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Finite Time Blowup for Parabolic Systems
in Two Dimensions

Connor Mooney

Communicated by V. Šverák

Abstract

Weconstruct examples of finite time singularity from smooth data for linear uni-
formly parabolic systems in the plane. We obtain similar examples for quasilinear
systems with coefficients that depend only on the solution.

1. Introduction

We consider regularity for weak solutions to the linear parabolic system

ut = div(a(x, t)Du). (1)

Here u : Rn×(−∞, 0) → R
m , and a = [ai jαβ(x, t)]i, j�n

α, β�m
are boundedmeasurable

coefficients satisfying the uniform ellipticity condition

λ|p|2 � ai jαβ(x, t)pα
i p

β
j � Λ|p|2 (2)

for some positive constants λ, Λ, and for all p ∈ Mm×n and all (x, t). By a
weak solution we mean a map u ∈ L2

loc(R
n × (−∞, 0)) with Du ∈ L2

loc(R
n ×

(−∞, 0)) that solves (1) in the sense of distributions. In coordinates one writes
u = (u1, . . . , um), and the system (1) is uα

t = ∂i (a
i j
αβ(x, t)uβ

j ).

Regularity results for (1) are important for the study of gradient flows in the
calculus of variations. The gradient flow v of a functional with a smooth, uniformly
convex integrand depending only on the gradient solves the system

vt = div(B(Dv)), (3)

where B is a smooth uniformly monotone operator. The classical approach to reg-
ularity is to differentiate (3) and treat the problem as a linear parabolic system for
the derivatives of v with bounded measurable coefficients.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-016-1052-5&domain=pdf
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The regularity problem for the linear elliptic system

0 = div(a(x)Du) (4)

is understood in all dimensions. Here u : Rn → R
m and a are bounded measurable

coefficients satisfying (2).Morrey [6] showed that solutions to (4) are continuous
in the case n = 2. This follows from a higher-integrability result for the gradient.
Solutions to (4) are also continuous in the scalar case m = 1 by classical results
of De Giorgi [2] and Nash [7]. As a consequence, minimizers of functionals with
smooth uniformly convex integrand are smooth in these cases. Solutions to (4) can
be discontinuous in the case n = m � 3, by well-known examples of De Giorgi
[3] and Giusti and Miranda [4].

Apart from the result of Morrey, the elliptic results have parabolic analogues.
Nash [7] in fact showed that solutions to (1) are continuous in the scalar casem = 1.
Examples of finite time discontinuity from smooth data for (1) were constructed
in the case n = m � 3 by Stará et al. [10], and refined by Stará and John
[9]. Finally, Necas and Šverák [8] showed that time-dependent solutions to the
nonlinear system (3) are smooth in the case n = 2.

However, in contrast with the scalar case and the planar elliptic case, the argu-
ment in [8] does not rely on continuity of solutions to the linearized problem. In
fact, the question of continuity of solutions to (1) in the case n = 2 remained open
(stated for example in [5,9]). The purpose of this paper is to answer this question
with a counterexample to regularity. Our main theorem is:

Theorem 1. There exist a map

u : R2 × (−∞, 0] → R
2

that is smooth for t < 0 and Lipschitz up to t = 0 away from (0, 0), and a bounded
matrix field

a : R2 × (−∞, 0] → SymM2×2×M2×2

satisfying (2), that is smooth for t < 0 and discontinuous at (0, 0), such that u
solves (1) in R2 × (−∞, 0) with coefficients a(x, t), and u(·, 0) is discontinuous.
Remark 2. The example u in Theorem 1 can in fact blow up in L∞.

Remark 3. One can extend to times t � 0 by e.g. keeping a(x, t) = a(x, 0) for
t > 0, and solving the system with the initial data u(·, 0). In this way one obtains
a global (in space and time) weak solution that develops an interior discontinuity
at (0, 0) which instantly disappears.

