oc-

currences not very far removed, such as enthusiastic students drawing or writing on their forearms,

when paper was not readily available.
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for the proposition has been formulated, but before writing down the

text (Netz, 1999, 85). He acknowledges the suggestion that the author drew

many different diagrams, each with different ... attachments of letters to

elements in the diagram. But he believes that it was very rare that anyone

changed the lettering in the diagram after it was first drawn ... If you

change your diagram, you must change your text accordingly. You must

go through some proof-reading. And as many readers will know from

experience, this is a very, very difficult sort of proof-reading to do. It is

very difficult not to leave behind mistakes (Netz, 1998, 35). Netz admits, of

course, that There are many mistakes in the manuscripts for letters, but he

claims that these are all obvious scribal mistakes (Netz, 1998, 35), and not the

residues of re-lettering. However, there’s no telling whether the lineages of missing

manuscripts between antiquity and the middle ages included as many corrections

as scribal mistakes.

The difficulty of proof reading brought up by Netz is genuine, but having a

lettered diagram at hand would have actually facilitated the process. Furthermore,

the proof reading argument is relevant only if we believe, like Netz, that a proof

was written down immediately after the lettering (which was accompanied by an

oral rehearsal). But Netz’ arguments do not preclude the erasure and relettering of

diagrams at a stage preceding the scene of writing a proof or recording a diagram

for communication; there, arguments may have been embodied in a sequence of

drawing motions rather than in written text — a sort of lettering avant la lettre.

5. Fifth movement: Speaking to oneself

But should we really incorporate Deleuze’s notion of diagram, those forced

involuntary, accidental, free, random marks caused by failed and repeated

reproductions, into our interpretation of mathematical practice? To answer affir-

matively I will interject yet another anachronistic quotation — that of Einstein in

a famous letter to Hadamard (1973, 147–148). At Hadamrad’s request to know

what internal or mental images, what kind of “internal word” math-

ematicians make use of; whether they are motor, auditory, visual, or
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mixed, Einstein replies: The psychical entities which seem to serve as ele-

ments in thought are certain signs and more or less clear images which

can be “voluntarily” reproduced and combined ... this combinatory play

seems to be the essential feature in productive thought — before there is

any connection with logical construction in words or other kinds of signs

which can be communicated to others. Einstein then goes on to explain that

The above mentioned elements are, in my case, of visual and some of

muscular type. Conventional words or other signs have to be sought for

laboriously only in a secondary stage, when the mentioned associative

play is sufficiently established and can be reproduced at will.

Now there are many issues with this testimony beyond the fact that Einstein

was no ancient Greek. What is this that can be “voluntarily” reproduced,

but is yet to be reproduced at will? And how can we trust what Einstein

himself claims to be not quite within full consciousness (in fact, Einstein rejects

in his letter Hadamard’s use of this term)? We can trust, however, the observable

material muscular component of this practice, which Hadamard and Einstein were

so perceptive to include. The fact of drawing, with one’s arm (using a pen), with

one’s entire body (using a stick or a scraper) integrates the body into mathematical

practice. It is no longer an abstract mental act. It is a process of contractions,

rhythms, physical motility. Into the Greek geometric diagram irrupts a language

of relations, which consists of expressive movements, paralinguistic signs,

breaths and screams (or, to be less dramatic, sighs of frustration) and so on

(Deleuze, 2003, 93).

The marginally conscious component of this production, that which precedes the

established associative play that can be reproduced at will shows that It is a

mistake to think that the painter, or the geometer drawing diagrams, works

on a white surface ... If the painter were before a white surface, he could

reproduce on it an external object functioning as model, but such is not

the case. The painter has many things in his head, or around him, in his

studio. Now everything he has around him is already in the canvas, more
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or less virtually, more or less actually, before he begins his work (Deleuze,

2003, 71). So it is not only the material contingencies of drawing discussed in the

previous section that disrupt a rational coding of Greek diagrams, but also those

marginally conscious, marginally reproducible psychical entities that are in the

geometer’s head, or around him. But in order not to force Einstein’s dubious

psychical entities on Netz, we must ask what, within Netz’ own narrative, makes

this noise? The answer is, of course: speaking to oneself.

Recall Netz’ claim that before proving and after drawing, lettering is accom-

panied by an oral dress rehearsal — an internal monologue, perhaps

(Netz, 1999, 86). Netz confines the internal monologue, and embeds it within a

linear chain of externalised practices proceeding from drawing through lettering to

writing. But the internal monologue, like redrawing and erasing diagrams, like

Einstein’s associative play not yet reproducible at will, like the accidental, non-

illustrative marks of Deleuze’s diagrams — all these are not confined moments in

a linear chain of events. The internal monologue accompanies the entire process

of mathematical production, and is part of the many things in the geometer’s

head, or around him. The internal monologue is the back-and-forthing stut-

ter that accompanies drawing, lettering, mumbling, writing, and most importantly

— erasing.9

The reason why Netz erases the moment of erasure from Greek mathematical

practice, and forces a narrative sequence of a single instance of drawing, letter-

ing, speaking, and writing, is his explicit commitment to Fodor’s cognitive science.

Netz agrees with Fodor that the only cognitive processes, which are scientifically

tractable, are the supposedly independent automatic modules associated with in-

put/output processes. But he argues that central processes, the intricate non-

modular constituents of thought, while not subject to universal articulation, can

be articulated in the framework of specific historic practices.

9The reader may be familiar with the following (cruel and untrue) joke prevalent among math-

ematicians: The two cheapest academic disciplines to maintain are mathematics and philosophy.

Mathematics, because all a mathematician needs is paper, pencil and eraser; philosophy, because

the philosopher doesn’t even need the eraser.
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Netz believes that There is a method in Greek geometrical use of cognitive

resources (Netz, 1999, 6). This method anchors input/output practices to a dis-

tinct moment of private internal monologue, which aligns them into a narrative.

But this feat depends on tapping into a rather anachronistic, Cartesian image of the

internal monologue: something that exists as a determined and confined object

in a sequence, enclosed between drawing and writing. The internal monologue as

an unbounded repetition of embodied marks that accompany the geometer through-

out the creative process is foreclosed.10 This foreclosure re-traces the anachronistic

erasure by many contemporary cognitive scientists of irrational, nonrepresen-

tative, liminally reproducible traces, whose surface representation is that which

Deleuze calls diagram.