Remark 4. For the system (1) there is a higher-integrability estimate for the spatial
gradient in parabolic cylinders (see e.g. [1]). In the case n = 2 this estimate implies
that solutions are continuous in space at almost every time (which is not true when
n � 3), but it does not rule out singularity formation.
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As a result of Theorem 1, one cannot rely on a continuity result at the linear
level to prove regularity for (3) in the plane. One might instead hope to use that the
derivatives of gradient flows solve quasilinear systems with the special structure

ut = div(a(u)Du), (5)

where ai jαβ are smooth functions on R
m satisfying (2). Our second result is an

example of finite-time discontinuity from smooth data for the system (5) in the
case n = 2, m = 4:

Theorem 5. There exist a map

u : R2 × (−∞, 0] → R
4

that is smooth for t < 0 and Lipschitz up to t = 0 away from (0, 0), and a smooth,
bounded matrix field

a : R4 → SymM4×2×M4×2

satisfying (2), such that u solves (5) in R
2 × (−∞, 0) with coefficients a(u), and

u(·, 0) is discontinuous.
Remark 6. The coefficients of the Giusti–Miranda example [4] can be written as
smooth functions of u, giving a discontinuous elliptic example in the case n =
m � 3. The coefficients of the Stará–John example [9] can also be written as
smooth functions of u, giving a parabolic example with finite-time discontinuity
from smooth data in the case n = m � 3.

Remark 7. It would be interesting to construct an example of finite time disconti-
nuity from smooth data for (5) in the case n = m = 2.

Our examples show that parabolic systems in the plane behave differently than
elliptic systems. They also show that the classical approach to proving regularity for
(3) in two dimensions fails. In [8] the authors instead prove a higher-integrability
estimate for solutions of (1), and apply it to vt . One can then treat (3) as an elliptic
system for each fixed time. Similar ideas were used to show the continuity of
solutions to (1) in two dimensions when the coefficients are Lipschitz in space or
in time (see [5]).

The data and coefficients for the parabolic examples in [9,10] are a small per-
turbation from those of the (elliptic) De Giorgi example. The data in our examples
are also a perturbation of the De Giorgi example, but due to low-dimensionality we
need to take a different approach to constructing the coefficients, and also to make
a more careful perturbation.

To prove Theorem 1 we search for a solution of the form u = U(x/
√−t). This

reduces the problem to finding a nontrivial global, bounded solution to an elliptic
system. Our approach is to construct a pair of functions that solve the analogous
scalar equation away from an annulus, where the error in the equation is small. This
pair defines a map that solves a decoupled system away from the annulus. We then
couple the equations so that the system is solved globally.
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Remark 8. An important feature of our example is that |U| is not radially increas-
ing, unlike in the higher-dimensional examples. In fact, such examples do not exist
in the plane. In Section 7 we prove a Liouville theorem in two dimensions for
self-similar solutions with radially increasing modulus (see Theorem 18).

Our remaining examples are modifications of the construction described above.
To obtain a solution to (1) with L∞ blowupwe instead search for solutions invariant
under rescalings that fix −ε-homogeneous maps.

Because |u| is not radially increasing in our first example (which is guaranteed
by the Liouville theoremmentioned in Remark 8), we can not write the coefficients
as functions ofu (seeRemark14). ToproveTheorem5wego to higher codimension.
We take a solution ũ to (1) that is similar to u, such that the map |x | → (|u|, |ũ|)
is injective. The pair (u, ũ) solves a uniformly parabolic system in the case n =
2, m = 4, and we can write the coefficients as smooth functions of (u, ũ).

The paper is organized as follows. In Section 2 we reduce Theorem 1 to finding
a global, bounded solutionU to an elliptic system by searching for solutions that are
invariant under parabolic scaling. In Section 3 we construct a function that solves
the analogous elliptic equation away from an annulus. Using this functionwe define
U and diagonal coefficients so that U solves the desired (decoupled) system away
from the annulus. In Section 4 we construct off-diagonal coefficients that couple
the equations so that U solves the system globally, and we verify that the resulting
matrix field is uniformly elliptic. This completes the proof of Theorem 1. In Section
5 we modify this construction to obtain an example with L∞ blowup. In Section 6
we prove Theorem 5. Finally, in Section 7 we prove a Liouville theorem indicating
why |U| can not be radially increasing in two dimensions.

2. Reduction

We first reduce the problem to finding a global bounded solution to an elliptic
system by searching for solutions that are invariant under the parabolic scaling
(x, t) → (λx, λ2t).

Proposition 9. Assume that U : Rn → R
m is a non-constant, bounded, smooth

solution to the system

div(A(x)DU) = 1

2
DU · x, (6)

where A = Ai j
αβ(x) are smooth, uniformly elliptic coefficients. If we take

u(x, t) := U
(

x√−t

)
, a(x, t) = A

(
x√−t

)
,

then u solves (1) on R
n × (−∞, 0) with the coefficients a(x, t).