Now I don’t claim there’s anything wrong in reaching into the internal mono-

logue. Netz did, Einstein did, and I certainly do. Indeed, if one refuses to cross

into the internal monologue, one has to operate more and more reductions, only

to discover that one either cannot say anything of interest, or has in fact never let

go of reaching into the internal monologue at all.11 But when we tap into the in-

ternal monologue, we need not assume that we’ve gotten anywhere. This private

monologue is not an object that can be articulated by a science or a metaphysics.12

The internal monologue is rather one of those many productive lacunae or inter-

faces that allow us to project contingent anachronistic conventions, which are the

conditions of language and thought, onto our objects of study in order to validate

or to critically rethink these conventions. The internal monologue is, here as in

Netz’ work, a locus of ideological intervention.

10The critique of Husserl’s internal monologue in Derrida (1979) and the replacement of pres-

ence by différance obviously underlie my argument.
11e.g. young Wittgenstein, logical positivism, psychological behaviourism, epistemologies that

attempt to isolate rigorous sciences from cultural contingency — but sciences do not require such

isolation, if only they stop hinging some of their well earned authority and privilege on claims to

seize a purely objective truth.
12Netz quotes Fodor’s famous ‘First law of the Nonexistence of Cognitive Science’:

‘The more global ... a cognitive process is, the less anybody understands it’ (Netz,

1999, 5).
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6. Sixth motion: Haptic vision

Let’s recapitulate and integrate. We have attempted to unlearn the conception

of Greek mathematical diagrams as abstract, coded and narrative systems. Deleuze

would call such systems ‘optical’. For manipulating such optical systems a finger

(digit) is enough. The hand is reduced to a finger that presses on an

internal optical keyboard in a rigid sequence (Deleuze, 2003, 85). We have

attempted to learn into Greek diagrams Deleuze’s notion of diagram — irrational,

random, nonrepresentative marks, which are forced on erased and redrawn

sketches by material contingency and by the liminally reproducible entities in the

geometer’s head, or around him.

When a geometric diagram turns into a diagram in the sense of Deleuze, it

may seem as if, in the midst of the figurative and probabilistic givens, a

catastrophe overcame the canvas (Deleuze, 2003, 82). This is often a moment of

confusion and frustration, but also a moment of detachment. Deleuze’s theorisation

suggests that in such moments, where the optical space is disrupted, the drawing

may break away from its confinement to the surface of inscription, and be absorbed

into the body through the hand and eye (or the belly, in Archimedes’ case). In

fact, those marks referred to by Deleuze as catastrophe have a role in enabling

creative situated thinking (cf. Turner, 1997).

But Deleuze does warn us that if we let catastrophe run wild, we get no visual

space at all. The drawn space then becomes a space of action painting: a manual

and physical space relating embodied motions. To avoid that, Deleuze explains,

the catastrophe must not be allowed to eat away at the entire painting; it

must remain limited in space and time. It must remain operative and

controlled ... The diagram is the possibility of fact — it is not the fact

itself. Something should emerge from the catastrophe (Deleuze, 2003, 89).

We must now explain how the highly regulated visual-textual products of Greek

geometry can emerge from catastrophe.

Bacon, according to Deleuze, follows a third path, which is neither optical

like abstract painting, nor manual like action painting (Deleuze, 2003, 90).
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The operative set of asignifying and nonrepresentative lines and zones,

line-strokes and color-patches, those elements of what Deleuze calls diagram,

its function, says Bacon, is to be “suggestive” ... to introduce “possibil-

ities of fact” (Deleuze, 2003, 82–83). Bacon explains: the marks are made,

and you survey the thing like you would a sort of graph [diagramme].

And you see within this graph the possibilities of all types of fact be-

ing painted. This is a difficult thing; I’m expressing it badly. But you

see, for instance, if you think of a portrait, you maybe have to put the

mouth somewhere, but you suddenly see through the graph that the

mouth could go right across the face (Deleuze, 2003, 160).

Mathematically recontextualised, Bacon’s way would integrate the random,

asignifying, nonrepresentative possibilities into mathematical matters of fact :

What if we turn this crooked circular arc into a parabola? What can we prove then?

What if we replace this extremely thin triangle by a line? What statement would

the diagram then reflect? What if we reinject this soldier disrupting my circles into

the diagram as the axis of a cone?

These reinjection and emergence, however, do not bring us back from Deleuze’s

disruptive diagram to a coded, illustrative, narrative diagram. Indeed, through

this action ... the visual whole will cease to be an optical organisation

(Deleuze, 2003, 83). What emerges is that which Deleuze calls Figure. Such

Figure is defined by Deleuze to be itself a shifting sequence or series (and not

simply a term in a series); it is each sensation that exists at diverse levels,

in different orders, or in different domains ... The levels of sensation

would be like arrests or snapshots of motion, which would recompose

the movement in all its continuity, speed and violence (Deleuze, 2003, 33,

35). The Figure which emerges from the diagram and its catastrophe relates the

elements involved in its generation into a multi-layered space of regulated motion.

The Figure, this visual whole will cease to be an optical organisation;

it will give the eye another power, as well as a space to look after (Deleuze,

2003, 83). Deleuze refers to this empowered eye as a haptic eye. This eye goes
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beyond the abstract optical code and the embodied action space. It is that which

senses the motions which the Figure went through, which retraces the asignifying

and irrational marks involved in its formation, which retains some of the many

diagrammatic possibilities that the Figure left unactualised. What has emerged is

the formation of a third eye, a haptic eye, a haptic vision of the eye, this

new clarity. It is as if the duality of the tactile and the optical were sur-

passed visually in this haptic function born of the diagram (Deleuze, 2003,

129). Haptic vision is not a mystic construct that I use to elevate mathematical

production to the level of artistic thrill. Haptic vision is the capacity to practice

diagrams not only as optical and manual, but also as dynamically stratified.