Furthermore, if U satisfies

|DU(x)| = O(|x |−1), |DU · x | = O(|x |−2), (7)

then u is smooth for t < 0 and Lipschitz up to t = 0 away from (0, 0), and is
discontinuous at (0, 0).
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The proof is a straightforward computation.

Remark 10. To produce an example with L∞ blowup we instead search for solu-
tions of the form (−t)−ε/2U(x/

√−t), whereU satisfies estimates analogous to (7)
at infinity (see Section 5).

Remark 11. Likewise, if U solves div(A(U)DU) = 1
2DU · x where A are smooth

uniformly elliptic coefficients on Rm , then u(x, t) = U
(

x√−t

)
solves (5) on Rn ×

(−∞, 0) with coefficients a(u) = A(U).

Remark 12. The problem of finding self-similar singular solutions to (1) thus boils
down to proving or disproving a Liouville theorem for the system (6). In Section
7 we verify the Liouville theorem in the case that |U| is radially increasing and
n = 2.

3. Scalar Building Block

We now construct a smooth function u : R2 → R and a smooth, uniformly
elliptic matrix field M : R2 → Sym2×2 such that u solves

1

2
∇u · x − div(M∇u) = 0 (8)

away from an annulus, where the expression on the left side is small.
For x in the plane we introduce the polar coordinates x = (x1, x2) =

(r cos(θ), r sin(θ)). We denote the unit radial and tangential vectors ν and τ by

ν = x

r
, τ = x⊥

r

away from the origin, where x⊥ is the counterclockwise rotation of x by π
2 . Observe

that
div

(ν

r

)
= div

(τ

r

)
= 0 (9)

away from the origin, since they are the gradients of harmonic functions.
Now let

u = ϕ(r) cos(θ)

and

M = f (r)ν ⊗ ν + h(r)τ ⊗ τ

for some ϕ and positive bounded f, h to be chosen. The left side of Equation (8)
can be written

E(r) cos θ,

where

E(r) := 1

2
rϕ′ + hϕ

r2
− (rϕ′ f )′

r
. (10)

This follows from a short computation using (9) and that

∇u = rϕ′(r) cos θ
ν

r
− ϕ(r) sin θ

τ

r
.
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3.1. Definition of ϕ

Define

ϕ1 = r√
1 + r2

, ϕ2 = 1 + 1

2r2
.

Let ξ be a smooth, non-increasing function that is 1 to the left of zero and 0 to the
right of one. For some R0 large to be chosen let

ϕ(r) = ξ

(
r − R0

R0

)
ϕ1 +

(
1 − ξ

(
r − R0

R0

))
ϕ2

(See Fig. 1).
The following estimates are easy to verify:

|ϕ′(r)| � Cr−3, |ϕ′′(r)| � Cr−4. (11)

(Here and below C denotes a universal constant independent of R0).

Remark 13. The motivation for our choice of ϕ is as follows. We want u to look
0-homogeneous for r large, so the angular derivatives dominate and one has Δu ∼
−r−2u. Thus, solving the heat equation with initial data u is compatible with
“squeezing” by parabolic rescaling if ϕ is decreasing at the rate rϕ′ ∼ −r−2. One
can solve the equation E(r) = 0 where ϕ′ > 0 by letting the coefficient f grow
large (see below), but near the circle {ϕ′ = 0} the function u can not solve the
desired equation by the maximum principle.

Fig. 1. The functionϕ smoothly connectsϕ1 andϕ2 on [R0, 2R0], and satisfies the estimates
|ϕ′| < Cr−3, |ϕ′′| < Cr−4
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3.2. Definition of f and h

For r < R0 we can solve the equation E(r) = 0 by keeping h bounded and
allowing f to grow. Taking h = 1/2 for r < R0 and solving E(r) = 0 for f gives
the function

f0(r) = (1 + r2)3/2

2

1

r

∫ r

0

1 + 2s2

(1 + s2)3/2
ds

= (1 + r2)3/2

r
log((1 + r2)1/2 + r) − 1

2
(1 + r2).