7. Seventh motion: Looking at Greek diagrams through a haptic eye

It is finally time to show how haptic vision is manifest in contemporary readings

of Greek geometry. Netz’ examples and interpretations (with some help from Fried,

Unguru and Mueller) provide us with ample opportunity for that.

The Greek text gives such orders as: let a circle have been drawn, or let

the given bounded straight line be AB (Netz, 1999, 51–52). These are, as

Netz observes, perfect imperatives, orders to have already completed an action.

To whom can such an order be addressed? If we do not dismiss these commands

as a rhetoric curiosities, then they’re directed at an organ that has the power not

only to make things happen, but also to sense them as already-having-happened.

The haptic eye, as an organ that builds on the manual sensation of drawing, has

the capacity not only to recognise lines and letters, but also to draw from past

experience the sense of having had something drawn and lettered, and project it

on the Figure. Haptic vision includes the capacity to sense in the Figure both a

newly given present and a completed past — it is each sensation that exists at

diverse levels, in different orders, or in different domains.

But this sensing as completed of that which is being presently given is not static.

It has further levels, orders and domains. Suppose we are ordered to Let some

point be taken on the circle, A (Netz, 1999, 22), or Let a chance point

be taken on AB (Netz, 2004b, 77). Here we are ordered to sense a point as
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general or as random. To do that we require more than just an observing eye or

a drawing hand; we must sense with the given point the possibility of alternative

points being taken elsewhere. But haptic vision emerged from the random marks of

the diagram. It can retain this sense of randomness in viewing a fixed point. Its

retention of catastrophic marks not actualised into facts is a sense of the possible

as such. Therefore, if we can, with Netz, see how a given line functions as a

variable, it is not necessarily because nothing is known about the real size

of the number it represents, as Netz (1999, 268) anachronistically suggests.

Instead, this line might be a moment in a shifting series of chance extensions and

contractions in past sketches, of which haptic vision retains a sense. To the orders

of present and past are added those of the possible, random and general.

Sometimes lines are not only general, but actually mobile. Fried & Unguru (2001,

69–70) follow Apollonius in stating that a straight line generating some conic

surface is moved to generate the conic, even though the diagram is still. If indeed

the three diagrams given in the body of the proof ... may be thought of

as three “snapshots” of the generation of the surface just described, it

is because the organ that watches over them can see, as Deleuze put it, a shifting

sequence or series. The diagrams may be indistinguishable except for the

labelling, but one can see in the proof and in the diagram the genesis of

the relevant geometric objects. Moreover, from a given conic surface one may

derive a cone having its base as far as one pleases from the vertex and on

whatever side (Fried & Unguru, 2001, 72). Apollonius does indeed prefer the

visually appealing bounded cone over the not-so-easily pictured unbounded

conic surface (Fried & Unguru, 2001, 74).13 But he does not give up on the conic

surface. His diagrams urge us to imagine a cone being increased from one

base to another, or, rather, a sequence of cones with ever increasing

bases (Fried & Unguru, 2001, 74). But from the point of view of the haptic eye

this wouldn’t be imagining; it would be sensing in the Figure what’s retained from

13The conic surface here is the unbounded, infinitely extended object, whereas the cone is the

bounded solid obtained by truncating the conic surface. A cone to a conic surface is like a segment

to a line.
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past discarded sketches and unactualised possibilities of diagrams. Haptic vision

adds to present, past, possible, random and general also the level of motion.

Figure 3. Apollonius’ cones (Fried & Unguru, 2001)

Mueller quotes Heath quoting Simplicius’ report according to which the

fifth-century sophist Antiphon claimed that a polygon of sufficiently

many sides inscribed in a circle would exhaust (dapanan) the circle

(Mueller, 1981, 234). This is precisely the kind of perception that thick-lined ma-

terial drawing of diagrams and its catastrophes may conjure, and which haptic

vision transforms from a manually traced exhaustion of the circle into a stratified

shifting sequence or series (and not simply a term in a series) — a series of

improving approximations, as in the Figure of the Elements Proposition XII.2.14

Figure 4. The Elements, Proposition XII.2: Circles are to one another

as the squares on the diameters.

14It’s more than lines that move in Figures. When we observe with Netz (1999, 27–29) an

implicit similarity between triangles, it is not by recognising it optically, but, according to Netz, by

retracing the unwritten argument that establishes this similarity. We coordinate the various

facts involved in retracing the argument for similarity, and we coordinate them at great

ease, because the diagram is not optic but synoptic. A still diagram can be read by the haptic

eye as a Figure of shifting series of procedural relations excited from the geometer’s practice.
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Building on both material, manual drawing and coded, optical or “digital”

drawing, the haptic eye exceeds the capacities of either. The same Proposition XII.2

of the Elements provides an example, where haptic vision constructs what the eye

and the hand cannot construct. The proof of this proposition assumes that given

three areas (the square on BD, the square on FH and the circle ABCD), there

exists a fourth area, S, which satisfies that the ratio between the squares is the same

as the ratio between the circle and S. In his notes Heath writes that 18th century

scholar Simson observes that it is sufficient, in this and the like cases,

that a thing made use of in the reasoning can possibly exist, though

it cannot be exhibited by a geometrical construction. This is a strange

note, given that in the one-dimensional case such assumption was not considered

legitimate by Simson, and that Heath spent much text on the construction of a

fourth proportional in his note to Proposition V.18. Mueller’s analysis suggests

quite a few cases of non constructible elements used in proofs (see the index entry

for ‘constructive’ in Mueller (1981)). Endorsing such interpolating constructions

requires a vision that goes beyond the geometric code and manual drawing to a

continuum of not necessarily actualised possibilities.

Given all that, it should no longer be odd that we can Let the points A, etc.

be imagined as the points of the angles of the inscribed polygon, even when

this polygon is not actually drawn in the diagram of Elements Proposition IV.12.

The constitutive and cumulative experiences of erasing and re-drawing endow haptic

vision with the capacity to sense lines in the Figure without actually resorting back

to the drawing hand.

The same experience enables haptic vision to retrace elements, which are no

longer mentioned in either diagram or text. As Netz (2004b, 54) puts it, the readers

imagine a watermark underneath Diocles’ diagram, which has a sphere

... and two cones, even though Diocles has actually discarded the sphere and the

cones from both diagram and text. The cones and sphere are part of what’s there

in the geometer’s head or around him.
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Figure 5. The Elements, Proposition IV.12: About a given circle to

circumscribe an equilateral and equiangular pentagon.