It is straightforward to check that f0 is strictly positive and locally bounded, and
that the expansion of f0 around 0 has only even powers of r (so its even reflection
is smooth). Furthermore, f0 has the asymptotics

R2 log R � f0(R) � 2R2 log R, R > R0 (12)

for R0 sufficiently large. We take

f (r) := f0(r)ξ(r − R0) + (1 − ξ(r − R0)) f0(R0)

(see Fig. 2).
Now define

h0 := 1/2, h1 := 1

ϕ

(
1

2
+ 2 f (R0)

r2

)
.

One checks using the definition of f and ϕ that for r > 2R0, one has E(r) = 0 by
taking h = h1. We define

h(r) = ξ(r − 2R0)h0 + (1 − ξ(r − 2R0))h1

(see Fig. 3). Note that h satisfies

1/2 � h � C log R0. (13)

Fig. 2. The function f increases from 1/2 to∼ R2
0 log R0 on [0, R0], then remains constant
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Fig. 3. The function h is close to 1/2 most of the time, with a bump near 2R0 so the equation
is solved for r > 2R0 + 1

With these choices of f, h, we have that

E(r) = 0, r /∈ [R0, 2R0 + 1].

By the estimates (11), (12) and (13), in the remaining annulus we have

|E(r)| � C

(
log R0

r2
+ R2

0 log R0

r4

)
χ[R0, 2R0+1] < CR−2

0 log R0 χ[R0, 2R0+1]

(14)
(see Fig. 4).

Furthermore, one checks for r < R0 that

M = 1

2
I + β(r)x ⊗ x

whereβ(|x |) = f (|x |)−1/2
|x |2 is a smooth functionon BR0 . Thus,M is smooth, bounded

and uniformly elliptic on R
2 with eigenvalues between 1

2 and CR2
0 log R0.

Fig. 4. The error in the equation is supported in [R0, 2R0 + 1] and is of order R−2
0 log R0
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3.3. Definition of U

We define the components of U by u and a rotation of u:

U = (u1, u2) = (ϕ(r) cos θ, ϕ(r) sin θ) = ϕ(r)ν.

Using the estimates (11) for ϕ one verifies that

|DU| = O(r−1), |DU · x | = O(r−2) (15)

as desired.
Furthermore, taking B11 = B22 = M and B12 = B21 = 0, by construction and

the rotation invariance of M the map U solves the system

1

2
DU · x − div(BDU) = E(r)ν.

In the next section we will perturb B12 and B21 so that the system (6) is solved
globally and the coefficients remain uniformly elliptic.

4. Coupling the Equations

By the analysis above, if we take A11 = A22 = M and A12 = A21 = 0, then
the map U solves the desired elliptic system (6) away from the annulus R0 < r <

2R0 + 1. We now couple the equations in this region. We will use that f (r) is
large in the annulus to conclude that the resulting coefficient matrix A is uniformly
elliptic.

Since u2 is a rotation of u1 is natural to look for coupling coefficients that are
rotations. Let A12 be the “corrector” matrix field

A12 = η(r)

(
0 1

−1 0

)
.

One computes

div(A12∇u2) = η′ϕ
r

cos θ.

Thus, to solve the system (6) we need to take

η(r) :=
∫ r

0

t E(t)

ϕ(t)
dt.

With this choice of η, the desired equation

div(A11∇u1 + A12∇u2) = 1

2
∇u1 · x

is solved, and by the estimate (14) we have
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Fig. 5. The corrector η is zero to the left of R0 and constant to the right of 2R0 + 1, with
|η| of order log R0

|η(r)| � C log R0 χ{r>R0} (16)

(see Fig. 5).
Finally, we define the remaining corrector A21 by

A21 = −A12,

so that the equation holds in the second component.
In conclusion, we constructed a coefficient matrix A and a map U solving the

system (6). With respect to the coordinate system

(ν, 0), (τ, 0), (0, ν), (0, τ )

(where (v,w) denotes the 2 × 2 matrix with first row v and second row w) one
writes

A =

⎛
⎜⎜⎝

f 0 0 η

0 h −η 0
0 −η f 0
η 0 0 h

⎞
⎟⎟⎠ (r).

For r < R0 one has η = 0 and the equations are decoupled. For r > R0 large
we examine the characteristic polynomial

P(λ) = [(λ − f )(λ − h) − η2]2.
Using the estimates (12), (13) and (16) one sees that, for λ � 0, we have P(λ) > 0,
verifying uniform ellipticity and completing the example:

Proof of Theorem 1 The map U and matrix field A satisfy the hypotheses of Propo-
sition 9 by construction and estimate (15).