Figure 6. Archimedes’ diagram presenting the problem (left) and Diocles’

diagram that suppresses the circle and cones (right) (Netz, 2004b)

Finally, haptic vision can sense not only what’s not constructible and not there,

but even the absurd. In Proposition III.10 of the Elements, two circles are drawn

intersecting at four points. A generative history of practicing catastrophic marks

in messy sketches of crooked circles is what enables haptic vision to integrate this

counterfactual accident of representation into a geometric proof. The haptic eye is

precisely this capacity to reintegrate the irrational marks of the diagram into the

regulated and stratified Figure.

Time and again Netz brings up examples of diagrams with distorted perspectives,

wrong rendering of parallels, wrong rendering of ratios between magnitudes, syntac-

tic constructions that suggest geometric relations different from those traced, and

virtual constructions of geometric objects that bring together elements from non-

adjacent locations of a diagram. All these facts suggest that the organ that watches
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Figure 7. The Elements, Proposition III.10: A circle does not cut a

circle at more points than two.

over geometric diagrams must be able to see something different than what’s actu-

ally written and drawn. Indeed, this is a feature of the haptic vision that emerged

from a code subverted by the catastrophes of manual drawing and the internal

monologue (those psychical entities from before there is any connection

with logical construction ... which can be communicated to others). But

to make sense, all this action must be stratified into orders such as past, present,

possibility, chance, generality, motion, extension, synopsis, erasure, retracing, inter-

polation and counterfacticity. Haptic vision operates not by reducing Figures to

a new optical code, but by dynamically articulating and communicating the above

levels. It must organise these domains of sensation to form the rigorous surface

of Greek geometric knowledge.

Haptic vision must not be confused with the all powerful mind’s eye. The mind’s

eye is a construct that’s supposed to observe modular and abstract idealities, and

is bounded only by the formalities of a logic of perception and cognition. The

haptic eye, on the other hand, is constrained by a generative history of embodied

sensations. It is the capacity to articulate and recompose levels, orders and domains

of sensation into a movement in all its continuity, speed and violence, a

capacity regulated by what Deleuze names the logic of sensation .

8. Eighth motion: The crashing of dimensions

In this section I will derive some consequences of the above analysis for an in-

terpretation of one of the main divisions in Greek mathematical conceptualisation:

the division between magnitudes of different dimensions, and the division between
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geometric magnitudes and numbers. I will first survey the standard knowledge con-

cerning this division, then point out some new observations concerning the stability

of this division, and finally suggest ways of sorting out our understanding of this

division in light of the theoretic apparatus presented above.

In his introduction to the second volume of his translation of the Elements,

Vitrac (1994, 20–21) points out how the study of numbers (positive integers) was

considered by some Greek authorities as divided between numbers as such and

numbers in relation to each other (ratios), or between the consecutive and the

contiguous. Such divisions didn’t make it into Greek mathematics as we know

it. But the one division that remained in force throughout, according to Vitrac,

is the division between the continuous and the discrete, geometry and arithmetic,

magnitude and number (Vitrac, 1994, 24).

The Euclidean tradition refused to superimpose the domains of geometry and

arithmetic, and did not allow to arithmetically manipulate magnitudes in abstrac-

tion of their geometric representation (say, multiply lengths and areas as numbers).

Unlike its later versions, classical Greek mathematics is not tinged by this

hybrid and forbidden procedure (Fried & Unguru, 2001, 38). This fact en-

tailed a strict division between magnitudes of different dimensions. Indeed, if the

integrity of the principle that magnitudes of different dimensions are dis-

tinct would have been weakened, then the way would be open for the formu-

lation of a conception of magnitude ... as generalised number, completely

independent of any particular geometrical representation (Unguru & Rowe,

1981–1982, I,22), consequently tingeing Greek mathematics with the hybrid and

forbidden.

Nevertheless, Unguru & Rowe (1981–1982, I,16) concede that there is no ex-

plicit statement in Euclid of the segregation of magnitudes of different dimen-

sions (except in the limited context of Definition V.3, where a ratio is defined as

relating two magnitudes of the same kind), and that it is not clear that these

matters were even given much thought, at least by mathematicians (as op-

posed to philosophers). Indeed, so little thought was given to this issue, that all
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propositions concerning magnitudes, regardless of kind, were subsumed under the

common signs, terms and proofs of Book V.

Fried & Unguru (2001, 38) further concede that burgeonings of what retro-

spectively can be recognised as the forbidden practice of magnitudes as num-

bers may be found in Heron. And while Heron is indeed a later proponent of Greek

geometry, we may assume that discussions of the measurement, in explicit

numerical terms, of geometrical shapes, would have been conducted in

antiquity in this language. There is no reason to suppose Hero’s dis-

course was original to him (the fact that all evidence for this discourse comes

from later Greek geometry is explained by the usual reasons of the dates of

papyrus survival (Netz, 2004b, 113)). It seems, then, that alongside the high-

brow Euclidean tradition there existed a ‘vulgar’ tradition, which had no qualms

about imposing numerical values on magnitudes, and where geometrical objects

are treated as possessing a quantitative value and explicitly multiplied by

each other (Netz, 2004b, 113). Now, as Netz maintains, Greek mathematicians

must have been acquainted with these procedures, which they rejected in practice

(possibly without giving this rejection too much thought). But whatever was

thoughtlessly rejected, entered, as we shall see promptly, the non-white surface

against which Greek mathematicians wrote their proofs.

The careful distinction between inhomogeneous magnitudes such as lines, areas

and numbers is usually traced back to the discovery of incommensurables (Vitrac,

1994, 30). Aristotle reconstructs this distinction as predating his contemporary

practice of proof. He explains that Alternation, namely that rule prescribing that

if a : b is the same as c : d then a : c is the same as b : d, used to be demonstrated

separately of numbers, lines, solids, and durations, though it could have

been proved of them all by a single demonstration. Because there was

no single name to denote that in which numbers, lengths, durations,

and solids are identical, and because they differed specifically from one

another, this property was proved of each of them separately. To-day,

however, the proof is commensurately universal, for they do not possess
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this attribute qua lines or qua numbers, but qua manifesting this generic

character which they are postulated as possessing universally (Posterior

Analytics, A 5, 74a18).