Remark 14. It is not hard to write f as a smooth function of ϕ and h as a Lipschitz
function of ϕ. However, on the circle {ϕ′ = 0}, one computes that E > 0. (Indeed,
the error must be nonzero there by the maximum principle.) It follows that η is not
a function of ϕ. In particular, the coefficients cannot be written as functions of U.
We overcome this in Section 6 by going to a higher codimension.
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5. Unbounded Singularity

In this section we modify the construction from the previous section to produce
an example with L∞ blowup at (0, 0). The construction follows the same lines, so
we just sketch the key steps. For simplicity we use the same notation as above.

Reduction to Elliptic System We search for solutions of the form

u(x, t) = 1

(−t)ε/2
U

(
x√−t

)

for some ε > 0, with coefficients

a(x, t) = A

(
x√−t

)
.

The idea is that this rescaling fixes −ε-homogeneous functions rather than 0-
homogeneous functions. This reduces the problem to finding a nontrivial smooth,
global, bounded solution U to the elliptic system

div(ADU) = 1

2
(DU · x + εU), (17)

where A(x) are smooth uniformly elliptic coefficients and U satisfies

|DU| = O(|x |−1−ε), |DU · x + εU| = O(|x |−2−ε). (18)

One checks that if U satisfies these conditions, then u is smooth for t < 0 and
Lipschitz up to t = 0 away from (0, 0) and ‖u(·, t)‖L∞(B1) blows up at the rate
(−t)−ε/2.

Remark 15. In fact, wewill chooseU to be asymptotically homogeneous of degree
−ε, so that u(·, 0) is homogeneous of degree −ε.

Scalar Building BlockWe will again build U out of a scalar function u that solves
the elliptic equation

div(M∇u) = 1

2
(∇u · x + εu)

away from an annulus. Take

u = ϕ(r) cos θ, M = f (r)ν ⊗ ν + h(r)τ ⊗ τ.

In this case we have

1

2
(∇u · x + εu) − div(M∇u) = E(r) cos θ

with

E(r) := 1

2
(rϕ′ + εϕ) + hϕ

r2
− (rϕ′ f )′

r
.



1050 Connor Mooney

Definition of ϕ We take ϕ = ϕ1 (the same as above) for r < R0 large, and for
r > 2R0 we define

ϕ(r) = ϕ3(r) := r−ε + 1

2
r−ε−2.

Note that for ε = 0 this reduces to what we have above. Take

ε = 1

R2
0 log R0

.

Then in the interval [R0, 2R0] one verifies
|ϕ′

3| < CR−3
0 , |ϕ′′

3 | < CR−4
0 .

Furthermore, since 1 − R−ε
0 � Cε log R0 � CR−2

0 , we can take ϕ to be a smooth
gluing of ϕ1 to ϕ3 in [R0, 2R0] so that same estimates as above hold in the corrector
region:

|ϕ′| <
C

R3
0

, |ϕ′′| <
C

R4
0

for R0 � r � 2R0. (19)

Construction of f and h Take h = 1/2 for r < R0 and solve E(r) = 0 for a
function f0. Then f0(|x |) is positive and smooth for |x | < R0 with the asymptotics

f0(R0) ∼ R2
0 log R0 + εR4

0 ∼ R2
0 log R0. (20)

(Here ∼ denotes equivalence up to multiplying by constants independent of R0.)
Define f to be a gluing of f0 to f0(R0) between R0 and R0 + 1 as above.

We again choose h so that E(r) = 0 for r > 2R0 + 1. The error in {r > 2R0}
is

E(r) = r−2−ε

(
−1

2
+

(
1 + 1

2
r−2

)
h − f (R0)

(
ε2 + (2 + ε)2

2
r−2

))
.

So we define h in {r > 2R0 + 1} by

(1 + r−2/2)h(r) = 1

2
+ f (R0)

(
ε2 + (2 + ε)2

2
r−2

)
,

and glue it to 1/2 for r < 2R0. This gives

1

2
� h � C log R0, (21)

with h asymptotically close to 1/2 and with a bump of size log R0 near 2R0.

Definition of U We again let

U = ϕ(r)ν.