But Aristotle’s statement above is false, at least from the point of view of the

Elements, where distinct proofs are given for magnitudes and numbers (propositions

V.16 and VII.13). Perhaps Aristotle for a moment mistook the similar expression of

the two distinct propositions for a unified proof under a single principle. Possibly,

the identical diagrams for both propositions allowed (or forced?) Aristotle to lay

aside, for a moment, the division that he himself endorsed between continuous

and discrete. Quite probably Aristotle’s historic reconstruction is imprecise. The

development of the ideological divisions and the various distinct or unified proofs

may have gone through many diverging and converging paths, two distinct moments

of which may have been captured by Aristotle and by the Elements.

In fact, the stability of the distinction between number and magnitude is threat-

ened even inside the Elements. Mueller shows how Euclid carefully made sure

(albeit not explicitly) to maintain minimal homogeneity assumptions in proving

propositions about ratios. This means that, if a proposition concerning four mag-

nitudes could hold when two of the magnitudes are of one kind (say lines), and

the two others are of another kind (say areas), Euclid made sure that the entire

proof would hold for such a setting, without ever going through a step which in-

volves a ratio between inhomogeneous magnitudes (say a line and an area). And

yet, Proposition V.23 is, as Mueller notes, an exception to this rule. So he writes:

I am inclined to think of 23 as an inexplicable exception rather than a

refutation of the view that Euclid is generally concerned with minimis-

ing homogeneity assumptions (Mueller, 1981, 133). Could the exception be

explained by practices in the geometer’s head, or around him that didn’t give

much thought to segregating non homogeneous magnitudes, and that subsumed

different magnitudes under common signs and diagrams?

This evidence for the power of the common sign to confuse ideological divisions

is not isolated. Mueller (1981, 137–138) demonstrates Euclid’s blending of his
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two theories of proportion, that of continuous magnitudes and that of discrete

numbers, without bothering to integrate them or link them together. The Greek

mathematician occasionally breaches the boundary between magnitudes and num-

bers without concerning himself with the resolution of ideological issues on his way

to mathematical discovery.

There is also evidence of jumping from one-dimensional observations to two-

dimensional conclusions. We have already mentioned the question of constructing

a fourth proportional to three given magnitudes (given a, b and c to find x such that

a : b is the same as c : x). The Elements solve this problem for lines, but do not

have the means to solve it for general two-dimensional figures. Nevertheless both

in V.18 and in XII.2 the general solvability of this problem is assumed (we could

accept the opinion of Unguru & Rowe (1981–1982, II,57) that this was a slip, if

it was but confined to a single proposition, and if Mueller hadn’t supplied us, as

noted above, with further examples for non-constructive manoeuvres).

In order to further evaluate the stability of the division between magnitudes I

will explore the relations between explicitly stated methods for establishing ratios

of two-dimensional magnitudes and the assumptions made by propositions in book

V that are concerned with such ratios. My conclusion will be that Book V assumes,

with no attempt at procedural justification, that for all intents and purposes mag-

nitudes are qualitatively structured like lines.

The definitions that open Book V of the Elements leave the researcher with much

to be desired. Definition V.1 reads: A magnitude is a part of a magnitude,

the less of the greater, when it measures the greater, and Definition V.4

reads: Magnitudes are said to have a ratio to one another which are

capable, when multiplied, of exceeding one another.

What does measure and exceed mean? In the case of line segments all is

visually clear. For one line segment to measure another means that if one copies

the shorter segment several times side by side, one obtains the longer segment. For

one segment to exceed another simply means that the longer covers the shorter

with excess.



FOR SOME HISTORIES OF GREEK MATHEMATICS 29

But how do we handle two-dimensional figures? Obviously, a figure can mea-

sure another even if the latter cannot be broken into several copies of the former,

and one figure can exceed another even if the latter does not fit inside the former

as is (a thin rectangle needn’t fit into a square, even if the latter is larger). Vitrac

(1994, 15) reconstructs these two-dimensional relations as “imaginarily” articu-

lated, and Mueller (1981, 122) reconstructs them as simply conceived. To better

understand these conceptions, let us analyse the procedures that the Elements em-

ploy to establish magnitude relations.

There are three basic procedures involved in comparing magnitudes. The first is

subsumed under Common Notions 2 and 3, which state that If equals be added

to equals, the wholes are equal and If equals be subtracted from equals,

the remainders are equal. This procedure is used paradigmatically in I.35,

where two parallelograms are equal, because they can be represented as two con-

gruent triangles, together with some fixed triangle, and with another fixed triangle

removed.

Figure 8. The Elements, Proposition I.35: Parallelograms which are

on the same base and in the same parallels are equal to one another.

The second procedure for comparing magnitudes is presented in Definition V.5,

which states that A to B is in the same ratio as C to D if, when we take

equimultiples of A and C (multiply both by any given number), and equimultiples

of B and D, then the former multiples will either both be greater than the latter

respectively, or both equal, or both smaller.

A further procedure for comparing magnitudes is found in Proposition XII.2.

Here we encounter the more delicate procedure of exhaustion. To show that figures

A and B have a given ratio it is enough to show that the ratio between A and
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anything inscribed in B exceeds the given ratio, and that the ratio between A and

anything inscribing B is exceeded by the given ratio.

Let us now check whether the knowledge provided by these means of establish-

ing the equality of magnitudes indeed provides us with whatever’s assumed in the

proof of a fundamental result: Proposition V.1 (similar problems occur with other

propositions in Book V). In this proof we have a magnitude AB which is hypoth-

esised to be a multiple of a magnitude E. In the proof of V.1 we are ordered to

Let AB be divided into the magnitudes ... equal to E.15 Now suppose, for

example, that one has established that AB is a multiple of E via Definition V.5.