One checks using the definition of ϕ that the derivatives of U satisfy the desired
estimates (18). If we take B11 = B22 = M and B12 = B21 = 0 then U solves

1

2
(DU · x + εU) − div(BDU) = E(r)ν,
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and using the estimates (19), (20) and (21) we conclude that the error is estimated
by

|E(r)| � C
log R0

R2
0

χ[R0, 2R0+1]. (22)

Coupling the Equations Let A11 = M and again take

A12 = η(r)

(
0 1

−1 0

)
.

To solve the desired equation

div(A11∇u1 + A12∇u2) = 1

2
(∇u1 · x + εu1)

we again need

η′ϕ
r

= E(r).

Integrating and using (22) we obtain

|η| � C log R0 χ{r>R0}. (23)

Taking A22 = M and A21 = −A12 one verifies that the desired system (17) is
also solved in the second component. Finally, the resulting matrix A is smooth, and
the estimates (20), (21) and (23) give that A is positive, completing the example.

Remark 16. In the above construction we see that ‖u(·, t)‖L∞(B1) blows up at the

rate (−t)− 1
2 R

−2
0 (log R0)

−1
. A natural question is how quickly a solution to (1) in two

dimensions can blow up in L∞ from smooth data, that is how large one can take ε.

Remark 17. We remark that our examples are smooth for t < 0. In [9] the authors
construct an example with finite time blowup in the case n = m � 3 that is Hölder
continuous, but not smooth, for t < 0.

6. An Example for Quasilinear Structure

In this section we construct a solution to the quasilinear problem (5) that devel-
ops an interior discontinuity in finite time from smooth data. We will construct a
smooth, bounded mapW : R2 → R

4 and smooth matrix field A(W) satisfying the
hypotheses in Remark 11, and the estimates (7).

6.1. Construction of W

Let U be the map constructed in Section 3. Recall that U = ϕ(r)ν where ϕ(r)
smoothly connects ϕ1 to ϕ2 in the interval [R0, 2R0]. We let Ũ = ϕ̃(r)ν where ϕ̃

is a similar function that transitions in the interval [3R0, 4R0]:
ϕ̃(r) = ξ

(
r − 3R0

R0

)
ϕ1 +

(
1 − ξ

(
r − 3R0

R0

))
ϕ2.

We define

W = (U, Ũ).
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6.2. Construction of the Coefficients

Construct f̃ , h̃ and η̃ in the exact same way as in Sections 3 and 4, for the
function ϕ̃. We take

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 0 0 η 0 0 0 0
0 h −η 0 0 0 0 0
0 −η f 0 0 0 0 0
η 0 0 h 0 0 0 0
0 0 0 0 f̃ 0 0 η̃

0 0 0 0 0 h̃ −η̃ 0
0 0 0 0 0 −η̃ f̃ 0
0 0 0 0 η̃ 0 0 h̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(r)

with respect to the coordinate system

(ν, 0, 0, 0), (τ, 0, 0, 0), (0, ν, 0, 0), (0, τ, 0, 0), . . . , (0, 0, 0, τ ),

where (v,w, x, y) denotes the 4 × 2 matrix with rows v, w, x and y. Then A0
is smooth and uniformly elliptic. (Indeed, the top left and lower right blocks are
uniformly elliptic by the computations in Section 4.) Furthermore, we have

div(A0(x)DW) = 1

2
DW · x .

6.3. Showing the Coefficients Depend Smoothly on W

We show that A0(x) can be written as A(W) for a uniformly elliptic, smooth
matrix field A on R

4.
Let Γ ⊂ R

2 be the image (ϕ, ϕ̃)((0,∞)). Then Γ is a smooth embedded curve
consisting of two segments on the diagonal θ = π

4 connected by a short piece below
the diagonal (see Fig. 6).

Define smooth functions N and H on Γ by

N (ϕ(r), ϕ̃(r)) = η(r), H(ϕ(r), ϕ̃(r)) = h(r).

Also, let

F(ϕ(r)) = f (r)

be a function on [0,max ϕ]. This definition makes sense because f (r) is constant
where ϕ(r) � 1−δ for some small δ (after possibly making f transition to constant
faster near r = R0). One can extend F to a smooth, positive, bounded, even function
F on R by letting F(s) = f (R0) for s � 1, and by noticing that the expansion of
f near the origin has only even powers.