In that case all we know from what we have established (namely, that Definition

V.5 holds for the ratio AB:E and some integer ratio) is which multiples of AB are

greater than which multiples of E, which are equal and which smaller. We have,

however, no means of dividing AB into components equal to E. What we obtain

by establishing that E is a part of AB via Definition V.5, and what we assume

for proving Proposition V.1 is not immediately compatible. As in Definition V.1,

the missing link here is procedurally obvious in the case of line segments, but is

unaccounted for in the case of other magnitudes.

Figure 9. The Elements, Proposition V.1: If there be any number of

magnitudes whatever which are, respectively, equimultiples of any

magnitudes equal in multitude, then, whatever multiple one of the

magnitudes is of one, that multiple also will all be of all.

15Related problems occur with V.8, where we are ordered to perform the simpler task of finding

something equal to a magnitude C inside the greater magnitude AB.
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We would encounter a similar problem if the ratio between AB and E were

established by exhaustion. There, all we would know is when some multiples of AB

are greater or smaller than some multiples of things inscribing or inscribed in E —

nothing more. And yet, no argument would be deemed necessary to subsequently

apply Proposition V.1, which proof assumes much more: that AB is decomposable

into parts that equal E (what Definition V.5 and exhaustion provide us is indeed

enough to produce some proofs of Proposition V.1, but these would not be the

proof actually given in the Elements).

In fact, even if we establish the ratio between one magnitude and another using

only Common Notions 2 and 3, we do not necessarily know enough to break one into

copies of the other. For example, we mentioned that in I.35 the equality between

two parallelograms is proved by a simple cut-and-paste procedure. In I.37, the

equality of two triangles (BAC and BDC in the diagram for Proposition I.37) is

proved by duplicating the triangles to form parallelograms, and then using I.35.

We obtain that the parallelogram BDFC equals the parallelogram BEAC, which

equals twice the triangle BAC. Now, since the cut-and-paste of BDFC in I.35 does

not respect its division into the triangles of I.37, we do not have here any means by

which to decompose the parallelogram BDFC into two copies of the triangle BAC.

Nevertheless, Proposition V.1 simply assumes that we have such a decomposition

(whether such decomposition may be obtained by other means is irrelevant, because

the Elements do not demonstrate a need for any such decomposition).

Figure 10. The Elements, Proposition I.37: Triangles which are on the

same base and in the same parallels are equal to one another.

What we have is only a cut-and-paste procedure to compare a certain doubling

of the triangles. If the proof of Proposition V.I were to respect the above manner

of establishing ratios, it would have to start by equimultiplying its given AB and
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E, so we are in a situation to cut-and-paste one into copies of the other, and then

proceed with the original proof. Such a proof, again, can be produced, but is not

actually produced in the Elements.

Even if we ‘relax’ our reading of Proposition V.1, and interpret it as assuming

that a multiple of a magnitude can be decomposed into parts, each of which equals

that magnitude in whatever abstract sense, without necessarily being congruent to

it, we still encounter a problem. In this case we have no problem with the last

example, because the parallelogram BDFC can be decomposed into two parts,

each equal, though not congruent, to BAC. But take for example a segment A

divided into 11 parts, each equal to a segment B. Then, according to XII.2, the

circle on A is 121 times the circle on B. But despite the capacity assumed in the

proof of V.1, the Elements provide no means for dividing the circle on A into 121

equal parts, even if we do not require these parts to be 121 circles equal to B.

So, we see, the assumptions of proofs concerning ratios in Book V depend on

more knowledge than is immediately available from the methods for establishing

ratios.16 The problem is, however, eliminated in the context of line segments,

where a simple manual procedure for comparing magnitudes is available. It turns

out that the proofs of Book V assume that magnitudes behave like line segments,

and that these proofs do not give this assumption any explicit attention (if indeed,

as Aristotle suggested, these proofs were once given separately for different kinds

of magnitudes, then to confront the above issues these proofs would have had to

be much more elaborate than those in Book V). The fact that proofs concerning

magnitudes do not simply give a fully justified common treatment to all kinds of

magnitudes, but impose the structure of line segments on all other magnitudes,

shows that there is a genuine crossing of borders between the realms of magnitudes

of different dimensions.

16The problem is genuine even if we attempt to interpolate some intermediary arguments, since

the Greeks believed that a square can be a certain multiple of a circle, while one cannot finitely

cut-and-paste circles into squares or vice versa. In fact, even for three-dimensional polyhedra this

is not necessarily possible, as shown by Dehn’s and Kogan’s solutions to Hilbert’s third problem.

But the Greeks never strayed far enough to encounter this problem.
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What kind of conception could justify the assumption that two-dimensional mag-

nitudes behave like one-dimensional magnitudes in the sense that, if one magnitude

is established to have an integer ratio to another via the tools available in the Ele-

ments, then the larger can be decomposed into pieces equal to the smaller?

One could consider a ‘fluid’ notion of two-dimensional sizes, where if we ‘pour’

the content of a certain area we might ‘fill up’ a certain number of other areas,

thereby giving procedural sense to such partitioning. But there is no indication of

anything like that in the relevant mathematical literature. A more radical sugges-

tion is to conceive of magnitudes as abstract quantities, but such a conception was

convincingly refuted in Unguru (1975) and in Unguru & Rowe (1981–1982).

Another option is to think of a figure A as bigger than a figure B in terms of

being able to cut B into many small pieces, and rearrange their positions so as to

fit inside A. More precisely, this approach would be based on the fact that even if

A is only slightly larger than B, then partitioning B into pieces of sufficiently small

diameter would necessarily allow to rearrange them so as to fit inside A (regardless

of the actual shapes of the pieces).

But this is a modern approach, which is not explicitly present in Greek texts.

Greek cut-and-paste arguments always depend on the concrete shapes of their few

actual pieces. Moreover, this approach may be useful when one magnitude is larger

than another, but does not necessarily work for showing that two magnitudes are

equal (say, a circle and a square), and does not resolve the problem of applying the

proofs of Book V to ratios established by means of exhaustion. Therefore, such a

conception would have to be complemented by a principle along the lines of the

one attributed by Philoponus to Bryson: that of which there is greater and

less there is also equal (Knorr, 1975, 71), which is not clearly acknowledged by

Greek geometers (indeed, if it were, then Bryson’s solution for the squaring of the

circle would have probably enjoyed a better acceptance). The Greeks had the tools

to establish and complete a theory along such lines (the missing component is not

more sophisticated than their definition of equal ratios), but assuming that they

had such a theory would be a facile anachronism.
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The challenge is to explain the practice of magnitudes as one dimensional in

terms of signs, diagrams and inferences, without resorting to excessive abstraction

or hypotheses of esoteric knowledge. One needs to explain here manipulations,

which can’t be operated by the optical and “digital” code, but which, like Deleuze’s

manual motions and catastrophes, must remain operative and controlled, if

we are to emerge from the catastrophe.

I would like to suggest that the diagrams accompanying the proofs of Book

V, which represent magnitudes as line segments, should be taken ‘literally’; that

when Greek geometers watched over two-dimensional figures and considered their

sizes, they saw, among other things, lines. More precisely, they saw, like Deleuze

observing Bacon’s paintings, a shifting sequence or series (and not simply a

term in a series), which related areas to lines. Their diagrams were viewed at

diverse levels, in different orders, or in different domains, including those

of two dimensions and of one dimension.

There’s obviously no manual or optical procedure equivalent to this view. This

view requires a haptic eye. The haptic eye grew out of the material catastrophic

fact that a very thin hand drawn figure might look like a line, and that an area can

in fact, pace Aristotle’s Physics, be exhausted by many hand-drawn adjacent lines.

The haptic eye grew out of the fact that ‘vulgar’ practitioners confounded numbers

and magnitudes. The haptic eye transformed this confusion into a regulated and

limited practice of figures as lines. The haptic eye turned these catastrophes and

possibilities into matters of fact, a stratified view of geometric magnitudes, which

no other sense or reason establish.

The haptic eye is the non-algebraic and non-arithmetic organ, which operates

a Greek geometry of hybrid, but entirely not abstractly quantitative, geometric

entities. Greek mathematics is tinged by hybridity, and the integrity of the

principle that magnitudes of different dimensions are distinct is weak.

But this does not bring about algebra, because there is much more to algebra

than the weakening of the division between dimensions. The difference between

Greek geometry and algebra has as much to do with forms of inscription, means of



FOR SOME HISTORIES OF GREEK MATHEMATICS 35

production and organisation of knowledge, as well as with the means of perception

and embodied genesis subsumed under haptic vision.

9. Last motion: The Aura

In the above discussion I did not give Greek mathematical text the attention

it merits in an analysis of Greek geometry. I can’t comment here on the crucial

role of the text (on top of that of haptic vision) in turning special diagrams into

vehicles for general proofs, as analyzed in Netz (1999). But I will consider here

a different aspect of Greek use of words, which is related to the problem of the

division between different kinds of magnitudes, and will provide us with another

trajectory to haptic vision.

The relevant case study is the ‘hero’ of Netz (2004b). Netz conducts a detailed

and deep analysis of Archimedes’ use of a strange idiosyncratic expression, which

he loosely translates as the figure on line. This idiosyncratic expression literally

sounds like ‘figure multiplied by line’, but Netz carefully establishes that it is in

fact used geometrically, as the solid whose base is the figure and height is the line,

and carries no arithmetical meaning for Archimedes (Netz, 2004b, Ch.II,§2.5).

But why did Archimedes use a phrase that suggests a hybrid treatment of magni-

tudes as multipliable numbers? Netz’ explanation is that Archimedes did not have

a compact non-confusing textual formula for the relevant instance, so he chose

to import an expression from the register of calculation to the register

of geometry. But the result was a new configuration of registers, a new

intersection of contexts (Netz, 2004b, 111). According to Netz, this textual

choice and interaction of contexts led Eutocius, a later commentator, to produce a

somewhat algebraised form of geometry.

Eutocius set out to regularise the use of Archimedes’ idiosyncrasies. This canon-

isation of Archimedes has meant that the Archimedean idiosyncratic for-

mula lost its marginality and has become for Eutocius a natural practice,

sanctioned by the authority of Archimedes (Netz, 2004b, 120). Archimedes

wishes to mark a piece of text, to endow it with its own distinctive

aura. He therefore makes it different — and this difference leads on
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to the possibility of mathematical change (Netz, 2004b, 114). Archimedes’

‘signature term’ has become a replicable formula, and the aura has become a law of

authority. We cannot get very much closer to an explicit manifestation of différance

and catastrophe as forces in the production of knowledge

Archimedes, according to Netz, used a certain idiosyncratic terminology, which,

in a sense is incommensurable with other approaches — and so with its

“aura” it is somehow inapproachable (Netz, 2004b, 59). Netz’ concept of aura

is taken from Walter Benjamin. In his Work of art in the age of its reproducibility,

Netz explains, Benjamin claims that historically, works of art were singular

objects surrounded by an “aura” ... which derived from their very sin-

gularity. Archimedes’ aim is reconstructed by Netz as precisely to create this

special irreplaceable object ... this is what the audience of the mathe-

matical proof had expected, in Antiquity, from the geometer (Netz, 2004b,

58–59).

Now both signature and aura have much more to them than Netz explicitly

declares. I will not dwell on signatures, which, as Derrida shows, have a complex

status between name and thing, between a mark of presence and a mark of ab-

sence.17 But given its force of change and its importance for the audience of Greek

geometers, let’s conclude by considering this aura, as it can lead us to understand

the haptic vision and the Figure from another direction.

Netz is right in observing that Benjamin marks the aura as uniqueness (Ben-

jamin, 1996–2003, III,105). But he further marks it as that which is never entirely

severed from its ritual function (Benjamin, 1996–2003, III,105) (perhaps like

the religious signification of mathematics for the Pythagoreans), and as that which

is bound to an object’s presence ... there is no facsimile of the aura (Ben-

jamin, 1996–2003, III,112) (perhaps like some of Einstein’s signs and images, which

cannot quite yet be reproduced at will).