By construction we have that N = 0 on Γ except for in a small square Q δ̄(1, 1)
of side length 2δ̄ centered at (1, 1) (here δ̄ is of order R−2

0 ). Furthermore, F(x) is
of order R2

0 log R0 for (x, y) ∈ Q δ̄(1,1). Note that N is constant very close to (1, 1)
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Fig. 6. The image of (ϕ, ϕ̃) is a smooth embedded curve Γ

on Γ . Extend N to a smooth functionN (x, y) on the positive quadrant that is less
than order log R0 in Q δ̄(1, 1) and vanishes outside of Q δ̄(1,1).

Next, we observe that H = 1/2 on Γ away from Q δ̄ , and that near (1, 1) we
have by construction that H agrees with the function 4 f (R0)− 4 f (R0)−1/2

x . Extend
H to a smooth function H on the positive quadrant that is identically 1/2 away
from Q δ̄ , and at least 1/3 in the square.

For (p, q) ∈ R
4, the functions F(|p|), H(|p|, |q|) and N (|p|, |q|) are

smooth. Define

A12(p, q) = −A21(p, q) = N (|p|, |q|)
(

0 1
−1 0

)
,

and

A11(p, q) = A22(p, q) = F(|p|) p ⊗ p

|p|2 + H(|p|, |q|) p
⊥ ⊗ p⊥

|p|2
= 1

2
I + (F − 1/2)(|p|) p ⊗ p

|p|2

+ (H − 1/2)(|p|, |q|) p
⊥ ⊗ p⊥

|p|2 .

Then Ai j
αβ |α, β�2 is a smooth, bounded, uniformly ellipticmatrix field onR4. Indeed,

H−1/2 is zero except for (|p|, |q|) near (1, 1) and is larger than−1/6, andF−1/2
is a smooth positive bounded function that vanishes on {p = 0} and is of order
R2
0 log R0 where N is of order log R0.

Finally, it is clear from the definitions of F , H and N that Ai j
αβ(W(x))|α, β�2

agree with the same components of A0(x).
Using a very similar procedure with f̃ , h̃ and η̃, one can also define uniformly

elliptic smooth coefficients Ai j
αβ |α, β�3 onR

4 so that Ai j
αβ(W(x))|α, β�3 agree with
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the same components of A0(x). Taking the remaining coefficients to be zero com-
pletes the construction.

Proof of Theorem 5 We have constructed a smooth bounded map W : R2 → R
4

and smooth uniformly elliptic coefficients A on R
4 verifying the hypotheses in

Remark 11 and the estimates (7).

7. Liouville Theorem

In the final section we prove a Liouville theorem showing why |U| can not be
radially increasing in two dimensions.

Theorem 18. Any global, bounded solutionU : R2 → R
m to the uniformly elliptic

system

div(A(x)DU) = f (x)DU · x
such that f � 0 and |U| is radially increasing is constant.

Remark 19. The examples of Giusti and Miranda [4] and Starà and John [9]
show that the condition n = 2 is necessary.

Proof. The key observation is that, since |U| is radially increasing, we have

0 � 1

2
f (x)∇|U|2 · x = f (x)U · (DU · x).

In particular,

0 � div(ADU) · Uψ2

for any compactly supported H1 functionψ . Integrating by parts and using uniform
ellipticity one obtains the Caccioppoli inequality∫

R2
|DU|2ψ2 dx � C

∫
R2

|U|2|∇ψ |2 dx .

Since U is bounded we thus have∫
R2

|DU|2ψ2 dx � C
∫
R2

|∇ψ |2 dx .

Taking ψ = 1 in B1, zero outside of BR , and

ψ = 1 − log r

log R
for 1 � r � R

the above inequality becomes∫
B1

|DU|2 dx � C

log R
.

Taking R → ∞ we conclude that U is constant in B1, and by a simple scaling
argument that U is constant globally.
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Remark 20. By inspection of the proof, a Liouville theorem holds for any uni-
formly elliptic system in two dimensions of the form

div(A(x)DU) = V + g(|x |)DU · x⊥

such that V · U � 0. Indeed, after taking the dot product with U, the last term
becomes an angular derivative of |U|2, which disappears when we multiply by a
radially symmetric cutoff and integrate.

Such systems arise by searching for self-similar solutions to (1) with radi-
ally increasing modulus, that are invariant under rescalings that e.g. fix −ε-
homogeneous maps (giving the term V = 1

2 (DU · x + εU)) or have “spiraling”
behavior (giving a term involving the angular derivative of U).
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