When Benjamin goes on to comment on the aura in Some Motifs in Baude-

laire, the aura becomes the associations which, at home in the mémoire

17Derrida (See 1984) and the final section of Signature, Event, Context in Derrida (1988)
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involontaire, tend to cluster around an object of perception (Benjamin,

1996–2003, IV,337). There we also find Benjamin’s most complete articulation of

the aura, stating that Inherent in the gaze, however, is the expectation

that it will be returned by that on which it is bestowed. Where this

expectation is met ... there is an experience [erfahrung ] of the aura in

all its fullness ... To experience the aura of an object we look at means to

invest it with the ability to look back at us. This experience corresponds

to the data of mémoire involontaire . Benjamin’s quote from Proust clarifies

the locus of this mémoire involontaire . Proust writes that some people believe

that monuments and pictures appear only through a delicate veil which

centuries of love and reverence on the part of so many admirers have

woven about them. This chimera ... would become truth if they related

it to the only reality that is valid for the individual — namely, the world

of his emotions (Benjamin, 1996–2003, IV,338–339). In fact, Proust’s mémoire

involontaire is much closer to forgetting than what is usually called mem-

ory (Benjamin, 1996–2003, II,238). It requires the viewer to enter the world of the

internal monologue, the not yet reproducible mémoire involontaire , which is

of a different time than that where associative play is sufficiently established

and can be reproduced at will and communicated to others. In other words,

it requires the viewer to sense what generates a Figure: the interaction of a coded

geometric diagram and the non-replicable catastropic marks that it suffers from

whatever is in the geometer’s head, or around him. It requires the viewer to

retrace the Figure with her or his embodied haptic eye.

The economy of the gaze is a complex one. We often think of the gaze as having

power over its object. At the same time, we think of the gaze as being captured by

an object. The experience of the aura is a sense of balance in this economy, which

has no objectivity about it. The Figure compels itself upon us to the extent that we

have the power to manipulate it with our haptic eye. Indeed, the haptic gaze invests

the Figure with a lively dynamism that returns our gaze. This economy of the

haptic eye, this logic of Sensation, is perhaps the best articulation of mathematical
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truth. Truth emerges as a balance between our power to manipulate an object and

our being compelled by its law.

Concluding remarks on the rigour of a mathematics viewed by a

haptic gaze

(1) None of the issues of Greek mathematics mentioned above (e.g. Book V’s

treatment of all magnitudes as one-dimensional, or the problem of seeing

in diagrams what’s not explicitly there) constitutes a gap in the Elements.

Greek mathematicians did not criticise the validity of such inferences for

hundreds of years. It was no oversight. These observations only become

gaps when observed from the point of view of a later mathematics. For the

Greeks, who have never learnt such later mathematics, these were no gaps.

(2) — Surely, these ‘anachronistic gaps’ might have led the Greek to mistakes!

— Greek mathematicians could and did make mistakes. However, they

were not ‘led’ to their mistakes by any ‘gaps’. Their proof procedures

were sound enough to produce consensus and to sustain the relevant scope

of application for their claims. Greek results met the viability tests that

Greek mathematicians put them to.

(3) Contemporary mathematicians make mistakes as well. The possibility, in-

principle, of formalising proofs is only marginally relevant, because such

formalisation constitutes only a small part of how mathematicians verify

their claims, and because this practice too allows mistakes to creep in.18

Like Greek mathematical practices, contemporary mathematical practices

are sound enough to produce consensus and sustain a certain scope of ap-

plication for their mathematical products.

(4) By ‘a certain scope’ I mean that two ice cubes and three ice cubes are five

ice cubes only as long as one is finished counting before they melt (now

imagine doing that with 2 billion and 3 billion ice cubes).

18See Parikh (1991) for comments by early 20th century leaders of the Italian school of algebraic

geometry concerning their own informal mistakes and those of mathematicians who wrote more

formally.
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(5) The formal logical consistency, which appears to be obtained by contem-

porary mathematical practices, is simply that: formal logical consistency.

It does not guarantee a-priori any privileged access to ideality or reality.

(6) — Isn’t it true that if the Greeks had investigated other areas of mathe-

matics, then the above gaps might have had disastrous effects? — It is true

that with the Greeks, such disasters didn’t occur.19

(7) At least, such disasters didn’t occur more frequently than ice-cube counting

disasters happen today. Which is not to say that they do not occur very of-

ten. Contemporary mathematical statistics and economics are replete with

such disasters, as well as those epicycles upon epicycles of exact sciences.

(8) For some radical finitists it is a gap that contemporary mathematics does

not consider very large numbers as essentially different from smaller ones,

or even that contemporary mathematics allows large numbers at all. But

this does not make contemporary mathematics any less capable of applying

effectively to whatever it is that it applies effectively to, even in the eyes of

the finitist.

(9) There’s something silly in believing that any instance of three is equiva-

lent to any other. Mathematics most successfully applies to those specific

circumstances, where this belief is not so terribly silly.

(10) — But mathematics has an objective, a destination which it strives for.

It is from the point of view of this destination that Greek mathematics

has gaps. — Netz’ description of Greek mathematical work is as follows:

One went directly to diagrams, did the dirty work, and when

asked what the ontology behind it was, one mumbled something

about the weather and went back to work ... That this was at

all possible is partly explicable through the role of the diagram,

19Actually, one such ‘disaster’ perhaps did occur — the discovery of incommensurable lines. It

is believed by some that Greek mathematics was reformed to get around this ‘disaster’. But even

then, the ‘disaster’ hadn’t affected the ‘vulgar’ representation of such magnitudes by something

like fractions, relying on practically sustainable approximations. This is precisely the point of

Wittgenstein’s advice to avoid going through the contradiction (Wittgenstein, 1975, 227).
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which acted, effectively, as a substitute for ontology (Netz, 1999,

57). Greek mathematics has its own object. It needn’t be subordinated to

our contemporary objectives and destinations.

(11) Many contemporary mathematicians too would rather talk about the weather

than about ontology. But even mathematicians, who do believe that their

mathematics is subject to an ontology, produce texts that have much more

to them than their ontology permits.20

Notes

1For a review of standpoint epistemology and feminist critique of knowledge see Harding (2004),

Longino (1999) and the discussions of ‘herstory’ (while inspired by such approaches, this paper

contains no explicit feminist discussion beyond noting that classical Greek geometry appears to

have been an almost exclusive men’s ‘club’). For a discussion of parasitic noise and knowledge

formation see Serres (1982).
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